
Logical Reasoning for Approximate and

Unreliable Computation

by

Michael James Carbin

B.S., Stanford University, 2006

ARCHIVES
MASSACHUSETTS INSTITUTE

OF TECHNOLOLGY

JUL U7 2015

LIBRARIES

S.M., Massachusetts Institute of Technology, 2009

Submitted to the Department of Electrical Engineering and
Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2015

@ Massachusetts Institute of Technology 2015. All rights reserved.

Author . . .

Certified by....

Accepted by.

Signature redacted
Department of Electrical Engineering and Computer Science

n February 13, 2015

ignature redacted..................
Martin C. Rinard

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Signature redacted
I d1 / Leslie A. Kolodziejski

Chair, Department Committee on Graduate Theses
Professor of Electrical Engineering and Computer Science

Logical Reasoning for Approximate and Unreliable Computation

by

Michael James Carbin

Submitted to the Department of Electrical Engineering and Computer Science
on February 13, 2015, in Partial Fulfillment of the

Requirements for the Degree of
Doctor of Philosophy

Abstract

Improving program performance and resilience are long-standing goals. Traditional ap-
proaches include a variety of transformation, compilation, and runtime techniques that
share the common property that the resulting program has the same semantics as the origi-
nal program.

However, researchers have recently proposed a variety of new techniques that set aside
this traditional restriction and instead exploit opportunities to change the semantics of pro-
grams to improve performance and resilience. Techniques include skipping portions of
a program's computation, selecting different implementations of program's subcomputa-
tions, executing programs on unreliable hardware, and synthesizing values to enable pro-
grams to skip or execute through otherwise fatal errors.

A major barrier to the acceptance these techniques in both the broader research com-
munity and in industrial practice is the challenge that the resulting programs may exhibit
behaviors that differ from that of the original program, potentially jeopardizing the pro-
gram's resilience, safety, and accuracy. This thesis presents the first general programming
systems for precisely verifying and reasoning about the programs that result from these
techniques.

This thesis presents a programming language and program logic for verifying worst-
case properties of a transformed program. Specifically the framework, enables verifying
that a transformed program satisfies important assertions about its safety (e.g., that it does
not access invalid memory) and accuracy (e.g., that it returns a result within a bounded
distance of that of the original program).

This thesis also presents a programming language and automated analysis for verifying
a program's quantitative reliability - the probability the transformed program returns the
same result as the original program - when executed on unreliable hardware.

The results of this thesis, which include programming languages, program logics, pro-
gram analysis, and applications thereof, present the first steps toward reaping the benefits
of changing the semantics of programs in a beneficial yet principled way.

Thesis Supervisor: Martin C. Rinard
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

It is difficult to know where to begin because, by and large, the journey described in this

thesis is a product of the interactions with and support by a whole cast of people in my life.

Without the following individuals - and many more - this thesis would not exist.

I would like to thank my advisor Martin Rinard for providing me with an environment

in which I was able to be productive - and also lending his keen sense for what it takes to

change the way people think. Being bold was not a characteristic that I attributed to myself

when I first entered graduate school. However, in no small part due to Martin, I do consider

being bold a necessary and critical aspect of my research going forward.

Sasa Misailovic, my closest collaborator, and I have burned through many midnight

(Samoa Time) deadlines, shared many paper acceptance celebrations, and even had many

tense debates about the direction of a project. However, through all the stresses and suc-

cesses, the thought and care Sasa has put into the random goings-on in my life demonstrate

that we have always been friends and not just collaborators. I also thank Sasa for his con-

tributions to the Rely system (presented in Chapter 4).

I would like to thank Stelios Sidiroglou for being Stelios Sidiroglou. There was never a

day where a long sought out moment of peace and quiet wasn't pleasantly interrupted by a

moment of laughter or the requisite chat about a genius and/or terrible research idea. More-

over, the way Stelios has used the variety of his creative interests to inspire and motivate

his research agenda has inspired me to seek out how to do the same with my own.

I would like to thank Deokhwan Kim for sharing with me his appreciation and talent

for elegance. The 36 pages of inference rules contained within this thesis are a tribute to

Deokhwan. My only hope is that they elicit from him fewer than one "oops" per page. I

also thank Deokhwan for his contributions to the notation for relaxed programs, the for-

malization of convergent control flow points, and the SMT solving tool included with the

Coq-based proof environment (presented in Chapter 2).

Fan Long entered the research group right around the time I started to feel like an "old"

graduate student. It was Fan's eagerness, focus, and hacking skills that motivated me to

think back to my time as a young graduate student and re-evaluate and rediscover aspects

of my own energy, focus, and methods.

5

My overlap with the younger graduate students of the group, Sara Achour, Zichao Qin,

Fereshte Khani, Jiasi Shen, Zichao Qi, and Christopher Musco, has been unfortunately

short. However, their enthusiasm and zeal for research has reminded me of what is ulti-

mately fun and exciting about being a graduate student. I hope that as a professor I will be

able to do the same for them as they fight their inevitable graduate student battles.

Over the years, our research group has also included a number of people and collabora-

tors, including Vijay Ganesh, Hank Hoffmann, Michael Gordon, Jeff Perkins, Karen Zee,

Michael Kling, Cam Tenny, Paolo Piselli, Jordan Eikenberry, and Rocky Kramm. With all

of these members I have shared invaluable experiences in both research and life.

At both MIT and other institutions I have been privileged to receive the support and

advice of many senior academics. In particular, I would like to thank Monica Lam, Jim

Larus, Arvind, Saman Amarasinghe, and Armando Solar-Lezama, for the advice they have

given me at multiple stages in my career about how to succeed.

I would like to thank Adrian Sampson, Todd Mytkowicz, Dan Grossman, and Luis

Ceze for being excellent colleagues in this emerging field of approximate and unreliable

computing. Together we have shared many conversations that have guided the way I think

about the important problems of our field.

In my time on the academic job market I met and spoke with many of the brightest

professors and students in the world. Of those many, the following people in particular

gave advice, critique, and support that tailored the way I view not only the job market

process, but also how I view myself: Patrick Lam, Brian Demsky, Andrew Chien, Ben

Liblit, Thomas Reps, Ras Bodik, Ranjit Jhala, Sorin Lerner, Rajesh Gupta, Vijay Janapa

Reddi, Sarfraz Khurshid, Brian Kernighan, Joseph Devietti, Stephen Edwards, Alfred Aho,

Jason Mars, Marios Papaefthymiou, William Sanders, Steven Lumetta, Wen-Mei Hwu,

Ross Tate, Kathryn McKinley, Trishul Chilimbi, Tom Ball, and Ben Zorn.

I would like to thank my family: Eddie Carbin, Sr., Eddie Carbin, Jr., Cynthia Carbin,

and Sandra Dunn. The passing of my mother, Rowena Joyce Carbin, reminded me of what

I know to be important in life: having all the success in the world doesn't mean much

without family and friends. The hurdles that we as a family have jumped make plain that

the high expectations I have for myself have been learned from the high expectations that

6

my family members have for themselves. Moreover, much of my success can be attributed

the fact that we as a family have and always will support each other in our endeavors.

My wife Angelee Russ-Carbin has endured all the trials and tribulations that have ac-

companied my desire to push my career forward. It is only through her love, support, and

dedication that I have had a solid foundation on which I have been able to build and pursue

my research career. Without her support, it would not have been possible to achieve all that

I have in this time.

My family has also been extended to include Jennifer Russ, Redding Hordijk, Don

Hordijk, and Jim and Helen Russ. Living 3000 miles away from my West Coast family

would not have been possible without the support of my new East Coast family.

My childhood friends Eric Ooi, John Bedard, Lakshmi Narayan, West Alexander, and

Rufus Olivier have always so diligently kept me grounded and aware of where I've come

from (particularly, the many mistakes I've made along the way).

Christopher Reeder - as a colleague, a housemate, and as a friend - has been an essen-

tial pillar of my support. Many of the moments that have defined my years at MIT have

included Chris. It's hard to imagine what these years would have been like without his

presence and perspective.

I would also like to thank the self-titled friend collective, "Slizzard," which includes

Robert Rykowski, Stephanie Brown, Heather Rykowski, Radthavis Sayabovorn, Drew Bis-

set. Joined with Chris, Angelee, and I, the memories we share together are some of the most

definitive and formative of my life.

The passing of my mother motivated me to expand myself and reach out for support.

In that immediate time after, my circle of support grew enormously to include (and is not

limited to) Lin Zhu, Philippe Suter, Irene Sung, Katharina Nimptsch, Felix Kurz, Anja

Hohmann, Chee Xu, and Chistopher Betrand. The impact of these friends on my life is far

larger than perhaps they would expect.

This thesis has been a journey. And while this particular journey has come to and end,

the relationships that I have built during this time will endure.

7

8

Contents

1 Introduction

1.1 Improved Performance

1.2 Increased Resilience

1.3 Thesis .

1.4 Approach .

1.4.1 Reasoning about Relaxed Programs . . .

1.4.2 Reasoning about Quantitative Reliability

1.5 Contributions

2 Relaxed Programming

2.1 Overview and Contributions.

2.1.1

2.1.2

Relaxed Programming Constructs .

Key Properties of Acceptable Relaxe

2.1.3 Proof Rules and Formal Properties

2.1.4 Coq Verification Framework . . .

2.1.5 Contributions

2.2 Language Syntax and Dynamic Semantics

2.2.1 Semantics of Expressions

2.2.2 Dynamic Original Semantics . . .

2.2.3 Dynamic Relaxed Semantics . . .

2.3 Axiomatic Semantics

2.3.1 Relational Assertion Logic

2.3.2 Original Semantics

. 3 0

i Programs 32

. 3 3

. 3 5

. 3 6

. 3 7

. 3 8

. 4 0

. 4 2

. 4 3

. 4 4

. 4 6

9

21

21

22

23

25

25

27

28

29

30

2.3.3 Relaxed Semantics .

2.4 Properties

2.4.1 Original Semantics

2.4.2 Intermediate Semantics

2.4.3 Relaxed Semantics

2.5 Example Relaxed Programs

2.5.1 Dynamic Knobs

2.5.2 Statistical Automatic Parallelization .

2.5.3 Approximate Memory and Data Types

2.6 Related Work

2.7 Conclusion

3 From Core Calculus to Programming Language

3.1 Language Syntax

3.1.1 Data Types

3.1.2 Procedures

3.1.3 Expressions and Statements

3.2 Semantics.

3.2.1 Expression Semantics. . . .

3.2.2 Dynamic Original Semantics.

3.2.3 Dynamic Relaxed Semantics.

3.3 Original Axiomatic Semantics . . .

3.3.1 Assertion Logic

3.3.2 Semantics

3.3.3 Proof rules

3.4 Relaxed Axiomatic Semantics . . .

3.4.1 Relational Assertion Logic .

3.4.2 Proof Rules

3.5 Properties

49

57

57

59

60

64

64

66

67

69

70

71

. 73

. 7 3

.......... 7 3

. 7 4

. 7 6

. 7 7

............ 7 9

............ 8 5

. 8 8

............. 8 8

............. 8 9

. 9 2

. 104

. 104

............. 10 9

............. I2

3.5.1 Axiomatic Original Semantics

10

125

. . . .

3.5.2 Loosed Axiomatic Relaxed Semantics

3.5.3 Relaxed Axiomatic Semantics

3.6 Case Studies

3.6.1 Adaptive Loop Perforation

3.6.2 Separation

3.7 Related Work

3.8 Conclusion

4 Verifying Quantitative Reliability

4.1 Overview and Contributions

4.1.1 Rely

4.1.2 Quantitative Reliability Analy

4.1.3 Case Studies

4.1.4 Contributions

4.2 Example

4.2.1 Reliability Specifications

4.2.2 Unreliable Computation

4.2.3 Hardware Semantics

4.2.4 Reliability Analysis

4.3 Language Semantics

4.3.1 Preliminaries

4.3.2 Semantics of Expressions

4.3.3 Semantics of Statements

4.3.4 Semantics of Arrays

4.3.5 Semantics of Functions . . .

4.3.6 Big-step Notations

4.4 Semantics of Quantitative Reliability

4.4.1 Paired Execution

137

. 138

. 13 8

sis

4.4.2 Reliability Predicates and T [alsiurIers

4.5 Reliability Analysis .

. 14 0

. 14 2

. 14 2

. 14 4

. 14 6

. 14 6

. 14 7

. 14 8

. 15 4

. 15 4

. 15 6

. 15 8

. 16 2

. 16 3

. 16 4

. 16 5

. 16 5

. 16 6

. 16 8

11

126

127

129

129

132

135

136

. .

. 16 8

4.5.2 Precondition Generation

4.5.3 Specification Checking

4.5.4 Implementation

4.6 Case Studies.

4.6.1 Benchmarks

4.6.2 Analysis Summary

4.6.3 Reliability and Accuracy

4.7 Related Work

4.7.1 Critical and Approximate Regions . .

4.7.2 Relational Reasoning for Approximate

4.7.3 Accuracy Analysis

4.7.4 Probabilistic Program Analysis . . .

4.7.5 Fault Tolerance and Resilience

4.7.6 Emerging Hardware Architectures . .

4.8 Conclusion

5 Thesis Summary and Conclusion

5.1 iirnyrn .r .. ,

5.1.1 Relaxed Programming

5.1.2 Extended Relaxed Programming . . .

5.1.3 Verifying Quantitative Reliability . .

5.2 Future Directions

5.3 Conclusion

A.1

A.2

A.3

A.4

A.5

169

177

178

178

178

186

187

190

191

192

192

192

193

194

194

Programs

195

1nc

. 196

. 197

. 197

. 198

. 200

203

206

211

223

225

225

U til

Expressions

Statements

OriginalDynamic

Dynamic Original Semantcs . . .

12

A

4.5.1 Preliminaries

A.6 RelaxedDynarnic230

A.7 AssertionLogic235

A.8 Substitution276

A.9 UnaryAssertionLogic291

A. 10 OriginalAxiornatic305

A. I I IntermediateAxiornatic314

A. 12 RelaxedAxiornatic318

13

14

List of Figures

2-1 Language Syntax . 37

2-2 Semantics of Expressions . 38

2-3 Dynamic Original Semantics . 39

2-4 Error Propagation in Dynamic Original Semantics 40

2-5 Dynamic Relaxed Semantics . 43

2-6 Relational Assertion Logic Syntax . 44

2-7 Relational Assertion Logic Semantics . 44

2-8 Axiomatic Original Semantics . 47

2-9 Axiomatic Relaxed Semantics . 50

2-10 The Convergent Program Points of Dynamic Original and Relaxed Executions 53

2-11 Axiomatic Intermediate Semantics . 56

3-1 Language Syntax . 72

3-2 Hygienic and Non-hygienic Expression Semantics 78

3-3 Dynamic Original Semantics of Heap-manipulating Statements 80

3-4 Dynamic Original Semantics of Heap-manipulating Statements (Continued) 81

3-5 Dynamic Original Semantics of Procedures 84

3-6 Dynamic Relaxed Semantics of Heap-manipulating Statements 86

3-7 Dynamic Relaxed Semantics of Heap-manipulating Statements (Continued) 87

3-8 Dynamic Relaxed Semantics of Procedures 88

3-9 Assertion Logic Syntax . 88

3-10 Reference Expression Semantics . 90

3-11 Predicate Semantics for Assertion Logic 90

15

Axiomatic Original Semantics for State Modifications

Axiomatic Original Semantics for State Modifications (Continued)

3-14 Axiomatic Original Semantics for Procedures

. 93

. 94

. 100

Full Language Axiomatic Original Semantics (Shared) 102

Relational Assertion Logic Syntax . 104

Semantics of Relational Expressions and Reference Expressions 105

Predicate Semantics for Relational Assertion Logic 106

Axiomatic Relaxed Semantics for State Modifications 110

Axiomatic Relaxed Semantics (Continued)111

Relaxed Axiomatic Semantics (Control Flow) 115

Loosed Axiomatic Relaxed Semantics . 116

Loosed Axiomatic Relaxed Semantics (Continued) 117

Relaxed Axiomatic Semantics (Procedures) 121

Loosed Relaxed Axiomatic Semantics (Procedures) 122

Structure of Barnes-Hut Simulation . 133

3-15

3-16

3-17

3-18

3-19

3-20

3-21

3-22

3-23

3-24

3-25

3-26

4-1

4-2

4-3

4-4

4-5

4-6

4-7

4-8

4-9

4-10

4-11

4-12

4-13

4-14

144

145

148

148

150

152

. 157

159

160

161

166

170

.173

179

16

3-12

3-13

Rely's Language Syntax .

Rely Code for Motion Estimation Computation

Machine Model Illustration. Gray boxes represent unreliable components

Rely's Analysis Overview .

Hardware Reliability Specification .

if Statement Analysis in the Last Loop Iteration

Dynamic Semantics of Integer Expressions

Dynamic Semantics of Statements .

Dynamic Semantics of Arrays .

Dynamic Semantics of Function Calls and Returns

Predicate Semantics .

Reliability Precondition Generation .

Constraint Generation for Function Calls

Newton's Method Implementation .

Secant Method Implementation

Coordinate Conversion Implementation . . .

Matrix-Vector multiplication Implementation

Hadamard Transform Implementation (Part 1)

Hadamard Transform Implementation (Part 2)

Benchmark Analysis Summary

search-ref Simulation Result

. 18 0

. 18 2

. 18 3

. 18 4

. 18 5

. 18 6

. 19 0

17

4-15

4-16

4-17

4-18

4-19

4-20

4-21

18

List of Tables

19

20

Chapter 1

Introduction

Approximate computations, such as multimedia, financial, machine learning, and big data

analytics, have emerged as a major component of many computing environments. Mo-

tivated in part by the observation that these computations can often acceptably tolerate

occasional errors in their execution and/or data [77, 58, 21], researchers have recently de-

veloped a range of new mechanisms that forgo the exact correctness of the computation's

underlying computational stack to optimize other objectives. Typical goals include max-

imizing program performance subject to an accuracy constraint and modifying program

execution to recover from otherwise fatal errors.

1.1 Improved Performance

In the search for increased performance, researchers have proposed a variety of both soft-

ware transformations and hardware modifications to enable applications to trade the quality

of their results for better performance and/or lower energy consumption.

Software Transformations. Proposed mechanisms for transforming programs include

skipping tasks [77, 78], loop perforation (skipping iterations of time-consuming loops) [58,

57, 88], sampling reduction inputs [94], multiple selectable implementations of a given

component or components [5, 3, 39, 94], dynamic knobs (configuration parameters that

can be changed as the program executes) [39] and synchronization elimination (forgoing

synchronization not required to produce an acceptably accurate result) [55, 79].

21

I, along with my collaborators, have worked on a number of these techniques. Our

experimental results show that aggressive techniques - for example transforming loops to

skip some (or all) iterations through loop perforation - can yield up to a four-fold im-

provement in an application's performance with acceptable changes in the quality of its

results [39, 19].

Approximate Hardware. Programs that are amenable software transformations that aug-

ment program behavior typically implement computations that are also amenable to exe-

cuting on hardware systems that occasionally expose unmasked errors that occur during

execution. For these computations, operating without (or with at most selectively applied)

mechanisms that detect and mask soft errors can produce 1) fast and energy efficient exe-

cution that 2) delivers acceptably accurate results often enough to satisfy the needs of their

users despite the presence of unmasked soft errors.

Motivated in part by this observation, the computer architecture community has begun

to investigate new designs that improve performance by breaking the traditional fully re-

liable digital abstraction that computer hardware was traditionally sought to provide. The

goal is to reduce the cost of implementing a reliable abstraction on top of physical mate-

rials and manufacturing methods that are inherently unreliable. For example, researchers

are investigating designs that incorporate aggressive device and voltage scaling techniques

to provide low-power ALUs and memories. A key aspect of these components is that they

forgo traditional correctness checks and instead expose timing errors and bitflips with some

non-negligible probability [27, 31, 32, 45, 49, 64, 66, 84].

1.2 Increased Resilience

Maintaining the security and availability of both approximate and traditional computing

systems is an active and open research area. In addition to using fortified programming

languages, automatic program analysis, and program verification systems to eliminate a

system's vulnerabilities before deployment, researchers have proposed a number of tech-

niques that enable deployed systems to recover from otherwise fatal attacks and errors.

22

I, along with my collaborators, have worked on a number of techniques that modify the

semantics of the program to make it more resilient to programming errors [68, 50]. The

experimental results show that if the program encounters an error that threatens its stability

or security, these techniques enable the runtime system to modify the program's execution

to steer around the problem and still execute acceptably. For example, my work on the

Jolt and Bolt systems demonstrates that it is often possible to enable an application that is

stuck in an infinite loop to produce an acceptable output by simply exiting the loop and

continuing on with the remaining execution of the program [20, 4 1].

1.3 Thesis

Changing the semantics of a program violates the traditional contract that the programming

system must preserve the semantics of the program. Building programs in this environment

therefore necessitates new techniques for reasoning about the semantics of programs.

One key aspect of the computations that are amenable to these techniques is that they

typically contain critical regions (which must execute without error) and approximate re-

gions (which can execute acceptably even in the presence of occasional errors) [77, 2 1].

Existing systems, tools, and type systems have focused on helping developers iden-

tify, separate, and reason about the binary distinction between critical and approximate

regions [77, 78, 2 1, 49, 84, 86, 32]. However, in practice, no computation can tolerate an

unbounded accumulation of errors - to execute acceptably, even the approximate regions

must execute correctly with some minimal requirements.

Changing the semantics of programs therefore raises a number of new and fundamental

questions. For example, what is the probability that the resulting program will produce the

same result as the original program? How much do the results differ from those produced

by the original program? And is the resulting program safe and secure?

This thesis investigates the hypothesis that it is possible to design and use programming

languages, programming analyses, and program verification to reason about the integrity,

accuracy, and reliability of transformed programs.

23

Integrity. The integrity properties of a program are the properties that the program must

satisfy to successfully produce a result. Consider for example the following simplified code

from bodytrack, a machine vision application in the PARSEC benchmark suite [13]:

float *err = new float;
int numsamples = 0
int acc = 0;

for (int i 0; i < n; ++i)

int *x = new int;

int *y = new int;

GetCoord(i, x, y);
num-samples = numsamples + Sample(x, y, err);

}
float errv = *err;

assert (0 < numsamples);
float avg-error = errv / num-samples;

This code implements a sampling-based computation that enumerates over a set of n

coordinates (x, y) to take samples (Sample (x, y, err)) of an image. In previous work,

my collaborators and I demonstrated that this loop is amenable to a loop perforation trans-

formation that modifies the loop to skip some of its iterations, therefore decreasing the

computation's sampling rate [19]. However, a key concern for this computation is that

the number of samples taken, num-samples, is used as the divisor of a division operation.

Specifically, if the program is not carefully transformed then the value of num-samples

may cause the program to produce a divide-by-zero error and be unable to produce a result.

The property that num-samples is not equal to zero is therefore one of the computation's

integrity properties.

Accuracy. The accuracy properties of a program are the properties that characterize how

accurate the produced result must be. For example, an accuracy property might state that

the transformed program must produce a result that differs by at most a specified percentage

from the result that the original program produces [57, 94]. Consider for example the

following code from LU, a numerical application in the SciMark2 benchmark suite [2]:

24

i = j + 1;

while (i < N) {

a =A[i][j];

if (a > max) { max = a; p i; }

i = i + 1;

}

This code is part of a LU matrix factorization implementation and is responsible for

computing the pivot row, p, of the matrix A. Researchers have shown that this computation

can be profitably transformed to execute on approximate hardware in a way that allocates

the matrix in an unreliable memory that may produce incorrect results when read from or

written to [84]. An accuracy property for this computation is that, for example, the error in

the value associated with the final selected pivot row, max, is a linear function of the error

introduced from loading the value of a from A (i.e., Lipschitz-continuity).

Reliability. The reliability of a computation is the probability that computation computes

a correct result. Many emerging designs for approximate hardware provide a probabilis-

tic execution model: each approximate operation may with some probability produce an

incorrect value. Executing a computation (such as the LU factorization above) on an ap-

proximate hardware substrate therefore lends itself to the question of, what's the probability

that the computation produces the correct result?

1.4 Approach

To enable reasoning about these fundamental properties of transformed and approximately

executed programs, this thesis presents the relaxed programing and Rely frameworks.

1.4.1 Reasoning about Relaxed Programs

The transformations that researchers have developed for changing the semantics of pro-

grams produce new programs that can be modeled as relaxed programs - programs that

25

may adjust their execution by changing one or more variables subject to a specified re-

laxation predicate. For example, a perforated program may dynamically choose to skip

loop iterations each time it enters a given loop. A relaxed program is therefore a nonde-

terministic program, with each execution a variant of the original execution. The different

executions typically share a common global structure, with local differences at only those

parts of the computation affected by the modified variables.

Reasoning about a program transformed with one of these mechanisms therefore re-

duces to the task of reasoning about a relaxed program. Specifically, a developer or system

must specify and verify the relaxed program's acceptability properties. A relaxed pro-

gram's acceptability properties are the properties of the program's behavior and results that

must be true for the program to be acceptably usable in its designated context.

This relaxed programming framework enables reasoning about acceptability properties

that include both integrity properties and accuracy properties (as described above). The

framework specifically makes integrity and accuracy first-class members in the syntax,

semantics, and specification of a program.

The relaxed programming language also includes general primitives for relaxing the

semantics of programs, enabling a developer or compilation system to transform the se-

mantics of a program in a directed and controlled way.

The relaxed programming framework also includes a programming logic and verifica-

tion system that enables developers and/or compilation systems to verify that relaxation

preserves the integrity and accuracy of the computation.

The language and proof rules support a staged approach in which the developer first

develops a standard program and uses standard approaches to reason about this program to

determine that it satisfies the desired acceptability properties. Either the developer or an

automated system (such as a compiler that implements loop perforation) then relaxes the

program to enable additional nondeterministic executions. Finally, the developer uses rela-

tional reasoning to verify that the relaxation maintains the desired acceptability properties.

Specifically, the developer specifies and verifies additional relational assertions that

characterize the relationship between the original and relaxed program. These relational

assertions facilitate the overall verification of the relaxed program. This approach is de-

26

signed to reduce the overall reasoning effort by exploiting the common structure that the

original and relaxed programs share. With this approach the majority of the reasoning effort

works with the original program and is then transferred via relational reasoning to verify

the nondeterministic relaxed program.

Taken together, the components of the relaxed programming system make it possible to

specify, relax, and verify the acceptability of programs that incorporate transformations to

change their semantics.

1.4.2 Reasoning about Quantitative Reliability

This thesis also presents Rely, a new programming language, and an associated program

analysis that computes the quantitative reliability of the computation - i.e., the probability

with which the computation produces a correct result when its approximate regions execute

on unreliable hardware. Specifically, given a hardware specification and a Rely program,

the analysis computes, for each value that the computation produces, a conservative prob-

ability that the value is computed correctly despite the possibility of soft errors.

In contrast to existing approaches - which support only a binary distinction between

critical and approximate regions - and in contrast with relaxed programs - which provides

worst-case reasoning about the program's behavior - quantitative reliability can provide

precise static probabilistic acceptability guarantees for computations that execute on unre-

liable hardware platforms.

Rely makes reliability a first-class member in the syntax, semantics, and specification

of a program. Rely includes a language that enables developers to specify the reliability

requirements of their application. Rely also includes an execution model and language

support for exposing and exploiting operations of an approximate hardware platform. The

Rely framework also provides an automated program analysis system that enables devel-

opers to automatically verify that a program targeted to approximate hardware satisfies its

reliability specification.

27

1.5 Contributions

The relaxed programming and Rely frameworks are the first programming models and rea-

soning systems that work together to enable developers to specify, manipulate, and verify

programs that incorporate semantic transformations in the pursuit of increased performance

and resilience.

Taken together, my work demonstrates that giving programming systems the freedom to

change the semantics of the program can open up new, simple, and effective ways to boost

performance and/or enhance resilience and still verify that the resulting behavior is accept-

able. This work therefore holds out the promise of enabling us to reap the performance and

resilience benefits made available by these techniques.

28

Chapter 2

Relaxed Programming

While there is a wide diversity of transformations that change the semantics of programs,

the successful transformations that researchers have developed typically modify a small

portion of the program, leaving the overall structure of the program the same. For example,

loop perforation and dynamic knobs change the value of variables that control the number

of iterations of a loop or the choice of a specific implementation of a function, therefore

locally modifying the execution path of the program, but largely preserving the overall

structure of the execution.

This observation has enabled me to develop the concept of a relaxed programs, which,

within the same program text, represents both the original meaning and new meaning of

program. In this shared representation, I call the original meaning of the program the origi-

nal semantics of the program whereas the new meaning is the program's relaxed semantics.

Representing these two semantics in the same program text has enabled me to develop a

program logic and corresponding proof rules that leverage the correspondence between the

structure and behavior of the two programs to lower the verification burden of verifying the

relaxed program.

29

2.1 Overview and Contributions.

I have designed the relaxed programming model to achieve three general goals.

Specification. The programming model enables developers to specify acceptability prop-

erties, which are the primary properties that ensure that a program is acceptable for use.

Relaxation. The program model enables systems and developers to specify relaxations

of the program's semantics, which modify the program's behavior to achieve a goal such

as reduced energy consumption or increased performance.

Verification. The programming model provides a program logic that enables proofs of

the acceptability of relaxed programs. I have designed the program logic to enable proofs

that use a relational reasoning approach that leverages acceptability properties that are true

of the original program, along with relationships that hold between values in the original

and relaxed program to establish that the acceptability properties still hold for the relaxed

program. For example, a proof may demonstrate that relaxation does not interfere with the

variables involved in an acceptability property and, therefore, the property is true in the

relaxed program - provided that it was true in the original program. By enabling this kin1 d

of relational reasoning, the proof system admits proofs that can be simpler than proving the

acceptability of the relaxed program outright.

In this section, I present an overview of the relaxed programming framework, including

its programming language constructs and proof system, along with an overview of the

framework's primary contributions.

2.1.1 Relaxed Programming Constructs

Basic relaxed programming constructs include nondeterministic variable assignments (via

the relax statement), relational assertions that relate the relaxed semantics to the original

semantics (via the relate statement), unary assertions (via the assert statement), and

unary assumptions (via the assume statement).

30

The Relax Statement. The relax (X) st (P) statement specifies a nondeterministic

assignment to the set of variables X. Specifically, the relax statement can assign the vari-

ables in X to any set of values that satisfies the relaxation predicate P. When added to the

program, the relax statement introduces the relaxed semantics of a program. Specifically,

in the relaxed semantics of the program the relax statement modifies its specified set of

variables whereas in the original semantics the relax statement has no effect. Therefore

relax statements are the point at which execution of the program deviates between the

original and relaxed semantics.

The Relate Statement. The relate P statement asserts that the predicate P must hold at

the program point where the statement appears. The predicate P is a relational predicate -

it may reference values from both the original and relaxed executions. So, for example, the

statement might require the value of a variable x in relaxed executions to be greater than or

equal to the value of x in the original execution.

The Assert Statement. The assert (P) statement states that P must hold at the point

where the statement appears. In contrast to the relate statement, P is a unary predicate

- it only references values from a single execution (original or relaxed) as in a standard

assertion. In the original semantics, the program logic's proof rules generate an obligation

to prove that an assert statement holds for all executions. To ensure that the assert

statement remains valid in the relaxed semantics, the proof rule in the relaxed semantics

generates an obligation to prove that if the assertion is valid in the original semantics,

then the current relation between the original and relaxed semantics establishes that the

assertion is valid in the relaxed semantics. For example, it may be possible to prove that

all the variables referenced in an assertion have the same values in the original and relaxed

semantics - i.e., the relaxation does not interfere with the assertion. In this way, relational

reasoning serves as a bridge to transfer properties of the original program over to the relaxed

program.

The Assume Statement. The assume (P) statement states that the unary predicate P

holds at the point where the statement appears. In the original semantics the assume state-

31

ment does not generate any proof obligations - the proof system simply accepts that P

holds. To verify that the relaxation does not interfere with the reasoning behind the as-

sumption, the proof rules for the relaxed semantics generate an obligation to prove that if

the assumption P holds in all original executions, then it holds in all relaxed executions.

The proofs work in much the same way as for the assert statement except that the proof

rules do not generate an obligation to verify that P holds in the original semantics.

2.1.2 Key Properties of Acceptable Relaxed Programs

My approach makes it possible to formalize key properties that are critical to the develop-

ment and deployment of acceptable relaxed programs.

Integrity and Noninterference. Essentially all programs have basic integrity properties

that must hold for all executions of the program. Examples include the absence of out of

bounds array accesses or null pointer dereferences. Developers typically use either as sert

or assume statements to formalize these integrity properties. Because successful relax-

ations do not typically interfere with the basic integrity of the original program, the reason-

ing that establishes the validity of the integrity properties typically transfers directly from

the original program over to the relaxed program. Relational assertions that establish the

equality of values of variables in the original and relaxed executions (i.e., noninterference)

often form the bridge that enables this direct transfer (see Section 2.5).

Accuracy. Relaxed programs exploit the freedom of the computation to, within limits,

produce a range of different outputs. Accuracy properties formalize how accurate the out-

puts must be to stay within the acceptable range. For example, a perforatable loop may pro-

duce a range of acceptable results, with (typically depending on the amount of perforation)

some more accurate than others. Because it is often convenient to express accuracy require-

ments by bounding the difference between results from the original and relaxed executions,

developers can use relate statements to express accuracy properties (see Section 2.5).

32

Debuggability. The assume statement provides developers with the ability to state (for-

mally unverified) assumptions that they believe to be true in the original program. But if an

assumption is not valid, the program may fail or exhibit unintended behaviors.

Relaxation without verification can therefore complicate debugging - it may cause the

relaxed program to violate assumptions that are valid in the original program (and therefore

to exhibit unintended behaviors that are not possible in the original program). My proof

rules, by ensuring that if the assumption is valid in the original program, then it remains

valid in the relaxed program, simplify debugging by eliminating this potential source of

unintended behaviors.

Note that the proof rules can work together effectively to prove important acceptability

properties. For example, the developer may use a relate statement to establish a rela-

tionship between values in variables in the original and relaxed executions, then use this

relationship to prove that the property specified by an assert or assume statement holds

in all relaxed executions.

2.1.3 Proof Rules and Formal Properties

The proof rules are a set of Hoare-style logics:

" Axiomatic Original Semantics: The original Hoare-style semantics models the

original execution of the program wherein relax statements have no effect.

" Axiomatic Relaxed Semantics: The relational Hoare-style semantics relates execu-

tions in the relaxed semantics to executions in the original semantics. The predicates

of the judgment are given in a relational logic that enables me to express properties

over the values of variables in both the original and relaxed executions of the pro-

gram. A proof with the axiomatic relaxed semantics relates the two semantics of

the program in lockstep and, therefore, supports the transfer of reasoning about the

original semantics to the relaxed semantics by enabling, for example, noninterfer-

ence proofs.

33

One key aspect of the axiomatic relaxed semantics is that it must also give an appro-

priate semantics for relaxed programs in which the original and relaxed executions

may branch in different directions at a control flow construct (at this point the two

executions are no longer in lockstep). In particular, the logic does not support rela-

tional reasoning for program points at which the executions are no longer in lockstep

(relate statements do not have a natural semantics at such program points). The

relaxed semantics therefore incorporates a nonrelational axiomatic intermediate se-

mantics that captures the desired behavior of the relaxed execution as it executes

without a corresponding original execution. The logic also appropriately restricts the

location of relate statements to program points at which the original and relaxed

programs execute in lockstep.

The proof rules are sound and establish the following semantic properties of verified

relaxed programs:

" Original Progress Modulo Assumptions: If the program verifies under the ax-

iomatic original semantics, then no execution of the program in the dynamic original

semantics violates an assertion. By design, a program may still terminate in error if

a specified assume statement is not valid.

" Soundness of Relational Assertions: If the program verifies under the axiomatic

relaxed semantics, then all pairs of executions in the dynamic original and relaxed

semantics satisfy the relate statements in the program.

" Relative Relaxed Progress: If the program verifies under the axiomatic relaxed

semantics and no executions in the dynamic original semantics violate an assertion

or an assumption, then no execution in the dynamic relaxed semantics violates an

assertion or an assumption.

* Relaxed Progress: If the program verifies under both the original and relaxed ax-

iomatic semantics and no execution in the dynamic original semantics violates an

assumption, then no execution in the dynamic relaxed semantics violates an asser-

tion or an assumption.

34

o Relaxed Progress Modulo Original Assumptions: If the program verifies under

both the original and relaxed axiomatic semantics, then if an execution in the dynamic

relaxed semantics violates an assertion or an assumption, then an execution in the

dynamic original semantics violates an assumption.

These properties assure developers that verified relaxation produces a program that sat-

isfies the stated acceptability properties. The programming model's design supports a de-

velopment process in which developers can use the full range of standard techniques (ver-

ification, testing, code reviews) to validate properties that they believe to be true of the

original program. They can then use assume statements to formally state these properties

and incorporate them (via relational reasoning) into the verification of the relaxed program.

This verification ensures that if the relaxed program fails because of a violated assumption,

then the developer can reproduce the violated assumption in the original program.

2.1.4 Coq Verification Framework

I have formalized the dynamic original and relaxed semantics with the Coq proof assis-

tant [1]. I have also used Coq to formalize the proof rules and obtain a fully machine-

checked proof that the rules are sound with respect to the dynamic semantics and provide

the stated semantic properties. The Coq formalization makes it possible to develop fully

machine-checked verifications of relaxed programs. I have used the framework to develop

and verify several small relaxed programs.

The Coq implementation contains approximately 8000 lines of code and proof scripts,

with 1300 lines devoted to the original semantics and its soundness proofs and 1900 ad-

ditional lines devoted to the relaxed semantics and its soundness proofs. A large portion

(approximately 3500 lines) is devoted to formalizing the semantics of my relational asser-

tion logic and its soundness with respect to operations such as substitution.

Appendix A presents the full Coq development of the relaxed programming framework,

including the semantics, proof rules, and proofs of the properties of the framework.

35

2.1.5 Contributions

This chaper presents the following contributions:

" Relaxed Programming: It identifies the concept of relaxed programming as a way to

specify nondeterministic variants of an original program. The variants often occupy

a range of points in an underlying performance versus accuracy trade-off space. Cur-

rent techniques that can produce relaxed programs include skipping tasks [77, 78],

loop perforation [58, 57, 88], reduction sampling [94], multiple selectable imple-

mentations [5, 3, 39, 94], dynamic knobs [39], synchronization elimination [55, 79],

approximate function memoization [24], and approximate data types [84].

" Relational Reasoning and Proof Rules: It presents a basic reasoning approach

and proof rules for verifying acceptability properties of relaxed programs. With this

approach, the majority of the reasoning effort works with the original program and is

transferred to the relaxed program through relational reasoning.

" Coq Formalization and Soundness Results: It presents a formalization of the dy-

namic semantics and proof rules in Coq. I have used this formalization to prove that

the proof rules are sound with respect to the dynamic original and relaxed seman-

tics. In addition, the Coq formalization contains a reusable implementation of my

relational assertion logic that is, in principle, suitable for other uses such as verifying

traditional compiler transformations [82, 12, 92, 95].

" Verified Programs: It presents several relaxed programs for which I have used the

Coq formalization to develop fully machine-checked verifications.

Relaxed programs can deliver substantial flexibility, performance, and resource con-

sumption benefits. But to successfully deploy relaxed programs, developers need to have

confidence that the relaxation satisfies important acceptability properties. This chapter

presents a foundational reasoning system that leverages the structure and relationships

shared by the original and relaxed executions to enable verification of these properties.

36

iop::= +--* 1/1 ...
cmp ::= < |> I = I ...
lop ::= /\ I V I ...

X::= x x,X

E ::=n x E iop E

E ::= n x(o) I x(r) I E iop E
B::= true I false IE cmp E I B lop B -iB

B::= true I false EcmpE Blop B B

S::= skipI x = havoc (X) st (B) I relax (X) st (B)

| if (B) {Si} else {S2}I while (B) {S}

I assume (B) I assert (B) I relate 1: (B)

| S ; S

Figure 2-1: Language Syntax

2.2 Language Syntax and Dynamic Semantics

Figure 2-1 presents a simple imperative language with integer variables, integer arithmetic

expressions, boolean expressions, conditional statements, while loops, and sequential com-

position. For generality, the language supports nondeterminism in the original semantics

via the havoc (X) st (B) statement which nondeterministically assigns the variables in

X to values that satisfy B. The relax (X) st (B) statement supports nondeterministic

relaxation - in the original semantics it has no effect; in the relaxed semantics it nondeter-

ministically assigns the variables in X to values that satisfy B. The language also supports

the standard assume and assert statements.

A main point of departure from standard languages is the addition of relational integer

expressions (E) and relational boolean expressions (B). Unlike standard expressions, which

involve values from only the current execution, relational expressions can reference values

from both the original (x(o)) and relaxed (x(r)) executions. These relational expressions

enable relate statements to specify relationships that must hold between the original and

relaxed executions. For example, the statement relate 1: (x(o) = x(r)) asserts that at

the current program point (with label 1), x must have the same value in both executions.

37

~n](a) =

Tx](a) =

El iop E2](a)

n] (a, a2) =

x(o)](a , 2) = ai (x)

Ei1 iop E2 M(ai,a 2) =
EB E2

[true] (a) = true

E1 cmp E2](a)

fB1 lop B2 (a) =

true (al,q2) = true

1 cmp E2 (a, G2) =

1P $2(at, U2) =

s_ u l -"2 _)

E --+ Z
n

a(x)

[Ei I (a) iop TE21(a)

ExE - Z

n

x(r)] at, q2) = q2 (x)

C$1ai, C2) iOP $ (Cy, CT2)

Tf alsel(a) =false

[EjI (a) cmp TE2 a)

TB I(a) lop [B2 (a)

true, TB (a) =false

false, TB (a) =true

E X E - B

TfalseI(al , q2) =false

[E (GI, C72) CMP TE$2 (G , C72)

$Ii 1, a2) lop T$2 (ai, (2)

f true, A (a1, a2) =false

{false, $ (I,G 2) = true

e (a)= bex b (a)=
expr e Enbexp B(e,aG) 4En (b, a)4B V

Figure 2-2: Semantics of Expressions

2.2.1 Semantics of Expressions

Figurc 2-2 presents the semantics of expressions in the language. The denotations of ex-

pressions are functions mapping a state or pair of states to either an integer (Z) or boolean

value (B). A state (a) is a finite map from program variables, Vars, to integers, Z, and is an

element of the domain E = Vars -+ Z (the set of all finite maps from variables to integers).

38

(s, a) 4 4' skip assign (e, a) 4E n
(skip, a) 4 (a,0) (x = e, a) 40 (a[x - n], 0)

(e , a') 4 B true Vxex -a(x) = a'(x)
havoc-t

(havoc (X) st (e), a) 40 (a', 0)

,avm - ((e , a') 4 B true A x a(x) a '(x))

(havoc (X) st (e), a) 40 wr

(e , a) 4 B true
assert-t

(assert (e), a) 4o (a, 0)

assert-f (e , a) 4Bfalse assue-t (e , a) 4 B true

(assert (e), a) 40 wr (assume (e), a) 40 (a, 0)

assue-f (e , a) 4Bfalse relax (assert (e), a) 40 4

(assume (e), a) 4, ba (relax (X) st (e), a) 40 4

relate__ _ if-t (b , a) 4B true (sI , a) 4o 0

(relate 1: (e), a) 40 (a, (l,a)) (if (b) {s1} else {s2}, a) 4o 4

(b , a) 4Bfalse (s2, a) 4o 4

(if (b) {s1} else {s2}, a) 4o 4

(Si, a) 4o (a', I) (s2 , a') 4o (a", V2)
seq4 (SI ; S2, a) 4o (a", Y/2- 1Y)

(b , C) 4Bfalse
(while (b) {s}, a) 40 (a, 0)

while-t(b a) 4 B true (s, a) 40 (a', yp) (while (b) {s}, a') 4o (a", y2)

(while (b) {s}, a) 4o (a", -2.'fl)

Figure 2-3: Dynamic Original Semantics

The semantic function [E defines the semantics for integer expressions, which are

composed of the standard integer operations (e.g., +, -, *, /, ...) on integer operands. The

semantic function [B defines the semantics of boolean expressions, which are composed of

the standard comparison operators on integers (e.g., <,=,>, ...) and the standard boolean

operators (e.g., A, V, ...).

39

(s, a) 40 'P seq-2 (si, a) 4o ' err()
(sSi s ,oa) seq-P(s I ; S2, G) 4o 0

seq-3(1, a) 4o (a', Yi) (s 2, a') 4o ' err(o)
(sI ; s2, a) 4o '

(b , a) 4B true (s, a) 4 0 (a', Vi) (while (b) {s}, a') 4o ' err(P)
(while (b) {s}, a) 40 '

(b , a) 4 B true (s, a) 4o P err(P)

(while (b) {s}, a) 40 '

Figure 2-4: Error Propagation in Dynamic Original Semantics

The semantic function]M defines the semantics for relational integer expressions as

a function mapping a pair of states (a,, a 2) to an integer number. The first component of

the state pair is a state from the original semantics and the second component a state from

the relaxed semantics. Therefore, a reference to a variable in the original semantics, x(o),

is equivalent to a, (x) whereas a reference to a variable, x(r), in the relaxed semantics is

equivalent to a2 (x)

The semantic function Bj likewise extends the semantics for boolean expressions with

the capability to express boolean properties over relational integer expressions.

2.2.2 Dynamic Original Semantics

Figure 2-3 presents the dynamic original semantics of the program in a big-step operational

style. The evaluation relation (s, a) 4o ' denotes that evaluating the statement s in the

state a yields the output configuration '. An output configuration is an element in the

domain cD = {ba} U {wr} U (E x I).

The distinguished element ba ("bad assume") denotes that the program has failed at an

assume statement in the program. The distinguished element wr ("wrong") denotes that

the program has failed due to another error, such as an unsatisfied assert statement.

An element in the domain E x T indicates that the program has terminated success-

fully, yielding a final state a and an observation list, V C T, which is the sequence of

observations emitted by relate statements during the execution of the program.

40

An observation (1, a) is an element in the domain L x E. L is the finite domain consist-

ing of all the labels specified in relate statements in the program - the execution of each

relate statement emits an observation consisting of its label along with the current state

of the program. The structure of an observation list is given by the standard constructors

for lists: I = 0 1 (1, a) :: T. The notation Vf .V2 denotes the result of appending two lists.

Evaluation Rules

Skip. The skip is a no-op whose execution does not modify the state of the program and

therefore produces the original input state as output.

Havoc. The havoc (X) st (e) statement nondeterministically assigns values to the set of

variables in X such that their values satisfy the statement's predicate e. All variables not

specified in X retain their previous values. If there does not exist an assignment of values

to X that satisfy e, then the statement evaluates to wr.

Assert. The assert (e) statement checks that the state satisfies its predicate e. If e

evaluates to true, then execution continues; otherwise, the statement evaluates to wr.

Assume. The assume (e) statement checks that the state satisfies its predicate e. If e

evaluates to true, then execution continues; otherwise, the statement evaluates to ba.

Relax. The relax (X) st (e) statement does not modify the state of the program in the

original semantics. Because the programming model dictates that the original execution

is one of the relaxed executions, the dynamic original semantics requires the relaxation

predicate e to hold in the original execution.

Relate. The relate 1 : (e) statement is a relational assertion over original and relaxed

executions of the program. The dynamic semantics emits an observation consisting of the

statement's label 1 along with the current state of the program. This semantics enables me

to define and verify a relation on the observation lists emitted by the original and relaxed

programs (see Section 2.4).

41

If. The if (b) {si } else {s2} statement has the standard semantics of if statements. If

the boolean condition b evaluates to true then execution of the statement continues with the

nested statement si. If b evaluatesfalse then execution continues with the statement si.

Sequence. The sequential composition construct si ; s2 also has a standard semantics.

The construct first executes the statement si and then executes the statement S2.

While. The while (b) { s } statement also has the standard semantics of while loops.

If the boolean condition b evaluates to true, then the statement executes one iteration of the

statement s and then repeats. If b evaluates tofalse then the statement does not modify the

state of the program.

Error Propagation. Figure 2-4 presents standard rules for the propagation of error values

in the semantics of compound statements (i.e., sequential composition and while state-

ments). The predicate err(o) evaluates to true if and only if 4 = wr or 4 = ba. For a

sequential composition si ; s2, an error may occur either during the execution of si (Rule

[seq-3]) or during the execution of S2 (Rule [seq-4]). For while statements, an error may

occur either during the first iteration of the loop (Rule [while-t2]) or during a subsequent

iteration of the loop (Rule [while-t3]).

2.2.3 Dynamic Relaxed Semantics

Figure 2-5 presents the dynamic relaxed semantics. The relation (s, a) 4 r 4 denotes that

evaluating the statement s in the state a yields the output configuration 4.

The dynamic relaxed semantics builds upon the original semantics. It differs only in

that relax statements modify the state of the program. I therefore include a discussion of

only the rule for the relax statement.

Relax. The relax (X) st (e) statement nondeterministically modifies the state of the

program in the relaxed semantics so that it satisfies the statement's predicate e. The rule

implements the modification by reusing the rule for havoc statements.

42

(s, a) 4r 4' skip , a) 4o 0
(skip, a) 4r 4'

havoc (havoc (X) st (e), C) 4, 4'
(havoc (X) st (e), a) 4r 4'

(assert (e), a) 40 4 (s

(assume (e), a) 4r 4 seq-

(b , a) 4B true (Si, a) 4r 4'
(if (b) {s,} else {S21, a) 4r 4'

. (x = e, a) 4o 4
assign)

(x = e, (Y) 4r 0

(assert (e), a) 40 4
assert

(assert (e), a) 4r 4

1, a) 4r (C', tp) (s 2 , a') 4r (a", W2)

(SI ; S2, a) 4r (a", YV2' 1)

. (b , a) 4 B false (S2 , a) 4r 4
(if (b) {s,} else {s2}, a) 4r 4

(b , a) 4B false

(while (b) {s}, a) 4r (a, 0)

(b , a) 4 B true (S, a) 4r (a', Yf') (while (b) {s}, c') 4r (a", 2)
(while (b) {s}, a) 4r (a", V2 - l')

(havoc (X) st (e), a) 4r 4

(relax (X) st (e), a) 4r 4

Figure 2-5: Dynamic Relaxed Semantics

2.3 Axiomatic Semantics

I next present the axiomatic semantics of both the original and relaxed semantics of a

relaxed program.

* Axiomatic Original Semantics. The proof rules model the dynamic original seman-

tics of the program. If the program verifies with these rules, then no execution of the

program in the dynamic original semantics violates an assertion (i.e., evaluates to

wr). However, the program may violate an assumption (i.e., evaluate to ba).

" Axiomatic Relaxed Semantics. The proof rules model pairs of executions of the

program in the dynamic original and dynamic relaxed semantics. If the program ver-

ifies with these rules, then if all executions in the original semantics execute without

error (i.e., do not evaluate to wr or ba), then all executions in the relaxed semantics

execute without error. A proof with these rules also guarantees that pairs of original

and relaxed executions satisfy all of the relate statements in the program.

43

P::= true If alse | EcmpE I Plop P I -,P I]x.P

P::= true I f alse I E cmp E I P lop I_,P

Figure 2-6: Relational Assertion Logic Syntax

1P E P(E)
Ttruej =E false= 0

EI cmp E2 = {a [E I(a) cmp TE21 (a)}

P1 lop P2 J {I U C P1 lop C C P2 }
,P = truej \ P

Ex . P= {a I n C Z, a E P[n/x]]}

t]J E P(E X Y)

ftrue= E x Y [f alseI = 0

El cmp 2 = {(,2 2) E Zi2(, (2) cmp 2 2)}

f 1 lopP 2 = {((T, 2) I (GI, U2) E ftlop (I, G2) E tP2 }

,t-lP]J = ftrue \ [Pj
ftIx(o) .J = {(a,a2) n C 7Z, (al,a2) E [P[n/x(o)]I

fEtx(r) .J1= {(al,4a2) I n E , (GI, I2) E fP[n/x(r)]}

Figure 2-7: Relational Assertion Logic Semantics

2.3.1 Relational Assertion Logic

Figure 2-6 presents the concrete syntax of the program logic's relational assertion logic.

This logic extends a nonrelational assertion logic with relational formulas, enabling proofs

that verify the relational boolean expressions in relate statements. Its presentation follows

the style of Benton's Relational Hoare Logic [12].

Syntax. The syntactic category P gives the syntax for formulas in first-order logic with

integer expressions and existential quantification. The syntactic category P gives corre-

sponding syntax for writing relational formulas. P extends P by allowing formulas to refer

to relational integer expressions.

44

Semantics

Figure 2-7 presents the semantics of formulas in the logic. The denotation of a nonrelational

formula [P is the set of states that satisfy the formula. JP reuses the semantic definitions

for integer expressions from Figure 2-2 to construct a definition for each formula. The

denotation of a relational formula [Pj closely follows that of nonrelational formulas: it is

the set of pairs of states that satisfy the relation. References to the original semantics (e.g.,

x(o)) refer to the first component of the pair and references to the relaxed semantics (e.g.,

x(r)) refer to the second component.

Injections. The injection functions inj,(P) and inj,(P) construct a relational formula in

P from a nonrelational formula in P. Conceptually, inj0 (P) constructs a relational formula

where P holds for the original semantics by replacing variables (e.g., x) in P with the

relational original variables (e.g., x(o)); inj,(P) does the same with the relational relaxed

variables such that P holds for the relaxed semantics. This means that inj0 (P) (resp. inj,(P))

creates a formula representing all state pairs where the first (resp. second) component

satisfies P:

inj0 (P) = {(a 1 , C2) I o EP }

ir (P) = (7(1, C2) 1 02 E P }

The notation (P1 -P2) denotes the combination of a predicate Pi over the original semantics

with a predicate P2 over the relaxed:

(P1 -P2) = injo(P) A injr(P2)

Projections. The semantic functions prj0 (P) and prj,(P) project a relational formula in

P to the set of states corresponding to either the first (prjo) or second (prj,) component of

each state pair in the denotation of the formula:

prj(P) 1{a (C1, 02) Ec

prjr(P) =U2 (C1,02) E [}

45

The projection functions decompose a relational formula over the original and relaxed se-

mantics into the set of states that satisfy the relation for either the original or relaxed se-

mantics individually. I use projection to define the following relations between relational

and nonrelational formulas:

P o P prjo(P) C

S|-- P prjr(P) C fPI

Fresh Variables and Substitution. The predicate fresh(x), denoting that x is a fresh vari-

able in the context of an inference rule, is true if x E Vars and x does not appear in the rule's

premises or consequent. The proof rules also use the standard capture-avoiding substitution

P[e/x]. The rules also use multiple substitution, which is denoted by P[ei/xi] ... [en/xn] as

P[e i, -- - , en/xi, ,xn]. Substitution over P has a similar form.

Auxiliary Notations. I also define the following judgments for later use in both the rules

of my program logics and the discussion of their semantics:

a # P a C f PI (GI, a2) P EG(aI,2) E P

=Pi - P2 ftP1 C P2 1 ->2 I P2 - PI P2

2.3.2 Original Semantics

Figure 2-8 presents a manual translation of the Coq formalization of the axiomatic original

semantics of the program. The Hoare-style judgment F-0 {P} s {Q} models the original

execution of the program wherein relax statements have no effect. The intended meaning of

the semantic judgment - {P} s {Q} is: for all states a, if a - P and (s, a) 4, (a', yi),

then a' - Q. In other words, if a satisfies P and an original execution of s from a yields

a new state a', then a' satisfies Q. Note that this definition asserts only partial correctness

and not total correctness.

46

skip F-o {P} skip

assinF-o {Q[e/x]} x = e {Q}

assert o P A e} assert (e) {P A e}

rl {P} assert (e) {Q}
relax

F-o {P} relax (X) st (e) {Q}

. {P A b} s {Q} Ho {P A -,b} S2 {Q}
1-o {P} if (b) {sI} else {S2} {Q}

K,{P}si {R} K{R}s 2 {Q}
P seqo {P} si;s 2 {Q}

havoc (x -P[X'/X]) A e $ 0 fresh(X')
0 {P} havoc (X) st (e) {(3xt -P[X'/X]) A e}

assume f{P} assume (e) {PA e}

relate
Ka {P} relate 1: () {P}

wi {PAb} s {P}
F- {P} while (b) {s} {P A -,b}

P = P' F0 {P'}s{Q'} Q' Q
conseq0 1I Q

F {P} s {Q} free(R) nmods(s) = 0
const

H 0 {P AR} s {PAR}

Figure 2-8: Axiomatic Original Semantics

Skip. The skip rule has a standard semantics. Because the skip statement does not modify

the state of the program, if P holds before the execution of the statement, then P holds after.

Sequence. The sequential composition rule has a standard semantics. If a predicate P

holds before the execution of the sequence, then given proofs that 1) R holds after the

execution of si and 2) starting from a state satisfying R, execution of S2 yields a state

satisfying Q, then Q holds after execution of the sequence of statements.

Assignment. The assignment statement follows the standard backwards formalization of

assignment [38]. Specifically, for any state that results from the execution of the assign-

ment statement and satisfies Q, the statement must have began its execution from a state

satisfying Q[e/x].

Havoc. The havoc rule requires in its premise that e must be satisfiable by adjusting only

the variables in X while retaining the values of other variables. A havoc statement evaluates

to wr only if there is no way to transform the current state into a new state satisfying e just

by changing the variables in X.

47

FO {P}s{Q}

Assert. requires the predicate e to hold in the precondition. The rule therefore requires a

proof of e.

Assume. The assume rule differs from the assert rule in that it assumes the validity of e

and then makes e part of the postcondition. Because there is no obligation to prove e for an

assume statement, e may not hold for all states that satisfy P and, as a result, the assume

may evaluate to ba. However, by design, assume statements may fail in the dynamic

original semantics.

Relax. The relax rule specifies that a relax statement is a no-op that does not change the

program's state in the original semantics. However, the programming model's definition

of relaxation also requires that the original execution must still satisfy e. To enforce this

constraint, the rule reuses the rule for the assert statement.

Relate. The relate rule gives relate statements the same semantics as skip because,

unlike the axiomatic relaxed semantics (see Section 2.3.3), the axiomatic original semantics

references only a single execution of the program and does not use relational reasoning.

If. The rule for if statements has a standard semantics If P holds hefnre the execuition

of the statement then Q holds after the statement's execution given proofs that 1) if P A b

holds before the execution of s1 , then Q holds after and 2) if P A -,b before holds before the

execution of S2, then Q holds after.

While. The rule for while loops also has a standard semantics. Specifically, given an

invariant P that holds before the execution of the loop and a proof that each iteration of the

loop preserves the invariant (i.e., if P A b holds before the execution of s, then P still holds

after), then if the loop terminates, the resulting state satisfies P A -b.

Consequence. The rule of consequence is a standard component of Hoare-style program

logics that enables weakening of a program's predicates. The rule states that the judgment

F-, {P} s {Q} can alternatively hold given a proof F- {P'} s {Q'} where P' is weaker than

48

P (i.e., - P -> P') and Q is weaker than Q' (i.e., W Q' = Q. A proof from the initial states

captured by P' implies that the proof is also valid for the subset of those states captured

by P. Similarly, if the proof establishes that the resulting states are members of the set

captured by Q', then those states are also members of the larger set captured by Q.

Constancy. The rule of constancy is standard component of Hoare-style program logics

that enables modular reasoning about predicates that are not modified by the side-effects

of a statement. The rule states that if a conjunction of predicates P A R holds before the

execution of a statement s and it can be shown that 1) H0 {P} s {Q} and 2) the set of free

variables of R is disjoint from the set of variables modified by s, then Q A R holds after the

statement's execution.

2.3.3 Relaxed Semantics

Figure 2-9 presents a manual translation of my Coq formalization of the axiomatic re-

laxed semantics of the program. The proof rules for the relaxed semantics are relational

in that they relate executions of the program under the dynamic relaxed semantics to ex-

ecutions under the dynamic original semantics. The intended meaning of each judgment

r {} s {Q} is the partial correctness assertion: if (Go, qr) P, (s, a) 4o (a', l1),

and (s, ar) 4r (a', V2), then (a,, ar') - $-

The rules are designed to transfer the reasoning from the axiomatic original semantics

to prove properties about the axiomatic relaxed semantics. Specifically, the axiomatic re-

laxed semantics need not re-prove properties about the dynamic original semantics (e.g.,

the validity of assert statements). It can instead simply assume that these properties are

established by the axiomatic original semantics and then transfer their validity to the re-

laxed semantics via relational reasoning.

Skip. The skip statement does not modify the state of the program therefore, similar

to the axiomatic original semantics, if the relation P holds before the execution of the

statement, then P also holds after.

