Show simple item record

dc.contributor.authorPoggio, Tomaso
dc.contributor.authorRosasco, Lorenzo
dc.contributor.authorShashua, Amnon
dc.contributor.authorCohen, Nadav
dc.contributor.authorAnselmi, Fabio
dc.date.accessioned2015-12-11T22:30:52Z
dc.date.available2015-12-11T22:30:52Z
dc.date.issued2015-09-29
dc.identifier.urihttp://hdl.handle.net/1721.1/100201
dc.description.abstractWe define an extension of classical additive splines for multivariate function approximation that we call hierarchical splines. We show that the case of hierarchical, additive, piece-wise linear splines includes present-day Deep Convolutional Learning Networks (DCLNs) with linear rectifiers and pooling (sum or max). We discuss how these observations together with i-theory may provide a framework for a general theory of deep networks.en_US
dc.description.sponsorshipThis work was supported by the Center for Brains, Minds and Machines (CBMM), funded by NSF STC award CCF - 1231216.en_US
dc.language.isoen_USen_US
dc.publisherCenter for Brains, Minds and Machines (CBMM)en_US
dc.relation.ispartofseriesCBMM Memo Series;037
dc.rightsAttribution-NonCommercial 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/us/*
dc.subjecti-theoryen_US
dc.subjectDeep Convolutional Learning Networks (DCLNs)en_US
dc.subjectNetworksen_US
dc.titleNotes on Hierarchical Splines, DCLNs and i-theoryen_US
dc.typeTechnical Reporten_US
dc.typeWorking Paperen_US
dc.typeOtheren_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record