MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Center for Brains, Minds & Machines
  • Publications
  • CBMM Memo Series
  • View Item
  • DSpace@MIT Home
  • Center for Brains, Minds & Machines
  • Publications
  • CBMM Memo Series
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Stable Foundations for Learning: a foundational framework for learning theory in both the classical and modern regime.

Author(s)
Poggio, Tomaso
Thumbnail
DownloadCBMM-Memo-103.pdf (584.5Kb)
Metadata
Show full item record
Abstract
We consider here the class of supervised learning algorithms known as Empirical Risk Minimization (ERM). The classical theory by Vapnik and others characterize universal consistency of ERM in the classical regime in which the architecture of the learning network is fixed and n, the number of training examples, goes to infinity. According to the classical theory, the minimizer of the empirical risk is consistent if the hypothesis space has finite complexity. We do not have a similar general theory for the modern regime of interpolating regressors and over-parameterized deep networks, in which d > n and 𝑑/n remains constant as n goes to infinity. In this note I propose the outline of such a theory based on the specific notion of CVloo stability of the learning algorithm with respect to perturbations of the training set. The theory shows that for interpolating regressors and separating classifiers (either kernel machines or deep RELU networks) 1. minimizing CVloo stability minimizes the expected error 2. the most stable solutions are minimum norm solutions The hope is that this approach may lead to a unified theory encompassing both the modern regime and the classical one.
Date issued
2020-03-25
URI
https://hdl.handle.net/1721.1/124343
Publisher
Center for Brains, Minds and Machines (CBMM)
Series/Report no.
CBMM Memo;103

Collections
  • CBMM Memo Series

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.