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Abstract

The primary goal of this thesis is to study transmission line reactance tweaking, as a mechanism

for both post-disturbance control and pre-disturbance resilience enhancement in a transmission

network, and develop an optimization framework for evaluating the efficacy of this mechanism in

both scenarios. We start by developing a mixed-integer linear programming (MILP) formulation

for tracking the redistribution of direct current (DC) flows and the graph-theoretic evolution of

network topology over the course of cascading failures. Next, we propose a min-max setup for

studying the impact of post-disturbance reactance tweaking on the resilience of the system to a

worst-case N-k disturbance and devise a MILP reformulation scheme for the underlying bilevel

nonconvex mixed-integer nonlinear program (MINLP) to facilitate the computation of its optimal

solution. We then develop a MILP framework for computing the exact value of a tight upper

bound on the efficacy of post-disturbance reactance tweaking among the set of all possible N-

k disturbances for a given k and a given bus load scenario. Our numerical case study suggests

that post-disturbance reactance tweaking, even on only a small number of lines, can considerably

reduce the amount of load shed in some scenarios in the tested system. As for pre-disturbance

resilience enhancement, we develop a MILP reformulation for approximating the bilevel MINLP

that seeks to assess the efficacy of pre-disturbance reactance tweaking in reducing the number of

lines that will fail over the propagation of cascading failures in the event of a worst-case-scenario

N-k disturbance. We also give a MILP framework for computing an approximate upper bound on

the efficacy of this mechanism among the set of all N-k contingencies for a given k. Our numerical

case study suggests that pre-disturbance reactance tweaking on a few transmission lines can, in

some cases, prevent the failure of multiple transmission lines over the course of cascading failures

in the tested system.
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Chapter 1

Introduction

Over the past two decades, large-scale cascading failures in various power systems have high-

lighted the compelling need for substantially more powerful mechanisms for increasing power

systems' resilience to disturbances. As a result, identifying various strategies and technologies

that can potentially increase the resilience of a power system to cascading failures has been a core

topic of interest in the power systems literature, with various studies focusing on developing ef-

fective analytical and computational tools for efficacy assessment, economic viability, engineering

design, and implementation of these mechanisms.

Some resilience enhancement strategies focus on post-disturbance control with the goal of maxi-

mizing the amount of demand that can be satisfied after a disturbance while returning the system to

reliable operating conditions. On the other hand, some (pre-disturbance) resilience enhancement

strategies seek to prevent, or quickly eliminate the impact of, any contingencies that could other-

wise compromise system reliability (e.g. by leading to cascading failures or causing issues with

system frequency, etc.). In both post-disturbance control and pre-disturbance resilience enhance-

ment, much attention has been given to the transmission system due to its significant impact on the

propagation and control of cascading failures.

As far as post-disturbance control is concerned, transmission line switching, intentional islanding,
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and controlled load-shedding have been studied extensively in the existing literature (e.g. see [64],

[59], and [3] and the references therein). As for pre-disturbance resilience enhancement, problems

such as transmission expansion planning (see e.g. [24]) and security-constrained economic dis-

patch (see e.g. [39]) have been the main focus of a large body of literature in the field of power

systems. The existing literature suggest that these well-studied mechanisms can be quite effec-

tive. However, as the demand for electricity grows and uncertainty in the system increases, there

seems to be a need for technologies that can allow the system to remain resilient even at higher

loading levels and in the face of a broader array of contingencies. As power systems move towards

deregulation, lowering costs motivates investment in technologies that allow more flexibility in

the system; one set of technologies and devices that can provide flexibility in the system are the

Flexible Alternating Current Transmission Systems (FACTS) (see e.g. [44]). According to [58],

FACTS technologies can benefit power systems in various ways such as improving system stabil-

ity, allowing improved voltage control, and increasing the loadability of the transmission network

by creating the possibility to bring lines considerably closer to their thermal capacity thresholds.

In this thesis, we study "reactance tweaking" as a mechanism for both post-disturbance control

and pre-disturbance resilience enhancement in a transmission network. The core idea behind

post-disturbance reactance tweaking is simple: after the redistribution of power flows due to a

disturbance, some lines become overloaded while some other lines have some residual capacity

remaining; optimal tweaking of line reactances could reduce the flow in overloaded lines and di-

rect it to those lines that have some unused capacity. Using the direct current (DC) approximation

to alternating current (AC) power flows, we develop a framework for assessing the efficacy of this

mechanism and our numerical case study suggests that changing the reactances of only a small

number of transmission lines (within a reasonable range) to control the flow of power in the trans-

mission network after a disturbance can, in some scenarios, considerably reduce the amount of

load that needs to be shed in order to bring the system back to reliable operating conditions in the

tested system (post-disturbance reactance tweaking is studied in Chapter 3). In particular, we first

study the efficacy of post-disturbance reactance tweaking in response to a strategic disturbance that

seeks to cause the wort-case-scenario load-shedding. We then develop a framework for computing
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an exact upper bound on the efficacy of post-disturbance reactance tweaking in response to any

N - k contingency for a given k and a given load level (by an "N - k contingency" we mean a

disturbance that is initiated by the failure of up to k out of N transmission lines). Although the eco-

nomic viability, engineering design, and implementation of a post-disturbance reactance-tweaking

technology are not discussed in this thesis, our results can potentially motivate researchers to dig

deeper into this idea and cover various aspects of such technology. This research is in line with

the recent surge in both academic research and industrial investments related to the incorporation

of power electronic technologies such as FACTS controllers into the transmission grid for more

sustainable and reliable operation of the system (e.g. see [33] for a relevant discussion on FACTS).

The FACTS device most relevant to the study in this thesis appears to be the Thyristor-Controlled

Series Compensator (TCSC). According to [44], TCSC provides flexible (and smooth) control of

the impedance of a transmission line with considerably quicker response relative to traditional

control technologies, and the utilization of this device in various applications ranging from en-

hancement of transient stability, damping inter-area oscillations, and preventing voltage collapse,

to mitigating sub-synchronous resonance and improving system reliability has been studied in the

literature (e.g. see [51], [65], [61], [17], [13]). The impact of TCSC on congestion and spot pricing

has also been studied in [1], where the results suggest that TCSC could be useful in mitigating both

congestion and losses. However, the application of TCSC that is most relevant to the work in this

thesis is its use for mitigating transmission line overloads. This application of TCSC appears to

have received less attention in the literature than the above-mentioned applications; nevertheless,

multiple studies such as [44], [56], [54], [35], [58] have studied the value of TCSC in reducing

line overloads from various aspects, mostly for the case of an N - 1 contingency and particularly

for the application of security-constrained economic dispatch. In the event of a single-component

failure, these papers have suggested that TCSC can effectively enhance the system's security. Our

approach to studying the impact of pre-disturbance reactance tweaking (reported in Chapter 4) is

fundamentally different from the studies mentioned above as we shall give a bilevel (max-min)

approach for studying whether reactance tweaking can reduce the number of lines that will fail

over the propagation of cascading failures (i.e. after the initial disturbance) in the event of a worst-
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case-scenario N - k disturbance (for a given k), and also give a mixed-integer linear programming

(MILP) framework for computing an approximate upper bound on the efficacy of this mechanism

in response to the set of all N - k contingencies for a given k and a given set of bus injections.

Models for resilience assessment of power systems have been proposed in various studies in the

existing literature. Many of these models are in the form of bilevel (e.g. min-max) and trilevel (e.g.

min-max-min) optimization problems (see, e.g. [15], [55], [64], [2], [12]) in which an adversarial

agent and a system operator (SO) optimize their decisions strategically. In many such scenarios, a

zero-sum Stackelberg game arises in which one of the two agents (i.e. either the system operator

or the adversary) goes first and the other agent then goes next, and this sequential process can

go for a number of steps, while both agents share the same objective function (i.e. one agent is

minimizing the objective function while the opposing agent is maximizing it). Resilience is then

typically measured by the severity of the worst-case disturbance despite the SO's efforts. Such

problems are often referred to as "network interdiction" problems. For instance, in the version of

the "N - k" problem that we shall use to find the worst-case "N - k" disturbance in the presence

of post-disturbance reactance tweaking, we consider the case in which the adversary goes first

by removing up to k lines, and the system operator goes next and responds to the disturbance by

tweaking the line reactances and re-dispatching the system with the goal of maximizing the demand

satisfied post-disturbance. Note that this Stackelberg game is zero-sum because both agents have

the same objective function: the adversary seeks to minimize the demand satisfied post-disturbance

by removing lines and the system operator seeks to maximize the demand satisfied post-disturbance

by tweaking the line reactances and also adjusting the loads.

The literature on bilevel network interdiction problems with purely linear and continuous inner-

level programs is extensive (by "inner-level program" we mean, for instance, the "max" part of

the problem in a min-max setup). When the inner-level problem is bounded and feasible, a

common technique is to reformulate the bilevel program into a one-level MILP by invoking the

strong duality of the inner-level linear program (LP) and linearizing the integerx continuous (or

integer x integer) bilinear terms (e.g. see [47]). Similar techniques have been used in [40] for
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the case of a stochastic network interdiction problem as well. Approximate methods have also

been employed in various works such as [12], in which a greedy-based algorithm is developed

to lower the computational complexity. More sophisticated studies on network interdiction have

employed graph-theoretic methods combined with nonlinear optimization methods to give more

realistic models, especially using AC power flows ([52], [53], [28]). Particularly, [52] uses these

techniques to give an approximation method for solving interdiction problems in large networks.

On the other hand, the literature on network interdiction problems with mixed-integer inner-level

optimization problems is more recent and not as extensive. In terms of optimization theory,

generally speaking, both analytical characterization and computational complexity of problems

with mixed-integer inner-level programs are considerably more challenging because strong duality

no longer holds and the integer inner-level variables add a new layer of non-convexity and NP-

hardness to the problem. A majority of the previous work on interdiction problems with mixed-

integer inner-level optimization has dealt with "transmission line switching"; some examples of

works in this line of literature include [3], [26], and [64] in which different techniques varying

from locally optimal heuristics (such as the genetic algorithm and multi-start Benders decomposi-

tion methods) to global optimization techniques (based on column-and-row generation which has

been presented in [64]; this column-and-row generation framework shall be used extensively in

this thesis as well) have been employed for solving the underlying optimization problem.

Aside from the above-mentioned static bilevel models, some other models consider the dynamic

nature of cascading failures (see, e.g. [19], [18], [20], and [9]). Among these, the work in [9]

is more focused on optimization theory and develops mixed-integer programming techniques for

optimal transmission capacity expansion investment (i.e. they find minimal amounts of increases

needed in line capacities to prevent cascading failures, using both static and multi-stage models).

However, their model is quite different from ours and also, unlike the work in this thesis, they

assume constant line reactances.

Aside from the literature on resilience assessment of power systems, the literature on, or related to,

the modeling and characterization of cascading phenomena in networks is also extensive. Many
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works have studied various models of cascades and contagion in general complex networks (see,

for instance, [22], [50], [60], [45], [25], [46], [4], [27]), which may be applied to electricity net-

works to only abstractly model the propagation of cascading failures. Most of these works assume

that a line or node failure in a network causes the failure of neighboring lines or nodes, often with

some probabilistic rule (or in some cases with a deterministic local contagion rule, such as lin-

ear threshold models as in e.g. [42]). As discussed in [7], although such models of epidemics in

complex networks pave the way for employing percolation-based tools to study the effects of cas-

cading failures, they do not provide us with powerful tools that can be applied to actual large-scale

cascades in real-world power systems. This is because the failure of a certain line can consid-

erably impact a remote line in a power system and the cascading failures in electricity networks

do not necessarily propagate in a neighborhood-limited manner. As shown in [7], if we use the

linearized (DC) flow model to keep track of the evolution of cascading failures, we obtain failure

spread characteristics that are considerably different from the dynamics described by the above-

mentioned epidemic-based models. With that in mind, we are particularly interested in studying

the evolution of dynamic DC flows in a capacity-constrained electricity network in the event of

cascading failures. In other words, we use a DC-flow approximation of the AC flows in a power

system.

Numerous works use DC or AC power flow equations to model and study various aspects of cas-

cading failures in power systems (see e.g. [52], [28], [23], [11], [19]). A core focus of many

of the studies in this stream of literature has been on identifying a small group of lines whose

failure results in a power system that can no longer satisfy a prescribed minimum amount of de-

mand (see e.g. [10], [23], [2]). To simplify numerical computations, many such studies use DC

flow equations. However, some works such as [59] and [52] use the more realistic (but also more

computationally challenging) AC power flows. Donde et al. [28] give a mixed-integer nonlinear

program (MINLP) for identifying the largest blackout that can result from a certain number of line

failures or to identify the smallest number of lines whose failure can cause a blackout with a spec-

ified severity, while including reactive power in their formulation. It is of note that similar power

system contingency problems also arise in the context of transmission and generation expansion
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planning and network design (see e.g. [24], [48], [49], [14], [21] and [41]) and sometimes with

special attention to the accommodation of renewable energy integration (see e.g., [5]). Moreover,

some works such as [55] and [30] consider "N - k" contingencies in optimal power flow models

and some do the same in unit commitment problems [57].

Generally speaking, in the literature on resilience assessment of power systems to cascading fail-

ures, optimization-based static models are relatively well studied, but optimization-based multi-

stage models (like the one in [9]) are scarce. This is somewhat justifiable because the SO quickly

interferes with the cascading failures to mitigate their impact on the system. However, there could

be enough time elapsing between the cascade's inception and the SO's response to allow the cas-

cade to propagate for some time before the control mechanisms kick in. This could considerably

change the nature of the problem and hence, multi-stage models generally appear to be more real-

istic. Therefore, other than the idea of reactance tweaking, one of the key features of this thesis is

the development of a MILP framework for tracking the dynamic evolution of the network topology

and redistribution of DC flows over the course of cascading failures (in Chapter 2).

1.1 Contributions

The contributions of this thesis can be summarized as follows:

(1) In Chapter 2, we develop a MILP model for tracking the evolution of network topology and

redistribution of DC flows as cascading failures propagate over multiple stages.

(2) In Chapters 3 and 4, we build optimization frameworks for studying the two-agent (adversary

vs. system operator) games corresponding to efficacy assessment of reactance tweaking as

a post-disturbance control mechanism and a pre-disturbance resilience enhancement strategy,

respectively. We also develop frameworks for studying how the efficacy of these mechanisms

are upper bounded in response to the set of all N - k contingencies for a given k. We present

numerical experiments on a test case using our models, and our simulation results suggest that
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both post-disturbance and pre-disturbance reactance tweaking could be quite effective in some

scenarios in the tested system.

(3) We give a rigorous framework for deriving a MILP reformulation of the non-convex bilevel

mixed-integer program underlying the efficacy assessment problems for post-disturbance re-

actance tweaking, which involve non-convexities stemming from both binary x continuous and

continuous x continuous bilinear terms in the inner-level problem. The continuous x continuous

bilinear terms in the post-disturbance reactance tweaking problem pose a significant compu-

tational burden for computing the globally optimal solution. However, we manage to de-

velop exact reformulation techniques to solve this problem as a MILP by shifting the non-

convexity from the continuous x continuous bilinear terms to auxiliary binary variables that

are introduced into the problem as linear terms, which allows us to then tailor existing MILP-

based decomposition techniques (namely, column and row generation, see e.g. [62]) to our

MILP reformulation and solve the underlying bilevel non-convex MINLP for post-disturbance

reactance-tweaking to global optimality. We also derive a single-level MILP for computing an

exact upper bound on the efficacy of post-disturbance reactance-tweaking, in response to the

set of all N - k scenarios for a given k and a given load level. Considering that a large number

of variables and constraints could exist in the underlying MINLP for a real-world large power

system, our MILP reformulation of the inner-level MINLP also allows for using the existing

powerful MILP solvers which are "mature" in the sense that they are fast, robust, and capable

of handling large problems with millions of variables (e.g. see [32] for a discussion of the

advantages of MILP). As for pre-disturbance resilience enhancement, we develop an approxi-

mate MILP reformulation for solving the underlying bilevel MINLP, which makes it amenable

to the above-mentioned column-and-row-generation scheme and allows us to solve the approx-

imate problem to optimality. We also give a MILP formulation for approximating the upper

bound (among the set of all N-k contingencies for a given k) on the number of lines that would

otherwise have failed over the course of a cascading-failures event had we not tweaked the line

reactances pre-disturbance.

