Show simple item record

dc.contributor.authorCahoy, K. L.
dc.contributor.authorBlackwell, W. J.
dc.contributor.authorBishop, R.
dc.contributor.authorCohen, B.
dc.contributor.authorCrail, C.
dc.contributor.authorCucurull, L.
dc.contributor.authorDave, P.
dc.contributor.authorDiLiberto, M.
dc.contributor.authorErickson, N.
dc.contributor.authorFish, C.
dc.contributor.authorHo, S. P.
dc.contributor.authorLeslie, R. V.
dc.contributor.authorMilstein, A. B.
dc.contributor.authorOsaretin, I. A.
dc.date.accessioned2017-07-21T21:37:39Z
dc.date.available2017-07-21T21:37:39Z
dc.date.issued2014-10
dc.identifier.issn01962892
dc.identifier.urihttp://hdl.handle.net/1721.1/110814
dc.description.abstractWe present a new high-fidelity method of calibrating a cross-track scanning microwave radiometer using Global Positioning System (GPS) radio occultation (GPSRO) measurements. The radiometer and GPSRO receiver periodically observe the same volume of atmosphere near the Earth's limb, and these overlapping measurements are used to calibrate the radiometer. Performance analyses show that absolute calibration accuracy better than 0.25 K is achievable for temperature sounding channels in the 50-60-GHz band for a total-power radiometer using a weakly coupled noise diode for frequent calibration and proximal GPSRO measurements for infrequent (approximately daily) calibration. The method requires GPSRO penetration depth only down to the stratosphere, thus permitting the use of a relatively small GPS antenna. Furthermore, only coarse spacecraft angular knowledge (approximately one degree rms) is required for the technique, as more precise angular knowledge can be retrieved directly from the combined radiometer and GPSRO data, assuming that the radiometer angular sampling is uniform. These features make the technique particularly well suited for implementation on a low-cost CubeSat hosting both radiometer and GPSRO receiver systems on the same spacecraft. We describe a validation platform for this calibration method, the Microwave Radiometer Technology Acceleration (MiRaTA) CubeSat, currently in development for the National Aeronautics and Space Administration (NASA) Earth Science Technology Office. MiRaTA will fly a multiband radiometer and the Compact TEC/Atmosphere GPS Sensor in 2015.en_US
dc.language.isoen_USen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.subjectAdvanced Microwave Sounding Unit (AMSU)en_US
dc.subjectcalibrationen_US
dc.subjectCompact Total Electron Count (TEC)/Atmosphere Global Positioning System (GPS) Sensor (CTAGS)en_US
dc.subjectCubeSaten_US
dc.subjectGlobal Navigation Satellite System (GNSS)en_US
dc.subjectGPSen_US
dc.subjectGPS radio occultation (RO) (GPSRO)en_US
dc.subjecthumidityen_US
dc.subjectMicro-sized Microwave Atmospheric Satellite (MicroMAS)en_US
dc.subjectmicrowaveen_US
dc.subjectMicrowave Radiometer Technology Acceleration (MiRaTA)en_US
dc.subjectnanosatelliteen_US
dc.subjectprecipitationen_US
dc.subjectradiometeren_US
dc.subjectremote sensingen_US
dc.subjectROen_US
dc.subjectRO-Calen_US
dc.subjecttemperatureen_US
dc.titleRadiometer Calibration Using Colocated GPS Radio Occultation Measurementsen_US
dc.typeArticleen_US
dc.identifier.citationBlackwell, WJ, et al. "Radiometer Calibration Using Colocated GPS Radio Occultation Measurements." Ieee Transactions on Geoscience and Remote Sensing, vol. 52, no. 10, n.d., pp. 6423-6433. EBSCOhost, search.ebscohost.com/login.aspx?direct=true&db=edswsc&AN=000337173200035&site=eds-live&scope=site.en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record