49

skip
Hr {P} skip {j3}

assign -x

Hr {Q[injo(e)/x~o)1[inj,.(e)/x~r)]} x = e {a}

(x'(r) -[X'(o)/X(o)] [X'(r)/X(r)]) A injo(e) A inl,(e)I $ 0 fresh(X')

Hr {P} havo c (X) st (e) {(x(o) -Ix'(r) -P[X'(O)/X(O)][X'(o)/XKO))Ainjo(e)Anj,(e)}

R(x'(r) .P[X'(r)/X (r)]) A injr(e) $ 0 fresh(X')

Hr {P} relax (X) st (e) {(3x'(r) -P[X'(r)/X(r)]) A (e -e)}

-r {} S{Q}

as r A inj0 (e) = inj,.(e)assert
Fr {l assert (e) {^A (e - e)}I

k P A injo(e) 4 inlr(e)

r {P} assume (e) {P A (e - e)}
relate P

Hr {PA relate 1: (^) {PA}

ib) r {p A (b -b)} si {} r{ V

Ir {} Si {N} Hr {N} S2 fQ}
seq{ s

H{P} Sj ;S2{}

Hr {P} if (b) {si} else {S2} {0}

:= 1 (b - b) V (Kb -,b) Hr {A(b-b)}s{P}

Hr {P} while (b) {s} {P A (-,b - ,b)}
diverge

1#o Po PkNrPr of{Po}sf{Qo}

-r {} s {(Qo -Qr)}

Hr {_} s {} fr eeR(N) n modsr(s) = 0

Hr {f PA} s {Q A R}

Figure 2-9: Axiomatic Relaxed Semantics

havo

relax-

assumr

if (b b)

whil

conseq
J r Hr{} {S}

Hi {Pr} s {Qr} no-rel(s)

11 -

e

const

:

\ (,b -,-b)} IS2 {0}1

Assignment. The rule for assignment extends the backwards semantics of assignment

present in the axiomatic original semantics to capture the fact that the assignment updates

values in both the original and relaxed executions of the program. The rule works by apply

two substitutions to the predicate Q, which holds after the statement's execution. The first

substitution Q[inj,(e)/x(o)] substitutes all references to the value of x in the original pro-

gram (x(o)) with the expression e as renamed to refer to variables in the original program

inj,(e). The second substitution [inj,(e)/x(r)] operates similarly for the relaxed semantics

of the program.

Havoc. The rule havoc statements is similar to the havoc rule in the axiomatic original

semantics except that 1) it deals with a relational formula and 2) characterizes the changes

in both the original and relaxed executions of the program. The uses a shorthand X (r) --

{x(r) Ix c X} to denote the syntactic extension of a set of variables in X to relaxed variables

(and similarly X(o) for the extension to original variables). Following the form of the

havoc from the axiomatic original semantics, the rule uses these shorthands to check the

satisfiability of the condition of the havoc statement and generate the final predicate that

holds after the statement's execution.

Relax. The relax rule distinguishes the semantics of relaxation in the original and re-

laxed semantics of the program. The rule is similar to the havoc rule except that the rule

only modifies (i.e., substitutes) relaxed variables, such as x(r), whereas variables over the

original semantics x(o) are not modified.

Assert. The assert rule demonstrates how it is possible use relational reasoning to prove

assertions in the relaxed semantics. Specifically, we can first assume that the assertion is

true in the original semantics (i.e., inj0 (e)) because it has been verified with the axiomatic

original semantics. If P A inj0 (e) implies inj,(e), we can then conclude that the assertion is

true in the relaxed semantics (i.e., injr(e)).

Assume. The assume rule demonstrates how relational reasoning enables one to use re-

lations between the original and relaxed semantics of the program to reason about assump-

tions in the relaxed semantics in the same way as for assertions - i.e., if the assumption is

true in the original semantics of the program, then it is also true in the relaxed semantics.

51

Relate. The relate rule enables us to reason about relate statements in the program.

Similar to a nonrelational assertion, the rule requires e to hold in the precondition. This

ensures that e holds for all pairs of original and relaxed executions that reach the statement.

For example, if the precondition of the statement assert (e) requires all of the free

variables in e to be the same in both semantics (i.e., for all x E free(e), x(o) == x(r)), then

because the axiomatic original semantics proves that the assertion is true in the dynamic

original semantics, one can conclude that the assertion is also true in the dynamic relaxed

semantics.

Sequence. The rule for sequential composition is similar in form to that of the axiomatic

original semantics with the key difference being that the rule operates over relations.

Consequence. The rule of consequence is also similar in form to that of the axiomatic

original semantics.

Constancy. The rule of constancy also has a similar form as that of the axiomatic original

semantics. The primary difference is that the rule uses the functions free and mods, which

compute the free variables of a relational predicate and the set of variables modified by the

statement under both the original and relaxed semantics. Because both free and mods are

relational, they may return either original or relaxed variables.

Convergent Control Flow and Divergent Control Flow

An important aspect of relaxed programs is that the original and relaxed executions of a

program may branch in different directions at a control flow construct. Specifically, if

two executions branch in the same direction, then we can continue to reason about them

relationally in lockstep. However, if the two executions diverge, then the executions execute

different statements and, as a result, precludes relational reasoning. Note that it is possible

for two executions to diverge at a control flow construct and then converge again at the end

of the construct, therefore reenabling relational reasoning.

52

(1(Co, ar)) 4 (a', a'), C

(b , ao) 4B true
(if (b) {si} else {S21, ao) 4o a

(b, Gr) 4Bfalse
(if (b) {sj} else {S2}, ar) 4r Cr

(Kbif (b) {si} else {s2}ea, (aO, ar)) 4 (ao, ar), f b, Ea}

(b, ao) 4Bfalse

(if (b) {si} else {S2}, o)
if-f-t -

4 0a

(b , ar) 4 B true

(if (b) {si} else {S2}, Tr) 4r 0r

(eb if (b) {si} else {S2}ea, (O, ar)) 4 (ao,ar, {eb, ia}

(b , ao) 4, true (b , ar) 4 B true (si , (ao, ar)) 4 (a , a), C

(Eb if (b) {sI} else {S21a, (Go, r)) 4 (ao, ar), {eb, ea} U C U in(s 2)

(b, ao) 4Bfalse (b, Qr) 4Bfalse (s2, ((oar)) 4 (oa), C

(fbif (b) {sI} else {s2 }a, (Co, ar)) 4 (a, a'),{b, fa} uCuin(si)

(b , ao) 4B true (b, Or) 4Bfalse (while (b) {s}, 0o) 40 a

(ebwhile (b) {s} a, (co, ar)) 4 (ao, ar), {b, ea}

(b, ao) 4B false (b, ar) 4 B true (while (b) {s}, ar) 4r Gr

(ebwhile (b) {s}a, (Co, ar)) 4 (Co, ar), 14, eaI

(b , 0o) 4Bfalse (b, ar) 4Bfalse

(Ebwhile (b) {S}Sa, (Co, 0r)) 4 (co, ar), in(while (b) {s})

(b , Go) 4 B true (b , Or) 4B true

(s, (ao, ar)) 4 (a', a'), C (while (b) {s}, (ao, ar)) 4 (a", a"), C'

(fbwhile (b) {s}ea, (ao, ar)) 4 (ao , a7), ({b, ea} U C) n C')

(si, (Go, ar)) 4 (a0, a,'), C

(bsI ; s2ta,(aoar)) 4

(S2, (a, ')) 4 (a',a") , C

(agoay),{tfbea} UCUC

Figure 2-10: The Convergent Program Points of Dynamic Original and Relaxed Executions

The relaxed axiomatic semantics captures this property via a set of proof rules for con-

vergent controlflow constructs (i.e., the original and relaxed executions always branch in

the same direction) and another set for divergent controlflow constructs.

Convergent Program Points. I formally define the convergent program points of a pair

of dynamic original and relaxed execution of a program, and then the convergent pro-

gram points of the whole program. Figure 2-10 presents how the convergent program

53

if-t-f

if-t-t

iff-f

while-t-i

while-f-t

whi1e-f-f

-

points are defined for a pair of dynamic original and relaxed execution. The relation

(s, (co, 7r)) 4 (Ka , ac), C denotes that C is the set of convergent program points when the

dynamic original evaluation of a statement s from a state ao yields an output state ao and

its relaxed evaluation from a state Gr yields a state aU.

I use the following notation in Figure 2-10. In each rule, Lb and La denote static program

points just before and after the given statement, respectively. The set of all program points

in a statement s, including its before/after program points, is denoted by in(s). Some rules

use the relations 40 and 4r (defined in Figure 2-3 and 2-5), but I omit the observation list

from an output configuration because it is not relevant here.

Figure 2-10 shows only the rules for control flow statements. The convergent program

points of execution of the other statements that do not relate to control flow are just their

before/after program points.

The if statement. If the condition b evaluates to different truth values in the dynamic

original and relaxed semantics (if-t-f and if-f-t), the convergent program points are just the

before/after program points of the if statement because its control flow diverges within the

if statement.

If the condition b evaluates to the same truth value in both the dynamic original and

relaxed semantics (if-t-t and if-f-f), the convergent program points of the two execution

consist of its before/after program points and the convergent program points included in the

executed branch (C). Also it includes all program points in the un-executed branch (in(s2)

or in(sl)), which allows the accept statement to appear at any unreachable program point.

Note that an unreachable accept statement is trivially true.

The while statement. If the condition b evaluates differently in the dynamic original

and relaxed semantics (while-t-f and while-f-t), the convergent program points are just its

before/after program points. Therefore, the accept statement cannot exist in the loop body.

If the condition b evaluates to false in both the dynamic original and relaxed semantics

(while-f-f), the convergent program points are all program points inside the while state-

ment, which I denote by in(while (b) {s}). In other words, all the unreachable program

points inside the loop body are convergent program points as well as the before/after pro-

gram points of the while statement.

54

If the condition b evaluates to true in both the dynamic original and relaxed semantics

(while-t-t), the convergent program points are the intersection of the convergent program

points of the current iteration ({b, fa} U C) and those of the following iterations (C'). Note

that either the while-t-f or while-f-t rule is guaranteed to be applied when the loop body is

executed different number of times in the original and relaxed semantics. In that case, the

convergent program points of the later iterations (C') are the before/after program points of

the while statement because the while-t-f and while-f-t rules do not include any program

points inside the loop body s. So, the convergent program points of a while statement that

executes a different number of times in the dynamic original and relaxed semantics are just

the before/after program points of the while statement.

Sequential Composition. The convergent program points of execution of sequential com-

position are the union of the before/after program points, and the first and second state-

ments' own convergent programs points (seq).

Definition 1 (Convergent Program Points). Given a program s, its convergent program

points are CPP(s) = F,({C i (s, (a, a)) 4 (a', a", C).

A program's convergent program points are the intersection of the convergent program

points for all possible pairs of dynamic original and relaxed executions of the program.

Convergent Control Flow Rules. The if rule allows us to continue to use relational rea-

soning inside an if statement if it has convergent control flow. I establish this convergence

by checking that for all a1, q2, if (01, 02) - P then the conditional's boolean expression

either evaluates to true in both the original and relaxed semantics or it evaluates tofalse in

both semantics. If so, then in all cases, the original and relaxed semantics take the same

branch together. Otherwise control flow may diverge and the rule cannot be applied.

The while rule is similar in form to the if rule in that it requires that control flow

be convergent, therefore enabling the use of relational reasoning within the body of a

while statement.

55

F-i {P} s {Q}
Fi {P} havoc (X) st (e) {Q}

relax
F-,{P} relax (X) st (e) {Q}

F-i {P A e} as sume (e) {P A e}

F-o {P} havoc (X) st (e) {Q}
havoc

F-i {P} havoc (X) st (e) {Q}

F {P} si {R} F-i {R}s 2 {Q}
seq f-{P} si;s2 {Q}

Fi {P Ab} s {P}
while

F-i {P} while (b) {s} {P A ,b}

.K{P}skip{P} . F-{P}x=e{Q}
kip assign

i- {P} skip {P} Fi {P} x = e {Q}

F.s {P} assert (e) {PAe}
assert

Fi~ {P} assert (e) {P Ae}

{P A b} si{Q} F i{P A -,b}s2 {Q}
F-i {P} if (b) {si} else {s2} {Q}

k P 4P' Fi {P'} s{Q'} k Q' = Q
conseq F-ifP} QCOIJ0%,i i {P s {Q

Figure 2-11: Axiomatic Intermediate Semantics

Divergent Control Flow Rules. The diverge rule enables a proof to proceed if the orig-

inal and relaxed semantics diverge at a control flow construct. The rule establishes the

postcondition of the statement by independently establishing that F- {P,} s {Q,} for the

original semantics and that F-i {Pr} s {Qr} for the relaxed semantics, where P and Pr are

left and right projections of P. The judgment F-i {Pr} s {Qr} is a set of proof rules for the

axiomatic intermediate semantics of the program. Figure 2-11 presents the program logic

for the intermediate semantics of the program.

The axiomatic intermediate semantics is a nonrelational characterization of the dynamic

relaxed semantics and is very similar to the axiomatic original semantics. The intended

meaning of the judgment k=i {P} s {Q} is: for all states a, if a - P and (s, a) 4r (a', V'),
then a' - Q. This semantics differs from the axiomatic original semantics in two ways:

" The relax rule specifies that relax (X) st (e) may apply any modification to the

variables in X as long as the new values satisfy e. In the axiomatic original semantics

the relax statement is a no-op.

* The assume rule requires (just as for assert statements) a proof that e holds in

relaxed executions. The goal is to ensure that the relaxation does not invalidate the

reasoning used to establish that e holds in the original program. in the axiomatic

original semantics there is no such proof obligation - e is simply assumed valid.

56

I conclude the presentation of the diverge rule by noting that it is also guarded by the

predicate no-rel(s), which evaluates to true if no relate statements appear within s. This

predicate therefore prevents relate statements from appearing in divergent control flow

statements where it is not possible to use relational the relational assertion logic establish

that the relate statement is satisfied.

Note that the use of projections by -o and K-- in this rule means that all relationships

between the two semantics are lost and must be reestablished at the end of the statement.

Relationships that are not modified by the statement, however, can be preserved via a rela-

tional frame rule.

2.4 Properties

I now present the technical definitions, lemmas, and theorems that establish the semantic

properties of programs in the language.

The key property of my language and proof rules is Relative Relaxed Progress (Sec-

tion 2.4.3), which states that the proof rules guarantee that if the original program executes

without error, then the relaxed program executes without error. This property enables a

developer to combine a proof in the axiomatic original semantics with formally unverified

assumptions to demonstrate that the original program is error free. The developer can then

augment this reasoning with a proof in the axiomatic relaxed semantics to therefore show

that the relaxed program is error free. An important consequence of this formulation is that

if a formally unverified assumption is not valid and produces unintended behaviors in the

program, then these behaviors can be reproduced and debugged in the original program.

In my formalization, I restrict myself to terminating relaxed programs. Also, while the

following sections only present proof sketches, the full sources of my Coq formalization

and proofs are included in Appendix A.

2.4.1 Original Semantics

The axiomatic definition for the original semantics is sound and can be used to establish

a weak form of the traditional progress theorem for programs. Specifically, if you can

57

write a proof in the axiomatic original semantics and an execution in the original semantics

terminates, then the resulting state is not wr. This differs from a strong form of progress that

establishes the same for all programs (including nonterminating programs), which would

require a small-step or coinductive formalization of my dynamic semantics.

Lemma 1 (Soundness).

If o {P} s {Q}, then o {P} s {Q}

This lemma establishes that the axiomatic definition is sound with respect to the dy-

namic original semantics of the program. More specifically, given a proof -, {P} s {Q},

it is the case that for all states a y P, if (s, a) 4o (a', iy), then a' * Q.

Proof Sketch. This proof proceeds by induction on the rules of Fo {P} s {Q}. A large

portion of the proof effort involves proving the semantics of substitution in the case of

the assignment rule and the havoc rule. The case of the havoc rule also requires mutual

induction on the lists of modified and fresh variables to establish that the post-condition

holds. The cases for structural rules (if and sequential composition) follow from induction

and the case for the while statement proceeds by nested induction on derivations of the

evaluation relation. Lemma originalaxiomatic-soundness in Section A.10 of the

Appendix presents the full Coq source of the proof. E

Lemma 2 (Original Progress Modulo Assumptions).

If H0 {P} s {Q}, and a # P, and (s, a) 4, 0 , then # # wr

This lemma establishes the progress property for the original semantics. Specifically,

given a proof in the original axiomatic semantics, then for all states that satisfy P, if exe-

cution terminates, then the execution does not yield wr. By design, the judgment does not

preclude the program from evaluating to ba (indicating that it has violated an assumption).

Proof Sketch. This proof proceeds by induction on the rules of Ho {P} s {Q}. One only

needs to consider three primitive statements for which the program may evaluate to wr:

havoc (the satisfiability check in the premise guards against this), assert (e) (the fact

58

that e must hold in the precondition guards against this), and relax (follows by induction

because execution of a relax statement reduces to execution of an assert statement).

Lemma original-axiomatic-progress in Section A.10 of the Appendix presents the

full Coq source of the proof. E

2.4.2 Intermediate Semantics

The axiomatic relaxed semantics establishes several progress properties about the relaxed

execution of the program. However, to prove progress for the axiomatic relaxed semantics,

I need to first prove the same for the axiomatic intermediate semantics.

The definition for the axiomatic intermediate semantics is sound and, also, establishes

a form of progress for the relaxed semantics of the program. Specifically, the intermedi-

ate semantics models the behavior of a relaxed execution after it has branched at a control

flow construct in a different direction than an original execution. When this happens, the

relaxed execution must not violate assertions (evaluate to wr) or violate assumptions (eval-

uate to ba).

Lemma 3 (Soundness).

If Fi {P} s {Q}, then #i {P} s {Q}

This lemma establishes that the axiomatic definition is sound with respect to the dy-

namic relaxed semantics: given a proof Fi {P} s {Q}, it is the case that for all states

a b P, if (s, a) 4r (a', Vi), then a' k Q.

Proof Sketch. This proof proceeds by induction on the rules of Fi {P} s {Q}. Because

the axiomatic intermediate semantics reuses a large portion of the axiomatic original se-

mantics, and the definition of the dynamic relaxed semantics is very similar to that of

the dynamic original semantics, the vast majority of the proof follows from the proofs in

Lemma 1. Lemma intermediate axiomatic-soundness in Section A. 11 presents the

full Coq source of the proof. D

59

Lemma 4 (Progress).

If i {P} s {Q}, and cay P, and (s, cr) r 4,
then -,err(o)

where err(o) = 0 =wrV = ba

This lemma establishes the progress property for the axiomatic intermediate semantics.

Specifically, given a proof Hi {P} s {Q}, it is the case that for all states that satisfy P, if

execution terminates, then the execution does not yield an error. Note that this guarantee

is stronger than that for the axiomatic original semantics in that it does not allow a relaxed

execution to violate an assumption whereas an original execution may do so.

Proof Sketch. The proof proceeds by induction on the rules of Hi {P} s {Q}. As in the

proof of soundness (Lemma 3), the vast majority of the proof follows from the proofs

about the axiomatic original semantics; in this case most of the proof follows directly from

Lemma 2 (Original Progress Modulo Assumptions). The proof differs for two statements:

relax (the proof follows by induction because execution of a relax statement reduces to

the execution of a havoc) and assume (the proof also follows by induction as execution

of an assume reduces to an assert). Lemma intermediate-axiomatic-progress in

Section A. 11 presents the full Coq source of the proof. D

2.4.3 Relaxed Semantics

Lemma 5 (Soundness).

If Hr {P} s {Q}, then #r {PJ} s {Q}

This lemma establishes that the axiomatic definition is sound with respect to the original

and relaxed semantics of the program. Specifically, given a proof -, {P} s {Q}, it is the

case that for all states (ao, ar) P, if (s, ao) 40 (a , tf1) and (s, Ur) 4r (ar, V2), then

it is also the case that (a0, a) Q.

Proof Sketch. The proof proceeds by induction on the rules of ,r {P} s {Q}. The proof is

largely similar to that for the original axiomatic semantics in that much of the work lies

60

in proving the semantics of substitution for the relax statement, which has a proof that

is similar to havoc in the original axiomatic semantics. The cases for structural rules (if

and sequential composition) follow from induction and the case for the while statement

proceeds by nested mutual induction on derivations of the original and relaxed execution of

the statement. The most distinct case is the rule for diverge: this proof uses the soundness

of the original axiomatic semantics (Lemma 1) and the soundness of the intermediate ax-

iomatic semantics (Lemma 3) to establish the soundness of the rule for executions in which

the original and relaxed executions branch in different directions at a control flow construct.

Theorem relaxed-axiomatic -soundness in Section A.12 presents the full Coq source

of the proof. D

Theorem 6 (Soundness of Relational Assertions).

If Vr {P} s {Q}, and (ao, ar) P,

and (s, ao) 4o (a, i), and (s, ar) 4r (Ur, W2),

then F y2

This theorem establishes that given a proof in the relaxed axiomatic semantics, if the

original execution of the program terminates successfully and the relaxed execution of the

program terminates successfully, then the observation lists generated by the executions

(Vi and y2, respectively) satisfy the observational compatibility relation F H Y1 ~ Y2.

Observational compatibility implies that the original and relaxed executions of the program

satisfy all executed relate statements; I define the relation as follows:

_ F(1) (a1,a 2) = true F ' Vi ~ y2

F H (1, a,) :: 41 ~ (1, a2) :: W2

The symbol F represents a finite map from relate labels to relational boolean ex-

pressions (i.e, F E L -+ B). I define this map by structural induction on the syntax of the

program, where the label of each relate statement in the program is unique and maps to

its relational boolean expression.

61

The rules specify that if two observations lists are empty, then they are compatible.

Otherwise, any two lists are compatible if 1) the labels in the head are the same (indicating

that they are generated by the same relate statement), 2) the relational boolean expression

for the label evaluates to true for the states in the head, and 3) the tails of the two lists are

also compatible.

Proof Sketch. This proof proceeds by induction on the rules of Hr {P} s {Q}. The two in-

teresting cases are the diverge rule and the rule for relate statements. For the diverge

rule, I use the fact that the rule requires no-rel(s) (which requires that no relate state-

ments appear inside s). I can therefore conclude that the observation list for the state-

ment is empty and, therefore, original and relaxed executions of the statement are triv-

ially compatible. In the case of the relate rule, the proof uses the rule's precondition to

establish that the two emitted observations satisfy the relate statement's condition. The-

orem relational-assertion-soundness in Section A.12 presents the full Coq source

of the proof. D

Theorem 7 (Relative Relaxed Progress).

If Hr {P} s {Q}, and (ao, a,) -P, and (s, a0) 40 P0, and -ierr(40), and (s, Gr) 4 r r,

This theorem establishes the relative progress guarantee for the relaxed semantics of

the program. Specifically, given a proof Hr {P} s {Q} , it is the case that for all pairs of

states (ao, ar) that satisfy , if an original execution terminates and does not produce an

error, then if a relaxed execution terminates, it also does not produce an error.

Proof Sketch. This proof proceeds by induction on the rules of Hr {P} s {Q}. The most

important cases are the assert and assume statements and the diverge rule. The proofs

for assert and assume are similar in that the premise ensures that if the original execu-

tion evaluates to true, then the condition also evaluates to true in the relaxed execution.

One does not have to consider the case where the original execution evaluates to false be-

cause this would imply that 00 = wr V =0 ba, which is inconsistent with the assumption

that ,err(P).

62

The diverge rule demonstrates the utility of the design of the axiomatic intermediate se-

mantics. For this rule, one can no longer use facts about the original execution to prove facts

about the relaxed execution. Therefore, the relaxed execution must be inherently error free.

The proof uses the progress guarantee of the axiomatic intermediate semantics (Lemma 4)

to establish exactly that. Theorem relaxed-axiomatic-relative-progress in Sec-

tion A. 12 presents the full Coq source of the proof. E

Theorem 8 (Relaxed Progress).

If H- {P} s {Q}, and K, {P} s {}, and P - Po,

and (cy, Or) h= A^ and (s, a0) 4, 0, and #0 # ba,

and (s, ar) 4 r 0r, then -,err(or).

This theorem combines the multiple proofs and assumptions in the programming model

to establish the main progress guarantee for relaxed programs: given 1) a proof in the

original axiomatic semantics, 2) a proof in the relaxed axiomatic semantics, and 3) that

executions in the original semantics terminate and do not violate an assumption, then if a

relaxed execution terminates, it does not produce an error.

Proof Sketch. This proof follows directly from the assumptions, Lemma 2 (Original Progress

Modulo Assumptions), and Theorem 7 (Relative Progress). The assumptions and Lemma 2

establish that if an original execution terminates, then it does not terminate in error. By The-

orem 7, I can conclude that if a relaxed execution terminates, it does not produce an error.

Theorem relaxed-axiomatic _progress in Section A.12 presents the full Coq source of

the proof.

Corollary 9 (Relaxed Progress Modulo Original Assumptions).

If Fo {P} s {Q}, and Fr {P} s {Q}, and P kzo Po,

and (a, qr) - P, and (s, ar) 4 r Or, and err(Or), If (s, ao) 40 0P, then 0, = ba

63

This corollary of Theorem 8 captures an important aspect of how the programming

model incorporates assumptions, which may cause errors in both original and relaxed ex-

ecutions. Given proofs in the original and relaxed axiomatic semantics, if an error occurs

in a relaxed execution and the original execution terminates, the original execution must

violate an assumption. Errors in the relaxed program therefore correspond to invalid as-

sumptions in the original program. To debug an error in a relaxed execution, a developer

should therefore look for invalid assumptions in the original program.

2.5 Example Relaxed Programs

Inspired by programs that researchers have successfully relaxed in prior work, I developed

several example programs designed to capture the core aspects of the successful relax-

ations. I then formalized key acceptability properties of the relaxations and used my Coq

formalization to prove these properties.

2.5.1 Dynamic Knobs

Swish++ is an open-source search engine. I work with a successful relaxation that uses

Dynamic Knobs to reduce the number of search results that Swish++ presents to the user

when the server is under heavy load [39]. The rationale for this relaxation is that 1) users

are typically only interested in the top search results and 2) users are very sensitive to how

quickly the results are presented - even a short delay can significantly reduce advertise-

ment revenue.

Relaxation. The transformation targets a loop that formats and presents the search query

results. The loop keeps track of the number of search results, which I denote by N. The

loop also has a control variable maxr which is a threshold on the number of elements that

should be presented to the user: if N is smaller than maxr, then all results will be presented;

otherwise, only the first maxr results will be presented.

A relaxed program can nondeterministically change maxr to reduce the number of

iterations of this loop while still returning the most important results:

64

original-max-r = max-r;

relax (max.r) st

(original-maxr <= 10 && maxr == original-maxr)

11 (10 < originalmaxr && 10 <= max-r);

This code first saves the original value of the control variable maxr in original-maxr.

It then relaxes maxr. There are two cases: if the original value of this control variable was

less than or equal to 10, then the relaxed execution should be the same as the original exe-

cution - it presents the same number of results, since the value of maxr does not change.

If, on the other hand, the original value was greater than 10, the only constraint is that the

value of maxr is not smaller than 10, meaning that it should return at least the top 10

results when available. The relax statement nondeterministically changes max-r subject

to these constraints.

Acceptability. One acceptability property is that the relaxed execution must present

either all of the search results from the original execution to the user (if the number of

search results in the original execution is less than or equal to 10), or at least the first 10

results (if the number of results in the original execution is greater than 10). The following

relate statement captures these constraints:

relate (num_r<o> < 10 && numr<o> == num.r<r>) I

(10 <= numr<o> && 10 <= numr<r>);

The loop that formats and presents the search results maintains a count numr of the

number of formatted and presented results. This statement therefore uses the value of

numr in the original program (denoted num..r<o>) to determine how many search results

the original execution presents. The relate statement uses numr<o> and the (potentially

different) value of numr in the relaxed execution (numr<r>) to formalize the desired

relationship between the two executions.

Verification. The proof of the relate statement involves 330 lines of Coq proof scripts.

Because the relaxation changes the number of loop iterations, the proof uses the divergent

65

control flow rule to reason about the loop in the original semantics and relaxed seman-

tics separately. The key proof steps establish that the condition of the relax statement

holds before entering the loop and that original-maxr<o> == original max_r<r>

and N<o> == N<r>. The loop invariant in both the original and relaxed execution is

numr <= maxr && numr <= N.

Once control flow converges after the loop, the relate statement's precondition can

be deduced via a proof by cases or, as in my proof environment, verified by an automated

theorem prover.

2.5.2 Statistical Automatic Parallelization

My next example is drawn from a parallelization of the Water computation [1 6] with sta-

tistical accuracy bounds [55]. In this computation a control variable determines whether

to execute a loop sequentially or in parallel. To maximize performance, the paralleliza-

tion eliminates lock operations that make updates to an array RS execute atomically. The

resulting race conditions produce a parallel computation whose result may vary nondeter-

ministically (because of CPU scheduling variations) within acceptable accuracy bounds.

Relaxation. I model the relaxation nondeterminism by relaxing each element in RS with

no constraints: 1

relax (RS) st (true);

In a loop that executes after the parallel loop, the Water computation compares RS [K] to

a cutoff variable gCUT2 and, if it is less than the cutoff, uses RS [K] to update an array FF

(here EXP (RS [K]) is an expression involving RS):

while (K < N) {

if (RSEK] < gCUT2) { FF[K] = EXP(RS[K]); }

K = K + 1;

}

Although I do not present a treatment of arrays in this chapter, I provide a full presentation in Chapter 3.

66

Acceptability. A key acceptability property is that K stays within the bounds of the array

FF.2 The array bounds are stored in the variable lenFF. I assume that the developer es-

tablishes, via some standard reasoning process, that the original execution does not violate

the array bounds and therefore inserts the statement assume (K < lenFF) inside the if

statement just before the assignment to FF [K].

Verification. Recall that the verification of the relaxed program must verify that the con-

dition in each assume statement holds in the relaxed execution. One approach is noninter-

ference - verify that relaxation does not affect the values of the variables in the predicate.

However, this is a relational property and because the assume statement appears at a diver-

gent control flow point (it depends on the value of the relaxed variable RS), this approach

does not work.

The developer therefore inserts another assume statement, assume (K < lenFF),

just before the if statement. It is possible to verify this statement using noninterference,

then propagate the condition through the if statement to verify the original assume state-

ment at the point at which it appears.

The Coq verification of this program consists of approximately 310 lines of proof script.

The key proof step verifies the relational loop invariants K<o> == K<r> and

lenFF<o> == lenFF<r>. These invariants enable me to prove that the relaxation does

not interfere with the assumption.

2.5.3 Approximate Memory and Data Types

My third example is drawn from the LU decomposition algorithm implemented in the Sci-

Mark2 benchmark suite [2]. Researchers have demonstrated that lower-power, approxi-

mate memories and CPU compute units can be used to lower the energy consumption of

this computation at the expense of a small loss in accuracy [49, 84].

I focus on the part of the computation that computes the pivot row p for each column j

in a matrix A. The pivot row is the row that contains the maximum element in the column.

21 note that K must also be within the bounds of RS; the proof is similar.

67

i = j + 1;

while (i < N) {

a A[i] [j];

if (a > max) {

i = i + 1;

max = a; p = i; }

}

Relaxation. Following the assumptions on errors in approximate memories described

in [65], if A is stored in approximate memory, then it is possible to model the range of errors

when reading a value from A with a relaxation that nondeterministically adds a bounded

error e to the result:

original-a = a;

relax (a) st (original-a - e <= a &&

a <= original-a + e);

Acceptability. One acceptability property for this computation is that the value in the

selected pivot row (max) in the relaxed execution does not differ from the result in an

original execution by more than e. This property can be specified with a relate statement:

relate max<o> - max<r> <= e && max<r> - max<o> <= e

Note that this relate statement asserts the Lipschitz-continuity of the computation:

small changes in the inputs lead to proportionally small changes in the output.

Verification. The Coq verification of this program consists of approximately 315 lines of

proof script. The key proof step verifies that

max<o> - max<r> <= e && max<r> - max<o> <= e

(the relation specified by the relate statement) is loop invariant.

68

2.6 Related Work

Executable Specifications. Executable specifications, via techniques such as refinement

and constraint solving, produce concrete outputs that satisfy the specification [60, 72, 83,

93, 28, 53]. Applications for executable specifications include recovering from errors in

existing code and providing alternate implementations for code that may be difficult to

develop using standard techniques.

The research in this thesis differs in that it promotes nondeterministic relaxation to

obtain semantically different but still acceptable variants of the original program. My focus

is therefore on enabling developers to specify and prove acceptability requirements that

involve relational properties between the original and relaxed programs.

Unreliable Memory and Critical Data. Researchers have proposed techniques for en-

abling programs to distinguish data that can be stored in unreliable low-power memory

from critical data whose values must be stored reliably [21, 49, 84]. These systems focus

on data values (such as the values of pixels in an image) that can, in principle, legally take

on any value. While the techniques presented in this thesis support the verification of this

class of programs, they also support the verification of a more general class of programs

whose legal data values are constrained by relaxation predicates.

Relational Program Logics. My program logic for the relaxed semantics of the program

builds on previous work on the Relational Hoare Logic (RHL) [1 2]. RHL itself was inspired

by Credible Compilation [82] and Translation Validation [70] and and has since inspired

other forms of relational reasoning. Researchers have also defined relational separation

logic [92, 7], probabilistic Hoare logic [1], and have used relational reasoning to verify

the correctness of semantics-preserving compiler transformations [82, 95, 26], Lipschitz-

continuity [26], access control policies [63], and differential privacy mechanisms [11].

While the majority of previous research has focused on proving that transformed pro-

grams retain the semantics of the original program, my goal is different - specifically, to

prove that relaxed executions (which typically have different semantics) preserve impor-

tant acceptability properties. I adapt RHL to prove properties that relate the original and

69

relaxed executions and extend RHL to reason about assertions (which reference only the

current execution) and assumptions (which are assumed to hold in original executions but

must be shown to hold in relaxed executions).

2.7 Conclusion

The additional nondeterminism in relaxed programs enables programs to operate at a va-

riety of points with different combinations of accuracy, performance, and resource con-

sumption characteristics. It is possible to exploit this flexibility to satisfy a variety of

goals, including trading off accuracy for enhanced performance or reduced energy con-

sumption [77, 78, 94, 5, 3, 58, 57, 88, 24, 55, 79, 39, 40, 84, 49] or responding to load

spikes or other fluctuations in the characteristics of the underlying computational plat-

form [39, 40, 77, 84].

I present formal reasoning techniques that make it possible to verify important accept-

ability properties of relaxed programs. Standard verification techniques reference only the

current execution of the current program under verification. My techniques, in contrast,

aim to reduce the verification effort by taking a relational approach that exploits the close

relationship between the original and relaxed executions. My goal is to give developers

the verified acceptability properties they need to confidently deploy relaxed programs and

exploit the substantial flexibility, performance, and resource consumption advantages that

relaxed programs offer.

70

Chapter 3

From Core Calculus to Programming

Language

The previous chapter presents a core calculus for relaxed programming that consists of a

basic imperative programming language and a program logic that demonstrates the core

concepts of verifying relaxed programs. Specifically, a key theme of the work is that re-

lational reasoning can enable simpler proofs of the acceptability of relaxed programs that

reuse the reasoning done for the original program.

In this chapter, I extend this core calculus - including its relational reasoning approach

- to include features in common programming languages along with their associated rea-

soning principles. These extensions include extending the logic's support for control flow,

adding dynamically allocated data structures (i.e., primitive types, structured types, and

arrays), and adding procedures. Extending the logic's control flow support enables ad-

ditional opportunities for relational verification for case where the original and relaxed

program diverge at a control flow point. Adding reasoning principles for dynamically al-

located structures enables proofs of rich properties of the broad range of data structures of

relaxed programs. Adding procedures enables reasoning about modularly decomposed re-

laxed programs where the scope of both the relaxation and the properties that the program

must satisfy span more than a small computational kernel.

71

x,y,p,a E Vars

f F

Prim:= int I f loat

T:= Prim I id

ArrayType:= Prim{n} I T*{n}

Struct:= struct id { SDecl }

SDecl::= Primf; SDecl I T*f; SDecl I ArrayTypef; SDecl

Proc ::= Ret fn (Params) Pre? Post? Prerei? Postre? { S }

Ret::= T | ArrayType void

Param ::= Prim x | T * x ArrayType a

Params::= E I Param,Params

Pre::= requires P

Post::= ensures P

Prere::= requires-r P

Postrel::= ensures-r P

n x E iopE

x *p Ip.f Ia[E, ...,IE]

n Mval old(Mval) I iop

n x(o) x(r)| IiopZE

true false j E cmp E

true false k cmp $

true false E cmp E

S::= skip

Prim x = E | T* x = (0 | y I new T) 1 (0 | y | ArrayType x =new T[E,...,E])

x=EI*p=EIp.f=EIa[E,...,E]=E

x=*p x =p.f |x=a[E,...,E]

x = len(a,n)

havoc (A,X) st (1) relax (A,X) st (B)

x =fn (E,..., E) I fn (E, ...,E) I return E

assume (B) I assert (B) I relate 1: (B)

if (B) {S} else {S} while (B) {S} S; S

Figure 3-1: Language Syntax

72

E

Mval

E

-IB

1-,6
A,

B

B14

lop B

lopB

lop B

3.1 Language Syntax

Figure 3-1 presents the extended syntax of the language. Many of the basic statements of

the language (production S) are similar to those in the core calculus. However, the basic

operands of these operations differ in that they may include references to structured data

types, first-class arrays, and calls to procedures.

3.1.1 Data Types

The language first extends the singular primitive integer type of the core calculus to also

include floating-point primitive types (production Prim).

The production Struct extends the language to include structured data types. A struc-

tured data type declaration begins with the struct keyword, then specifies the name of

the type (id) and provides a list of field declarations, which specify the names and types

of the structure's data members. A field is either a primitive value (Prim f), a pointer to a

heap-allocated structure (T* f), or a pointer to a heap-allocated array (ArrayType f). The

production ArrayType specifies the type and structure of the array. Specifically, an array

is n-dimensional and contains either primitive values (Prim {n}) or pointers to structured

data types (T* {n}).

3.1.2 Procedures

The production Proc specifies the syntax of procedure declarations using a C-style dec-

laration syntax. A procedure declaration first specifies a return value (Ret) that is either

a primitive value, a pointer to a heap-allocated structured type, or a pointer to a heap-

allocated array. The return value may also be void, which indicates that the function does

not return a value.

The declaration syntax follows the return value specification with the name of the func-

tion (fn), a list of parameters to the function, a list of precondition and postcondition spec-

ifications, and then the function body itself. A procedure may receive as parameters a list

of values that may either be a primitive value, a pointer to a heap-allocated structured type,

or a pointer to an array. The procedure's precondition and postcondition specifications use

a syntax that is similar to that of other verification-enabled languages (e.g., ESC/Java [36])

73

to specify that the function has a precondition - a predicate that most hold before execu-

tion of the function (requires P) - or a postcondition - a predicate that is guaranteed

(through verification) to hold after the execution of the function (ensures P). Unlike ex-

isting languages, procedures may also have relational preconditions and postconditions,

which specify relations between the values in the original program and the relaxed program

that must hold before and after the execution of the program, respectively. The annotation

requires-r P specifies a relational precondition and ensures-r P specifies a relational

postcondition. Section 3.3.1 presents the syntax and semantics of the assertion logic for

specifying P and P.

3.1.3 Expressions and Statements

Introducing heap-allocated primitives, structures, and arrays into the language necessitates

new expressions and statements for allocating, writing, and reading these data structures.

Expressions. The productions E and E present the syntax of hygienic numerical and re-

lational numerical expressions, respectively. The syntax for these expressions expressions

derives from that of the core calculus. Similar to numerical expressions, the productions B

and $ present the syntax of hygienic boolean and relational boolean expressions, which is

also similar to that of the corresponding expressions in the core calculus. Where the syntax

of expressions in the full language differs from that of the core calculus is in the addition

of non-hygienic numerical and boolean expressions, E and B, respectively.

Non-hygienic expressions differ from hygienic expressions in that, in addition to local

variables, they may also reference values of data allocated in the heap. Specifically, non-

hygienic expressions may reference heap-allocated primitives, *p, fields of heap-allocated

structured types, p .f, and elements of heap-allocated arrays, a [ei,..., ek].

Non-hygienic expressions can only be used within a havoc or relax statement's con-

dition. Specifically, non-hygienic expressions are used to express constraints on modifica-

tions to heap-allocated data within a havoc or relax. To additionally increase the expres-

sivity of these statements, a non-hygienic expression may also use the syntax old(.) to refer

to the old value of a variable or heap-allocated structure: the value before modification by

the havoc or relax.

74

Declaration and Allocation. The statements in the program operate on either local vari-

ables or heap-allocated data. Local variables are allocated in a local frame of the program

stack, which (as is standard) records a stack of local variable-to-value bindings, one for

each live function. A local variable is either a primitive type, a pointer to a heap-allocated

primitive or structured type, or a pointer to an array. Correspondingly, a local variable

declaration has one of three forms:

" Primitive. A declaration of a primitive typed variable, Prim x = e, initializes the

value of the variable to the value of a hygienic expression.

* Pointer. A declaration of a pointer typed variable, T* x = (0 1 y I new T), initializes

the value of the variable to either zero, the value of another pointer-typed variable, or

a new dynamically allocated instance of the base type.

* Array. A declaration of an n-dimensional array variable, ArrayType{n} x = (0 1 y

new ArrayType[E,..., E]), initializes the variable to either 1) zero, 2) the value of

another variable that points to an array, or 3) a new dynamically allocated array of

the base type type with the length of each of the n dimensions given by a sequence

of n hygienic expressions.

Stores. Heap-allocated data structures introduce new syntax for storing into the heap. A

store into the heap writes the value of an expression into either a heap-allocated primitive

type (*p = e), the field of a heap-allocated structured type (p. f = e), or an element of a

heap-allocated array (a[E,..., E] = x).

Loads. Heap-allocated data structures also introduce new syntax for reading values stored

in the heap. A load from the heap reads into a local variable the value of either a heap-

allocated primitive type (x = p*), the field of a heap-allocated structured type (x = p .f), or

an element of a heap-allocated array (x = a [E, ... , E].)

For both loads and stores, the dereferenced pointers, fields, and array indices must cor-

respond to valid, previously allocated regions of the heap. The rules for verifying programs

that manipulate the heap therefore include proof obligations that ensure that the program

does not access invalid memory regions.

75

Havoc and Relax. Both havoc and relax statements extend their definitions in the core

calculus to not only jointly modify a set of variables X, but to also jointly modify a set of

addresses A. Each address in the set can be either a pointer (p), a field (p. f), or an array

element (a [e ,..., ek]). The set of addresses in A is a subset of the addresses specified in

each havoc or relax statement's condition.

Procedure Calls. Procedure calls introduce new syntax for calling functions either with

or without a return value, x =fn(E,..., E) andfn(E,..., E), respectively. For functions that

return a value, the return E statement provides this functionality in a standard way.

Unmodified Statements. The syntax for assume, assert, relate, if, while, and se-

quential composition statements are the same as that of the core calculus, with each state-

ment's subexpressions and nested statements (e.g., each branch of an if statement) adapted

to use the syntax of the new language.

3.2 Semantics.

I next present the semantics of the extended language. The new semantics' primary devia-

tion from that of the core calculus is the addition of a heap to the program's environment.

Preliminaries. A heap h E H = A -+ Z is a finite map from addresses a E A to integers

that represent data that has been stored in the heap. The function dom c H - P (N) returns

the domain of the heap, which is the set of address allocated in the heap.

To give a structure to the heap, a descriptor store m E M = A - D is a finite map from

addresses to descriptors. A descriptor d E D = (F - N) + (UN') describes the type of the

data structure. A descriptor is either a finite map from fields to positive integer offsets -

denoting the offset of each field of a structured type - or a n-arity tuple, denoting the length

of each dimension of an n-dimensional array.

In this representation, a primitive data type allocated in the heap has a descriptor of

the form (1)) - which denotes a single-dimension, single element array. A n-dimensional

array has a descriptor of the form (li, ... , ln), where each 1i denotes the length of the array

on the i-th dimension. A structured data type allocated in the heap has a descriptor of the

form {fi -4 0, ... , fk 4 (k - 1)}, where each fk is a declared field of the structure and the

76

associated mapping gives the field's offset from the structure's base address. The function

size E D -+ N returns the size (in number of allocated addresses) of the data structure

described by a descriptor.

To incorporate these new elements of the semantics, I extend the definition of an envi-

ronment E E E = A x M x H to consist of a stack, a descriptor store, and a heap. A stack

3 c A := - I c :: A is a list of frames a c E = Vars -+ Z, where each frame is a finite map

from local variables to integers that records the values of variables in the current function

call scope. The value of a local variable is either a primitive value or a pointer to a data

structured allocated in the heap.

Auxiliary Definitions. To support manipulating environments, I define the following pro-

jections that take as input an environment and return the environment's topmost frame,

descriptor store, and heap, respectively.

Zframe Edesc E E 4 M 7heap E E -+ H

7frame((:: , m, h))a esc((6, m,h)) = d heap (,m,h)) = h

3.2.1 Expression Semantics.

Figure 3-2 presents the semantics of both hygienic and non-hygienic expressions. The

semantics of hygienic numerical and boolean expressions, E and B respectively, retain

the same semantics as that of the core calculus. Non-hygienic numerical and boolean

expression,E and h respectively, build upon the semantics of their corresponding hygienic

forms to incorporate references to heap-allocated data and references to old values.

The semantics of non-hygienic numerical expressions is given by the semantic function

L'1 E E x E -+ Z, which given a pair of environments, returns the value of the expression.

The first frame passed as an argument of the denotion denotes the old environment of

the expression (before execution of a havoc or relax) whereas the second frame denotes

the new environment. Therefore, for each of the denotations that follow, the denotations

of references to old values (e.g., old(x)) operates on the first environment whereas the

denotations of current values (x) operates on the second environment.

77

E E - Z

n (a) = n [true](a) = true [f alse](a) =false

xF(a) = y(x) [E1 cmp E2](a) = [EI](a) cmp [E2](a)

TEl iop E2 (a) = [E I(a) iop TE21(a) [BI lop B21(a) = TB I(a) lop B2 (a)

,-B (a)= true, B (a) =false

,false, Bj (a) = true

k eExE--÷2

[n (E, E)=n

xj(E, (a:: 3, m, h)) =a(x)

old(x)I((a :: 3,m, h), e) = u(x)

S*xj (E, (a :: , m, h)) = h(a (x))
old (*x) ((a :: 8,m, h), E) = h (a(x))

x. fj (E, (a :: , m , h)) = h (a (x) + m(a (x)) (f)
[old(x.f) ((a :: 3,m, h), E) = h(a(x) + m(a(x))(f))

x [ei, ...,e2](E,(a:: c, m, h)) = letl,..., lk) = m(a(x)) in

k-I

h(a(x) + Ek (a) + Ei (a) li)

old(x [e,... e2)((C :: 8, m, h), E) = letlI,..., lk) = m(a(x)) in
k-I

h(a(x) + Ek (a) + Ej (a) li)

$1P iop$2 (E 1, C2) = $iI(Ei ,E2) iop $21 (El,E2)

C] E x E --+ B
true (Ei, E2) = true f alse (el, c2) =false

E1 cmp.$2 1(8 1 ,e 2) = $ 1 (Ei, E2) cmp [E2 1(Ei, E2)

I[I loBP 2(E E E2= A (E ,E2) lop [2[(C , E2)

(ftrue, []J(EI,E2) =false

false, J[J(El E2) = true

Figure 3-2: Hygienic and Non-hygienic Expression Semantics

78

[Bj E E -+ B

The denotation of constants (Qn) and references to local variables (Qx]) have the same

semantics as hygienic expressions as they do not access the heap. For heap-accessing

expressions, the denotation first computes the corresponding address in the heap and then

returns the value of the heap at that location. The denotation of a dereference of pointer to

a primitive type *x is the value of the heap at the address stored for x in the given frame.

The denotation of a reference to a field f of the structured type pointed to by x (x .f) is

the value stored in the heap at the address of the given field. The denotation computes

the address of the field as the sum of the base of the structured type (a(x)) and the offset

of the field from the base of the structure. The descriptor recorded in the descriptor store

at the address of the structure gives this offset: m(a(x))(f). The denotation of an array

reference x [EI, ... , E] is the base address of the array plus the offset of the array element

as computed by fetching the array's length descriptor from the descriptor store ((li, ... ,i))

and computing the offset of the element given the dimension indices E1 ,..., Ek.

The semantics of non-hygienic boolean expressions is similar to that of hygienic boolean

expressions. The difference between the two semantics is that non-hygienic boolean ex-

pressions include non-hygienic numerical expressions in their comparisons operations.

3.2.2 Dynamic Original Semantics.

Figures 3-3 and 3-5 present the dynamic original semantics of the full language's heap

manipulating statements and procedures, respectively.

Judgment. The judgment (s, a) 4, 4 extends the core calculus's dynamic original se-

mantics judgment with a new output configuration structure E < = {ba} U {wr} U (E x

'P x {return, continue}). The new output configuration preserves the ba and wr symbols

that denote failures of assumptions and assertions, respectively, and adds an additional

value to the tuple that records the output of a successful execution of a statement. The

new value is either the symbol return or continue, which denotes whether the evaluation

of s completed by executing a return statement or if statements occurring after s should

instead be allowed to execute (respectively). For clarity of presentation, I use the notation

(E, if) to map by default to the tuple (E, y , continue).

79

(s, a) 4[4 FO-Assign (e , a) 4E n

(x = e, (a:: 3,m,h)) 4o ((a[x F4 n] :: ,h),)
(x = e, E)-o 4

(pt x = e, c) 40

d = desc(t) (a, h') = new(h, size(d))

FO-Alloc-Array

Vi. (ei , a) 4 E ni
a' = a[x - a]

(a, h') = new(h, size((n1, ... , nk)))
M' = m [a - (n, .,nk) I

(at{n} x = new at[e 1,..., ek], (a :: 3, m, h)) 4o ((a':: 3, m', h), -)

FO-Load
(x =

a = a(p) (1) = m(a) n = h(a)
FO-Store-

(e , a) [E n a = a(p) (1) = m(a)

Figure 3-3: Dynamic Original Semantics of Heap-manipulating Statements

FO-Alloc

C0
00

(t* x = new t, (a :: 3, mh)) 4o ((G[x - al :: 3, m[a 1- d],h'), -)

*p, (cy :: 3, m, h)) 40 ((a [x F4 n] :: 3, m, h), -)

a=c(p) d =m(a) n=h(a+d(f))
FO-Field-L

FO-Field-Store
(e, a) 4 E n a = a(p) d = m(a)

(p. f = e, (a :: 3, m, h)) 4, ((a :: 3, m, h[(a+ d(f)) '-+ n]), .)

Vi. (ei , a) 4 E ni

Vi. 0 < ni < 1i

FO-Array-Load

a = a(y)
k-I

no= ik ni li
i=O

(I, ... , ilk) =m(a)

n = h(a+n,)

Vi. (ei, a) 4 E ni

Vi. 0 < ni < li

a = a(x)

(e, a) 4 E ne

(II, ...,Ik) -l ak-i

no=k + Eni li
i=0

FOArrayStore (a.[e ek] = e, (a :: 8, m, h)) 4o ((a :: 3, m, h[(a +no) H+ ne),)

(e, e') = true Vx V X. lframe(E)(X) = rframe(,c)(x)

dom(rheap(E)) = dom(7rheap (E')) Va V A rheap (8)(a) = 7rheap (E') (a)

(havoc (A,X) st (b]j), E) 4r (E',-)

Figure 3-4: Dynamic Original Semantics of Heap-manipulating Statements (Continued)

00

FR-Havoc

oad

(x =., y [elI, ... , ek], (a :: 5, m, h)) 4, ((a [x - n] :: 5, m, h), .)

(x = p .f , (a :: 3, m, h)) 4o ((a [x - n] :: 3, m, h), .)

Standard Assignment. The rule [FO-ASSIGN] specifies the semantics of standard as-

signment to local variables. The semantics are the same as that of the core calculus.

Declarations and Allocations. Declarations declare a local variable whereas allocations

create a new heap-allocated data structure (i.e., a primitive, structured type, or array).

The rule [FO-DECL] declares a local variable of primitive type. Because this rule does

not allocate data in the heap, its semantics is the same as that of standard assignment: it

evaluates e and records the resulting value as the value of x in the current frame.

The rule [FO-ALLOC] allocates a primitive or structured type in the heap. The function

desc E T - D maps a type (such as int or the name of a structured data type) to the

descriptor that describes the type. For primitive types, the descriptor is a single-element

array (see Preliminaries in this Section) and for structured types the descriptor is map from

field names to offsets (see Preliminaries in this Section). Given a heap h and the size of the

type to be allocated, the function new E H x N -+ N x H allocates a new block of memory

within h according to the specified size and initializes the block to 0. The function itself

returns the address a of the block, along with a new heap, h', in which the block has been

allocated. The following axioms capture the semantics of new:

((a, h') = new(h, n)) -> (Vi. (0 < i < n) =+ ((a + i) V dom(h) A (a + i) E dom(h'))

((-,h') = new(h,n)) = (Va. a c dom(h) = a E dom(h'))

((-,h') = new(h, n)) = (Va. a c dom(h) = (Vv. h(x) = v =:> h'(x) = v))

((a, h') = new(h,n)) = (Vi.(0 i < n) z (h(a + i) = 0))

As a final step, the semantics records the address a as the value of x in the frame and

records d as the descriptor for a in the descriptor store.

The rule [FO -A LLOC-ARRAY] specifies the semantics for allocating a k-dimensional

array. The rule evaluates each of the k expressions that specify the length of each dimension

of the array, producing a descriptor (n 1,..., nk) where each 1i corresponds to the length of the

i-th dimension. The rule uses the function new to produce a new heap, h', that reflects the

allocation of the new array at address a. As the final step, the semantics records the address

a as the value of x in the current frame and also records (n,..., nk) as a's descriptor.

82

Stores. In correspondence with the three types of heap-allocated data, there are also three

separate forms for storing to heap-allocated data.

* Primitive Types. The rule [FO-STORE] specifies the semantics of storing a value e

to the memory address pointed to by the pointer p. The rule operates by evaluating

e to a value n and then fetching from the local frame the address, a, that p points to

(a = a(p)). The rule concludes by updating the contents of the heap at address a to

contain n (h[a 1 n]).

" Structured Types. The rule [FO-FIELD-STORE] specifies the semantics of storing

a value, e, into the field f of the structured type pointed to by p. The rule evaluates e

to a value n and then fetches from the local frame both the address of the structured

type (a = a(p)) and the descriptor for the type (d = m(a)). Using the descriptor, the

rule updates the heap at the location a + d(f) with the value n, where d gives the

offset of the field from the base of the structure.

" Arrays. The rule [FO-ARRAY-STORE] specifies the semantics of storing the value of

e into the index ej, ..., ek of the array x. The rule first evaluates each index, producing

for each index a value ni. The rule next loads the address of the array from the

current frame a = a(y) and the descriptor for the array from the descriptor store

((i, ... ,lk) = m(a)). The rule next verifies that the value of each index is within the

bounds of the index's dimension (greater than or equal to 0 and less than the length

of the dimension, 11). Finally, the rule evaluates e, producing a value ne, computes

the offset of the target array element, no, and then stores ne into the address of the

element (h[(a + no) n e]).

Loads. For each of the three types of stores to heap-allocated, there is also a correspond-

ing statement for reading the stored data:

* Primitive Types. The rule [FO-LOAD] specifies the semantics of loading a value

from pointer into the heap. The pointer p is a local variable in the current frame

that contains the address a of the data item. The rule fetches a from the current

frame a = a(p) and then loads addresses value n from the heap n = h(a). The rule

concludes by recording the value of n as the value of x in the current frame.

83

Vi. (ei, a) 4E ni A ac(param(fn, i)) = ni
(code(fn), (a:: a:: 3)) 4, (a',:: a :: 3, m', h', Vp) n = ac(ret)

(x = fn (ei,.. ek), (a :: 3, in, h)) 4, (a [x - n] :: 3, m', h', y)

Vi. (ei , a) 4E ni A ac(param(fn, i)) = ni

(code(fn), (a :: a :: 6, m, h)) 4, (a' :: a :: 3, i', h, y)
4 1 F(fn(ei, ... ,ek), (a :: 3,m,h)) 4o (a :: 3,m',h', yp)

FO-Ret-E (e , a) 4E n

(r et urn e, (a :: 3, m, h)) 4o ((a [ret F-- n] :: 3, m, h), -, retu rn)

(return, E) 4, (E, -,return)
(si, E) 4o (E', Vi, return)

FO-Seq-Ret(SI ; s2 , E) 4o , return)(ba)4 ru (s(as4 (a' 1P2, et) EV e

FO-Wile-et(b , CT) 4B true (s, a) 40 (a', yi , return)
(while (b) {s}, a) 4, (a", y1p, return)

Figure 3-5: Dynamic Original Semantics of Procedures

* Structured Types. The rule [FO-FIELD-LOAD] specifies the semantics of loading

a value of a field f from a structured type that is allocated in the heap and pointed to

by p. The rule fetches the address of the structure pointed to by p from the current

frame (a = a(p)). The rule also fetches the descriptor for the structure, d, from the

descriptor store (d = m(a)). Using the descriptor to provide the offset of the field

(d(f)), the rule fetches the value of the field from the heap n = h(a +d(f)). The rule

concludes by updating the value of x in the current frame to have the value n.

" Arrays. The rule [FO-ARRAY-LOAD] specifies the semantics of loading the con-

tents of an array y at the indices ei, ... ,ek into the local variable x. The rule borrows

much of its logic from that of the rule for array stores. The rule evaluates each of the

indices ei, producing a value ni. The rule then checks that each subindex is within the

bounds of its corresponding dimension. Finally, the rule computes n0, the offset from

the base address of the index element, and records the value of the element from the

heap as the value of x in the local frame.

84

FO-Ret

Procedure Calls. The rules [FO-CALL-E] and [FO-CALL-VOID] specify the semantics

of procedure calls with and without a return value (respectively).The rule [FO-CALL-E]

specifies that evaluation of each of the function call's parameters, ei, evaluates to a value ni.

The function param E ID x N -+ Vars returns for each function fn the variable associated

with its i-th parameter. Using this function, the rule also specifies a fresh frame ac where the

variable for the i-th parameter of the function is bound to the value of the i-th argument, ni.

The function code returns the statements corresponding to the body of fn. Using this

function, the rule specifies an execution of the body offn with the new frame ac as the top

frame on the stack. The results of the rule are 1) the descriptor store and heap from the

body's execution and 2) the value of ret (which is the variable designated for the return

value of a function). The rule records the value of ret for x in the caller's frame.

The semantics specified by the rule [FO-C ALL] is similar to that of [FO-CALL-RETURN]

except that the rule does not fetch the value of ret from the callee's frame.

Procedure Returns. The rules [FO-RETURN-E] and [FO-RETURN] specify the seman-

tics of return statements. [FO-RETURN-E] applies to return statements that evaluate

and return the result of an expression e. The rule evaluates e and assigns its value to ret in

the local frame. Note that the output configuration uses the value return, which denotes that

any statements that may follow this statement should be skipped. The rule [FO-RETURN]

specifies the semantics of return statements that do not return a value; the semantics sim-

ply returns the current environment.

Short-circuiting Execution. The rules [FO-SEQ-RET] and [FO-WHILE-RET] specify

the semantics for skipping statements within a sequential composition or while loop in

cases for which execution of a nested statement reaches a return statement.

3.2.3 Dynamic Relaxed Semantics.

Figures 3-6, 3-7, and 3-8 present the rules of the dynamic relaxed semantics of the full

language. The dynamic relaxed semantics for the full language is conceptually similar to

that of the dynamic relaxed semantics of the core calculus: the dynamic relaxed semantics

differs from the dynamic original semantics only in that relax statements modify the state

of the program (where as in the dynamic original semantics they have no effect).

85

(s, a) 4r 4' FR-Assign (e 4 E n
(x = e, (a : ,m, h)) er((a [x F-- n] :: , h),-)

(x= e, E) 4 r 4
(pt x = e, c) 4r #

d = desc(t)

Vi. (ei , a) 4 E ni
a' = a[x - a]

(a, h') = new(h, size(d))

(a,h') = new(h, size((nl,..., n)))(,M/ = M Ia - (n nk,... I

(at{n} x = new at[eI, ... , ek], (a :: 3, m, h)) 4 r ((a' :: 3, m', h'), -)

FR-Load
(x =

n = h(a)

*p, (a :: 3, m, h)) 4r ((a[x - n] :: 3, m, h), -)
(e , a) 4E nl a = a(p) (1) = m(a)

FR -Store =,
(*p = e, (a :: 3, m, h)) 4r ((a

Figure 3-6: Dynamic Relaxed Semantics of Heap-manipulating Statements

FR-Allo

FR-Alloc-A
00

11

rrIA

(t * x = new t, (cy :: 3, m, h)) 4r ((a [x - a] :: 3, m [a F-- d],I h'), -)

.7

a =- cy(p) (1) = m(a)

:: , h, h[a - n]), -

a = c(p) d = m(a) n = h(a+d(f))
FR-Field-Load

(x = p.f, (a ::S, m, h))

(e , a) 4E n a = a(p) d = m(a)
FR-Field-Storn

(p. f = e, (a :: 3, m, h)) 4r ((a :: 3, m, h[(a + d(f)) - n]), .)

