MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Department of Mechanical Engineering
  • Active Adaptive Control Laboratory (AACL)
  • AACL Preprints
  • View Item
  • DSpace@MIT Home
  • Department of Mechanical Engineering
  • Active Adaptive Control Laboratory (AACL)
  • AACL Preprints
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Towards Resilient Cyber-Physical Energy Systems

Author(s)
Baros, Stefanos; Shiltz, Dylan; Jaipuria, Prateek; Hussain, Alefiya; Annaswamy, Anuradha M.
Thumbnail
Downloadmain article (1.968Mb)
Metadata
Show full item record
Abstract
In this paper, we develop a system-of-systems framework to address cyber-physical resilience, the ability to withstand the combined presence of both cyber attacks and physi-cal faults. This framework incorporates a definition of re-silience, a resilience metric as well as a resilient control de-sign methodology. The resilient control architecture utilizes a hybrid optimal control methodology combined with a dy-namic regulation market mechanism (DRMM), and is evalu-ated in the context of frequency regulation at a transmission grid. The framework enables the evaluation of both the clas-sical robust control properties and emerging resilient control properties under both cyber attacks and physical faults. The proposed framework is used to assess resilience of a Cyber-Physical Energy System (CPES) when subjected to both cyber and physical faults via DETERLab. DETERLab, a testbed capable of emulating high fidelity, cybersecure, net-worked systems, is used to construct critical scenarios with physical faults emulated in the form of generator outages and cyber faults emulated in the form of Denial of Service (DoS) attacks. Under these scenarios, the resilience and per-formance of a CPES that is comprised of 56 generators and 99 consumers is evaluated using the hybrid-DRMM control methodology.
Date issued
2017-03-14
URI
http://hdl.handle.net/1721.1/107408

Collections
  • AACL Preprints

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.