Remark 1. Please bear in mind that modeling power systems is only one application of DCflow
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networks, and hence, many of the analytical tools developed in this thesis potentially have applica-

tions beyond power systems. It is well known that DCpowerflows are the solution to a constrained

quadratic program as shown below (see e.g. [43]):

min -pTXp (1.1)
P

s.t. Mp = b

where p denotes the vector of power flows, X is a diagonal matrix whose diagonal elements are

the line resistances, M is the node-branch incidence matrix (please see Definition 4 for a for-

mal definition), and b is the vector of bus injections. This means that in any DC flow network,

the flows in each line at each instant of time are the optimal solution to a constrained convex

quadratic program, whose objective function is quadratic in the flows, subject to nodal flow con-

servation constraints; in the case of electric DC flows, this quadratic function quantifies the en-

ergy consumed by the flow network (see e.g. [43]). The dual variables (Lagrangian multipliers)

corresponding to the flow conservation constraints are referred to as "voltages" in electricity net-

works. The well-known Kirchhoff's Voltage Law equations in electricity networks appear in the

set of equations corresponding to the necessary and sufficient optimality conditions for solving the

above-mentioned quadratic program. For a fixed reference voltage, the conservation of current

and Kirchhoff's Voltage Law give the necessary and sufficient conditions for finding the optimal

solution to this constrained quadratic program (please see [43]for further details). Therefore, any

network that optimizes a similar positive-definite quadratic objective function subject to conserva-

tion of flow constraints can be thought of as a DC flow network and may be able to benefit from

the tools developed in this thesis.
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1.2 Motivating Example

Given the non-trivial interplay between graph topology, bus injections, line impedances, and line

capacities in determining (and controlling) the flow of power in the system, it is rather intuitive

that aligning these parameters with each other can increase resilience. As discussed earlier, chang-

ing the graph topology via line switching and intentional islanding after a disturbance have been

studied extensively in the literature as ways of controlling the graph topology. Load-shedding and

re-dispatching are also the strategies used for controlling bus injections. This thesis focuses on

controlling line impedances, specifically via tweaking the reactances of the transmission lines. Let

us motivate our problem using the following simple DC circuit:

14-4.3 A

0.5Q 5 4Q

1-1.1 -1.1 A

2Q 1.5Q19

2.5Q

2-2.1 At

Figure 1-1: Simple DC circuit example prior to disturbance

In this circuit, we assume that the injection at the generation node is expected to vary between

4A - 4.3A, and for this generation range, all lines will have plenty of residual capacity in them

(please see the table below for line flows in the case when the injection is 4A).
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Table 1.1: Pre-Disturbance Flows (4A Generation

r cap Iflowl

4Q 2.lA 0.91A

0.5Q 3.8A 2.41A

1Q 2.lA 0.25A

2Q 4.lA 1.41A

1.5Q 1.5A 0.43A

2.5Q 2A 0.16A

5Q lA 0.68A

Case) vs. Capacities

Now if at an instant of time when the generation is for example 4A, we remove the 4Q line, then

the topology changes and the new line flows are as shown in the table below (note the abundance

of residual capacity in the 0.5Q line):

4A

0.5.Q 5'f

I A I' AI

2Q 1.5Q1Q

2.5Q

2A i

Figure 1-2: A line becomes overloaded post-disturbance in the simple DC circuit example
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Table 1.2: Post-Disturbance Flows (4A Generation Case) vs. Capacities

r cap Iflowl

4Q 2.lA x

O.5M 3.8A 2.97A

1Q 2.1A 0.81A

2Q 4.lA 1.98A

1.5Q 1.5A 0.22A

2.5Q 2A 0.19A

5 IA 1.02A

In order to prevent the 5Q line from tripping due to overload, we now need to shed some of the

injection at the generation node in order to bring the flow in the 5Q line below its flow capacity.

However, no load-shedding would have been necessary if we could increase the 5Q line's resistance

by 0.5Q right after the initial disturbance.

Note that we expect impedance-tweaking to be a robust technology, in the sense that we expect

it to be effective for a reasonably broad range of bus injections. For instance, if the injection

is more than 4A in the above example (but still within the prescribed range of 4-4.3Q), further

resistance increase (only on the 5Q line) is needed accordingly to prevent the tripping of the 5Q

line. Note that since the flow on each line of the network depends on the resistances of all lines in

the system (as per Kirchhoff's laws), it would also have been possible to tweak the resistances of

other lines in the above circuit in order to reduce the current flowing into the 5Q line, and hence,

we expect this tweaking technology to be fairly flexible in terms of the choice of its location in the

transmission system. Alternatively, we could also have prevented the overloading of the 5Q line by

pre-disturbance tweaking of its resistance. If, for instance, we were aware that the failure of the 4Q

line would immediately lead to the overloading of the 5Q line and that the failure of the 4Q line is

imminent, we could tweak the resistance of the 5Q line prior to the failure of the 4Q line so as to be

immune to any potential contingencies on the 4Q line. This is why we also study pre-disturbance

tweaking of line reactances in Chapter 4.
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4A

0.5Q $.5Q,

1 AA A - IA

2Q 1.5Q1Q

2.5Q

2A

Figure 1-3: Tweaking the resistance of the 5Q line (via a 0.5Q increase) could have prevented its

overloading in the simple DC circuit

Thus, the above simple example suggests that adjusting impedances of only a small fraction of

lines post-disturbance or even pre-disturbance can potentially be effective.

1.3 Preliminaries

In this section we introduce the notation and nomenclature that shall be used jointly among all

chapters (other variables and concepts shall be defined as they become introduced within their

corresponding chapters).

1.3.1 Notation

" R The set of real numbers

" Z The set of integers

" R+ The set of positive real numbers

" Z+ The set of positive integers
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" R+ The set of non-negative real numbers

" Z+ The set of non-negative integers

I - I For a finite set X, its cardinality shall be denoted by lXI; however, for a vector or

matrix X, IXI shall denote the absolute value of X.

* The vector corresponding to any particular parameter is represented in bold-face. The i-th

entry of a vector x is denoted by xi.

* {x} With a slight abuse of notation, for a vector x, we denote by {x} the set of all entries

of x.

0 diag(x) A diagonal matrix whose diagonal entries are the elements of a vector x

* For a matrix (or vector) A, its transpose is denoted by A'.

* 1 Denotes a vector of all ones .

* < A >=< B > Denotes the equivalence of statements A and B.

1.3.2 Nomenclature

Network topology:

" B The finite set B = {1, ... , n} of buses (nodes)

" S The finite set S = {1, ... , N} of lines (edges)

" (B, E) This pair denotes a directed multigraph

* n The number of nodes (buses)

" N The number of lines. Each line is indexed by an integer in the set {1, . .. N}.
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s(L) For a line L = (c, d, h) c S, extending from bus c E B to bus d E B and indexed by

h, we define s(L) =/ c (i.e. the start bus of the line).

* e(L) For a line L = (c, d, h) E , extending from bus c E B to bus d E B and indexed by

h, we define e(L) d (i.e. the end bus of the line).

S i The set of all lines incident to node i.

Transmission line characteristics:

* caPg3 The active (operational) flow carrying capacity of line (i, j, h) (i.e. line (i, j, h) is

guaranteed to be active as long as the power it carries is below capa ).

* capfh aThe failing capacity threshold of line (i, j, h), i.e. line (i, J, h) is guaranteed to fail

as soon as the power it carries reaches (or exceeds) capijh.

min The minimum allowed reactance for line (i, J, h) after tweaking

ax The maximum allowed reactance for line (i, j, h) after tweaking

* X?. The value of the reactance of line (i, j, h) before tweaking (note that X0 h E

[xm" X'] by assumption).

Power flow and cascading failures:

* T The time-horizon of the cascade, i.e. the number stages for which the cascading failures

propagate before the system operator's response

bt The vector of net bus injections at time t < T

* BI The set of all buses with non-zero injections at time zero

0 '* The vector of all bus phase angles at time t

*Jk The DC approximation of the power flow in line (i, j, h) at time t
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Zb.h Binary variable indicating the failure state of line (i, J, h) at the end of time t (jh = 1

if the line is active by the end of stage t, and 4.h = 0 otherwise)

*sijh Binary variable that switches from 1 to zero at time t if line (i, j, h) trips at time t (if

line (i, j, h) has already failed prior to stage t, then s1 h = 0).

. i Indicates that an active path exists between buses i and j at the end of stage t

" i$ j Indicates no path exists between buses i and j at the end of stage t.

Definition 1. Consider some bilevel program (e.g. min max f (x, y)). Then, we shall refer to the
xex yeY

lower-level decision (i.e. max f (x, y) in the above example) as the "inner-level problem" and the
yEY

higher-level decision variables (x in the above example) as the "outer-level decision variables"

and the constraints corresponding to the higher-level feasible set (X in the above example) as the

"outer-level constraints". If the problem is three-level (e.g. max-max-min) then we shall refer to

the rightmost program (in the max-max-min example it would be the minimization level) as the

"innermost-level problem ".

Definition 2. A connected network is any network in which at least one path exists between each

pair of nodes.

Definition 3. The indicator function Ix(c) is a map from R -+ {0, 1} such that lx(c) = 1 if

c G- X and 1x(c) = 0 otherwise.

Definition 4. Suppose we index all lines in from 1 to IS . Then, the incidence matrix, M, is a

IBI x |&j matrix in which every entry MBL =1 if B = s(L) (i.e. B is the starting node of the

line indexed by L) and MBL = -1 if B = e(L) (i.e. B is the ending node of L), and MBL = 0

otherwise.
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Chapter 2

Modeling the Propagation of Cascading

Failures

In this chapter, we shall develop a MILP model for tracking the evolution of network topology and

redistribution of DC flows as cascading failures propagate over multiple stages.

We assume that the agent that initiates the cascading failures, whom we shall refer to as the "ad-

versary", does so at time t = 0 by simultaneously removing up to k transmission lines from the

grid. After that, the adversary takes no further action, and the cascading failures propagate for

T discrete stages. We assume that the only source of the propagation of failures is the overflow-

ing of new lines at each stage due to the redistribution of flows resulting from the collapse of the

failed transmission lines from previous stages. Although other than the transmission lines one

could investigate the failure of other types of components (e.g. generators and transformers) as

the components of interest in the initiation and propagation of cascading failures, we shall focus

on transmission lines as the only source of failures since they are known to be a major cause of

cascading failures. It has been observed that a small number of line failures (e.g., 3-5) can cause

severe blackouts, a prominent example of which is the Northeast Blackout of 2003 [52]).

The following simple circuit example illustrates the propagation of cascading failures as per our
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model. The first figure below shows the pre-disturbance topology of the example network.

Figure 2-1: Network topology of the example system prior to disturbance

The adversary initiates the cascade by removing, say k 1 line, at time 0, and does nothing

afterwards.

Figure 2-2: The removal of a line causes a disturbance in the example system

At t=1, using Kichhoff's Voltage Law (KVL) and Kirchhoff's Current Law (KCL), flows are com-

puted for the new topology; some lines become overloaded (the overloaded lines are shown by

thicker resistors in the figure below), and we set their tripping states to zero.
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Figure 2-3: Two lines become overloaded in the example system at t=1

Note that at any t > 0 any disconnected line(s) will be considered failed even though they have

not tripped; we set the failure state of these lines to zero. The disconnected line is shown using a

dashed oval in the picture below.

Figure 2-4: A line fails because of becoming disconnected in the example system at t=1

Now if the system operator (SO) has not yet responded to the disturbance and the cascade prop-

agates for another stage, the line that was bridging one of the buses to the generator in the above

example will fail.
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Figure 2-5: The delay in system operator's response allows the cascade to propagate for another

stage

The initially connected graph splits into two "islands," and a demand bus becomes islanded away

from the generator and loses all its demand.

Figure 2-6: The example system splits into two islands

The assumptions made in our discrete-time model of cascading failures are summarized in the next

section.
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2.1 Model Assumptions

In our multi-stage model of cascading failures, we make the following assumptions:

1. We shall use the DC approximation to AC power flows. The equations for AC flows are (see

e.g. [6]):

Pih = 2Pigh - VijVj[pijhcOs(Oi - Oj) + Qihsin(Oi - Oj)]

' 
-PiiJ -iVj pijhsin(Oi -0) -ijhCOs(Oi -OA)0

where Pijh denotes the real power flow on line (i, 3, h), Qijh denotes the reactive power flow

on line (i, J, h), Vi denotes the voltage at node i, and 9i denotes the phase angle at node i.

Also, p (conductance) and L (susceptance) are given by

Pijh riijh/(rYh + Xjh)

and

Qijh = -X-ijh/(rih + Xi.h)7

where resistance is denoted by rijh and the reactance is denoted by Xijh. The DC ap-

proximation assumes that the resistance of each line is negligible relative to the reactance,

the voltage magnitude at each bus is equal to 1, and the phase angle difference (Oi - 6O)

across any line (i, j, h) has sufficiently small magnitude so that cos(Oi - Oj) - 1 and

sin(64 - Oj) 1 Oi - Oj. Thus, by implementing these assumptions in the equations above for

AC flow, we get Qijh = 0 and

Pih = (Oi - Oj)/Xijh,

which is equivalent to currentih = (voltage - voltagej)/resistanceijh in DC power flow

equations.

2. After the cascade's initiation, flows are redistributed in discrete time steps (i.e. at each
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discrete time-step, we compute the flows on all lines and remove any failed lines, and then

move to the next discrete time-step and repeat the same thing for the new network topology).

3. Any line trips deterministically at time t +1 if its flow capacity threshold is exceeded at time

t.

4. Line flow capacities remain the same before and after reactance tweaking.

5. Transmission lines are the only components that fail and the tripped lines are not back in

service at the time of the SO's response.

6. We shall impose the constraint that all load and generation buses remain connected to each

other for the duration of (but not necessarily after) the cascade. Thus, it is possible that

at the time of the SO's response (i.e. at stage T + 1), some demand and generation nodes

have become islanded away from each other, but while the cascade is propagating (i.e. up

until stage T) all the nodes with non-zero injections remain connected to each other. We

make this assumption because we use the DC power flow model in our formulation, and

imbalances between the amount of generation and the amount of demand can heavily impact

the accuracy of the assumptions underlying the DC approximation to AC flows (unless T =

0, in which case the problem becomes static and such concerns will not matter, and hence,

we allow the set of all possible disturbances for the special case of T = 0). Thus, we make

this assumption in an effort to make our DC approximation more accurate. When working

with AC power flows, if a bus with a considerable amount of demand or generation becomes

islanded away from the rest of the network at the initiation of (or during) the cascade, the

resulting imbalance between load and generation could lead to changes in system frequency.

Such changes could considerably weaken the DC approximation in tracking how the AC

power flows actually redistribute over the course of cascading failures, and hence, we make

the above assumption to avoid such scenarios. Nevertheless, the graph-theoretic techniques

that we develop below are general and can be extended and used to model settings in which

demand-generation imbalances are used in the set of possible disturbances by the adversary.
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2.2 Modeling the Evolution of the Graph Topology Prior to the

System Operator's Response

We assume that each line can fail due to two reasons:

1) It trips (either because of the adversary's disturbance (at time t = 0 only) or because its flow

exceeded its capacity limit (for t > 1)).

2) Its end buses become disconnected from the rest of the network (note that given our assumption

of balanced load and generation, only those buses that have zero injection are allowed to become

disconnected).

Thus, after the initiation of the cascade, at each stage the topology changes in two ways: 1) Re-

moval of the tripped (i.e. overloaded) edges from the underlying graph; 2) Splitting of the initially

connected graph into two or more islands (recall that we further enforce the constraint that buses

with non-zero injections remain connected to one-another in the same island).

At time 0, the adversary trips (removes) up to k lines. The state of line (i, j, h) due to the attack at

time 0 is binary: sig = 0 if (i, j, h) is tripped by the adversary and s = 1 otherwise. Next, we

check if the disturbance has disconnected any nodes from BL. If yo = 1, nodes i is still connected

to B0 and if y? = 0 it's been islanded (in the remainder of the chapter, we shall set one node g E B'

as the reference node, and determine the value of y' based on whether each node is connected to g

or not). The binary failure state of line (i, j, h) at stage 0, Z,,h, determines whether line (i, j) has

failed (either due to tripping or due to islanding).

The nomenclature follows the same procedure for t > 1. The only distinction is that for t > 1,

the binary tripping state of a line (denoted by si) will only change if line (i, j, h) trips due

to overloading (and not a physical interference by the adversary) at stage t; this is because the

adversary is no longer part of the game and the cascade is propagating purely due to the natural

redistribution of flows following the initial topology-changing disturbance. Note also that z.h
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takes into account both forms of line failure, and hence, it is updated at the end of stage t. Thus,

zt. < st. for all t, and st < z- for t > 1.
'-ih - ijh i_-Z h

Proposition 1. In order for the failure indicator z' to take a value of Ofor either a disconnected

or a tripped line, but not take on a value of 0 for an active line, it is necessary that the following

hold:

IM'jy' > z' > s' + IM'Iyt - 2 and st > zt Vt > 0.

Proof. Please see Section 3.5.

Remark 2. One advantage of having separate variables for line tripping (st) and line failure (zt)

is that we would be able to keep track of whether a line has tripped versus simply being islanded.

If the z variable flips to zero for a line before s does, then we would know that the line has not

tripped and its failure is due to islanding.

Using the following theorem, we derive a full MILP approach for tracking whether a line/node is

still connected to another node at the end of each stage.

Theorem 1. Given a binary vector yt {0, 1}I with = 1, we have the following:

Iffor some et E {0, 1}IB, p' E{}0, 1}IL3 E {O, 1}0 1 ,1w1 E {w , 1}0, 1 we have

st + wt - yt 1 < 1,

-Wt < M'p t < Wt,

pt, = 0; p = 1 - y,

Z z4= 2et Vn f g, n h (2.1)

REEn

UeYiY
eEEg eE84

Ut < xt; e < y; et < yi< 1.

then <g+4i>-.<y = 1> and <g +i>=<y = 0>.
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Proof Please see Section 2.4.

The key ideas in the above theorem are "cut removal" and "path existence"; when a node i has

been islanded away from another node g, it means that an i - g cutset (please see Section 2.4 for

definition) has been removed from the graph; conversely, if i and g are connected, at least one path

has to exist between them.