Vi. (ei , a) 4E ni

Vi. 0 < ni < 1i

a = cy(y) (1,.. k m(a)
k-I

nof=lk+k fni-li n = h(a+no)
i=O

FRAayLod(x= y[eI,.,ek], (a :: 3,m,h)) r ((a[x -+n]:: 3,m,h), .)
00

Vi. (ei , a) 4E ni

Vi. 0 < ni < Ii

a = a(x)

(e, a) nE ne

(11, ... , 1k) = m (a)
k-i

i=O
FR-Array-Store (a[e ek = e, (a :: 3, m, h)) 4 r ((a :: 6, m, h[(a+ no) - ne), ')

fff3(E, c') = true Vx
dom(Zheap(e))= dom(7heap (E'))

SX. 7rframe(6)(X) = 7rframe(E')(x)
Va A 7rheap (E) (a) = 7heap(E')(a)

FR-Relax
(havoc (X) st (e), a) lr

(relax (X) st (e), a) 4r 4

Figure 3-7: Dynamic Relaxed Semantics of Heap-manipulating Statements (Continued)

FR-I
(havoc (A,X) st (b), 6) 4r (e',')

4r ((a [x - n] :: 6, m, h), .)

avuc

Vi. (ei, a) 4E ni A ac(param(fn, i)) = ni

FRCallE (code (fn), a:: a:: 8)) r (a':: a :: 8, m', h', V) n =ac(ret)
(x = fn (e 1, ... , ek) , (m: , mh)) 4r (CY[x F-- n] :j m', h', V)

Vi. (ei , a) 4 E ni A ac(param(fn, i)) ni

(code(fn), (a, :: a :: 3,m, h)) r (a' :: a :: ,m', h', Vp)

(fn (e i ,...,ek), (a ::3, m, h)) 4r (a :: 8, m', h', Vf)

FR-Ret-E (e , a) 4 E n

(return e, (a ::,m, h)) 4 r ((a[ret - n] :: 3, m, h), -, return)

FR(Ret(return, E) 4 r (E, -, return)
(si, e) 4r (C',1fI, return)

(b, a) -B Su ; S2, E) 4r (e(, a , return

FR-WileRet(b , a) 4,U true (S, CY) 4r (CF', Y/1, return)

(while (b) {s}, a) 4r (a", 1fl, return)

Figure 3-8: Dynamic Relaxed Semantics of Procedures

x,y, p, ret C Vars

E ::= n x I E iop E

R ::=- x x. f I x [E, ... , El

P::= true f alse E cmp E I P lop P -,P I Vx. P I]x. P

emp R E P*P I P -* P

Figure 3-9: Assertion Logic Syntax

3.3 Original Axiomatic Semantics

I next present the original axiomatic semantics. This section includes presentations of the

original axiomatic semantics's proof rules along with its underlying assertion logic.

3.3.1 Assertion Logic

Figure 3-9 presents the syntax of the assertion logic for the axiomatic original semantics of

the full programming language. The logic's primary additions are the logical connectors of

separation logic that enable the assertion logic to express properties of heap-allocated data

and, moreover, enable proofs that reason about the heap in a modular way [75].

88

Expressions. The language of expressions, E, is the same as that from the core calculus;

expressions include constants, variable references, and integer operations on expressions.

Reference Expressions. To enable the assertion logic to refer to the contents of heap-

allocated data, a reference expression r E R denotes an address of a data item allocated in

the heap. A reference expression x denotes the value of the variable x, which is a pointer to

a primitive type allocated in the heap. An expression x. f denotes the address of the field f

of the structure pointed to by x. A reference x [E, ..., E] denotes the address of the element

at the specified index in the array x. The syntax of reference expressions is similar to that

of non-hygienic expressions (Section 3.1) with the primary difference being that reference

expressions denote an address whereas non-hygienic expressions denote the value stored

in the heap at an address.

Predicates. The predicates of the assertion logic include many of the predicates included

in the assertion logic for the core caclulus's axiomatic original semantics. The predicate

constants true and f alse have the same meaning as in the core calculus. As in the core

calculus, a predicate can also be a comparison between expressions, a logical composition

of predicates, a negation of a predicate, a universally quantified predicate, or an existentially

quantified predicate. The full programming language's assertion logic differs from that

of the core calculus with the inclusion of predicates that express an empty heap (emp), a

singleton heap (R --+ E), separating conjunction P * P, and separating implication (P -* P).

These four predicates and connectors are the main tools introduced in separation logic to

enable modular reasoning about the heap.

3.3.2 Semantics

Expression Semantics. Figure 3-10 presents the semantics of expressions in the assertion

logic. The denotation of expressions in the assertion logic, E, are the same as that for the

expressions in the language (Section 3.2.1). The semantics of reference expressions is

given by the function R C Y x M -+ N that given a frame and a descriptor store computes

the address that corresponds to the reference expression. The denotation of a pointer-

89

[RJ EExM--+N

x(CY, M) = Cy(X)

TX. f I(G, M) = a(x) + m(C(x))(f)
k-I

[x [El,.. E21]I(G, M)-= let(/,., --- 1) = in(a(x)) in Or(X) + Ek (CF) + Ei] (c) 1 i

Figure 3-10: Reference Expression Semantics

P E P(E)

Ttrue = E Tfalse= 0

TEI cmp E2 = { - I[EI](frame (-)) cmp [E2 (7rframe(e))}

TPI 10P P2 j= { I- C PI Ilop EE P21}
,-Pj = Ttruej \ TP

TVx. P = {e I Vn C Z. E P[n/x]1I}

x. PI = {e I In E Z. E E T[P[n/x]]}

emp = {- I dom(zheap(E)) = 0}

R - E = {(a ::,m, h) I dom(h) = {[R (a, m)} A h ([R(a, m)) = TEJ(a)}

Pl*P2 ={a ::3,mh) Ihi,h2 hi Lh2 Ah=h, -h 2A

(a:: 8,m,hi) E TP1] A (a :: 3,m,h2) E TP2 1}

- Q {(a:: 0, m, h2) I Vh -h11h2A

(a :: 3, m, hi) E P -+ (a :: 6, m, h, -h2) C TQJ}

Figure 3-11: Predicate Semantics for Assertion Logic

typed variable x is the value of x as specified in the given frame. The denotation of a

field reference (x.f) is the address of the data structure in the heap (a(x)) plus the offset

from the structure's base address of the field itself (m(a(x))(f)). The descriptor for the

address of the structure gives this offset (m(a(x))). The denotation of an array reference

x [E1 , ... , Ek] is the base address of the array plus the offset of the array element as computed

by fetching the array's length descriptor from the descriptor store and computing the offset

of the element given the dimension indices El,...,Ek. These address calculations are the

same as the address calculations that underlie non-hygienic expressions.

90

Predicate Semantics Figure 3-11 presents the denotational semantics of the assertion

logic's predicates. The semantics of true, f alse, and the other standard connectives of the

assertion logic (i.e., expression comparison, logical connectives, negation, and predicate

quantification) are functionally same as that of the core calculus with the modification that

the denotation is a set of environments P(E) (which now includes a heap) instead of a set of

frames P(E) (Section 2.3.1). The primary point of a departure in the semantics of the logic

is the semantics of the separation logic connectors for reasoning about heaps. To explain

the semantics of these connectors, I first define the following notations that, respectively,

define disjoint heaps (heaps that have no overlapping allocated addresses) and heap union

(the union of the address mappings of two heaps):

h1]h 2 = dom(hi) n dom(h2) = 0

hi -h2 - {(a, n)I(a, n) E hi V (a, n) E h2}

Given these preliminary definitions, heap predicates have one of four forms:

" Empty Heap. The predicate emp asserts that the heap is empty. The denotion of the

predicate is therefore a heap h such that dom(h) = 0.

* Singleton Heap. The predicate R + E asserts that the heap has a single allocated

address at [R with a value of [E . The condition that dom(h) = { } restricts the

domain of the heap to be the single referenced address.

* Separating Conjunction. The predicate P* Q asserts that the heap can be partitioned

into two heaps h, and h2 such that 1) h, and h2 have disjoint domains (denoted by

h Ih 2), 2) P holds for h1, and 3) Q holds for h2.

" Separating Implication. The predicate P -* Q asserts that the current heap h2, when

extended with a disjoint heap h, that satisfies P, satisfies Q.

The separation logic connectives can be difficult to reason about without context. In

the next section a present a more detailed explanation of their semantics and purpose in the

context of the axiomatic original semantics' proof rules.

91

3.3.3 Proof rules

Figures 3-12, 3.3.3, 3-14, and 3-15 present the proof rules for the axiomatic original se-

mantics as adapted to the full programming language. The axiomatic original semantics of

the core calculus and that of the full programming language share similar rules for many

constructs. However, where the two sets of rules differ the most is for the rules that reason

about modifications of the program state - particularly rules for allocating, accessing, and

modifying heap state - and procedure call and returns.

Judgment. Each figure presents a set of rules for the judgment F F-, {P} s {Q}. This

judgment has a similar meaning to the original axiomatic judgment for the core calculus:

for an environment that satisfies P, if execution of s halts then the resulting environment

satisfies Q. The function context F C P extends the standard axiomatic definition to in-

corporate the postcondition of the encapsulating procedure in which the rules are used to

perform verification. This postcondition specifies a predicate over the heap and the func-

tion's return value that must be true at the end of the execution of the function, whether it

be by reaching the end of the function, or by executing a return statement. The rules for

procedure calls make the purpose of the function context clear.

Assignment. The rule for assignment statements ([FOA-ASSIGN]) x = e is the same as

that for the core calculus. Because x is allocated in the frame, and e is a hygienic expression

composed of only references to constants and frame-allocated variables, the rule does not

interact with the heap. Because there is no heap interaction in the statement, the rule is the

same as in the core calculus.

Declarations. The rule [FOA-DECL] specifies the semantics of declarations of primitive

type variables. The dynamic semantics of the statement dictates that the statement dynami-

cally reduces to an assignment statement. The rule therefore reuses the rule for assignment

to specify the statement's semantics.

92

FOA-Assign F {Q[e/xl} x = e {Q}
rF 0 {P}x=e{Q}

FOA-Decl
F-, {P} ptx = e {Q}

FOA-Alloc F -o H e . (x' - 0) -* Q[x'/x]} pt* x = new pt {Q}

FOA-Alloc-Struct

F {Vx' . (

F o {Vx . (

fields(t

f
x' .f -+ 0) -* Q[x'/xl} t* x = new t {Q}

idx((ej,...,ek))

0D
(ii,---,ik)

F Ho {v, . (p - v')* ((p - v') -* Q[v'/xl)} x =*p {Q

FOA-Field-Load H {fV. (P f -+ v') * ((p .f H-+ v') -* Qv'x) }x= p.f {Q}

v') -* Q[v'/x])} x = y [e,..., ek] {Q}

Figure 3-12: Axiomatic Original Semantics for State Modifications

FOA-Alloc-A rli

FOA-Load

j

-e [il ---. ik] - 0) -* Q [x/x] I atWk x = new atlel, ... , ek] M0

FOA-ffayLoadF o { IV' . (y [ei,.. ek] - V) * ((y [e1, ...- , ek] -4

FOA-Store 0 {(p -* -) * ((p -4 e) -* Q)} *p = e {Q} FOA-Field-Store-
F {-o{(p.f --)*((i--+"e) -* Q)} p.f=e {(Q}

FOA-ArrayStore)).
F o {(y7 Ie,-.., ek] - -) * ((yEej, -- , ek1 -- e) -* Q) I Ee I, -- , ek] = e {Q I

P(V,V',V")
A,V'

(0) a -> v') * b[V/old(A)] [V'/AI[V"/old (X)]
a,v'

F Ho {3V, V'". (0) a - v) * (P(V, V', V")
a,v

-* Q[V"/X])} havoc (A,X) st (b) {Q}

Figure 3-13: Axiomatic Original Semantics for State Modifications (Continued)

FOA-Havoc
ON

EV BV,V,". P(V, V', V"}) 7 0

Allocation. The programming languages supports allocating primitive types, structured

types, and arrays in the heap. Each data structure type requires a different proof rule:

" Primitive Types. The rule [FOA-ALLOC] provides the basic general structure for

reasoning about allocating data in the heap. A statement pt x* = new pt allocates

a block of memory of type pt and stores its value into the local variable x. The

rule specifies the semantics of the operation in a backwards-style reasoning form.

Namely, for an assertion Q to hold after the execution of the statement, then the

assertion Vx' . (x' -+ 0) -- Q[x'/x] must hold before execution of the statement. This

predicate uses separating implication, denoting that Q holds after the execution of the

statement if the statement executes from any environment where Q[x'/x] is still true

when the environment's heap is extended with a disjoint heap in which the address

contained in x' is allocated and has the value 0. The variable x' in the predicate

represents the address returned by the allocation procedure as the location of the

allocated data structure. Note that the rule universally quantifies x', denoting that the

allocation procedure non-deterministically returns an address and, therefore, Q must

be true for all possible addresses.

" Structured Types. The rule [FOA-ALLOC-STRUCT] specifies the semantics of allo-

cating structured types in the heap. The rule has the same general structure as that for

allocating primitive types in that it implements a backwards reasoning style in which

the precondition is a separating implication P -* Q[x'/x], where Q[x'/x] denotes the

substitution of the non-deterministically allocated address of the data structure (x')

for x. The predicate P in this case is the iterated separating conjunction

fields(t)
o) x.f - 0.
f

An iterated separating conjunction represents the finite conjunction of a family of

predicates indexed over a domain of iteration [75]. This iterated separating conjunc-

tion uses f as an index (or free variable) inside the predicate x. f - 0. The domain

of iteration, which is the set of values f may take, is in this case the set of fields for

the type t of the allocated structured type. The function fields - T E P(F) returns

95

the set of fields for a given type. For example, if the program declares type T by the

declaration struct T { int x; int y; }, then fields(T) = {x,y}.

Conceptually, an iterated separating conjunction is the same as a finite expansion of

separating conjunctions over the domain of iterations. In the case of a structure with

k fields, the iterated separating conjunction in this rule expands to x. f, h-4 0 * ... *

x.fk - 0. It is also possible to generalize this form to enable axiomatic reasoning

for domains of iteration that are not necessarily statically determined. Let I be a

symbolically represented domain of iteration, then the following axioms characterize

the semantics of iterated separating conjunction:

iGI OP(i) *Q IiC I I2 ci I1OI2= (6P(i)

UP(i) * :)P(i)

The first rule specifies that if an iterated separating conjunction with an indexed pred-

icate P holds for a domain, then P holds for each element of the domain. Additionally,

it the iterated separating conjunction is separated from a predicate Q, then P is also

separated from Q (implying that P has a heap footprint at most as large as the entire

iterated separated conjunction).

The second rule specifies that if an iterated separating conjunction holds for a domain

I, then for any two disjoint subsets of I, iterated separating conjunctions over those

domains are mutually disjoint.

Returning to the discussion of structured types, these axioms ensure that the iteratcd

separating conjunction used in [FOA-ALLOC-STRUCT] dictate that the address of

each field in the structured type is unique with respect to other fields in the type.

Note that the descriptor store determines the exact offset and address of each field

and, therefore, while the predicate asserts that each address is unique it does not, for

example, assert that the fields are contiguously allocated. Instead, the relationship

96

between the construction of the descriptor store's field mappings and the allocation

strategy of the new determine the exact layout in memory of structured types.

* Arrays. The rule [FOA-ALLOC-ARRAY] specifies the semantics of allocating ar-

rays in the heap. The structure and connectives of the rule are similar to that of

the rule for allocating structured types. The primary difference is that the iterated

separating conjunction enumerates over all indices of the array rather than a set of

fields. The function idx E Nk -+ P(NK) maps a descriptor (i,..., k) describing the

lengths of each dimension of the array to a set of tuples where each tuples has the

form (iI, ... , ik) and V, -0 < i, < ik. A key difference between the iterated separating

conjunction form used here versus the form used in the rule for allocating structured

types is that the extent of this iterated separating conjunction is not statically de-

termined. Specifically, while the iterated separating conjunction used for structured

types iterates over a finite, statically determined set of fields (and can therefore be

statically expanded into individual separating conjunctions), the iterated conjunction

used here depends on the dynamically computed lengths of the arrays. The pre-

viously stated axioms for iterated separating conjunction are therefore critical for

reasoning about arrays.

Stores. As with allocations, stores may access either heap-allocated primitive types, struc-

tured types, or arrays.

* Primitives Types. The rule [FOA-STORE] provides the semantics for reasoning

about stores to heap-allocated primitive types. The rule has a similar structure to that

of the rule for loads of primitives. The rule presents a backwards-style reasoning

form in which for a predicate Q to hold at the end of the execution of a statement

*p = e, then the predicate (p -4 -) * (p -4 e -* Q) must hold before. This predicate

asserts that 1) p must point to an allocated address (p H-> -) and 2) that the envi-

ronment must satisfy the separating implication that Q holds when the environment's

heap is extended so that p has the value e. This rule's general structure also translates

to structured types and arrays.

97

" Structured Types. The rule [FOA-FIELD-STORE] provides the semantics for rea-

soning about stores to the fields of heap-allocated structured types. The rule's struc-

ture is similar to that of the rule for stores to primitives types with the only difference

being that each singleton heap predicate refers to a field (p .f + e) instead of a prim-

itive type (p -+ e).

" Arrays. The rule [FOA-ARRAY-STORE] provides the semantics for reasoning about

stores to heap-allocated arrays. As the with the rule for structured types, the rule is

similar to that for primitive types with the exception that each singleton heap predi-

cate refers to an array element (x [ei,..., ek] - e) instead of a primitive.

Loads. Just as with allocation and stores, loads from data allocated in the heap access

either a primitive data type, a structured data type, or an array.

" Primitive Types. The rule [FOA-LOAD] provides the semantics for reasoning about

loads from primitive data types allocated in the heap. The general structure of the rule

also holds for structured types and arrays. The rule has a backwards-style reasoning

form such that for a predicate Q to hold a after execution of a statement x = *p, then

the predicate Ev' . (p -4 V* (p - V -* Q[v'/xl)) must hold before. In this predicate,

the variable V is a fresh variable that does not appear any where in either the state-

ment or Q. Given this definition, the new predicate expresses that an environment

must satisfy the property that there exists some value for V such that 1) the address

given by p has that value and (by separating conjunction) 2) the environment satisfies

the a separating implication that states that when the environment's heap is extended

with an address p that has the value V, then Q[v'/x] holds.

* Structured Data Types. The rule [FQA-FIELD-LOAD] presents the rule for load-

ing from the fields of structured data types allocated in the heap. For a statement

x = p. f, the rule has a similar form to that for primitive loads. Specifically, for Q to

hold after the execution of the statement, the predicate 1v' . ((p.f H- v') * ((p. f -
v') -* Q[v'/x])) must hold before. As in the rule for loads, v' is a fresh variable that

does not appear any where in the rule.

98

* Arrays. The rule [FOA-ARRAY-LOAD] provides the semantics for loading from

an array allocated in the heap. As in the rules for primitive and structured data

types, the rule has a backwards form in which for a predicate Q to be true after the

execution of a statement x = x [e I, ... , ek], then the predicate 1v' . ((x[ej,...,ek]

v') * ((x[ei, ... ,ek] -> v') -* Q[v'/x])) must hold after. The rule's semantics are sim-

ilar to that of the previous two rules.

Havoc. The rule [FOA-HAVOC] provides the semantics for reasoning about havoc state-

ments. The havoc statement of the full language departs from that of the core calculus

(and also from other constructs in the full language) in that it incorporates non-hygienic

expressions that mix both references to local variables and heap-allocated data.

To ensure that a havoc statement executes reliably and is soundly captured by the se-

mantics, the rule specifies three main properties. In a backwards-style reasoning similar to

that for stores to heap-allocated data, for a predicate Q to hold after the execution of the

statement 1) each heap-allocated address referenced in the expression must be allocated

before the execution of the statement, 2) the initial environment must satisfy the separating

implication that if the environment is extended with a disjoint heap satisfying the state-

ment's condition e, then the resulting environment satisfies Q, and 3) it must be the case

that e is satisfiable, therefore ensuring that there exists a satisfying assignment of values to

both the addresses in V and the local variables in X.

The rule specifies the first property via an iterated separating conjunction that enumer-

ates over the set of reference expressions referenced in the havoc statement's condition, A,

paired with a set of fresh variables V, one for each reference expression in A. Each conjunct

asserts that there exists a value v to which the reference expression points to.

The rule specifies the second property via a separating implication, with the predicate

P(V, V', V") specifying the exact condition of a heap that satisfies the havoc statements'

condition. The predicate specifically states that each address referenced in the expression is

allocated and also has a corresponding value v', from the set V' which stand as placeholders

for the value of each address after assignment. In addition, the set of values V' and the set

of values V" - which are placeholders for the old values of the variables in X within e -

satisfy e when substituted for the corresponding items within e.

99

(Pf, Qfn) = y(fn) QfOn H {Pon} s {Q}
O fn(Params){S}

(P, Q) = y(fn) VO < i < k. pi = param(fn, i)

FHo {Pfn[(el,...,ek)/(P1,---,pk)1}fn(eI,...,ek) {Qfn}

FOA-Call-Ret (Pf, Qfr) = y(fn) VO < i < k. piparams(fn, i)
FHf {Pfn[(el,...,ek)/pI,., k)*P} x=fn(e,...,ek) {'.-Qfn[x/ret]*P[x'/x]}

FOA-Return-E F o f[e/ret]} return e Ifalse} FOA-Return 1Fo f F} return Ifalse}

Figure 3-14: Axiomatic Original Semantics for Procedures

The rule specifies the third property via a premise of the rule that asserts that the deno-

tion of P is not empty, therefore indicating that the havoc is satisfiable.

Procedures. Figure 3-14 presents the rule for reasoning about procedures, including pro-

cedure calls, returns, and verification of whole procedures.

To facilitate verifying procedures, I use a condition map y E F = F -* P x P that maps

a procedure namefn c F to a pair of predicates, (Pfi, Qfr), that specify the procedure's pre-

condition and postcondition, respectively. As in their conventional usage, a precondition

specifies a predicate that must hold before execution of the procedure whereas the postcon-

dition is a predicate that must (given verification) hold after the execution of the procedure.

Preconditions and postconditions enable modular assume-guarantee style reasoning.

e Verifying Procedures. Verification of each block of code in a program proceeds

in the context of an encapsulating procedure. The rule [FOA-PROC] specifies the

semantics for verifying each procedure. The rule works by using the precondition

of the function (Pfr) as an assumed predicate for the verification of s such that if s

terminates, then it satisfies the postcondition (Qfr). Note that this rule also additional

adds the function's postcondition to the context of the rule, to the left of the turnstile,

therefore enabling nested return statements to access the appropriate postcondition.

100

* Procedure Calls. The rules [FOA-CALL] and [FOA-CALL-RET] present the se-

mantics for reasoning about procedures that do and do not return a value, respec-

tively. The rule for calls that do not return a value has a simple semantics. Given the

precondition Pfr from the condition map, if the predicate Pf[(el, ... ,ek)/(P1, --- ,Pk)]

holds before execution of the function, then the postcondition Qfr holds after. The

substitution of each of the parameters in the precondition with its actual arguments

adapts the precondition to specifically constrain the values of the arguments. The

semantics of the rule as a whole represents the modular assume-guarantee style rea-

soning of the approach in that the proof obligation in the callee's context is used to

verify that the procedure call's precondition is valid. The proof obligation for each

procedure body is to, therefore, demonstrate - assuming that the precondition is valid

- that the procedure establishes its postcondition.

The rule for calls that return a value adapts the semantics of calls without a return

value. Specifically, the rule uses the precondition from the condition map to assert

that 1) the substituted precondition P [(ej , ... , ek)/(p , ... , Pk)] holds before execution

of the call and 2) the precondition holds separately from another (potentially vacu-

ous) predicate P. By design, the additional predicate P may refer to the value of x,

which will be overwritten by the value of the function after it returns. If the conjunc-

tion of the two predicates holds before execution of the call, then, via a forward-style

of reasoning, there exists some value for the variable v' such that 1) the postcondition

Qfr [ret/x] holds and 2) P still holds when x' is substituted for the old value of x within

P. Note that in a similar fashion as for parameters and actual arguments, the substitu-

tion on the postcondition replaces the distinguished placeholder for the return value

(ret) with the variable (x) in which the return statement stores the return value.

* Procedure Returns. The rules [FOA-RETURN] and [FOA-RETURN-E] specify

the semantics of return statements that do and do not return a value, respectively.

The rule for statements that do not return a value follows directly from the meaning

and purpose of using a postcondition to enable assume guarantee style reasoning.

Specifically, F is the postcondition of the enclosing procedure and if the execution's

101

FOA-Skip H0 {P} skip {P}

FOA-Rex (R1, , X, X', P') = convert(L, e)

P 0o { codom() YP'} relax (X) st (e) {codom($) * P}

FOA-Relate F Fo {P} relate 1: (e) {P}
FOA-Asser F o {P A e} assert (e) {P A e}

FOAAssume P} assume (e) {PA e}

FOA-f o{PAb}si {Q} Fo {PA-,b}s 2 {Q}
P Ho {P} if (b) {s} else {s 2} {Q}

PH0o {P Ab} s{P}
FOA-While r-FIPA sII

FFo {P} while (b) {s}{PA-,b}

PH0o{P}sj{R} FH0 {R}s2 {Q}

FOA-

FOA-Seq F_ ~ IS QFAP0 {P} si;s2 {Q}

b#P =P' PH0o {P'} s{Q'} W Q' +Q
ConseqPH{}

FOA-Frame H0 {P} S {Q}
PF 0 {P*R} s {Q*R}

Figure 3-15: Full Language Axiomatic Original Semantics (Shared)

environment satisfies that postcondition at the site of the return statement, then the

procedure satisfies its postcondition for executions that end at that statement. The

rule reifies this intuition by asserting that F must hold before the execution of the

return statement.

The rule for return statements that return a value - return e - has a similar form

as that for return statements that do not return a value. The key difference between

the two rules is that the rule for a return statement with a returned expression substi-

tutes the statement's expression e for the return value placeholder (ret) in the active

postcondition. This substitution constrains the return value of the return statement

in that context.

102

F -o tpjsfQj

Shared Statements. While the core calculus and full programming language differ in

that the full programming language includes more expressive types and heap-allocated

data, the two languages still share many of the same proof rules. Figure 3-15 presents

the proof rules that the two languages share. Specifically, the two languages share rules

for skip statements ([FOA-SKIP]), assert statements ([FOA-ASsERT]), relate state-

ments ([FOA-RELATE]), assume statements ([FOA-ASSUME]), if conditionals ([FOA-

IF]), while statements ([FOA-WHILE]), sequential composition ([FOA-SEQ]), and con-

sequence ([FOA-CONSEQ]).

Frame Rule. The original axiomatic semantics includes a rule of constancy [FO-CONST]

that enables local reasoning about the effects of modifications of the program state. As dis-

cussed in Section 2.3.2, the rule of constancy states that if the precondition of the statement

s can be decomposed into a conjunction P A R and the free variables in R are disjoint from

the set of variables modified by s, then given a proof that Q holds after the execution of s,

then the conjunction Q A R also holds. The rule of constancy therefore enables proofs to

preserve properties that are not modified by the semantics of a statement.

The full programming language has similar a rule, [FOA-FRAME], that implements

the standard frame rule. By adding pointers to the language, the rule of constancy is only

valid for pure predicates (predicates that refer only to scalar variables allocated in the local

frame [75]) because the rule does not consider the effects of aliasing (when two pointers

point to the same address in memory). For predicates that refer to the value of heap-

allocated data, the frame rule enables proofs that reason locally about heap modifications.

The rule has a similar structure to that of the rule of constancy. The primary difference

is that the rule uses separating conjunction instead of a standard conjunction. Therefore, if

the precondition of a statement s can be decomposed into a conjunction P * R, then given

a proof that starting from an environment satisfying P, Q holds after the execution of s,

then the conjunction Q * R holds after. This rule is sound in that P and R hold over disjoint

heaps and therefore modifications to the heap encapsulated by P do not effect the heap

encapsulated by R.

103

E::= n Ix(o)|Ix(r) IE iop E
R:= x(o) I x(r) I x~o) . f I x(r) .f I x(o) [E,..., El I x(r) [E, ..., 7]
P::= true | false I E cmp E IPlopP -I]x(o) . P Ix(r) .P

|emp0 emp, R H4- E I R Br E Pi * P2 I P1 -* P2

Figure 3-16: Relational Assertion Logic Syntax

3.4 Relaxed Axiomatic Semantics

As in the development for the core calculus, the full programming language also has an

axiomatic semantics for the relaxed semantics of the program. The axiomatic semantics is

relational in that it relates values (of both local variables and heap-allocated data) between

the original program and the relaxed program. A core challenge in designing the relaxed

semantics is augmenting separation logic to refer to two heaps and adapting procedure

verification to also include specifications of relational preconditions and postconditions.

3.4.1 Relational Assertion Logic

Syntax. Figure 3-16 presents the syntax of the relational assertion logic that underpins

the relaxed axiomatic semantics. The syntax of the logic is similar to the structure of the

assertion logic for the original axiomatic semantics, including relational expressions, E,
relational reference expressions, R, and relational predicates for both the standard first-

order connectives and the separation logic connectives. Where the logic's syntax differs

from that of the unary assertion logic is by introducing references to variables in both the

original semantics (x(o)) of the program and the relaxed semantics of the program (x(r)).

The logic also includes separation logic predicates and connectives that assert properties

on the heaps of both the original and relaxed program.

The predicate emp, asserts that the heap of the original program is empty - indepen-

dently of the state of the heap of the relaxed program - whereas emp, asserts that the heap

of the relaxed program is empty - independently of the state of the heap of the original

program. The connective R so E asserts the heap of the original program is a singleton

104

n (co, ar) = n

[x (0)((ToI ar) = ao()
[x(r) (ao, ar) = ar(X)

SlOp 2 I (CFO, r) = 1 I (CoI ar) iOP 2] (Go, r)

R E E x M x E x M -+ N

x(o) (oo, mo, Cr, mr) = (
[x(r) (o, mo, Cr, mr) Ur(X)

x(o) .f (ao, mo, Tr, mr) =let a= x(o)I(qo, mo, or, mr) in v + mo(a)(f)

x(r). f(COMo, ar, mr) =let a =x(r)I(co,mo, Cr, mr) in v +mr(a)(f)

x(o)[1,..., 2]11(aOMo, r,mr) =let a= x(o)(Como, r,mr) in

letl, ... , lk) = mo(a) in
k-1

a + [Ek1 (ao, r) + Ei(1, Ur) -ii

Tx(r) [Ei',...,$2]]I(aOMo, Cr, mr) = let a = x(r) (ao, mo, ar, mr) in

let(l1,..., lk) = mr (a) in

k-1

a + ~Ek](ao, Cr) +E $i](o, Ur) -i

Figure 3-17: Semantics of Relational Expressions and Reference Expressions

heap in which the address R has the value $ (again, independently of the state of the heap

of the relaxed program). Similarly, R -r E asserts that the heap of the relaxed program is a

singleton heap with R containing the value of $. These independent connectives enable the

logic to specify properties of the heap of each program individually, yet still relate values

in the heap through relations expressed over local variables. For example, the predicate

3c (r) . x(o) -,o c(r) A x(r) '-4r c(r) states that there exists some value, here captured by

an auxiliary variable c (r), such that both the value of the address x(o) in original program's

heap and the value of the address x (r) in relaxed program's heap have that same value. Note

that these predicates enable proofs to relate the values of heap-allocated data between the

original and relaxed program even through the data may be allocated at different addresses

in the two programs.

105

truej

El cmp E 21

P lop P2

tix(o) .]

Ex(r) .

temp0j

temp,.1
M $

i1 * P 21

c P(E x E)
= ExE false= O

{(E, Er IV (rframe (co) , frame (Er)) CmP V21 (Kframe (E), 7rframe (Er))}

S{(Eo, Er) (oEr) -or)G lop (Eo, cr) E 2

= truej \ j

= {(o, Er) n G 7, (Eo, Er) E [P [n/x(o)]I
{(Eo, Er) n C Z, (Eo, Er) E T[n/x(r)f

= {(o, Er) dom(rheap (Eo)) = 0

{(Eo, Er) dom(rheap (Er)) = Of

(3o :: 3o, mo, ho), (Or 3 Mr, hr)) I dom(ho) = { ?(GoM, oar, mr)}

ho([R^(Co, mo, r, mr)) =M (oo, Ir)}
= c o :: 3omo, ho), (or r,mr, hr)) I dom(hr) { (o, mO, Gr, mr)}

hr(J ((o, mo, Cr, mr)) = [E(oo, ,r)}
= ((Go :: 3o, mo, ho), (Or 3 r, Mr, hr)) I]hol, ho2, hrl, hr2

hoi 1ho2 A hr1 Ihr 2

ho = h 1 -ho2 Ahr = hrl hr2

((Co So, mo, ho), (Or 6r, Mr, hr)) E I1I
((ro :o, mo, ho2), (Or :r, Mr, hr2)) E T[P2] I

o :: 3 ,mo, ho2), (or :: 5r, mr, hr2)) I Vhoi, hr - (hol ho2 A hr-Lhr2 A

((ao :o, mo , h o 1), (Or : r, Mr, hri)) E [I]^) 4

(((a:: 3, m, hoI -ho2), (a :, m, hri -hr2)) C EI)}

Figure 3-18: Predicate Semantics for Relational Assertion Logic

106

Semantics. Figure 3-18 presents the semantics of the full language's relational assertion

logic. The semantics of the standard predicates and connectives (i.e, true, f alse, com-

parison between expressions, logical connectives, negation, and quantifiers) are similar to

that of the relational predicate semantics of Section 2.3.3 with the primary difference being

that the denotation of a predicate is an element of P(E x E) versus P(E x E). Where the

two semantics differ, however, is with the addition of separation logic connectives to the

relational assertion logic.

" Empty Heap. The predicates emp, and empr assert that the heap of the original

program and the heap of the relaxed program are empty, respectively. Each respective

denotation asserts that the domain of each heap is the empty set. Note that it is

possible to recover a predicate emp that specifies that both heaps are empty by noting

that emp = empo A empr.

* Singleton Heap. The predicates R E and R r E assert that the heap of the orig-

inal program and the heap of the relaxed program are singleton heaps, respectively.

The denotation of R oE (R F4r E) is the set of all pairs of environments for which

the domain of the original (relaxed) program's heap consists only of the address

denoted by R. Further, the value of the original (relaxed) program's heap at R has the

value E.

Note that R and E are relational and that their denotations take as inputs the frames

from both the original and relaxed program. This enables these predicates to link and

relate addresses and values in the their heaps using relationships between variables

of both program's. For example, it is possible to specify that x o) '-4 1 A x(o) e+r 1:

the address contained in x in the original program has the value 1 in both the original

and relaxed programs' heaps. This can, for example, represent a scenario where the

relaxed program has updated x to contain a different address from that of the original

program, but the underlying address is still allocated in the relaxed program's heap

and can be accessed using values of the original program.

Note that for each predicate expressed on the original program or the relaxed pro-

gram, the predicate does not assert any constraint on the other heap. For example,

107

asserting that the original program is a singleton heap does not impose any constraint

on the relaxed program's heap (or vice-versa). This denotation enables the predi-

cates to work in a natural way with other connectives. For example, it is the case

that (RO H-40 EO *Rr H-*r Er) < (RO -+O EO A Rr H-r Er), meaning that singleton heap

predicates between the two heaps do not interfere and, therefore, the denoted heaps

are clearly separated.

Separating Conjunction. The semantics of separating conjunction adapts the unary

definition from Section 3.3.2 to assert the disjointness of original program's heap

between predicates P and P2 and, independently, the disjointness of the relaxed

program's heap between P and P2 . The semantics achieves this by specifying the

denotation of a separating conjunction as the set of environment pairs of the form

(((o :: o, ,mo,ho), (ar :: 3r,mr,hr)). Each environment pair is an element in the de-

notation if there exists two heap pairs (hoI , ho2) and (ho I, ho2) such that:

1. h, 1 is disjoint from ho2

2. hr1 is disjoint from hr2

3. ho is the union of hoI and ho2

4. hr is the union of hri and hr2

5. P holds for the reconstructed environment pair:

((Yo :: So, mo, hoI), (ar :: 3r, mr, hri))

(where hoI and hri replace h, and hr in the original environment pair).

6. P2 holds for the reconstructed environment pair

((ao :: 3o, mo, ho2), (Ur :: 3r, Mr, hr2)).

* Separating Implication. As with separating conjunction, relational separating im-

plication adapts its unary definition to the relational setting. Conceptually, the predi-

cate P -Q Q denotes the set of environment pairs for which extending both the orig-

inal and relaxed program's heaps with new heaps that satisfy P results in a new pair

of environments that satisfy Q. The semantics specifies that an environment pair

108

((co :: 30,me,, ho2), (ar :: 3r, mr,hr2)) is an element of the denotation of P -* Q when

for all heaps ho1 and hri, if ho1 and ho2 are disjoint from ho2 and hr2 (respectively)

and they (along with their respective stacks and metadata stores) satisfy A1, then the

combined heaps hoI -ho2 and hri -hr2must satisfy Q.

3.4.2 Proof Rules

The relational assertion logic gives an expressive underlying logic for specifying relations

between both the local and heap-allocated data of the original and relaxed program. Fig-

ures 3-19 and 3-20 present the axiomatic relaxed semantics of the program, which enables

the development of proofs for these relational specifications.

Judgment. The judgment Qfn, R -r {P} s {Q} specifies that within a relationalfunction

context Q, IRfi, for a pair of environments that satisfy P, if the joint execution of the orig-

inal program and the relaxed program from their respective environments terminates, then

the resulting pair of environments satisfies Q. A relational function context extends the

unary function context from the axiomatic original semantics to include the relational post-

condition specified in the ensures-r clause of the encapsulating function. Specifically,

as in the original axiomatic semantics, Qfi, is the unary postcondition of the encapsulating

function whereas Rfn is the relational postcondition.

Assignment and Declarations. The rule for assignment to local variables follows from

the rule presented in Section 2.3.3 for the relaxed semantics of the core calculus. Local vari-

able declarations, which do not require heap allocated storage, reduce to the semantics of

an assignment (as in the original axiomatic semantics of the full language - Section 3.3.3).

Allocations

Allocation statements in the relaxed semantics of the program adapt the rules from the

original axiomatic semantics, including their use of separation logic connectives, to the

relational domain. An important aspect of allocation in the relational domain is that the

allocated address for each data structure may differ between the original and relaxed pro-

grams. The proof rules therefore need to be agnostic to the choice of the address.

109

FRA-Decd
Qffi, Rf Fr {Q[injo(e)/x(o)] [injr(e)/x(r)]} x = e {}

Qfn, Rfn -r } x= Q}

Qfn, Rfn r {} pt x=e{Q}

Qfn, Rfn Hr {Vx'(o),x'(r). (x'(o) -^OAx'(r) +rO) -* Q[x'(o)/x(o)][x'(r)/x(r)]}pt*x= newpt {Q}

FRA-Alloc-Stru

fields(t)

A EE(0 x'(o).f -O 0)
f

fields(t)
P2 E(Q x'(r).f Fr0)

f

QfnIfr Fr {Vx'(o),x'(r) . (A 2) -- Q[x'(o)/x(o)][x'(r)/x(r)]} t* x= new t {}

injo((eI,...,ek))

P (i1 (0),..ik (0))
FRA-Alloc-Arra

0

Qfn,J fn Hr {Vx'(o),x'(r) . (P A P2) -* O[x'(o)/x(o)][x'r)/x(r)]I at{k} x = new at[el,..., e] {Q}

FRA-Load

FRA-Field-Lo

FRA-Array-Load

P (p(o) - v(o)) -+ (p(r) "r v(r))

Qfrfn Fr {]v(o), v(r) .P (P -* -[v'(o)/x(o] [v'(r)/x(r)])} x = *p {}

P = (p (o) .f 40 v (o)) --+ (p (r) . f Mr v (r))

Qfnfn -r {]v(o), v(r) . -* (^ - [v'(o)/x(o)][v'(r)/x(r)])} x = p .f {Q}
ad

P = (y(o) [injo (e l),-, ino (ek)] '-+ v'(o)) -+ (y(r) [injr(el),...,injr(ek)] +rv'(r))

FRA-Assign

FRA-Alloc -

0) injr((ei,.,ek))
(iI (r),0ik (r))

r 0)

Qfn,Rfn Fr, {v(o), v(r) .P * (P --* Q[v'(o)/x(o)][v'(r)/x(r)])} x = y [el,..., ek] {Q}

Figure 3-19: Axiomatic Relaxed Semantics for State Modifications

FRA-Alloc

-X'(0) [i1 (0),...- , ik (0) 1 4 x'(r) [i I (r), ... , ik (r)]
-
-Y

-

FRA-Stor
QfR, ,. {((p(o) 1o -) (p(r) *r -)) * (p(o) No injo(e) A p(r) +r injr(e)) -* Q)} *p = e {}

FRA-Field-Stol
Qf, R- F. {((p(o) .f -o -) - (p(r).f , -)) * ((p(o) .f -4 injo(e) A p(r) f +r inj,(e)) - ^ Q)} p.f = e {}

PA (y(o) [injo(el),..., injo(ek)] o -) - (y(r) [injr(el),..., inr(ek)] Hr -)

FRA-Array-Stor
P2 - (y(o) [ino(el),..., injo(ek) -o e) A (y(r) [inr(e),.., inr(ek)] 4r e)

Qfn, n r f{P1 * (P2 -*Q)} y [e1,..., ek] = e fQ}

A(O),V(O)
JR(AV) (a (o) v(o))

a(o),v(o)

AV'
- (0 a - v')* b[V/old(A)] [V'A] [V"/old(X)

a,v'

S(V, V', V") = (injo(P(V, V', V")) A inj,.(P(V, V', V")))

A(r),V(r)
(0 a(r) H+ v(r))
a(r),v(r)

] I'(V") Q[V"(o)/ X (o)] [V"(r)/X (r)]

[]V(r), V'(r), V"(r). inj(P(V, V', V"))I # 0

Qf, Rf F,.{ r "(r)(. N)J (A, V)* ($ -* O')} havoc (A,X) st (b) {Q}

A(r),V(r)
R(AV) (0 a(r) -+ v(r))

a(r),v(r)

P(V, V', V") =-

FRA-Relax

A V'
(a - v') * b[V/old(A)] [V'/A] [V"/old(X)]

a,v'
fEfV(r), V'(r), V"(r). inj,(P(V, V', V"))] # 0

Figure 3-20: Axiomatic Relaxed Semantics (Continued)

P(V, V', V")

FRA-Havo

QfnRfr Hr {EV(r), V'(r), V"(r). ^ (A, V) * (inj,(P(V, V', V")) - I[V"(r)/X(r)])} relax (A,X) st (b) {}

e

e

I

c

Primitive Types. The rule [FRA-ALLOC] specifies the semantics of allocating primitive

types in the heap. The rule uses a backwards-style formulation to state that for Q to hold

after the joint execution of the original and relaxed program, then for all possible addresses

of the allocated type in the original program, x'(o), and the relaxed program, x'(r), the

initial environment pair must satisfy Q (with appropriate substitutions of the new addresses

for the original and relaxed values of x) when their respective heaps are extended with the

new addresses.

Structured Types. The rule [FRA-ALLOC-STRUCT] specifies the semantics of allocat-

ing structured types in the heap. As in the rule for primitive types, the rule also uses a

backwards-style formulation and a similar structure. The primary difference is that instead

of allocating and initializing a single address, the rule uses iterated separating conjunction

to allocate and initialize the entire structured type.

Arrays. The rule [FRA-ALLOC-ARRAY] specifies the semantics of allocating an array

in the heap. The rule has a similar structure to that for structured types, using iterated

separating conjunction to allocate and initialize the entirety of the array.

Loads

Loading from heap-allocated data structures in the relaxed axiomatic semantics has a sim-

ilar basic structure as that in the original axiomatic semantics. A key point, however, is

that loads require in the precondition that each data structure is allocated. This ensures

that the program does not access memory that has not been allocated or is outside of the

bounds of an array. While this check is explicitly required (via a proof) in the axiomatic

original semantics, the principles of transferring properties from the original program over

to verify properties of the relaxed program enables a relational verification of this proof

obligation just as was done for verifying assertions in the axiomatic relaxed semantics of

the core calculus.

Primitive Types. The rule [FRA-LOAD] specifies the semantics of loads from heap-

allocated primitive data types. The rule uses a backwards-style formulation to specify that

112

for a predicate Q to hold after the joint execution of the both the original and relaxed

program, then the heaps of the two programs must be able to be decomposed into two

parts: 1) a part for which x in the original program points to a value v(o) and x in the

relaxed program points to a value v(r) and 2) a part that when extended with the given

values for both x in the original and relaxed program, satisfies Q (when substituted with

the appropriate values for x). Note that PI represents this first part of the heap. However,

note that PA relaxes the requirement that x must point to a value by using an implication.

As with standard assertions in the relaxed axiomatic semantics of the core calculus, my

relational verification approach enables proofs to use properties about the original program

as assumptions.

Structured Types. The rule [FRA-LOAD-STRUCT] specifies the semantics of loads from

the fields of heap-allocated structured types. As with loads from primitives types, the rule

uses a backwards-style form and also incorporates the ability of the relational verification

approach to assume that the structured type pointed to by x (and the associated field f) are

allocated in the original program.

Arrays. The rule [FRA-LOAD-ARRAY] specifies the semantics of loads of the elements

of heap-allocated arrays. This rule's form is similar to that of loads from heap-allocated

structured types, with the primary difference being that the rule reasons about an element

indexed by (ei, ... , ek) versus a field f.

Stores

As with loads from heap-allocated data, the axiomatic semantics of stores to the heap cap-

tures two aspects of their behavior 1) the address to be written must have been previously

allocated in the program and 2) the postcondition after the statement must reflect the up-

dated values of the heap.

Primitive Types. The rule [FRA-STORE] specifies the semantics of stores to primitive

types allocated in the heap. These stores have a similar backwards-style reasoning form as

113

those of the axiomatic original semantics. For a property Q to hold after the joint original

and relaxed execution of the statement p* = e, p must be allocated before the execution

of the statement in the relaxed program. Note that as in the rule for the loads, the rule

specifies this requirement with the predicate (p(o) '-4 -) -+ p(r) - -, which enables a

relational verification approach that assumes that p is allocated in the original program to

assist with verifying that p is allocated in the relaxed program. In addition to the allocation

requirement, the initial environments must separately satisfy the separating implication that

states that if the heaps of the environments are extended such that the address of p in both

the original and relaxed program contain the value of e (when evaluated in the respective

original and relaxed environments), then Q holds.

Structured Types and Arrays. The rules [FRA-FIELD-STORE] and [FRA-ARRAY-

STORE] specify the semantics of stores to the fields of heap-allocated structured types and

the elements of arrays, respectively. The semantics for these operations is similar to that of

stores to primitive types with the main exception being that the rules either access a field,

p .f, or an array element, y [ei, ... , ek]

Havoc and Relax

The rules [FRA-HAVOC] and [FRA-RELAX] present the semantics of havoc statements

and relax statements, respectively. The relaxed semantics of the havoc statement adapts

that of the core calculus in a similar fashion as the original semantics of havoc in the full

language adapts that of the core calculus. Specifically, the rule asserts that the addresses

referenced by the havoc are allocated before execution of the statement. The pair of envi-

ronments satisfies the separating implication that asserts that the pair satisfies Q when each

environment is extended with a disjoint heap that satisfies the havoc statement's condition.

And, finally, the statement's condition must be satisfiable. Note that as in other rules, the

rule leverages the assumed properties of the original program. Specifically, the rule lever-

ages the assumption that each referenced address is allocated in the original program to

verify that each address is allocated in the relaxed.

114

QffNA Hr { A injo(b) A injr(b)} si {}
QRNfn Hr { A -,ino(b) A ,inJr(b)} s2 {S}

Hr(o) {P A inijo(b)} si { 1 } Hr(r) { 1 A-,inj0 (b)} s2 {Q}
Afr(o) {P A -,injo(b)} S 2 {R 2 } I r(r) {R2 A injo(b)} si {Q}

FRA-If
QfrIfn Hr {JP} if (b) {sI} else {S2} {Q}

Ofn, Rr Hr {P A injo(b) A inJr(b)} s i {P}

F h r(o) {P A inJo(b) A 'inJr(b)} si {} Hr(r) {P A ,inJo(b) A inJr(b)} si {P}
Qfrfn Hr {I } while (b) {s} {P A -injo(b) A ,inJr(b)}

Figure 3-21: Relaxed Axiomatic Semantics (Control Flow)

The rule for relax statements has largely the same structure as that for havoc state-

ments with the exception being that a relax statement only modifies the state of the relaxed

program, whereas the state of the original program is unmodified.

Control Flow

Figure 3-21 presents the rules for control flow (if statements and while statements) in the

relaxed axiomatic semantics. Specifically, in the core calculus, if the control flow of the

original and relaxed program diverge at a control flow statement, then the proof rules use the

rule [diverge] to project the relational properties between the original and relaxed program

down to unary properties that hold individually for the original and relaxed program (and

do not relate the semantics between the two programs). The rules presented here instead

use a loosed axiomatic semantics that preserves the relations between an original (relaxed)

program when the relaxed (original) program modifies its own state while the original

(relaxed) program's execution is paused.

Loosed Axiomatic Semantics. Figure 3-22 presents the rules of the loosed axiomatic

relaxed semantics judgment Hr(r) {P} s {Q}. The intended meaning of the judgment is the

semantic judgment Pr(r) {I} s {Q}, which states that for all pairs of environments (E, Er)

that satisfy P, if evaluation of s from Er under the dynamic relaxed semantics produces an

environment Er, then the pair of environments (e, er) satisfies Q.

115

FLAR-Assign
Qfn, Rfn r(r) {0[injr (e)/x(r)]} x = e {0}

FLAR-Alloc

F]LAR-Decl

Qfn, Rfn Vr(r) {Vx'(r) . (x'(r) -+r 0) -* Q[x'(r /x(r)]} pt* x = new pt {}

FLAR-Alloc-St

FLAR-Alloc-Array

fields(t)

p fr 0)

Qfn, Rfn Hr(r) {Vx'(r) . P -* [x'(r)/x(r)]} t* x = new t {}

(injr ((e I---ek))
S i O x'(r)[il(r),..., ik(r)] H-r 0

Qfn , fn Hr(r) {Vx'(r) . -* Q[x'(r)/x(r)]} at{k} x = new at[ei, ... , ek] {$}

p -p(r) -+r v(r)

Qfn, Rfn r(r) {fv(r) .P*(P-* Q[v(r)/x(r)])} x= *pf{}

p(r) .f - r v(r)
FLAR-Field-Load

FTA-Arr -Lad--

Qfn, Rfn r(r) {]v(r) . P* (P -* Q[v(r)/x(r)])}x=p.f {Q}

p y(r) [injr(el), ... , injr(ek)] -+r v(r)

ffn r(r) {v(r) $* (-* [v(r)/x(r)])x = y[el, ... , ek] {Q}

Figure 3-22: Loosed Axiomatic Relaxed Semantics

Qfn, fn Hr(r) {P} x = e {$}
Qfn, Rfn r(r) {P} pt x = e {}

FLAR-Load

r"t

y7

FLAR-Store
Qfn, Rfn Hr(r) {(p(r) Hr -) * ((p(r) er injr(e)) -* Q)} *p = e {Q}

FLAR-Field-Store
Qfin, Hr(r) {(p(r) .f r -) * ((p(r) .f 4r injr(e)) -*)} p. f = e I Q

A, (y(r) [inr(e),..., injr(ek)] r -)
P2 -P (y(r) [inr(el), -, inir(ek) r e)

FLAR-Array-Store
QfrREr r(r) {i *(P2 -*)}y [el,.., ek] -e{Q}

A(r),V(r)
R(A,V) 0 G a(r) - v(r)

a(r),v(r)
AV'

P(V,V',V") (I a e v') * b[V/old(A)] [V'/A] [V"/old(X)]
a,v

FLAR-Havoc
Qfn, Rfn Hr(r) {3V(r), V'(r), V"(r). ^ (A, V) * (- havoc (A,X) St (b) {}

QfnRfn Hr(r) {P} havoc (A,X) st (b) {Q}

Qfn, Rfi? r(r) {P} relax (A,X) st (b) {}

FLAR-IF

Qfn, fR r(r) {PA injr(b)} si {} Qfn, RfR Hr(r) { A 'ir(b)} S2 {Q}

FLAR-WHILE

QfnRfn Hr(r) {PAlinJr(b)} s {P}

Qfn, Rfn -r(r) {P} while (b) {S} {P A ,jinjr(b)}

FLAR-SEQ

QffiJfin Hr(r) {P} sI {a}
Qfrfn Hr(r) {} si ; S2 f{I}

FLAR-CONSEQ

-#-Q QfrRfn r(r) {} s {R}

QfiRn fir(r) {V} s {S}

Figure 3-23: Loosed Axiomatic Relaxed Semantics (Continued)

FLAR-Relax

Q'(V") = Q[V"(r)IX (r)]

QfnRfn -r(r) {P} if (b) {sI} else {S2} {Q}

Qfn , Rfn Hr(r) {Q} S2 {J}

-

$(V, V', V") = inj,.(P(V, V', V")) WV(r), V' (r), V"/(r). inj,.(P(V, V', V"))M 7 0

This definition of the loosed axiomatic relaxed semantics is semi-relational in that it

relates the dynamic relaxed semantics to another fixed environment E. For the purposes

of defining the meaning of well-behaved relaxed programs independently of the original

evaluation, this extra environment is not immediately necessary. However, this definition

enables us to also use this semantics when reasoning about cases where the relaxed evalu-

ation of the program diverges from the original evaluation. In these cases, e refers to the

state of an original evaluation of the program at the point at which they diverged.

There is a one-to-one correspondence between the rules of the core calculus's inter-

mediate original semantics (Section 2.3.3, Figure 2-11) and the loosed axiomatic relaxed

semantics. Specifically, each rule in the loosed axiomatic relaxed semantics is a relational

variant of a corresponding rule in the axiomatic intermediate semantics For example, con-

sider the following statements:

* Assert. The rule for the assert (b) statement [FLA-ASSERT] mimics that of the

axiomatic intermediate semantics. If a pair of environments satisfies P before evalu-

ation of the statement, then if evaluation under the dynamic relaxed semantics does

not yield wr, then the pair of environments satisfies P A inj,(b). The condition injr(b)

must also hold in the precondition of the rule to prevent evaluation from yielding wr.

" Assume. The rule for the assume (b) statement [FLA-ASSUME] also mimics that

of the axiomatic intermediate semantics. When a developer writes an assume (b)

statement in the relaxed programming model, it is assumed to be valid for the orig-

inal program, before considering relaxation. After relaxing the program, such an

assumption may no longer be valid and, therefore, a well-defined relaxed program

must establish that it does not interfere with the validity of b. To establish this, the

rule requires that inj,(b) hold in the precondition of the rule, preventing evaluation

from yielding ba.

" Relate. By design, the loosed axiomatic relaxed semantics does not contain a rule for

the relate : (b) statement. The role of the relate statement is to note and verify

a relational assertion between the dynamic original and relaxed evaluations at the

point at which it appears. Because the loosed axiomatic relaxed semantics does not

118

relate the current point of the relaxed evaluation to the current point in the original

evaluation, the relate statement does not have a meaning under this semantics. As

with the intermediate semantics, the restriction prohibits relate statements from

appearing under diverged control flow.

If statements. The rule for if statements ([FRA-IF]) uses the loosed axiomatic seman-

tics to provide a semantics. The splits reasoning about this semantics into four cases:

1. The if statement's condition evaluates to true in both the original and relaxed ex-

ecutions of the program - In this case the rule uses the standard judgment for the

relaxed axiomatic semantics to establish that the statement's postcondition, Q, holds

at the end of the original and relaxed execution.

2. The if statement's condition evaluates tofalse in both the original and relaxed exe-

cutions of the program - In this case the rule again uses the standard judgment for

the relaxed axiomatic semantics to establish that Q holds at the end of the executions.

3. The if statement's condition evaluates to true in the original execution of the pro-

gram but evaluates tofalse in the relaxed execution - In this case, the control of the

two executions diverges. The rule therefore relies on the loosed axiomatic semantics

to characterize the two program's behavior. Specifically, it uses the loosed axiomatic

original semantics to specify that the original execution of s, satisfies an intermedi-

ate condition R, and then uses the loosed axiomatic relaxed semantics to specify that

from a pair of environments satisfying R1, the relaxed execution of S2 yields a pair of

environments that satisfy Q.

4. The if statement's condition evaluates to false in the original execution of the pro-

gram but evaluates to true in the relaxed execution - This case mimics the pre-

vious case, except that the original program executes S2 and the relaxed program

executes si.

While statement. The rule for while statements ([FRA-WHILE]) uses a similar ap-

proach as the rule for if statements to decompose the reasoning about control divergences.

119

The rule factors the reasoning into three cases:

" The while statement's condition evaluates to true in both the original and relaxed

executions - In this case, the control flow between the two executions is conver-

gent and, therefore, the rule uses the standard relaxed axiomatic judgment to verify

the lockstep execution of the original and relaxed program preserves the loop invari-

ant, P.

" The while statement's condition evaluates to true in the original program and evalu-

ates tofalse in the relaxed program - In this case the control flow of the original and

relaxed executions diverge. Specifically, the relaxed execution has finished executing

the loop. To handle this case, the rule uses the loosed axiomatic original semantics

to establish the continuation of the relaxed execution preserves the loop invariant.

" The while statements' condition evaluates to false in the original program and eval-

uates to true in the relaxed program - In this case the control flow of the original

and relaxed executions again diverge. As with the previous case, the rule uses the

loosed axiomatic rules to provide a semantics. Specifically, the rule uses the loosed

axiomatic relaxed semantics to establish that the continued execution of the relaxed

program preserves the loop invariant.

Loosed Axiomatic Original Semantics. I also introduce a corresponding loosed ax-

iomatic original semantics r(o) {} s {}. Similar to the loosed axiomatic relaxed se-

mantics, the intended meaning of the judgment is the semantic judgment -=r(o) {} s {Q},
which states that for all pairs of environments (E, e) that satisfy P, if evaluation of s from

E, under the dynamic original semantics yields an environment e , then the pair of environ-

ments (4,) satisfies Q.

Procedures

Procedures introduce several more key points at which a relational reasoning approach can

assist in developing proofs for the relaxed semantics of the program. Specifically, modular

120

(Pfn, PfQf, r) = O (fn)

QHr {(inj0 (P) -9 inlJr(Pfn))^APfn}fil(ei, ...,ek) {(injo(Qfn) -+ injr(Qfn)) A Qfn}

FRA-Call-Ret

(Pn, P fn, n) (f) P Pfn[(ei, ... , ek)/P1,..., Pk)] Q = Qfn [X/ret]
T =- injo(Q) -+inj,.(Q)^ Afn[x(o)/ret(o)][x(r)/ret(r)]

QPCI pc -r { (injo (P) -+- injr (P)) A fn * I} x = fn (e ,..,ek) { 3x'(o),e x'(r) . T * P x'(o)/Ix(o)][x'(r)/Ix(r)]}I

FRA-Return
, HRpc Er {(injo(Qpc) e injr(Qpc)) A RPc} return {false}

Q1 = Qpc[e/ret]
FRA-Return-E

(Pfnfn, Qfr 10) = y(fn)

QHpc pcr I(injo(Qpc) - injr(Qpc)) A R'c} return e {false}

Qfn;Qfn Hr {(Pfn .Pfn)^fn} s {(injo(Qfn) -+ inJr(Qfn)) $fr}
H fn(Params){S}

Figure 3-24: Relaxed Axiomatic Semantics (Procedures)

FRA-Call

FRA-Proc

P - Pfn [(eII ... , ek) / (P , ...- , Pk)]I

P~c Rpc [injo (e) /ret (o)][inj,.(e) /ret (r)]

(Pf,nI Qfn, I -) =- y(fn) P a Pfn[(ei,...,ekW/Ph, ---, Pk)]
FLAR-Call

Qpc1Rpc cr(r) In r (Pj, --fn-(e1 , ek) {lflr(Qfn)}

(PfnIPfn,0fi7 O)= 'n(fn)
FLA-Cll-etP - Pn[(ej 1-,... ekW|PI, --- , Pk)] Q = Qfn [X Ire t]

QpcIpc r(r {r e 1i, --. ,ek) {I x'(r) . Q *^ X (r) Ix(r

true 4 f
FLAR-Return

QpcRpc Hr(r) {r(Qn)} return {f alse}

Afn jno (e) / ret(o) I [inlr (e)/ret (r) true $
FLAR-Return-E

Qpc, Rpc Kr(r) {ninr(Qfn[e/ret])} return e {f alse}

Figure 3-25: Loosed Relaxed Axiomatic Semantics (Procedures)

verification of procedures may require additional relational preconditions and postcondi-

tions that are verified on entry to the function. Second, verifying that the relaxed execution

of the program satisfies a function's precondition is another point at which a proof may

assume that the original program has been verified and, therefore satisfies its specification.

