Show simple item record

dc.contributor.authorPan, Elton
dc.contributor.authorKwon, Soonhyoung
dc.contributor.authorJensen, Zach
dc.contributor.authorXie, Mingrou
dc.contributor.authorGómez-Bombarelli, Rafael
dc.contributor.authorMoliner, Manuel
dc.contributor.authorRomán-Leshkov, Yuriy
dc.contributor.authorOlivetti, Elsa
dc.date.accessioned2025-11-26T22:00:02Z
dc.date.available2025-11-26T22:00:02Z
dc.date.issued2024-03-06
dc.identifier.urihttps://hdl.handle.net/1721.1/164092
dc.description.abstractZeolites, nanoporous aluminosilicates with well-defined porous structures, are versatile materials with applications in catalysis, gas separation, and ion exchange. Hydrothermal synthesis is widely used for zeolite production, offering control over composition, crystallinity, and pore size. However, the intricate interplay of synthesis parameters necessitates a comprehensive understanding of synthesis-structure relationships to optimize the synthesis process. Hitherto, public zeolite synthesis databases only contain a subset of parameters and are small in scale, comprising up to a few thousand synthesis routes. We present ZeoSyn, a dataset of 23,961 zeolite hydrothermal synthesis routes, encompassing 233 zeolite topologies and 921 organic structure-directing agents (OSDAs). Each synthesis route comprises comprehensive synthesis parameters: 1) gel composition, 2) reaction conditions, 3) OSDAs, and 4) zeolite products. Using ZeoSyn, we develop a machine learning classifier to predict the resultant zeolite given a synthesis route with >70% accuracy. We employ SHapley Additive exPlanations (SHAP) to uncover key synthesis parameters for >200 zeolite frameworks. We introduce an aggregation approach to extend SHAP to all building units. We demonstrate applications of this approach to phase-selective and intergrowth synthesis. This comprehensive analysis illuminates the synthesis parameters pivotal in driving zeolite crystallization, offering the potential to guide the synthesis of desired zeolites. The dataset is available at https://github.com/eltonpan/zeosyn_dataset.en_US
dc.language.isoen
dc.publisherAmerican Chemical Societyen_US
dc.relation.isversionof10.1021/acscentsci.3c01615en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceAmerican Chemical Societyen_US
dc.titleZeoSyn: A Comprehensive Zeolite Synthesis Dataset Enabling Machine-Learning Rationalization of Hydrothermal Parametersen_US
dc.typeArticleen_US
dc.identifier.citationElton Pan, Soonhyoung Kwon, Zach Jensen, Mingrou Xie, Rafael Gómez-Bombarelli, Manuel Moliner, Yuriy Román-Leshkov, and Elsa Olivetti. ACS Central Science 2024 10 (3), 729-743.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.relation.journalACS Central Scienceen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2025-11-26T21:50:50Z
dspace.orderedauthorsPan, E; Kwon, S; Jensen, Z; Xie, M; Gómez-Bombarelli, R; Moliner, M; Román-Leshkov, Y; Olivetti, Een_US
dspace.date.submission2025-11-26T21:50:57Z
mit.journal.volume10en_US
mit.journal.issue3en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record