Although the above result provides a general framework for tracking the evolution of the topology,

since we are focusing on the case of disturbances that do not cause imbalances between demand

and generation, we shall impose for any bus q E B13 the constraint that yt= 1 for all t < T - 1,

while leaving the yj as free binary variables for all j ( L.

2.3 Modeling the Redistribution of Flows

It remains to describe how the redistribution of flows is tracked. To do this, we first compute flows

and voltages for all active lines and nodes, respectively, at each stage using Kirchhoff's Current

Law (KCL) and Kirchhoff's Voltage Law (KVL) for DC flows:

Mdiag(z'tl)It = bt Vt > 1

where the above equality simply imposes at stage t that any line that has survived by the end of

stage t - 1 is allowed to have a non-zero flow, and that the sum of incoming and outgoing flows at

each node should equal zero (i.e. KCL); then, we write

diag(x")diag(zt-l)It = diag(zt-)M'I Ot > 1
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where the above equality imposes KVL at stage t for the end nodes of any line that has survived

by the end of stage t - 1. As for tracking whether a line has overflown, we set

(z 1+s Jh- h V(i,j, h)E, Vt > 1

where the above inequality ensures that any line that has not failed by the end of stage t -1 and has

also not tripped at stage t should have a flow below its capacity limit, and the inequality becomes

redundant if the line has failed by the end of t - 1 or is tripping at t. Similarly, we write

Zi 1IIjhI cayJ(zji-siJh) V(i, j, h)E, Vt > 1

to ensure that any line that trips at stage t must have first survived by the end of stage t - 1 and

then must have been overloaded at stage t (otherwise the constraint becomes redundant; recall that

we also impose z > si8 t)
"ijh -%.

Note that the absolute value terms and binary x continuous product terms in the above equations

and inequalities can be linearized using standard techniques that shall be described in the next

chapter. Thus, what we have developed so far gives a MILP framework for tracking the multi-

stage propagation of cascading failures as per our model.

The procedure shown in Figure 2-7 summarizes the approach described in this chapter for gener-

ating multi-stage constraints for t > 1.

Remark 3. The cascade initiation mechanism described in this chapter is an example of the well-

known "N - k" contingency framework (e.g. see [10]). Note that in our case k denotes the number

of transmission lines that could fail at time 0, and according to [10], mostly small values of k, such

as k E { 2, 3, 4, 5} are realistically of interest in power systems.

47



I

I

if y = 1, -if y = 0

Figure 2-7: Procedure for generating constraints for tracking multi-stage
evolution of the topology and flow redistributions for stage t > 1

2.4 Proofs

Proof of Proposition 1. There are two ways in which line (i, j, h) is considered failed: if it trips,

or if its end buses get islanded. If a line (i, j, h) trips at time t, a value of zero will be assigned

to 8
3 h; thus, it is necessary to impose s > zg to ensure that any tripped line will also have

Ziih = 0. If the end nodes of a line (i, j, h) become islanded at time t, a value of zero will be

assigned to y and yt; thus, it is necessary to impose yi + yj > z! to ensure that z' = 0 when the

end nodes of the line have failed. However, it is also necessary to ensure that if none of the above

scenarios happen, zih will have no choice but to maintain Zh = 1. Thus, it is necessary to impose

z s y - 2 to ensure that if yi = 1 and y = 1 andst.- =1, then zih -- .

Definition 5. A "cut" in a network (B, E) is a partition of B into two disjoint subsets (say, U and

V). The cutset of a cut C = (U, V) is then defined as the set of lines that have one end-node in U
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and their other end-node in V. For nodes i E B and g E B, an i - g cut is a cut in which i and

g belong to two disjoint subsets of nodes as per the partition defined by the cut (e.g. g E U and

i c U).

Proof of Theorem 1. We are given a binary vector y' E {0, 1}1 with yj = 1. If nodes i and g

are connected (i.e. if gAi), then a path of active lines has to exist between nodes g and i. Thus,

a sequence of active nodes has to exist between i and g on this active path such that each of these

nodes have exactly one line coming into them and another line coming out of them (i.e. a total of

two distinct lines per node; we write this as T. u' = 2e' Vn 7 g, i, where el determines whether
iEEn

node n is on this path or not, and u' determines whether line e is on this path or not), while i and

g themselves exactly have one line connected to them from this path (we write this as E u' = 1
fEEg

and E = 1); thus, if for some et E {0, 1}IL and u' C {0, 1}IEi we have

Z u-= 2e, Vn I g, i

t

f Y11 = j i=yj, (2.2)
fEEg fEgi

Ut < xt ; et < y'; et < y ti.

then < y= 1 >-<g ti> because plugging yt = 1 in the above equations guarantees that an

active path exists between i and g. Note that the set of constraints on the last line above ensure that

only active lines and nodes can be placed on the path between i and g, and that if yl = 0 then all

the above constraints become redundant.

Now if nodes i and g are not connected (i.e. if g+ti), then a g - i cutset must have been removed

from the network. It has been shown in [52] that if we partition the graph into two sets of nodes,

say V and V (one containing g and the other containing i; by assigning p' = 0 and pt = 1 we

make sure of this), then by enforcing the constraint -wt < M'pt < wt we can ensure that any line

between V and V is labeled as a cut edge (i.e. if line (i, j, h) is a cut edge, we will have Wijh - 1)

To tailor this idea to the needs of our problem, we add the constraint that st + wt - yi1 < 1 to
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ensure that when y = 0, only failed lines can be placed on the cutset, and when yi = 1 these

equations become redundant. Thus, if for some p' E {, 1}I1I and wt C {0, 1}I1I we have

sl + Wt - y11 < 1,
t t Y

-w M'pt < w*, (2.3)

p9 = 0; pi i=-yi,

then < yt = 0 >=<gAi> because plugging y = 0 in the above equations guarantees that a g - i

cutset containing only failed lines exists in the graph. l
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Chapter 3

Can Post-Disturbance Tweaking of

Transmission Line Reactances Increase

Resilience to Cascading Failures?

In this chapter we shall introduce and formulate two different measures of the efficacy of reactance

tweaking in post-disturbance control, and develop tractable techniques for solving the optimization

problems underlying those measures. We will conclude this chapter by presenting a case study.

In the literature on cascading failures, one of the most commonly used measures for evaluating

the efficacy of a post-disturbance control mechanism is the severity of the worst-case scenario

disturbance in the presence of the post-disturbance control mechanism of interest (e.g. see [64], [2],

and the references therein for the case of post-disturbance "line switching"). Hence, for measuring

the efficacy of post-contingency reactance tweaking in increasing system resilience, we start by

developing a framework for measuring the worst-case-scenario efficacy of this mechanism.

To do so, we first define the notion of a "yield-minimizing N - k contingency" (the term "yield"

refers to the maximum amount of demand that the SO can satisfy post-disturbance by dispatching

the system without violating any physical constraints), which deals with the following question:
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In a power network with N lines, what set of at most k lines should the adversary cause to fail at

time 0 so that their failure leads to a cascade that eventually results in the minimum yield? This

implies that the adversary seeks to find a disturbance with the worst-case-scenario yield. Thus,

our measure of the severity of the cascading failures is the amount of load that needs to be shed

post-disturbance to bring the network back to reliable operating conditions while receiving help

from reactance tweaking technologies. Next, as the second measure of efficacy, we shall consider

the "general efficacy" of post-disturbance reactance-tweaking, which focuses on the efficacy of

this strategy in increasing yield after any N - k disturbance for a given k, without requiring that

the disturbance was initiated by a strategic adversary.

Before we proceed to the formulation, we first establish a result which we shall use frequently as

a building block for obtaining several of our main results. This result establishes, for a DC flow

network, an upper bound on the node potentials (i.e. phase angles as per the DC approximation

to AC flows). Given that the field of DC electric circuits has been around for many decades, one

would expect that this result should already exist somewhere in the literature, possibly dating back

to even decades ago. However, the author could not find any previous study in the existing literature

that has proved this result, and Theorem 2 below has been derived independently by the author.

Theorem 2. In any connected resistive network (B, S) in the set of all network topologies with IB,

buses and |Sj lines, if we fix Op = 0 for some arbitrary bus p E B and place a total of G units of

positive net DC injection into the network and extract a net total of -G units of current from any

subset of nodes that do not have a positive net injection (in other words, if G - L bIR+ (b?)),

then we have:

|il < G xpqh Vi E B, (3.1)
(p,q,h)ES

where xpqh is the resistance of line (p, q, h). This upper bound is tight and is achieved by a line

graph topology with a positive injection of magnitude G at one end and a negative injection of the

same magnitude at its other end, with all other nodes having zero injection.

Proof Please see Section 3.5.
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Remark 4. Note that inequality (3.34) derived in the proof of Theorem 2 (presented in Section

3.5) gives a formula for computing an upper bound on the voltage difference (i.e. phase-angle

difference as per the DC approximation to AC flows) between two arbitrary nodes in a connected

DC flow network. As can be observed in inequality (3.34), if we think of line resistances as edge

weights, then by computing weighted path lengths (preferably, weighted shortest-path lengths) in

the corresponding weighted graph, one can use inequality (3.34) to compute bounds on nodal

voltage differences.

3.1 The System Operator's Response: Reactance-Controlled

Yield Maximization

Before formally stating the optimization problem of interest, let us introduce the key nomenclature

used in the formulation:

" T + 1 The stage at which post-disturbance control is implemented by the system operator

" bfq The satisfied demand post-disturbance at bus i after the system operator's response

" b' The amount of post-disturbance generation at bus i after the system operator's response

" b T+ 1  Net nodal injection at node i as per the SO's post-disturbance dispatch. Note that

for the special case of t = T + 1 (i.e. the case of post-disturbance dispatch), we have

b T+1 A b - bq for each node i.

" * The amount of power demanded at bus i

" bi The generation capacity at bus i

" Trijh Binary variable indicating whether the reactance of a line (i, j, h) at time T + 1 is

allowed to be tweaked (rih = 1 if tweaking is allowed, and 0 otherwise).
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* H The total number of lines on which reactance tweaking is allowed

Definition 6. We define the "reactance-controlled yield" as the maximum amount of demand that

the SO can satisfy post-disturbance by dispatching the system without violating any physical con-

straints while tweaking transmission line reactances:

max :bf (3.2)
D iEB

s.t. IJ+ T1 = s1i (ij +1 - 6 T+1), V(i, j, h) E 8

b - bd = I+1 , Vi E B (a)
(ij,h)EEi

XT+1 -X -rijh (XT'- X' ) 0 V(i, j, h) E S'ijh ijh 3 ijh

o T 1 Tin_ 30 ~W'.M
X ijh- Xijh +Ti.)h-ijXi.h Xih)- V , j, h) E .

E ijh = H V(i, j, h) E S (b)
(ij,h)EC

-aap < I7, < Z-apg, , V(i, j, h) E S

o Kb9  5 ', ViC E3 (c)

0 bd < -d Vi E (d)

X T+1 ,T+1 iT1, b b E R, Vi E B, (ij, h) Eijh ) i 'ijh Ii' z ' \ /

Tijh E {O, 1}, V(ij, h) E E.

where D 7 {xT+l, QT+1, 1T+1, b9, bd, } is the set of decision variables, and sT E {0, 1} W is the

binary vector of line failure states that is given to the problem as an input parameter. We shall in-

terchangeably refer to the above reactance-controlled yield-maximization problem as "SO's post-

disturbance control problem".

In the above formulation, the objective is to maximize the amount of load served. The first two

constraints are KVL and KCL for DC flows, the next three constraints ensure that the reactances

of at most H lines can be tweaked within a prescribed range (and all the other lines will retain

their original reactances), the sixth constraint ensures no line flow capacities are violated, the
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seventh constraint ensures that the generation capacities of each bus are not exceeded, and the

eighth constraint ensures that the served load at each bus will be between zero and the original

demand.

Note that we could have allowed the lower limit in the seventh constraint in (3.2) to be a positive

value instead of zero (for instance, to model ramp-down rates of generators or minimum generation

requirements for operating generation units); that is a straightforward extension which requires

the addition of a binary variable to model unit commitment for each generator (to maintain the

possibility of disconnecting a generator from the system at the time of post-disturbance dispatch);

however, in order to keep the model concise and have as few binary variables as possible in the

above problem, we do not include this variable in our model. Also, in the above formulation, we

could have imposed limits on the phase-angle difference across each line (which would have been

a set of very simple linear constraints); however, to maintain our focus on the interaction between

line capacities and the operating range of the reactance-tweaking devices, we have excluded this

constraint from the above formulation.

Note that the set of decision variables in (3.2) contains some binary variables which introduce non-

convexity in the problem but their continuous relaxation is linear. However, a more complicated

source of non-convexity in the problem above is introduced by the continuous x continuous bilinear

terms in the first constraint (this continuous x continuous bilinear term stems from the product of

current and reactance in the KVL).

As shown in Theorem 3 below, we develop a reformulation scheme that turns the SO's post-

disturbance control problem (3.2) into a MILP by shifting the non-convexity stemming from

continuous x continuous bilinear terms to auxiliary binary variables that we introduce into the prob-

lem in linear terms (along with some continuous auxiliary variables that are also introduced into

the problem in linear terms).

Theorem 3. If F* is the globally optimal value of the objective function in the optimization problem
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(3.2), then

'* max E b' (3.3)
W i c:B

s.t. pz + T(s T _ 1) < M'6T+1 < tL + T(1 - ST);

-diag (ST )-c-p < I+1 < diag (ST)--Wp";

p - diag(xO)IT+l - 2T-r < 0;

-It + diag(xo)IT+l - 2Tr < 0;

diag(xin)a < 6 < diag(xm)a;

a = + p; IT+1 3 _ p;

,3 - diag(apa)v < 0; p - diag(Eapa)(1 - v) < 0;

41 - T(1 -,0) < 0; # - < 0;

>O0; '>0; w 0; >- 0;

Constraints (a), (b), (c), (d) from Problem (3.2);

a, 0, W1, /t, 6, 4,j q, I+1 E RISI;

r, , V E {0, j1} ; OT+1, b9, b d E R JBI.

where T - G Z h and w {a, 3, p, p, 5, , 4, IT+1,, , V) 0 T+1, bg, bd} (note

that a,)3, <p, Ay, 6,4, , b, v are all auxiliary variables).

Proof Please see Section 3.5. E

Remark 5. In addition to making the problem amenable to column-and-row-generation (as we

shall discuss later in this chapter) the above MILP reformulation also allows for using the existing

powerful MILP solvers which are "mature" in the sense that they are fast, robust, and capable of

handling large problems with millions of variables (e.g. see [32]for a discussion).
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By denoting the feasible set in (3.3) by Q, the above can be written as

max Ebt. (3.4)
iEB

So far, we described how the SO re-dispatches the system at time T + 1, using reactance tweaking

(performed on up to H transmission lines) and load-shedding as control mechanisms, with the sole

purpose of maximizing the amount of demand satisfied post-disturbance (regardless of generation

cost) without violating any physical constraints such as line capacities or generator capacities.

Note that due to the high costs of power electronics, we are interested in small values of H (e.g.

1-3).

Now that we have formulated the system operator's problem, we shall describe how the adversary

plays in this zero-sum Stackelberg game.

3.2 The Adversary Minimizes the Maximum Post-Disturbance

Yield: A Bilevel MINLP for the Worst-Case-Scenario

Given that the reactance-controlled yield problem is a maximization problem as defined in (3.2),

the adversary's problem is a min-max bilevel program (since the adversary goes first and the SO

goes next while sharing the same objective function, the problem of interest is a zero-sum Stack-

elberg game) shown below:

min maxE b (3.5)
AEA wLOE7

iEL3

where A is the vector of the adversary's decision variables, and A is the feasible set of the ad-

versary's problem (which are defined explicitly in (3.6) below); this bilevel program, which is our
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measure of the worst-case-scenario resilience, can now be written as

min max E bi (3.6)
A wEQ iE8

s.t. 1's, > |IS - k

Mdiag(z-l)I = b Vt > 1

diag(x")diag(zt-l)It = diag(zt-l)MIO Vt > 1

(z 1 +s h-1) Ihl < Caa h V(i, j, h)ES, Vt > 1

Z~I-h I i> !.hfjh(Zft-s1ig) V(i, j, h)ES, Vt > 1

IM'lyt > zt st + IM'|yt - 2 Vt > 0

Y= 1 Vi E B, Vt T -1 (T 1 only)

y- y', Vt < T - 1 (T > 1 only)

s, > zt Vt > 0

z'4 > st Vt > 1

2++]j V i, jES1,1<6t<iT - 1(T>21 only)

ijh' S jh, y E {0,1}, V(i,j, h) E S, Vq E B.

where A ={s,..., sT, z0 ... , zT-1y0,..., yT-1,I1, ... , IT, 1,...,7 OTp}. Here, P denotes

the set of all variables used in keeping track of the connectivity of the buses (which are the auxiliary

variables defined in Theorem 1) for all t c {0, . . . , T - 1}. In (3.6), the first constraint requires

that the adversary trips up to k lines at t = 0, the the second and third constraints are for KVL

and KCL at each stage (discussed in Chapter 2), the fourth and the fifth constraints keep track (as

discussed in Chapter 2) of the lines that have survived and failed, respectively, and the remainder

of the constraints keep track of the connectivity (also ensuring that no failed line is reactivated)

and evolution of the topology as established in Proposition 1 and Theorem 1.