Third, modular relational verification of a procedure dictates that the body of an invoked

function is verified using the same proof methodology. Therefore, while a traditional verifi-

cation approach ensures that a function satisfies its postcondition, the relational verification

approach ensures that the function satisfies its postcondition - assuming that the original

program also satisfies its postcondition. These key properties are apparent in the rules for

verifying procedures.

Procedure Calls. The rules [FRA-CALL] and [FRA-Call-Ret] specify the semantics of

procedure calls without a return value and procedure calls with a return value, respectively.

[FRA-CALL] illustrates how the three key concepts of verifying procedures work together.

The relational specification map 7 E F -+ P x P x P x P gives the set of specifications

for a procedure, which includes its standard unary precondition Pf, its relational precondi-

tion Pf, its standard unary postcondition Qfr, and its relational precondition Qfr.

The standard unary precondition corresponds to the precondition used in the axiomatic

122

original semantics and therefore (given a verification using the axiomatic original seman-

tics) holds in the original program. Mapping this precondition to the relational domain

using a relational verification approach means that the precondition is assumed to hold for

the original program and, using this assumption, is verified to hold for the relaxed program.

[FRA-CALL] specifies this property by including in the precondition for the statement the

predicate inj(P) - injr(PJ)-

The relational precondition i, specifies a precondition for the relation between values

in the original program and the relaxed program on entry to the function. This relation may

for example, express that the values between the two programs are the same, or, bounded

by small a quantifiable distance. These relations can then enable relational verification

inside the body of the function or enable verifying relational properties about the output

of the function. For example, the relational precondition may state that the difference in

value of an input x to a function differs by at most 10% between the original and relaxed

program and, therefore, enable a proof that the outputs of function's computation differ

between the two programs by at most 15%. The relational precondition must hold on entry

to the function and therefore [FRA-CALL] specifies this requirement by adding it to the

precondition for the rule.

Similar to the standard unary precondition, the unary postcondition corresponds to the

postcondition used and verified in the axiomatic original semantics and therefore (given a

verification using the axiomatic original semantics) holds in the original program. Relying

on the relational reasoning approach to provide a semantics, this postcondition is assumed

to be true after the execution of the function in the original program, whereas the postcon-

dition is verified to be true in the relaxed program. [FRA-CALL] specifies this semantics

by including in the postcondition of the statement the predicate inj0 (Q) - inj,(Q).

The relational postcondition Qfr specifies a constraint on the relation between values

in the original program and relaxed program after the function's execution. As with the

relational precondition, this postcondition may for example specify a quantified difference

between a variable in the original program and the relaxed after execution of the function.

The relational postcondition holds for all joint executions of the body of the function and

therefore also holds after the execution of the function call.

123

The rule for calls that return a value, [FRA-CALL-RET], extends the semantics of

[FRA-CALL] to include additional substitutions on the function's two postconditions to

syntactically replace the symbolic name of the function's return value in its specification

(ret) with the concrete name of the variable that receives the function's result.

Returns. The rules [FRA-RET] and [FRA-RET-E] specify the semantics of return state-

ments. As outlined in the discussion of the properties that hold after calling a function,

verifying a return statement has two verification obligations: 1) verify that the relaxed pro-

gram satisfies the function's unary postcondition, assuming the postcondition is true in the

original program, and 2) verify that the joint execution of the original and relaxed program

satisfy the function's relational postcondition.

The rule [FRA-RET] specifies the first condition by including in the precondition of

the statement the predicate inj0 (Qfr) -- inj,.(Qfr). The symbol Qfr denotes the unary post-

condition of the function as has been added into the verification context by the proof rules

for the logic.

[FRA-RET] specifies the second condition by including the relational predicate fg in

the precondition of the statement. The symbol fi denotes the relational postcondition of the

statement as has been added into the verification context by the proof rules for the logic.

Similar to relationship between the rules for function calls with and without return val-

ues, [FRA-RET-E] extends the semantics specified in [FRA-RET] for return statements

that return a value. [FRA-RET-E] specifically substitutes each occurrence of the symbolic

name of the function's return value for the return statement's expression.

Procedure Verification. The rule [FRA-PROC] specifies the overall semantics for veri-

fying a procedure declaration. The first acquires the function's preconditions and postcon-

ditions from the specification map. The rule then requires a verification of the function's

body within a context Q;Qfr (which provides the necessary postconditions for verifying

return statements within the function's body). The verification specifically requires that

from a pair of environments such that 1) Pg holds independently for both the original and

relaxed program's environments and 2) the pair of environments satisfies the relationship

Pf1 , then after execution of the function, 1) Qfn holds independently for both of the resulting

original and relaxed environments and 2) the pair of environments satisfies Qgf.

124

Loosed Axiomatic Semantics. Figure 3-25 presents the rules for the loosed axiomatic

semantics of procedure calls and returns. The rules share the same logic as that for the

relaxed semantics except for two major points because the semantics captures the behavior

of the relaxed program after its control flow has diverged from that of the original pro-

gram: 1) the rules do not use properties of the original program as assumptions (properties

must hold outright) and 2) relational postconditions for the procedure must be tautologies.

The second condition captures the fact that the because the relaxed program and original

program are not at the same program point, the relation specified as the procedure's post-

condition is not well-defined. The restriction that the postcondition must be a tautology

therefore means that return statements for procedures with relational postconditions must

not appear under diverging control flow constructs (unless the postconditions are trivial).

3.5 Properties

The proof rules for the full language provide many of the same properties and guarantees

that hold for the core calculus. In this section, I present these definitions as adapted to the

semantics of the full language.

3.5.1 Axiomatic Original Semantics

The proof rules of the axiomatic original semantics are sound with respect to the dynamic

original semantics and also guarantee that verified programs do not fail assertions or access

invalid memory.

Lemma 10 (Soundness).

If yH0 fn{s}, then y=ofn r{s}

This lemma states that given a proof of the correctness of a procedure in the program,

then execution of that procedure from any state that satisfies the procedure's precondition

results in a final state that satisfies the procedure's postcondition. Note that that semantic

guarantee also encompasses executions the reach return statements and therefore may not

necessarily execute the entirety of s.

125

Lemma 11 (Original Progress Modulo Assumptions).

If y-, fn{ s }, and e h= P, and (s, e) 4, 0, then # wr

This lemma states that given a proof for a procedurefn, then from all environments that

satisfy the procedure's precondition, if execution of the procedure's body terminates, yield-

ing an output configuration 0, then the execution does not encounter an error (0 # wr).

Note that this definition does not preclude the execution from violating an assumption. The

additional reasoning required to establish this judgment - when compared to the core cal-

culus - are the steps that reason about heap accesses. Each rule for a heap access includes a

guard in the precondition the ensures that the address is allocated and therefore the program

does not encounter an error.

3.5.2 Loosed Axiomatic Relaxed Semantics

The loosed axiomatic relaxed semantics enjoys the same properties as the intermediate

axiomatic semantics from the core calculus: soundness and progress.

Lemma 12 (Loosed Progress).

If Q~c, Hpc Fr(r) {P} s {Q}, then Qe, Arrr {} s {Q}

This lemma states that the loosed axiomatic relaxed semantics is sound. The reasoning

behind this lemma is similar to that of the intermediate axiomatic semantics of the core

calculus with th primary exception being that the assertion logic is relational.

Lemma 13 (Loosed Progress).

If QPC H R r(r) {P} s {Q}, and (o, er) |- P, and (s, Er) 4r 0r, then -'err(4r)

This lemma states that the loosed axiomatic relaxed semantics establishes full progress

for the relaxed program. The reasoning behind this lemma is also similar to that of the

intermediate semantics in that the proof rules assert that each assertion in the program must

be valid for the relaxed program (without the ability to assume that they are valid in the

original program).

126

3.5.3 Relaxed Axiomatic Semantics

The relaxed axiomatic semantics of the program is sound (with respect to the joint execu-

tion of the original and relaxed program), ensures the soundness of relate statements, and

- in combination with the original axiomatic semantics - ensures that the relaxed program

does not violate any assertions or access invalid memory.

Lemma 14 (Soundness).

If Y fr fn { s }, then 7 =rfn { s}

This lemma states that given a proof for a procedure, for all pairs of environments that

satisfy the precondition of the procedure, if the executions of the original program and the

relaxed program from their respective environments in the pair terminate, then the resulting

environments satisfy the procedure's postcondition.

Theorem 15 (Soundness of Relational Assertions).

Y Fr fn { s } and (Eo, Er) = P, and (s, e,) 4, (e,, v1), and (s, er) 4r (E', V2),

then F H 4' ~ i 2

This lemma states that given a proof for a procedure, then the pair of observation lists

generated by executions of the original and relaxed program from environments that sat-

isfy the procedure's postcondition satisfy the program's relational assertions. This lemma

extends the relational soundness of the core calculus to include relations over the heaps of

the original and relaxed program.

Theorem 16 (Relative Relaxed Progress).

If y F fn { s } and (Eo, Er) k- (P -P), and (Eo, Er) N P, and (s, e,) 4, 0 , and -err(O),

and (s, er) 4 r or, then -err(Or)

A main theorem for the relaxed program is it an enjoys a relative progress property.

Namely, for all pairs of environments that satisfy a procedure's precondition, if execution

127

of the original program from its respective environment terminates not in error, then the

relaxed program also does not encounter an error. This theorem follows directly from the

soundness of the logic and the soundness of the relational verification approach adopted

for each assertion in the relaxed program, including both assert statements and internal

assertions, such as ensuring that each access to heap-allocated memory is valid.

Theorem 17 (Relaxed Progress).

If y F-o fn { s }, and y r fn { s },(oEr) P P), and (Eo, r) and (s, eo) 40 ,

and bo # ha, and (s, Er) r 0r, then -,err(or).

The relaxed progress theorem combines the proof rules of the original axiomatic seman-

tics and the relaxed axiomatic to give an overall guarantee of the development. Specifically,

given a proof in the original axiomatic semantics and a proof in the relaxed axiomatic se-

mantics, then for all pairs of environments that satisfy the procedure's precondition, if

execution of the original program terminates and does not violate an assumption, then if

the relaxed program terminates it does encounter an error.

Corollary 18 (Relaxed Progress Modulo Original Assumptions).

If 7 F-o fn { s }, and y f-r fn { s}, (Eo, Er) (P -P), and (Eo, r)#P, and (s, Er) 4r Pr,

and err(Or), If (s, Eo) 4o 0o, then 0o = ba

A corollary of the Relaxed Progress Theorem is if the original program is not veri-

fied then if the relaxed program violates and assertion or assumption, the original program

also violates and assertion or assumption. As with the core calculus, the rules of the full

language provide a non-interference guarantee such that in an environment where the be-

havior of the original program is not formally guaranteed then errors in the relaxed program

correspond to errors in the original.

128

3.6 Case Studies

I next present a set of case studies that demonstrate how to reason about extended control

flow, arrays, heap-allocated data, and procedures.

3.6.1 Adaptive Loop Perforation

Bodytrack is an implementation of a computer vision system that identifies and tracks the

position and pose of a human body in a video. The relaxation I focus on uses adaptive loop

perforation to optimize a computation that uses a sampling-based approach to cast points on

a shape that represents a limb. This computation uses the results of the samples to estimate

how well the shape fits the image as a representation of the limb. Loop perforation in this

case reduces the number of samples that the sampling-based computation uses with the

aim of increasing performance while still enabling the computation to return an acceptably

accurate result [58].

Relaxation. Bodytrack computes a pose of a human body as represented by a connected

set of 3-dimensional cylinders, where each cylinder corresponds to body part (e.g., a fore-

arm, head, or torso). The transformation targets a loop that enumerates over a generated set

of 2-dimensional points that the loop lays across a 2-dimensional projection of the cylinder

that represents a limb:

float *err = new float;
int numsamples = 0
int acc = 0;
for (int i = 0; i < n; ++i) {

int *x = new int;
int *y = new int;

GetCoord(i, x, y);

numsamples = numsamples + Sample(x, y, err);

relax (i) with ((i == old(i)) 11

(!(numnsamples > 0) 11 i == old(i) + I)};
}
float errv = *err;
assert (0 < numsamples);
float avg-error = err-v / num-samples;

129

The loop enumerates over coordinates of each point (given by pointers x and y) and

takes a sample of the image features that underlie that point with the function Sample.

The function takes a sample of the image features to determine if the point corresponds

to the image's foreground (indicating part of the body) or background (indicating an error

because the cylinder isn't over the body). Using this sample, it computes an error term,

increments err with the value of the error term and returns whether or not it was able to

successfully sample the point.

A key challenge to perforating this loop is avoiding the divide-by-zero error that may

occur during division of err by samples at the end of the function. The function Sample

may in some cases (specifically if the sample point falls outside of the bounds of the image)

not take a sample and therefore return 0 as a return value. Loop perforation therefore needs

to preserve the property that if there is one valid sample, then numnsamples must be greater

than zero.

Naive loop perforation will violate this property because loop perforation may cause

the loop to skip the only valid sample point, therefore introducing an error into the relaxed

program that does not exist in the original. This act would violate the relaxed progress

property we desire from relaxed programs.

The relaxation I instead present is adaptive loop perforation. Adaptive loop perforation

waits to perforate the loop until a condition over the local state of the program is satis-

fied [19]. The relax statement implements adaptive perforation of this loop by including

the guard that num-samples must be greater than zero for the statement to consider incre-

menting i an additional time. Given this guard, adaptive perforation of this loop preserves

the relational invariant that if num-samples is greater than zero in the original program,

then num-samples is greater than zero in the relaxed. This invariant enables a proof that

establishes that the relaxed program does not interfere with the assume statement that spec-

ifies the safety condition of the division.

Proof. The relaxed axiomatic proof establishes that the following invariant holds at the

end of the loop:

(0 < num_samples<o>) -+ (0 < num_ samples<r>).

130

To establish this invariant, I work with the loop invariant

i(o) = i(r) -+ ((0 < numsamples<o>) -+ (0 < num_ samples<r>)) A

!(i(o) = i(r)) - 0 < numn samples<r> A

n(o) = n(r) A i(o) < i(r) A i(o) < n(o) A i(r) < n(r)

Because this relaxation causes the control of the original and relaxed program to di-

verge, the proof of this loop invariant requires using the extended rules for reasoning about

loops. Using those rules, there are four cases to reason about:

" Initialization. Before entering the loop, it is the case that i, num-samples, and n

in both the original program and relaxed program have the same respective values.

Therefore the loop invariant holds.

" Both Original and Relaxed Program Execute Iteration. Next, both the original

and relaxed program execute iterations of the loop, enabling us to reason about the

two executions in lockstep (even though the value of i may differ between the two

programs). The goal of the proof at this point is to demonstrate that that the invariant

is preserved at the end of an iteration where both the relaxed and original program

take a step.

For the first conjunct of the invariant, preservation needs to be established at two

mains point. First at the call to Sample, preservation follows from specifications of

determinism. Specifically, Sample must have a specification that states that two calls

of the procedure with the same arguments return the same values. This is can be

provided as a relational specification.

The second statement that may violate the first conjunct of the invariant is the relax

statement. Specifically, the statement may violate the constraint that i has the same

value between the original and relaxed program. However, because of the condition

of the relaxation, if this is the case, then the second conjunct of the invariant (!(i(o) =

i(r)) -0 < numsamples<r>) holds.

131

For the second conjunct of the invariant, the primary reasoning happens at the call to

Sample, the shared (between the original and relaxed program) update to i, and the

relax statement. At the call to sample, it is possible to specify and use a specifica-

tion for Sample that states that its result is non-negative, therefore ensuring that the

resulting update to num-samples does not decrease its value (potentially making it

less than one). The shared update to i preserves the invariant as i is still different

between the two programs. At the relax statement, i may be updated in the relaxed

program but not in the original program. Because of the invariant that i(o) < i(r),

if i is updated in the relaxed program, then its value will still be different from that

of the original program.

" Original Program Executes Iteration, Relaxed Program Has Terminated. For

this case to occur, it must be true that i(o) < n(o) and !(i(r) < n(r)). Because

n(o) =n(r), it mustbe the case that !(i(o) = i(r)) andtherefore 0< numsamples<r>.

Because the original program does not modify num-samples<r>, the execution at the

end of the loop's body will still satisfy the loop invariant.

* Original Program Has Terminated, Relaxed Program Executes Iteration. For

this case to occur, it must be true that !i(o) < n(o) and (i(r) < n(r)). Because of

Lthe iIIvaliants that L)U/ -- 1\1Lr aIL nU) = r1\/, thIIS case IICnSfile and can therefore

be discharged without any additional obligations.

At the end of the loop, using the invariants i(o) < n(o) and i(r) < n(r), along with the

facts that !(i(o) < n(o)) and !(i(r) < n(r)), we can conclude that i(o) = i(r). Given the

loop invariant, we can therefore prove that it is the case that (0 < num-samples<o>) --+

(0 < num-samples<r>). This property enables us to demonstrate discharge the proof

obligation for the assume, establishing the relative progress of the relaxed program: if the

original program satisfies the assume statement, then the relaxed program does also.

3.6.2 Separation

Many of my examples deal directly with verifying the effects of relaxation on the semantics

of the program. Verification works hand in hand with the specifications and assertions that

132

struct Body {
float x, float y;

Body *next;

};

void step-system(Body *bodies, int nsteps) {
int i = 0;

while (i < nsteps) {
Tree *tree = build-tree(bodies);

update-bodies<2>(tree);

++i;

}
}

struct SPT {
Body *body;

SPT left;

SPT Right;

} ;

SPT *tree build-tree(Body *bodies)

requires List(bodies)

ensures Tree(ret)

{ ... }

void updatebodies(SPT *tree)

requires Tree(tree)

Figure 3-26: Structure of Barnes-Hut Simulation

a developer has placed in a program in that they constrain the set of valid, verifiable relax-

ations. In addition to reasoning about how relaxations modify data, in many cases it is also

important to constrain which data is modified. For example, developers can use relational

assertions, such as relax (x) st (x(o) = x(r)) or relax (x) st (*x(o) = *x(r)) to as-

sert that relaxation must not modify a local or heap-allocated variable. However, in the case

larger data structures, it can be productive to rely on separation logic to constrain the foot-

print of a relaxed computation. For example, consider a version of the Barnes-Hut N-body

simulation computation from the Olden Benchmark Suite [22] presented in Figure 3-26.

133

This code snippet provides the outline of the basic structure of the computation. The

computation keeps a list of bodies (e.g., particles) which here have coordinates x and y that

specify their position1 . The computation maintains the list of bodies through the next field

of each body in a list.

The computation's main computation, step-system, iterates for n time steps. In each

step, the computation uses the list of bodies to build a space partitioning tree (build-tree)

that hierarchically partitions the space in which the bodies exist, enabling efficient compu-

tation of their interactions (update _bodies).

The updatebodies computation is amenable to relaxations, such as statistical paral-

lelization [56]. However, one challenge for verifying a relaxation of update-bodies, is

ensuring that the list of bodies is not modified in a way that may jeopardize the safety of

build-tree when executed in the next iteration of the loop.

To enable this verification, we specify as build-tree's precondition that the list of

bodies needs to have an appropriate shape. We specify shape of the list by introducing into

the logic an uninterpreted predicate List:

List(b) -+ b = 0 V (Eb'. b.next F- b'* List(b'))

This predicate specifies that a Body pointer b is a list if it is either 0 (indicating an

empty list) or there exists another address b' such that the next field of b points to another

disjoint list.

The specification for build-tree is that it produces a valid Tree:

Tree(t) = t = 0 V (Eb, viv 2.n.body -+ b* b.x - vi * b.y - v2) V

(]n1 . n.lef t - n, * Tree(n1) *]n2 . n.right - n2 * Tree(n2)

A valid tree is a Tree pointer t that is either 0 (indicating an empty tree), a leaf node

with a Body pointer in its body field that has values for both x and y, or it is an interior node

for which both of its children are also trees.

The goal of the specification for update-bodies is to ensure that the list structure of

bodies is preserved. To achieve this, we rely on the separation properties of separation logic

'In the full implementation these particles also include fields for other properties, such as mass and ve-
locity

134

to specify updatebodies's footprint in its precondition. Specifically, updatebodies's

precondition specifies that the tree it receives is a tree. Because of the properties of separa-

tion logic, the Tree predicate explicitly enumerates the heap-allocated data that is available

to update-bodies. Namely, Tree specifies that all nodes that are reachable from the tree's

root by following each node's left and right pointers are available. Moreover, the pro-

cedure may manipulate the x and y coordinates of each body. Note that this specification

does not include the next fields of each body. Because these are not accessible to the

function, they cannot be modified by the function's relaxed implementation. Therefore,

via the logic's frame rule, the property List(bodies) (which is expressed only over the

next fields of each body) will hold after update _bodies's execution and therefore before

build-tree on the next iteration.

3.7 Related Work

The core foundation of my work in this chapter is the work I presented in Chapter 2. Build-

ing upon this foundation, I have added the capability for relational reasoning for programs

that have divergent control flow, procedures, and heap-allocated data structures and arrays.

Separation Logic. Reynold's work lays out the basic connectives for separation logic,

including separating conjunction, separating implication, and iterated separating conjunc-

tion [75]. My work adapts Reynold's general separation logic, which includes arbitrary

address calculations to a more structured Java-like context in which accessed address an

offset from an allocated object array.

Relational Separation Logic. Yang proposes a relational separation logic that builds

upon Reynold's original work [92]. His primary contribution is the syntax and seman-

tics of relational Hoare quadruples, which relate values between two programs. The base

connectives of his logic and my logic are shared with that of Reynold's work. A primary

difference between Relational Separation Logic and my work is I have designed my logic

to enable the relational reasoning approach inherent in relaxed programs: a proof for a re-

135

laxed program may assume and transfer properties of the original program over to relaxed

program to lower the verification burden. Relational separation logic, in contrast, does not

support an asymmetric distinction between an original program (that is assumed to be cor-

rect) and a relaxed program (that one desires to build a proof for given the assumptions

over the original program).

Control Flow. My extended rules for control flow are inspired by rules (of a variety of

different forms) that have been proposed for reasoning about control flow. The loosed

axiomatic original and relaxed semantics are inspired by the left and right rules of self-

composition approaches to relational verification [8]. A key distinction in my work is

loosed axiomatic original and relaxed semantics have asymmetric guarantees for the be-

havior of their respective programs. The loosed axiomatic original semantics is sound, but

does not provide a progress property for the original program as it simply collects the se-

mantics of the original program. The loosed axiomatic relaxed semantics provides both

soundness and progress for the relaxed program.

3.8 Conclusion

The relaxed programming framework enables developers to precisely characterize the ef-

fects of changes to the semantics of programs along with the acceptability properties that

these augmented programs must satisfy. My work in this chapter extends the relaxed pro-

gramming framework to enable more precise reasoning about programs that have divergent

control flow and use traditional programming structures, such as arrays, heap-allocated

data structures, and procedures. Handling these additional programming structures, en-

ables relaxed programming for a wide variety of applications and domains, proving a sound

reasoning framework for both manual and automated development of relaxed programs as

the research community continues to uncover the potential of approximate hardware and

software computing systems.

136

Chapter 4

Verifying Quantitative Reliability

Relaxed programs enable worst-case reasoning about the safety and accuracy of approx-

imate computations. However, there are new opportunities for approximation in which

probalistic reasoning can provide additional confidence to developers about the behavior of

their programs.

For example, system reliability is a major challenge in the design of emerging archi-

tectures. Energy efficiency and circuit scaling are becoming major goals when designing

new devices. However, aggressively pursuing these design goals can often increase the

frequency of soft errors - which occur non-deterministically with some probability - in

small [87] and large systems [17] alike. Researchers have developed numerous techniques

for detecting and masking soft errors in both hardware [31] and software [74, 69, 27, 84].

However, in emerging computational platforms, fully detecting and masking soft errors

may be infeasiable or substantially hinder overall system performance because these tech-

niques typically come at the price of increased execution time, increased energy consump-

tion, or both.

Building on the same insights that movitated the development of relaxed programs -

namely, that the semantics of many computations can be relaxed and still provide useful

and acceptable functionality - researchers have proposed executing computations without

(or with at most selectively applied) mechanisms that detect and mask soft errors in the

persuit of 1) fast and energy efficient execution that 2) delivers acceptably accurate results

often enough to satisfy the needs of their users despite the presence of unmasked soft errors.

137

In this environment the probilistic semantics of the errors themselves and the probalistic

impact on program behavior is as important as worst-case reasoning about the acceptability

of the computation.

To meet this challenge, this chapter presents a new programming language, Rely, and an

associated program analysis that computes the quantitative reliability of the computation -

i.e., the probability with which the computation produces a correct result when parts of the

computation execute on unreliable hardware. Specifically, given a hardware specification

and a Rely program, the analysis computes, for each value that the computation produces,

a conservative probability that the value is computed correctly despite the possibility of

soft errors.

Rely supports and is specifically designed to enable partitioning a program into critical

regions (which must execute without error) and approximate regions (which can execute

acceptably even in the presence of occasional errors) [77, 2 1]. In contrast to existing ap-

proaches, which support only a binary distinction between critical and approximate regions,

quantitative reliability can provide precise static probabilistic acceptability guarantees for

computations that execute on unreliable hardware platforms.

4.1 Overview and Contributions

This section presents an overview of the quantitative reliability framework, including the

Rely programming language and its corresponding reliability analysis, along with an overview

of the framework's primary contributions.

4.1.1 Rely

Rely is an imperative language that enables developers to specify and verify quantitative

reliability specifications for programs that allocate data in unreliable memory regions and

incorporate unreliable arithmetic/logical operations.

Quantitative Reliability Specifications. Rely supports quantitative reliability specifica-

tions for the results that functions produce. For example, a developer can declare a function

138

signature int<0.99*R(x, y)> f (int x, int y, int z), where 0.99*R(x, y) is the

reliability specification for f's return value. The symbolic expression R (x, y) is the joint

reliability of x and y - namely, the probability that they both simultaneously have the cor-

rect value on entry to the function. This specification states that the reliability of the return

value of f must be at least 99% of x and y's reliability when the function was called.

Joint reliabilities serve as an abstraction of a function's input distribution, which enables

Rely's analysis to be both modular and oblivious to the exact shape of the distributions.

This is important because 1) such exact shapes can be difficult for developers to identify

and specify and 2) known tractable classes of probability distributions are not closed under

many operations found in standard programming languages, which can complicate attempts

to develop compositional analyses that work with such exact shapes [57, 94, 35, 85].

Machine Model. Rely assumes a simple machine model that consists of a processor (with

a register file and an arithmetic/logic unit) and a main memory. The model includes un-

reliable arithmetic/logical operations (which return an incorrect value with non-negligible

probability [27, 84, 32, 33]) and unreliable physical memories (in which data may be writ-

ten or read incorrectly with non-negligible probability [49, 84, 32]). Rely works with a

hardware reliability specification that lists the probability with which each operation in the

machine model executes correctly.

Language. Rely is an imperative language with integer, logical, and floating point ex-

pressions, arrays, conditionals, while loops, and function calls. In addition to these standard

language features, Rely also allows a developer to allocate data in unreliable memories and

write code that uses unreliable arithmetic/logical operations. For example, the declaration

int x in urel allocates the variable x in an unreliable memory named urel where both

reads and writes of x may fail with some probability. A developer can also write an expres-

sion a +. b, which is an unreliable addition of the values a and b that may produce an

incorrect result.

Semantics. I have designed the semantics of Rely to exploit the full availability of un-

reliable computation in an application. Rely only requires reliable computation at points

where doing so ensures that programs are memory safe and exhibit control flow integrity.

139

Rely's semantics models an abstract machine that consists of a heap and a stack. The

stack consists of frames that contain references to the locations of each invoked function's

variables (which are allocated in the heap). To protect references from corruption, the stack

is allocated in a reliable memory region and stack operations - i.e., pushing and popping

frames - execute reliably. To prevent out-of-bounds memory accesses that may occur as a

consequence of an unreliable array index computation, Rely requires that each array read

and write includes a bounds check; these bounds check computations also execute reliably.

Rely does not require a specific underlying mechanism to execute these operations reliably;

one can use any applicable software or hardware technique [74, 69, 27, 34, 67, 86, 37, 90].

To prevent the execution from taking control flow edges that are not in the program's

static control flow graph, Rely assumes that 1) instructions are stored, fetched, and decoded

reliably (as is supported by existing unreliable processor architectures [84, 32]) and 2)

control flow branch targets are computed reliably.

4.1.2 Quantitative Reliability Analysis

Given a Rely program and a hardware reliability specification, Rely's analysis uses a pre-

condition generation approach to generate a symbolic reliability precondition for each func-

tion. A reliability precondition captures a set of constraints that is sufficient to ensure that

a function satisfies its reliability specification when executed on the underlying unreliable

hardware platform. The reliability precondition is a conjunction of predicates of the form

Ao, < r -R(X), where Ao,, is a placeholder for a developer-provided reliability specifica-

tion for an output named out, r is a real number between 0 and 1, and the term R(X) is the

joint reliability of a set of parameters X.

Conceptually, each predicate specifies that the reliability given in the specification

(given by A0 ur) should be less than or equal to the reliability of a path that the program

may take to compute the result (given by r -R(X)). The analysis computes the reliability

of a path from the probability that all operations along the path execute reliably.

The specification is valid if the probabilities for all paths to computing a result exceed

that of the result's specification. To avoid the inherent intractability of considering all

140

possible paths, Rely uses a simplification procedure to reduce the precondition to one that

characterizes the least reliable path(s) through the function.

Loops. One of the core challenges in designing Rely and its analysis is dealing with

unreliable computation within loops. The reliability of variables updated within a loop may

depend on the number of iterations that the loop executes. Specifically, if a variable has

a loop-carried dependence and updates to that variable involve unreliable operations, then

the variable's reliability is a monotonically decreasing function of the number of iterations

of the loop - on each loop iteration the reliability of the variable degrades relative to its

previous reliability. If a loop does not have a compile-time bound on the maximum number

of iterations, then the reliability of such a variable can, in principle, degrade arbitrarily, and

the only conservative approximation of the reliability of such a variable is zero.

To provide specification and verification flexibility, Rely provides two types of loop

constructs: statically bounded while loops and statically unbounded while loops. Stati-

cally bounded while loops allow a developer to provide a static bound on the maximum

number of iterations of a loop. The dynamic semantics of such a loop is to exit if the num-

ber of executed iterations reaches this bound. This bound allows Rely's analysis to soundly

construct constraints on the reliability of variables modified within the loop by unrolling

the loop for its maximum bound.

Statically unbounded while loops have the same dynamic semantics as standard while

loops. In the absence of a static bound on the number of executed loop iterations, how-

ever, Rely's analysis constructs a dependence graph of the loop's body to identify variables

that are reliably updated - specifically, all operations that influence these variables' values

are reliable. Because the execution of the loop does not decrease the reliability of these

variables, the analysis identifies that their reliabilities are unchanged. -For the remaining,

unreliably updated variables, Rely's analysis conservatively sets their reliability to zero.

Specification Checking. In the last step of the analysis of a function, Rely verifies that

the function's specifications are consistent with its reliability precondition. Because relia-

bility specifications are also of the form r -R(X), the final precondition is a conjunction of

141

predicates of the form ri R(X 1) < r2 - R(X2), where r1 -R(XI) is a reliability specification

and r2 - R(X2) is a path reliability. If these predicates are valid, then the reliability of each

computed output is greater than that given by its specification.

The validity problem for these predicates has a sound mapping to the conjunction of

two simple constraint validity problems: inequalities between real numbers (rl < r2) and

set inclusion constraints over finite sets (X2 C XI). Checking the validity of a reliability

precondition is therefore decidable and efficiently checkable.

4.1.3 Case Studies

I have used Rely to build unreliable versions of six building block computations for media

processing, machine learning, and data analytics applications. My case studies illustrate

how quantitative reliability enables a developer to use principled reasoning to relax the

semantics of both approximate computations and checkable computations.

An approximate computation (including many multimedia, financial, machine learning,

and big data analytics applications) can often acceptably tolerate occasional errors in its

execution and/or the data that it manipulates [77, 58, 21].

A checkable computation can be augmented with an efficient checker that verifies the

acceptability of the computation's results [14, 46, 15, 7 1]. If the checker does detect an

error, it can reexecute the computation to obtain an acceptable result.

For approximate computations, quantitative reliability allows a developer to reify and

verify the results of the fault injection and accuracy explorations that are typically used to

identify the minimum acceptable reliability of a computation [58, 57, 88, 94]. For check-

able computations, quantitative reliability allows a developer to use the performance spec-

ifications of both the computation and its checker to determine the computation's overall

performance given that - with some probability - it may produce an incorrect answer and

therefore needs to be reexecuted.

4.1.4 Contributions

This chapter presents the following contributions:

142

Quantitative Reliability Specifications. I present quantitative reliability specifications,

which characterize the probability that a program executed on unreliable hardware pro-

duces the correct result, as a constructive method for developing applications. Quantitative

reliability specifications enable developers who build applications for unreliable hardware

architectures to perform sound and verified reliability engineering.

Language and Semantics. I present Rely, a language that allows developers to spec-

ify reliability requirements for programs that allocate data in unreliable memory regions

and use unreliable arithmetic/logical operations. I also present a dynamic semantics for

Rely via a probabilistic small-step operational semantics. This semantics is parameterized

by a hardware reliability specification that characterizes the probability that an unreliable

arithmetic/logical or memory read/write operation executes correctly.

Semantics of Quantitative Reliability. I formalize the semantics of quantitative relia-

bility as it relates to the probabilistic dynamic semantics of a Rely program. Specifically,

I define the quantitative reliability of a variable as the probability that its value in an un-

reliable execution of the program is the same as that in a fully reliable execution. I also

define the semantics of a logical predicate language that can characterize the reliability of

variables in a program.

Quantitative Reliability Analysis. I present a program analysis that verifies that the dy-

namic semantics of a Rely program satisfies its quantitative reliability specifications. For

each function in the program, the analysis computes a symbolic reliability precondition that

characterizes the set of valid specifications for the function. The analysis then verifies that

the developer-provided specifications are valid according to the reliability precondition.

Case Studies. I have used Rely's implementation to develop unreliable versions of six

building block computations for media processing, machine learning, and data analytics

applications. These case studies illustrate how to use quantitative reliability to develop and

reason about both approximate and checkable computations in a principled way.

143

n E IntM e E Exp -+ n x (Exp) Exp iop Exp

r E R b C BExp -+ true f alse Exp cmp Exp I (BExp)|

x,J e Var BExp lop BExp |BExp BExp
a E ArrVar CExp -4 e | a

m E MVar F - (T void)ID (P*){S}
V - x~a|VxJVa P -s Po [inm]

RSpec - r|R(V)|r*R(V) PO -4 intx|Ta(n)

T int |int<RSpec> S -4 D* Ss Sr

D - Do [in m]
Do - int x [= Exp] | int a [n+]
Ss 4 ski p | x = Exp |x = a [Exp+] | aExp+] = Exp|

ID(CExp*) x ID(CExp*) | if fBExp S SS ; S
whilee BExp [: n] S I repeatf n S

Sr - return Exp

Figure 4-1: Rely's Language Syntax

4.2 Example

Figure 4-1 presents the syntax of the Rely language. Rely is an imperative language for

computations over integers, floats (not presented), and multidimensional arrays. To illus-

trate how a developer can use Rely, Figure 4-2 presents a Rely-based implementation of a

pixel block search algorithm derived from that in the x264 video encoder [91].

The function searchref searches a region (pblocks) of a previously encoded video

frame to find the block of pixels that is most similar to a given block of pixels (cblock)

in the current frame. The motion estimation algorithm uses the results of searchref to

encode cblock as a function of the identified block.

This is an approximate computation that can trade correctness for more efficient exe-

cution by approximating the search to find a block. If searchref returns a block that is

not the most similar, then the encoder may require more bits to encode cblock, potentially

decreasing the video's peak signal-to-noise ratio or increasing its size. However, previous

studies on soft error injection [27] and more aggressive transformations like loop perfo-

ration [58, 88] have demonstrated that the quality of x264's final result is only slightly

affected by perturbations of this computation.

144

I #define nblocks 20

2 #define height 16
3 #define width 16
4
5 int<0.99*R(pblocks, cblock)> searchref (
6 int <R(pblocks)> pblocks(3) in urel,
7 int<R(cblock)> cblock(2) in urel)
8{

9 int minssd = INTMAX,
10 minblock = -1 in urel;

11 int ssd, t, t1, t2 in urel;

12 int i = 0, j, k;

13
14 repeat nblocks {
15 ssd = 0;

16 j = 0;
17 repeat height {
18 k = 0;

19 repeat width {
20 ti = pblocks[i,j,k];

21 t2 = cblock[j,k];

22 t = ti -. t2;

23 ssd = ssd +. t *. t;

24 k = k + 1;

25 }
26 j= j + 1;
27 }
28

29 if (ssd <. minssd) {
30 minssd = ssd;

31 minblock = i;
32 }
33
34 i = i + 1;

35 }
36 return minblock;

37 }

Figure 4-2: Rely Code for Motion Estimation Computation

145

4.2.1 Reliability Specifications

The function declaration on Line 5 specifies the types and reliabilities of searchref's

parameters and return value. The parameters of the function are pblocks(3), a three-

dimensional array of pixels, and cblock (2), a two-dimensional array of pixels. In addition

to the standard signature, the function declaration contains reliability specifications for each

result that the function produces.

Rely's reliability specifications express the reliability of a function's results - when exe-

cuted on an unreliable hardware platform - as a function of the reliabilities of its inputs. The

specification for the reliability of searchref's result is int<O .99*R (pblocks , cblock)>.

This states that the return value is an integer with a reliability that is at least 99% of the joint

reliability of the parameters pblocks and cblock (denoted by R(pblocks, cblock)).

The joint reliability of a set of parameters is the probability that they all have the correct

value when passed in from the caller. This specification holds for all possible values of the

joint reliability of pblocks and cblock. For instance, if the contents of the arrays pblocks

and cblock are fully reliable (correct with probability one), then the return value is correct

with probability 0.99.

In Rely, arrays are passed by reference and the execution of a function can, as a side

effect, modify an array's contents. The reliability specification of an array therefore allows

a developer to constrain the reliability degradation of its contents. Here pblocks has an

output reliability specification of R(pblocks) (and similarly for cblock), meaning that all

of pblock's elements are at least as reliable when the function exits as they were on entry

to the function.

4.2.2 Unreliable Computation

Rely targets hardware architectures that expose both reliable operations (which always ex-

ecute correctly) and more energy-efficient unreliable operations (which execute correctly

with only some probability). Specifically, Rely supports reasoning about reads and writes

of unreliable memory regions and unreliable arithmetic/logical operations.

146

Memory Region Specification. Each parameter declaration also specifies the memory

region in which the data of the parameter is allocated. Memory regions correspond to the

physical partitioning of memory at the hardware level into regions of varying reliability.

Here pblocks and cblock are allocated in an unreliable memory region named urel.

Lines 9-12 declare the local variables of the function. By default, variables in Rely

are allocated in a default, fully reliable memory region. However, a developer can also

optionally specify a memory region for each local variable. For example, the variables

declared on Lines 9-11 reside in urel.

Unreliable Operations. The operations on Lines 22, 23, and 29 are unreliable arith-

metic/logical operations. In Rely, every arithmetic/logical operation has an unreliable

counterpart that is denoted by suffixing a period after the operation symbol. For exam-

ple, "-." denotes unreliable subtraction and "<." denotes unreliable comparison.

Using these operations, searchref's implementation approximately computes the in-

dex (minblock) of the most similar block, i.e. the block with the minimum distance from

cblock. The repeat statement on line 14, iterates a constant nblock number of times,

enumerating over all previously encoded blocks. For each encoded block, the repeat state-

ments on lines 17 and 19 iterate over the height*width pixels of the block and compute

the sum of the squared differences (ssd) between each pixel value and the corresponding

pixel value in the current block cblock. Finally, the computation on lines 29 through 32

selects the block that is - approximately - the most similar to cblock.

4.2.3 Hardware Semantics

Figure 4-3 illustrates the conceptual machine model behind Rely's reliable and unreliable

operations; the model consists of a CPU and a memory.

CPU. The CPU consists of 1) a register file, 2) arithmetic logical units that perform op-

erations on data in registers, and 3) a control unit that manages the program's execution.

The arithmetic-logical unit can execute reliably or unreliably. I have represented this in

Figure 4-3 by physically separate reliable and unreliable functional units, but this distinc-

tion can be achieved through other mechanisms, such as dual-voltage architectures [32].

147

ALU CU

Figure 4-3: Machine Model Illustration. Gray boxes represent unreliable components

Rely-
Program Precondition Precondition Verified

.e Generator Checker Yes/No
Hardware,

Specification

Figure 4-4: Rely's Analysis Overview

Unreliable functional units may omit additional checking logic, enabling the unit to exe-

cute more efficiently but also allowing for soft errors that may occur due to, for example,

power variations within the ALU's combinatorial circuits or particle strikes. As is provided

by existing computer architecture proposals [84, 32], the control unit of the CPU reliably

fetches, decodes, and schedules instructions; given a virtual address in the application, the

control unit correctly computes a physical address and operates only on that address.

Memory. Rely supports machines with memories that consist of an arbitrary number of

memory partitions (each potentially of different reliability), but for simplicity Figure 4-3

partitions memory into two regions: reliable and unreliable. Unreliable memories can, for

example, use decreased DRAM refresh rates to reduce power consumption at the expense

of increased soft error rates [49, 84].

4.2.4 Reliability Analysis

Given a Rely program, Rely's reliability analysis verifies that each function in the pro-

gram satisfies its reliability specification when executed on unreliable hardware. Figure 4-4

presents an overview of Rely's analysis. It takes as input a Rely program and a hardware

reliability, specification.

148

Registers CPU Memory
Reliable Unreliable

The analysis consists of two components: the precondition generator and the precon-

dition checker. For each function, the precondition generator produces a precondition that

characterizes the reliability of the function's results given a hardware reliability specifica-

tion that characterizes the reliability of each unreliable operation. The precondition checker

then determines if the function's specifications satisfy the constraint. If so, then the function

satisfies its reliability specification when executed on the underlying unreliable hardware

in that the reliability of its results exceed their specifications.

Design. As a key design point, the analysis generates preconditions according to a con-

servative approximation of the semantics of the function. Specifically, it characterizes the

reliability of a function's result according to the probability that the function computes that

result fully reliably.

To illustrate the intuition behind this design point, consider the evaluation of an integer

expression e. The reliability of e is the probability that it evaluates to the same value n

in an unreliable evaluation as in the fully reliable evaluation. There are two ways that an

unreliable evaluation can return n: 1) the unreliable evaluation of e encounters no faults

and 2) the unreliable evaluation possibly encounters faults, but still returns n by chance.

Rely's analysis conservatively approximates the reliability of a computation by only

considering the first scenario. This design point simplifies the reasoning to the task of

computing the probability that a result is reliably computed as opposed to reasoning about

a computation's input distribution and the probabilities of all executions that produce the

correct result. As a consequence, the analysis requires as input only a hardware reliability

specification that gives the probability with which each arithmetic/logical operation and

memory operation executes correctly. The analysis is therefore oblivious to a computation's

input distribution and does not require a full model of how soft errors affect its result.

Hardware Reliability Specification

Rely's analysis works with a hardware reliability specification that specifies the reliabil-

ity of arithmetic/logical and memory operations. Figure 4-5 presents a hardware reliabil-

ity specification that is inspired by the results from existing computer architecture litera-

149

reliability spec {
operator (+.) = 1 - 10^-7;

operator (-.) = 1 - 10^-7;

operator (*.) = 1 - 10^-7;

operator (<.) = 1 - 10^-7;

memory rel {rd = 1, wr = 1};
memory urel {rd = 1 - 10^-7, wr = 1};

}

Figure 4-5: Hardware Reliability Specification

ture [3 1, 49]. Each entry specifies the reliability - the probability of a correct execution -

of arithmetic operations (e.g., +.) and memory read/write operations.

For ALU operations, the presented reliability specification uses the reliability of an un-

reliable multiplication operation from [3 1, Figure 9]. For memory operations, the specifica-

tion uses the probability of a bit flip in a memory cell from [49, Figure 4] with extrapolation

to the probability of a bit flip within a 32-bit word. Note that a memory region specification

includes two reliabilities: the reliability of a read (rd) and the reliability of a write (wr).

Precondition Generator

For each function, Rely's analysis generates a reliability precondition that conservatively

bounds the set of valid specifications for the function. A reliability precondition is a

conjunction of nredicates of the form A_, < r -R(X), where A,,, is a placeholder for a

developer-provided reliability specification for an output with name out, r is a numerical

value between 0 and 1, and the term R.(X) is the joint reliability of the set of variables X

on entry to the function.

The analysis starts at the end of the function from a postcondition that must be true

when the function returns and then works backward to produce a precondition such that if

the precondition holds before execution of the function, then the postcondition holds at the

end of the function.

Postcondition. The postcondition for a function is the constraint that the reliability of

each array argument exceeds that given in its specification. For search._ref, the postcon-

dition Qo is

Q0 = Apblocks < 7Z(pblocks) AAcb1ock < 7(cblock),

150

which specifies that the reliability of the arrays pblocks and cblock - Rl(pblocks) and

I(cblock) - should be at least that specified by the developer - Apsbock and Acblock.

Precondition Generation. The analysis of the body of the searchref function starts

at the return statement. Given the postcondition Qo, the analysis creates a new precon-

dition Qi by conjoining to Qo a predicate that states that the reliability of the return value

(ro - Z(minblock)) is at least that of its specification (Aret):

Q, = QO AAret < ro - R(minblock).

The reliability of the return value comes from my design principle for reliability approxi-

mation. Specifically, this reliability is the probability of correctly reading minblock from

unreliable memory - which is ro 1 - 10-7 according to the hardware reliability specifica-

tion - multiplied by 'R(minblock), the probability that the preceding computation correctly

computed and stored minblock.

Loops. The statement that precedes the return statement is the repeat statement on

Line 14. A key difficulty with reasoning about the reliability of variables modified within

a loop is that if a variable is updated unreliably and has a loop-carried dependence then its

reliability monotonically decreases as a function of the number of loop iterations. Because

the reliability of such variables can, in principle, decrease arbitrarily in an unbounded loop,

Rely provides both an unbounded loop statement (with an associated analysis) and an al-

ternative bounded loop statement that lets a developer specify a compile-time bound on

the maximum number of its iterations that therefore bounds the reliability degradation of

modified variables. The loop on Line 14 iterates nblocks times and therefore decreases

the reliability of any modified variables nblocks times. Because the reliability degradation

is bounded, Rely's analysis uses unrolling to reason about the effects of a bounded loop.

Conditionals. The analysis of the body of the loop on Line 14 encounters the if state-

ment on Line 29.1 This if statement uses an unreliable comparison operation on ssd and

minssd, both of which reside in unreliable memory. The reliability of minblock when

'This happens after encountering the increment of i on Line 34, which does not modify the current
precondition because it does not reference i.

151

(3) {QO A Are, < r-R(issdminssd) A Ae r -RV(minblockssd.minssd)}

if (ssd <. minssd) {
(2) {Qo A Arei rO -R(i 129)}

minssd = ssd;
{Q0 A Aret < ro -R(i, 29)}
minblock = i;

{Qo A Aret ro -R(minblo ck, (29)1
} else {

(2) { Qo A A,, < r -7 (minblock, 4 2 9)
skip;

{Qo A Are < ro - 7Z(minblo ck. t 2 9)}

(1) {Q0 A Aret < ro -R(minblock, t 2 9)}

Figure 4-6: if Statement Analysis in the Last Loop Iteration

modified on Line 31 therefore also depends on the reliability of this expression because

faults may force the execution down a different path.

Figure 4-6 presents a Hoare logic style presentation of the analysis of the conditional

statement. The analysis works in three steps; the preconditions generated by each step are

numbered with the corresponding step.

Step 1. To capture the implicit dependence of a variable on an unreliable condition,

Rely's analysis first uses latent controlflow variables to make these dependencies explicit.

A control flow variable is a unique program variable (one for each statement) that records

whether the conditional evaluated to true orfalse. I denote the control flow variable for the

if statement on Line 29 by f29.

To make the control flow dependence explicit, the analysis adds the control flow vari-

able to all joint reliability terms in Qi that contain variables modified within the body of

the if conditional (minssd and minblock).

Step 2. The analysis next recursively analyses both the "then" and "else" branches of the

conditional, producing one precondition for each branch. As in a standard precondition

generator (e.g., weakest-preconditions) the assignment of i to minblock in the "then"

branch replaces minblock with i in the precondition. Because reads from i and writes

to minblock are reliable (according to the specification) the analysis does not introduce

any new ro factors.

152

Step 3. In the final step, the analysis leaves the scope of the conditional and conjoins the

two preconditions for its branches after transforming them to include the direct dependence

of the control flow variable on the reliability of the if statement's condition expression.

The reliability of the if statement's expression is greater than or equal to the product of

1) the reliability of the <. operator (ro), 2) the reliability of reading both ssd and minssd

from unreliable memory (rh), and 3) the reliability of the computation that produced ssd

and minssd (1Z(ssd,minssd)). The analysis therefore transforms each predicate that con-

tains the variable f29, by multiplying the right-hand side of the inequality with r and

replacing the variable 29 with ssd and minssd. This produces the precondition Q2:

Q2 = Qo AAret < r - Z(i, ssd, minssd) AAret < r -R(minblock, ssd,minssd).

Simplification. After unrolling a single iteration of the loop that begins at Line 14, the

analysis produces Qo AAret < r 564 - R(pblocks, cblock, i, ssd,minssd) as the precondi-

tion for a single iteration of the loop's body. The constant 2564 represents the number of

unreliable operations within a single loop iteration.

Note that there is one less predicate in this precondition than in Q2. As the analysis

works backwards through the program, it uses a simplification technique that identifies that

a predicate Aret < r1 - Z(XI) subsumes another predicate Aret < r2 - Z(X2). Specifically, the

analysis identifies that r, < r2 and X2 C Xi, which together mean that the second predicate

is a weaker constraint on Aret than the first and can therefore be removed. This follows

from the fact that the joint reliability of a set of variables is less than or equal to the joint

reliability of any subset of the variables - regardless of the distribution of their values.

This simplification is how Rely's analysis achieves scalability when there are multiple

paths in the program; specifically a simplified precondition characterizes the least reliable

path(s) through the program.

Final Precondition. When the analysis reaches the beginning of the function after fully

unrolling the loop on Line 14, it has a precondition that bounds the set of valid specifica-

tions as a function of the reliability of the parameters of the function. For search-ref, the

analysis generates the precondition Aret < 0.994885 -R(pblocks, cblock) A Apb1ocks <

JZ(pblocks) AAcblock < R(cblock). 153

Precondition Checker

The final precondition is a conjunction of predicates of the form Aut < r -R(X), where

A0 ,, is a placeholder for the reliability specification of an output. Because reliability spec-

ifications are all of the form r - Z(X) (Figure 4-1), each predicate in the final precondi-

tion (where each A0 ,, is replaced with its specification) is of the form form r1 -R(XI) <

r2 -R(X2), where r, - Z(Xi) is a reliability specification and r2 -z(X 2) is computed by

the analysis. Similar to the analysis's simplifier (Section 4.2.4), the precondition checker

verifies the validity of each predicate by checking that 1) r, is less than r2 and 2) X2 C Xi.

For searchref, the analysis computes the predicates 0.99 - Z(pblocks, cblock) <

0.994885 -7Z(pblocks, cblock), JZ(pblocks) < R(pblocks), and also R(cblock) <

R(cblock). Because these predicates are valid according to the checking procedure,

searchref satisfies its reliability specification when executed.

4.3 Language Semantics

Because soft errors may probabilistically change the execution path of a program, I model

the semantics of a Rely program with a probabilistic, non-deterministic transition system.

Specifically, the dynamic semantics defines probabilistic transition rules for each arith-

metic/logical operation and each read/write on an unreliable memory region.

Over the next several sections, I develop a small-step semantics that specifies the prob-

ability of each individual transition of an execution. In Section 4.3.6, I provide big-step

definitions that specify the probability of an entire execution.

4.3.1 Preliminaries

Rely's semantics models an abstract machine that consists of a heap and a stack. The heap

is an abstraction over the physical memory of the concrete machine, including its various

reliable and unreliable memory regions. Each variable (both scalar and array) is allocated

in the heap. The stack consists of frames - one for each function invocation - which

contain references to the locations of each allocated variable. This conceptual model of

154

local variables does not need to be concretized in the compilation model. For example,

placing local variables in a reliable stack can achieve competitive performance [54].

Hardware Reliability Specification. A hardware reliability specification y E T = (iop+

cmp + lop +Mp) -+ R is a finite map from arithmetic/logical operations (iop, cmp, lop) and

memory region operations (M0p) to reliabilities (i.e., the probability that the operation exe-

cutes correctly).

Arithmetic/logical operations iop, cmp, and lop include both reliable and unreliable

versions of each integer, comparison, and logical operation. The reliability of each reliable

operation is 1 and the reliability of an unreliable operation is as provided by a specification

(Section 4.2.4).

The finite maps rd E M -+ MOP and wr E M -+ Mop define memory region operations

as reads and writes (respectively) on memory regions m E M, where M is the set of all

memory regions in the reliability specification.

The hardware reliability specification I . denotes the specification for fully reliable

hardware in which all arithmetic/logical and memory operations have reliability 1.

References. A reference is a tuple (nb, (ni,...,nk),m) E Ref consisting of a base address

nb E Loc, a dimension descriptor (n i,... , nk), and a memory region m. The address space

Loc is finite. A base address and the components of a dimension descriptor are machine

integers n C IntM, which have finite bit width and therefore create a finite set.

References describe the location, dimensions, and memory region of variables in the

heap. For scalars, the dimension descriptor is the single-dimension, single-element de-

scriptor (1). The projections 7base and idim select the base address and the dimension

descriptor of a reference, respectively.

Frames, Stacks, Heaps, and Environments. A frame a E E = Var -÷ Ref is a finite

map from variables to references. A stack 6 c A ::= a o :: A is a non-empty list of

frames. A heap h E H = Loc ---+ IntM is a finite map from addresses to machine integers.

An environment e C E = A x H is a stack and heap pair, (3, h).

155

Memory Allocator. The abstract memory allocator new is a potentially non-deterministic

partial function that executes reliably. It takes a heap h, a memory region m, and a dimen-

sion descriptor and returns a fresh address nb that resides in memory region m and a new

heap h' that reflects updates to the internal memory allocation data structures.

Auxiliary Probability Distributions. Each nondeterministic choice in Rely's semantics

must have an underlying probability distribution so that the set of possible transitions at

any given small step of an execution creates a probability distribution - i.e., the sum of the

probabilities of each possibility is one. In Rely, there are two points at which an execution

can make a nondeterministic choice: 1) the result of an incorrect execution of an unreliable

operation and 2) the result of allocating a new variable in the heap.

The discrete probability distribution Pf (nf I op, n, ... , nik) models the manifestation of a

soft error during an incorrect execution of an operation. Specifically, it gives the probability

that an incorrect execution of an operation op on operands n 1,... , n produces a value nj

that is different from the correct result of the operation. This distribution is inherently tied

to the properties of the underlying hardware.

The discrete probability distribution Pm(nb, h' I h, m, d) models the semantics of a non-

deterministic memory allocator. It gives the probability that a memory allocator returns a

fresh address nb and an updated heap h' given an initial heap h, a memory region m, and a

dimension descriptor d.

I define these distributions only to support a precise formalization of the dynamic se-

mantics of a program; they do not need to be specified for a given hardware platform or a

given memory allocator to use Rely's reliability analysis.

4.3.2 Semantics of Expressions

Figure 4-7 presents a selection of the rules for the dynamic semantics of integer expres-

sions. The labeled probabilistic small-step evaluation relation (e, a, h) -94', e' states that

from a frame a and a heap h, an expression e evaluates in one step with probability p to an

expression e' given a hardware reliability specification yf. The label 0 E {C, (C, n), (F, nj)}

denotes whether the transition corresponds to a correct (C or (C, n)) or a faulty ((F, nf))

156

E-VAR-C

(nb, (1), m) = a(x)
C' iV(rd~r)

E-VA~h Rm) -Fn
B-VAR-F

(nb, M),) = a(x) p = (I - (rd(m))) -Pf(nf rd(m),h(nb))

(x, fl h) nf

E-Iop-R I E-Iop-R2

(ei, o, h) __ _ el (e,, a, h) _y e_

(e I iop e2, a, h) 1 e' iop e2 (n iop e2, cy, h) 0'V n iop e2

E-Iop-C
E-Iop-F
p = (1 - I(iop)) -Pf (nf I iop, nI, n2)

C, (iop) (F,nf),p
n I iop n2, , h) -+ iop(ni,n2) (ni iopn2 ,Ah) -- + nf

Figure 4-7: Dynamic Semantics of Integer Expressions

evaluation of that step. For a correct transition (C, n), n E IntM records a nondeterministic

choice made for that step. For a faulty transition (F, ni), nf E IntM represents the value that

the fault introduced in the semantics of the operation.

To illustrate the meaning of the rules, consider the rules for variable reference expres-

sions. A variable reference x reads the value stored in the memory address for x. The are

two possibilities for the evaluation of a variable reference:

" Correct [E-VAR-C]. The variable reference evaluates correctly and successfully re-

turns the integer stored in x. This happens with probability yi(rd(m)), where m is

the memory region in which x allocated. This probability is the reliability of reading

from x's memory region.

" Faulty [E-VAR-F]. The variable reference experiences a fault and returns another

integer n'. The probability that the faulty execution returns a specific integer nf is

(1 - p(rd(m))) -Pf (nf I rd(m), h(nb))- Pf is the distribution that gives the probability

that a failed memory read operation returns a value nf instead of the true stored value

h(nb) (Section 4.3.1).

157

4.3.3 Semantics of Statements

Figure 4-8 presents the scalar and control flow fragment of Rely. The labeled probabilistic

small-step execution relation (s, e) , (s', e') states that execution of the statement s

in the environment e takes one step yielding a statement s' and an environment E' with

probability p under the hardware reliability specification l. As in the dynamic semantics

for expressions, a label 6 denotes whether the transition evaluated correctly (C or (C, n))

or experienced a fault ((F, nf)). The semantics of the statements in the language is largely

similar to that of traditional presentations except that the statements have the ability to

encounter faults during execution.

The semantics I present here is designed to allow unreliable computation at all points

in the application - subject to the constraint that the application is still memory safe and

exhibits control flow integrity.

Memory Safety. To protect references that point to memory locations from corruption,

the stack is allocated in a reliable memory region and stack operations - i.e., pushing and

popping frames - execute reliably (Section 4.3.5). To prevent out-of-bounds memory ac-

cesses that may occur due to an unreliable array index computation, Rely requires that each

array read and write include a bounds check. These bounds check computations execute

reliably (Section 4.3.4).

Control Flow Integrity. To prevent execution from taking control flow edges that do

not exist in the program's static control flow graph, Rely assumes that 1) instructions are

stored, fetched, and decoded reliably (as supported by existing unreliable processor archi-

tectures [84, 32]) and 2) targets of control flow branches are reliably computed. These two

properties allow for the control flow transfers in the rules [E-IF-TRUE], [E-IF-FALSE], and

[E-SEQ-R2] to execute reliably with probability 1.

Note that the semantics does not require a specific underlying mechanism to achieve

reliable execution and, therefore, an implementation can use any applicable software or

hardware technique [74, 69, 27, 34, 67, 86, 37, 90].

