MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Center for Brains, Minds & Machines
  • Publications
  • CBMM Memo Series
  • View Item
  • DSpace@MIT Home
  • Center for Brains, Minds & Machines
  • Publications
  • CBMM Memo Series
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Position: A Theory of Deep Learning Must Include Compositional Sparsity

Author(s)
Danhofer, David A.; D'Ascenso, Davide; Dubach, Rafael; Poggio, Tomaso
Thumbnail
DownloadCBMM Memo 159.pdf (676.3Kb)
Metadata
Show full item record
Abstract
Overparametrized Deep Neural Networks (DNNs) have demonstrated remarkable success in a wide variety of domains too high-dimensional for classical shallow networks subject to the curse of dimensionality. However, open questions about fundamental principles, that govern the learning dynamics of DNNs, remain. In this position paper we argue that it is the ability of DNNs to exploit the compositionally sparse structure of the target function driving their success. As such, DNNs can leverage the property that most practically relevant functions can be composed from a small set of constituent functions, each of which relies only on a low-dimensional subset of all inputs. We show that this property is shared by all efficiently Turing-computable functions and is therefore highly likely present in all current learning problems. While some promising theoretical insights on questions concerned with approximation and generalization exist in the setting of compositionally sparse functions, several important questions on the learnability and optimization of DNNs remain. Completing the picture of the role of compositional sparsity in deep learning is essential to a comprehensive theory of artificial— and even general—intelligence.
Date issued
2025-07-02
URI
https://hdl.handle.net/1721.1/159860
Publisher
Center for Brains, Minds and Machines (CBMM)
Series/Report no.
CBMM Memo;159

Collections
  • CBMM Memo Series

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.