The next step is to linearize all the binary x continuous product terms and absolute value terms in
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problem (3.6) so that we can write the outer-level problem as a MILP. Doing so is a standard trick

used frequently in the optimization literature. For some o- E R and some ( e {0, 1}, if Il a I m

for some m, then -m( < & < m( and hence we can substitute (a- with & where appropriate and

add the constraints -m( & < m(, & < (1 - ()m + -, & > (( - 1)m + o to the problem to

complete this change of variables (this is a very standard trick in the literature and can be verified

by inspection).

Dealing with the non-linearity of the absolute values is slightly trickier and hence, we describe it in

the following lemma (note that Lemma 1 is standard in the optimization literature and its validity

can be verified by inspection).

Lemma 1. If |I'\ i m, and the following hold:

i = It + It;

It = It - It;

It _ im(1 - qt); (3.7)

It+ < mqt;

it > 0; it_ > 0, qt E {0, 1}1EI

then we have |It| it.

Although both of the above linearization procedures are standard, for practical implementations

we need to choose as small a value for m as possible, and hence, we first need to derive upper

bounds for choosing the value of m. It is simple to choose the value of m for binary x continuous

terms in which the continuous variable is the line flow, because the magnitude of the DC flow in

a line can never exceed the total positive injection (G = 3E bla+ (b?)) in the network (hence,

setting m = G will work just fine). Choosing the value of m for binary x continuous terms in which

the continuous variable is 0 is straightforward using the inequality we derived in Theorem 2. For

the remainder of this chapter, we shall denote the set of the decision variables in the linearized
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reformulation of the adversary's problem by a and the feasible set of this linearized reformulation

by d, and hence, the bi-level MILP reformulation of the min-max problem can be written as:

min max Zbi (3.8)
aEa wEQ

icL3

3.3 Solving the Bilevel MINLP underlying the Min-Max Prob-

lem

Now that Problem (3.2) has been reformulated as a MILP, the min-max problem (3.6) can be

solved to global optimality using a decomposition method involving column and row generation

([62], [63], [64]). Before we proceed to formally establishing how the column-and-row-generation

framework can be tailored to our problem, we describe the core idea behind column and row gen-

eration in the simple example shown below (for a formal exposition of the theoretical foundations

of the column-and-row-generation framework please refer to [63]).

Example 1. Consider the following bilevel MILP:

min max x + y (3.9)
O<p+q<3 xYzw

qER,pE{0,1}

s.t. x+y z+5; 2x+3y w+15

x+y>O; x-y:5p; x,yER

z < w; w, z E {O, 1}

and note that the inner-level and the outer-level programs are both MILPs coupled through only

a binary variable (i.e. through p). Now, let us define I _ {[0, 0]', [0, 1]', [1, 1]'} as the set of all

possible outcomes for the vector [z, w]' that are feasible for the above problem. The above can then
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be rewritten as:

min max max x + y (3.10)
O<p+q<3 [z,w]'EI X

qER,pE{O,1}

s.t. x+y z+5; 2x+3y w+15,

x+y 0; x-y p; x,ycER.

Note that the "innermost-level" of the above problem is a linear program. If we denote by c( [z, w]', p)

the right-hand-side of the constraints of this LP (i.e., c([z, w]', p) = [z+5, w+15, 0, p]'), and denote

by A the constraint matrix of this LP, then the above can be written as:

min max max [1, 1] (3.11)05p+q:53 [z,W]'El XY

s.t. A c([z, w]', p)

x,y E R,

Since the innermost-level LP is feasible and is bounded, strong duality holds, and hence we can

write the above problem as:

min max min c'([z,w]',p)h (3.12)
O<p+q 3 [z,w'EI h

qERpE{O,1}

s.t. A'h =

h > 0,

where h is the vector of dual variables. Next, we create a copy of h for each element of I (each

copy will be treated as a distinct decision variable; for instance, h0 '0 which corresponds to element

[0, 0]' of I is considered as a different decision variable than h0 1 which corresponds to element
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[0, 1]' of I). Then, enumerate over all elements of I, and rewrite the above as:

min min f (3.13)
O<p+q<3 h0*,h 0 ',h' 1,

qER,pE{O,1}

s.t. f > c'([, 0]', p)hO'0

A'00= LI
h0'0 > 0,

f > c'([O, 1]',p)h0'l

A'"I= LI
hO'1 > 0,

f > c'([1, 1]',p)hl'l

h LI
h1 '1 > 0,
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By merging the two minimizations, the above can be rewritten as a single-level program:

min f (3.14)
p,q,Eh0'0,h' 1

,h
1
"1

s.t. f > c'([0, 0]', p)h'0

A'h =

h0'0 > 0,

f > c'([0, 1]',p)h0'l

A'Dl= LI
f > c'([1, 1]',p)hl'l

A'h1'1 =

h1,1 > 0,

0 < p + q < 3

q E R,p E {0, 1}

Note in the constraints of the above problem that the terms c'([0, 0]', p)h0 '0 , c'([O, 1]', p)h'l and

c'([1, 1]', p)hl'l all contain bilinearities stemming from the product of the binary variable p and

some dual variable (e.g. c'([0, 0]', p)h0 0O = 5o'O + 15h' 0 +ph4 '0 , which contains the bilinear term

ph '0 ). But if we were given a bound on hz', for each element [z, w]' E I and denoted this bound

by zW then we could linearize all these bilinear terms by introducing auxiliary variables; e.g.

we define auxiliary variable u',' corresponding to each bilinear term ph' m , and write 0 < u"' <

phi', u"'" < (1 - p)hi' + h', U' _ (p - 1)h' + hz'm (note that the dual variables in this

example are all non-negative). Using this linearization of binary x continuous terms, the above can
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be rewritten as the single-level MILP below:

min f
p,q,e,h0'0 ,h0'1 ,h"1, (3.15)

0,0 ,1 ,I1,1
4  

I
4  

U
4

s.t. f > 5hO'0 + 15h' 0 +

0 < u' 0 < '

u4'0 < (1 - p)h4' + h
0,0 -0,0 00

u4' 0 > (p - 1)h4 + h4

A'h' 0 =

hO'" > 0,

f> 5ho' + 16ho, +u

0 < uO' l < phO 1

u ' 1 < (1 -p)h '+ h

u O' > (p - 1)h ' + h01

A'hO, =1

h"'1 > 0,

> 26hi' + 16h' +

o K u <' <pl'

1 ,1 (I - h) + h

U1' (p-1)h' + h"

A'h1' =1

h1'1 > 0,

0 p+q 3

q E R, p E {0,1}
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But we do not have to solve this MILP all at once; rather, we can decompose its feasible set and

then iteratively add new decision variables and constraints (and hence, the name "column and row

generation"). To do so, we first consider the above problem for only a subset of I, e.g. only for the

constraints and variables corresponding to [0, 0]'; then, the decomposed problem would be:

min 0 (3.16)
p,q,t,hO'0 ,u 4

s.t. t > 5hO'0 + 15h"'0 + U0,0

0 0, 0 -

_00 0
0,0 -00 00u4  (1 - P)h4 ' + h4 '
0, '> (P - 1)h '" + h 0

A'h0 '0 = LI
hO'' > 0,

o <p+q<3

q E R,p E {0, 1}

We call the above problem the "Master Problem"; since this problem has a less-constrained feasible

set than the original problem but the same objective, it gives a lower bound on the globally optimal

solution of the original problem. If we solve this "Mater Problem" to global optimality, its vector

of optimal values of decision variables contains a value for p which we shall denote by p*. We also

denote the optimal objective value of the "Master Problem" by t*. We then form a "Subproblem",

which is equivalent to the inner-level program in the original min-max problem that uses p = p* as
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shown below:

max x + y (3.17)
XYZW

s.t. x+y <z +5

2x+3y w+15

X + y ;> 0

x - y p*

z < w

x, y c R, w, z c {0, 1}

The optimal value of the above subproblem gives an upper bound on the optimal value of the

original min-max problem. Thus, if the optimal value of this subproblem (i.e. x* + y*) is equal

to the optimal value of the master problem (i.e. P*) we just solved in the previous step (i.e. if

*=x* + y*), then we are done because it means we have reached the optimal solution of the

original min-max problem (recall that the master problem gives a lower bound on the optimal

value of the min-max problem). If they are not equal, we add the vector [z*, w*] (which we just

obtained from solving the subproblem) to the subset of I with which we form the master problem

in the next iteration (for instance, if [z*, w*] was determined to be [0, 1] by the subproblem, then

we will form the new master problem using the subset { [0, 0]', [0, 1]'} of I). Next, we update the

master problem by adding all the constraints and dual variables corresponding to [z*, w*] to the

master problem from the previous iteration to form a new master problem (note that we keep all

the constraints from the master problem in the previous iteration in the updated master problem;

so, the size of the master problem monotonically grows at each iteration). The above procedure is

then repeated at each iteration until convergence is achieved. This process is depicted in the figure

below.
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New element of I (i.e. new [z*, w*])

New p* and thus, new dual variables & new constraints

corresponding to this new element

Figure 3-1: Block diagram for the example on column and row generation

Given the finiteness of the number of elements in I, in order to clarify that this procedure converges

to the globally optimal solution of the original min-max problem, it only remains to clarify that

any repeated value of [z*, w*] implies global optimality has been achieved (i.e. it only remains to

show that this procedure will not cycle between non-globally-optimal solutions). This has been

proved in [63] and [64] by the following argument: To see this, note that if at iteration k the value

of [z*, w*] obtained from solving the subproblem had already been encountered in some previous

iteration t (i.e. t < k), it means that the set of dual variables and constraints corresponding to

[z*, w*] already exist in the Master Problem at iteration k, and hence, the master problem stays

the same at k + 1 and the optimal objective value of the Master Problem at iteration k + 1 will

remain the same as its optimal objective value at iteration k. Note that by strong duality, at iteration

k + 1, we have UpperBound < x* + y* = min c'([z*, w*], p*)h*',*; but we also have that
iz*,tv*

LowerBound = e* > min cI([z*, w*]', p*)hz*,W'*; thus, the lower and upper bounds are equal
hz* W*

and we have reached the globally optimal solution (please see [63] or [64] for a formal proof).

The idea behind the column-and-row-generation procedure described in Example 1 above can thus

be summarized as follows:

Consider the following min-max problem:

min max c'x (3.18)
PE{O,1}n ZE{O,1}m, XERd

s.t. Ax < g(z, p)

where the vector g(z, p) is a linear function of both z and p (also, n, m, and d are arbitrary positive

68



integers). By separating binary and continuous variables in the inner level we have:

min max max c'x
pE{0,1}" zE{0,1}" X

s.t. Ax < g(z, p)

(3.19)

By strong duality, this is equivalent to:

min max
pE{O,1} zE{0,1}1

min
h

g'(z, p)h (3.20)

s.t. A'h = c

h > 0,

where h is the vector of dual variables. If we fix some disturbance po, then:

Iihif max max c'x
PO zE{0,1}" X

(3.21)

s.t. Ax < g(z,pO)

This gives an upper bound on the original min-max. Refer to its optimal z as z*. Now fix z to z*

and solve for p:

mill 3anw
pE{0,1} z=z*

min g'(z, p)h
h

s.t. A'h = c

h > 0,

This gives a lower bound on the original min-max. Refer to its optimal p as p*. This time fix the

69

(3.22)



disturbance to p*:

i ih( max max c'x (3.23)
P1 ze{O,1}'n x

s.t. Ax < g (ZI p*)

Refer to its optimal z as z*. Now fix the feasible set for z to {z, z*} and solve for p:

min max min g'(z, p)h (3.24)
pE{O,1}n zE{z*,z*} h

s.t. A'h = c

h > O,

But the above can be written as a MILP; we can enumerate over z and write:

min t

s.t. > g'(z*,ph

A'h0 = c,

h0 > 0,

e > g'(z*, p)h'

A'h = c

h' > 0

p {0, 1}fl

and if we derive a bound (I) on h we can linearize ph by writing 0 < u < ph, u < (1 - p)h + h,

U > (p - 1)h + h, so that u = ph; thus, we are just solving a MILP again. This procedure shall

be repeated iteratively as discussed in Example 1 above. Note that since the above master problem

becomes more and more constrained as the number of iterations increases, the lower bound that it

gives us on the original min-max problem is a non-decreasing function of the number of iterations.
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3.3.1 Column and Row Generation for Solving the Min-Max Problem

Now, we formally establish how a column-and-row-generation scheme can be applied to our prob-

lem to obtain the globally optimal solution to problem (3.6), which entails deriving bounds on the

dual variables in the innermost-level program in our problem. First, we turn Problem (3.6) into

a large-scale single-level MILP. To do so, we start by separating the continuous variables in (3.3)

from the integer ones. Let us denote the vector of integer decision variables in (3.3) by , the set of

all that maintain the feasibility of Problem (3.3) by I, the vector of continuous decision variables

in (3.3) by 0, and the set of the constraints in (3.3) that involve continuous variables (for a given

() by C( ); then we can write Problem (3.3) as:

max max Z bi (3.25)
te2 t9eC(g)ijeB

and since the inner-level problem above is a linear program, we can write it in standard form:

max Z bd = max f'0 (3.26)
OEsC()iEB It 0ct (.26

where f'9 =V bd . Then we invoke strong duality as shown in the proposition below.
iEB

Proposition 2. Strong duality holds for the inner-level problem in (3.25), and hence,

max max : bq = max min c'A. (3.27)
El '8ECW i) El C'A=f,,X>O

Proof Please see Section 3.5.

Definition 7. We define the set of all "bilinear terms" P(g) of a multivariate polynomial g(.) as

the set of all terms in g(.) in which strictly two variables have degree 1 and all other variables have

degree 0. The set of all "bilinear forms" R(g) of a multivariate polynomial g(-) is then obtained

by dividing each element of P(g) by its scalar coefficient (please see Example 2 below).

Example 2. For instance, for g(z, pi, p2,p3 , q1 , q2 ) = z+3zq2 +5piqi -6p 2q 2 +p3 q2z+q2Yp 1 , the

set of all bilinear terms would be P(g) = {3zq2 , 5p1 qi, -6p 2q2, yp1q2} and the set of all bilinear
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forms would be R(g) = {zq 2 , p1 q1 , q2P2, piq2 }. Note that bilinear forms that contain the same

variables but different orders (e.g. p1 qi and qip1) are considered identical.

Definition 8. Consider two vectors p = [p1, P2, ,Pml ' and q = [q, ... , qd] for some (finite)

m, d E Z+. Then, we define

g(g, p, q) - R(V(p, q)) n R(g(p, q))

where V(p, q) = 1'pq'1 and g(-) is a multivariate polynomial (recall that R(.) is the set of bilinear

forms). Also, denote by F a bijective map from g(g, p, q) to a set J. Then, we shall define the

substitution function J(g, p, q, J, F) as a finction that replaces in g(-) every instance of each

element of g (g, p, q) with its corresponding element from J (as per map F); note that all the

other terms in g(-) remain unchanged. Also, YFp : J -> {p} is a surjective map that maps each

element of J to its corresponding entry in p (as per the change of variables defined by map F);

the surjective property is because each entry of p can appear in multiple different bilinear terms

in g(-) (and hence in multiple elements of 9(g, p, q), and therefore, each entry of p can potentially

correspond to more than one entry of J; but the converse is not true because each element of

g(g, p, q) is a bilinear form that only contains one entry from p (multiplied by an entry from q).

Example 3. Given g(z, Pi, P2, P3, q1 , q2) = z + 3zq2 + 5piqi - 6p2q 2 + P3 q2 z + q2 ypi as in Example

2, and assuming p = [pi, p 2 , P31' and q = [qi, q2 ]', we have

R(V(p,q)) = {piqi,piq2 ,P2q1,P2q2,P3 ql,P3q2}

and g(g, p, q) = {pqi, p 2q2, pq2}; then, by defining F such that F(piqi) = J1, F(P2q 2) = J2,

F(piq2 ) = J3 , we have J(g, p, q, J, F) = z + 3zq 2 + 5J1 - 6J2 + P3q2z + yJ3 , and for example,

YF,p(Jl) P1, YF,q(J1) = q, YFp(J 3 ) = pi, and YF,q(J2) q2-

Next, by deriving a bound on the dual variables (i.e. A ) and enumerating over all elements of

I, we reformulate Problem (3.6) as a large-scale MILP as shown in the theorem below. Before

proceeding to the statement of the theorem, recall from Section 1.3 that with a slight abuse of
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notation, for a vector x, we denote by {x} the set of all entries of x.

Theorem 4. If A* is the globally optimal value of the objective function in the optimization problem

(3.6), then

A* min y (3.28)

s. t. > W V E I

C'A = f V E I

0 4 < YFrsT(*)VV EI

<I (1 - YFT ())V + YF,Al(') V E I

I' (YF'sT('I) - )V + YFAC( 4 ') V E I

A E A

where W =Jf(Z, sT, A, {}, F) for Z(sT, A') c'A, '@' E RIg(z,sT , , = {7, A} U

(U Ei({A } U {4'f})), F is a bijective map (as defined in Definition 8)from g(Z, s T Ac) to { 'L },

and V = max(1, Et3 brl, (bo)).

Proof Please see Section 3.5.