158

E-DECL-R

(e, a, h) e'

(int x = e in m, (a :: 5, h)) 0 itx=e n ,(:8)

E-DECL
(nb, h') = new(h, m, (1)) pm = Pm(nfb,h' I h,m, (1))

(int x = n in m, (a:: (, h)) (P' (x = n, (a[x * (nb, (1), m)] :: 3, h'))

E-AssIGN-R

(e, CY, h) - y e'

(x = e, (a:: 3, h)) - (x = e', (a:: 3, h))

E-ASSIGN-C

(nb, (1), m) = a(x) p = V(wr(m))

(x = n, (a :: 3, h)) E (skip, (a :: 8 , h[nb -+ n]))

E-ASSIGN-F

(nb, (1), m) = a(x)

(x = n,(a:: , h)) f

E-IF

(b, a,h) v, b'

p = (1 - yi(wr(m))) -Pf (nf wr(m), h(nb), n)

(skip, (a :: 3 , h[nb 4 nf]))

E-IF-TRUE

(iff b s, S2, (a:: 3,h)) - (if f b' sl S2, (a:: 3,h)) (ife true s S2 , E) - V (sI, E)

E-SEQ-R I
E-IF-FALSE (s E) (s'iE')

(if e false s IS2, E (S2, E)

E-SEQ-R2

(skip ; s2 , E) -- S4((s2 ,E)

E-WHILE-BOUNDED

E-WHILE

(whilee bs,E) - E2 (ife b{s ; whilee bs} {skip}, E)

(whilef b : ns,E) --C- (ifeb {s; whilee b : (n- 1) s} {skip}, E)

Figure 4-8: Dynamic Semantics of Statements

159

(S I ; S2,E 4V (S'l S2, E ')

(int a [ni,..nk] in m, (a :: 3, h)) -c'+q (skip, (a' :: 3, h'))

E-ARRAY-LOAD-IDX

(ei, T) e/

(x = a Enl,..., ei,...,ek], (a :: 5,h)) 241 (x= a [n I,...., ,... ,ek] ,(a :: 6, h))

E-ARRAY-LOAD-C

a(a) ={ nb,(I1,...,lk),m)
k-l

no=lk-+ ni--li
i=O

n =h(nb - no)

k-i
no = Xk + Eni -i

i=O
p = (1 - V(rd(m))) * P(nf rd(m))

(F,n), p
(x=a[nl,...,nk],(O:: 3,h)) -4 (x=nf,(a:: 3,h))

Figure 4-9: Dynamic Semantics of Arrays

160

E-ARRAY-DECL-R

(ei, a) - e

(int aEn I,...., ei, ... , e] in m, (a :: 3, h)) (int a [n 1,...,1ei ,..e] in m, (a :: 3, h))

E-ARRAY-DECL
Vi.0 < ni (nb, h') = new (h, m, (ni1, ... nk)) C' a[a - (nb, (n1,...,nk),m)]

E-ARRAY-LOAD-F

a(a) = (nb, (11 ... I 1 k), M)

C, y (rd
ler - S h\\ '(m)) / v = nLIL f I '&K-J I \ - .. -I I.// / V Y. 1.1

E-C ALLX-EXPR-ARG

(ei, a) ej

(x = f(vI..., ,ek), (a :: ,h)) 0 (x = f(v1 ,..,e ,..,ei), (a :: 3,h))

E-C ALLX-INT-ARG

(ei, a)N n vi =(,n)

(xI = ~ ..., ei, ... , ek), (cr :: 6 ,h)) 0 (x = i.. vi ..., ek), (a :: ,h))

E-CALLX-ARR-ARG

vi = (Ref, (a(ai)))
C I

(x = f(VI,..., ai,...,ek), (a ::58,h)) !4V(x= f(vI,..., vi,...ek), (cr :: h))

E-CALLX-UNFOLD
V(ai, i) E arrayparams(f) .'(ai) = vi

sintinit - int xi, = vi1 in mi, ; ; int Xik = Vik in mik where (xi,mi, i;) E int-params(f)

(x = f (V,., I Vk), (3, h)) 4y x = f (V ,., Vk) sint-inil ; code (f) , ((Y' :: 3, h))

E-CALLX-BODY

(s, (a':: 3, h)) 'pf (s', (a': 3', h'))

(x=f (VI,, --Ivk) s, (a :: 6, h)) Ve(vi.. i ' (':Sh)

E-RETURN-R

(e, a)N (e',

(return e, (a:: 3,h)) 2-T, (return e', (a :: 3, h))

E-CALLX-RETURN

(x = f(Vi,..., V) return n, (a::8, h)) -'+v (x =n, (5,h))

E-SEQ-RETURN

si E {return, return n}

(SI ; S2, (, h)) -4namic (sIt (o, h))

Figure 4- 10: Dynamic Semantics of Function Calls and Returns

161

4.3.4 Semantics of Arrays

Figure 4-9 presents the dynamic semantics of array operations.

Declarations. An array declaration allocates a new array in the heap. The boundaries of

an array are given by a sequence of expressions, each of which can evaluate unreliably [E-

ARRAY-DECL-R]. Given these boundaries, a new array is allocated using the function new,

which returns the base address of an array that has been freshly allocated in the memory

region m [E-ARRAY-DECL]. The function new executes reliably. To guard against ill-

defined behavior, the given semantics also reliably checks that the length of each dimension

is non-negative.

Loads. Executing an array load entails multiple steps. In the first step, the program re-

duces the expressions for each index in left-to-right order [E-ARRAY-LOAD-IDX]. Note

that reduction of the index expressions may encounter faults, producing incorrect indices.

Because the dynamic semantics incorporates bounds checks to prevent incorrect indices

from yielding ill-defined, out-of-bounds behaviors, the developer is free to choose the reli-

ability of the index expressions.

Given the array reference and the reduced indices of each dimension, the program then

checks to see if each index is within bounds of the allocated dimensions of the array and

also calculates the offset of the element to be accessed [E-ARRAY-LOAD-C, E-ARRAY-

LOAD-F]. If the index check fails, the computation terminates. In the final step, the array

load proceeds by attempting to fetch the corresponding value from the given memory re-

gion. With probability yf(rd(m)), this step executes correctly and returns the value from

memory [E-ARRAY-LOAD-C]. With probability 1 - y(rd(m)), the memory read fails, pro-

ducing an alternative value nf with probability P(nf) [E-ARRAY-LOAD-F].

Stores. The semantics of stores are similar to that for loads except with the reliability of

writes to the array's memory region (yf (wr(m))) substituted for the reliability of reads.

Note that the store operation may fail in two ways: 1) the index computation produces

a wrong index (the rule is similar to [E-ARRAY-LOAD-IDX]) or 2) the write operation

162

may fail, with probability 1 - y(wr(m)). If the index computation fails and the computed

index is outside of the loop bounds, then the computation skips the write operation. If the

index computation fails and the computed index is within the bound, then the write will

modify another location within the array. If the write operation fails, the semantics stores

an alternative value nf with probability P(nf).

4.3.5 Semantics of Functions

Figure 4-10 presents the dynamic semantics of function calls and returns. A function call

and return sequence executes via the following procedure:

Call Argument Evaluation. A function call first evaluates its arguments in left-to-right

order [E-CALLX-ARGS]. Note that evaluation of the arguments may encounter faults.

Call Body Unfolding. After the arguments to a call have been fully evaluated, control

then transfers to the body of function [E-CALLX-UNFOLD]. The rule transfers control by

fetching the code for the body of the function via the utility function code(f).

The rule also creates a new state a' and pushes the old state a onto the program stack 3.

The rule initializes the new state with the appropriate values for its parameters by prepend-

ing a set of declarations sintinit to allocate and initialize the integer parameters of the func-

tion. The function array-params returns the set of names and position of the formal array

parameters of the function f. The function int.params returns the set of names, memory

locations, and positions of integer formal parameters of the function f.

Note that this rule executes correctly with probability 1; this implies that both con-

trol transfers and manipulations of the program stack are performed fully reliably. While

reliable control transfers are given by Rely's machine model, reliable program stack ma-

nipulations require that a compiler allocate the program stack in a reliable memory region.

Return Value Evaluation. A return e statement fully evaluates e under the hardware

reliability model, yielding a value n [E-RETURN-El.

163

Call Return Execution. Once the body of the call executes and reaches a return state-

ment, execution proceeds by restoring the old state ca' from the program stack, assign-

ing the return value to the destination variable, and transferring control back to the caller

[E-CALL-RETURN-E]. Note that as with [E-CALLX-UNFOLD], this step executes cor-

rectly with probability 1 and therefore both the control transfer and stack manipulation are

fully reliable.

4.3.6 Big-step Notations

I use the following big-step execution relations in the remainder of this chapter.

Definition 2 (Big-step Trace Semantics).

where =61 ,..., and p = pi

The big-step trace semantics is a reflexive transitive closure of the small-step execution

relation that records a trace of the execution. A trace 'r E T::= - 119 :: T is a sequence of

small-step transition labels. The probability of a trace, p, is the product of the probabilities

of each transition.

Definition 3 (Big-step Aggregate Semantics).

(sc) E E' where p = E p, such that (s, e) ' E'
reT

The big-step aggregate semantics enumerates over the set of all finite length traces and

collects the aggregate probability that a statement s evaluates to an environment E' from

an environment 8 given a hardware reliability specification ly. The big-step aggregate

semantics therefore gives the total probability that a statement s starts from an environment

E and terminates in an environment e'.2

2The inductive (versus co-inductive) interpretation of T yields a countable set of finite-length traces and
therefore the sum over T is well-defined.

164

Termination and Errors. An unreliable execution of a statement may experience a run-

time error (due to an out-of-bounds array access) or not terminate at all. The big-step

aggregate semantics does not collect such executions. Therefore, the sum of the prob-

abilities of the big-step transitions from an environment e may not equal to 1. Specif-

ically, let p C E -* R be a measure for the set of environments reachable from e, i.e.,

VE'.(s, E) c E'. Then p is subprobability measure, i.e., 0 < E P'EE) < 1 [43].

4.4 Semantics of Quantitative Reliability

I next present definitions that give a semantic meaning to the reliability of a Rely program.

4.4.1 Paired Execution

The paired execution semantics is the primary execution relation that enables one to reason

about the reliability of a program. Specifically, the relation pairs the semantics of the

program when executed reliably with its semantics when executed unreliably.

Definition 4 (Paired Execution). (C <D = E -+ R

(s, (,p)) Y.6 (c',p') such that (s, E) - E, and p(Eu)= (p(Eu)' pu where
E~cE

(sI Eu) euy

The relation states that from a configuration (e, p) consisting of an environment e and

an unreliable environment distribution (p, the paired execution of a statement s yields a new

configuration (e', (p').

The environments c and E' are related by the fully reliable execution of s. Namely, an

execution of s from an environment e yields c' under the fully reliable hardware model 1 V.

The unreliable environment distributions (p and (p' are probability mass functions that

map an environment to the probability that the unreliable execution of the program is in

that environment. In particular, (p is a distribution on environments before the unreliable

execution of s whereas p' is the distribution on environments after executing s. These

distributions specify the probability of reaching a specific environment as a result of faults

during the execution.

165

PJ C P(E x (D) ftrue = E x <D Ef alsel = 0 P1 A P21= [Pi O P2

R < R21 = (e, P) I R I (c, p) < R 2 (El, T)

[Rj EEx<D-*R r](e, () = r R I -R21(E, () = RII(c, p) - R2(P, T)

j[R(X)](e, (p) = () E P(Var + ArrVar) x E -+ P(E)
4EES(X E)

E(X,e) = {c'I E' E E A Vv. v E X 4 equiv(E', c, v)

equiv ((a' :: 5', h'), (a :: 3, h), v) = Vi. 0 < i < len (v, cy) = h'(zbase (a'(v)) + i) = h (zbase (a (v)) + i)

len(v, a) = let (no, ... ,nk) = 7rdim(a(v)) in [I ni
O<i<k

Figure 4-11: Predicate Semantics

The unreliable environment distributions are discrete because E is a countable set.

Therefore, p' can be defined pointwise: for any environment e' C E, the value of q'(8') is

the probability that the unreliable execution of the statement s results in the environment C'

given the distribution on possible starting environments, T, and the aggregate probability

pu of reaching c' from any starting environment E,, c E according to the big-step aggre-

gate semantics. In general, p' is a subprobability measure because it is defined using the

big-step aggregate semantics, which is also a subprobability measure (Section 4.3.6).

4.4.2 Reliability Predicates and Transformers

The paired execution semantics enables a definition of the semantics of statements as trans-

formers on reliability predicates that bound the reliability of program variables. A reliabil-

ity predicate P is a predicate of the form:

P -4 true | false |R R |PAP

R -+ r|R(X) R-R

A predicate can either be the constant true, the constant f alse, a comparison between

reliability factors (R), or a conjunction of predicates. A reliability factor is real-valued

quantity that is either a constant r in the range [0, 1]; a joint reliability factor R(X) that gives

the probability that all program variables in the set X have the same value in the unreliable

execution as they have in the reliable execution; or a product of reliability factors, R -R.

166

This combination of predicates and reliability factors enables a developer to specify

bounds on the reliability of variables in the program, such as 0.99999 < R,({x}), which

states that the probability that x has the correct value in an unreliable execution is at

least 0.99999.

Semantics of Reliability Predicates.

Figure 4-11 presents the denotational semantics of reliability predicates via the semantic

function [Pj. The denotation of a reliability predicate is the set configurations that sat-

isfy the predicate. A key new element in the semantics of this predicate language is the

semantics of joint reliability factors.

Joint Reliability Factor. A joint reliability factor R(X) represents the probability that

an unreliable environment e, sampled from the unreliable environment distribution (P has

the same values for all variables in the set X as that in the reliable environment e. To

define this probability, I use the function S(X, E), which gives the set of environments that

have the same values for all variables in X as in the environment e. The denotation of a

joint reliability factor is then the sum of the probabilities of each of these environments

according to (p.

Auxiliary Definitions. I define predicate satisfaction and validity as follows:

() #P C ((P) E M

-P a V.Vqp. (e,(P) = P

Reliability Transformer

Given a semantics for predicates, it is now possible to view the paired execution of a pro-

gram as a reliability transformer - namely, a transformer on reliability predicates that is

reminiscent of Dijkstra's Predicate Transformer Semantics [30].

Definition 5 (Reliability Transformer).

P /\ (s, (e, p)) V (,c', p)) --> (E', ' -Q

167

The paired execution of a statement s is a transformer on reliability predicates, denoted

yf {P} s {Q}. Specifically, the paired execution of s transforms P to Q if for all (E, p)

that satisfy P and for all (E', p') yielded by the paired execution of s from (E, p), (E', p')

satisfies Q. The paired execution of s transforms P to Q for any P and Q where this rela-

tionship holds.

Reliability predicates and reliability transformers enable Rely to use symbolic predi-

cates to characterize and constrain the shape of the unreliable environment distributions

before and after execution of a statement. This approach provides a well-defined domain

in which to express Rely's reliability analysis as a generator of constraints on the shape of

the unreliable environment distributions for which a function still satisfies its specification.

4.5 Reliability Analysis

For each function in a program, Rely's reliability analysis generates a symbolic reliability

precondition with a precondition generator style analysis. The reliability precondition is a

reliability predicate that constrains the set of specifications that are valid for the function.

Specifically, the reliability precondition is of the form ARi < R where Ri is the reliability

factor for a developer-provided specification of a function output and Ri is a reliability

factor that gives a conservative lower bound on the reliability of that output. If the reliability

precondition is valid, then the developer-provided specifications are valid for the function.

4.5.1 Preliminaries

Transformed Semantics. I formalize Rely's analysis over a transformed semantics of the

program that is produced via a source-to-source transformation function T that performs

two transformations:

* Conditional Flattening. Each conditional has a unique controlflow variable f as-

sociated with it that T uses to flatten a conditional of the form ife (b) {sI} {S2} to

the sequence t = b ; ife (f) {s 1} {S2}. This transformation reifies the control flow

variable as an explicit program variable that records the value of the conditional.

168

* SSA. The transformation function also transforms a Rely program to a SSA renamed

version of the program. The -nodes for a conditional include a reference to the

control flow variable for the conditional. For example, T transforms a sequence of

statements of the form f = b ; ife (f) {x = 1} {x = 2} to the sequence of statements

f = b ; if f () {xI = 1} {x 2 = 2) ; x = 0(f,xi,x 2). I rely on standard treatments for

the semantics of O-nodes [9] and arrays [42].

I also note that T applies the SSA transformation such that a reference of a parameter

at any point in the body of the function refers to its initial value on entry to the func-

tion. This property naturally gives a function's reliability specifications a semantics

that refers to the reliability of variables on entry to the function.

These two transformations together make explicit the dependence between the reliabil-

ity of a conditional's control flow variable and the reliability of variables modified within.

Auxiliary Maps. The map A E Var --* M is a map from program variables to their de-

clared memory regions. I compute this map by inspecting the parameter and variable dec-

larations in the function. The map F E Var - R is a unique map from the outputs of a

function - namely, the return value and arrays passed as parameters - to the reliability fac-

tors (Section 4.4.2) for the developer-provided specification of each output. I allocate a

fresh variable named ret that represents the return value of the program.

Substitution. A substitution eo [e2 /e I] replaces all occurrences of the expression e with

the expression e2 within the expression eo. Multiple substitution operations are applied

from left to right. The substitution matches set patterns. For instance, the pattern RI({x} U

X) represents a joint reliability factor that contains the variable x, alongside with the re-

maining variables in the set X. Then, the result of the substitution r, -R({x, z}) [r2 -]Z({y} U

X)/7Z({x} UX)] is the expression r - r2 1R({y,z}).

4.5.2 Precondition Generation

The analysis generates preconditions according to a conservative approximation of the

paired execution semantics. Specifically, it characterizes the reliability of a value in a

169

p E (Exp +BExp) - R x P(Var) p(n) = (I, 0) p(x) = (V(rd(A(x))), {x})

p (el iop e2) = (pj(ei) -pi(e2) - (iop), P2(ej) up2(e2)) p I (e) =)r1(p (e))

p2 (e) =

RP y
RP(return e, Q)

RP(x = e, Q)

RP,(x = a [ei,..., en, Q)

RPvf(a [e, .. , en] = e, Q)

RP(skip, Q)
RPyV(si ; s2,Q)

RP,(if f i s1 S2,Q)

RPy(X =< V , xi X2), Q)

RPy(whilef b : 0 s, Q)
RP,(whilef b: n s,Q)

RPyf(int x = e in m, Q)
RPYi(int a [no,...,n] in m,Q)

2(p (e))

SS x P -+ P
= QAF(ret) <pi(e)-R(p 2 (e))

= Q [(pi (e) -V(wr(A(x)))-
R(p2 (e) UX))/k({x} l X)]

= Q [((pi (ei)) -V(rd(A(a))) - V(wr(A(x))).
i

R({a} U (Up2(ei)) UX))/RI({x} UX)]

= Q [(p (e) -(jp1 (ei)) - y(wr(A(a))).

R(p 2 (e) U (Up2(ei)) U {a} UX))/Z({a} uX)]

=Q
= RP,(si,RP,(s2,Q))
= RPV(s, Q) A RP(s2, Q)
= Q [R({exi } UX)/Z({x} UX)]A

Q[IR({,x 2 } U X)/Z({x} UX)]

=Q
= RPV(T(ife, b {s ; whilee b: (n - 1) s} skip),Q)

SRP(x = e, Q)

= Q [I(A)/ /(jau A)]

Figure 4-12: Reliability Precondition Generation

function according to the probability that the function computes that value - including its

dependencies - fully reliably given a hardware specification.

Figure 4-12 presents a selection of Rely's reliability precondition generation rules. The

generator takes as input a statement s, a postcondition Q, and (implicitly) the maps A and

F. The generator produces as output a precondition P, such that if P holds before the paired

execution of s, then Q holds after.

I have designed the analysis so that Q is the constraint over the developer-provided

specifications that must hold at the end of execution of a function. Because arrays are

passed by reference in Rely and can therefore be modified, one property that must hold at

170

the end of execution of a function is that each array must be at least as reliable as implied

by its specification. The analysis captures this property by setting the initial Q for the body

of a function to

A F(ai) < R(a')
ai

where at is the ith array parameter of the function and a is an SSA renamed version of the

array that contains the appropriate value of ai at the end of the function. This constraint

therefore states that the reliability implied by the specifications must be less than or equal

to the actual reliability of each input array at the end of the function. As the precondition

generator works backwards through the function, it generates a new precondition that - if

valid at the beginning of the function - ensures that Q holds at the end.

Reasoning about Expressions

The topmost part of Figure 4-12 first presents the rules for reasoning about the reliability

of evaluating an expression. The reliability of evaluating an expression depends on two

factors: 1) the reliability of the operations in the expression and 2) the reliability of the

variables referenced in the expression. The function p C (Exp + BExp) -4 R x P(Var)

computes the core components of these two factors. It returns a pair consisting of 1) the

probability of correctly executing all operations in the expression and 2) the set of variables

referenced by the expression. The projections pi and P2 return each component, respec-

tively. Using these projections, the reliability of an expression e - given any reliable en-

vironment and unreliable environment distribution - is therefore at least p1(e) - (P2(e)),

where R(p 2 (e)) is the joint reliability of all the variables referenced in e. The rules for

boolean and relational operations are defined analogously.

Generation Rules for Statements

As in a precondition generator, the analysis works backwards from the end of the program

to the beginning. I have therefore structured the discussion of the statements starting with

function returns.

171

Function Returns. When execution reaches a function return, return e, the analysis

must verify that the reliability of the return value is greater than the reliability that the

developer specified. To verify this, the analysis rule generates the additional constraint

F(ret) < pi (e) - Z(p2(e)). This constrains the reliability of the return value, where F(ret)

is the reliability specification for the return value.

Assignment. For the program to satisfy a predicate Q after the execution of an assignment

statement x = e, then Q must hold given a substitution of the reliability of the expression e

for the reliability of x. The substitution Q[(pi (e) -y(wr(A(x))) - Z(p2 (e) UX))/IZ({x} U

X)] binds each reliability factor in which x occurs - Z({x} U X) - and replaces the fac-

tor with a new reliability factor 1Z(p2(e) UX) where p2(e) is the set of variables refer-

enced by e.

The substitution also multiplies the reliability factor by pi (e) -Y(wr(A(x))), which is

the probability that e evaluates fully reliably and its value is reliably written to the memory

location for x.

Array loads and stores. The reliability of a load statement x = a [ei,..., e] depends

on the reliability of the indices el,...,e,, the reliability of the values stored in a, and the

reliability of reading from a's memory region. The rule's implementation is similar to that

for assignment.

The reliability of an array store a [ei,...,en] = e depends on the reliability of the source

expression e, the reliability of the indices e 1,... , e, , and the reliability of writing to a. Note

that the rule preserves the presence of a within the reliability term. By doing so, the rule

ensures that it tracks the full reliability of all the elements within a.

Conditional. For the program to satisfy a predicate Q after a conditional statement of the

form if e b s, s 2 , each branch must satisfy Q. The rule therefore generates a precondition

that is a conjunction of the results of the analysis of each branch.

Phi-nodes. The rule for a O-node x = O(f,x,x 2) captures the implicit dependence of the

effects of control flow on the value of a variable x. For the merged value x, the rule estab-

172

RPV,(x = f(ei,. .. ,en),QC) = WPI(farrayparnum(f),Q,C)

WPI(f, 0, Q, C) = Q [ty(wr(A(x)) Relspec-act(f, 0, X U C)/R({x} U X)]
WPI(fjQC) = let Q'=WPI(fj-1,Q,C)in

Q' [Respecact(f, arraypar(j), X)/7Z({arraypar(j) } U X)] A Q'

Relspecact(f, a, X) = Relspecform(f, a)

[pl (act-par(f, l))1(p2 (act-par(f, 1)) U X U Y)/7R({form-par(f, 1)} U Y)]
[Pi (act-par(f, i))R(p2(act-par(f, i)) UX U Y)/R({formpar(f, i)} U Y)]
[P1 (act-par(f, n))R(p2 (actpar(f, n)) U X U Y)/1R({formpar(f,n)} U Y)]

Figure 4-13: Constraint Generation for Function Calls

lishes Q by generating a precondition that ensures that Q holds independently for both xi

and X2, given an appropriate substitution. Note that the rule also includes f in the substitu-

tion; this explicitly captures x's dependence on E. The flattening statement inserted before

a conditional (Section 4.5.1), later replaces the reliability of f with that of its dependencies.

Bounded while and repeat. Bounded while loops, whilee b : n s, and repeat loops,

repeat n s, execute their bodies at most n times. Execution of such a loop therefore satisfies

Q if P holds beforehand, where P is the result of invoking the analysis on n sequential

copies of the body. The rule implements this approach via a sequence of bounded recursive

calls to transformed versions of itself.

Unbounded while. I present the analysis for unbounded while loops in the section

that follows.

Function calls. Figure 4-13 presents the constraint generation rule for function calls. The

analysis for functions is modular and takes the reliability specification from the function

declaration and substitutes the reliabilities of the function's formal arguments with the re-

liabilities of the expressions that represent the function's actual arguments.

Specifically, for a function call x = f (e I,... , e,) the constraint generator performs two

tasks. First, it substitutes the declared reliabilities of the function's parameters with the

reliability expressions for the actual parameters of the function known at the call site. Sec-

ond, to update the reliability expressions for multiple modified variables (i.e., the modified

array variables), it constructs a constraint that abstracts the reliability of a function call as

173

the reliability of multiple assignment statements - one statement represents the assignment

of the final value of the function to the variable x, the remaining statements represent the

assignment of each potentially modified array parameter of the function.

The constraint generator uses several helper functions to specify the constraint trans-

formation. The helper function Relspecjform(f, j) obtains the declared reliability specifi-

cation of the return value of the function if j = 0 or the j-th array parameter if j > 1. The

total number of array parameters can be obtained using the function fpar-arrvarnum (f).

The total number of parameters of the function (array and scalar) is n.

The function Relspec-act(f, j,X) returns the actual reliability of the corresponding pa-

rameter - it takes the declared reliability and substitutes the names of all n formal arguments

of the function with the reliability expressions of the corresponding actual arguments. The

function act-par(f, i) returns the reliability of the expression for the i-th actual parameter

of the function f. The function form par(f, i) returns the name of the i-th parameter of the

function f.

The function WPI(f, j, Q, C) constructs the new reliability constraint for a function call

with a scalar return value and multiple array parameters. If j= 0 the function constructs

the reliability constraint for a scalar assignment of the return vale. It substitutes the variable

x with an expression that denotes the reliability of the function's return value.

If j > 0, the function constructs the constraint for each array parameter. The function

array-par-num(f) returns the number of the array parameters of a function f. The function

array-par(j) returns the name of the j-th array parameter. The function creates the new

constraint in a similar way as the array store statement. Specifically, it constructs a predicate

that is a conjunction of two predicates: 1) a predicate that characterizes the reliability

of the array when the call decreases the reliability of the array and 2) a predicate that

characterizes the reliability of the array when the array already has a reliability lower than

the one specified by the function's reliability specification.

Note also that this modular approach supports reasoning about recursion. When ana-

lyzing a function, if the analysis assumes that the specification of a recursive invocation

is valid, then the result of the recursive call is no more reliable then the specification the

analysis is trying to verify. If there is any unreliable computation on that result, then it is

174

less reliable than the specification and therefore cannot be verified unless the given spec-

ification is zero. This is consistent with the analysis of unbounded while loops, which I

present in the following section.

Unbounded while Loops.

An unbounded loop, whilee b s, may execute for a number of iterations that is not bounded

statically. The reliability of a variable that is modified unreliably within a loop and has a

loop-carried dependence is a monotonically decreasing function of the number of loop

iterations. The only sound approximation of the reliability of such a variable is therefore

zero. However, unbounded loops may also update a variable reliably. In this case, the

reliability of the variable is the joint reliability of its dependencies. I have designed an

analysis for unbounded while loops to distinguish these two cases as follows:

Dependence Graph. The analysis first constructs a dependence graph for the loop. Each

node in the dependence graph corresponds to a variable that is read or written within the

condition or body of the loop. There is a directed edge from the node for a variable x to the

node for a variable y if the value of y depends on the value of x. The analysis additionally

classifies each edge as reliable or unreliable meaning that a reliable or unreliable operation

creates the dependence.

There is an edge from the node for a variable x to the node for the variable y if one of

the following holds:

o Assignment: there is an assignment to y where x occurs in the expression on the

right hand side of the assignment; this condition captures direct data dependencies.

The analysis classifies such an edge as reliable if every operation in the assignment

(i.e., the operations in the expression and the write to memory itself) are reliable.

Otherwise, the analysis marks the edge as unreliable. The rules for array load and

store statements are similar, and include dependencies induced by the computation

of array indices.

o Control Flow Side Effects: y is assigned within an if statement and the if state-

ment's control flow variable is named x; this condition captures control dependencies.

The analysis classifies each such edge as reliable.

175

The analysis uses the dependence graph to identify the set of variables in the loop that

are reliably updated. A variable x is reliably updated if all simple paths (and simple cycles)

to x in the dependence graph contain only reliable edges.

Fixpoint Analysis. Given a set of reliably updated variables Xr, the analysis next splits

the postcondition Q into two parts. For each predicate Ri < r - Z(X) in Q (where Ri is a

developer-provided specification), the analysis checks if the property Vx c X. x E modset(s)

-> x C Xr holds, where modset(s) computes the set of variables that may be modified by

s. If this holds, then all the variables in X are either modified reliably or not modified at

all within the body of the loop. The analysis conjoins the set of predicates that satisfy this

property to create the postcondition Qr and conjoins the remaining predicates to create Q.

The analysis next iterates the function F(A) starting from true, where F(A) = Qr A

RP4 ,(T(iff b s skip) ,A), until it reaches a fixpoint. The resulting predicate Q, is a trans-

lation of Qr such the joint reliability of a set of variables is replaced by the joint reliability

of its dependencies.

Lemma 19 (Termination). Iteration of F(A) terminates.

This follows by induction on iterations, the monotonicity of RP and the fact that the

range of F(A) (given a simplifier that removes redundant predicates, which I present in the

following section) is finite (together, finite descending chains). The key intuition is that the

set of real-valued constants in the precondition before and after an iteration does not change

(because all variables are reliably updated) and the set of variables that can occur in a joint

reliability factor is finite. Therefore, there are a finite number of unique preconditions in

the range of F(A).

Final Precondition. In the last step, the analysis produces a final precondition that

preserves the reliability of variables that are reliably updated by conjoining Q' with the

predicate Qu[(Ri < O)/(Ri 5 Rj)], where Ri and Rj are joint reliability factors. The sub-

stitution on Qt, sets the joint reliability factors that contain unreliably updated variables

to zero.

176

Properties

Rely's analysis is sound with respect to the transformer semantics presented in Section 4.4.

Theorem 20 (Soundness). yf - {RPV,(s, Q)} s {Q}

This theorem states that if a configuration (c, (p) satisfies a generated precondition and

the paired execution of s yields a configuration (e', (p'), then (E', p') satisfies Q. Alterna-

tively, s transforms the precondition generated by the analysis to Q.

4.5.3 Specification Checking

As the last step of the analysis for a function, the analysis checks the developer-provided

reliability specifications for the function's outputs as captured by the precondition gener-

ator's final precondition. Because each specification has the form r -R(X) (Figure 4-1)

the precondition is a conjunction of predicates of the form r, - Z(XI) < r2 - R(X2). While

these joint reliability factors represent arbitrary and potentially complex distributions of

the values of X, and X2, there is simple and sound (though not complete) procedure to

check the validity of each predicate in a precondition that follows from the ordering of

joint reliability factors.

Proposition 1 (Ordering). For two sets of variables X and Y, if X C Y then R(Y) < R(X).

This follows from the fact that the joint reliability of a set of variables Y is less than or

equal to the joint reliability of any subset of the variables - regardless of the distribution of

their values. As a consequence of the ordering of joint reliability factors, there is a simple

and sound method to check the validity of a predicate.

Corollary 21 (Predicate Validity). If r1 < r2 and X2 C X, then |- ri -R(XI) < r2 R(X2).

The constraint r, < r2 is a comparison of two real numbers and the constraint X2 C

X is an inclusion of finite sets. Note that both types of constraints are decidable and

efficiently checkable.

177

Checking. Because the predicates in the precondition generator's output are mutually

independent, it is possible to use Corollary 21 to check the validity of the full precondition

by checking the validity of each predicate in turn.

4.5.4 Implementation

The parser for the Rely language, the precondition generator, and the precondition checker

are implemented in OCaml. The implementation consists of 2500 lines of code. The

analysis can operate on numerical or symbolic hardware reliability specifications. The

implementation performs simplification transformations after each precondition generator

step to simplify numerical expressions and remove predicates that are trivially valid or

subsumed by another predicate.

Proposition 2 (Predicate Subsumption). A reliability predicate r1 - Z(X 1) < r2 -R(X2) sub-

sumes (i.e., soundly replaces) a predicate r' -1R(XI) < r2 - 1R(X j) if r * R(Xj') < r1 - Z(X1)

and r2 -R(X2) r2 -rR(X2)

This property follows directly from the ordering of joint reliability factors.

4.6 Case Studies

I next discuss six computations (three checkable, three approximate) that I implemented

and analyzed with Rely.

4.6.1 Benchmarks

Newton's Method. Figure 4-14 presents an unreliable Rely implementation of Newton's

method. Newton's method searches for a root of a function; given a differentiable function

f(x), its derivative f'(x), and a starting point xs, it computes a value xO such that f(xo) = 0.

This is an example of a fixed-point iteration computation that executes a while loop

at most maxstep steps. The computation within each loop iteration can execute unre-

liably: each iteration updates the estimate of the root x by computing the value of the

178

1 #define tolerance 0.000001
2 #define maxsteps 40

3
4 float<0.9999*R(x)> F(float x in urel);
5 float<0.9999*R(x)> dF(float x in urel);
6
7 float <0.99*R(xs)> newton(float xs in urel){
8 float x, xprim in urel;

9 float t1, t2 in urel;

10

11 x = xs;

12 xprim = xs +. 2*.tolerance;

13

14 while ((x -. xprim >=. tolerance)

15 I I. (x -. xprim <=. -tolerance)

16) maxsteps {
17 xprim =x;

18 ti = F(x);
19 t2 = dF(x);

20 x = x -. ti /. t2;

21 }
22
23 if (!.((x -. xprim <=. tolerance)

24 &&. (x -. xprim >=. -tolerance))) {
25 x = INFTY;

26 }
27 return x;

28 }

Figure 4-14: Newton's Method Implementation

function f and the derivative f'. If the computation converges in the maximum number

of steps, the function returns the produced value. Otherwise it returns the error value

(infinity). The reliability of the computation depends on the reliability of the starting

value x, and the reliability of the functions f and f'. If the reliability specification of f

is float<0 . 9999*R(x)> F (float x) (and similar for f'), then the analysis verifies that

the reliability of the whole computation is at least 0. 99*R(xs).

Secant Method. Figure 4-15 presents an implementation of this computation; the com-

putation also searches for a root of a function f. It takes as input two points xa and xb for

which the function has the opposite sign and returns the value x0 within the interval [Xa,Xbl

for which the function f evaluates to zero.

This is the fixed point computation that at each step computes the middle point x, and

its function f(xc). Based on the sign of f(x,) the algorithm divides the search interval

179

1 #define tolerance 0.000001

2 #define maxsteps 40

3
4 float<0.9999*R(x)> F(float x in unrel);
5

6 float<0.9999*R(x)> dF(float x in unrel);

7
8 float <0.995*R(xa, xb)> secant

xa in unrel,
a in unrel;
b in unrel;
c in unrel;
fa in unrel;
fb in unrel;
fc in unrel;
converged in

float xb in unrel) {

unrel;

a = xa;

b = xb;

= F(a);
= F(b);

9
10
11

12

13
14
15

16
17

18
19
20
21
22
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

if (!.((a -. b

(a -. b >=.
x = INFTY;

}
return x;

b >=. tolerance) 11.

b <=. 0.0-.tolerance))

eps {
b) /.2;

0) &&. (fc >= 0)) {

<=. tolerance) &&.

0.0-.tolerance))) {

Figure 4-15: Secant Method Implementation

180

(float
float
float
float
float
float
float
bool

fa
fb

while ((a -.

(a -.

maxst
c = (a +.
fc = F(c);

if ((fa >=
a = c;

fa = fc;

} else {
b = c;

fb = fc;

}
}

}

(using a conditional statement). The whole loop can execute unreliably. If the function

f has the reliability specification float<O.9999*R(x)> F(float x), then the analysis

verifies that the reliability of the computation is at least . 995*R (xa, xb).

Note that the reliability of this computation is higher than the reliability of Newton's

method. This is because the Secant method makes a single call to the function f, whereas

Newton's method makes calls to both f and f' in every iteration. Given multiple options

(such as Newton's method and Secant), verified reliability specifications may help devel-

opers select the option that best satisfies their combined reliability and efficiency goals.

Coordinate Conversion. This computation converts polar coordinates of a point to Carte-

sian coordinates. Given a coordinate (R, 6), where R is a radius and 6 is an angle, it com-

putes the coordinates x = Rcos(6) and y = R sin(9). This is also a checkable computation:

the square of the diameter is equal to the sum of the squares of Cartesian coordinates.

Figure 4-16 presents the implementation of this computation. The function takes the

inputs r and theta and stores the result in the output array xy. The body of the computation

can execute unreliably. The analysis first verifies the implementation of the trigonometric

functions (which are evaluations of appropriate Chebyshev interpolating polynomials). If

the reliability of the input x is R(x), then the the analysis verifies that the functions sin(x)

and cos(x) have the reliability at least 0 .99999*R (x). The analysis uses this result to verify

that if the reliability of the parameters r and theta is R (r, theta) , then the reliability of

the coordinate conversion computation is at least 0 . 99995*R (r , theta, xy).

Motion Estimation. This is the computation presented in Section 4.2.

Matrix-vector Multiplication This computation calculates the product of a matrix M

and a vector v. The dimensions of the matrix are w x h, the length of v is h, and the length

of the resulting vector u is w. The computation takes M, v, and u as inputs, and computes

the values of the elements of the vector u.

Figure 4-17 presents the implementation of this computation. All operations on the

input data can execute unreliably. The output of the function is the vector u. Assuming the

maximum size of the square matrix to be 64x64 (as in some signal processing applications),

181

1 //Array with sine polynomial coefficients

2 #define nsin 20
3 const csin (1) = { /*...*/ };
4

5 //Array with cosine polynomial coefficients

6 #define ncos 19

7 const ccos (1) = { /*..*/ };

8
9 float<0.99999*R(x)> usin(float x in unrel) {
10 float res in unrel; float t in unrel;

11 int i; i = 1;
12

13 res = csin[0];

14 while (true) nsin {
15 t = csin[i];

16 res = res *. x +. t;

17 i = i + 1;

18 }
19 return res;

20 }
21
22 float<0.99999*R(x)> ucos(float x in unrel) {
23 float res in unrel; float t in unrel;

24 int i; i = 1;
25

26 res = ccos[0];

27 while (true) : ncos {
28 t = ccos[i];

29 res = res *. x +. t;
30 i = i + 1;

31 }
32 return res;

33 }
34
35 void main(float r in unrel, float theta in unrel,

36 float<0.99995*R(r, theta, xy)> xy) {
37 float x in unrel; float y in unrel;

38 float t in unrel;

39
40 t = ucos(theta);

41 xy(1) = r *. t;
42 t = usin(theta);

43 xy(2) = r *. t;
44 }

Figure 4-16: Coordinate Conversion Implementation
182

const num matx = 64;

const num maty = 64;

void matvec

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

num
num
num
int

t1
t2

t3

i,

in
in
in

j,

i = 0;
repeat ma

j = 0;
t3 = 0;
repeat

(float mat(2) in urel,

float v(1) in urel,

num<.997*R(mat, vec, outvec)>

u(1) in urel)

urel;
urel;

urel;

k;

tx {

ma
ti
t2

t3

ty {
mat[j, i];

v j] ;
t3 +. t *. t2;

}

u[i] = t3;

i = i + 1;

}
}

Figure 4-17: Matrix-Vector multiplication Implementation

the specified output reliability for the vector u is 0. 997*R(M, v, u). The analysis result

states that the reliability of any element of u is greater than this specified output reliability.

Note that the specification needs to account for the possible unreliability of assignments

to the vector u before entering the function, because it does not track the array indices to

determine that every element of u is modified inside the function.

183

{

<0

t

(t

.9999995 * R(val)> abs(int val in unrel) {
in unrel = val;

<=. 0) {
0 -. t;

2
3
4
5
6
7
8
9 int<0.99995 * R(bA, bB, satdstart)> hadamarddiff
10 (int<R(bA)>

int<R(bB)>
int satdst

bA (2)
bB (2)

art in

in unrel,
in unrel,
unrel)

in unrel;
in unrel;
in unrel;
in unrel;
in unrel;
in unrel;
in unrel;
in unrel;
in unrel;
unrel; int
unrel; int
unrel;

int i
int t
int t
int t
int t
int t
int t
int t
int t
int t
int t
int t

ti =
t2 =
t3 =
t4 =
tmpO0

tmp0l1
tmp02
tmp03

ti =
t2 =
t3 =
t4 =
tmp10
tmp11

tmp12
tmpl3

+

+

tt

tt

tt

tt

t2

t2

t2

t2

tt

tt

tt

tt

t2

t2

t2

t2

int
int
int
int
int
int
int
int
t2

t4

bB [0

bB [0

bB [0

bB [0

+. t3

-. t3

-. t3

+. t3

bB [1
bB [1

bB [1

bB[1

+. t3

-. t3

-. t3

+. t3

tmpOl in
tmp03 in

tmpll in
tmpl3 in
tmp2l in
tmp23 in
tmp3l in
tmp33 in
in unrel

in unrel

0]

1]

2]

3]

0]

1]

2]

3]

ti

t2

t3

t4

t4;

t4;

t4;

t4;

ti

t2

t3

t4

t4;

t4;

t4

t4

unrel
unrel
unrel
unrel
unrel
unrel
unrel
unrel

ti

t2

t3

t4

ti

t2

t3

t4

tt;

tt;

tt;

tt;

tt;

tt;

tt;

tt;

Figure 4-18: Hadamard Transform Implementation (Part 1)

184

int
int
if

t

}
return t;

}

{
satd
mpOO
mp02
mp 10
mp12
mp20
mp22
mp30
mp32
1 in

3 in
t in

,0]

,1]
,2]

,3]
ti

ti

ti

ti

,0]
,1]

,2]

,3]
ti

ti

ti

ti

bA

bA

bA

bA

bA

bA
bA
bA

[0

[0

[0

[0

[1

[1

[1

[1

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

76
77
78
79
80
81
82
83
84
85
86
87

ti =

t2 =
t3 =
t4 =

tmp20

tmp2l
tmp22
tmp23

ti =
t2 =
t3 =
t4 =

tmp30
tmp3l
tmp32

tmp33
isatd

ti =

t2 =
t3 =
t4 =
isatd

ti =
t2 =
t3 =
t4 =
isatd

isatd =

bA

bA
bA
bA

bA
bA
bA

bA

(tmp01 +.

(tmp01 +.

(tmp01 -.

(tmp01 -.

isatd +.

(tmp02 +.

(tmp02 +.

(tmp02 -.

(tmp02 -.

isatd +.

ti = abs(tmp03

t2 = abs(tmp03

t3 = abs(tmp03

t4 = abs(tmp03

return isatd +

}

t2

t2

t2

t

t2

t2

t2

bB
bB

bB
bB

+

[2
[2
[2
[2
t3

t3

t3

II
[
[
[

[
[
[
[

2,0]; t

2,1]; t

2,2]; t

2,3]; t
ti +.

t1 +.

t1

t1

3,0]; t

3,1]; t

3,2]; t

3,3]; t
t1 +.

t1 +.

ti

t1

satdsta

(tmp00

(tmp00

(tmp00

(tmpOO

isatd +

bB
bB
bB
bB

+

+

[3
[3
[3
[3
t3

t3

t3

t3

0]

1]
2]

,3]
+

+

0]

1]

2]

3]

tmp10 +.

tmp10 -.

tmp10 -.

tmp10 +.

ti +. t2

tmp11 +.

tmp11 -.

tmp11 -.

tmp11 +.

ti +. t2

tmpl2 +.

tmpl2 -.

tmpl2 -.

tmpl2 +.

ti +. t2

+. tmpl3

+. tmpl3
- tmpl3
- tmpl3
ti +. t2

t1
t2

t3

t4

t4;

t4;

t4;

t4;

ti

t2

t3

t4

t4;

t4;
t4;

t4;

t1
t2
t3

t4

ti
t2

t3

t4

tmp20 +

tmp20 -

tmp20 +

tmp20 -

+. t3 +.

tmp2l
tmp2l
tmp2l
tmp2l

+. t3 +

+

+

tmp22 +.

tmp22 -.

tmp22 +.

tmp22 -.

+. t3 +.

tmp23
tmp23
tmp23
tmp23

+

+

+. t3 +. t4;

Figure 4-19: Hadamard Transform Implementation (Part 2)

185

t2 +. t3

t=

t=

t2

t=

t2;

t2

t2

t2

rt;

tt;

tt;

tt;
tt;

tt;

tt;
tt;
tt;

tmp30)

tmp30)

tmp30)

tmp30)
t4;

abs
abs
abs

abs

abs
abs

abs

abs

abs
ab s

abs
abs

)

)

)

)

tmp3l
tmp3l
tmp3l
tmp3l

t4;

ti

t2

t3

t4

= (

= (

= (

tmp32)
tmp32)
tmp32)
tmp32)

t4;

tmp33)
tmp33)
tmp33)
tmp33)

+.

-.
-.
+.

Benchmark Type LOC Time (ms) [Predicates]

newton Checkable 21 8 1
secant Checkable 30 7 2
coord Checkable 36 19 1
search-ref Approximate 37 348 3
matvec Approximate 32 110 4
hadamard Approximate 87 18 3

Figure 4-20: Benchmark Analysis Summary

Hadamard Transform This computation takes as input two blocks of 4x4 pixels and

computes the sum of differences between the pixels in the frequency domain. This compu-

tation is used in digital signal processing applications (including motion estimation).

Figures 4-18 and 4-19 present the implementation of this computation. The compu-

tation calculates the intermediate distances between the elements stored in the arrays and

computes the sum of the absolute differences of combinations of these elements. The video

can be stored in unreliable memory and the entire computation can execute unreliably. The

analysis verifies that if the reliability of the two input blocks bA and bB is R(bA,bB), then

the reliability of the computation is greater than 0. 99995*R(bA, bB).

4.6.2 Analysis Summary

Table 4-20 presents Rely's analysis results on the benchmark computations. For each

benchmark, the table presents the type of the computation (checkable or approximate),

its length in lines of code (LOC), the execution time of the analysis, and the number of

inequality predicates in the final precondition produced by the precondition generator.

Analysis Time. The analysis times for all benchmarks are under one second when exe-

cuted on an Intel Xeon E5520 machine with 16 GB of main memory.

Number of Predicates. Using the hardware reliability specification from Figure 4-5 to

generate a reliability precondition for each benchmark, the number of predicates in each

benchmark's precondition is small (all less than five). The reason why the number of

predicates is small is because simplification removes most of the additional predicates in-

troduced by the rules for conditionals. Specifically, these predicates are Often subsumed by

another predicate.

186

4.6.3 Reliability and Accuracy

A developer's choice of reliability specifications is typically influenced by the perceived

effect that the unreliable execution of the computation may have on the accuracy of its

result and its execution time and energy consumption. I present two case studies that il-

lustrate how developers can use Rely to reason about the tradeoffs between accuracy and

performance that are available for checkable computations and approximate computations.

Checkable Computations

Checkable computations are those that can be augmented with an efficient checker that

dynamically verifies the correctness of the computation's result. If the checker detects an

error, then it reexecutes the computation or executes an alternative reliable implementation.

I next present how a developer can use Rely to build and reason about the performance of

a checked implementation of Newton's method.

Newton's method. A developer can build a checked implementation of newt on with the

following code:

float root = newton(xs);

float ezero = f(root);

if (ezero < -tolerance 11 ezero > tolerance)

root = newtonr(xs);

To check the reliability of the root xo that newton produces, it is sufficient to evaluate the

function f(xo) and check if the result is zero (within some tolerance). If the checker detects

that the result is not a zero, then the computation calls newt onr, a fully reliable alternative

implementation.

Reliability/Execution Time Tradeoff. Quantitative reliability enables a developer to

model the performance of this checked implementation of Newton's method. Let 'r be

the expected execution time of newton, zu the expected execution time of newton when

executed for its maximum number of internal loop iterations, rc the expected execution

time of the checker, and r, the expected execution time of newton-r.

187

The expected execution time of the checked computation when newton produces a

correct result is Ti = T,+ T. In the case when newton produces an incorrect result, the

expected execution time is at most T2 = Tum + Zc+ r (i.e., the maximum expected execution

time of newton plus the expected execution time of both the checker and the reexecution

via newt on-r). This formula is conservative because it assumes that a fault causes newt on

to execute for its maximum number of iterations.

If r denotes the reliability of newton, then the expected execution time of the checked

computation as a whole is T' = r -T , + (1 - r) -T2, which produces a projected speedup s,

where s = rr/T'. These formulas allow a developer to find the reliability r that meets the

developer's performance improvement goal and can be analogously applied for alternative

resource usage measures, such as energy consumption and throughput.

Example. As an illustration, let us assume that the computation executes on unreliable

hardware and its reliable version is obtained using software-level replication. Using the

replication approach proposed in [74], the replicated implementation is 40% slower than

the unreliable version - i.e, Zr = 1.4,r,. Furthermore, let the reliable Newton's method

computation converge on average in a half of the maximum number of steps (i.e., r, =

Zum/2) and let the execution time of the checker be half of the time of a single iteration

of Newton's method. For a projected speedup of 1.32, the developer can use the previous

formulas to compute the target reliability r = 0.99. Rely can verify that newton-u executes

with this reliability (given the hardware reliability specification from Figure 4-5) when the

input xs is fully reliable.

Approximate Computations

Many applications can tolerate inaccuracies in the results of their internal approximate

computations, which are computations that can produce a range of results of different qual-

ity. The approximate computations in these applications can be transformed to trade accu-

racy of their results for increased performance by producing lower quality results.

In building and transforming approximate computations, there are two correctness prop-

erties that a developer or transformation system must consider: integrity - which ensures

188

that the computation produces a valid result that the remaining computation can consume

without failing - and accuracy - which determines the quality of the result itself (Chap-

ter 2). In this case study, I present how a developer can use Rely in combination with other

techniques to reason about the integrity and accuracy of search.ref (Section 4.2).

Integrity. Recall that search-ref searches for the index of the block within the array of

pixel blocks pblocks that is the minimum distance from the block of pixels cblock. An

important integrity property for search-ref is therefore that it returns a valid index: an

index that is at least 0 and at most nblocks - 1. However, this property may not hold in

an unreliable execution because search-ref's unreliable operations may cause it to return

an arbitrary result. To guard against this, a developer has several options.

One of the developer's options is to modify searchref to dynamically check that

its result is valid and reexecute itself if the check fails. This case is analogous to that

for checkable computations (Section 4.6.3), with the distinction that the checker imple-

ments a partial correctness specification.

Another option is to modify search-ref to dynamically check that its result is valid

and instead of reexecuting itself if the check fails, it rectifies [76, 50] its result by returning

a valid index at random. This transformation enables search-ref to produce a valid -

though approximate - result.

Alternatively, the developer can place minblock in reliable memory and set its ini-

tial value to a fixed, valid index (e.g., 0); this implements a fixed rectification approach.

Because i is also stored in reliable memory, minblock will always contain a valid index

despite searchref's other unreliable operations. The developer can establish this fact

either informally or formally with relational verification [18].

Accuracy. A computation's reliability bound states how often the computation returns

a correct result and therefore also states a conservative bound on the computation's accu-

racy. To determine an acceptable reliability bound (and therefore an acceptable accuracy),

the developer can perform local or end-to-end accuracy experiments [58, 88, 39]. As an

illustration of an end-to-end experiment, I present a simulation approach for searchref.

189

To estimate the effects of the unreliable execution, I modified a fully reliable version of

searchref (one without unreliable operations) to produce the correct minimum distance

block with probability p and produce the maximum distance block with probability 1 - p.

This modification provides a conservative estimate of the bound on search-ref's accuracy

loss given a reliability p (when inputs to the computation are reliable) and the assumption

that a fault causes searchref to return the worst possible result.

I then implemented two versions of the x264 video encoder [9 1]: one with the reliable

version of search-ref and one with the modified version. For several values of p, I

then compared the videos produced by the reliable and modified encoders on 17 HD video

sequences (each 200 frames in length) from the Xiph.org Video Test Media repository [5 1].

I then quantified the difference between the quality of the resulting videos via the Quality

Loss Metric (QLM), previously used in [58]. This metric computes a relative difference

between the quality scores of the two videos, each of which is computed as a weighted sum

of the peak signal to noise ratio and the encoded video size.

p 0.90 0.95 0.97 0.98 0.99
QLM 0.041 0.021 0.012 0.009 0.004

Figure 4-21: search-ref Simulation Result

Table 4-21 presents the average QLM as a function of the reliability of search-ref.

A developer can use the results of the simulation to identify an acceptable amount of qual-

ity loss for the encoded video. For example, if the developer is willing to accept at most

1% quality loss (which corresponds to the QLM value 0.01), then the developer can select

0.98 from Table 4-21 as the target reliability for an unreliable version of searchref.

The reliability specification that the developer then writes for an unreliable version is

0.98*R(pblocks, cblock). As demonstrated in Section 4.2, Rely's analysis can verify

that the presented unreliable implementation satisfies an even tighter reliability (i.e., 0.99).

4.7 Related Work

In this section, I present an overview of the other work that intersects with Rely and its con-

tributions to modelling approximating computing, probabilistic and relational verification,

and verification of approximate programs.

190

4.7.1 Critical and Approximate Regions

Almost all approximate computations have critical regions that must execute without error

for the computation as a whole to execute acceptably.

Dynamic Criticality Analysis. One way to identify critical and approximate regions is

to change different regions of the computation or data in some way and observe the effect.

To the best of my knowledge, Rinard was the first to present a technique (task skipping)

designed to identify critical and approximate regions in approximate computations [77, 78].

Carbin and Rinard subsequently presented a technique that uses directed fuzzing to identify

critical and approximate computations, program data, and input data [2 1]. Other techniques

use program transformations [58] and input fuzzing [6].

Static Criticality Analysis. Researchers have also developed several specification-based

static analyses that let the developer identify and separate critical and approximate regions.

Flikker [49] is a set of language extensions with a runtime and hardware support to enable

more energy efficient execution of programs on inherently unreliable memories. It allows

a developer to partition data into critical and approximate regions (but does not enforce full

separation between the regions). Based on these annotations, the Flikker runtime allocates

and stores data in a reliable or unreliable memory. Sampson et al. [84] present EnerJ, a

programming language with an information-flow type system that allows a developer to

partition program's data into approximate and critical data and ensures that operations on

approximate data do not affect critical data or memory safety of programs.

All of this prior research focuses on the binary distinction between reliable and approx-

imate computations. In contrast, the research presented in this thesis allows a developer

to specify and verify that even approximate computations produce the correct result most

of the time. Overall, this additional information can help developers better understand the

effects of deploying their computations on unreliable hardware and exploit the benefits that

unreliable hardware offers.

191

4.7.2 Relational Reasoning for Approximate Programs

In Chapters 2 and 3 I presented a verification system for relaxed approximate programs

based on a relational Hoare logic. The system enables rigorous reasoning about the in-

tegrity and worst-case accuracy properties of a program's approximate regions. My work

in those chapters builds upon the relational verification techniques originated in Rinard

et al.'s Credible Compilation [82], Pnueli et al.'s Translation Validation [70], and later by

Benton's Relational Hoare Logic [12].

Rely differs from these approaches because of its probabilistic relational reasoning:

specifically, the probability that an unreliable implementation returns the correct result.

However, these non-probabilistic approaches are complementary to Rely in that they enable

reasoning about the non-probabilistic properties of an approximate computation.

4.7.3 Accuracy Analysis

In addition to reasoning about how often a computation may produce a correct result,

it may also be desirable to reason about the accuracy of the result that the computa-

tion produces. Dynamic techniques observe the accuracy impact of program transforma-

tions [77, 78, 81, 58, 88, 5, 39, 4, 52, 56], or injected soft errors [48, 27, 49, 84, 90].

Researchers have developed static techniques that use probabilistic reasoning to character-

ize the accuracy impact of various phenomena [57, 24, 73, 94, 11, 62]. And of course, the

accuracy impact of the floating point approximation to real arithmetic has been extensively

studied by numerical analysts [23].

4.7.4 Probabilistic Program Analysis

Kozen's work [43] was the first to propose the analysis of probabilistic programs as trans-

formers of discrete probability distributions. Researchers have since developed a number

of program analyses for probabilistic programs, including those based on axiomatic reason-

ing [61, 10, 11], abstract interpretation [59, 29, 89, 25], and symbolic execution [35, 85].

The language features that introduce probabilistic nondeterminism in programs that

this previous research studied include probabilistic sampling, x = random() [43, 59, 10,

I 1], probabilistic choice between statements, si D s2 [61, 29, 25], and specifications of

192

the distributions of computation's inputs [89]. Rely refines the probabilistic operators by

defining a set of unreliable arithmetic and memory read/write operations that model faults

in the underlying hardware.

Morgan et al. [61] propose a weakest-precondition style analysis for probabilistic pro-

grams that treats the programs as expectation transformers. Preconditions and postcon-

ditions are defined as bounds on probabilities that particular logical predicates hold at a

specified location in the program. Rely's analysis, like [6 1], constructs precondition predi-

cates for program statements. However, Rely's predicates are relational, relating the states

of the reliable and unreliable executions of the program. Moreover, Rely's analysis is more

precise as it uses direct multiplicative lower bounds on reliability as opposed to additive

upper bounds on error.

Barthe et al. [10] define a probabilistic relational Hoare logic for a simple probabilistic

imperative language that is similar to Kozen's. The relational predicates are arbitrary con-

junctions or disjunctions of relational expressions over program variables, each of which

is endowed with a probability of being true. While general, this approach requires manual

proofs or an SMT solver to verify the validity of predicates. In comparison, Rely presents

a semantics for reliability predicates that incorporates joint reliability factors, which create

a simple and efficient checking procedure.

Reliability Analysis. Analyzing the reliability of complex physical and software systems

is a classical research problem [47]. More recently researchers have presented symbolic ex-

ecution techniques for checking complex probabilistic assertions. Filieri et al. [35] present

an analysis for finite-state Java programs. Sankaranarayanan et al. [85] present an analysis

for computations with linear expressions and potentially unbounded loops. These tech-

niques require knowledge of the distributions of the inputs to the computation. Rely's

analysis requires only the probability with which each operation in the computation exe-

cutes correctly.

4.7.5 Fault Tolerance and Resilience

Researchers have developed various software, hardware, or mixed approaches for detection

and recovery from specific types of soft errors that guarantee a reliable program execu-

193

tion [74, 69, 27, 34, 67, 86, 37, 90, 80, 68, 20, 4 1]. For example, Reis et al. [74] present a

compiler that replicates a computation to detect and recover from single event upset errors.

These techniques are complementary to Rely in that each can provide implementations

of operations that need to be reliable, as either specified by the developer or as required by

Rely, to preserve memory safety and control flow integrity.

4.7.6 Emerging Hardware Architectures

Recently researchers have proposed multiple hardware architectures to trade reliability for

additional energy or performance savings. Some of the recent research efforts include

probabilistic CMOS chips [66], stochastic processors [64], error resilient architecture [45],

unreliable memories [44, 49, 84, 65], and the Truffle architecture [32]. These techniques

typically use voltage scaling at different granularities.

This previous research demonstrated that for specific classes of applications, such as

multimedia processing and machine learning, the proposed architectures provided energy

or time savings profitable to the user. Rely aims to help developers better understand and

control the behavior of their applications on such platforms.

4.8 Conclusion

Driven by hardware technology trends, future computational platforms are projected to

contain unreliable hardware components. To safely exploit the benefits (such as reduced

energy consumption) that such unreliable components may provide, developers need to

understand the effect that these components may have on the overall reliability of the ap-

proximate computations that execute on them.

I present a language, Rely, for exploiting unreliable hardware and an associated anal-

ysis that provides probabilistic reliability guarantees for Rely computations executing on

unreliable hardware. By enabling developers to better understand the probabilities with

which this hardware enables approximate computations to produce correct results, these

guarantees can help developers safely exploit the significant benefits that unreliable hard-

ware platforms offer.

194

Chapter 5

Thesis Summary and Conclusion

Many application domains on the forefront of computing have an inherent trade-off be-

tween the quality of the result that a computation produces and the time or resources needed

to compute the result. This trade-off enables a variety of novel methodologies for devel-

oping new programs and/or changing the semantics of existing programs to unlock oppor-

tunities for a computation to navigate its trade-offs given the quantity and quality of the

computation's available resources.

A core component of navigating these trade-offs is guaranteeing that the resulting com-

putation satisfies the acceptability properties that ensure that the computation has a well-

defined execution and returns a result that is acceptable for the computation's user.

5.1 Summary

This thesis presents several program logics and program analyses that 1) enable developers

to specify acceptability properties of computations, 2) enable both developers and program-

ming systems to change and transform the semantics of computations, and 3) enable both

developers and programming systems to verify that the resulting computation satisfies its

acceptability properties.

