MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Department of Aeronautics and Astronautics
  • Gas Turbine Laboratory
  • Gas Turbine Laboratory Reports
  • View Item
  • DSpace@MIT Home
  • Department of Aeronautics and Astronautics
  • Gas Turbine Laboratory
  • Gas Turbine Laboratory Reports
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

FORTRAN program for calculating three-dimensional, inviscid, rotational flows with shock waves in axial compressor blade rows : I--user's manual

Author(s)
Thompkins, William T.
Thumbnail
Download16205852.pdf (7.822Mb)
Other Contributors
Massachusetts Institute of Technology. Gas Turbine and Plasma Dynamics Laboratory
Metadata
Show full item record
Abstract
Summary: A FORTRAN-IV computer program has been developed for the calculation of the inviscid transonic/supersonic flow field in a fully three-dimensional blade passage of an axial compressor rotor or stator. Rotors may have dampers (part-span shrouds). MacCormack's explicit time-marching method is used to solve the unsteady Euler equations on a finite difference mesh. This technique captures shocks and smears them over several grid points. Input quantities are blade row geometry, operating conditions and thermodynamic quantities. Output quantities are three velocity components, density and internal energy at each mesh point. Other flow quantities are calculated from these variables. A short graphics package is included with the code, and may be used to display the finite difference grid, blade geometry and static pressure contour plots on blade-to-blade calculation surfaces or blade suction and pressure surfaces. Flows in four transonic compressor rotors have been analyzed and compared with exit flow field measurements and intra-blade static density measurements obtained with a gas fluorescence technique. These comparisons have generally shown that the computed flow fields accurately model the experimentally determined passage shock positions and overall aerodynamic performance. The computer code was developed and generally run on a large minicomputer system, a Digital Equipment Corporation PDP-ll/70, with run times of two to three days. The code has also been run on several main-frame computers (IBM 3033, IBM 360/678, UNIVAC 1110, CDC 7600 and a CRAY-1). Typical run times on an IBM 3033 have been found to be 5-10 hours.
Description
September 1981
 
Includes bibliographical references (pages 81-82)
 
Date issued
1981
URI
http://hdl.handle.net/1721.1/104720
Publisher
Cambridge, Mass. : Gas Turbine & Plasma Dynamics Laboratory, Massachusetts Institute of Technology, [1981]
Series/Report no.
GT & PDL report ; no. 162

Collections
  • Gas Turbine Laboratory Reports

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.