MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Center for Brains, Minds & Machines
  • Publications
  • CBMM Memo Series
  • View Item
  • DSpace@MIT Home
  • Center for Brains, Minds & Machines
  • Publications
  • CBMM Memo Series
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Single-Shot Object Detection with Enriched Semantics

Author(s)
Zhang, Zhishuai; Qiao, Siyuan; Xie, Cihang; Shen, Wei; Wang, Bo; Yuille, Alan L.; ... Show more Show less
Thumbnail
DownloadCBMM-Memo-084.pdf (1.921Mb)
Metadata
Show full item record
Abstract
We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.
Date issued
2018-06-19
URI
http://hdl.handle.net/1721.1/115180
Publisher
Center for Brains, Minds and Machines (CBMM)
Series/Report no.
CBMM Memo Series;084

Collections
  • CBMM Memo Series

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.