195

5.1.1 Relaxed Programming

This thesis presents the relaxed programming development model, along with a program-

ming language and program logic that enables specifying and verifying relaxations of a

program's semantics. A core motivation for my development of the relaxed programming

model is that many transformations that change the semantics of programs make localized

modifications of the parts of a program's state that control the structure of its execution.

Building upon this observation, the relaxed programming framework codifies three ba-

sic principles into its programming language and program logic:

Acceptability. A core challenge in changing the semantics of the program is determin-

ing what makes the program's original implementation and (therefore its relaxed imple-

mentation) acceptable for its anticipated use. To this end, I have defined the concept of

acceptability properties and provided language support for specifying acceptability proper-

ties. Acceptability properties include, for example, standard unary assertions that assert the

integrity of the program (e.g., no out-of-bounds. memory access). Acceptability properties

also include relational properties that relate the original program to all acceptable relax-

ations. For example, an acceptability property may state that relaxation cannot interfere

with a portion of the program's state or dictate that relaxation can only change a portion of

the program state by at most some determined amount.

Relaxation. The relaxed programming model introduces into the programming language

the relax (X) st (b) statement, which non-deterministically modifies a set of variables,

X, in the program state subject to a boolean constraint b. The relax statement enables a

developer or compilation system to change the semantics of the program in a well-defined

and constrained way.

Relational Reasoning. Relaxing the semantics of the program may alter the behavior of

the program in a way that jeopardizes the validity of the program's acceptability properties.

A key concern is therefore verifying that the resulting program still satisfies its acceptability

properties. My program logic addresses this concern with a novel verification approach

that relies on the observation that relaxations often preserve the acceptability of the relaxed

program because they often do not inference with the acceptability original program.

196

By relating the semantics of the original and relaxed program, my program logic en-

ables a relational reasoning approach in which developers can use the logic to demonstrate

the independence of the program's acceptability properties from relaxation and, therefore,

transfer much of the reasoning that was done for the original program over to verify the

relaxed program.

These basic concepts work together to provide a core calculus for specifying, relaxing,

and verifying programs.

5.1.2 Extended Relaxed Programming

This thesis also extends the core principles of relaxed programming from a simple impera-

tive language to a larger language that includes standard programming constructs, such as

procedures, arrays, and heap-allocated linked data structures.

A core realization of extending the programming language is that many standard pro-

gramming language constructs have embedded assertions that are also amenable to rela-

tional verification. For example, data structures allocated in the heap have implicit asser-

tions that specify that pointers into the heap are valid. Accesses to elements in arrays also

require assertions that check the validity of indices used in the access. Also, verifying pro-

grams that contain procedures in a modular assume-guarantee style typically requires the

use of preconditions and postconditions, which express properties that must hold and the

beginning and end of a function, respectively.

These built-in assertions are additional points at which 1) relaxation may jeopardize the

validity of the assertion and 2) relational reasoning can be used to leverage the reasoning

done for the original program to verify the relaxed.

5.1.3 Verifying Quantitative Reliability

Relaxed programming provides an effective framework for reasoning about the worse-case

behaviors of the program. However, for many approximate computing applications, devel-

opers are also interested in acceptability properties that are probabilistic in nature.

To this end, this thesis presents, Rely, a semantic framework and program analysis for

197

specifying and verifying the reliability of applications that execute on hardware substrates

that have been augmented to produce approximate results.

Rely includes four key contributions:

" Specifying Reliability. Rely's language enables developers to specify the required

reliability of a computation - the probability that the computation produces the cor-

rect result.

" Specifying Unreliable Computation. Rely's language includes a methodology for

1) providing specifications of the reliability of an approximate hardware system and

2) exposing exposure unreliable hardware primitives to the developer or compilation

system via the programming language.

" Semantics of Reliability. The Rely framework includes semantic foundations that

give a well-defined meaning to the reliability of a program when its execution on un-

reliable hardware is interpreted as the execution of a probabilistic transition system.

" Reliability Analysis. The Rely framework also provides an reliability analysis that

automatically verifies if a given program when executed on a specified unreliable

hardware system satisfies its reliability specification.

These contributions position Rely as a robust platform for exploring not only the reliability

of approximate hardware/software systems, but also the trade-offs between their integrity,

accuracy, and performance.

5.2 Future Directions

Approximate Computing Frameworks. In traditional compiler frameworks, each op-

timization pass provides the modular guarantee that it will preserve the semantics of the

program. This guarantee enables a compiler to sequentially compose optimization passes

and still produce a semantically equivalent program at the end of the optimization process.

For optimizations that change the behavior of programs, however, this compositional rea-

soning no longer holds. For example, optimizations that target unreliable hardware can

deliver a range of trade-offs between the reliability and performance of the program. An

open question is then how to automate the exploration of this trade-off space and preserve

sufficient structure throughout the process to perform effective end-to-end verification.

198

Compiling programs to unreliable hardware can also produce a broader understand-

ing of program approximation in general. The numerical analysis, theory, and database

communities have proposed a variety of different program approximate mechanisms. A

open challenge is therefore how to integrate techniques from these communities (such as

replacing code with sublinear algorithms and representing program data with sparse, mul-

tiresolution data representations) into a general approximate computing framework that

operates at multiple levels in the computational stack.

Emerging Software Development Concerns. The programming language community's

goal of making software easier to write has been partially realized through communities

like GitHub and Stack Overflow. By making it easy to access and adapt software compo-

nents, these communities have brought about an ecosystem in which software components

move rapidly from project to project and from domain to domain. As these forces con-

tinue to push software development, the vast majority of the components of future software

systems will have uncertain provenance and operation. Software developers will therefore

understand less of their systems' overall behavior than they currently do today.

Understanding software is currently one of the primary ways we gain confidence that

our software provides some guarantee, such as security or functional correctness. As we

continue to use collaborative software communities, building confidence in software will

become even more important because these communities will face the same epidemiologi-

cal challenges as human communities: bugs and security vulnerabilities will spread among

programs. A critical research question will therefore become how to build confidence in

these poorly understood systems.

Semi-automated program verification will solve this problem for core components of

the software stack (e.g., compilers, operating systems, and standard libraries and data struc-

tures). These components have strong logical characterizations of correctness that are

amenable to verification. For these systems, developers will specify interfaces for indi-

vidual components and then verify that their implementations respect these specifications.

Verified implementations will enable developers to reuse components with confidence -

and without understanding their exact provenance or operation.

199

On the expansive periphery of the software ecosystem, however, where software is one-

off, quickly developed, and often user-facing, correctness is less well-defined and resilience

is a primary objective. For this software, we will need new techniques that build confidence

through resilience. To this end, relaxed programs can serve as a platform for exposing and

manipulating global system behaviors to create resilience. The principles of relaxation can

make it possible to connect these behaviors with developers' limited understanding in a way

that enables developers to distinguish between the set of behaviors they have built into their

software and the set of behaviors that emerge from resiliency mechanisms. This approach

has the potential to make poorly understood software systems fast, secure, and usable.

5.3 Conclusion

The software and hardware communities have grown accustom to the digital abstraction of

computing: the computing substrate is designed to either faithfully execute an operation or

detect and report that an error has occurred. This abstraction has enabled a process whereby

increased performance capability in the substrate enables the development of increasingly

larger and more complicated computing systems that are composed of less complicated,

modularly-specified components.

Emerging trends in the scalability of existing hardware design techniques, however,

jeopardize the hope that future gains in computing performance will still be accompanied

by a digital abstraction. Instead, future high-performance computing platforms may pro-

duce uncertain results and, therefore, it may no longer be possible to use traditional tech-

niques to modularly compose components to execute on these platforms.

While there is an immediate opportunity for my work enable the reasoning needed to re-

liably achieve better performance in the face of uncertainty, the true motivation for my work

is that the nature of computing itself has changed. Emerging applications, such as machine

learning, multimedia, and data analytics are inherently uncertain computations that oper-

ate over uncertain inputs. Moreover, emerging uncertain computational substrates, such

as intermittently powered devices, biological devices, and quantum computing, create new

possibilities for where computation can take place and even what can be computed itself.

200

Going forward this work will enable the software and hardware communities to discard

the notion that they must rely on the digital abstraction to build computing systems. Instead,

emerging computing systems will use abstractions of acceptability that will enable these

systems to exploit not only the performance benefits of uncertain substrates, but also the

new possibilities that these platforms offer for what can be accomplished with computation.

201

202

Appendix A

This appendix presents the full Coq development of the relaxed programming model from

Chapter 2, including the programming language, program logic, and the proofs of the prop-

erties discussed in Section 2.4. The appendix has the following organization:

Auxiliary Definitions. Section A. I presents auxiliary definitions that are used in the re-

mainder of the development. These definitions include, for example, properties of the basic

data structures (such as lists) used in the formalization.

Expressions. Section A.2 presents definitions of the abstract syntax and semantics of en-

vironments and expressions (as presented in Section 2.2). The presentation includes the

syntax and semantics of both unary expressions and relational expressions. Along with

these definitions, the section also formalizes and proves properties of the semantics neces-

sary for later parts of the development. For example, the section defines the equivalence

relation for environments (Definition env-equiv) along with a proof that the relation is

symmetric (Lemma env-equiv-sym) and reflexive (Lemma env-equiv-ref 1).

Statements. Section A.3 presents the abstract syntax of the statements of the program-

ming language. The following two sections give the statements their dynamic semantics.

Dynamic Original Semantics. Section A.4 presents the definitions and proofs for the

dynamic original semantics presented in Section 2.2.2. The section presents the basic

definition of the evaluation relation. This section also specifies 1) how to compute the

set of variables modified by a statement and 2) proves that execution of a statement does

203

not modify any variables except for those returned by the specified computation (Lemma

original-eval-not - in-mods_ constant).

Dynamic Relaxed Semantics. Section A.6 presents the definitions and proofs for the dy-

namic relaxed semantics presented in Section 2.2.3. Similar to the section for the dynamic

original semantics, this section presents the dynamic relaxed semantics's evaluation rela-

tion. This section also specifies how to compute the set of variables modified by the relaxed

semantics of a statement and proves that computed the set is consistent with the semantics

(Lemma relaxed-eval-not - in-mods _constant).

Assertion Logic. Section A.7 presents the relational assertion logic presented in Sec-

tion 2.3.1. This section presents the abstract syntax of the logic, its denotational semantics,

and the majority of the semantic properties required of the logic by the remainder of the de-

velopment. For example, the section presents definitions that tie the syntax and semantics

of the program's unary expressions to that of their relational counterparts. The section also

presents the basic definitions for grafting, which is the basic mechanism I've used to im-

plement capture-avoiding substitution. Grafting implements capture-avoiding substitution

by mandating that variables that occur in binding positions come from a set that is disjoint

from the set of variables that occur in expressions. These definitions set the stage for the

following section on the substitution properties of the logic.

Substitution. Section A.8 presents the definitions and proofs for the relational assertion

logic's substitution properties. The definitions and proofs here are the bulk of the develop-

ment. A key lemma and proof is the soundness of substitution (Lemma preddenot e _sub),

which states that the effects of an assignment statement on the environment of a program

can be soundly characterized (with backwards-style Hoare reasoning) by substituting the

assignment statement's expression for all occurrences of the variable in a predicate that

describes the statement's postcondition. This lemma is the basis of the soundness proofs

for assignment rules in the development's multiple axiomatic semantics.

204

Unary Assertion Logic. Section A.9 presents the abstract syntax and semantics of the

unary assertion logic used in the axiomatic original semantics presented in Section 2.3.1.

While the logic presented in that section as independent of the relational assertion logic,

my implementation embeds the semantics of the unary assertion logic into that of the rela-

tional assertion logic. Specifically, the unary assertion logic constrains properties only of

one environment in the pair of environments that underpin the relational assertion logic's

semantics. This reuse enables a more efficient proof development in that properties of

the unary logic can be straightforwardly derived from their counterparts in the relational

assertion logic.

Axiomatic Original Semantics. Section A. 10 presents the proof rules for the axiomatic

original semantics along with proofs of the rules' properties (as defined in Section 2.4.1).

The primary proofs are that the axiomatic original semantics 1) is sound with respect to

the dynamic original semantics (Lemma original-axiomatic-soundness) and 2) es-

tablishes progress for an original program (Lemma original-axiomat ic _progress).

Axiomatic Intermediate Semantics. Section A. 11 presents the proof rules for the ax-

iomatic intermediate semantics along with proofs of the rules' properties (as defined in Sec-

tion 2.4.2). The primary proofs are that the axiomatic intermediate semantics 1) is sound

w.r.t. the relaxed semantics (Lemma intermediate _axiomatic-soundness) and 2) es-

tablishes progress for a relaxed program (Lemma intermediate axiomatic progress).

Axiomatic Relaxed Semantics. Section A. 12 presents the proof rules for the axiomatic

relaxed semantics along with proofs of the rules' properties (presented in Section 2.4.3).

These theorems are the main theorems of the development. This section specifically presents

proofs that the axiomatic relaxed semantics 1) is sound with respect to the dynamic relaxed

semantics (Lemma relaxed-axiomaticsoundness), 2) establishes that all relational as-

sertions in the relaxed program are valid (Lemma relat ional-assert ion-soundness),

and 3) establishes progress (in its multiple forms) for the relaxed program (Lemmas

relaxed-axiomatic-relative-progress,relaxed-axiomatic-progress).

205

A.1 Util

Require Export List.

Require Import Classical.

Require Import CpdtTactics.

Lemma not-in-filter : V (A : Type) (1: list A) xf, - In x 1 - - In x (filterf 1).

Proof.

induction l. auto.

intros. simpl in H. apply notor-and in H. inversion H.

unf oldfilter. fold (filterf 1). destruct (f a).

simpl. apply and-not-or. split.

auto. apply IH. auto.

apply IHL. auto.

Qed.

Lemma filter-app : V (A : Type) (x : A)f (1 12 list A), (filterf 11) ++ (filterf 12) = filter

f (1 ++ 12).

Proof.

induction ii.

intros.simpl.trivial.

simpl. intros. destruct (f a).

simpl. rewrite - IHJ. trivial.

apply IHiJ.

Qed.

Lemma filter-filter : V (A : Type) (x : A) f (1: list A), filter f (filter f 1) = filter f 1.

Proof.

induction l.

simpl. trivial.

simpl. destruct (f a) as [eqn.

simpl. destruct (f a) as [] _eqn. rewrite -* IHi. trivial.

206

inversion Heqb.

apply IH.

Qed.

Lemma filter-comm : V (A : Type) (x: A)f g (I : list A), filterf (filter g 1) = filter g (filterf

1).

Proof.

inductionl;simpl;auto.

destruct (g a) as [] _eqn. simpl. destruct (f a) as [] _eqn. simpl. rewrite -

Heqb. rewrite - IH. trivial.

apply IH.

destruct (f a) as [] _eqn. simpl. rewrite - Heqb. apply IH.

apply IH.

Qed.

Lemma not-in-app : V (A : Type) (a: A) (m n: list A), A'n a (m ++ n) <-i -n a m In a

n.

Proof.

induction m. simpl. auto. simpl. split; intros.

auto.

inversion H. auto.

split; intros.

simpl in H. apply not-orand in H. inversion H.

apply IHm in H1. inversion H1.

simpl. split.

apply and-not-or. auto.

auto.

inversion H. simpl in HO. apply notorand in HO. inversion HO.

simpl. apply and-not-or. split.

auto.

apply Hm. auto.

207

Qed.

Definition and-not-in-app (A : Type) (a: A) (m n : list A) := (proj2 (not-in-app - a m

n)).

Definition not-in-app-and (A : Type) (a: A) (m n : list A) := (proji (not-in-app - a m

n)).

Hint Resolve andnot-in-app not-in-app-and : datatypes.

Lemma in-not-innot-eq : V (A : Type) (xs: list A) x a, in x xs - ,in a xs - x a.

Proof.

induction xs. intros. contradict H.

simpl. intros. apply not-or-and in HO. inversion HO.

inversion H.

subst x. assumption.

apply IHxs; assumption.

Qed.

Section two-list-ind.

Variable A: Set.

Variable B: Set.

Variable P: list A - list B - Prop.

Hypothesis nil-case : P nil nil.

Hypothesis left-nil: V (b : B) (lb : list B), P nil (b: :lb).

Hypothes is right-nil: V (a : A) (la : ist A), P (a: :la) nil.

Hypothesis app-case : V (a : A) (b : B) (la : list A) (lb : list B), P la lb -+ P (a: :la)

(b: : lb).

Program Fixpoint twoilist-ind (la: list A) (lb: list B)

match la with

a: : arest =

match lb with

b: -brest =4 app-case a b arest brest (two-listind arest brest)

ni I * right-nil a arest

208

end

nil =>

match lb with

b: : brest == left-nil b brest

nil => nil-case

end

end.

End two-list-ind.

Lemma listnil :

V (A : Type) (1: list A),

(V a, In a l - In a l) - 1= nil.

Proof.

inductionl.simpl.auto.

simpl. crush; exfalso; eauto.

Qed.

Section remove.

Lemma not-In _notIn _remove :

V (A: Type) (l : list A) (x : A), I n x l V y eq, - n x (remove eq yl).

Proof.

induction 1; simpl ; intros.

auto.

destruct (eq y a). eauto.

crush. eauto.

Qed.

Lemma not-eqnotInremove-noin

V (A : Type) (l : list A) (x : A),

Vy, x y -- V eq, , In x (remove eqy l) In x l.

Proof.

Hint Resolve and-not-or.

induction l; auto.

209

simpl; intros. destruct (eq y a). subst; eauto.

simpl in x. apply not-or-and in HO. destruct HO.

eauto.

Qed.

Lemma In-remove:

V (A : Type) (1: list A) x y eq,

nx l -+y'i x Inx (remove eq yl).

Proof.

inductionl;simpl;intros.auto.

destruct H. subst.

destruct (eq y x). tauto. simpl; auto.

destruct (eq y a); simpl; eauto.

Qed.

Lemma In-removeIn:

V (A: Type) (l: listA)xy eq,

In x (remove eq y 1) -> In x l.

Proof.

inuo ; r i-p-; it r os. aut&-o.
-LLJAL%,U LV1 L, D.1ILLjJL, -LJI..V.dUL)

destruct (eq y a); simpl; eauto.

simpl in H. destruct H; eauto.

Qed.

Lemma remove-app:

V (A: Set) (m n: list A) (x: A) eq,

remove eq x (m ++ n) = (remove eq x m) ++ (remove eq x n).

Proof.

induction m;

crush.

destruct (eq x a); crush.

Qed.

210

Lemma remove-remove:

V(A : Set) (1: listA) (x: A)eq,

remove eq x (remove eq x 1) remove eq x 1.

Proof.

induction l. auto.

simpl. intros. destruct (eq x a).

subst. eauto.

simpl. destruct (eq x a); (congruence I auto).

Qed.

Lemma remove-commute:

V (A : Set) (1: list A) (x y : A) eq,

remove eq x (remove eq y 1) = remove eq y (remove eq x 1).

Proof.

induction l.

auto...

simpl; intros. destruct (eq y a); destruct (eq x a); simpl;

auto.

destruct (eq y a) ; congruence...

destruct (eq x a) ; congruence...

destruct (eq y a); destruct (eq x a); congruence.

Qed.

End remove.

A.2 Expressions

Require Import util.

Require Import Coq.Bool.Bool.

Require Import Classical.

Require Import List.

Open Scope list-scope.

211

Require Export Coq.Arith Compare-dec.

Require Export Coq.Arith Peano-dec.

Require Import Tactics.

Require Import CpdtTactics.

Require Import Coq.Program.Tactics.

Inductive var : Set

I Id : nat - var.

Inductive arr-var : Set

I Arrld : nat - arr-var.

Inductive rel-var : Set

Org: var - rel-var

Rel: var - rel-var

Inductive rel-arr-var : Set

OrgArr: arr-var -+ rel-arr-var

RelArr: arr-var -+ rel-arr-var

Def inition state := var -- nat.

Def inition arrilengths := arr-var - nat.

Section Heap.

Record heap: Set

mkHeap { array-contents : arr-var - nat - nat}.

Definition empty-state : state := fun - 0.

Def inition empty-heap : heap

mkHeap (fun _ - 0).

End Heap.

Record environment: Type

mkEnv {st : state ; he : heap}.

212

Def inition empty-env := mkEnv empty-state empty-heap.

Def inition stack-equiv (s s' : state) vars :=

(V v : var, In (InI arr-var v) vars -+ s v = s' v).

Def inition heap-equiv he he' vars:=

(V av : arr-var, In (Inr var av) vars -

V i, array-contents he av i= array-contents he' av i).

Def inition env-equiv env env' vars:=

stack-equiv (st env) (st env') vars

heap-equiv (he env) (he env') vars.

Ltac unfold-equivs:=

repeat (match goal with

| H : context[env-equiv -_] -] = unfold env-equiv in H

| H : context[stackequiv - _ _]] - unfold stack-equiv in H

[H : context[heap-equiv _] - -] unf old heap-equiv in H

[H- context[env-equiv ---]] #* unf old env-equiv

[H context[stack-equiv]] unf old stack-equiv

1 H context[heap-equiv]] # unf old heap.equiv

end).

Lemma env-equivileft:

V env env' vi v2, env-equiv env env' (vi ++ v2) -- env-equiv env env' vl .

Proof.

unfold _equivs; crush.

Qed.

Lemma env-equiv-right:

V env env' vi v2, env-equiv env env' (vi ++ v2) -+ envequiv env env' v2 .

213

Proof.

unfoldequivs ; crush.

Qed.

Lemma env-equiv-sym:

V env env' v, env-equiv env env' v env-equiv env' env v.

Proof.

unfoldequivs; crush.

Qed.

Lemma env-equiwvrefl

V env vars, env-equiv env env vars.

Proof.

unfoldequivs; crush.

Qed.

Lemma env-equiv-trans

V envi env2 vars, envequiv env] env2 vars --

V env3, env-equiv env2 env3 vars - env-equiv env] env3 vars.

Proof.

unfold-equivs; crush.

Qed.

Inductive cmp: Set := LT EQ I LEQ.

Inductive lop : Set And Or.

Inductive iop: Set := Plus Minus I Times.

Inductive exp : Set

Const : nat -+ exp

Var: var -+ exp

Arr : arr-var -+ exp -+ exp

lop : iop -+ exp -+ exp - exp

Inductive rexp : Set

214

RConst : nat - rexp

RVar: rel-var -+ rexp

RArr: rel-arr-var -+ rexp -+ rexp

Riop: iop - rexp -+ rexp -+ rexp

Inductive rbexp : Set

RBConst: bool -* rbexp

RCmp: cmp -+ rexp - rexp -+ rbexp

RLop: lop -+ rbexp - rbexp -- rbexp

RNeg: rbexp - rbexp.

Notation "El '--e' E2" (lop Minus El E2) (at level 80): accept-scope.

Notation "E I '+-e' E2" (lop Plus El E2) (at level 80) : accept-scope.

Inductive bexp : Set

BConst : bool -* bexp

Cmp: cmp -+ exp - exp -+ bexp

Lop: lop - bexp - bexp - bexp

Neg: bexp -* bexp

Section language.

Definition var-eq-dec: V (v] v2: var), {v1=v2} + {vltv2}.

Proof.

decide equality.

decide equality.

Qed.

Def inition arr-var-eqdec : V avi av2 : arrvar, {avl=av2} + {av1#z;av2}.

Proof.

decide equality. decide equality.

Qed.

Def inition var-arr-var-eqdec:

215

V (avi av2 : var+arr-var),

{avi = av2} + {avi # av2I.

Proof.

repeat decide equality.

Qed.

Def inition rel-var-eq (rv] rv2 : rel-var): bool

match (rvl, rv2) with

(Org v], Org v2) I (Rel vi, Rel v2) #- if var-eq.dec v] v2 then true else false

- => false

end.

Def inition relvar-eq-dec : V rvl rv2 : rellvar, {rvi=rv2} + {rvl:Arv2}.

Proof.

decide equality; apply var-eq.dec.

Qed.

Def inition rel-arr-var-eq-dec : V rv] rv2 : rel-arr-var, {rvi=rv2} + {rvi/rv2}.

Proof.

decide equality; apply arr-var-eq.dec.

Qed.

End language.

Ltac red-exprs := s impl ; intros; repeat (match goal with

[H: - In ?v (?m ++ ?n)-_] #: destruct (not-in-app.and - - - - H); clear H

[H: In ?v (?m ++ ?n) 1-_] apply in-app-or in H

[H: context[eq-nat-dec ?x ?y] - -] = destruct (eq-nat-dec x y) in H; simpl

[- context[eq-nat-dec ?x ?y]] # destruct (eq-nat-dec x y) ; simpl

[H: context[var-eq-dec ?x ?y] - -] # destruct (var-eq-dec x y) in H; simpl

[H : context[arr-var-eq-dec ?x ?y] H -] = destruct (arr-var-eq-dec x y) in H;

216

s impl

[H : context[var-arr-var-eq-dec ?x ?y] H _] 4 destruct (var-arr-var-eq-dec x y)

in H; simpl

[context[var-eq-dec ?x ?y]] #t destruct (var.eq-dec x y) ; simpi

[H context[var-arr-vareq-dec ?x ?y]] > destruct (var-arr-var-eq-dec xy) ; simpl

[context[arr-var-eq dec ?x ?y]] # destruct (arr-var-eq dec x y) ; simpi

end).

Definition assign-state (s : state) (v : var) (n : nat) : state

fun (x : var) => if (var-eq-dec x v) then n else (s x).

Fixpoint assign-vars (s : state) (vars : list var) (vals : list nat) : state

match (vars, vals) with

(v: :vs, val: :vals) #e assign-vars (assign-state s v val) vs vals

- =,. S

end

Lemma assign state-imd : V s v n, (assign-state s v n) v = n.

Proof.

intros. unf old assign-state. destruct var-eq-dec; crush.

Qed.

Lemma assign _state-same : V v v' s n, v / v' -+ (assign-state s v n) v' = s v'.

Proof.

intros. unf old assign-state. destruct var-eq-dec; crush.

Qed.

Definition update-variable (e: environment) (v: var) (n: nat) : environment

mkEnv (assign-state (st e) v n) (he e).

Lemma update variable-correct :

V env v n, st (update-variable env v n) v = n.

217

Proof.

Hint Resolve assign-state-imd.

crush.

Qed.

Section update-variable-equiv.

Hint Rewrite assign -state-same : cpdt.

Lemma update-variable-equiv:

V env v n vars,

- In (In I v) vars -+

envequiv env (update-variable env v n) vars.

Proof.

unfoldequivs; crush.

Qed.

End update-variable-equiv.

Def inition update-array-contents (env: environment) (av: arr-var) (i: nat) (n: nat)

environment :=

let h := he env in

let newcontents

fun x idx ->

if (arr-var-eq-dec x av) then

(if eq-nat-dec i idx then n else array-contents h x idx)

else

arraycontents h x idx

in

mkEnv (st env) (mkHeap new-contents).

Lemma update-array-contents_ correct:

V env av i n,

array-contents (he (update-array-contents env av i n)) av i = n.

Proof.

218

intros; unf old update-array_ contents; simpl.

redexprs; crush.

Qed.

Lemma update-array-contents-same:

V env avl il av2 i2 n,

avi av2 -+ array-contents (he (update-array-contents env avi il n)) av2 i2 = ar-

ray-contents (he env) av2 i2.

Proof.

intros; unf old update-array-contents; simpl.

redexprs ; crush.

Qed.

Lemma update-array-contents-stack:

V env idx n av v,

st (update-array-contents env av idx n) v = st env v.

Proof.

intros.

unf old update -array _contents. crush.

Qed.

Hint Rewrite u pdate-array-contents-stack : cpdt.

Hint Rewrite update-array-contents-same : cpdt.

Lemma update-array-contents-equiv

V env v vars,

- In (inr - v) vars -

V idx n, env-equiv env (update -array-contents env v idx n) vars.

Proof.

unfoldequivs; crush ; red exprs; crush.

Qed.

Definition iop-denote (i: iop): nat - nat - nat

match i with

219

Plus =:z plus

Minus = minus

Times a mult

end.

Fixpoint exp-eval (e: exp) (env: environment): nat

match e with

Const n =a n

Var v > st env v

Arr av e =>

let idx := (exp-eval e env) in

array-contents (he env) av idx

lop op el e2 > (iop-denote op) (exp-eval el env) (exp-eval e2 env)

end.

Lemma exp.eval-determ : V e s n m, exp-eval e s = n - exp-eval e s = m n m.

Proof.

destruct e; simpi; congruence.

Qed.

Lemma envequiv_ update:

V env env' a vars,

env-equiv env env' (remove var-arr-var-eq-dec (inl - a) vars) -

envequiv env (update-variable env' a (st env a)) vars.

Proof.

intros.

unfoldequivs. simpi.

utr-t UcLL_cOnjs; Spli U.

intros. destruct (var-eq-dec a v).

subst; rewrite assign state-imd; crush.

rewrite assign-state-same; crush; apply H; crush; apply In-remove; crush.

crush ; apply HO; apply In-remove; crush.

220

Qed.

Require Import Coq.Bool.Sumbool.

Require Import Coq.Arith.EqNat.

Program Definition cmp-denote (op: cmp): nat -* nat -+ bool

match op with

LT =4 fun x y a booLof-sumbool (Itdec x y)

LEQ * fun xy =z' booLof-sumbool (le-dec x y)

EQ > fun xy * bool-of-sumbool (eq-nat-dec x y)

end.

Definition cmp-reflect (op : cmp): nat -+ nat - Prop

match op with

LT > It

LEQ * le

EQ =* eq

end.

Def inition cmp-reflect-neg (op: cmp): nat - nat -+ Prop

match op with

LT => ge

LEQ z= gt

EQ >funxy =x y

end.

Def inition lop-denote (op: lop): bool -* bool - bool

match op with

And > andb

Or > orb

end.

Def inition lop-reflect (op: lop) : Prop -4 Prop -> Prop

match op with

I And =4 and

221

I Or a or

end

Def inition lop-reflect-neg (op : lop) : Prop - Prop -- Prop

match op with

And > or

Or = and

end.

Fixpoint bexp-eval (be: bexp) (environment: environment) : bool

match be with

BConst b = b

Cmp op el e2 = (cmp-denote op) (exp-eval el environment) (exp-eval e2 environ-

ment)

I Lop op be] be2 4 (lop-denote op) (bexp-eval be] environment) (bexp-eval be2 envi-

ronment)

I Neg be > negb (bexp-eval be environment)

end

Lemma exp-eval _dec : V (e : exp) en (n : nat), {exp-eval e en = n} + {exp-eval e en - n}.

Proof.

decide equality.

Qed.

Lemma bexp-evaLdec : V (be: bexp) en (b: bool), {bexp-eval be en b} + {bexp-eval

been b}.

Proof.

decide equality.

Qed.

Fixpoint rexp-eval (re : rexp) (s-o s-r: environment): nat

match re with

222

RConst n : n

RVar rv =4

match rv with

Org v 4 (st s-o v)

Rel v = (st s-r v)

end

Rlop op re] re2 =4 (iop-denote op) (rexp-eval rel s-o s-r) (rexp-eval re2 s-o s-r)

RArr (OrgArr av) e e array-contents (he s-o) av (rexp-eval e s-o s-r)

RArr (RelArr av) e 4 array-contents (he s-r) av (rexp-eval e s-o s-r)

end.

Fixpoint rbexp-eval (rbe: rbexp) (s-o s-r: environment) : bool

match rbe with

RBConst b z#> b

RCmp op rel re2 =4 (cmp-denote op) (rexp-eval rel s-o s-r) (rexp-eval re2 s-o s-r)

RLop op rbel rbe2 z= (lop-denote op) (rbexp-eval rbel s-o s-r) (rbexp-eval rbe2 s-o

s-r)

I RNeg rbe =a negb (rbexp-eval rbe s-o s-r)

end

Section language2.

End language2.

A.3 Statements

Require Import Expressions.

Def inition acceptid := nat.

Inductive statement: Type

I Skip : statement

223

Assign : var -+ exp - statement

AssignArr : arr-var - exp -+ exp - statement

Havoc : list var -+ bexp - statement

Relax: list var -+ bexp - statement

If : bexp -+ statement -+ statement -+ statement

While: bexp -+ statement - statement

Assume : list var - bexp -+ statement

Assert: bexp -+ statement

Accept: accept-id - rbexp - statement

Seq : statement -+ statement - statement

Require Import List.

Fixpoint accept-free (st : statement) : Prop

match st with

Skip > True

Assign - - => True

AssignArr - -- True

Havoc _ _ a True

Relax - - e True

If - sti st2 = (accept-free sti) (accept-free st2)

While - st # accept-free st

Assume _ _ True

Assert _ = True

Accept _ _ z False

Seq sti st2 m (accept-free st]) (accept-free st2)

end.

224

A.4 OriginalDynamic

A.5 Dynamic Original Semantcs

Require Import Language.

Require Import List.

Require Import Coq.Program.Equality.

Require Import Coq. Relations. Relation -Operators.

Require Import Coq. Relations Operators_ Properties.

Require Import CpdtTactics.

Definition obsilist := list (accept-id x environment).

An Input Configuration

Inductive iconfig :=

iconfig-intro : statement -÷ environment - iconfig.

Notation "<I st , env 1>" := (iconfig-intro st env).

An Output Configuration Inductive oconfig

oconfig-good : environment -+ obsilist -÷ oconfig

Wrong configuration | wr: oconfig

Bad assume configuration ba : oconfig

Notation "<# env , 01 #>" := (oconfig-good env ol).

Definition of error predicate Inductive error: oconfig - Prop

error-wr : error wr

error-ba : error ba

Lemma error-valid-config-false:

Vs ol, error <# s, ol #> -* False.

Proof.

inversion 1.

225

Qed.

Ltac error-good- config:=

match goal with

[H: error <# #>]- inversion H

end.

A subsequent state of is valid if for all unmentioned variables, the values are the same

and the new state satifies the havoc condition Definition havoc-sat (vars list var) be

env env'

(Vvars', (V v, In v vars-- In (inI _ v) vars') - env-equiv env env'vars') 7 (bexp-eval

be env'= true).

Inductive original eval-big : iconfig -- oconfig -- Prop:=

oeb-skip : V s, original-evalbig < Skip, s I> <# s, nil #>

oeb-assign : V s v e n,

exp-eval e s = n -*

original eval big <I Assign v e, s I> <# update-variable s v n, nil #>

oeb-assign-arr : V env av el e2 n idx,

exp-eval e2 env =n

exp-eval el env = idx -4

original eval-big <I AssignArr av el e2 , env I> <# update-array-contents env

av idx n, nil#>

oeb-havoc-true : V vars be s s',

havoc-sat vars be s s' -4

original eval-big <l Havoc vars be, s I> <# s', nil #>

oeb-havoc-false : V vars be s,

226

(I Es', havoc-sat vars be s s')-+

original eval big <I Havoc vars be, s I> wr

obe-relax : V s vars be o,

original eval big <I Assert be, s I> o -+

original eval big < Relax vars be, s l> o

oeb-assert-true : V be s,

bexp-eval be s = true -

original-evalbig <I Assert be, s I> <# s, nil #>

oeb-assert-false : V be s,

bexp-eval be s = false -+

original eval big <l Assert be, s l> wr

oeb-assume-true: V be vars s,

bexp-eval be s = true -

original eval big < I Assume vars be, s I> <# s, nil #>

oeb-assume-false: V be vars s,

bexp-eval be s false -

original eval big < I Assume vars be, s I> ba

oeb-accept : V re aid env,

original eval big <l Accept aid re, env I> <# env, (aid, env) nil #>

oeb-if-true : V s be sti st2 o,

bexp-eval be s = true --

original eval-big < I sti, s I> o -

original eval big <I If be stl st2, s l> o

227

oeb-if-false : V s be sti st2 o,

bexp-eval be s = false -a

original evaL big <I st2, s I> o

originallevallbig < IIf be sti st2, s I> o

oeb-seq : V sti st2 s s' s" old_ ol_2,

originalleval_ big < I sti, s I > <# s', olJ #> -+

originalleval_ big <I st2, s' I > <# s", ol_2 #> -s

original eva L big < I Seq sti st2, s > <# s", ol2 ++ ol #>

oeb-seqbadl: V sti st2 so,

originalleval_ big <I sti, s I> o

error o -+

originaLevaL-big < I Seq sti st2, s I> o

oeb-seqbad2 : V sti st2 s s' old o,

original evaL big < l sti, s I > <# s', old #>-+

original eval-big <l st2, s' I> o-

error o -+

originallevaL big < I Seq sti st2, s I> o

oebwhileifalse : V be st s,

bexp-eval be s = false -+

originaLevall-big <I While be st, s I> <# s, nil #>

oeb-while-true : V be st s 5' s" old1 ol_2,

bexp-eval be s = true -+

originaLevaLbig <I st, s I><# s', olJ#>-+

originaLevaL big < While be st, s' I> <# s, ol2 #> -

228

original-evalbig <1 While be st, s I> <# s", ol_2 ++ ol-l #>

oeb-while-badl: V be st s o,

bexp-eval be s = true -+

original-eval big <I st, s I> o

error o -

original-eval_ big <I While be st, s I> o

oeb-while-bad2 : V be st s s' ol o,

bexp-eval be s = true -+

original eval_ big<I st, s I>

original evalbig <I While b

error o -4

original-eval big < While b

Ltac invert-original-big:=

match goal with

[H: original eval-big

end.

<# s', ol#>-*

e st, s' I> o-+

e st , s 1> a

- - H -] > inversion H; subst; clear H

Fixpoint original-mods (st: statement) : list (var + arr-var)

match st with

Skip =z nil

Assign v - -> (inl - v) :nil

AssignArr av el e2 -> (inr - av) nil

Havoc vars - > map (fun v =- inI - v) vars

Relax - - w nil

If be sti st2 4 (original-mods sti) ++ (original-mods st2)

While be st => (originaLmods st)

Assume _ - nil

Assert - * nil

229

Accept - - r* nil

Seq sti st2 -= (originaLmods sti) ++ (originaLmods st2)

end.

Hint Resolve update-variable-equiv.

Hint Resolve update-array-contents-equiv.

Hint Resolve env-equiv-refl.

Hint Resolve error-valid-config-false.

Hint Resolve in-map.

Hint Resolve in-or-app.

Lemma originaleval not-in _modsconstant:

V st env env'ol', originalleval-big <Ist, env l > <#env', ol'#> -

V vars, (V v, In v vars - In v (originaLmods st)) -+

env-equiv env env' vars.

Proof.

induction st;

try solve[intros; invert original-big ; unfold havoc-sat in *; crush; eauto].

crush; invert original- big; invertu original-big; crush.

simpl; intros; dependent induction H; red-exprs; crush; try error-good-config;

eapply env-equiv-trans; [eapply IHst; eauto I eapply IHoriginal-evalbig2; eauto].

inversion 1; crush; try error-good-config ; eapply env-equiv-trans; [eapply IHstl;

eauto I eapply IHst2; eauto].

Qed.

A.6 RelaxedDynamic

Require Import Language.

Require Import List.

Require Export OriginalDynamic.

Require Import Classical.

230

Require Import Coq.Program.Tactics.

Require Import util.

Require Import Coq.Program.Equality.

Require Import CpdtTactics.

Inductive relaxed eval big: iconfig -+ oconfig - Prop:=

rd-skip : V so,

original eval-big <I Skip, s I> o -

relaxed eval-big < Skip, s I> o

rd-assign : V s v e o,

original eval big <I Assign v e, s I> o -4

relaxed eval big <I Assign v e, s > o

rd.assign-arr : V env av el e2 o,

original eval big <

relaxed eval big <I

rd-havoc : V vars be s o,

original evalbig <I

relaxed eval big <I

rd-relax : V s vars be o,

relaxed eval big <I

relaxed eval big <I

AssignArr av el e2 , env I> o -

AssignArr av el e2 , env I> o

Havoc vars be, s I> o

Havoc vars be, s I> o

Havoc vars be, s I> o

Relax vars be, s I> o

rd-assert : V be so,

original eval-big < Assert be, s I> o

relaxed eval big <I Assert be, s 1> o

231

rdassume : V be vars s o,

original eval_ big <I Assume vars be, s I> o -+

relaxed-eval big <I Assume vars be, s I> o

rd-accept : V re aid env o,

original eval_ big <l Accept aid re, env I> o-+

relaxed _eval big <I Accept aid re, env I> o

rd-if-true : V s be sti st2 o,

bexp-eval be s = true -+

relaxed eval big <I sti, s I> o

relaxed _eval big <I If be sti st2, s I> o

rd-if-false : V s be sti st2 o,

bexp-eval be s = false -

relaxed eval-big <I st2, s I> o-

relaxed _eval big < I If be st] st2, s > o

rdseq : V sti st2 s s' s" ol_] ol_2,

relaxed eval big <I sti, s I> <# s', oL_1 #>-+

relaxed -evaL big <I st2, s' I > <# s ", o1_2 #>-

relaxed _eval big < I Seq sti st2, s I> <# s", oL_2 ++ o_1 #>

rd _seq- bad1 : V sti st2 s o,

relaxed eval-big <I sti, s I> o -

error o -+

relaxed _eval-big < I Seq sti st2, s I> o

rd-seq-bad2: V st st2 ss' o_1 o,

232

relaxed _evaL big <I sti, s I> <# s', ol_1 #> -

relaxed evaL big <l st2, s' I> o-

error o -4

relaxed evaL big <l Seq sti st2, s I> o

rd-whileifalse : V be st s,

bexp-eval be s = false -+

relaxed eval-big <I While be st, s l> <# s, nil #>

rd-while-true : V be st s s' s" ol-1 ol_2,

bexp-eval be s = true -

relaxedeval big <I st, s I><# s', ol_1 I> -+

relaxed _eval big <I While be st, s' I> <# s", o1_2 #> -

relaxed _eval big <I While be st, s I> <# s", ol_2 ++ oli #>

rd-while-badl: V be st s o,

bexp-eval be s = true -+

relaxed evaLbig <l st, s I> o

error o -+

relaxed eval-big < While be st, s l> o

rdwhile-bad2 : V be st s s' ol o,

bexp-eval be s = true -*

relaxedevaLbig <I st, sl><# s', ol#> -

relaxed evaLbig <l While be st, s' l> o-

error o -+

relaxed evaL big <1 While be st , s I> o

Hint Constructors relaxed-eval big.

Hint Constructors originalevalbig.

233

Fixpoint relaxed-mods (st : statement) : list (var + arr-var)

match st with

Skip =a nil

Assign v - * (inl - v) :nil

AssignArr av el e2 4 (inr - av) : nil

Havoc vars - = map (fun v : inI - v) vars

Relax vars - # map (fun v > in _ v) vars

If be sti st2 4 (relaxed-mods stl) ++ (relaxed-mods st2)

While be st 4 (relaxed-mods st)

Assume _ _ e nil

Assert _ w nil

Accept _ _ a nil

Seq sti st2 # (relaxed-mods sti) ++ (relaxed-mods st2)

end.

Ltac invert-relaxed

match goal with

[H: relaxed-eval_ big _ - I- _] = inversion H; subst

end.

Section relaxed-eval.

Hint Resolve env-equiv-refl.

Hint Resolve update-variable-equiv.

Hint Resolve update-array-contents-equiv.

Hint Resolve in-map.

Hint Resolve in-or-app.

Lemma relaxed evalnot-in-mods-constant:

V st env env' ol', relaxed-eval-big <Ist, env l> <#env', ol' #> -+

V vars, (V v, In v vars -+ In v (relaxed-mods st)) -

env-equiv env env' vars.

Proof.

234

induction st;

try solve[intros; invert-relaxed ; try invert- original big ; unfold havoc-sat in *;

crush; eauto].

crush; invert-relaxed. inversion H5; crush. invert-original-big. unfold havoc-sat

in *; crush. eauto.

simpl; intros; dependent induction H; crush; try error-good-config;

eapply env-equiv-trans; [eapply IHst; eauto I eapply IHrelaxed-evalbig2; eauto].

inversion 1; crush; try error-good-config ; eapply env-equiv-trans; [eapply IHstJ;

eauto I eapply IHst2; eaut o].

Qed.

End relaxed-eval.

A.7 AssertionLogic

Require Export Language.

Require Import util.

Require Import Classical.

Require Import Coq.Bool.Bool.

Require Import Coq.Program.Tactics.

Require Import Tactics.

Require Import CpdtTactics.

Require Import Coq. Logic. FunctionalExtensionality..

Inductive bvar : Set

Bld : nat -+ bvar.

Def inition bvar-eq dec: V (vi v2: bvar), {v]=v2} + {v]÷v2}.

Proof.

decide equality.

decide equality.

235

Qed.

Inductive exp : Set :=

Const: nat -* exp

BLVar: bvar -+ exp

BRVar: bvar -4 exp

LVar: var - exp

RVar: var - exp

Arr : ref-exp -+ exp -+ exp

lop: iop -+ exp - exp -4 exp

with ref-exp : Set

LArrVar: arr-var - ref-exp

RArrVar: arr-var -+ ref-exp

ArrUpdate : ref-exp -+ exp -+ exp - ref-exp

Scheme exp-ind':= Induction f or exp Sort Prop

with refrexp-ind':= Induction f or refrexp Sort Prop.

Combined Scheme exp refrexp ind from expind', refrexp.ind'.

Inductive selector: Set

Left : selector

Right : selector

Fixpoint exp-inj (e: Expressions.exp) (s: selector): exp

match e with

Expressions.Var v =z

match s with

Left LVar v

Right =RVar v

end

236

Expressions.Const n => Const n

Expressions.Arr av el z

match s with

Left =4 Arr (LArrVar av) (exp-inj el s)

Right => Arr (RArrVar av) (exp-inj el s)

end

Expressions.lop op el e2 => lop op (exp-inj el s) (exp-inj e2 s)

end.

Notation " @ e '<o>' (expinj e Left) (at level 0).

Section assertion-logic.

Fixpoint free-vars (e : exp) (s: selector) list (var + arr-var)

match e with

Const - a nil

BLVar _ w nil

BRVar v nil

LVar v 4

match s with

Left = (inl _ v) ::nil

Right == nil

end

RVar v =

match s with

Left * nil

Right # (-_ v) :nil

end

Arr ref e 4 (ref-exp-free vars ref s) ++ (free-vars e s)

lop op el e2 > (free-vars el s) ++ (free-vars e2 s)

end

with ref-exp-free vars ref (s : selector) : list (var + arr-var)

237

match ref with

LArrVar av 4 match s with Left (nr - av) nil I Right a nil end

RArrVar av 4 match s with Right n (nr - av) : nil I Left a nil end

ArrUpdate ref' el e2 r: (ref exp-free vars ref' s) ++ (free-vars el s) ++ (free-vars

e2 s)

end

Fixpoint exp-graft (e: exp) (x: var) (s: selector) (e': exp): exp

match e with

Const _ = e

LVar v 4

match s with

Left => if var-eq-dec v x then e' else e

Right =* e

end

RVar v =

match s with

Left 4 e

Right 4 if var-eq-dec v x then e' else e

end

BLVar v = e

BRVar v = e

Arr ref ei =4 Arr (ref-exp-graft ref x s e') (exp-graft ei x s e')

lop i el e2 # lop i (exp-graft el x s e') (exp-graft e2 x s e')

end

with ref-exp-graft (ref : ref-exp) (x: var) (s : selector) (e : exp) ref-exp

match ref with

238

LArrVar _ = ref

RArrVar - = ref

ArrUpdate ref' el e2 => ArrUpdate (ref-exp-graft ref' x s e) (exp-graft el x s e)

(exp-graft e2 x s e)

end

Fixpoint exp.graft-arr (e : exp) (x: arr-var) (s : selector) (ref : ref-exp): exp

match e with

Const _ = e

LVar v 4 e

RVar v 4 e

BLVar v = e

BRVar v 4 e

Arr r ei > Arr (ref-exp-graft-arr r x s ref) (exp-graft-arr ei x s ref)

lop i el e2 =4 lop i (exp-graft-arr el x s ref) (exp-graft-arr e2 x s ref)

end

with ref-exp.graft-arr (ref : ref-exp) (x : arr-var) (s selector) (ref' : ref-exp)

ref exp :=

match ref with

LArrVar av z4

match s with

Left > if arr-var-eq-dec av x then ref' else ref

Right , ref

end

RArrVar av =

match s with

Left , ref

Right > if arr-var-eq-dec av x then ref' else ref

end

ArrUpdate ref] el e2 =4 ArrUpdate (ref-exp-graft-arr ref] x s ref') (exp-graft-arr el

239

x s ref') (exp-graftarr e2 x s ref')

end.

Fixpoint exp-subst (e : exp) (x: bvar) (s: selector) (n: nat): exp

match e with

Const _ = e

LVar _ = e

RVar _ # e

BLVar v =

match s with

Left # if bvar-eq-dec v x then (Const n) else e

Right z e

end

BRVar v =

match s with

Left # e

Right =4 if bvar-eq-dec v x then (Const n) else e

end

Arr ref ei > Arr (ref-exp-subst ref x s n) (exp-subst ei x s n)

lop i el e2 # lop i (exp-subst el x s n) (exp-subst e2 x s n)

end

with ref-expsubst (ref : ref-exp) (x: bvar) (s : selector) (n : nat) : ref-exp

match ref with

LArrVar _ = ref

RArrVar _ a ref

ArrUpdate ref' el e2 => ArrUpdate (ref-exp-subst ref' x s n) (exp-subst el x s n)

(exp-subst e2 x s n)

end.

Fixpoint ref-exp-subst-arr (ref : ref-exp) (x : arr-var) (s : selector) (ref' : ref-exp)

ref-exp

match ref with

240

LArrVar _ e ref

RArrVar - = ref

ArrUpdate r el e2 => ArrUpdate (ref-exp-subst-arr r x s ref') (exp-subst-arr el x s

ref') (expsubstarr e2 x s ref')

end

with exp-subst-arr (e : exp) (x: arr-var) (s : selector) (ref : ref-exp) : exp

match e with

Const _ > e

LVar v = e

RVar v = e

BLVar v => e

BRVar v =4 e

Arr r ei =- Arr (ref-exp-subst-arr r x s ref) (exp-subst-arr ei x s ref)

lop i el e2 > lop i (exp-subst-arr el x s ref) (exp-subst-arr e2 x s ref)

end.

Definition bvar-to-var (b : bvar) : var

match b with

(Bid n) == (ld n)

end.

Inductive exp-denote: exp - environment -+ environment -+ nat -+ Prop:=

exp-denote-const : V n Lenv renv, exp-denote (Const n) Lenv r-env n

exp-denoteilvar: V v Lenv n, st Lenv v = n - V renv, exp-denote (LVar v) Lenv

r-env n

I exp-denote-rvar: V v r-env n, st r-env v = n - V Lenv, exp-denote (RVar v) Lenv

r-env n

241

exp-denote-arr :

V e Lenv renv idxf, expdenote e Lenv renv idx -+

V ref, ref-exp-denote ref Lenv r-envf -+

exp_ denote (Arr ref e) Lenv r-env (f idx)

exp-denote-iop : V Lenv r-env,

V el n], exp-denote el Lenv r-env n] -

V e2 n2, exp-denote e2 Lenv r-env n2 -+

V op, exp-denote (lop op el e2) Lenv r-env

with ref-exp-denote : ref-exp -+ environment -+

Prop :=

(iop-denote op n] n2)

environment - (nat - nat) -

ref-exp-denoteilarrvar : V av Lenvf,

array-contents (he Lenv) av =f -+ V r-env, ref-exp-denote (LArrVar av) Lenv

r-envf

ref-exp-denote-rarrvar : V av r-envf,

array-contents (he r-env) av =f - V Lenv, ref-exp-denote (RArrVar av) Lenv

r-envf

ref-exp-denote-rupdate : V ref Lenv r-envf,

ref exp.denote ref Lenv r-envf ->

V el n], exp-denote el Lenv r-env n] -

V e2 n2, expdenote e2 Lenv r-env n2 -+

ref-exp-denote (ArrUpdate ref el e2) Lenv r-env (fun idx - if eq-nat-dec

n] idx then n2 elsef idx).

Scheme exp-denote-mut:= Induction f or exp-denote Sort Prop

with ref-exp-denote-mut:= Induction f or refjexp-denote Sort Prop.

Combined Scheme exp _ref-exp -denote- ind from expdenote mut, ref exp _denote _mut.

242

Hint Constructors exp._denote.

Hint Constructors ref-exp _denote.

Lemma exp-denote-determ-combined:

(V e Lenv r-env,

V n1, exp-denote e L-env r-env ni -

V n2, exp_.denote e Lenv r-env n2 -4 n1 = n2)

(V ref l-env r-env,

VfJ, ref-exp-denote ref Lenv r-envfl -

Vf2, ref-exp-denote ref Lenv r-envJ2 -÷fl =J2)

Proof.

apply (exp.ref-exp-ind _ _)

try solve [

inversion 1; inversion 1; crush].

inversion 3. inversion 1. crush.

cut (f =fO).

crush. apply fLequal; eauto. eauto.

inversion 3. inversion 1. crush. eauto.

intros until 1. intros until 1. intros until 1.

inversion 1. inversion 1. crush. cut (nO = n1). cut (n2 = n3). cut (f =J0). crush.

eauto.eauto.eauto.

Qed.

Definition exp-denote-determ := (proji exp-denote-determ-combined).

Definition ref-exp-denote-determ := (proj2 exp-denote-determ-combined).

Def inition select (A : Type) (s: selector) (a] a2: A)

match s with

Left # a]

Right =z a2

243

end.

Lemma exp-denote-sound :

V (e : Expressions.exp) (s : selector) env] env2 n,

exp-denote (exp-inj e s) env] env2 n -

V env, (select - s env] env2) = env -+

exp-eval e env = n.

Proof.

induction e; destruct s;

simpl; inversion 1; crush; eauto.

inversion H6; crush; eauto.

inversion H6; crush; eauto.

Qed.

Lemma exp-denote-sound-left (e : Expressions.exp)

V (env] env2 : environment) (n : nat),

expdenote 0 e <o> env] env2 n -+ exp-eval e env= n.

Proof.

intros; eapply exp-denote-sound; eauto; crush.

nlr,4

Lemma exp-denote-sound-right (e: Expressions.exp):

V (env] env2 : environment) (n: nat),

expdenote (exp-inj e Right) env] env2 n -* exp-eval e env2 n.

Proof.

intros; eapply exp-denote-sound; eauto; crush.

Qed.

Lemma exp-denote-complete _left

V (e : Expressions.exp) env] n,

exp-eval e env] = n -> V env2, expdenote Qe<o> env] env2 n.

Proof.

Hint Constructors exp._denote.

244

Hint Constructors ref-exp _denote.

induction e; crush; eauto.

Qed.

Lemma exp-denote complete-right:

V (e : Expressions.exp) env2 n,

exp-eval e env2 = n - V env], exp-denote (exp-inj e Right) env] env2 n.

Proof.

Hint Constructors expdenote.

Hint Constructors ref-exp _denote.

induction e; crush; eauto.

Qed.

Inductive pred : Type

PTrue: pred

PFalse: pred

PCmp: cmp - exp - exp - pred

PLop: lop - pred -+ pred - pred

PNeg: pred - pred

PLExists: bvar -+ pred - pred

PRExists: bvar - pred - pred

PLForall: bvar-+ pred -- pred

PRForall: bvar-+ pred -+ pred

Fixpoint bexp-inj (be: Expressions.bexp) (s: selector): pred

match be with

BConst true e PTrue

BConst false # PFalse

| Cmp op el e2 =4 PCmp op (exp-inj el s) (exp-inj e2 s)

Lop op be] be2 => PLop op (bexp-inj be] s) (bexp-inj be2 s)

Neg be' z# PNeg (bexp-inj be' s)

245

end.

Program Fixpoint predifree-vars (p: pred) (s : selector) : list (var+arr-var)

match p with

PTrue I PFalse = nil

PCmp op el e2 = (free-vars el s) ++ (free-vars e2 s)

PLop op p] p2 = (pred-free-vars p] s) ++ (predifree-vars p2 s)

PNeg p == pred-free-vars p s

PLExists x p' = predifree-vars p' s

PRExists x p' = pred-free-vars p' s

PLForall x p' z pred-free-vars p' s

PRForall xp' z predifree-varsp' s

end

Fixpoint pred-graft (p: pred) (x: var) (s: selector) (e : exp) : pred

match p with

PTrue I PFalse # p

PCmp op el e2 > PCmp op (exp-graft el x s e) (exp-graft e2 x s e)

PLop op p1 p2 =: PLop op (pred.graft p1 x s e) (predgraft p2 x s e)

PNeg p' =# PNeg (pred-graft p' x s e)

PLExists z p' = PLExists z (pred-graft p' x s e)

PRExists z p' = PRExists z (pred.graft p' x s e)

PLForall z p' = PLForall z (pred-graft p' x s e)

PRForall z p' = PRForall z (predgraft p'x s e)

end.

Fixpoint pred-graft-arr (p: pred) (x : arr-var) (s : selector) (r: ref-exp): pred

match p with

246

PTrue I PFalse z p

PCmp op el e2 4 PCmp op (exp-graft-arr el x s r) (exp-graft-arr e2 x s r)

PLop op p1 p2 4 PLop op (pred-graft-arr p1 x s r) (pred-graft-arr p2 x s r)

PNeg p' => PNeg (pred-graft-arr p'x s r)

PLExists z p' * PLExists z (pred-graft-arr p' x s r)

PRExists z p' = PRExists z (predgraft-arr p' x s r)

PLForall z p' * PLForall z (pred-graft-arr p'x s r)

PRForall z p' = PRForall z (pred-graft-arr p'x s r)

end.

Fixpoint pred-subst-var (p : pred) (x : bvar) (s : selector) (n : nat) : pred

match p with

PTrue | PFase p

PCmp op el e2 = PCmp op (exp-subst el x s n) (exp-subst e2 x s n)

PLop op p1 p2 4 PLop op (pred-subst-var p1 x s n) (pred-subst-var p2 x s n)

PNeg p' 4 PNeg (pred-subst-var p'x s n)

PLExists z p' #:

match s with

Left =4

if bvar-eq-dec x z then

p

else

PLExists z (pred-subst-var p' x s n)

Right = PLExists z (pred-subst-var p' x s n)

end

PRExists z p'

match s with

Left > PRExists z (pred-subst-var p' x s n)

Right -

if bvar-eq-dec x z then

p

247

else

PRExists z (pred-subst-var p' x s n)

end

PLForall z p' =

match s with

Left =>

if bvar-eq-dec x z then

p

else

PLForall z (pred-subst-var p' x s n)

Right a PLForall z (pred-subst-varp' x s n)

end

PRForall zp' =

match s with

Left =* PRForall z (pred-subst-var p' x s n)

Right #

if bvar-eq-dec x z then

p

else

PRForall z (pred-subst-var p' x s n)

end

end.

Inductive pred-denote : pred -+ environment -+ environment -+ Prop

pd-true: V Lenv r-env, pred-denote PTrue Lenv r-env

pd-cmp: V op el e2 Lenv r-env,

V n], exp-denote el L-env r-env n]-

V n2, exp-denote e2 U-env r-env n2 - (cmp-reflect op) n] n2 -

248

pred-denote (PCmp op el e2) Lenv r-env

pd-and : V p] p2 Lenv r-env,

pred -denote pl Lenv r-env -

pred _denote p2 Lenv r-env -

pred-denote (PLop And p1 p2) Lenv renv

pd-or-left : V p] p2 Lenv r-env,

pred _denote p] Lenv r-env -+

pred-denote (PLop Orpl p2) Lenv renv

pd-or-right : Vp] p2 Lenv r-env,

pred _denote p2 Lenv r-env -+

pred-denote (PLop Orp] p2) Lenv renv

pd-not : Vp Lenv r-env,

npred denote p I-env r-env -

pred-denote (PNegp) Lenv r-env

pd-lexists : V p x n Lenv r-env,

pred-denote (predsubst-var p x Left n) Lenv r-env - pred-denote (PLExists x

p) Lenv r-env

pdrexists : V p x n Lenv r-env,

pred-denote (pred-subst-var p x Right n) Lenv r-env -+ pred-denote (PRExists

x p) Lenv r-env

pd-iforall : V p x 1-env r-env,

(V n, pred-denote (pred-subst-varpx Left n) Lenv r-env) -+ preddenote (PLForall

xp) U-env r-env

249

pd-rforall : V p x Lenv r-env,

(V n, pred denote (predsubst-varpx Right n) Lenv renv) -+ pred denote (PRForaI

xp) Lenv r-env

with npred-denote: pred - environment --+ environment - Prop:=

npd-false: V Lenv r-env, npreddenote PFalse Lenv r-env

npdcmp: V op el e2 Lenv r-env,

V n], exp.denote el L-env r-env ni -+

V n2, exp-denote e2 Lenv r-env n2 -

(cmp-reflect op) n] n2 - npred-denote (PCmp op el e2) Lenv r-env

I npd-andileft: Vp] p2 I-env r-env, npred-denotepl Lenv r-env -+ npred-denote

(PLop And p1 p2) Lenv renv

I npd-and-right: Vp] p2 Lenv r-env, npreddenote p2 Lenv r-env - npred_.denote

(PLop And p1 p2) Lenv r-env

npdor: Vp] p2 -env r-env,

(npred-denote p1 Lenv r-env) -

(npred-denote p2 Lenv r-env) -+

npred.denote (PLop Or pl p2) Lenv r-env

npd-not : V p Lenv r-env, pred_.denote p Lenv r-env -+ npred_ denote (PNeg p)

Lenv r-env

npdilexists : V p x Lenv r-env,

pred-denote (PLForall x (PNeg p)) Lenv r-env -+ npred-denote (PLExists x p)

Lenv r-env

250

npdrexists : V p x U-env r-env,

pred-denote (PRForall x (PNeg p)) Lenv r-env -- npred-denote (PRExists x

p) -env renv

npd-Iforall : V p x Lenv r-env,

pred-denote (PLExists x (PNeg p)) Lenv r-env -+ npred-denote (PLForall xp)

Lenv r-env

npd-rforall : V p x 1-env r-env,

pred-denote (PRExists x (PNeg p)) Lenv r-env -+ npred-denote (PRForall x p)

Lenv r-env.

