Show simple item record

dc.contributor.authorAnselmi, Fabio
dc.contributor.authorRosasco, Lorenzo
dc.contributor.authorPoggio, Tomaso
dc.date.accessioned2015-12-11T21:42:05Z
dc.date.available2015-12-11T21:42:05Z
dc.date.issued2015-03-23
dc.identifier.urihttp://hdl.handle.net/1721.1/100194
dc.description.abstractWe discuss data representation which can be learned automatically from data, are invariant to transformations, and at the same time selective, in the sense that two points have the same representation only if they are one the transformation of the other. The mathematical results here sharpen some of the key claims of i-theory, a recent theory of feedforward processing in sensory cortex.en_US
dc.description.sponsorshipThis work was supported by the Center for Brains, Minds and Machines (CBMM), funded by NSF STC award CCF-1231216.en_US
dc.language.isoen_USen_US
dc.publisherCenter for Brains, Minds and Machines (CBMM), arXiven_US
dc.relation.ispartofseriesCBMM Memo Series;029
dc.rightsAttribution-NonCommercial 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/us/*
dc.subjectInvarianceen_US
dc.subjectRepresentation Learningen_US
dc.subjecti-theoryen_US
dc.subjectSensory Cortexen_US
dc.titleOn Invariance and Selectivity in Representation Learningen_US
dc.typeTechnical Reporten_US
dc.typeWorking Paperen_US
dc.typeOtheren_US
dc.identifier.citationarXiv:1503.05938v1en_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record