MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Air Transportation Research
  • International Center for Air Transportation
  • ICAT - Reports and Papers
  • View Item
  • DSpace@MIT Home
  • Air Transportation Research
  • International Center for Air Transportation
  • ICAT - Reports and Papers
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Scaling Constraints for Urban Air Mobility Operations: Air Traffic Control, Ground Infrastructure, and Noise

Author(s)
Vascik, Parker; Hansman, R. John
Thumbnail
DownloadICAT-2018-04_2018b Vascik Evaluation of Scaling Constraints for UAM ICAT Report-1.pdf (2.672Mb)
Metadata
Show full item record
Abstract
The scalability of the current air traffic control system, the availability of aviation ground infrastructure, and the acceptability of aircraft noise to local communities have been identified as three key operational constraints that may limit the implementation or growth of Urban Air Mobility (UAM) systems. This paper identifies the primary mechanisms through which each constraint emerges to limit the number of UAM operations in an area (i.e. the scale of the service). Technical, ecosystem, or operational factors that influence each of the mechanisms are also identified. Interdependencies between the constraints are shown. Potential approaches to reduce constraint severity through adjustments to the mechanisms are introduced. Finally, an effort is made to characterize the severity of each operational constraint as a function of the density of UAM operations in a region of interest. To this end, a measure of severity is proposed for each constraint. This measure is used to notionally display how the severity of the constraint responds to UAM scaling, and to identify scenarios where efforts to relieve the constraint are most effective. The overall purpose of this paper is to provide an abstraction of the workings of the key UAM operational constraints so that researchers, developers, and practitioners may guide their efforts to mitigation pathways that are most likely to increase achievable UAM system scale.
Date issued
2018-07-10
URI
http://hdl.handle.net/1721.1/116860
Series/Report no.
;ICAT-2018-04

Collections
  • ICAT - Reports and Papers

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.