Scheme pred-npred-denote-ind:= Induction for preddenote Sort Prop

with npred-pred-denote-ind:= Induction for npred-denote Sort Prop.

Combined Scheme pred-npred-denote-combined-ind

from prednpreddenoteind, npredpreddenoteind.

Hint Resolve env-equivileft env-equiv-right env-equiv-sym.

Hint Constructors exp-denote ref-exp.denote.

Lemma exp-denote-same-free-varscombined:

(V e env] envi' env2 env2',

env-equiv env] envi' (free-vars e Left) -+

env-equiv env2 env2' (free-vars e Right) -

V n, exp.denote e env] env2 n -+ exp-denote e envi' env2' n)

(V ref env] envl' env2 env2',

env-equiv env] envi' (ref-exp-free vars ref Left) -+

env-equiv env2 env2' (ref_exp_free-vars ref Right) -4

Vf, ref-expdenote ref env] env2f -+ ref-expdenote ref envi' env2'f).

Proof.

251

apply (exp-ref-exp-ind - -);

try solve [unfoldequivs; try inversion 3; crush]

intros. inversion H3; crush. econstructor; eauto.

intros. inversion H3; crush; econstructor; eauto.

intros. inversion Hi; crush. econstructor.

unfold-equivs; crush. apply functiona LextensionaIity. crush.

intro s. inversion Hi; crush. econstructor.

unfold-equivs; crush. apply functional-extensionality. crush.

intros. inversion H4; crush. econstructor; eauto.

eapply HO; eauto.

eapply Hi; eauto.

Qed.

Def inition exp-denote-sameifree-vars := (proj1 exp-denote-same-free-varscombined).

Def inition ref-exp-denote-same-free-vars:= (proj2 exp-denote-same-free-varscombined).

Lemma exp-free-vars-substcombined

(V e a x n s,

In a (free-vars (exp-subst e x s n) s) -+ In a (free-vars e s))

(V r a x n s,

In a (ref exp-free vars (ref-exp-subst r x s n) s) -* In a (ref-exp-free-vars r s))

Proof.

Hint Resolve in-or-app.

apply (exp-ref-exp-ind _ -); red-exprs; crush; eauto.

destruct s; crush.

destruct bvar-eq-dec; crush.

destruct s; crush.

destruct bvar-eq-dec; crush.

redexprs. apply in-or-app. right.

252

apply inor-app. crush. left. eauto.

right. eauto.

Qed.

Def inition exp-free vars-subst := (projl exp-free-vars-subst-combined).

Def inition ref-exp-free vars-subst := (proj2 exp-free vars-subst-combined).

Lemma env-equiv-subset:

V env env' vars,

envequiv env env' vars -+

V vars', (V v, In v vars' -- In v vars) -+ envequiv env env' vars'.

Proof.

unfold _equivs; crush.

Qed.

Lemma pred _free _vars-subst:

Vp v xsn,

In v (predfree-vars (pred-subst-var p x s n) s) In v (pred-free-vars p s)

Proof.

Hint Resolve in-or-app exp-free-vars-subst.

induction p;

try solve [crush; red-exprs; crush; eauto];

crush; destruct bvar-eq-dec; destruct s; crush; eauto.

Qed.

Lemma exp-free vars-subst2_ combined

(V e s s' x v n,

In v (free-vars (exp-subst e x s' n) s) -+

In v (free.vars e s))

(V ref s s' x v n,

In v (ref-exp-free-vars (ref-exp-subst ref x s' n) s) -

253

In v (ref exp-free vars ref s)).

Proof.

apply (exp-ref-exp-ind _); red-exprs ; crush; eauto.

try (destruct s; destruct bvar-eq-dec; destruct s'; crush).

try (destruct s; destruct bvar-eq-dec; destruct s'; crush).

red-exprs; crush; apply in or-app; eauto.

Qed.

Def inition exp-free vars-subst2 := (proji exp-free-vars-subst2_combined).

Lemma pred-free vars-subst2:

V (p : pred) s s' x v n,

In v (predfree-vars (pred-subst-var p x s' n) s) -+

In v (pred-free-vars p s).

Proof.

Hint Resolve exp-free vars-subst2.

induction p; red-exprs ; crush; eauto;

destruct s'; try destruct bvar-eq-dec; eauto.

Qed.

Hint Constructors preddenote.

Hint Constructors npreddenote.

Hint Resolve env-equiv-subset.

Hint Resolve exp-denote-same-free-vars.

Hint Resolve env-equivileft env-equivwright.

Hint Resolve pred-free vars-subst2.

Lemma pred-denote-same-free-vars-combined

(V P env] env2, pred._denote P env] env2 -+

V env', env-equiv env] envi' (pred-free-vars P Left) -

V env2', env-equiv env2 env2' (predifree-vars P Right) -

pred .denote P env I' env2')

254

(V P env] env2, npreddenote P env] env2 -

V env]', env-equiv env] envi' (pred-free-vars P Left) -+

V env2', env-equiv env2 env2' (pred-free-vars P Right) -

npred denote P envi' env2')

Proof.

apply (pred-npred-denotecombined-ind

(fun P env] env2 #> fun pr =4 -) (fun P env] env2 =4 fun pr 4);

try match goal with

[HF

[HF

context[PCmp - - _] = simpl; intros; econstructor; eauto

context[pred-denote (PLop And - -) - -]] =4 simpl; intros; econstructor;

eauto

[H context[npred-denote (PLop Or _ _) - _]] = simpl; intros; econstructor;

eauto

[context[PLop - _]] simpl; intros; eauto

_ :> auto

end;

simpl; econstructor; intros; eapply H; eapply env-equiv-subset; eauto.

Qed.

Def inition pred _denote same-free-vars (projl preddenote-same-free-varscombined).

Def inition n pred _denote same-free vars := (proj2 preddenote-same-freevarscombined).

255

Def inition pred-satifies (p1 p2 : pred) :=

V (env] env2 : environment), pred-denote p1 env] env2 - pred-denote p2 env]

env2.

Lemma cmp-reflect-denote:

V c ni n2, cmp-reflect c ni n2 -+ cmp-denote c ni n2 = true.

Proof.

destruct c; crush.

destruct It-dec; crush.

destruct eq-nat-dec; crush.

destruct ledec; crush.

Qed.

Lemma not-cmp-reflect-denote:

V c nI n2, , cmpreflect c ni n2 -4 cmp-denote c ni n2 = false.

Proof.

destruct c; crush.

destruct It-dec; crush.

destruct eq-nat-dec; crush.

destruct le-dec; crush.

Qed.

Lemma bexp_ inj-soundness:

V be env] env2 s,

(pred-denote (bexp-inj be s) env] env2 -+ bexp-eval be (select _ s env] env2) =

true)

A

(npred-denote (bexp-inj be s) env] env2 -4 bexp-eval be (select _ s env] env2) =

false).

Proof.

induction be; crush;

try (destruct b; try inversion H; destruct s; crush).

256

Hint Resolve cmp.reflect-denote

exp-denote-sound

not-cmp-reflect-denote

exp-denote-sound.

inversion H; crush.

cut (exp-eval e (select - s env] env2) = ni) ; crush.

cut (expeval eO (select - s envi env2) = n2) ; crush.

eaut o.

eauto.

inversion H; crush.

cut (exp-eval e (select - s envI env2) = ni) ; crush.

cut (expeval eO (select - s env] env2) = n2) ; crush.

eaut o.

eaut o.

inversion H; crush.

pose proof (IHbel envi env2 s).

pose proof (IHbe2 env] env2 s). crush.

inversion H; crush;

pose proof (IHbel env] env2 s) ;

pose proof (IHbe2 env] env2 s) ;

crush.

pose proof (IHbel env] env2 s) ;

pose proof (IHbe2 env] env2 s) ;

inversion H; crush; crush.

pose proof (IHbel env] env2 s) ;

pose proof (IHbe2 env] env2 s) ;

inversion H; crush;

apply andb-false-iff; crush.

pose proof (IHbe env] env2 s);

257

inversion H; crush.

pose proof (IHbe env] env2 s);

inversion H; crush.

Qed.

Theorem assertion-soundness

V s P be,

pred-satifies P (bexp-inj be s) -

(V envl env2, pred_ denote P env] env2 - bexp-eval be (select _ s env] env2) =

true).

Proof.

unfold pred-satifies.

intros.

apply bexp-inj-soundness; crush.

Qed.

Hint Constructors expdenote.

Hint Resolve exp-denote-sound-left exp-denote-sound -right.

Ltac helper:=

match goal with

I [H exp..denote (exp-inj ?e Left)] = apply exp-denote-completeileft; apply

eq-refl

I [I- exp-denote (exp-inj ?e Right) - - -] # apply exp-denote-complete-right;

apply eq-refl

end.

Lemma bexp-inj-complete-combined:

Vs be,

(V env] env2, bexp-eval be (select - s env] env2) = true - pred.denote (bexp-inj

be s) env] env2)

A

(V env] env2, bexp-eval be (select - s env] env2) = false -4 npred-denote (bexp-inj

258

be s) env] env2).

Proof.

destruct s; induction be; simpl; intros; crush;

try match goal with

[H npred-denote (PCmp ?c ?eI ?e2) _ _] 4

destruct c ; crush;

(destruct It-dec I destruct eq-nat-dec I

econstructor; try helper; crush

[pred-denote (PCmp ?c ?el ?e2) _ _ I =

destruct c ; crush;

(destruct It-dec 11 destruct eqnat-dec I

econstructor; try helper; crush

I destruct le-dec);

I destruct le-dec);

H pred-denote (PLop ?l _ _) _ _] *

destruct l;

(apply andb-true-iff in H3 11 apply orb-true-iff in H3); crush

[npred-denote (PLop ?l _ _) _ _] *

destruct l;

(apply andb-false-iff in H3 11 apply orb-false-iff in H3); crush

end.

apply negb-true-iff in Hi; crush.

apply negb-false-iff in H]; crush.

apply negb-true-iff in Hi; crush.

apply negb-false-iff in Hi; crush.

Qed.

259

Definition bexp-inj pred-denote-left (be: bexp):= proj1 (bexp-inj_.complete-combined

Left be).

Definition bexp-inj -npred-denoteileft (be: bexp) := proj2 (bexp-inj-complete-combined

Left be).

Fixpoint pred-mult-exists (P: pred) (vars: list (var x bvar)) (s : selector) : pred

match vars with

nil => P

(v, V') :rest

match s with

Left =z PLExists v' (pred-graft (pred-mult-exists P rest s) v s (BLVar v'))

Right ra PRExists v' (pred-graft (pred-mult-exists P rest s) v s (BRVar v'))

end

end.

Inductive exp-arrayfree: exp -+ selector -+ Prop:=

eaf-const: V s n, exp-array-free (Const n) s

eaf-bivar: V s b, exp-array-free (BLVar b) s

eaf-brvar: V s b, exp-array-free (BRVar b) s

eafilvar: V s v, exp-array-free (LVar v) s

eaf-rvar: V s v, exp-array-free (RVar v) s

eaf-arr : V s r, ref-exp-array-free r s -+ V e, exp-array-free e s -+ exp-array-free

(Arr r e) s

eaf-iop: V s el, exparray-free el s -+ Ve2, exp-arrayfree e2 s - V op, exparrayfree

(lop op el e2) s

with ref-exp-arravfree : ref-exp -4 selector -> Prop:

reafilarrvar: V av, ref-exp-array-free (LArrVar av) Right

reaf-rarrvar: V av, ref exp-array-free (RArrVar av) Left

reaf-arrupdate : V s r, ref-exp-array-free r s -*

V el, exp-array-free el s -4 V e2, exp-array-free e2 s -

ref-exp-array-free (ArrUpdate r el e2) s.

260

Scheme exp-array-free-ind':= Induction f or exp-arrayjfree Sort Prop

with ref-exp-arrayjfree-ind' := Induction f or ref-exp-arrayjfree Sort Prop.

Combined Scheme exp _ref-exp _array -free _ind from exparrayjfreeind'

ref-exp _arrayfree-ind'.

Inductive pred-array-free : pred - selector -+ Prop

paf-true: V s, pred-array-free PTrue s

paf-false: V s, pred-array-free PFalse s

pafcmp: V el s, exp-arrayfree el s - V e2, exparray-free e2 s -+ V op, pred-arrayfree

(PCmp op el e2) s

pafilop : V P1 s, pred-arrayifree P1 s -- V P2, pred-array-free P2 s -* V op,

pred-array-free (PLop op P1 P2) s

paf-neg : V P s, pred-array-free P s -+ pred-array-free (PNeg P) s

pafilexists: V P s, pred-array-free P s -+ V b, pred-array-free (PLExists b P) s

pafLrexists: V P s, pred-array-free P s-+ V b, pred-array-free (PRExists b P) s

paf-Iforall V P s, pred-array-free P s - V b, pred-array-free (PLForall b P) s

pafrforall V P s, pred-array-free P s - V b, pred-array-free (PRForall b P) s

Hint Constructors exp-arrayjfree.

Hint Constructors ref exp -array -free.

Hint Constructors pred array -free.

Fixpoint exp-arrayifree-dec e s {struct e}

{exparray_free e s} + { exp-array-free e s}

with ref-exp-arrayifree-dec r s Istruct r} :

{ref-exp-array-free r s} + { -, ref-exp-array-free r s}.

induction e; try solve [left; auto].

pose proof (ref-exp-array-free-dec r s).

destruct IHe; destruct H.

left. auto.

right. unf old not; inversion 1; auto.

261

right. unf old not; inversion 1; auto.

right; unf old not; inversion 1; auto.

destruct IHel; destruct IHe2;

try solve [left; auto];

right; unf old not; inversion 1; auto.

induction r.

destruct s.

right; unf old not; inversion 1; auto.

left; auto.

destruct s.

left; auto.

right; unf old not; inversion 1; auto.

pose proof (exp-array -free _dec e s).

pose proof (exp-array-free -dec eO s).

destruct IHr; destruct H; destruct HO;

try solve [right; unf old not; inversion 1; auto].

left; auto.

Def ined.

Def inition pred-array-free-dec P s: {pred-array-free P s} + f{ pred-array-free P

s}.

induction P. crush. crush.

pose proof (exp-arrayfreedec e s) as Hi.

pose proof (exp-arrayfreedec eQ s) as H2.

destruct Hi; destruct H2; try solve [left; crush];

right; unf old not; inversion 1; crush.

destruct IHPJ; destruct IHP2; try solve [left; crush];

right; unfold not; inversion 1; crush.

destruct IHP; try solve [left; crush];

right; unfold not; inversion 1; crush.

262

destruct IHP; try solve [left; crush];

right; unf old not; inversion 1; crush.

destruct IHP; try solve [left; crush];

right; unf old not; inversion 1; crush.

destruct IHP; try solve [left; crush];

right; unf old not; inversion 1; crush.

destruct IHP; try solve [left; crush];

right; unf old not; inversion 1; crush.

Def ined.

Lemma exp-array-free-not-in _combined

(V e s, exp-array-free e s -+ V v, In (inr - v) (free-vars e s) -+ False)

(V r s, ref-exp-array-free r s -* V v, In (inr - v) (ref-exp-free-vars r s) - False).

Proof.

apply exp-ref-exp-arrayfree-ind; simpl; intros; auto; red-exprs.

destruct s; crush.

destruct s; crush.

crush; redexprs; crush; eauto.

crush; redexprs; crush; eauto.

crush; redexprs; crush; eauto.

Qed.

Definition exp-arrayifree-not-in := (projl exp-array-free-not-in-combined).

Lemma pred-array-free-not-in :

Vp s, pred-array-free p s -+ (V v, In (inr - v) (pred-free-varsp s) - False).

Proof.

Hint Resolve exp-array-free-not-in.

induction 1; red-exprs; crush; eauto.

Qed.

Lemma predgraft-free-vars:

263

V P v e s, In (in! arr-var v) (free-vars e s) -+ (In (Il - v) (predifree-vars (pred-graft

P v s e) s).

Proof.

induction P; simpl; auto.

Lemma exp-graft _free-vars combined

(V e v s el, - In (in! arr-var v) (freevars el s) -+ , In (in! arr-var v) (free.vars

(exp-graft e v s eJ) s))

(V r v s el, - In (inI arr-var v) (free-vars el s) - In (in! arr-var v) (ref-exp-free vars

(ref-exp-graft r v s el) s)).

Proof.

apply (exp-ref-exp-ind _ _; simpl; auto.

destruct s; simpl; red-exprs; crush.

destruct s; simpl; red-exprs; crush.

destruct s; simpl; red-exprs; crush; red-exprs; crush; eauto.

destruct s; simpl; red-exprs; crush; red-exprs; crush; eauto.

destruct s; simpl; red-exprs; crush; red-exprs; crush; eauto.

destruct s; simpl; red-exprs; crush; red-exprs; crush; eauto.

crush ; red _exprs. crush. eauto. redexprs. crush; eauto.

Qed.

Def inition exp-graft-free-vars := (proj1 exp-graft-free-vars-combined).

intros. red; intros; red-exprs.

crush; eapply exp-graft-free-vars; eauto.

intros. red; intros; red.exprs; crush; eauto.

Qed.

Lemma exp-graft free-vars2 combined

(V e el a s, - In a (free-vars el s) -+ V v, In a (free-vars (exp-graft e v s el) s) -+ In a

(free-vars e s))

264

(V r a s e, -, In a (free-vars e s) -+ V v, In a (ref-exp-free vars (ref-exp-graft r v s e) s) -+

In a (ref exp-free vars r s)).

Proof.

apply (exp-ref-exp-ind _ _; try solve [simpl; auto].

destruct s; simpl; red-exprs; crush.

destruct s; simpl; red-exprs; crush.

intros. simpl in x.

red-exprs. apply in _orapp; crush; eauto.

simpl; intros.

red-exprs. apply in _orapp; crush; eauto.

simpl; intros;

redexprs. apply inorapp; crush; eauto.

red-exprs ; right; apply inorapp; crush; eauto.

Qed.

Def inition exp-graft-free-vars2 := (proj1 exp-graft-free-vars2_combined).

Lemma pred-graft-free vars2 :

V P e s a, -, In a (free.vars e s) -+ V v, In a (predfree-vars (pred-graft P v s e) s) -+

In a (pred free-vars P s).

Proof.

induction P; simpl; auto.

Hint Resolve exp-graft-free vars2.

red-exprs; apply inor-app; intuition; eauto.

red-exprs. apply inor-app; intuition; eauto.

Qed.

Lemma pred-mult-exists-unary

V P s,

Vfvs bs,

length fvs = length bs -+

265

(V v, In vfvs -+ In (Inl - v) (predifree-vars (pred-mult-exists P (combinefrs bs) s)

s)).

Proof.

intros until 1.

Require Import util.

apply (twolist-ind var bvar (funfvs bs ->

length fvs = length bs -+

V v: var,

In vfvs -4

In (Inl arr-var v)

(pred-free-vars (pred.mult-exists P (combinefvs bs) s) s))).

simpl. auto.

crush.

crush.

simpl; intros.

crush.

contradict H3. destruct s; eapply pred-graft-free-vars; simpl; auto.

eapply H2. eauto.

destruct s.

eapply pred _graft free-vars2. Focus 2. eapply H3; eauto; crush. auto.

eapply pred-graftifree-vars2. Focus 2. eapply H3; eauto; crush. auto.

auto.

Qed.

Lemma pred-mult-exists-unary3:

V Pfvs bs,

length fvs = length bs -+

V a, In a (pred-free-vars (pred-mult-exists P (combinefvs bs) Right) Right) -

In a (pred-free-vars P Right).

266

Proof.

intro.

apply (twoilist-ind var bvar (funfvs bs =

length fvs = length bs -+

V a : var + arrvar,

In a (pred-free-vars (pred-mult-exists P (combinefvs bs) Right) Right) -

In a (predfree-vars P Right)

simpl. auto.

crush.

crush.

simpl. intros. eapply H. crush.

eapply pred -graft-free vars2. Focus 2. eauto. crush.

Qed.

Fixpoint choosefree-num (vars: list bvar) : nat

match vars with

nil > 0

(Bld n) vs

let n-max := choose-free-num vs in

if It-dec n n-max then n-max else n + 1

end.

Fixpoint gen-numbers (num start : nat) : list nat

match num with

0 # nil

(S n) =z start: : (gennumbers n (start + 1))

end.

Def inition choose-free-nums (vars : list bvar) (num : nat) : list nat

let top := choose-free-num vars in

gennumbers num top.

267

Def inition chooseifree-bvars (vars : list bvar) (num : nat) : list bvar

map (fun v =# Bld v) (choose-free-nums vars num).

Lemma gen .numbersilength :

V n s, length (gen-numbers n s)= n.

Proof.

induction n; crush.

Qed.

Lemma choose -free_ bvarsilength

V vars n, length (choose-free_ bvars vars n) = n.

Proof.

unf old choose free- bvars. intros; rewrite maplength.

unf old choose _free -nums.

Hint Resolve gen-numbersilength. auto.

Qed.

Fixpoint exp-swap (e: exp) : exp

match e with

Const n > Const n

LVar n = RVar n

RVar n = LVar n

BLVar n BRVar n

BRVar n BLVar n

Arr r e a Arr (ref-exp-swap r) (exp-swap e)

lop op el e2 =4 lop op (exp-swap el) (exp-swap e2)

end

with ref-exp-swap (r: ref-exp) : ref-exp

match r with

ILArrVar av # RArrVar av

268

RArrVar av =4 LArrVar av

ArrUpdate r el e2 =4 ArrUpdate (ref-exp-swap r) (exp-swap el) (exp-swap e2)

end.

Program Fixpoint pred-swap (P: pred) : pred

match P with

PTrue =z PTrue

PFalse * PFalse

PCmp op el e2 :t PCmp op (exp-swap el) (exp-swap e2)

PLop op p1 p2 z= PLop op (pred swap p1) (pred swap p2)

PNeg p' > PNeg (pred-swap p')

PLExists bv p' * PRExists bv (pred-swap p')

PRExists bv p' e PLExists bv (pred-swap p')

PLForall bv p' PRForall bv (pred-swap p')

PRForaII bv p' = PLForaII bv (pred-swap p')

end.

Lemma exp-swap-denote-combined :

(V e Lenv renv n, exp-denote e L-env r-env n -4 exp-denote (exp-swap e) r-env

U-env n)

(V r Lenv r-envf, ref-exp-denote r Lenv r-envf - ref-exp-denote (ref-exp-swap

r) r-env L-envf).

Proof.

apply (exp -ref-exp-denote-ind _ _; crush.

econstructor; auto.

Qed.

Def inition exp-swap-denote := (proj1 exp-swap-denote-combined).

Lemma exp-swap-subst-combined

V s,

(V e x n, exp-subst (exp-swap e) x s n = exp-swap (exp-subst e x (select - s Right Left)

269

n))

(V r x n, ref-exp-subst (ref-exp-swap r) x s n = ref-exp-swap (ref-exp-subst r x (select

_ s Right Left) n)).

Proof.

destruct s; apply (exp-ref-exp-ind _); crush; destruct bvar-eq-dec; crush.

Qed.

Def inition exp-swap-subst s := proji (exp-swap-subst-combined s).

Hint Rewrite exp-swap.subst : cpdt.

Lemma predswap-subst :

V s P x n, pred-subst-var (pred-swap P) x s n pred-swap (pred-subst-var P x (select _

s Right Left) n).

Proof.

destruct s; induction P; crush;

destruct bvar-eq-dec; crush.

Qed.

Hint Resolve exp-swap-denote.

Hint Rewrite pred-swap-subst : cpdt.

Lemma pred-swap-denote :

(V P envl env2, preddenote P env] env2 -

preddenote (predswap P) env2 envi)

(V P envl env2, npreddenote P env] env2 -

npred-denote (pred-swap P) env2 env]).

Proof.

apply (pred-npred.denote-combined ind

(fun P env] env2 =* f un pr = -) (f un P env] env2 = f un pr #)); crush; eauto.

econstructor; rewrite pred-swapsubst; eauto.

270

econstructor; rewrite pred-swapsubst; eauto.

econstructor. intro. rewrite pred-swap-subst; eauto.

econstructor. intro. rewrite predswap-subst; eauto.

Qed.

Lemma exp-swap-free-varscombined:

(V e, free-vars (exp-swap e) Right = free-vars e Left) A

(V r, ref-exp-free-vars (ref-exp-swap r) Right = ref-expifree-vars r Left).

Proof.

apply (exp-ref-exp-ind _); crush.

Qed.

Def inition exp-swap-free-vars (projl exp-swap-free vars-combined).

Hint Rewrite exp-swap-free.vars: cpdt.

Lemma pred -swap-free -vars :

V P, pred-free-vars (pred-swap P) Right = predifree-vars P Left.

Proof.

induction P; crush.

Qed.

Hint Rewrite pred-swapifree-vars : cpdt.

Def inition selector-swap s:= match s with Left > Right I Right #, Left end.

Lemma exp-array-free-exp-swap-combined :

(V e s, exp-array-free e s - exp-array-free (exp-swap e) (selector-swap s))

(V r s, ref-exp-array-free r s -- ref-exp-array-free (ref-exp-swap r) (selec-

tor-swap s)).

Proof.

eapply (exp-ref-exp-array-free-ind _); crush.

Qed.

Def inition exp-array-free-exp-swap

271

V e, exp-array-free e Left - exp-array-free (exp-swap e) Right.

Proof.

intro.

pose proof (proji exp-array-free-exp-swap-combined) e Left. simpl in H.

auto.

Def ined.

Hint Resolve exp-array-free-exp-swap.

Lemma pred-array-freepred-swap :

V P, pred.array-free P Left -- pred-array-free (pred-swap P) Right.

Proof.

induction P; inversion 1; crush.

Qed.

Fixpoint expbound-vars (e : exp) (s : selector): list bvar

match e with

Const - = nil

BLVar bv = (select s (bv: : nil) nil)

BRVar bv 4 (select _ s nil (bv: : nil))

LVar v 4 nil

RVar v 4 nil

Arr ref e => (ref-exp-bound-vars ref s) ++ (exp-bound-vars e s)

lop op el e2 > (exp-bound-vars el s) ++ (exp-bound-vars e2 s)

end

with retfexbon hind xvrs ref (s: selector) : !st bvar

match ref with

LArrVar av = nil

RArrVar av 4 nil

ArrUpdate ref' el e2 : (ref-exp-bound-vars ref' s) ++ (exp-bound-vars el s)+

(exp-bound-vars e2 s)

272

end.

Fixpoint pred-bound-vars (p : pred) (s : selector) : list bvar

match p with

PTrue I PFalse = nil

PCmp op el e2 = (exp-boundvars el s) ++ (exp-bound-vars e2 s)

PLop op p] p2 4 (predbound-vars p] s) ++ (predbound-vars p2 s)

PNeg p =:'. (pred-bound-vars p s)

PLExists x p' (select _ s (x : : pred-bound-vars p' s) (pred-bound-vars p' s))

PRExists x p' z (select _ s (predbound-vars p' s) (x : : predbound-vars p' s))

PLForall x p' z (select _ s (x : : predbound-vars p' s) (predbound-vars p' s))

PRForall xp' * (select _ s (pred-bound varsp' s) (x : pred-bound-varsp' s))

end.

Lemma genwnumbers-values:

V n start v, In v (gennumbers n start) -+ start < v.

Proof.

induction n; crush.

eapply IHn in HO. crush.

Qed.

Hint Constructors NoDup.

Lemma gen-numbers-nodup:

V n start, NoDup (gen-numbers n start).

Proof.

induction n; crush.

constructor.

red; intros; apply gen-numbers-values in H. crush.

crush.

Qed.

273

Lemma nodup-map :

V (A B: Type) (f : A -+ B), (Vx y,f x =f y - x = y) - V 1, NoDup 1 -+ NoDup (map

f 1).

Proof.

induction 1. crush.

inversion 1; subst. simpl. constructor.

red; intro. eapply in-ma piff in H1. destruct-conjs.

apply H in H2. crush.

auto.

Qed.

Lemma choose-free-bvars-nodup

V vars n, NoDup (choose-free_ bvars vars n).

unfold choose free -bvars.

unf old choose free nums.

Hint Resolve gen-numbers-nodup.

intro. SearchAbout NoDup.

intro. apply nodupmap; crush.

Qed.

Lemma choose-free-num-greater

V bvars n, In (Bid n) bvars - n < choose-free-num bvars.

Proof.

induction bvars.

crush.

simpl. intros.

destruct H. destruct a. crush. destruct Itcdec; crush.

eapply IHbvars in H. destruct a.

destruct Itdec. crush. crush.

Qed.

274

Lemma choose-free-num-greatest :

V bvars n, In (Bid n) bvars - V m 1, In (Bid m) (choose-free-bvars bvars 1) - It n m.

Proof.

induction bvars.

crush.

intros. simpl in x. unf old choose free_bvars in x.

unf old choose-free -nums in x.

simpl in HO. crush.

apply inmap-iff in HO. destruct-conjs; crush.

destruct It-dec. apply gen-numbers-values in H1. omega.

apply gen-numbers-values in H1. omega.

destruct a. destruct It-dec. eauto.

apply inmap-iff in HO. destruct-conjs; crush.

apply gen-numbers-values in H2. apply choose-free-num-greater in H1. crush.

Qed.

Lemma choose-free-bvar-is-free

V n bv bvars, In bv bvars - In by (choose-free-hvars bvars n) - False.

Proof.

crush. destruct bv. cut (It nO nO). crush.

eapply choose-free-num-greatest.

eapply H. eauto.

Qed.

End assertion-logic.

Notation "A 'A-p' B" := (PLop And A B) (at level 100): accept-scope.

Notation "A '/ p' B" := (PLop Or A B) (at level 101) : accept-scope.

Notation "El '=_p' E2" := (PCmp EQ El E2) (at level 90): accept-scope.

Notation " El '<-p' E2" := (PCm p LT El E2) (at level 90): accept-scope.

Notation " El '<=_p' E2" := (PCmp LEQ El E2) (at level 90): accept-scope.

Notation "El +-p E2" := (lop Plus El E2) (at level 80) : accept-scope.

275

Notation "~-p P" := (PNeg P) (at level 0) : accept-scope.

A.8 Substitution

Require Export AssertionLogic.

Require Import Coq. Logic. FunctionalExtensionality.

Require Import CpdtTactics.

Require Import util.

Require Export List.

Def inition update-variable-select (s : selector) (env] env2 : environment) v e

match s with

Left => (update-variable env] v (exp-eval e env]) , env2)

Right =4 (env], update-variable env2 v (exp-eval e env2))

end.

Lemma exp-subst_ bound -free:

V (e: Expressions.exp) (s: selector) b n, exp-subst (exp-inj e s) b s n = (exp-inj e s).

Proof.

induction e; destruct s; crush.

Qed.

Hint Resolve exp-subst-bound-free.

Lemma exp-subst-selector :

(V e sl s2, s + s2 -> V b n, exp-subst (exp-inj e si) b s2 n exp-inj e si)

induction e; destruct s1; destruct s2; crush.

Qed.

Hint Resolve exp-subst-selector.

Lemma exp-subst-graft-commute-combined

(V e,

V v el b (s] s2 : selector) n,

276

exp-subst (exp-graft e v si (exp-inj el si)) b s2 n = exp-graft (exp-subst e b s2 n) v

si (exp-inj el si))

(Vr,

V v el b si s2 n,

ref-exp-subst (ref-exp-graft r v si (exp-inj el si)) b s2 n = ref-expgraft (ref-exp-subst

r b s2 n) v si (expinj el si)).

Proof.

apply (exp.ref-exp-ind _ _; crush;

destruct si; destruct s2; red-exprs; crush;

try destruct bvar-eq-dec; crush.

apply exp-subst-selector. crush.

apply exp.subst-selector. crush.

Qed.

Def inition exp-subst-graft-commute (projil exp-subst-graftcommute-combined).

Hint Rewrite exp-subst-graft-commute: cpdt.

Hint Rewrite exp-subst-bound-free : cpdt.

Lemma pred-subst-graft-commute:

V P v e b sl s2 n,

pred-subst-var (pred-graft P v si (exp-inj e si)) b s2 n

pred-graft (pred-subst-var P b s2 n) v si (exp-inj e s]).

Proof.

induction P; crush;

destruct s2; simpl; auto; destruct bvar-eq-dec; crush.

Qed.

Lemma exp-subst-graft-arrcommutecombined

(V e av b sl s2 n el e2,

exp-subst (exp-graft-arr e av s1 (ArrUpdate (select - si (LArrVar av) (RArrVar av))

(exp-inj el si) (exp-inj e2 si))) b s2 n =

277

exp-graft-arr (exp-subst e b s2 n) av s1 (ArrUpdate (select - s1 (LArrVar av) (RArrVar

av)) (exp-inj el si) (exp-inj e2 si)))

(V e av b sl s2 n el e2,

ref-exp-subst (ref-exp-graft-arr e av si (ArrUpdate (select - si (LArrVar av) (RAr-

rVar av)) (exp-inj el si) (exp-inj e2 si))) b s2 n =

ref-exp-graft-arr (ref-exp-subst e b s2 n) av si (ArrUpdate (select - s1 (LArrVar av)

(RArrVar av)) (exp-inj el si) (exp-inj e2 si))).

Proof.

apply (exp-ref-exp-ind _

try solve [crush; destruct s2; red-exprs; try destruct bvar-eq-dec; crush];

crush; destruct s]; destruct s2; red-exprs; crush;

rewrite ?exp subst-selector; crush.

Qed.

Def inition exp-subst-graft-arr-commute := (projl exp-subst-graft-arrcommute-combined).

Hint Rewrite exp-subst-graft-arr-commute : cpdt.

Lemma pred-subst-grafItarr-commute

VPsl s2avbnel e2,

pred-subst-var (pred-graft-arr P av si (ArrUpdate (select - si (LArrVar av) (RArrVar

av)) (exp-inj el si) (exp-inj e2 si))) b s2 n =

pred-graft-arr (pred-subst-var P b s2 n) av si (ArrUpdate (select - si (LArrVar av)

(RArrVar av)) (exp-inj el si) (exp-inj e2 si)).

Proof.

induction P; crush; destruct bvar-eqdec; crush;

destruct s2; crush.

Qed.

Hint Constructors exp _denote.

Hint Constructors ref-exp denote.

278

Lemma exp-denote-graft :

(V e s env] env2 (n : nat),

V e' v,

exp-denote (exp-graft e v s (exp-inj e' s)) env] env2 n -

match update-variable-select s env] env2 v e' with

(envi', env2') =z expdenote e envi' env2' n

end)

(V ref s env] env2f,

V e' v,

ref-exp-denote (ref-exp-graft ref v s (exp-inj e' s)) env] env2f -

match update-variable-select s env] env2 v e' with

(envi', env2') = ref-exp_.denote ref envi' env2'f

end).

Proof.

apply (exp.ref-exp-ind _ _.

inversion 1; destruct s; crush.

inversion 1. inversion 1.

destruct s; crush; redexprs; crush.

econstructor. eapply exp-denote-sound in H;

crush.

Hint Resolve assign-state-same.

inversion H; econstructor; crush.

inversion H; econstructor; crush.

destruct s; crush; red-exprs; crush.

inversion H; econstructor; crush.

eapply exp-denote-sound in H; econstructor; crush.

inversion H; econstructor; crush.

intros. inversion H; crush.

279

pose proof (H s).

pose proof (HO s).

destruct s; crush.

intros. pose proof (H s).

pose proof (HO s). destruct s;

inversion Hi; crush.

destruct s; inversion 1; crush.

destruct s; inversion 1; crush.

intros;

pose proof (H s); pose proof (HO s); pose proof (HI s);

destruct s; inversion H2; crush; econstructor; crush...

Qed.

Lemma pred-denote-subst:

(V (Q: pred) (envi env2: environment), pred-denote Q envi env2 -4

V s P (v : var) (e : Expressions.exp), Q = (pred-graft P v s (exp-inj e s)) -+

match update-variable-select s envi env2 v e with

(envi', env2') =- pred -denote P envi' env2'

end)

(V (Q: pred) (envi env2 : environment), npred-denote Q envi env2 -

V s P (v : var) (e : Expressions.exp), Q = (pred-graft P v s (exp-inj e s)) -+

match update-variable-select s envi env2 v e with

(envi', env2') z-> npreddenote P envi' env2'

end).

Proof.

Hint Constructors pred-denote.

Hint Constructors npreddenote.

apply (pred-npred-denote-combined-ind - _;

280

try solve[

destruct P; try solve [crush]; inversion 1;

try (pose proof (H s)); try (pose proof (HO s)); crush;

destruct s; crush

1.

destruct P; try solve [crush]; inversion 1; crush.

apply exp.denote-graft in e.

apply exp-denote-graft in eQ.

destruct s; crush; eauto.

destruct P; crush. pose proof (H s); destruct s;

econstructor; eapply HO;

apply pred..subst-graft-commute.

destruct P; crush. pose proof (H s); destruct s;

econstructor; eapply HO;

apply pred-subst-graft-commute.

destruct P; crush. destruct s; crush.

econstructor. intro. pose proof (H n Left); crush.

eapply HO;

apply pred-subst-graft-commute.

econstructor. intro. pose proof (H n Right); crush.

eapply HO;

apply pred-subst-graft-commute.

destruct P; crush. destruct s; crush.

econstructor. intro. pose proof (H n Left); crush.

eapply HO;

apply pred-subst-graft-commute.

econstructor. intro. pose proof (H n Right); crush.

eapply HO;

281

apply pred-subst-graft-commute.

destruct P; try solve [crush]; inversion 1; crush.

apply exp-denote-graft in e.

apply exp.denote-graft in eO.

destruct s; crush; eauto.

Qed.

Hint Resolve exp-denote-sou nd left exp-denotesound right.

Lemma exp-denote arr-assign-combined:

V s,

(V e env] env2 av el e2 ni,

exp-denote (exp-graft-arr e av s (ArrUpdate (select - s (LArrVar av) (RArrVar

av)) (exp-inj el s) (exp-inj e2 s))) env] env2 ni -+

let update-env := (select - s env] env2) in

let updated := update-array-contents update-env av (exp-eval el update-env)

(expeval e2 update-env) in

let envi' select - s updated env] in

let env2' select - s env2 updated in

exp-denote e envi' env2' ni)

(V ref env] env2 av el e2f,

ref-exp-denote (ref-exp-graft-arr ref av s (ArrUpdate (select - s (LArrVar av)

(RArrVar av)) (exp-inj el s) (exp-inj e2 s))) env] env2f -+

let update-env := (select - s envl env2) in

let updated := update-array-contents update-env av (exp-eval el update-env)

(exp-eval e2 update -env) in

282

let envi' select - s updated env] in

let env2' select - s env2 updated in

ref-exp-denote ref envi' env2'f).

Proof.

destruct s; simpi;

apply (exp-ref-exp-ind _ _; crush

try solve [red-exprs; crush; (inversion H 11 inversion H2) ; try (constructor);

crush I invers ion H]; crush].

redexprs; crush; inversion H; crush.

inversion H3; crush;

constructor; unfold update-array -contents ; crush; red-exprs. crush.

cut (exp-eval el envi= ni);

[cut (exp-eval e2 env] = n2) I idtac] ; crush; eauto.

inversion H; crush. constructor; crush; red-exprs; crush.

rewrite eta-expansion. crush.

red-exprs; crush; inversion H; crush.

inversion H3; crush;

constructor; unfold update-array -contents ; crush; red-exprs; crush.

cut (exp-eval el env2= ni);

[cut (exp-eval e2 env2 = n2) I idtac] ; crush; eauto.

inversion H; crush; constructor; crush; redexprs; crush.

rewrite eta-expansion; crush.

Qed.

Lemma exp-denote-arr-assign -right:

V (e : exp) (env] env2 : environment) (av: arr-var)

(el e2 : Expressions.exp) (n] : nat),

283

exp-denote

(exp-graft-arr e av Left (ArrUpdate (LArrVar av) 0 el <o> 0 e2 <o>))

env] env2 ni -

exp-denote e

(update-array-contents env] av (exp-eval el env]) (exp-eval e2 env]))

env2 ni.

Proof.

apply expdenote-arr-assigncombined.

Qed.

Lemma exp-denote-arr-assign-left:

V (e : exp) (env] env2 : environment) (av: arr-var)

(el e2 : Expressions.exp) (n] : nat),

exp-denote

(exp-graft-arr e av Right

(ArrUpdate (RArrVar av) (exp-inj el Right) (exp-inj e2 Right)))

env] env2 ni -+

exp-denote e env]

(update.array-contents env2 av (exp-eval el env2) (exp-eval e2 env2))

ni.

Proof.

apply exp-denote-arr-assigncombined.

Qed.

Hint Resolve exp-denote-arr-assign left exp-denote-arr-assign right.

Lemma pred-denote-arrassign combined

V s,

(V P (env] env2: environment),

pred-denote P env] env2 -+ V Q (av: arr-var) (el e2 : Expressions.exp),

P = pred-graft-arr Q av s (ArrUpdate (select - s (LArrVar av) (RArrVar av))

(exp-inj el s) (exp-inj e2 s)) -+

284

let update-env := (select - s env] env2) in

let upd:= update-array-contents update-env av (exp-eval el update-env) (exp-eval

e2 update env) in

let envi' select - s upd env] in

let env2' select - s env2 upd in

pred-denote Q envi' env2'

A

(V P (env] env2: environment),

npred-denote P env] env2 - V Q (av: arr-var) (e] e2 : Expressions.exp),

P = pred-graft-arr Q av s (ArrUpdate (select - s (LArrVar av) (RArrVar av))

(expinj el s) (exp-inj e2 s)) -*

let update-env := (select - s env] env2) in

let upd:= update-array-contents update-env av (exp-eval el update-env) (exp-eval

e2 update-env) in

let envi' select - s upd env] in

let env2' select - s env2 upd in

npred-denote Q envi' env2').

Proof.

Hint Rewrite pred subst-graft-arr-commute : cpdt.

destruct s; simpl ;

apply (pred-npred-denote-combined ind _ _;

try solve [destruct Q; try solve [crush]; inversion 1; crush ; eauto];

destruct Q; crush; econstructor; intro; eapply H; crush.

Qed.

285

Lemma exp-subst-var-graft-trans-combined

V (s : selector),

(V e a aO n,

-1 In aO (exp-bound-vars e s) -+ exp-subst (exp-graft e a s (select _ s (BLVar aO)

(BRVar aO))) aO s n = exp-graft e a s (Const n))

(V ref a aO n,

In aO (ref-exp-bound-vars ref s) -> ref-exp-subst (ref-exp-graft ref a s (select _

s (BLVar aO) (BRVar aO))) aO s n = ref-exp-graft ref a s (Const n)).

Proof.

intros. destruct s;

apply (exp-ref-exp-ind _ _); red-exprs; try (destruct bvar-eq-dec) ; crush.

Qed.

Def inition exp-subst-var-graft-trans (s : selector)

projil (exp-subst-var-graft-trans-combined s).

Hint Rewrite exp-subst-var-graft-trans : cpdt.

Def inition exp subst-var-graft-transileft:= proj1 (exp-subst-var-graft-trans-combined

Left).

Definition ref-exp-subst-var-graft-tra ns left:= proj1 (exp-subst-var-graft-trans-combined

Left).

Lemma pred-subst-var-graft-trans:

V s P a aO n.

-- In aO (pred_ bound vars P s) -

pred-subst-var (pred-graft P a s (select - s (BLVar aO) (BRVar aO))) aO s n

pred-graft P a s (Const n).

Proof.

induction P; crush; destruct s; try destruct bvar-eq-dec; crush.

286

Qed.

Lemma exp-graft-const-combined:

(V e env] env2 n,

exp-denote e env] env2 n -+

V a s, exp-denote (exp-graft e a s (Const (st (select - s envI env2) a))) env] env2

n)

(V ref env] env2 n,

ref-expdenote ref env] env2 n -

V a s, ref-exp-denote (ref-exp-graft ref a s (Const (st (select - s env] env2) a)))

env] env2 n).

Proof.

apply (exp-ref-exp-ind _ _; try solve [crush].

inversion 1; crush. destruct s ; [destruct var-eq-dec; crush I crush].

inversion 1; crush. destruct s ; try destruct var-eq-dec; crush.

intros. inversion Hi; crush.

intros. inversion Hi; crush.

intro s. inversion H2; crush. econstructor; crush.

Qed.

Def inition exp-graft-const := (projil exp-graft-const-combined).

Hint Resolve exp-graft-const.

Lemma pred -graft const:

V s,

(V P env] env2,

pred -denote P env] env2 -+

V a , pred-denote (pred-graft P a s (Const (st (select - s env] env2) a))) env]

env2)

(V P env] env2,

287

npreddenote P env] env2 -+

V a, npred-denote (pred-graft P a s (Const (st (select - s env] env2) a))) env]

env2)

Proof.

intro.

apply (pred-npreddenote-combinedind _); crush; eauto.

econstructor; cut (Const (st (select - s Lenv r-env) a) = exp-inj (Expressions.Const

(st (select - s Lenv r-env) a)) s).

intro. rewrite HO. rewrite pred-subst-graft-commute.

simpl. apply H. crush.

econstructor; cut (Const (st (select - s Lenv r.env) a) = exp-inj (Expressions.Const

(st (select - s Lenv r-env) a)) s).

intro. rewrite HO. rewrite pred subst-graft-commute.

simpl. apply H. crush.

econstructor; cut (Const (st (select - s Lenv r-env) a) = exp-inj (Expressions.Const

(st (select - s Lenv r-env) a)) s).

intros. rewrite HO. rewrite pred-subst-graft-commute.

s impl. apply H. crush.

econstructor; cut (Const (st (select - s Lenv r-env) a) = exp-inj (Expressions.Const

(st (select - s Lenv r-env) a)) s).

intros. rewrite HO. rewrite pred-subst-graft-commute.

s impl. apply H. crush.

Qed.

Lemma exp-free-vars-graftcombined:

V s,

(V e x n,

free-vars (exp-graft ex s (Const n)) s = remove var-arr-var-eq-dec (mil - x) (free-vars

e s)) /

288

(V ref x n,

ref-exp-free vars (ref-exp-graft ref x s (Const n)) s = remove var-arr-var-eq-dec (inI

Sx) (ref exp-free vars ref s))

Proof.

intro.

Hint Rewrite remove-app : cpdt.

apply (exp-ref-exp-ind _ _; destruct s; crush; red-exprs; crush.

Qed.

Definition exp-free-vars-graft (s : selector) := proj1 (exp-free-vars-graft-combined

s).

Def init ion ref-exp-free vars-graft (s: selector):= proj2 (exp-free vars-graft_ com bined

s).

Hint Rewrite exp-free vars-graft : cpdt.

Lemma pred-free .vars-graft :

V (s : selector) (p : pred) (v : var + arr-var) x n,

predifree-vars (pred-graft p x s (Const n)) s = remove var-arr-var-eq-dec (In _ x)

(pred free-vars p s).

Proof.

induct ion p; crush.

Qed.

Lemma exp-bound-vars-graft-combined

V s,

V e'b,

I In b (exp-bound-vars e' s) -

(V e v, In b (exp-bound-vars (exp-graft e v s e') s) - In b (exp-bound-vars e s))

V ref v, In b (ref-exp-bound-vars (ref-exp-graft ref v s e') s) - In b (ref-exp-bound-vars

ref s)

289

Proof.

intros. apply (exp-ref-exp-ind -); destruct s ; redexprs; auto; try apply

inor-app; (intuition; eauto);

red-exprs; right; apply inorapp; crush; eauto.

Qed.

Def inition exp_ bound vars-graft s e' bpr:= (proji (expbound-vars-graftcombined s

e' b pr)).

Hint Resolve exp-bound-vars-graft.

Hint Resolve in-or-app.

Lemma pred-bound-vars-graft:

V s b e,

-, In b (expbound-vars e s) -+ V P v, In b (pred_ bound -vars (pred-graft P v s e) s) -+

In b (pred-bound-vars P s).

Proof.

induction P; red-exprs; crush; eauto;

destruct s; crush; eauto.

Qed.

Lemma pred-mult-exists-bound-vars:

V la lb,

length la = length lb -+

V b, - In b lb -+

V P s, -, In b (pred-bound vars P s) -

- In b (pred-bound vars (pred-mult-exists P (combine la 1b) s) s).

Proof.

apply (twoilist-ind var bvar (fun la lb ->

length la = length lb -4

V b : bvar,

290

In b lb -

V (P: pred) (s: selector),

In b (pred-bound-vars P s) -+

, In b (pred-bound-vars (pred-mult-exists P (combine la 1b) s) s))).

crush.

crush.

crush.

crush. destruct s; crush.

eapply H5. eauto. eauto.

eapply pred-bound-vars-graft. Focus 2. eauto.

simpl. crush.

eapply H5. eauto. eauto.

eapply pred-boundvars-graft. Focus 2. eauto.

simpl. crush.

Qed.

A.9 UnaryAssertionLogic

Require Export AssertionLogic.

Require Import Substitution.

Require Import CpdtTactics.

Require Import util.

Require Import Tactics.

Section unary-assertion-logic.

Inductive unary-exp: exp - Prop

ue-const : V n, unary-exp (Const n)

ueilvar : V v, unary-exp (LVar v)

291

ue-blvar: V bv, unaryexp (BLVar bv)

ue-brvar: V bv, unaryexp (BRVar bv)

ue-arr : V ref, unary-ref-exp ref -+

V e, unary-exp e -

unary-exp (Arr ref e)

ue-op :

V el, unaryexp el -+ V e2, unaryexp e2 -+

V op, unary-exp (lop op el e2)

with unary-ref-exp : ref-exp - Prop

ue-larrvar : V av, unary-ref-exp (LArrVar av)

ue-larrupdate : V ref, unary-ref-exp ref -

V el, unary-exp el -+ V e2, unary-exp e2 -+

unary-ref-exp (ArrUpdate ref el e2)

Hint Constructors unaryexp unary ref-exp.

Scheme unary-exp-mut:= Induction f or unary-exp Sort Prop

with unary ref-exp-mut := Induction f or unary-ref-exp Sort Prop.

Combined Scheme unary exp -ref exp- ind from unaryexpmut, unary _refrexp _mut.

Lemma exp-injeft-unary :

V e, unary-exp (exp-inj e Left).

Proof.

induction e; crush.

Qed.

Lemma exp-denote -.unary_ combined

(V e, unary-exp e -+

V Lenv,

V r-envl n], exp-denote e Lenv r-envl n] -+

292

V r-env2 n2, exp.denote e Lenv r-env2 n2 -- n-i n2)

(V ref, unaryref-exp ref -

V Lenv,

V r-envl fl, refexpdenote ref Lenv r-envlfl -+

V r-env2J2, ref-expdenote ref Lenv r-env2J2 -+fl =J2).

Proof.

apply (unary-exp-ref-exp-ind _

try solve [inversion 1; inversion 1; crush].

intros. inversion Hi; crush; inversion H2; crush.

cut (f =JO); crush.

cut (idx = idxO); crush.

e aut o.

e aut o.

intros. inversion Hi; crush. inversion H2; crush.

cut (nO = n1); crush.

cut (n3 = n4); crush.

eauto.eauto.

intros. inversion H2; crush. inversion H3; crush.

cut (nO = n1); crush.

cut (n2 = n3); crush.

cut (f =JO); crush.

eaut o.

eauto.

eaut o.

Qed.

Inductive unarypred : pred -+ Prop

up-true: unary-pred PTrue

up-false: unary-pred PFalse

293

up-cmp :

V el, unary-exp el -4

V e2, unary-exp e2 -+

V op, unary-pred (PCmp op el e2)

up-lop:

V p], unarypred p] -

V p2, unary-pred p2 -

V op, unary-pred (PLop op p1 p2)

up-neg : V p, unary-pred p -+ unary-pred (PNeg p)

upilexists: Vp, unary-pred p -+ V b, unary-pred (PLExists bp)

up-iforall : V p, unary_ pred p -+ V b, unarypred (PLForall b p)

up-rexists: Vp, unary-pred p - V b, unary-pred (PRExists b p)

up-rforall V p, unary-pred p -4 V b, unarypred (PRForall b p)

Def inition upred := { x : pred unary-pred x }.

Hint Constructors unarypred.

Lemma exp-inj-unary :

V e, unary-exp @ e <o>.

Proof.

induction e; crush.

Qed.

Hint Resolve exp-inj.unary.

Lemma exp-graft-unarycombined

(V x, unary-exp x - V v (e : exp), unary-exp e -4 unary-exp (exp-graft x v Left

294

e))

(Vx, unary ref_exp x - V v (e: exp), unaryexp e - unaryref-exp (ref-exp-graft

x v Left e)).

Proof.

apply (unary-exp-ref-exp-ind _ _; crush.

destruct var-eq-dec; crush.

Qed.

Definition exp-graft-unary := proji exp-graft-unary-combined.

Lemma pred -graft-unary :

V x v (e : exp), unarypred x - unary-exp e -+ unarypred (pred-graft x v Left e).

Proof.

Hint Resolve exp-graft-unary.

induction 1; crush.

Qed.

Program Definition unary-pred-graft (P : upred) (v var) (e Expressions.exp)

upred :=

pred-graft (projILsig P) v Left (exp-inj e Left).

Next Obligation.

destruct P. crush.

eapply pred-graft-unary; eauto.

Defined.

Def inition unary-pred-bound-vars (P : upred) := pred-bound-vars (projl-sig P) Left.

Program Fixpoint upred-mult-exists (P: upred) (vars: list (var bvar)) : upred :=

match vars with

nil => P

(v, v') rest - (PLExists v' (pred-graft (projI _sig (upred-multexists P rest)) v Left

(BLVar v')))

end.

295

Next Obligation.

econstructor. eapply pred -graft-unary; eauto.

Defined.

Lemma exp-graftarr- unary_ combined:

(V X,

unary-exp x -+ V av el e2, unary-exp (exp-graft-arr x av Left (ArrUpdate (LArrVar

av) 0 el <o> 0 e2 <o>)))

A

(V x,

unary-ref-exp x -+ V av el e2, unary-ref-exp (ref-exp-graft-arr x av Left (Ar-

rUpdate (LArrVar av) 0 el <o> 0 e2 <o>))).

Proof.

apply (unary-exp.ref-exp-ind -); crush.

destruct arr-var-eq-dec; crush.

Qed.

Def inition exp-graft-arr-unaryexp := proj1 exp-graft-arr.unary-combined.

Lemma pred graft-arr-unary:

Vx,

unary-pred x - V av p el e2, p = pred.graft-arr x av Left (ArrUpdate (LArrVar av)

0 el <o> 0 e2 <o>) - unary-pred p.

Proof.

Hint Resolve exp-graft-arr-unary-exp.

induction 1; crush; eauto.

Qed.

Program Definition unary-pred graft-arr (P : upred) (av : arr-var) (el e2 : Expres-

sions.exp) : upred

pred-graft-arr (projl-sig P) av Left (ArrUpdate (LArrVar av) (exp-inj el Left) (exp-inj

e2 Left)).

Next Obligation.

296

crush. destruct P. crush.

eapply pred graft-arr-unary; eauto.

Defined.

Program Definition bexpinj_un ary (b : bexp) : upred := (bexpinj b Left).

Next Obligation.

induction b; crush. destruct b; crush.

Def ined.

Definition upred-denote (P: upred) (env : environment)

V env2, pred.denote (projlIsig P) env env2.

Lemma unary-exp-subst-combined :

(V e, unary-exp e -+ V s x n, unary-exp (exp-subst e x s n)) A

(V (r: ref-exp), unary-ref-exp r -- V s x n, unary-ref-exp (ref-exp-subst r x s n)).

Proof.

apply (unary-exp.ref-exp-ind _ _; crush.

destruct bvar-eq-dec; destruct s; crush.

destruct bvar-eq-dec; destruct s; crush.

Qed.

Def inition unary-exp-subst := (proj 1 unary-exp-subst-combined).

Hint Resolve unary-exp-subst.

Lemma unarypred-subst :

V P, unary-pred P -> V s x n, unarypred (pred-subst-var P x s n).

Proof.

induction 1; simpl; auto.

destruct s; simpl; intros; try destruct bvar-eq-dec; crush.

destruct s; simpl; intros; try destruct bvar-eq-dec; crush.

destruct s; simpl; intros; try destruct bvar-eq-dec; crush.

destruct s; simpl; intros; try destruct bvar-eq-dec; crush.

Qed.

297

Lemma uexp-denote-right-irreL combined :

(V (e : exp) env] env2 n, exp-denote e env1 env2 n -+ unary-exp e -4 V env3,

exp_ denote e env] env3 n)

(V (r : ref-exp) env] env2 n, ref-exp-denote r env] env2 n - unary-ref-exp r -

V env3, ref-exp-denote r env] env3 n)

Proof.

apply (exp-ref-exp-denote-ind -); crush.

inversion H; crush.

inversion H; crush.

inversion Hi; crush.

inversion H; crush.

inversion H2; crush. econstructor; crush.

Qed.

Def inition uexp-denote-right-irrel := proj 1 uexp-denote-right-irrelcombined.

Hint Resolve uexp-denote-right-irrel.

Hint Resolve unary-pred subst.

LerLma Lipred_ denoteC_al :

(V (P : pred) env] env2, pred-denote P env] env2 - unary-pred P - V env3,

pred-denote P env] env3)

(V (P : pred) env] env2, npred-denote P env] env2 - unary-pred P - V env3,

npred_ denote P envi env3)

Proof.

apply (pred-npred-denote-combined ind

(f un P env] env2 f un pr = -) (f un P env] env2 > fun pr = 4); s impl; intros;

auto;

(inversion H 11 inversion HO II inversion H) ; subst; auto; eauto.

Qed.

298

Def inition upred-satisfies (p1 p2 : upred)

V (env : environment), upred-denote p1 env -+ upred-denote p2 env.

Program Definition upred-neg (p1 : upred) : upred

PNeg (projlsig pl).

Next Obligation.

destruct p1; crush.

Defined.

Lemma expifree-vars-nil-unary-combined

(V e, free-vars e Right = nil -+ unary-exp e)

(V r, ref-exp-free-vars r Right = nil -+ unary-ref-exp r).

Proof.

apply (exp-ref-exp-ind _ _; crush.

apply appeq-nil in H. crush.

apply app-eq-nil in HI. crush.

apply app-eq-nil in H2. crush.

apply appeqnil in H4; crush.

Qed.

Def inition expifree-vars-nil-unary := (projl exp-free-vars-nil_unary-combined).

Hint Resolve exp-free-vars-nil-unary.

Lemma pred-free-vars-nil-unary :

V P, pred free-vars P Right = nil

unary-pred P.

Proof.

induction P; crush;

apply app-eq-nil in H; crush.

Qed.

Lemma pred-mult-existsunary2

V P.

299

pred-arrayifree P Right -+

Vfvs bs,

(V v, In vfvs -+ In (inl - v) (pred-free.vars P Right)) -

lengthfvs = length bs -+

unary-pred (pred-mult-exists P (combinefrs bs) Right).

Proof.

intros. apply predifreevars-niL unary.

eapply list-nil. intros.

destruct a.

eapply pred _multexists-unary. auto. eapply HO.

eapply pred-mult.exists-unary3. eauto. auto.

eapply pred-mult-exists-unary3 in H2. crush. eapply pred-arrayifree-not-in. eauto.

eauto. auto.

Qed.

Program Def inition pred-projl (P: pred) (pr: pred-array-free P Right) : upred

let fvs : list var := map (fun v => match v with I Inl v = v I inr - (Id 0) end)

(predifree-vars P Right) in

pred-mult-exists P (combinefvs (choose-free_ -bvars (pred_ bound vars P Right) (length

fvs))) Right.

