MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • CSAIL Digital Archive
  • CSAIL Technical Reports (July 1, 2003 - present)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • CSAIL Digital Archive
  • CSAIL Technical Reports (July 1, 2003 - present)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Risk Allocation for Temporal Risk Assessment

Author(s)
Wang, Andrew J.
Thumbnail
DownloadMIT-CSAIL-TR-2018-011.pdf (616.6Kb)
Other Contributors
Model-based Embedded and Robotic Systems
Advisor
Brian Williams
Terms of use
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Temporal uncertainty arises when performing any activity in the natural world. When activities are composed into temporal plans, then, there is a risk of not meeting the plan requirements. Currently, we do not have quantitatively precise methods for assessing temporal risk of a plan. Existing methods that deal with temporal uncertainty either forgo probabilistic models or try to optimize a single objective, rather than satisfy multiple objectives. This thesis offers a method for evaluating whether a schedule exists that meets a set of temporal constraints, with acceptable risk of failure. Our key insight is to assume a form of risk allocation to each source of temporal uncertainty in our plan, such that we may reformulate the probabilistic plan into an STNU parameterized on the risk allocation. We show that the problem becomes a deterministic one of finding a risk allocation which implies a schedulable STNU within acceptable risk. By leveraging the principles behind STNU analysis, we derive conditions which encode this problem as a convex feasibility program over risk allocations. Furthermore, these conditions may be learned incrementally as temporal conflicts. Thus, to boost computational efficiency, we employ a generate-and-test approach to determine whether a schedule may be found.
Description
MEng thesis
Date issued
2013-01-31
URI
http://hdl.handle.net/1721.1/113371
Series/Report no.
MIT-CSAIL-TR-2018-011

Collections
  • CSAIL Technical Reports (July 1, 2003 - present)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.