Now that we have turned Problem (3.6) into a large-scale single-level MILP, it can be solved

to global optimality using column and row generation ([62] and [63]). To do so, we define a

"decomposed master problem with input Q", which has the exact same form as (3.28) except that

I shall be replaced by Q throughout (3.28). Note that Q C I in the decomposition process, and

hence, the term "decomposed". The column-and-row-generation procedure (adopted from [64]),

tailored to the global optimization of Problem (3.6), is outlined in Algorithm 1.

Using the results presented in [62] and [63] on the convergence of the column-and-row generation

procedure (referred to as column-and-"constraint" generation in those papers), and by invoking

strong duality in our reformulation for the continuous variables of the inner-level MILP and the
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Algorithm 1 Column and Row Generation Procedure for Problem (3.6)

1: Initialize sT* by setting the entries corresponding to up to k lines to zero, and setting all its

other entries to 1.
2: Solve Problem (3.3) with sT* as input

3: Q 4- vector of the optimal values of all integer variables in Step 2

4: Initialize U +- oo, L +- -oo
5: while U - L > tolerance do
6: Solve the decomposed master problem with input Q and update sT*

7: M* - optimal value of objective function in Step 6

8: Solve Problem (3.3) with sT* as input

9: S*- optimal objective function value in Step 8
10: Z* <- vector of optimal values of all integer variables in Step 8

11: Q +{Z*} U Q
12: U <-min(S*, U)
13: L +-M*
14: end while

bounds we derived in Theorem 4 which gave us a valid single-level reformulation for forming the

master problem, we have the following theorem.

Theorem 5. Algorithm 1 converges infinite steps to a globally optimal solution of Problem (3.6).

Proof Please see Section 3.5. 0

In practice, it would be very helpful to initialize the above algorithm with some thought, in an

effort to achieve faster convergence. For instance, picking the initial disturbance (sT*) such that

it removes k lines from a capacity-bottleneck of the system that separates a demand-rich part of

the system from a generation-rich part of the system (if such bottleneck exists in the system of

interest), generally appears to be a good starting point.
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3.4 Maximum Efficacy in Reducing the Post-Disturbance Load

Shed among the Set of All Possible N-k Scenarios

So far, we have assumed that the adversary picks its disturbance strategically with full awareness of

the SO's post-disturbance problem and thus has the knowledge that a post-contingency reactance

tweaking mechanism is in place. This worst-case-scenario approach for measuring the efficacy

of reactance tweaking may not always be realistic, especially when the adversary is not strategic,

as it may considerably underrate the efficacy of the post-disturbance control mechanism (this will

become more evident in our numerical experiments in Section 3.6). Hence, in order to obtain a

less extreme measure of efficacy, we introduce a new notion of efficacy that captures the capability

of reactance tweaking in dealing with a broader range of disturbances.

Definition 9. The general efficacy (E(K)) of post-disturbance reactance tweaking in response to

a given disturbance K is defined as the total savings (reduction) in the amount of load shed post-

disturbance purely as the contribution of reactance tweaking. In other words, if R(ri) denotes the

amount of load satisfied post-disturbance for , while using reactance tweaking as a control mech-

anism, and Q(K) denotes the amount of load satisfied post-disturbance without using reactance

tweaking as a control mechanismfor the same disturbance (i.e. K), then E(K.) = R(K) - Q(K).

Definition 10. The constant-reactance post-contingency control problem is the yield maximiza-

tion problem in which the SO has no control over line reactances, and can be formulated as the
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following LP:

max Zbq (3.29)
d iEL3

s.t. Ijh ijh T T(sh - 1 (Q[+1 - ,T+1), V(i, j, h) E S

I X T (1 - sh) (9[+1 _ oT+1), V(i, j, h) E S

big - bd = I ,r+ Vi E B

(ij,h)Egi

-caps T < IT+1 < apas, V(ijh) E &

0 <bg <Kb, Vic3

d <-d
0 o bd Kb Vi E B

oT+1 IT, bg, bf dE R, Vi E B, (Z-, 3-, h) E .6

where d {OT+1, 1 T+1, b9, bd}. We shall write this LP in standard form as

max p'- (3.30)
WW<V

Theorem 6. For a given k, let us denote the set of all "N - k " disturbances by I (k). For a given

vector of bus injections b, the general efficacy of post-disturbance reactance tweaking in response

to any K E K(k) is upper bounded as follows:

E(t) <; max E b?. - 5(1, sT, fr, {E}, F)
11 iES

s.t. 7r > 0

W'7r = p

0 < < YFST(S)V

E < (1 - YFST( 8 ))V + YF,r(E)

E ;> (YFST( 8 ) - 1)V + YF, (19)

w E Q; a E i
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and this upper bound is tight. Here, I = { A, w, -r, 6}, U(sT, 7r) -^ -/r, F is a bijective map (as

defined in Definition 8)from g(, s , 7) to {}, E RI (g(u,si), and V = max(1, Ei bI[a (by)).

3.5 Proofs

Before we present the proofs, let us define some core concepts that we shall use in this section.

Definition 11. The weighted Laplacian of a graph (also known as the conductance matrix) is

defined as

G = MOM' (3.31)

where M is the incidence matrix, and C is a diagonal matrix whose diagonal elements are the line

conductances (conductance is the reciprocal of resistance).

Definition 12 (see e.g. [34]). The resistance distance (also known as effective resistance) between

two arbitrary nodes i and j, which we shall denote by Rij, is the voltage difference across the

buses i and j in a connected network when a unit current source is injected at i and collected at

j. One way to compute resistance distances is to use the pseudo-inverse of the weighted Laplacian

-f
(denoted by G ) as shown below (see e.g. [34]for details):

R,1 Q = i + 01 -2G (3.32)

where Gi denotes the i, j entry of G , and G is computed as

(+ 11/1BI) 1 - l/111B1. (3.33)

Next, we establish two lemmas that are standard results in the literature.

Lemma 2 (see e.g. [34]). Resistance distances satisfy the triangle equality:

Rik < Rij + Rjk.
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Lemma 3 (see e.g. [31]). If we denote the current flow in line (i, j, h) by Ijhh, then

Ijih = LLh bm(Rj-m - Rim)
m=1

where rijh is the resistance of line (i, j, h) and bi is the net injection at bus m.

Proof of Theorem 2. Let us denote by rijh the resistance of the line (i, j, h) (note that rijh is

equivalent to Xijh used in the statement of this theorem). From Kirchhoff's Voltage Law, we have

Oi - Oj = Iijhrijh; thus, we can write the result in Lemma 3 above as

1 1~~ L31

Oj - 03 = 2 b( Rjm - Rim)
m=1

We have

bm(Rm - Rm) <
1 1131

2 L Ibm(77j -

but

Ibm(Rjm -fim)I IbmI |Ejm - RimI

and using the triangle inequality in Lemma 2 above (and keeping in mind that ERi = Wji), we have,

I Rjrn- Rim I< Rij

Thus,

IbmI |Rm - Rim I
m=1

|Lb|Rim
m=1

But Rij rijh (because 1/74. = 1/rijh + 1/A, for some A C {IR+ U oo}, and both Rj3 and rijh

are positive) and hence,

1131

E bm( Rjm -
m=1

Rim) ! Ibmri
m=1
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If we denote G - icg bi J1R1 (bi), then we have E 1 I bmi = 2G, and hence can write the above

as
1 31 - -

i - O 3 = bm(-Rjrn - Rim) Griih
m=1

Now take two arbitrary nodes p and q; since the network is assumed to be connected, a path has

to exist between p and q. Let us denote the sequence of nodes on this path by p, v1, v2 , ... , VL, q.

Then, we have:

0p - , = (Op -Ov)+(0V, - 0V 2)+ +(OVL - Oq) G(pvl + V1V2 + + qV ) G E ri h
(ij,h)ES

(3.34)

where TF 1 , 2 (for instance) denotes the resistance of any arbitrary line between nodes v, and v 2 .

Thus, the upper bound on the voltage difference between any pair of nodes is maximized when the

path between them is the longest possible. Hence, if we have IL3 nodes and fix the voltage of some

node to zero, then the maximum possible value of 1i I (i.e. voltage magnitude) at any node would

be

IOBI G E rijh VB - B
(ij,h)EE

It follows that this upper bound is tight and is achieved by a line graph with a positive injection

of magnitude G at one end and a negative injection of the same magnitude at its other end, with

all other nodes having a zero injection. Note that since in the statement of this theorem we are

using the symbol for reactance instead of resistance (based on the DC approximation to AC power

flows), the above inequality is written using Xijh instead of ri l

Proof of Theorem 3. Consider the first constraint in Problem (3.2), and let us replace the term

IT+ X in that constraint by p-ijh; then, given the fact that the node voltage difference between
ijh Xifl

two connected nodes (i.e. two nodes that are connected to each other via a path of active lines) is

upper-bounded by T (as established in (3.34) in the proof of Theorem 2) and considering that sijh
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is a binary constant, we can rewrite the first constraint in Problem (3.2) as

pijh + T(s h - 1 < 6 T+1 T 1; (3.35)

Pijh + T(1 - Sih) > iT1 - T+1 (3.36)

Now, let us consider the third and fourth constraints in Problem (3.2). The goal of the third and

the fourth constraints in Problem (3.2) is to establish that x T1 = x 0 unless rijh = 1, in whichijh ijh

case x in < xT1 < x'. Using the change of variables above, and given the fact that p[ijh

IT+ x T = IT x,o unless rijh = 1, we can write
ijh ijh -ijh -ih T

p - diag(xo)IT+l - 2T-r < 0; (3.37)

-p + diag(X")IT +1 - 2Tr 0; (3.38)

so that whenever Tijh = 0 we get Pijh = I+ 1 X, (note that the above inequalities follow from the

fact that for any line (i, j, h) both Ifpijhi and IXh I +I are upper bounded by T, and hence, when

Tijh = 1 the above inequalities become redundant). Since x0 h E [Xfin" xma] by assumption, we

can take care of the case of Tijh = 1 by writing

so that x will have the freedom to range between x and x" whenever rjh = 1 (recall

that p~ij-- I 1 1X by definition, and hence, xT"I pIIIa xjpIIf+1 is equivalent to

m" < xT+l < Xp &x whenever jT+1 # 0). The fifth constraint in the statement of the theorem

is then obtained by using the change of variables 6ijh I-pijhl and aijh -- 7 j+11. It remains

to linearize jpi Ij and IIT I; the sixth, seventh, eighth, ninth, and tenth constraints in (3.3) (in

the statement of the theorem) all correspond to the constraints and auxiliary variables required

for linearizing both IIzahl and jI7VI as per the technique described in Lemma 1 for linearizing

absolute values.
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Proof of Proposition 2. To verify that strong duality holds, note that the inner-level problem in

(3.25) is bounded and feasible (because setting all decision variables to zero is a feasible solution);

hence, strong duality holds and deriving the equations for the dual problem stated in the proposition

is standard (e.g. see [8] for details on deriving the dual of a linear program). El

Proof of Theorem 4. Note that so far we have reformulated the original min-max problem (3.6)

as a bilevel program in which the inner-level and the outer-level are both MILPs coupled through

only a binary variable (i.e. through sT). Using the result we just established in Proposition 2, we

can write (3.6) as:

min max min C' A (3.39)
aE& tEl C'AX=f,A>O

Next, we create a copy of A for each element E I (each copy will be treated as a distinct decision

variable) and denote it by At. Then, we enumerate over all elements of I (to eliminate the maxi-

mization level (i.e. the mid-level) of the above three-level problem), merge the two minimization

levels, and rewrite the above as a large-scale single-level program (note that this step is a standard

technique, see e.g. [64]):

min -Y (3.40)
7

A~t 0t V c I

C'At = f V C I

a e &

where r = {-y, a} U (UtE{A}). However, this single-level program is not a MILP yet, because

in the constraints -y c'A we have some binary x continuous bilinear terms stemming from the

product of some elements of sT and some elements of At for all E I. To do so, we need a bound

on the dual variables (i.e. At) of our innermost level LP in (3.39). We claim that this upper bound

81



(which we denote by V) is V = max(1, Eic bgIIR+(b')); to verify this claim, observe that the

LP in the innermost level of (3.39) maximizes the satisfied load post-disturbance; by definition,

the dual variable corresponding to a constraint quantifies the amount of change in the optimal

value of the objective function if we increase the bound in that constraint by one unit. With that

in mind, if we look at any constraint in Problem (3.2) other than the constraint on the maximum

nodal demands, increasing the limit of any other constraint in the problem can result in at most

Egg bilR (b?) because no matter what, the objective only depends on the nodal demands, and

the total maximum nodal demand is itself upper bounded by E>ic b]Ia+ (b')). On the other hand,

increasing the limit on each constraint that enforces maximum nodal demands can increase the

objective funcion by at most one unit, and hence, V = max(1, EZiG b'1R,(b')). Now that we

have a bound on the continuous variables that appear in bilinear terms, we can replace any bilinear

term by an auxiliary variable (we denote the vector of these auxiliary variables by 'I'), and to

complete the linearization and ensure that this auxiliary variable will be equal to the bilinear term,

we further enforce:

0 < Ipt YEST ('t)VV EI

<I~ (1 - YFST (*t'))V Yi,,('c) V E I

>~~ (YF',T(F) - 1)V + YFAe('J ') V C I

where Y,. is defined in Definition 8 and F is a bijective map (as defined in Definition 8) from

g(Z, sT, A) to {kp}. l

Proof of Theorem 5. Since the Master Problem has a less-constrained feasible set than the single-

level MILP reformulation of the original min-max problem but the same objective, it gives a lower

bound on the globally optimal solution of the original problem. Conversely, the optimal value

of the subproblem gives an upper bound on the optimal value of the original min-max problem.

Given strong duality in our reformulation for the continuous variables of the inner-level MILP

(i.e, Proposition 2), our single-level MILP reformulation for forming the master problem through

the bounds we derived in Thorem 4, and the finiteness of the number of elements in I, it only
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remains to clarify that any repeated value of Z* implies global optimality has been achieved (i.e. it

only remains to show that this procedure will not cycle between non-globally-optimal solutions).

Proving this is standard and has been presented in [62], [63], [64]; we shall repeat their proof

technique here for completeness: To see this, note that if at iteration k the value of Z* obtained

from solving the subproblem had already been encountered in some previous iteration t (i.e. t <

k), it means that the set of dual variables and constraints corresponding to Z* already exist in

the master problem at iteration k, and hence, the master problem stays the same at k + 1 and

the optimal objective value of the Master Problem at iteration k + 1 will remain the same as its

optimal objective value at iteration k. Note that by strong duality, at iteration k + 1, we have

UpperBound < bK* = min c'(Az., sT*)Az.; but we also have that LowerBound = *

min c'(Az., sT*)Az. from the master problem; thus, the lower and upper bounds are equal and
Az*

we have reached the globally optimal solution. l

Proof of Theorem 6. Since the disturbance defined by the vector of decision variables a and their

feasible set & correspond to the set of all N - k disturbances for a given k, we have

E(a) = R(a) - Q(a) < max R(a) - Q(a)
aEa

but by definition, R(a) is the optimal solution to Problem (3.2) and Q(a) is the optimal solution to

Problem (3.29). Therefore, the above is equivalent to

E(a) = R(a) - Q(a) < max [max E b -- max P'7]
aEa wE W -

Using the same argument as in Proposition 2, we can show that strong duality holds for maxp'u.
wMI<;Z7
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We shall denote the vector of dual variables of this problem by 7r. Then, we have

max [max Zbf - max p'w] = max [max E b' - min v'7r] (3.41)
aEa WEQ WZ<V aE& "OGQ iEB W'ir=p,7r>O

iEB ~

= max [max E bt + max - v'7r]
aEd wEQ iES W'7r=p,7r>O

=max [ max (-v'7r + E b)aEd wE!,W'ir=px0 iEB

= max (-v'7r + E bd)
aEa,wEQ,W'7r=p,7rO3 iEB

However, this single-level program is not a MILP yet, because in the objective the term v'7r con-

tains some binary x continuous bilinear terms stemming from the product of some elements of sT

and some elements of ir. To do so, we need a bound on the dual variables (i.e. 7r) of the LP

corresponding to Problem (3.29). We claim that this upper bound (which we denote by V) is

V = max(1, Ei b?1R (by)) and the proof of this claim follows the exact same procedure as that

of the bound (V) derived in the proof of Theorem 4, and is hence omitted. Now that we have a

bound on the continuous variables that appear in bilinear terms, we can replace any bilinear term

by an auxiliary variable (we denote the vector of these auxiliary variables by 0), and to complete

the linearization and ensure that this auxiliary variable will be equal to the bilinear term we further

enforce:

0 < E < YFST(E)V

e < (1 - YFsT(E))V+ Y (6)

E > (YFsT () - 1)V YF,X (0)

where Y,. is defined in Definition 8 and F is a bijective map (as defined in Definition 8) from

g(U, sT, 7r) to {E}. El
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3.6 Numerical Experiments

In this section, we shall present the results of our numerical experiments on the IEEE One-Area

RTS-1996 test case system [36], which has 24 buses (11 generators and 16 buses with load) and

38 lines. The numerical experiments were performed in MATLAB, and Gurobi [37] was used

for solving the MILPs. The operating range of the reactance tweaking device has been set to the

operating range reported for TCSC in [33].