Next Obligation.

eapply pred-mult-exists-unary2.

auto. intros. crush. eapply in-map-iff in H.

crush. destruct x. auto. exfalso; eapply pred-array-free-not-in; eauto.

apply in-map-iff. 3 (inl arr.var v). crush.

rewrite chooseifreebvarsilength. auto.

Defined.

Hint Rewrite pred-swap-free-vars : cpdt.

Program Definition pred-projr (P : pred) (pr: pred-array-free P Left) : upred

let SP := pred-swap P in

300

let fvs : list var := map (fun v > match v with I InI v : v Inr _ (Id 0) end)

(predfree-vars SP Right) in

pred-mult-exists SP (combinefvs (choose-free_ bvars (pred-bound-vars SP Right) (length

fvs))) Right.

Next Obligation.

eapply pred.mult-exists-unary2.

crush.

Hint Resolve pred-arrayifree-pred-swap.

auto.

intros. crush. eapply inrmap-iff in H.

crush. destruct x. auto. exfalso; eapply pred-array-free-not-in; eauto.

SearchAbout predswap.

apply inrmap-iff. 3 (inl arr-var v). crush.

rewrite choose-free-bvarsilength. auto.

Defined.

Def inition pred-left-satisfies-upred P Q

V env] env2, preddenote P env] env2 - upred-denote Q env].

Definition pred-right-satisfies-upred P Q :=

V env] env2, pred-denote P envi env2 - upred_ denote Q env2.

Hint Resolve env-equiv-refl.

Lemma pred projLsatisfies:

Vfvs bvs P env] env2,

lengthfvs = length bvs -+

NoDup bvs -+

V (s: selector),

(V v, In v bvs -a In v (pred-bound vars P s) - False) -

pred -denote P env] env2 -

pred-denote (pred-mult-exists P (combinefrs bvs) s) env] env2.

Proof.

301

apply (twoilist-ind var bvar (funfvs bvs ->

V (P: pred)

(env] env2: environment),

length fvs = length bvs -+

NoDup bvs -

V (s: selector),

(V v, In v bvs - In v (pred-bound-vars P s) - False) -

preddenote P env] env2 -+

preddenote (pred_ mult-exists P (cornbinefvs bvs) s) env] env2)).

simpl. crush.

crush.

crush.

crush. destruct s.

econstructor. pose proof (predsubst-var-graft-trans Left). simpl in x.

rewrite H4.

eapply pred-denote sameifree-vars.

apply pred-graft-const. eapply H.

n111- . V e/Y0 n _ /-)/n I i n t A.

eauto. simpl. crush. crush.

eapply pred-mult-exists-bound-vars.

auto.

solve _nodup.

crush. eauto.

econstructor. pose proof (predsubst-var-graft-trans Right). simpl in x.

rewrite H4.

eapply pred-denote sameifree-vars.

apply pred-graft-const. eapply H.

auto. solve-nodup. eauto.

eauto. simpl. crush. crush.

302

eapply pred-mult-exists-bound-vars.

auto.

solve nodup.

crush. eauto.

Qed.

Hint Resolve choose-free-bvar-is-free.

Lemma predproj|left-satisfies :

V Ppr, predileft-satisfies-upred P (pred-projl Ppr).

Proof.

unf old pred- left-satisfies -.upred.

unf old upreddenote.

intros. eapply upred-denote-all.

unf old pred-proj. s impl.

eapply pred-projsatisfies.

rewrite chooseifree-bvarsiength. auto.

eauto.

unfold pred-projl. set (predprojlobligation-_ P pr).

simpl. auto.

apply choose-free-bvars-nodup.

eauto.

eauto.

unf old pred-projl. set (pred-projLobligation_1 P pr).

simpl. auto.

Qed.

Lemma pred-projr-right-satisfies

V Ppr, pred-right-satisfies-upred P (pred-projr Ppr).

Proof.

unf old pred rightsatisfies-upred.

unf old upreddenote.

303

intros. eapply upred-denote-all.

unfold pred-projr. simpl.

eapply predprojl-satisfies.

rewrite chooseifree-bvars-length. auto.

apply choose-freebvars-nodup.

eaut o.

eapply pred-swap-denote.

eauto.

unf old pred-projr. set (pred-projr-obligation 1 P pr).

simpl.auto.

Qed.

Lemma upred-satisfies-pred-satisfies

V (P Q : upred), pred-satifies (projl-sig P) (projl-sig Q) - (upred-satisfies P Q).

Proof.

unf old upred-satisfies. unf old upred-denote. destruct P. destruct Q.
unf old pred-satifies. s impl; auto.

Qed.

Program Definition UAnd (P1 P2 : upred): upred

PLop And P1 P2.

Next Obligation.

destruct P1; destruct P2; crush.

Def ined.

Lemma UAndinv:

V P Q smrr predadno (U IA nd k_ Q)) s11 - j

upred-denote P s /\ upred-denote Q s.

Proof.

unfold upred-denote. simpl. intros.

split; intros; pose proof (H env2); inversion HO; auto.

Qed.

304

Lemma upred-satifies-and :

V P1 P2, upred-satisfies P1 P2 -+ upred-satisfies P1 (UAnd P1 P2).

Proof.

intros. unfold upred-satisfies in *; unfold UAnd; unfold upred-denote in *;

simpl. auto.

Qed.

Ltac apply _predprojl

match goal with

H predileft-satisfies-upred ?RP ?P =

mat ch (eval simpl in (pred-arrayifree-dec RP Right)) with

left ?t ?pr > apply (pred-projl-left-satisfies RPpr)

right _ * fail

end

end.

Ltac apply pred-projr

match goal with

H pred-right-satisfies-upred ?RP ?P =

match (eval simpl in (pred-array-free-dec RP Left)) with

left ?t ?pr = apply (pred-projr-right-satisfies RPpr)

right _ * fail

end

end.

End unary-assertion-logic.

Notation " b":= (bexp-inj.unary b) (at level 0).

A.10 OriginalAxiomatic

Require Import util.

Require Export AssertionLogic.

305

Require Export UnaryAssertionLogic.

Require Export Substitution.

Require Import List.

Require Import OriginalDynamic.

Require Import Coq.Arith.EqNat.

Require Import Coq.Program. Equality.

Require Import Coq.Bool.Bool.

Require Import Classical.

Require Import Coq. Logic. FunctionalExtensionality.

Require Import Coq.Relations.RelationOperators.

Require Import Coq. Relations.Operators -Properties.

Require Import Coq.Prograrn.Tactics.

Require Import CpdtTactics.

Require Import Tactics.

Open Scope accept-scope.

Hint Resolve bexp-inj-pred-denoteileft bexp-inj-npred-denote-left.

Definition bexpinj-true-pred-denote s be (proji (bexp-inj-complete-combined s

be)).

Definition bexp-injfalse-npred-denote s be (pro'? (bexp-inj-complete-combined s

be)).

Fixpoint pred.mult-forall (P : pred) (vars: list (var A bvar)) {struct vars} : pred

match vars with

nil # P

I (v, v') rest = PLForall v' (pred-graft (pred-mult-forall P rest) v Left (BLVar v'))

end.

Program Definition upred-mult-forall (P : upred) (vars : list (var x bvar)) upred

pred-mult-forall (projl-sig P) vars.

Next Obligation.

destruct P.

306

induct ion vars.

simpl. auto.

simpl. destruct a. econstructor. eapply pred-graft-unary; eauto. constructor.

Defined.

Inductive original-axiomatic: upred -+ statement -+ upred -+ Prop

oa-skip : V P Q, P = Q -+ originaLaxiomatic P Skip Q

oa-assign : V Q v e,

original-axiomatic (unary-pred-graft Q v e) (Statements.Assign v e) Q

oa-assign-arr :

V Q (av : arr-var) el e2,

original-axiomatic (unary-pred-graft-arr Q av el e2) (AssignArr av el e2) Q

oa-havoc : V P vars be (vars' : list bvar),

length vars = length vars' -

NoDup vars -

NoDup vars' -

(V v', In v' vars' - In v' (unary_ pred- bound .vars P)) -

(V s, upred-denote P s -+ (I s', havoc-sat vars be s s')) -

original-axiomatic P (Havoc vars be) (UAnd (upred-mult-exists P (combine vars

vars')) (^be))

oa-relax: V P vars be Q, original-axiomatic P (Assert be) Q -

original-axiomatic P (Relax vars be) Q

307

oa-assert : V P be, original-axiomatic (UAnd P ^be) (Assert be) (UAnd P ^be)

oa-assume : V P vars be, original-axiomatic P (Assume vars be) (UAnd P ^be)

oa-accept: V P 1 rbe, originaLaxiomatic P (Accept 1 rbe) P

oaif : V P be stl st2 Q,
original-axiomatic (UAnd P Tbe) sti Q -
original-axiomatic (UAnd P (upred.neg Tbe)) st2 Q -

original-axiomatic P (if be stl st2) Q

oa-while :

V P be (st: statement),

originaLaxiomatic (UAnd P ^he) st P -

originaL-axiomatic P (While be st) (UAnd P (upred-neg ^be))

oa-seq : V P R Q stl st2 , original-axiomatic P st] R -÷ originalaxiomatic R st2

Q -÷ originalaxiomatic P (Seq sti st2) Q

oa-conseq : V st P P' Q' Q,

upred-satisfies P P' - original-axiomatic P' st Q' - upred-satisfies Q' Q -+

originaIaxiomatic P st Q

Notation "I-o { { P }} st { { Q }": (originaLaxiomatic P st Q) (at level 70).

308

Definition pred-denote arr-assign := proji (pred-denote-arr-assign -combined Left).

Semantic judgment Notation "I=o {I P }} st I { Q }} "

(V env,

upred-denote P env -+ V env' ol, original eval big <Ist , env I> <# env', ol #>

-+ upred-denote Q env') (at level 70).

Theorem original-axiomatic-soundness:

VstPQ,o {{ P }} st{{ Q}}- I =o {{P}} st{{Q}}.

Proof.

Hint Constructors preddenote npreddenote.

Hint Resolve error-valid-config-false.

induction 1;

try solve [

intros; invert original-big; unf old upred._denote in x ; crush

intros; invert original-big; eauto].

intros. invert-original-big. unf old upred-denote in H.

unfold upreddenote. intro.

eapply (proji pred-denote-subst) with (s:=Left) in H; crush; eauto.

intros. invert-original-big. unfold upred-denote in x.

intro.

eapply pred-denote-arr-assign. eauto. crush.

intros. unf old upreddenote in *; crush. constructor. invert-original-big.

unfold havocsat in H7. clear H3.

destruct-conjs. clear H5.

generalize dependent vars. intro. generalize dependent env.

generalize dependent env'. generalize dependent vars'.

generalize dependent vars.

apply (twoilist-ind var bvar (fun vars vars' ->

309

NoDup vars' -+

(V v' : bvar, In v' vars' -> In v' (unary-pred-bound-vars P) -+ False) -

V env' env: environment,

(V env3: environment, pred-denote (projl-sig P) env env3) -+

length vars = length vars' -+

NoDup vars -+

(V vars'O : list (var + arr-var),

(V v : var, In v vars -+ , In (InI arr-var v) vars'0) -

env-equiv env env' vars'0) -+

preddenote (projl-sig (upred _ mult-exists P (combine vars vars'))) env' env2

crush.

eapply pred-denote-same-free-vars. eauto. crush.

crush. crush. crush.

intros. crush.

econstructor.

pose proof (pred-subst-var-graft-trans Left). crush. rewrite H6.

eapply pred-denote same-free-vars.

apply pred-graft-const. eapply H.

solve-nodup.

Hint Resolve in-cons.

eauto.

eaut o.

crush.

solve-nodup.

310

instantiate (1:=update-variable env' a (st env a)).

intros.

apply env.equiv-update.

apply H5. crush. contradict H9. apply remove-In. eapply HZ. eauto. eapply

In-remove-in. eauto.

crush.

rewrite pred-free vars-graft.

apply env-equiv-sym.

apply update-variable-equiv. auto. apply removein. auto. crush.

generalize H1. generalize HO. inversion H3; subst. generalize H8. clear.

generalize dependent lb. generalize dependent la.

apply (twoilist-ind var bvar (fun la lb =

length la = length lb -

NoDup (b :b) -+

(V v': bvar,

b = v' V In v'lb - In v' (unary-pred-bound vars P) -- False) -

In b (pred-bound-vars (projIsig (upred-mult-exists P (combine la lb))) Left)

simpl. eauto.

crush.

crush.

simpl; intros. inversion H]; subst. simpl in x. crush.

apply H5.

Hint Constructors NoDup.

solve nodup.

intro. intro. apply H2. crush.

Hint Resolve pred-bound-vars-graft.

eapply pred-bound vars-graft with (e:=BLVar bO); crush; eauto.

311

Hint Resolve bexp-inj-true_ pred -denote bexp-injifalse-n pred -denote.

invert-original-big. unf old havoc-sat in x.

crush.

intros; invert- original big. eapply IHoriginal-axiomatici; eauto.

unf old upred _denote; crush.

e apply IHoriginal-axiomatic2; eauto.

unf old upreddenote; crush.

intros. unf old upred-denote. crush. dependent induction H]; eauto.

eapply IHoriginal-eval-big2. eauto. eauto.

eapply IHoriginal-axiomatic.

unf old upred-denote. crush. eauto. eauto. eauto.

eaut o.

error-goodconfig.

error-good-config.

intros.

invert original-big; eauto.

exfalso; eauto.

eauto.

Qed.

Print Assumptions originaLaxiomatic-soundness.

Lemma valid _config-not-eqwr:

V s ol, <# s, ol #> + wr.

Proof.

intros.discriminate.

Qed.

Lemma assertion-soundness'

V (p : upred) (be : bexp), upred satisfies p ^be -+

V env, upred-denote p env - bexp-eval be env = false - False.

312

Proof.

unf old upred-satisfies; unf old upred-denote. simpi; intros. contradict H1.

apply not-false-iff-true. eapply (assertion -soundness Left).

unfold pred-satifies.

eauto. eapply H with (env2:= (mkEnv empty-state empty-heap)) in HO. apply HO.

Qed.

Lemma original-axiomaticprogress:

V st P Q, I-o {{ P }} st {{ Q }} -+

V s, upred-denote P s - V o, original-evalbig <I st, s I> o -o wr.

Proof.

Hint Resolve assertion-soundness'.

Hint Resolve valid-config-not-eq-wr.

Hint Resolve originaL-axiomatic-soundness.

intro.

induction 1.

intros; invert original-big; eauto.

intros; invert original big; eaut o.

intros; invert-original-big; eauto.

intros; invert original_ big; eauto.

intros; invert-original_ big; eauto.

unfold upred-denote. simp1. intros. invert-original-big. eauto.

cut (bexp-eval be s = true). crush. eapply (bexp-inj-soundness be s s Left).

pose proof (H s). inversion HO; subst. auto.

intros; invert-original_ big; auto; crush.

unf old upreddenote in *; crush; invert original big; eauto.

intros; unf old UAnd in *; unf old upred-denote in x.

crush. invert original-big.

eapply IHoriginal-axiomatic]; eaut o.

313

eapply IHoriginalbaxiomatic2; eauto.

unf old upred-denote in x ; crush. intros; dependent induction HI; eauto.

eapply IHoriginal-eval-big2. eauto. crush.

eapply original-axiomatic-soundness. eauto. unf old upred-denote; crush. eauto.

eauto. crush.

intros; invert original_ big; eaut o.

eauto.

Qed.

Print Assumptions original axiomatic_ progress.

Close Scope accept-scope.

A.11 IntermediateAxiomatic

Relaxed Axiomatic Semantics

Require Import AssertionLogic.

Require Import List.

Require Import RelaxedDynamic.

Require Import Coq.Arith.EqNat.

Require Import Coq.Program.Equality.

Require Import Coq.Bool.Bool.

Require Import Coq. Logic. FunctionalExtensionality.

Require Export OriginalAxiomatic.

Require Import CpdtTactics.

Inductive intermediate-axiomatic : upred -- statement -+ upred -+ Prop

I ra-skip: V (P Q: upred), original.-axiomatic P Skip Q -4 intermediate-axiomatic

P Skip Q

314

ra-assign: V P v e Q, original-axiomatic P (Assign v e) Q - intermediate-axiomatic

P (Assign v e) Q

ra-assign-arr : V P av el e2 Q,
original-axiomatic P (AssignArr av el e2) Q -
intermediate-axiomatic P (AssignArr av el e2) Q

ra-havoc : V P vars be Q, original-axiomatic P (Havoc vars be) Q - intermedi-

ate-axiomatic P (Havoc vars be) Q

I ra-relax: V P vars be Q, intermediate-axiomatic P (Havoc vars be) Q -+ interme-

diate-axiomatic (UAnd P ^be) (Relax vars be) Q

I ra-assert: V P be Q, original-axiomatic P (Assert be) Q - intermediate-axiomatic

P (Assert be) Q

I ra-assume: V P vars be, intermediate-axiomatic (UAnd P (Tbe)) (Assume vars be)

(UAnd P (^be))

I ra-accept : V P Q 1 rbe, originaL-axiomatic P (Accept I rbe) Q - intermedi-

ate-axiomatic P (Accept 1 rbe) Q

ra-if : V P be sti st2 Q, intermediate -axiomatic (UAnd P (^be)) sti Q -+ interme-

diate-axiomatic (UAnd P (upred-neg (^be))) st2 Q -
intermediate-axiomatic P (if be sti st2) Q

I ra-while :

V P be (st : statement),

intermediate-axiomatic (UAnd P (Tbe)) st P -

intermediate-axiomatic P (While be st) (UAnd P (upred-neg (^be)))

315

| ra-seq: V PR Qst] st2, intermediate-axiomatic P stl R -4 intermediate axiomatic

R st2 Q - intermediate-axiomatic P (Seq sti st2) Q

raconseq : V st P P' Q' Q, upred-satisfies P P' -+ intermediate-axiomatic P' st Q'

- upred-satisfies Q' Q -- intermediate-axiomatic P st Q

Notation "I-r {{ P } I st {{ Q }}" := (intermediate-axiomatic P st Q) (at level 70).

Semantic preservation judgment Notation "I=r {{ P } } st { Q }}" :=

(V s, upreddenote P s - (V ol s', relaxed eval-big <I st , s I> <# s', ol #> -+

upred-denote Q s'))

(at level 70).

Section intermediate-soundness.

Theorem intermediateaxiomatic-soundness

V st P Q, Hr {{ P }} st {{ Q}} - I =r {{ P }} st {{ Q }}.

Proof.

Hint Resolve originaLaxiomatic-soundness.

Hint Constructors relaxed eval -big.

Hint Resolve error-valid-configifalse.

induction 1;

intros; try solve[invert relaxed; eauto].

invert-relaxed. eapply IHintermediate-axiomatic; eauto. eapply UAndinv in HO.

crush; eauto.

invert-relaxed. invert-original-big. unfold upred-denote.

simpl. eauto.

unf old upreddenote in *; simpl in x. invert-relaxed; eauto.

Case While unf old upred-denote in *; simpl in x. dependent induction Hi;

eauto.

316

exfalso; eauto...

unf old upred-denote in *; simpl in x.

invert-relaxed.

eauto...

exfalso; eauto...

exfalso; eauto...

Qed.

End intermediate-soundness.

Section intermediate-axiomatic-progress.

Lemma not-error-valid-config:

V s ol, , error <#s, ol #>.

Proof.

intros. red; intro. inversion H.

Qed.

Lemma intermediate-axiomatic_ progress:

V st P Q, Hr {{ P }} st {{ Q }} -+

V s, upred-denote P s -+ V o, relaxed-evalbig <I st, s I> o -+ error o.

Proof.

Hint Resolve originaLaxiomatic-.progress.

Hint Resolve intermediate-axiomatic-soundness.

Hint Resolve not-error-valid-config.

induction 1; intros; try solve[invert-.relaxed; try (invert relaxed); try (invert- original big);

eauto].

invert-relaxed. inversion H6; crush.

eauto.

eapply originaLaxiomatic-progress; eauto.

apply UAnd-inv in HO. inversion HO. invert-relaxed. eauto.

invert-relaxed. inversion H5; crush.

317

eauto.

eapply original-axiomatic- progress; eauto.

unf old upredcdenote in *; crush. invert-relaxed; eauto.

unfold upreddenote. invertLoriginal-big. eauto.

cut (bexp-eval be s = true). crush. eapply (bexp-inj-soundness be s s Left).

pose proof (H s). inversion H2; subst. auto.

invert-relaxed; unf old upred-denote in *; unf old UAnd in *; simpl in *; eauto.

unf old upred-denote in *; crush. dependent induction HI; eauto.

eapply IHrelaxed-eval-big2. eauto. crush. eapply intermediate-axiomatic-soundness;

eaut o.

unf old upreddenote in *; crush. eauto.

crush.

Qed.

Print Assumptions intermediate-axiomatic_ progress.

End intermediate-axiomatic_ progress.

A. 12 RelaxedAxiomatic

Require Import AssertionLogic.

Require Import List.

Require Import Tactics.

Require Import OriginalDynamic.

Require Import RelaxedDynamic.

Require Import Coq. Program. Tactics.

Require Import Coq.Program.Equality.

Require Import Coq.Arith.EqNat.

Require Import Coq.Bool.Bool.

Require Import Classical.

318

Require Export OriginalAxiomatic.

Require Export IntermediateAxiomatic.

Require Import Coq.Lists.SetoidList.

Require Import Coq.Arith.Peano-dec.

Require Import CpdtTactics.

Open Scope accept-scope.

Def inition var-map-org-rvar (vars: list (var + arr-var)) list (rel-var + rel-arr-var)

map (fun v 4

match v with

nl v = ini - (Org v)

inr av * inr - (OrgArr av)

end

) vars.

Definition var-map-reL-rvar (vars: list (var + arr-var)) list (rel-var + rel-arr-var)

map (fun v 4

match v with

inl v : inl - (Rel v)

inr av # inr - (RelArr av)

end

) vars.

Def inition accept-mods st:=

(var-map-org-rvar (original-mods st)) ++ (var-map-rel-rvar (relaxed-mods st)).

Fixpoint rexp-inj (re : Expressions.rexp) : AssertionLogic.exp

match re with

Expressions.RVar (Org v) 4 (LVar v)

Expressions.RVar (Rel v) + (RVar v)

RConst n =a Const n

319

RArr (OrgArr av) el = Arr (LArrVar av) (rexp-inj el)

RArr (RelArr av) el # Arr (RArrVar av) (rexp-inj el)

Riop op el e2 r: lop op (rexp-inj el) (rexp-inj e2)

end.

Fixpoint rbexp-inj (rbe : Expressions.rbexp) : pred

match rbe with

RBConst true = PTrue

RBConst false = PFalse

RCmp op el e2 =4 PCmp op (rexp-inj el) (rexp-inj e2)

RLop op be] be2 =:- PLop op (rbexp-inj be]) (rbexp-inj be2)

RNeg be' * PNeg (rbexp-inj be')

end.

Lemma rexp-inj-soundness:

(V re env] env2 n, exp-denote (rexp-inj re) env] env2 n -+ rexp-eval re envi env2 n).

Proof.

induction re; try destruct r; simpl; inversion 1; crush.

inversion H6; crush.

inversion H6; crush.

Qed.

Hint Resolve cmp.reflect-denote.

Hint Resolve not-cmp-reflect-denote.

Lemma rbexp-inj-soundness:

V be,

(V env] env2, pred-denote (rbexp-inj be) env] env2 - rbexp-eval be envi env2 =

true)

(V env] env2, npreddenote (rbexp-inj be) env] env2 - rbexp-eval be env] env2 =

false) .

Proof.

320

induction be ; split; simpl; try destruct b; auto; inversion 1; crush.

apply rexp-inj-soundness in H3.

apply rexp-inj-soundness in H6. crush.

apply rexp-inj-soundness in H3.

apply rexp-inj.soundness in H6. crush.

apply andb-false-iff. auto.

Qed.

Def inition uexp := {x exp I unaryexp x}.

Def inition uref-exp { x : refexp | unaryref-exp x}.

Program Def inition join (P-o P-r: upred) : pred

(PLop Expressions.And (projIsig P-o) (pred-swap Pr)).

Def inition joinbexp (be : bexp) :=

(PLop Expressions.And (bexp-inj be Left) (bexp-inj be Right)).

Definition join-neg-bexp (be: bexp) :=

(PLop Expressions.And (PNeg (bexp-inj be Left)) (PNeg (bexp-inj be Right))).

Fixpoint pred-mult-exists-right (P: pred) (vars: list (var x bvar)) : pred

match vars with

nil = P

(v, v') : :rest =4 (PRExists v' (pred-graft (pred-mul texists-right P rest) v Right

(BRVar v')))

end.

Inductive accept-axiomatic: pred -+ statement -+ pred -+ Prop:=

aa-skip : V P, accept-axiomatic P Skip P

aa-accept : V RP aid rbe,

pred-satifies RP (rbexp-inj rbe) -

accept-axiomatic RP (Accept aid rbe) (PLop Expressions.And RP (rbexp-inj

321

rbe))

aa-assert : V RP be,

pred-satifies (PLop Expressions.And RP (bexp-inj be Left)) (bexp-inj be Right) -

accept-axiomatic RP (Assert be) (PLop Expressions.And RP (join-bexp be))

aa-assume : V RP be (vars : list var),

pred-satifies (PLop Expressions.And RP (bexp-inj be Left)) (bexp-inj be Right) -

accept-axiomatic RP (Assume vars be) (PLop Expressions.And RP (joinbexp be))

aa-assign : V Q v e,

accept _axiomatic (pred-graft (pred-graft Q v Left (exp-inj e Left)) v Right (exp-inj

e Right)) (Statements.Assign v e) Q

aa-relax : V be RP (vars : list var) (vars' : list bvar),

length vars = length vars' -+

NoDup vars -

NoDup vars' -

(V v', In v' vars' -+ In v' (pred-bound-vars RP Right)) -

(V s-o s-r, preddenote RP s-o s-r -+ (J s', havoc-sat vars be s-r s')) -

accept axiomatic

(PLop Expressions.And RP (bexp-inj be Right))

(Relax vars be)

(PLop Expressions.And (pred-mult-exists RP (com bine vars vars') Right) (join_ bexp

be))

| aa-if-converge : V RP be sti st2 RQ,

322

pred-satifies RP (PLop Or (join-bexp be) (join-neg-bexp be)) -+

accept-axiomatic (PLop Expressions.And RP (join-bexp be)) sti RQ -+

accept-axiomatic (PLop Expressions.And RP (join-neg-bexp be)) st2 RQ -+

accept -axiomatic RP (if be sti st2) RQ

aa-whileconverge : V RP be st,

pred-satifies RP (PLop Or (join-bexp be) (join-neg-bexp be)) -+

accept-axiomatic (PLop Expressions.And RP (join-bexp be)) st RP -

accept-axiomatic RP (While be st) (PLop Expressions.And RP (join-neg-bexp

be))

aa-seq : V RP sti RR st2 RQ,

accept -axiomatic RP sti RR -

accept -axiomatic RR st2 RQ -

accept _axiomatic RP (Seq sti st2) RQ

aa-conseq : V st RP RP'RQ'RQ,

pred _satifies RP RP' -+

accept-axiomatic RP' st RQ'-+

pred-satifies RQ' RQ -+

accept-axiomatic RP st RQ

aa-diverge: V RP P-o Pr st Qo Qr,

accept-free st -

predleft-satisfies-upred RP P-o -4

original-axiomatic P-o st Q-o -+

predright-satisfies-upred RP Pr -4

intermediate-axiomatic Pr st Qr -+

323

accept-axiomatic RP st (join Qo Qr)

aa-constancy : V st RP RR RQ,

(V rv, In rv (predifree-vars RR Left) -+ - In rv (originaLmods st)) -+

(V rv, In rv (predifree-vars RR Right) - In rv (relaxed-mods st)) -

accept-axiomatic RP st RQ -

accept _axiomatic (RP A-p RR) st (RQ Ap RR)

Section aa-derived.

Lemma pred-satisfies-refl

V RP, pred _satifies RP RP.

Proof.

intro. unfold predsatifies. crush.

Qed.

Lemma aaconseqileft:

V st RP RP' RQ,

predsatifies RP RP' -

accept _axiomatic RP' st RQ -

accept -axiomatic RP st RQ.

Proof.

intros. apply aa-conseq with (RP':=RP') (RQ':=RQ); auto. apply pred-satisfies-refl.

Qed.

Lemma aa_dun

V st RP RR RQ,

accept-axiomatic (RP A-p RR A-p RR) st RQ -+

accept -axiomatic (RP Ap RR) st RQ.

Proof.

intros. eapply aa-conseq; eauto.

324

unfold pred-satifies. intros. econstructor. auto. inversion HO; subst; auto.

apply pred-satisfies-refl.

Qed.

End aa-derived.

Def inition accept-map := list (accept-id x rbexp).

Def inition eq-aid (ml m2 accept-id x environment) (fst ml) = (fst m2).

Definition beq-aid (a] a2 accept-id) := if eq-nat-dec a] a2 then true else false.

Def inition acceptable-obs (amap : accept-map) (obs] obs2 : (accept-id x environ-

ment))

eq-aid obs] obs2

Sx, InA (fun a b a (fst a) = (fst b)) (fst obs], x) amap / rbexp-eval x (snd obs])

(snd obs2) = true.

Inductive acceptable (amap: accept-map) : obsilist - obsilist - Prop

acceptable-nil : acceptable amap nil nil

acceptablecons:

V obs-o obs-r ol-o ol-r,

acceptable-obs amap obs-o obs-r -

acceptable amap olo olr -+

acceptable amap (obso: : olo) (obs-r: : olr)

Fixpoint computemap (st: statement)

match st with

Accept aid rbe=- (aid, rbe) : nil

If be st1 st2 #

(compute-map sti ++ compute-map st2)

While be st = compute-map st

Seq sti st2 =

(compute-map sti ++ compute map st2)

_ n il

325

end.

Section FindApp.

Variable A B: Type.

Variable eqA : A - A -+ Prop.

Hypothesis eqA-equiv: Equivalence eqA.

Hypothesis eqAdec: V x y : A, {eqA x y}+{~ (eqA x y) }.

Variable eqAB: (A xB)->(A x B)->Prop.

End FindApp.

Lemma acceptable-app:

V amap ollo ollir o12_o o12-r,

acceptable amap ollo oll-r -

acceptable amap o12_o o2-r -

acceptable amap (ollo ++ o12 o) (ollr ++ o12-r).

Proof.

intro.

Require Import util.

apply (twoilist-ind (accept-id x environment) (accept-id x environment)

(fun oll -o oll -r =>

V ol2-ool2_r ,

acceptable amap olko ollr - acceptable amap o12_o o12_r -

acceptable amap (ollo ++ o12_o) (ollr ++ o12_r))).

simpl. auto.

inversion 1.

inversion 1.

inversion 2; subst.

rewrite <- ?app-comm-cons.

econstructor; auto.

Qed.

326

Lemma acceptable-app-left:

V stl st2 olo ol_r,

acceptable (compute-map st1) ol-o ol-r -+ acceptable (compute-map sti ++

computemap st2) olbo ol-r.

Proof.

Hint Constructors acceptable.

induction ol_o; induction ol-r.

eauto.

inversion 1.

inversion 1.

inversion 1; subst.

inversion H3; subst. destruct-conjs.

econstructor. econstructor. auto.

3 H. simpl; split; auto.

simpi in x. apply InA-appiff.

Lemma Equivalancefst-eq :

Equivalence (fun a] b : nat x rbexp -- (fst a]) = (fst b)).

Proof.

econstructor.

unfold Reflexive.

intros. auto.

unf old Symmetric.

intros. eauto.

unf old Transitive.

intros. rewrite H. auto.

Qed.

apply Equivalance-fst-eq.

eauto.

auto.

327

Qed.

Lemma accepta ble-app_ right:

V sti st2 ol-o ol-r,

acceptable (computemap st2) olbo olr -+ acceptable (compute-map sti ++ com-

pute-map st2) ol-o ol-r.

Proof.

Hint Constructors acceptable.

induction ol-o; induction ol-r.

eauto.

inversion 1.

inversion 1.

inversion 1; subst.

inversion H3; subst. destruct-conjs.

econstructor. econstructor. auto.

3 H1. simpl; split; auto.

simpl in x.

apply InA-app-iff.

apply Equivalance-fst-eq.

right; auto.

aut o.

Qed.

Lemma accept-free-nil-org

V st, accept-free st -+ V s s'ol, original-evalbig <I st, s I> <# s', ol #> - ol= nil.

Proof.

Require Import Coq .Program. Tactics.

induction st; simpl; intros;

try solve [tauto I invert-original_ big ; auto].

do 2 invert-original-big. auto.

328

destructconjs ; invert-original-big; eauto.

dependent induction HO; eauto.

assert (ol1 = nil /\ ol12 = nil).

eauto.

destruct-conjs ; subst; auto.

destructconjs ; invert original big.

assert (ol1 = nil ol_2 = nil).

eauto.

destruct-conjs ; subst; auto.

eaut o.

eauto.

Qed.

Lemma accept-free-nil-rel

V st, accept-free st -+ V s s' ol, relaxed-evaLbig < st, s I> <# s', ol #> -+ ol = nil.

Proof.

Require Import Coq.Program.Tactics.

Hint Resolve accept-free-nil-org.

induction st; intros;

try solve [invert-relaxed ; eauto].

do 2 invert-relaxed; invert-original-big; auto.

simpi in *; destructconjs ; invert -relaxed; eauto.

dependent induction HO; eauto.

assert (ol_1 = nil / ol_2 = nil).

eauto.

destruct-conjs ; subst; auto.

simpi in *; destructconjs ; invert-relaxed.

329

assert (old = nil ol_2 =nil).

eaut o.

destruct-conjs ; subst; auto.

eauto.

eauto.

Qed.

Local Open Scope accept-scope.

Ltac invert relaxed:=

match goal with

[H: relaxed _eval_ big _ - H 1 z inversion H; subst; clear H

end.

Lemma error-validconfig-false:

V s ol, error <#s, ol#> -+ V RP s-o s-r, pred denote RP s-o s-r.

Proof.

inversion 1.

Qed.

Section helpers.

End helpers.

Ltac magic:=

repeat match goal with

[H: pred-denote (PLop And _ _) _ _ H _] * inversion H; subst; clear H

[H: pred-denote (PNeg _) _ _ - _] inversion H; subst; clear H

end.

Lemma diverge-contradict

V s-o sr be bl b2,

pred-denote (PLop Or (joinbexp be) (joinneg-bexp be)) s-o s-r -

bexp-eval be s-o = bl -*

330

bexp-eval be s-r = b2 -

b] b2 -

False.

Proof.

intros. destruct b], b2; try congruence.

inversion H; crush. inversion H7; crush.

apply bexp-inj-soundness in H5.

apply bexp-inj-soundness in H9. crush.

inversion H7; crush.

inversion H5; crush. inversion H9; crush.

apply bexp-inj-soundness in H4.

apply bexp-inj-soundness in H6. crush.

inversion H; crush. inversion H7; crush.

apply bexp-inj -soundness in H5;

apply bexp-inj-soundness in H9; crush.

inversion H7; crush.

inversion H5; crush. inversion H9; crush.

apply bexp-inj-soundness in H4.

apply bexp-inj-soundness in H6. crush.

Qed.

Hint Resolve intermediate-axiomatic-soundness.

Theorem relaxed-axiomatic-soundness :

V st RP RQ, accept-axiomatic RP st RQ -*

V s-o s-r, pred-denote RP s-o s-r -

V s-o' olo', original-eval big < I st, s-o I> <# s-o', oLo' #> -

V s-r' olr', relaxed eval big <Ist, sr l> <# s-r', ol-r'#> -

pred-denote RQ s-o' sr'.

331

Proof.

Hint Resolve error-valid-config-false.

induction 1; simpl; intros.

Hint Constructors preddenote.

invert relaxed; repeat invert _original big; auto.

Lemma upred-join-denote:

V Q1 env],

upred-denote Q1 env] - V Q2 env2, upreddenote Q2 env2 -

pred denote (join Q1 Q2) env] env2.

Proof.

intros. unf old upred-denote in x.

constructor. destruct QJ. crush.

eapply pred swap-denote. eauto.

Qed.

Hint Constructors preddenote.

invert-relaxed.

repeat invert-originalbbig.

pose proof (H - - HO). eauto.

intros; invert relaxed; do 2 invert _original big; repeat constructor; auto.

intros. invert relaxed.

repeat invert- original big.

repeat constructor ; auto.

repeat invert-relaxed. repeat invert original- big.

eapply (proji pred._denote-subst) with (s:=Right) in H; crush; eauto.

eapply (proji pred-denote-subst) with (s:=Left) in H; crush; eauto.

inversion H4; subst; clear H4.

invertLoriginal-big. invert-original-big.

invert-relaxed. invert-_relaxed. invert- original-big.

332

unfold havoc-sat in H6. destruct H6.

constructor.

clear H6. clear H12. clear H5. clear H3.

generalize dependent vars. intro. generalize dependent s-r'.

generalize dependent s-r. generalize dependent s-o'.

generalize dependent vars'. generalize dependent vars.

apply (twoilist-ind var bvar (fun vars vars' -

NoDup vars' -+

(V v': bvar, In v' vars' - - In v' (pred-bound vars RP Right)) --

V s-o' sr: environment,

pred-denote RP s-o' sr -+

V s-r': environment,

length vars = length vars' -+

NoDup vars -+

(V vars'O : list (var + arr-var),

(V v : var, In v vars - - In (InI arr-var v) vars'O) -+

env-equiv s-r sr' vars'O) -+

pred-denote (pred-mult-exists RP (combine vars vars') Right) s-o' sr'

crush. eapply pred denote sa mefree-vars. eauto.

eauto. eauto.

crush.

crush.

intros. simpl. econstructor.

pose proof (pred-subst-var-graft-trans Right). simpl in H6. rewrite H6.

eapply pred denote-same-free-vars. eapply predgraft-const.

eapply H. solve-nodup. crush. eauto. eauto. auto. solve-nodup.

instantiate(1:= update-variable s-r' a (st s-r a)).

intros. apply env-equiv-update.

333

apply H5. crush. contradict H9. apply removeIn. eapply H7. eauto. eapply

In-removeIn. eauto.

eauto. simpl. rewrite pred free-vars-graft.

apply env-equiv-sym.

apply update-variable-equiv. auto. apply remove-In. auto.

generalize H1. generalize HO. inversion H3; subst.

generalize H8. clear.

generalize dependent lb. generalize dependent la.

apply (twoilist-ind var bvar (fun la lb ->

length la = length lb -+

NoDup (b : : ib) -

(V v': bvar, In v' (b lb) -+ In v' (pred-bound-vars RP Right)) -+

, In b (pred-bound-vars (pred-mult-exists RP (combine la lb) Right) Right)

crush. eauto.

crush.

crush.

simpl; intros. inversion H]; subst. simpl in x. crush.

eapply H5. Hint Constructors NoDup. solve nodup. eauto. crush.

eauto. eauto.

Hint Resolve pred-bound vars-graft.

eapply pred -bound vars-graft with (e:=BRVar bO); crush; eauto.

Hint Resolve bexpinj-true_ pred-denote bexp inj false- npred -denote.

constructor; eauto.

pose proof (H - - H2).

invert _original big; invert relaxed.

eapply IHaccept-axiomatic]; eaut o.

repeat constructor; eauto.

334

exfalso; eapply diverge-contradict; eauto; discriminate.

exfalso; eapply diverge-contradict; eauto; discriminate.

eapply IHaccept-axiomatic2; eauto.

constructor. eauto. constructor; simpl; repeat constructor; eauto.

intros.

generalize dependent s-r'.

generalize dependent s-r.

dependent induction H2.

intros.

dependent induction H3.

repeat (constructor ; simpl) ; auto.

pose proof (H - - H2).

exfalso; eapply diverge-contradict; eauto; discriminate.

eaut 0...

eaut 0...

pose proof (IHoriginal-eval-big2 _ _ H HO IHaccept- axiomatic).

clear HO IHoriginal-eval-big] IHoriginal-eval-big2.

intros; dependent induction H3.

pose proof (H - - HO).

exfalso; eapply diverge-contradict; eauto; discriminate.

assert (pred-denote (PLop Expressions.And RP (joinbexp be)) s-o s-r).

repeat constructor; auto.

e aut o.

eaut 0...

eauto...

eaut 0...

eaut 0...

335

intro s; invert- original-big; invert-relaxed; eaut o.

eaut o.

eapply upred-join-denote; eauto.

intros. inversion H2; subst. econstructor.

eauto...

pose proof (original-eval-not-in-mods-constant - - - - H3).

pose proof (relaxed eval-not-in-mods-constant - - - - H4).

eapply pred-denote same-free vars; eauto.

Qed.

Section accept-axiomatic-acceptable.

Lemma error-valid config-acceptable :

V s ol m oll o12, error <#s, ol #> -+ acceptable m oll o12.

Proof.

intros; exfalso; eauto.

Qed.

Theorem relationaLassertion-soundness

V st RP RQ, accept _axiomatic RP st RQ -

V s-o s-r, pred-denote RP s-o s-r -

V s-o' olo , originaLevaL big <I st, s-o I> <# s-o', obo #> -#

V s-r' ol-r, relaxed _eval big < I st, s-r I> <# s-r', ol-r #> -

acceptable (compute-map st) ol-o ol-r

Proof .

Hint Constructors acceptable.

Hint Resolve error-valid.config-acceptable.

Hint Resolve relaxed axiomatic-soundness.

Hint Resolve acceptable-app-right acceptable-app left.

Hint Resolve acceptable-app.

336

induction 1; simpl; intros.

repeat invert-relaxed; repeat invert-original-big; auto.

invert-relaxed. repeat invert _original big.

repeat constructor; auto. eexists. simpl.

split. econstructor. simpl. auto.

eauto.

apply rbexp-inj-soundness; auto.

repeat invert-relaxed; repeat invert-original-big; auto.

repeat invert-relaxed; repeat invert-original-big; auto.

repeat invert-relaxed; repeat invert-original-big; auto.

repeat invert-relaxed; repeat invert-original- big; auto.

pose proof (H - - H2).

invert-original-big; invert-relaxed.

apply accepta ble_.appieft. eapply IHaccept-axiomatic]; eauto.

repeat constructor; auto.

exfalso; eapply diverge-contradict; eauto; discriminate.

exfalso; eapply diverge-contradict; eauto; discriminate.

apply acceptable-app-right; eapply IHaccept-axiomatic2; eauto.

repeat (constructor; simpl); auto.

generalize dependent s-r'.

generalize dependent s-r.

dependent induction H2.

intros. dependent induction H3.

eauto.

exfalso; eapply diverge-contradict; eauto; discriminate.

eauto.

eauto.

337

intros. dependent induction H3.

exfalso; eapply diverge-contradict; eauto; discriminate.

assert (pred-denote (PLop Expressions.And RP (join-bexp be)) s-o s-r).

repeat constructor; auto.

assert (preddenote RP s' s'O).

eauto.

apply acceptable-app; eauto.

eauto.

e auto.

eaut o.

eaut o.

invert-original-big; invert-relaxed; eauto.

cut (preddenote RR s' s'O); eauto 6.

eauto.

Hint Resolve accept-free-nil-org accept-free-nil-rel.

assert (ol-o = nil A ol-r = nil).

eauto.

destruct-conjs; subst; auto.

inversion H2; subst. eauto.

Qed.

Print Assumptions relationaIassertion-soundness.

Theorem relaxed-axiomatic-relative-progress

V st RP RQ, accept -axiomatic RP st RQ -

V s-o s-r,

pred..denote RP s-o sr -+

V o-r, relaxed-eval_ big <Ist, s-r I> o-r-

338

V o-o, original-eval-big <Ist, s-o I> o-o - error o-o -

error o-r.

Proof.

Hint Resolve relaxed -axiomatic-sou ndness.

Hint Resolve origi na Laxiomatic-.progress.

induction 1.

intros. invert-_relaxed. invert-original-big; auto. eaut o.

intro s. invert-relaxed; invert- original big. eaut o.

intro s. invert relaxed. do 2 invert-originalbbig.

crush. eauto.

crush. eauto.

cut (bexp-eval be s-r = true).

congruence...

eapply (proji (bexp-inj-soundness be - - Right)). eauto.

auto.

intros.

invert-relaxed. do 2 invert _original big.

eauto.

eaut o.

cut (bexp-eval be s-r = true).

congruence...

eapply (proji (bexp-inj-soundness be _ _ Right)). eauto. auto.

intro s. invert relaxed; invert- original big. eaut o.

intros. inversion H4; subst; clear H4.

invert-original-big. invert _original big.

invert-relaxed. invert-_relaxed. invert original- big.

eaut o.

contradict H12. eapply H3. eauto.

339

invert relaxed. invert relaxed. invert- original- big.

eaut o.

contradict H12. eapply H3. eauto.

Hint Constructors preddenote npreddenote.

intros; pose proof (H - - H2).

invert original big; invert relaxed.

cut (pred-denote (PLop Expressions.And RP (join-bexp be)) s-o s-r); eauto.

intros; repeat constructor ; eauto.

exfalso; eapply diverge-contradict; eauto; discriminate...

exfalso; eapply diverge-contradict; eauto; discriminate...

cut (pred-denote (PLop Expressions.And RP (oin-neg-bexp be)) s-o s-r); eauto.

repeat (constructor; simpl) ; auto.

intros.

generalize dependent s-r.

dependent induction H3.

intros.

dependent induction H3.

eauto.

eauto.

exfalso; eapply diverge-contradict; eauto; discriminate...

exfalso; eapply diverge-contradict; eauto; discriminate...

intros.

pose proof (IHoriginal-eval-big2 - _ H HO IHaccept-axiomatic).

clear IHoriginal-eval-bigl IHoriginal-eval-big2.

dependent induction H3.

e aut o.

340

eaut o.

eapply IHaccept-axiomatic; eauto. repeat econstructor; eauto.

eapply H5. eauto. eauto.

eapply relaxed _axiomatic-soundness; eauto. repeat econstructor; eauto.

auto.

intros. auto.

auto.

intros. invert relaxed.

eauto.

invert- original-big.

eauto.

eauto.

eauto.

invert- original big.

eauto.

eauto.

eauto.

eauto.

intros. eapply intermediate-axiomatic-progress; eauto.

intros. inversion H2; eauto.

Qed.

Theorem relaxed-axiomatic_ progress:

V st P-o Q-o, original-axiomatic P-o st Qo -

(V s-o o, upred-denote P-o s-o -+ original eval big <I st, s-o I> o o# ba)

(V s-o, upreddenote P-o s-o -+ I o-o, original-evalbig < st, s-o I> o-o) -

V RP RQ, accept-axiomatic RP st RQ -+

341

pred-left-satisfies-upred RP P-o -

V s-o s-r, pred denote RP s-o s-r -+

V o-r, relaxed eval-big <Ist, s-r I> or-+ error o-r.

Proof.

intros. destruct conjs.

cut (- error o-r o-r = ba o-r = wr).

intros. destruct H6. auto.

edestruct Hi. eauto. destruct x.

eapply relaxed-axiomatic-relative-progress; eauto.

exfalso. eapply originaLaxiomatic-progress; eauto.

exfalso. eapply HO; eauto.

destruct o-r. left. eauto. eauto. eauto.

Qed.

Corollary relaxed axiomatic-progress-modulo:

V P-o st Qo, original-axiomatic P-o st Qo -

V RP RQ, accept-axiomatic RP st RQ

predileft-satisfies-upred RP P-o -

V s-o s-r, pred-denote RP s-o s-r -

V o_r, relaxed evaL big <Ist, s-r I> o-r - (o-r ba o-r wr) -4

V o-o, original-evalbig <Ist, s-o I> oo - o-o ba.

Proof.

intros. destruct o-o.

exfalso. eapply relaxed axiomatic relative-progress; eauto. Hint Constructors er-

ror. crush.

exfalso. eapply originaLaxIomatcprogress; eauto.

auto.

Qed.

End accept-axiomatic-acceptable.

Close Scope accept scope.

342

Bibliography

[1] The Coq Proof Assistant. http://coq.inria.fr.

[2] Scimark 2.0. http://math.nist.gov/scimark2.

[3] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman, and S. Amaras-

inghe. Petabricks: a language and compiler for algorithmic choice. PLDI, 2009.

[4] J. Ansel, Y. Wong, C. Chan, M. Olszewski, A. Edelman, and S. Amarasinghe. Lan-

guage and compiler support for auto-tuning variable-accuracy algorithms. CGO,

2011.

[5] W. Baek and T. M. Chilimbi. Green: a framework for supporting energy-conscious

programming using controlled approximation. PLDI, 2010.

[6] T. Bao, Y. Zheng, and X. Zhang. White box sampling in uncertain data processing

enabled by program analysis. OOPSLA, 2012.

[7] G. Barthe, J. Crespo, and C. Kunz. Relational verification using product programs.

FM, 2011.

[8] G. Barthe, P. D'Argenio, and T. Rezk. Secure information flow by self-composition.

CSFW, 2004.

[9] G. Barthe, D. Demange, and D. Pichardie. A formally verified ssa-based middle-end:

Static single assignment meets compcert. ESOP, 2012.

[10] G. Barthe, B. Gr6goire, and S. Zanella B6guelin. Formal certification of code-based

cryptographic proofs. POPL, 2009.

343

[11] G. Barthe, B. Kipf, F. Olmedo, and S. Zanella Beguelin. Probabilistic reasoning for

differential privacy. POPL, 2012.

[12] N. Benton. Simple relational correctness proofs for static analyses and program trans-

formations. POPL, 2004.

[13] C. Bienia, S. Kumar, J. Pal Singh, and K. Li. The PARSEC benchmark suite: Char-

acterization and architectural implications. PACT, 2008.

[14] M. Blum and S. Kanna. Designing programs that check their work. STOC, 1989.

[15] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to

numerical problems. Journal of computer and system sciences, 1993.

[16] W. Blume and R. Eigenmann. Performance analysis of parallelizing compilers on

the Perfect Benchmarks programs. Transactions on Parallel and Distributed Systems,

3(6), 1992.

[17] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and M. Snir. Toward exascale

resilience. International Journal of High Performance Computing Applications, 2009.

[18] M. Carbin, D. Kim, S. Misailovic, and M. Rinard. Proving acceptability properties of

relaxed nondeterministic approximate programs. PLDI, 2012.

[19] M. Carbin, D. Kim, S. Misailovic, and M. Rinard. Verified integrity properties for

safe approximate program transformations. PEPM, 2013.

[20] M. Carbin, S. Misailovic, M. Kling, and M. Rinard. Detecting and escaping infinite

loops with jolt. In ECOOP, 2011.

[21] M. Carbin and M. Rinard. Automatically Identifying Critical Input Regions and Code

in Applications. ISSTA, 2010.

[22] Martin C. Carlisle and Anne Rogers. Software caching and computation migration in

olden. PPOPP, 1995.

[23] F. Chaitin-Chatelin and V. Fraysse. Lectures on finite precision computations. 1996.

344

[24] S. Chaudhuri, S. Gulwani, R. Lublinerman, and S. Navidpour. Proving Programs

Robust. FSE, 2011.

[25] P. Cousot and M. Monerau. Probabilistic abstract interpretation. ESOP, 2012.

[26] J.M. Crespo and C. Kunz. A machine-checked framework for relational separation

logic. SEFM, 2011.

[27] M. de Kruijf, S. Nomura, and K. Sankaralingam. Relax: an architectural framework

for software recovery of hardware faults. ISCA '10.

[28] B. Demsky and M. Rinard. Data structure repair using goal-directed reasoning. ICSE,

2005.

[29] A. Di Pierro and H. Wiklicky. Concurrent constraint programming: Towards proba-

bilistic abstract interpretation. PPDP, 2000.

[30] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of

programs. Communications of the ACM, 18:453-457, August 1975.

[31] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw,

T. Austin, K. Flautner, and T. Mudge. Razor: A low-power pipeline based on circuit-

level timing speculation. MICRO, 2003.

[32] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger.

disciplined approximate programming. ASPLOS, 2012.

[33] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger.

general-purpose approximate programs. MICRO, 2012.

[34] S. Feng, S. Gupta, A. Ansari, and S. Mahlke.

Architecture support for

Neural acceleration for

Shoestring: probabilistic soft error

reliability on the cheap. ASPLOS, 2010.

[35] A. Filieri, C. Pasareanu, and W. Visser. Reliability analysis in symbolic pathfinder.

ICSE, 2013.

345

[36] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.

Extended static checking for java. PLDI, 2002.

[37] M. Hiller, A. Jhumka, and N. Suri. On the placement of software mechanisms for

detection of data errors. DSN, 2002.

[38] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,

12(10), October 1969.

[39] H. Hoffman, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal, and M. Rinard. Dy-

namic knobs for responsive power-aware computing. ASPLOS, 2011.

[40] H. Hoffmann, S. Misailovic, S. Sidiroglou, A. Agarwal, and M. Rinard. Using Code

Perforation to Improve Performance, Reduce Energy Consumption, and Respond to

Failures. Technical Report MIT-CSAIL-TR-2009-042, MIT, 2009.

[41] M. Kling, S. Misailovic, M. Carbin, and M. Rinard. Bolt: on-demand infinite loop

escape in unmodified binaries. OOPSLA, 2012.

[42] K. Knobe and V. Sarkar. Array ssa form and its use in parallelization. POPL, 1998.

[43] D. Kozen. Semantics of probabilistic programs. Journal of Computer and System

Sciences, 1981.

[44] K. Lee, A. Shrivastava, I. Issenin, N. Dutt, and N. Venkatasubramanian. Mitigating

soft error failures for multimedia applications by selective data protection. CASES,

2006.

[45] L. Leem, H. Cho, J. Bau, Q. Jacobson, and S. Mitra. Ersa: error resilient system

trchIitectLLe fJ p lstiL aPFjica-LtLJi1ns. DATE.L I. , 1.6J U.

[46] N. Leveson, S. Cha, J. C. Knight, and T. Shimeall. The use of self checks and voting

in software error detection: An empirical study. IEEE TSE, 1990.

[47] N. Leveson and P. Harvey. Software fault tree analysis. Journal of Systems and

Software, 3(2), 1983.

346

[48] X. Li and D. Yeung. Application-level correctness and its impact on fault tolerance.

HPCA, 2007.

[49] S. Liu, K. Pattabiraman, T. Moscibroda, and B. Zorn. Flikker: Saving dram refresh-

power through critical data partitioning. ASPLOS, 2011.

[50] F. Long, V. Ganesh, M. Carbin, S. Sidiroglou, and Martin Rinard. Automatic input

rectification. ICSE, 2012.

[51] Xiph.org Video Test Media. http://media.xiph.org/video/derf.

[52] J. Meng, A. Raghunathan, S. Chakradhar, and S. Byna. Exploiting the forgiving

nature of applications for scalable parallel execution. IPDPS, 2010.

[53] A. Milicevic, D. Rayside, K. Yessenov, and D. Jackson. Unifying execution of imper-

ative and declarative code. ICSE, 2011.

[54] S. Misailovic, M. Carbin, S. Achour, Z. Qi, and M. Rinard. Chisel: Reliability- and

accuracy-aware optimization of approximate computational kernels. OOPSLA, 2014.

[55] S. Misailovic, D. Kim, and M. Rinard. Parallelizing sequential programs with statis-

tical accuracy tests. Technical Report MIT-CSAIL-TR-2010-038, MIT, 2010.

[56] S. Misailovic, D. Kim, and M. Rinard. Parallelizing sequential programs with statisti-

cal accuracy tests. ACM TECS Special Issue on Probabilistic Embedded Computing,

2013.

[57] S. Misailovic, D. Roy, and M. Rinard. Probabilistically Accurate Program Transfor-

mations. SAS, 2011.

[58] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard. Quality of service profil-

ing. ICSE, 2010.

[59] D. Monniaux. Abstract interpretation of probabilistic semantics. SAS, 2000.

[60] C. Morgan. The specification statement. Transactions on Programming Languages

and Systems, 10(3), 1988.

347

[61] C. Morgan, A. McIver, and K. Seidel. Probabilistic predicate transformers. TOPLAS,

1996.

[62] D. Murta and J. N. Oliveira. Calculating fault propagation in functional programs.

Technical report, Univ. Minho, 2013.

[63] A. Nanevski, A. Banerjee, and D. Garg. Verification of information flow and access

control policies with dependent types. SP, 2011.

[64] S. Narayanan, J. Sartori, R. Kumar, and D. Jones. Scalable stochastic processors.

DATE, 2010.

[65] J. Nelson, A. Sampson, and L. Ceze. Dense approximate storage in phase-change

memory. ASPLOS Ideas & Perspectives, 2011.

[66] K. Palem. Energy aware computing through probabilistic switching: A study of limits.

IEEE Transactions on Computers, 2005.

[67] K. Pattabiraman, V. Grover, and B. Zorn. Samurai: protecting critical data in unsafe

languages. EuroSys, 2008.

[68] J. H. Perkins, S. Kim, S. Larsen, S. P. Amarasinghe, J. Bachrach, M. Carbin,

C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sullivan, W.-F. Wong, Y. Zibin, M. D.

Ernst, and M. C. Rinard. Automatically patching errors in deployed software. SOSP,

2009.

[69] F. Perry, L. Mackey, G.A. Reis, J. Ligatti, D.I. August, and D. Walker. Fault-tolerant

typed assembly language. PLDI, 2007.

[701 A Pni, M. Siegel, ind P Zngerrn.in Translation validation. Tir A C , 1990.

[71] P. Prata and J. Silva. Algorithm based fault tolerance versus result-checking for matrix

computations. FTCS, 1999.

[72] D. Rayside, A. Milicevic, K. Yessenov, G. Dennis, and D. Jackson. Agile specifica-

tions. OOPSLA, 2009.

348

[73] J. Reed and B. Pierce. Distance makes the types grow stronger: a calculus for differ-

ential privacy. ICFP, 2010.

[74] G. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. August. Swift: Software

implemented fault tolerance. CGO, 2005.

[75] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In

Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science,

LICS '02, pages 55-74, Washington, DC, USA, 2002. IEEE Computer Society.

[76] M. Rinard. Acceptability-oriented computing. OOPSLA Onwards '03.

[77] M. Rinard. Probabilistic accuracy bounds for fault-tolerant computations that discard

tasks. ICS, 2006.

[78] M. Rinard. Using early phase termination to eliminate load imbalances at barrier

synchronization points. OOPSLA, 2007.

[79] M. Rinard. A lossy, synchronization-free, race-full, but still acceptably accurate par-

allel space-subdivision tree construction algorithm. Technical Report MIT-CSAIL-

TR-2012-005, MIT, 2012.

[80] M. Rinard, C. Cadar, D. Dumitran, D.M. Roy, T. Leu, and W.S. Beebee Jr. Enhancing

server availability and security through failure-oblivious computing. OSDI, 2004.

[81] M. Rinard, H. Hoffmann, S. Misailovic, and S. Sidiroglou. Patterns and statistical

analysis for understanding reduced resource computing. OOPSLA Onwards!, 2010.

[82] M. Rinard and D. Marinov. Credible compilation with pointers. RTRV, 1999.

[83] H. Samimi, E. Aung, and T. Millstein. Falling back on executable specifications.

ECOOP, 2010.

[84] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and D. Grossman.

Enerj: approximate data types for safe and general low-power computation. PLDI,

2011.

349

[85] S. Sankaranarayanan, A. Chakarov, and S. Gulwani. Static analysis for probabilistic

programs: inferring whole program properties from finitely many paths. PLDI, 2013.

[86] C. Schlesinger, K. Pattabiraman, N. Swamy, D. Walker, and B. Zorn.

extension to c for data integrity and partial safety. CSF '11.

Yarra: An

[87] P. Shivakumar, M. Kistler, S.W. Keckler, D. Burger, and L. Alvisi. Modeling the

effect of technology trends on the soft error rate of combinational logic. DSN, 2002.

[88] S. Sidiroglou, S. Misailovic, H. Hoffmann, and M. Rinard. Managing Perfor-

mance vs. Accuracy Trade-offs With Loop Perforation. FSE '11.

[89] M. Smith. Probabilistic abstract interpretation of imperative programs using truncated

normal distributions. Electronic Notes in Theoretical Computer Science, 2008.

[90] A. Thomas and K. Pattabiraman. Error detector placement for soft computation. DSN,

2013.

[91] x264. http://www.videolan.org/x264.html.

[92] H Yang. Relational separation logic. Theoretical Computer Science, 375(1-3), May

2007.

[93] J. Yang, K. Yessenov, and A. Solar-Lezama. A language for automatically enforcing

privacy policies. POPL, 2012.

[94] Z. Zhu, S. Misailovic, J. Kelner, and M. Rinard. Randomized accuracy-aware pro-

gram transformations for efficient approximate computations. POPL, 2012.

[95] L. Zuck, A. Pnueli, and R. Leviathan. Validation of optimizing compilers. Technical

report, Weizmann Institute of Science, 2001.

350

