MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • CSAIL Digital Archive
  • CSAIL Technical Reports (July 1, 2003 - present)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • CSAIL Digital Archive
  • CSAIL Technical Reports (July 1, 2003 - present)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Risk-minimizing program execution in robotic domains

Author(s)
Brian Williams; Model-based Embedded and Robotic Systems; Effinger, Robert
Thumbnail
DownloadMIT-CSAIL-TR-2018-006.pdf (17.82Mb)
Other Contributors
Model-based Embedded and Robotic Systems
Advisor
Brian Williams
Terms of use
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
In this thesis, we argue that autonomous robots operating in hostile and uncertain environments can improve robustness by computing and reasoning explicitly about risk. Autonomous robots with a keen sensitivity to risk can be trusted with critical missions, such as exploring deep space and assisting on the battlefield. We introduce a novel, risk-minimizing approach to program execution that utilizes program flexibility and estimation of risk in order to make runtime decisions that minimize the probability of program failure. Our risk-minimizing executive, called Murphy, utilizes two forms of program flexibility, 1) flexible scheduling of activity timing, and 2) redundant choice between subprocedures, in order to minimize two forms of program risk, 1) exceptions arising from activity failures, and 2) exceptions arising from timing constraint violations in a program. Murphy takes two inputs, a program written in a nondeterministic variant of the Reactive Model-based Programming Language (RMPL) and a set of stochastic activity failure models, one for each activity in a program, and computes two outputs, a risk-minimizing decision policy and value function. The decision policy informs Murphy which decisions to make at runtime in order to minimize risk, while the value function quantifies risk. In order to execute with low latency, Murphy computes the decision policy and value function offline, as a compilation step prior to program execution. In this thesis, we develop three approaches to RMPL program execution. First, we develop an approach that is guaranteed to minimize risk. For this approach, we reason probabilistically about risk by framing program execution as a Markov Decision Process (MDP). Next, we develop an approach that avoids risk altogether. For this approach, we frame program execution as a novel form of constraint-based temporal reasoning. Finally, we develop an execution approach that trades optimality in risk avoidance for tractability. For this approach, we leverage prior work in hierarchical decomposition of MDPs in order to mitigate complexity. We benchmark the tractability of each approach on a set of representative RMPL programs, and we demonstrate the applicability of the approach on a humanoid robot simulator.
Description
PhD thesis
Date issued
2012-02-02
URI
http://hdl.handle.net/1721.1/113366
Series/Report no.
MIT-CSAIL-TR-2018-006

Collections
  • CSAIL Technical Reports (July 1, 2003 - present)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.