3.6.1 Efficacy in the Event of a Worst-Case-Scenario Disturbance

In the first set of numerical experiments, we focus on the worst-case-scenario efficacy of reactance

tweaking in the RTS-1996 test system. In these experiments, we set k G {2, 3} and H = 3 (i.e. we

allow tweaking the reactances of up to only three lines), and use a base load flow scenario adopted

from the dataset for the IEEE One-Area RTS-1996 test case system [36]. At this load level, prior

to the disturbance the system is serving 2850MW of load in total. Table 3.2 displays the results

for this set of experiments (note that in this table, K* denotes the worst-case-scenario disturbance

obtained from solving Problem 3.6).

The results in Table 3.2 suggest that reactance tweaking on up to three transmission lines cannot

increase the resilience of the RTS-1996 system to a strategic adversary that seeks to cause the

worst-case-scenario disturbance by removing two or three lines with full knowledge of the SO's

post-disturbance response. Nevertheless, an important point to consider here is that reactance

tweaking is meant for redistributing flows so as to prevent overloading of further lines, but it

cannot increase the transmission capacity of the network. For example, when of the three lines that

used to be connected to a load bus two of them have been removed by a disturbance, no matter

how much we tweak the reactances, the maximum load that can be satisfied at that bus would

be equal to the transmission capacity of the remaining line that is still connected to it; hence, a

strategic adversary can take advantage of this fact and possibly choose a disturbance that thwarts
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Figure 3-2: Diagram of the IEEE One-Area RTS-1996 Test System (based on the diagrams pro-

vided in [36] and [38]). Each @ denotes a generator and each 4. denotes demand; the number

written next to each bus indicates the index of the bus.
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Table 3.1: Indexing the Transmission
Branch Data Provided in [36])

Lines for the One-Area RTS-1996 Test System (Based on

87
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Table 3.2: Worst-Case-Scenario Efficacy (for H = 3)

k T E(*) % Load Satisfied by SO's Control
2 0 0 93.19%
2 1 0 92.56%
3 0 0 89.16%
3 1 0 70.46%

any contribution from reactance tweaking. In our numerical experiments above, for instance, when

k=3 and T=0, the adversary chooses to remove lines 29, 36, and 37, which results in the islanding of

demand buses 19 and 20, and hence all the load at those two buses are inevitably lost and reactance

tweaking will clearly not be able to make any difference; also, when k=3 and T=l, the adversary

takes out lines 20, 21, and 23 at t=O, which leads to the tripping of lines 18, 6, and 7 as the cascade

propagates at t=1; with the failure of these lines, the lower (demand-rich) and upper (generation-

rich) parts of the system become detached from each other and a considerable amount of power

is lost due to the lack of generation capacity in the detached lower part of the system besides the

lack of transmission capacity, and hence, reactance tweaking will not be effective. Note, as an

interesting side-observation in Table 3.2, that if the SO has a delay of even one stage in responding

to the cascading failures (i.e. going from T = 0 to T = 1), the amount of load that needs to

be shed post-contingency increases quite significantly for the case of k = 3, which reiterates the

non-negligible difference between results obtained from a static model versus a multi-stage model.

3.6.2 General Efficacy

As mentioned earlier, the worst-case-scenario is an extreme case as disturbances are most often not

strategic. Thus, to give a more general and practical measure of the efficacy of reactance tweaking

in our numerical experiments, we next focus on the "general efficacy" of reactance tweaking (as

defined in the previous section). In these experiments, we first set k = 3 and H = 2. In the

first step, using the nominal load flow scenario that is provided in the dataset for the IEEE One-

Area RTS-1996 test case system (which amounts to 2850MW in total load), we set T = 1 and

compute (using the MILP derived in Theorem 6) that the total amount of savings in load-shedding
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# of Times Each Line Was Chosen for Tweaking (H=2, k=3)
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Figure 3-3: Case of H=2, k=3: Number of trials (out of 500 randomly sampled load levels) in which

each line was chosen as one of the two optimal lines to tweak the reactance of, when computing

the tight upper bound on the efficacy of reactance tweaking for that trial.

as a pure contribution of reactance tweaking (i.e. the parameter E(K)) is tightly upper bounded

by 60.7MW for this case (which is about 2.13% of the total demand); then, we set T = 0 for

the same load level and the tight upper bound on E(r,) drops to 42MW. Next, we randomize

the load at each demand bus such that it is sampled from a uniform distribution over the support

[LN - 0.1LN, L N + 0.1L] where L N is the nominal load (also referred to as the "base load") at

bus i (i.e. we allow for up to 10% uncertainty in the load at each demand bus relative to the base

load). For increased computation speed, we set T = 0 and run this experiment 500 times for 500

different realizations of the random vector of bus loads (we use the MILP derived in Theorem 6 to

perform these computations). We observe that the value of the upper bound on E(K) among these

500 trials ranges from 34.3MW to 71.8MW with mean 45.9MW and standard deviation 6.8MW.

This amount of contribution by reactance tweaking is quite remarkable and certainly promising.

Figure 3-3 shows the number of times (out of 500 randomly sampled load levels) that each line

was chosen post-contingency as one of the two optimal lines to tweak the reactance of .
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A first observation in Figure 3-3 is that the lines indexed from 1 through 14 (with the exception of

11) have been used more frequently than the rest of the lines. Looking at the line capacity data and

the locations of lines 1 - 14, an immediate observation is that almost all the lines indexed 1 - 14,

which are all located in the southern part of the power system, have much lower flow capacity

than lines 15 - 38, and hence, tweaking reactances in that part of the power system naturally

makes intuitive sense because the line flows can become so close to capacity limits that even minor

changes in reactances can redirect some of the flow to other lines and prevent overloading by taking

advantage of all the residual capacity of the lines in the lower part of the system. Bearing in mind

that the southern part of the system is demand-rich in the sense that a considerable portion of the

total demand in the system is concentrated in the southern part, another interesting observation

would be that the southern part of the system also quite frequently appears as the optimal location

for reactance tweaking.

We repeat the above experiment for H = 3 and H = 1, while keeping all other parameters the

same as above (especially, still k = 3, and we again use 500 random samples for the loads); the

results are as follows:

" Increasing the number of tweaking devices (H) from 2 to 3 does not change the average

bound on savings (i.e. average among 500 samples), and the same two lines (i.e. lines 5 and

6) are the modes.

" Decreasing the number of tweaking devices (H) from 2 to 1 decreases the average upper

bound on savings among 500 samples to 33.9MW (i.e. the average bound on savings de-

creases by 12MW compared to the case of H = 2 which had an average savings of 45.9MW

as reported above).

Figure 3-4 shows the number of times (out of 500 randomly sampled load levels) that each line

was chosen post-contingency as the single optimal line to tweak the reactance of, when computing

the tight upper bound on the efficacy of reactance tweaking for that trial.

Note in Figure 3-4 that for H = 1, line 5 is still the mode (recall that for H = 2, line 5 was the mode

90



# of Times Each Line Was Chosen for Tweaking (H=1, k=3)
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Figure 3-4: Case of H=1, k=3: Number of trials (out of 500 randomly sampled load levels) in

which each line was chosen as the single optimal line to tweak the reactance of, when computing

the tight upper bound on the efficacy of reactance tweaking for that trial.

but line 6 also had been selected as an optimal line to tweak in a large number of trials), but this time

line 6 is never an optimal line for reactance tweaking in the 500 trials, and instead lines 7 and 27

have each appeared over 100 times as the optimal line to tweak the reactance of. This observation

seems to potentially have non-trivial implications for optimal placement of reactance tweaking

devices in the transmission system, especially when it come to deciding how many such devices

are economically viable for the system. Although the problem of optimal placement of reactance-

tweaking devices is not a topic of interest in this thesis and merits its own line of research, we will

look more closely into it later in this chapter to motivate future research.

A side-observation made in the above set of simulations was that among the 500 trials for the

various load levels, there seemed to be a small number of disturbances that appeared frequently as

the N-3 disturbance that led to an upper-bounding efficacy from reactance tweaking. In fact, for

H = 1 and H 2, there were only 7 and 3 disturbances, respectively, that had led to the upper

bounding performance from reactance tweaking in all 500 trials performed for each case (i.e. for

the H = 1 case and for the H = 2 case); the corresponding plots are shown in Figure 3-5.
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# of Trials in which Each Disturbance Led to the Most Effective (Upper Bounding)
Response from Reactance Tweaking (H=1, k=3)
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Figure 3-5: Cases of H=1 and H=2: Number of trials (out of 500 randomly sampled load levels) in

which each disturbance led to maximal savings obtained from reactance tweaking.
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Note in Figure 3-5 that the three disturbances appearing for the case of H = 2 as the disturbances in

response to which reactance tweaking had the highest efficacy (for the 500 samples of load levels),

namely the removal of lines {11, 16, 17} or lines {15, 17, 18} or lines {24, 25, 26}, are three of the

disturbances that appeared very frequently in the upper bounding performance for the H = 1 case

as well. This suggests that in One-Area RTS-1996, the 10% uncertainty that we allowed in the

loads does not create much variety in the disturbances in response to which reactance tweaking

is most effective. Also, the above results suggest that in One-Area RTS-1996, it is most often

the same disturbances that lead to a maximally effective performance from reactance tweaking,

regardless of whether we use reactance tweaking on one line or on two lines.

3.6.3 Further Observations/Motivating Future Directions

To dig deeper into the observations made in the previous subsection, we next fix the load to its

base value (i.e. we no longer randomize the nodal demands), and instead, we try all possible N-3

contingencies (exhaustively) and compute the average value of the efficacy of reactance tweaking

over all the contingencies for which reactance-tweaking is "noticeably" effective (i.e. leads to

savings of at least 2-3MW in the amount of load shed post-disturbance), assuming we can place

the tweaking device(s) anywhere we like for each contingency; the results are as follows:

" H=2 and H=3, base load case: 11 contingencies were "noticeably" mitigated by reactance

tweaking; if we have the freedom to choose the optimal location of the devices independently

for each contingency, the average value of savings among these 11 contingencies is about

18MW for both H = 2 and H = 3 (the number of times, among these 11 contingencies, that

each line was chosen as an optimal location of the reactance-tweaking device for the H = 2

case is shown in Figure 3-6).

" H=2 and H=3, maximal load case: 45 contingencies were "noticeably" mitigated by reac-

tance tweaking; if we have the freedom to choose the optimal location of the devices inde-

pendently for each contingency, the average value of savings among these 45 contingencies
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Figure 3-6: The number of times, among the 11 contingencies, that each line was chosen as one of

the two optimal locations for the reactance-tweaking devices (for the case of H = 2, k = 3, and

base load)

is about 19MW for both H = 2 and H = 3 (the number of times, among these 45 contin-

gencies, that each line was chosen as an optimal location of the reactance-tweaking device

for the H = 2 case is shown in Figure 3-7).

" H=1, base load case: 11 contingencies were "noticeably" mitigated by reactance tweaking;

if we have the freedom to choose the optimal location of the devices independently for each

contingency, the average value of savings among these 11 contingencies is about 14.7MW

(the number of times, among these 11 contingencies, that each line was chosen as the optimal

location of the reactance-tweaking device is shown in Figure 3-8).

" H=1, maximal load case: 45 contingencies were "noticeably" mitigated by reactance tweak-

ing; if we have the freedom to choose the optimal location of the devices independently

for each contingency, the average value of savings among these 45 contingencies is about

17.6MW in savings (the number of times, among these 45 contingencies, that each line was

chosen as the optimal location of the reactance-tweaking device is shown in Figure 3-9).
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# of Contingencies where Each Line Was Chosen (H=2, k=3, Max)
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Figure 3-7: The number of times, among the 45 contingencies, that each line was chosen as one of

the two optimal locations for the reactance-tweaking devices (for the case of H = 2, k = 3, and

maximal load)
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Figure 3-8: Total number of times, among the 11 contingencies, that each line was chosen as the

optimal location of the reactance-tweaking device (for the case of H = 1 and base load)
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# of Contingencies where Each Line Was Chosen (H=1, k=3, Max)
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Figure 3-9: The number of times, among the 45 contingencies, that each line was chosen as the

optimal location of the reactance-tweaking device (for the case of H = 1, k = 3, and maximal

load)

The above results suggest that increasing the number of reactance-tweaking devices in One-Area

RTS-1996 may not considerably change the efficacy of reactance tweaking if we have the freedom

to change the location of the device(s) from contingency to contingency. This makes intuitive

sense based on the same arguments as in the previous subsections regarding how the efficacy of

reactance tweaking can be considerably limited by the lack of transmission capacity, and also given

the fact that the flow in any line in a connected DC electric network depends on the resistances of

all lines in the system; hence, in many scenarios, redirecting only a small amount of flow from

some line(s) to other line(s) could be all that is feasible due the lack of residual capacity in the

critical lines in the system, and this small amount of reactance-tweaking control may potentially

be accomplished by a small number of reactance-tweaking devices with possibly a large number

of options in terms of the location of the device(s). Comparing Figures 3-6 through 3-9 with

each other reveals that depending on the load level and H, a broad array of lines could be desirable

location(s) for reactance tweaking while some lines (such as line 5) appear frequently as an optimal

location for both H = 1 and H = 2 cases and for both base and maximal load levels (note also in

these figures that for the maximal load level, the desirable location for reactance tweaking devices
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Figure 3-10: Average load saved (over the N-3 contingencies in response to which reactance tweak-

ing is "noticeably" effective for the base load case) by placing a total of one reactance-tweaking

device in the entire system, as a function of the line on which the device is placed.

is not as concentrated in the southern part of the system as it is for the base load level, and lines that

are in the mid part have appeared multiple times as optimal locations in the above computations for

the maximal load case). This intuition leads us to our next set of numerical simulations. This time,

we will fix the location(s) of the reactance-tweaking device(s) and we no longer allow the location

of the device(s) to be a decision variable, and instead, for each possible placement scenario for

the device(s), we exhaustively compute the average savings over all N-3 contingencies to which

reactance-tweaking is "noticeably" effective; namely, we average over the 11 contingencies we

identified earlier (among the set of all N - 3 contingencies for the base load case) that result in

"noticeable" savings in load-shedding purely contributed by reactance tweaking).

Figure 3-10 shows the average load saved (over the N-3 contingencies in response to which reac-

tance tweaking is "noticeably" effective for the base load case) by placing a total of one reactance-

tweaking device in the entire system, as a function of the line on which the reactance-tweaking

device is placed.
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An immediate observation in Figure 3-10 is that although line 6 appears to be the location (for plac-

ing the reactance tweaking device) that yields the best performance in the corresponding numerical

experiment, there are many other lines that are not very far below line 6 in terms of efficacy; this

further strengthens the conjecture that reactance tweaking might generally be flexible with respect

to the choice of the location of the device. Once again, the lines in the southern part of the One-

Area RTS-1996 system appear to be the ones on which reactance tweaking seems most effective

for the base load case, but some lines from the mid part of the system (such as lines 23, 24, and 27)

also seem to provide reasonably good average savings in the numerical experiments corresponding

to Figure 3-10.

Next, we look at the case of H = 2. Figure 3-11 shows, for the base load case, the average

load saved (over the N-3 contingencies in response to which reactance tweaking is "noticeably"

effective) by placing a total of two reactance-tweaking devices in the entire system, as a function

of the pair of lines on which the devices are placed, for all possible (%2) = 703 placement choices

(the ordering of the location pairs on the horizontal axis of the plot has been sorted in descending

order in terms of efficacy). An immediate observation in this figure is that the curve is relatively

steep; by comparing this figure to Figure 3-10, we observe that the most effective placement for the

case of H=2 leads to twice as much savings as the most effective placement for the case of H=1.

Also, the 100-th most effective placement for the pair of reactance-tweaking devices is almost as

effective as placing just one device only on line 6 (which was the best case for H=1); thus, it seems

plausible to suggest that placing two reactance-tweaking devices in the system is notably more

effective than placing only one reactance-tweaking device. Figure 3-12 also reveals that there are

400 possible ways of placing the two devices that would yield an average of at least 4MW in

savings in the post-disturbance load shed (recall that the total demand in the base load case in

One-Area RTS-1996 system is 2.85GW).

Next, we zoom into Figure 3-11 to give a closer look at the top 50 most effective choices for

the locations of the two devices, so that the indices of the pairs of lines that provide the best

50 placement choices become available to the reader, and the result is shown in Figure 3-12. A
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(Sorted for All Possibe Choices of Placing the Devices)
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Figure 3-11: Average load saved (over the N-3 contingencies in response to which reactance tweak-

ing is "noticeably" effective for the base load case) by placing a total of two reactance-tweaking

devices in the entire system, as a function of the pair of lines on which the two devices are placed,

sorted in descending order in terms of efficacy for all possible (2) 703 placement choices.

quick observation in Figure 3-12 is that lines 5 and 6 appear in a vast majority of the top 50 pairs,

and their combination (for placing the two devices) yields the highest "average" efficacy (in the

"noticeably" effective sense described earlier in this subsection).

