MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • LCS Publications
  • LCS Technical Memos (1974 - 2003)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • LCS Publications
  • LCS Technical Memos (1974 - 2003)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Worst-case and Probabilistic Analysis of a Geometric Location Problem

Author(s)
Papadimitriou, Christos H.
Thumbnail
DownloadMIT-LCS-TM-153.pdf (5.277Mb)
Metadata
Show full item record
Abstract
We consider the problem of choosing K "medians" among n points on the Euclidean plane such that the sum of the distances from each of the n points to its closest median is minimized. We show that this problem is NP-complete. We also present two heuristics that produce arbitrarily good solutions with probability going to 1. One is a partition heuristic, and works when K grows lineraly -- or almost so -- with n. The other is the "honeycomb" heuristic, and is applicable to rates of grother of K of the form K ~ n^Є, 0<Є<1.
Date issued
1980-02
URI
https://hdl.handle.net/1721.1/148980
Series/Report no.
MIT-LCS-TM-153

Collections
  • LCS Technical Memos (1974 - 2003)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.