Next, we look at the case of H = 3. Figure 3-13 shows, for the base load case, the average

load saved (over the N-3 contingencies in response to which reactance tweaking is "noticeably"

effective) by placing a total of three reactance-tweaking devices in the entire system, as a function

of the triplet of lines on which the devices are placed, for all possible (3) = 8436 placement

choices (the ordering of the location triplets on the horizontal axis of the plot has been sorted in

descending order in terms of efficacy). An immediate observation in this figure is that the curve is

relatively steep, like it was for the case of H=2 shown in Figure 3-11. By comparing this figure to

Figure 3-11, we observe that the most effective placement for the case of H=3 leads to only 3MW

more savings compared to the most effective placement for the case of H=2; this suggests that

the additional device seems to add marginal value to the efficacy of reactance tweaking. Figure

3-12 also reveals that there are 6500 possible ways of placing the two devices that would yield an
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Figure 3-12: This figure is obtained by zooming into Figure 3-11 to give a closer look at the top 50

most effective choices for the locations of the two devices, so that the indices of the pairs of lines

that provide the best 50 placement choices become available to the reader.

average of at least 4MW in savings in the post-disturbance load shed.

Now, we zoom into Figure 3-13 to give a closer look at the top 50 most effective choices for the

locations of the three devices, so that the indices of the triplets of lines that provide the best 50

placement choices become available to the reader, and the result is shown in Figure 3-14. A quick

observation in Figure 3-14 is that lines 5 and 6 appear in a vast majority of the top 50 triplets (and

most often both lines 5 and 6 are together in the triplet of lines), and their combination (along with

line 12) yields the highest "average" efficacy (in the "noticeably" effective sense). By comparing

this figure to Figure 3-12, we observe that the 50-th most effective placement for the triplet of

reactance-tweaking devices is almost as effective as placing just two devices in the most desirable

location for H=2: one on line 5 and the other on line 6.

A main observation in the above set of simulations is that increasing the number of reactance-

tweaking devices from 2 to 3 only changes the best-case average savings (in the "noticeably ef-

fective sense, for the set of N-3 contingencies and a base load case) by 3MW, while decreasing

the number of devices from 2 to 1 reduces this average saving amount by more than 7MW. It thus

appears that investing in 2 reactance-tweaking devices in this system might be a good decision.
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Figure 3-13: Average load saved (over the N-3 contingencies in response to which reactance tweak-

ing is "noticeably" effective for the base load case) by placing a total of three reactance-tweaking

devices in the entire system, as a function of the triplet of lines on which the three devices are

placed, sorted in descending order in terms of efficacy for all (3) = 8436 possible placement

choices.

Average Savings from Placing Three Tweaking Devices (Sorted for the Top 50 Placement Choices)

- --------------
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Figure 3-14: This figure is obtained by zooming into Figure 3-13 to give a closer look at the top

50 most effective choices for the locations of the three devices, so that the indices of the triplets of

lines that provide the best 50 placement choices become available to the reader.
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This is consistent with the computational results obtained in the previous subsection using the up-

per bound derived in Theorem 6, which also suggested that decreasing H from 2 to 1 could be

unfavorable (as it considerably reduced the upper bound in those computations) while increasing

H from 2 to 3 did not increase the upper bound. However, the above results suggest a fair amount

of flexibility in terms of the placement of the device(s), while the computations with the upper

bound in the previous subsection did not quite capture this property so well.

Assuming that average savings is the only criterion for choosing the locations of reactance-tweaking

devices and assuming all contingencies have uniform probability, and disregarding other applica-

tions of the device, then the results in the above figures can give a good sense of where the "opti-

mal" location(s) for the reactance-tweaking devices could be for the base load case in the One-Area

RTS-1996 test system, in response to the set of all N - 3 disturbances that can "noticeably" be

mitigated by reactance tweaking. These results suggest that for the One-Area RTS-1996 base load

case, the line(s) that appeared frequently as the upper-bounding locations for reactance tweaking

(i.e. lines 5 and 6, as shown in Figures 3-3 and 3-4) in our computations in the previous subsection

for the upper bound (derived in Theorem 6) on "general efficacy", were also the lines that even-

tually emerged as the "optimal" (in the exhaustive averaging sense mentioned above) placement

locations for reactance tweaking. Please note that the problem of optimal placement of reactance-

tweaking devices for post-disturbance control is not a topic of interest in this thesis as it merits its

own line of research for the reasons mentioned above; thus, the purpose of presenting the above

exhaustive simulations was to give some insight into the potential value of the upper bound de-

rived in Theorem 6, because the above simulations suggest that this upper bound may be able to

serve future research on this topic by providing a fast initial approximate of the lines on which

reactance tweaking could be quite useful and also of the number of devices needed for the system

(though, the author acknowledges that the observations made herein may not necessarily extend

to systems other than the One-Area RTS-1996, and the author is solely sharing his observations).

Please see Chapter 5 for a discussion of future directions that could potentially be relevant to the

above observations.
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Chapter 4

Can Pre-Disturbance Tweaking of

Transmission Line Reactances Mitigate the

Propagation of Cascading Failures?

So far, we focused on the case where the system operator responds to a disturbance by re-dispatching

the system in order to maximize the amount of demand satisfied post-disturbance. Nevertheless,

another application of a reactance-tweaking technology could be mitigating the propagation of

cascading failures in the event of a multiple-line contingency, especially when the system operator

cannot respond quickly to the disturbance and hence the cascading failures can propagate for a

couple of stages. In other words, in the set of all possible N - k scenarios for a given k, can we

tweak line reactances at time t = 0 such that in the event of up to k outages at time t = 1, no more

than q new outages happen at time t = 2? For the case of k = 1, this would be equivalent to the

N - 1 security criterion discussed in the existing literature as explained in Chapter 1 (which is a

very common security criterion in power systems nowadays) because the goal of the N - 1 crite-

rion is to ensure that if we have one outage at time t = 1, we will have q = 0 outages at time t = 2.

In this chapter, we seek to build an optimization framework for studying whether pre-disturbance

tweaking of the reactances of a certain number of transmission lines (within a reasonable operating

104



range) can effectively reduce the number of failed lines over the propagation of cascading failures

in the event of an N - k scenario for an arbitrary k.

4.1 Efficacy in Mitigating the Worst-Case-Scenario

As in the previous chapter, we have two agents: A system operator (SO) and an adversary. At

time t 0, the system operator strategically tweaks the reactances of up to H lines, and then at

time t = 1, the adversary removes up to k lines from the network, with the objective of initiating a

cascade that will propagate for T discrete time steps (as per the rules and assumptions of cascade

propagation defined in the previous chapters) such that the number of failed transmission lines at

the end of the cascade (i.e. at t = T + 2) is maximized. Note that after tweaking line reactances

at time t = 0, the system operator takes no further action. Similarly, after initiating a disturbance

by removing up to k lines at time t = 1, the adversary takes no further action. Hence, from stage

t = 2 onwards, it is only the flows that redistribute and cause more failures.

In order to evaluate the efficacy of the proposed pre-disturbance reactance-tweaking strategy in

mitigating a worst-case-scenario disturbance, we need a max-min setup (zero-sum Stackelberg

game) where the SO goes first by tweaking reactances and then the adversary takes action by

causing a disturbance. We can write this bilevel program as:

max min 3 sT 2  (4.1)
dEb &EA (ij,h)EE

where, s T2 denotes the binary state of transmission line (i, j, h) at time T +2 (hence, > T2
ijhE j

(ij,h)c

quantifies the number of transmission lines that have survived until time T + 2 which marks the

final stage of cascading failures). All the variables and feasible sets in the above problem (i.e.

d, D, &, A) shall be explicitly defined in the following two subsections.
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The SO's Decision Variables and Constraints

The SO's problem is as follows:

max min sh (4.2)
d &EA (ij,h)ES

s.t. Iioj;X 3h = 0?- O, V(i, j, h) E S

b - b= ih, Vi E B (Si)
(ij,h)E-F

Xijh- Xij~h - tih(Xma - Xjh <0 V(i'j3 h) EE

h- Xijh+ih(Xmin- X0. )0 V(i'7j, h) ES

Z Tijh = H V(i, j, h) E 9 (S2)
(i,j,h)EC

-a-Pii <Iioh capii, V(i,j, h) E S (53)

ij h, E R, Vi E B,(, ,)E
Xiih, 001 'h I C1)E

Tijh E 0, 1}, V(i,j, h) Ec S.

where d {x, 00, I, i} is the set of decision variables, and x0 is the vector of original line

reactances which is given to the problem as an input parameter. In the above formulation, the

objective is to maximize the number of lines that will survive the disturbance (which itself is

another optimization problem min E s T+, namely the "adversary's problem"). The first two
aEA (ij,h)E

constraints are KVL and KCL for DC flows, the next three constraints ensure that the reactances

of at most H lines can be tweaked within a prescribed range (and all the other lines will retain

their original reactances), the sixth constraint ensures no line flow capacities are violated, and the

seventh constraint ensures that the generation capacities of each bus are not exceeded (note that bg

and bd are not decision variables; they are given parameters (possibly from solving the economic

dispatch problem), and denote generation and demand at each bus, respectively).
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The Adversary's Decision Variables and Constraints

The set of constraints for the adversary in this problem is very similar to the set of adversary's

constraints from the previous chapter, with only one difference: we allow some uncertainty in the

line reactances at each stage of the evolution of cascading failures that the adversary can exploit in

order to come up with a better disturbance. This serves as a proxy for the uncertainty in the reac-

tances implemented by the reactance-tweaking device (potentially stemming from implementation

limitations of the reactance-tweaking device) and external factors such as frequency uncertainty

that can impact the reactances of all lines during the propagation of cascading failures. Thus, the

actual reactance of line (i, j, h) at stage t > 1 is assumed to be V '6' + (gh, where

[-U U1 (for some U E R+) quantifies the uncertainty in the reactance of line (i, j, h),

while Xijh denotes the reactance that the SO had implemented prior to the disturbance. We shall

assume that ' ijh > 2 U to ensure that the uncertain term does not dominate the actual reactance.

The adversary's problem is stated below:

min E (43)
&EA (ij,h)E(

s.t. i's1 > JEJ - k

Mdiag(zt-l)It = bg - bd Vt> 2

diag(k)diag(zt-)It = diag(zt-l)M'O Vt > 2 (Al)

ijh Xijh + Xjjh, jijh E -- ,U], V(i, j, h) E S (A2)

(z-i+siJh-1) j54 cap5j V(i, j, h)E, Vt > 2

Zij h Iijh -CaPih (zI-sIjh) V(i,j, h)ES Vt 2

IMIyt z > s t + IM'Iyt - 2 Vt> 2

y l = Vi E L3, Vt < T + 1; y > yt Vt < T + 1

st 2 zh Vt > I ; zt-1 > s Vt h 2; 1 + j Vij E 6 , 1 < t < T + 1

zige stja y E01} ~i ,h) E S, Vq E B.
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where A = {s, ... , s +2, ...z1z , '... I I ... ,+2, 62, . ... , 6+2 , 2, . . , +

R2 I +2, P }. Here, P denotes the set of all variables used in keeping track of the connectivity

of the buses (which are the auxiliary variables defined in Theorem 1) for all t E {1, .. , T + 1}. In

(4.3), the first constraint requires that the adversary trips up to k lines at t = 1, the second and third

constraints are for KVL and KCL at each stage, the fourth constraint defines the decomposition

of line reactances into their certain and uncertain components, the fifth and the sixth constraints

keep track of the lines that have survived and failed (respectively), and the remainder of the con-

straints keep track of the connectivity of the underlying graph (also ensuring that no failed line is

reactivated) and evolution of the topology as established in Proposition 1 and Theorem 1.

4.2 Approximate Reformulation as a Bilevel MILP

Note that the above bilevel program has continuous x continuous bilinear terms, and the two levels

are coupled through the continuous variable Xijh. A quick observation in the above formulation

gives us an ingenious approach for giving a mixed-integer linear approximation of the above. Let

us first approximate Xijh using a finite number of its significant figures (via truncation) and denote

this approximation by ztijh (i.e., if Xijh = 1.34267 we can approximate it using only its first four

significant figures and write Xijh xij. where zijh = 1.342). This approximation is motivated

by the fact that if the number of significant figures chosen for forming zijh is aligned well with

the magnitude of 0, then h -tijh + h 'hcan be a very good approximation. To see this, let us

consider an example. Let us assume in this example that U = 0.01 so that Xijh E [-0.01 0.01].

Also, let us assume that Xijh is set to 1.34267 as in the above example. Then, XiJh = Xigh + -1* E

[1.33267 1.35267], while we have Xijh + c- E [1.332 1.352] if we set zijh = 1.342.

Since zijh has a finite number of digits, we can then discretize it using its binary expansion and

write it as a finite sum:
U

1ijh 2P p;ijh, p;ijh E {0, 1} Vp
p=L
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where L and U are in Z, and their values are determined by the number of significant figures with

which tijh is defined. Then, if Ith is sufficiently small, we can approximately linearize the bilinear

product I hjXijh by first writing

U

p=L

Note that since P;ijh is binary and I3h is bounded, P;ijh Ij.h can efficiently be linearized using

the big-m technique described in the previous chapter. We now have all the tools to approximate

the feasible set of Problem (4.3), which is the inner-level of our original max-min problem, by

replacing Xijh with EZ=L 2 P p;ijh in Problem (4.3). The bounds and techniques needed for lin-

earizing all the binary x continuous terms in this problem are the same as those used for Problem

(3.6) in the previous chapter. To complete this approximation for the entire max-min problem

(4.1), we shall adjust the outer-level (i.e. Problem (4.2)) to this approximation as well. To do so,

for each line (i, j, h) we shall replace Xijh with EZUL 2 P(p;ijh + ijh in (4.2) and add the constraint

Utijh E [-' ] to the set of constraints in (4.2) and add itijh and (p;ijt to the set of decision

variables in (4.2) (these decision variables and constraints shall be added for all p and (i, J, h)). We

shall denote the approximate max-min problem we just descibed as follows:

max min sT+2  (4.4)
dED aEA (i,j,h)E&

Let us denote by R the 1E x IU - L + II matrix whose entry in the h-th row and p-th column is

equal to p;ijh. We shall denote by 2 [LU the vector [2 L, 2 L+1, U]'. Using the same technique

as in the proof of Theorem 3 in the previous chapter, we can prove that both the inner-level and the

outer-level of the above approximation can each be converted to a MILP.

Theorem 7. If ],* is the optimal value of the objective function in the optimization problem (4.4),

then
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max mi 8 s(4
ED dEA (ij,h)ES

s.t. # + (diag(Io)4)2[LUT] = M';

A + (diag(I0)4)2[LU - diag(xo)Io - 2T <0

-t - (diag(l>")2LU] + diag(x0 )I 0 - 2Ti < 0;

diag(x"n")& <_ S + (diag(&),)2[LU] < diag(xm')&;

0 < S < 60?;

6 = #+O; I" 0

- diag(ca-p)i, < 0; - diag(~capa)(1 - 'b) < 0;

4 0; 4>0; O 0; / 0;

Constraints (S1), (S2), (S3) from Problem (4.2);

&, , ,7 #, S, 4), (, I0 E RIEI;

3, ,qEt, }; E ,}~x(U-L+1 O E RIB.

where T G G qe p and c2 = {., 6,1, @, f, 3, p, q, F, i, 4, 0, 0}.

Proof Please see Section 4.4. El

Note that the only bilinear terms in (4.5) are products of integer and continuous variables which

can be linearized easily using the technique discussed in the previous chapter.

Using a similar technique as in Theorem 7, we can also linearize the continuous x continuous bi-

linear terms in the inner-level program in (4.4) (i.e. min E s T). To do so, we shall replace
dEA (ij,h)E&
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the constraints (Al) and (A2) in (4.3) with

diag(ztl)i6 + (diag(ztl)diag(It )f)2[LU] = diag(zt-l) M'

and

and then linearize all the absolute value terms and binary x continuous bilinear terms using the

techniques described in the previous chapter (note that although F is not a decision variable in this

inner-level program, we still need to linearize the product of its elements with the elements of F to

simplify the column-and-row-generation procedure). We shall denote the set of decision variables

and the feasible set of the linearized inner-level program by W and A, respectively.

To make this formulation amenable to row and column generation, we shall add the auxiliary

continuous variable Y E R and the constraint Y = / s to the inner-level program so
(i, j,h)EE

that we can write the objective as a function of a continuous variable rather than a sum of binary

variables.

We shall denote the bilevel MILP obtained from performing all the above-mentioned linearizations

and change of variables by

max min (4.6)
dED deA

Column and Row Generation for Solving the Approximate Max-Min Problem

Once again, we shall apply a column-and-row-generation scheme (see e.g. [63], [62], [64]) to solve

Problem 4.6, which entails deriving bounds on the dual variables in the innermost-level program in

our problem. The procedure for doing so is similar to the one used in the previous chapter, which

we shall repeat here for completeness. First, we turn Problem (4.6) into a large-scale single-level

MILP. To do so, we start by separating the continuous variables in the outer level of (4.6) from the

integer ones. Let us denote the vector of integer decision variables in the inner level of (4.6) by ,
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the set of all that maintain the feasibility of the inner level of Problem (4.6) by 1, the vector of

continuous decision variables in the inner level of (4.6) by 9, and the set of the constraints in in

the inner level of (4.6) that involve continuous variables (for a given ) by d(); then we can write

Problem (4.6) as:

max min min J (4.7)
deD CEI 29CC(C)

and since the inner-level problem above is a linear program, we can write it in standard form as

min = min f',O where f'd = Y. Then we invoke strong duality as shown in the proposition
&dc(4) 0'6<e4
below.

Proposition 3. Strong duality holds for the inner-level problem in (4.7), and hence,

min min X = min max ' (4.8)
E '6EC(4) E 0'Ag4=fAgiO

Proof Please see Section 4.4.

Let us denote by f the vector formed by concatenating all columns of 0.

Theorem 8. If A* is the optimal value of the objective function in the optimization problem (4.6),

then

A*=max y (4.9)

s.t. _ V4 V E

A4 < 0 V E I

= j V E

0 > +g > -YFf(*()N V E I

4 (1 - YFf(+j))N + YF,iAy() V C

4 Q (YF(I() -1)N + YFi E I
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where WA = ( , i, Ag, {4g}, F) for Z(i, A -'i, g E RI((ZiA), j/ U

(UgE ({ } U {})), F is a bijective map (as defined in Definition 8)from 9(Z, , g) to{6}

and N is the number of lines in the system (i.e. N = |S|) pre-disturbance.

Proof Please see Section 4.4. El

Now that we have turned Problem (4.6) into a large-scale single-level MILP, it can be solved using

a decomposition method involving column and row generation (e.g. see [62] and [63]), just like

in the previous chapter. To do so, we again define a "decomposed master problem with input Q",

which has the exact same form as (4.9) except that i shall be replaced by Q throughout (4.9). Note

that Q C I in the decomposition process, and hence, the term "decomposed". Let us denote by

-" the matrix containing binary variables corresponding to the binary expansion of the truncated

approximation to x0 . The column-and-row-generation procedure (adopted from [64]), tailored to

Problem (4.6), is outlined in Algorithm 2.

Algorithm 2 Column and Row Generation for Problem (4.6)

1: Solve the inner-level of Problem (4.6) with M" as input

2: Q <- vector of the optimal values of all integer variables in Step 1
3: Initialize UpperBound +- oc, LowerBound <- -oo
4: while UpperBound - LowerBound > tolerance do
5: Solve the decomposed master problem with input Q and update 6*
6: M'* +- optimal value of objective function in Step 5
7: Solve the inner level of (4.6) with M* as input

8: S* - optimal objective function value in Step 7
9: Z* +- vector of optimal values of all integer variables in Step 7

10: o +{*} U Q
11: LowerBound +- max($'*, LowerBound)

12: UpperBound M*
13: end while

Same as in the previous chapter, using the results presented in [62] and [63] on the convergence of

the column-and-row-generation procedure and the bounds we derived in Theorem 8 which gave us

a valid single-level reformulation for forming the master problem, we have the following theorem.
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Theorem 9. Algorithm 2 converges infinite steps to the optimal solution of Problem (4.6).

Proof Please see Section 4.4. l

4.3 Upper Bound on Efficacy in Mitigating Any N - k Scenario

for a Given k

Consider the MILP in the inner-level of problem (4.6). If we turn 4 into a decision variable in

this problem, the problem still remains as a MILP (because we have already linearized the product

of its elements with the elements of It). Let us denote the vector of the decision variables of this

new problem by .4 and its feasible set by A. Then, we define the efficacy of pre-disturbance

reactance tweaking in mitigating a disturbance (denoted by E(k)) as the number of lines that would

otherwise have failed during the cascading failures had we not optimally tweaked the reactances

prior to the disturbance R. It follows that based on the approximate MILP technique presented in

this chapter, the efficacy of pre-disturbance reactance tweaking in mitigating any R in the set of

all N - k scenarios for a given k is "approximately" upper bounded (i.e. upper bounded in the

approximate sense presented in this chapter) as follows:

E < max Zsi2, - s 2(4.10)
f) (ij,h)EE (ij,h)ES

s.t. S1 = s,

I42 [LU]_ ,o 2 [LU] - diag(f) (xuma - o2 [LU]) 0

-_ 2 2LU]+. 2 [LU] +diag(iF)(x"m" - 4 2 [LU]) 0

Z Tijh HV(i, j, h) E S (S2)
(ij,h)EE

.do E Z(_40); W2q E AZq; -fijh E 10, 1}, V(i, j, h) ES.
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where 'b = { 4, .W, -f}, and A(-40 ) denotes the feasible set of the inner level of Problem (4.4)

with input _4' (recall that 9' is the matrix containing binary constants corresponding to the binary

expansion of the truncated approximation of the original line reactances x"), and d, denotes an

exact copy of the vector of decision variables in the inner level of Problem (4.4). Thus, note that

in the above formulation, _4 is a constant but -4 is a decision variable.

4.4 Proofs

Proof of Theorem 7. The proof of this theorem follows the exact same procedure as he proof of

Theorem 3 (i.e. by first shifting the nonconvexity from continuous x continuous bilinear term to

absolute values via a change of variables, and then linearizing the absolute values using standard

techniques), and hence, the reader is referred to the proof of Theorem 3 for details on the derivation.

Note that in this theorem jiijh is equivalent to the continuous x continuous bilinear term Ijhflijh.

Proof of Proposition 3. To verify that strong duality holds, note that the innermost-level problem

in (4.7) is bounded and feasible (because by assumption, i only contains the vectors of integer

variables that maintain the feasibility of the problem, and a disturbance of size zero (i.e. no distur-

bance) is always a feasible solution for the inner-level problem, so the feasible set is not empty);

hence, strong duality holds and deriving the equations for the dual problem stated in the proposition

is standard (e.g. see [8] for details on deriving the dual of a linear program). El

Proof of Theorem 8. This proof follows similar steps as in the proof of Theorem 4, but for com-

pleteness we present this proof below. Note that so far we have reformulated the max-min problem

(4.6) as a bilevel program in which the inner-level and the outer-level are both' MILPs coupled

through only binary variables (i.e. through the entries of -). Using the result we just established
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in Proposition 3, we can write (4.6) as:

max min max c'A{ (4.11)
dED E' C'Ag=f,Ag 0

Next, we create a copy of A for each element E I (each copy will be treated as a distinct decision

variable) and denote it by A4. Then, we enumerate over all elements of (to eliminate the mini-

mization level (i.e. the mid-level) of the above three-level problem), merge the two maximization

levels, and rewrite the above as a large-scale single-level program (note that this step is a standard

technique, see e.g. [64]):

maxj' (4.12)
fl

s.t. < V

-x" V
'i = f VE E

where 7 = {5, d} U (U E {i }). However, this single-level program is not a MILP yet, because

in the constraints ' c',i we have some binary x continuous bilinear terms stemming from the

product of some elements of - and some elements of AC for all I E I. To do so, we need a bound

on the magnitude of the dual variables (i.e. Ag) of our innermost level LP in (4.11). We claim that

this upper bound is equal to N (i.e. the number of lines in the network pre-disturbance); to verify

this claim, observe that the LP in the innermost level of (4.11) minimizes the number of active

lines post-disturbance; by definition, the dual variable corresponding to a constraint quantifies the

amount of change in the optimal value of the objective function if we increase the bound in that

constraint by one unit. Naturally, increasing the limit of any constraint in the problem can result

in at most a change of N in the objective, because no matter what, we cannot change the number

of active lines in the system by more than N. Now that we have a bound on the magnitude of the

continuous variables that appear in bilinear terms, we can replace any bilinear term by an auxiliary
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variable (we denote the vector of these auxiliary variables by + '), and to complete the linearization

and ensure that this auxiliary variable will be equal to the bilinear term we further enforce:

0 > > -YFf(xg)N V E I

41 (1 - YFf (+4))N + YF,Ag (*) V E I

*4 (YFf (4j) - 1)N + YF,ig 4 (V E I

where Y,. is defined in Definition 8 and F is a bijective map (as defined in Definition 8) from

g(Z, i;, A4) to {El}.

Proof of Theorem 9. Since the Master Problem has a less-constrained feasible set than the single-

level MILP reformulation of the original max-min problem but the same objective, it gives an

upper bound on the globally optimal solution of the original problem (keep in mind that the Master

Problem is a maximization problem, and hence, a less-constrained feasible set means a larger

optimal objective). Conversely, the optimal value of the subproblem gives a lower bound on the

optimal value of the original max-min problem. Given strong duality in our reformulation for

the continuous variables of the inner-level MILP (i.e. Proposition 3) and our single-level MILP

reformulation for forming the master problem through the bounds we derived in Theorem 8, and

the finiteness of the number of elements in I, the proof follows the exact same procedure as the

techniques of [62], [63], [64] cited in the proof of Theorem 5 earlier in this thesis, with the only

difference that this time the Master Problem gives an upper bound while the subproblem gives the

lower bound (which is the opposite of the scenario in the proof of Theorem 5). Fl

4.5 Numerical Experiments

Our numerical experiments for a nominal load-flow scenario in the IEEE One-Area RTS-1996 test

case system [36] reveal that pre-disturbance reactance tweaking on up to two transmission lines

cannot reduce the number of lines that will fail at t = 2 when the adversary seeks to cause a
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worst-case-scenario disturbance by removing up to two lines at time t = 1. For the same set of

simulation parameters, the "approximate" upper bound on the efficacy is only I line, i.e. when we

are allowed to tweak the reactances of up to two lines at t = 0, we can prevent the failure of at

most one line at t = 2 among the set of all N - 2 disturbances that can be initiated at time t = 1;

however, if we keep all parameters the same but this time consider the set of all N -3 disturbances,

the simulation results show that we can save up to three lines from failing at t = 2 if we tweak

the reactances of up to two lines at t = 0. Note that the numerical experiments were performed in

MATLAB, and Gurobi [37] was used for solving the MILPs. In all the simulations, the operating

range of the reactance tweaking device was set to the operating range reported for TCSC in [33].
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Chapter 5

Conclusions, Discussion, and Future Work

In this thesis we studied transmission line reactance tweaking as a control mechanism for maximiz-

ing the yield post-disturbance and also as a pre-disturbance mechanism for mitigating the propaga-

tion of cascading failures. For post-disturbance control, we developed optimization formulations

for assessing the efficacy of this mechanism using two different measures of system resilience.

We gave a rigorous MILP reformulation scheme for the underlying bilevel nonconvex MINLP to

facilitate the global optimization of the min-max problem corresponding to the post-disturbance

response of a system operator (equipped with reactance tweaking) to a worst-case-scenario distur-

bance. We also derived a MILP reformulation for computing an exact upper bound on the amount

of load saved post-disturbance as a pure contribution of reactance-tweaking in dealing with any

N - k contingency for a given k. A main feature of our model is its ability to track the multi-stage

evolution of cascading failures before the SO's post-disturbance response, which as shown in our

numerical experiment, can make a significant difference in the system yield. Our numerical case

study suggests that reactance tweaking on only a small number of transmission lines can, in some

scenarios, considerably reduce the amount of load shed post-disturbance in the tested system. As

for pre-disturbance resilience enhancement, we developed a MILP approximation to the bi-level

MINLP problem that reveals to us whether reactance-tweaking can reduce the number of lines that

will fail over the propagation of cascading failures in the event of a worst-case-scenario N - k
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disturbance. We also gave a MILP formulation for computing an approximate upper bound on

the number of lines that would otherwise have failed over the course of a cascading-failures event

had we not tweaked the line reactances pre-disturbance. Our numerical case study suggests that

pre-disturbance tweaking of the reactances of only two lines can, in some scenarios, prevent the

overloading of multiple lines after an N - 3 disturbance in the tested system.

The economic viability, engineering design, and implementation of a post-disturbance reactance-

tweaking technology would all be interesting future research problems, although TCSC seems to

give a good starting point as a candidate device for such technology. Naturally, a reactance tweak-

ing device would have applications way beyond post-disturbance control (some examples of the

applications of TCSC were mentioned in Chapter 1); hence, the problem of optimal placement of

such device that would also take into account its application in post-disturbance control among

its other applications appears to be an interesting direction for future research. In particular, post-

disturbance reactance tweaking seems to potentially be closely connected to the idea of congestion

management via reactance tweaking; hence, one interesting area for future research appears to be

the development of a framework for studying the connections between these two potential applica-

tions of reactance tweaking, possibly with a focus on whether the problems of optimal placement of

this device for each of these two applications are interrelated. The tools developed in this thesis for

studying post-disturbance reactance tweaking (in Chapter 3) mainly focused on devising tractable

optimization frameworks for assessing the efficacy of reactance tweaking in a two-agent game

setup and for computing an upper bound on the efficacy of this technology. Although the problem

of optimal placement of reactance-tweaking devices for post-disturbance control was not a topic

of interest in this thesis as this problem merits its own line of research for the reasons mentioned

above, our numerical experiments suggested that for the base load case in the One-Area RTS-1996

system, there are multiple desirable locations for placing reactance-tweaking device(s) in response

to N - 3 contingencies. A major future direction for research could be to develop a systematic and

comprehensive framework for identifying optimal locations for placement of reactance tweaking

devices for post-disturbance control purposes, for instance by developing fast sampling techniques

that allow for randomizing over various system parameters (especially, over bus injections and dis-
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turbance size). Our numerical experiments in Chapter 3 suggested that in the One-Area RTS-1996

base load case, the line(s) that appear as the optimal locations for reactance tweaking in the com-

putation of the upper bound (derived in Theorem 6) on "general efficacy" were also the lines that

eventually emerged as the "optimal" (in the quasi-exhaustive averaging sense presented in Section

3.6.3) placement locations for reactance tweaking in response to N - 3 contingencies; although

this observation may not extend to systems other than One-Area RTS-1996, the bound that can be

computed via Theorem 6 may serve future research on this topic by providing a fast initial estimate

of the lines on which reactance tweaking could be most useful.

The results presented in Chapter 4 on pre-disturbance reactance tweaking are mainly meant to just

scratch the surface and serve as a starting point to motivate future research on this topic. One

of the computational results in Chapter 4 revealed that for the base load case of One-Area RTS-

1996, there exists an N-3 contingency for which pre-disturbance reactance tweaking on only two

lines can prevent the failure of three lines in the system as cascading failures propagate for one

stage after that particular disturbance. Generally speaking, if the system operator expects that

a particular contingency is imminent, pre-disturbance reactance tweaking may potentially be an

effective strategy to mitigate the propagation of cascading failures. Some of the existing literature

on pre-disturbance reactance tweaking were discussed in Chapter 1; however, future directions

in this area seem abundant. To give an example, a major future step would be to devise a three-

level optimization setup in which the system operator tweaks reactances pre-disturbance, then the

adversary causes cascading failures by choosing from a set of possible disturbance scenarios, and

finally the system operator acts again by re-dispatching the system post-disturbance with reactance

tweaking as a control mechanism. This could provide a much broader idea regarding the efficacy

of reactance tweaking in response to cascading failures. However, the issue of computational

complexity poses a major challenge in this problem and dealing with it merits its own line of work,

but it is hoped that the tools developed in this thesis provide a solid starting point for such research.

Once all these have been addressed, more detailed models that involve AC power flows, and hence

can realistically take into account disturbances that cause imbalances between load and generation
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for T > 1, would be quite useful. Combining the post-disturbance reactance-tweaking model

with line switching would also be an interesting direction for future research to evaluate how

these two methods can possibly complement each other. Another interesting path is to study the

efficacy of reactance tweaking (and its optimal placement) in response to geographically correlated

disturbances. Other potential extensions of the model include studying the impact of probabilistic

line overloads on the evolution of cascading failures (especially, such model should seek to capture

the non-uniformity in the time it takes different lines to trip depending on the level of their overload,

and also should not assume that an overloaded line trips deterministically and instead should assign

some randomness to the tripping of an overloaded line). Eventually, a model of reactance-tweaking

efficacy that can also capture continuous-time dynamics of cascading failures would be a highly

valuable future research direction.

A deeper look into the structure of the problem reminds us of the non-triviality of the interplay

between graph topology, bus injections, line impedances, and line capacities in determining the

resilience of the system to cascading failures. This interplay significantly complicates analytical

characterization of many resilience assessment problems related to cascading failures in power sys-

tems. One direction for future research could be to focus on the impact of graph topology. Given

the same graph topology, if we change the distribution of bus injections, line impedances, and line

capacities across the network, the resilience of the system could dramatically change; thus, the

picture does not seem to be ever complete without taking into account all the above-mentioned pa-

rameters that control the redistribution of flows in the system. However, by studying simple graph

structures, and by allocating all other parameters systematically across the given network topol-

ogy, it may be possible to gain some insight into the "average" impact of network topology on the

efficacy of post-disturbance reactance tweaking (e.g. one could study whether graphs with higher

clustering coefficients, on average, benefit more from reactance tweaking compared to graphs with

lower clustering coefficients; or, one could study whether graphs with higher clustering coeffi-

cients, on average, require fewer reactance-tweaking devices). Some of the tools developed in this

thesis can serve as building blocks for computational efforts in such future research directions. It

has been suggested in [29] that a small subset of lines appear in a significantly larger number of
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blackout scenarios than the majority of lines in the system. This suggests that there is a small num-

ber of lines in the system that are expected to be most critical in compromising the resilience of the

system. With that in mind, another direction for future research could be to study whether the tech-

niques developed by the literature focusing on the identification of these critical lines can be used

to come up with fast techniques for identifying both the set of disturbances that reactance tweak-

ing is not effective in responding to, and the set of disturbances that reactance tweaking is highly

effective in responding to. More specifically, can we develop efficient algorithms for quickly iden-

tifying a set of critical lines whose failure is effectively dealt with via reactance tweaking? That

may then allow for studying possible connections between graph topology, the number of critical

lines in the network, and the portion of critical lines whose failure is effectively responded to via

reactance tweaking.
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