

> Submitted in Partial Fulfillment of the Requirement For the Degree of

Master of Science in Aeronautical Engineering.

Signatures of Authors: Signature Redacted
Signature Redacted

Certified by:
Signature Redacted
Department of Aeronautical Ingineering

September 1, 1923.

DISCLAIMER NOTICE

Due to the condition of the original material, there are unavoidable flaws in this reproduction. We have made every effort possible to provide you with the best copy available.

Thank you.

The images contained in this document are of the best quality available.

Cambridge, Massachusetts

 September 1, 1923.Professor A. L. Merrill, Secretary of the Faculty, Massachusettr Institute of Technology.

Dear Sir:

In accordance with the requirement for the degree of Master of Science in Aeronautical Engineering, we submit herewith a thesis entitled "The Effect of Biplane Combinations on Airfoil Characteristics". We wish to express our appreciation to Professor F. P. Warner for his cooperation in the development of this research.

Respectfully submitted,

Signature Redacted

Signature Redacted

TABLE OF CONTETTS.

SECTION I.	Objeot of Investigation	Page
SEOTION II.	Review of the Subjeot.	. 5.
SECTION III.	Description of Apparatus.	. 9.
SECTION IV.	Method of Procedure.	. 0.5
SECTION V.	Estimation of Errors.	22
SECTION VI.	Anslysis of Results.	.30.
SECTION VII.	Review of Previous Experimental work.	.80.
SECTION VIII.	Genersl Sumary and Conolusions.	86
SEOTION IX.	Referenoes.	. 93

APPEMVDIX	A.	Notation, and Meth	94.
APPEITDIX	B.	Original Data.	. 98.
APPENDIX	C.	Tabulated Results.	/6.3
APPENDIX	D.	Curves.	2.09

TABLE OF CONTENTS
Continued -

SUBJECT MATTER

pages
PHOTOGRAPHS
Photo 1. The biplane structure.
Photo 2. Biplene mounted in wind tunnel.

FIGURE 1.

$\frac{10}{11}$
96

PLATES

Plates 1-2. Balance crosshead.
Plates 3-4 Curves of $L_{C}, D_{C}, L / D$, and M_{c} for U.S.A. 27 and G8t. 387 monoplanes.
plate 4a. Curves of effeotive strut resistance.
Plates 5-12 Curves of $L_{C}, D_{C}, I_{/} / D, M_{C}$, and C.P. for U.S.A. 27 and Gôt. 387 biplanes

12-13 $\frac{17-18}{21}$

209-217
Plates 13-14 Curves of biplane correction factors. Plate 15. $\quad \alpha$ required to produce equal lifts at various staggers
$91-92$
61

TABLES

Tables 1-33. Biplane correction factors at equal
Tables 34. Loading on upper and lower wings

and Got. 387-bijplanes
Tables 35-76 $I_{c}, D_{c}, L / D, M_{c}$, and C.P. for U.S.A. 27
and Got. 387 biplanes (Appen. C. 1
164-178
$\xrightarrow{179}$
\cdots
181-196

Comparison of Theoretical and Experimental Biplane Values
 For: -

Tables 77-8日 Ifift $^{\text {rifd }}$ Drag on upper wing
44-49
Tables 81 Lift coefficient
Tables 82-85 Angle of Attack
Tables 86-88 Drag Coefficient
Tables 98-99 Moment Coefficient
Tables 104-107 Center of Pressure Coefficient
-55
56-60
64-66
$71 a$
75-78

Biplane Correction Factors (Appen. C.)
 For: -

Tables 89-92 D_{c} at equal L_{c}

Seotion I.

OBJECT OF INVEST IGATION

The object of this investigation is to make a complete test in the wind tunnel of a large njmber of biplane combinations having different proportions of staggor and gap/ohord ratio, to derive a thoroughly acourate and systamatic set of biplane correotion faotors from the results so obtained, and to verify the accuracy of the formulae from Munk's "General Biplane Theory" (ref. 9) by caloulating corresponding results from them.

SEOTION II.

REVIEN OP THE SUBJECT

The effects of biplane combinations on the aerodynamic characteristics of airfoils have been known in a general way for several years, but such knowledge as exists is based on scanty experimental data and on a theory which still lacks that exactitude of prediction necessary to win for it the authority of physical law. We shall revier the theoretical and experimental sources of this knowledge in turn.

From the theoretical standpoint the effects of biplane combinations are bound up with the whole aerodynamical theory of airioils. The only general theory dealing with the subject is the voxtex theory, which Lenchester in England first boldly applied as an explanation of the lift of wings, over twenty years aso, and by which he worined out a fairly complete descriptive account of the mechanism. Kutta in Germany and Jouixowsing in Russia developed the mathematical details of the circulation for wings of infinite aspect ratio, i.e., of negligible end-effect. Then the whole school of German aerodynamicists, headed by Prandtl, took up the further theory of the effects caused by the trailing vortices, usually embodying their cogitations in exact mathematical language. In 1922, Nunk, (ref. 1) also of the German school, made a quitt complete application of the theory to biplanes, the previous work heving been more or less restriated to monoplanes. The result is we now have a truly physical theory of the aerodynamios of airfoils, expressed in exact mathematical form, and capable of making some quite good predictions.

But although this theory is invaluable for the way in which it illuminates part of the mechanism behind the phenomena, it is still embryonic; it retains too many simplifying assumptions in its foundation, and must
yet be worked out in greater detail before it will be adequate for obtainIng exact numerical iniormation. For instance, good agreement between theoretical and experimental values is restricted to about 8° of the ordinary flying range. The theory camnot predict maximum lift, or the flying range; and although the mechanism of the induced drag has been carefully worised out, that of the renaining part of the drag has not been elucidated with the seme definiteness. In short, few calculations from the theory are now aapable of being used as a routine method in the design room and drawing office.

On the other hand when we examine the empirical knowiedge by which the airplane designer might predict the aerodynamical coefficients of biplanes, our satisfaction is not much greater. The only published data of this kind which we have been able to espy are incorporated in references I to 7, all of which only comprise wind tunel tests on twelve biplane combinations of zero stagger and different gep chord ratios, and on six biplane combinations having miscellane ous stagger and gap chord ratios. These tests were performed by six different experimenters working in four different wind tunnels, each operating at a different wind speed, and the biplane models embodied five different types of airfoil ranging in size from $18^{\prime \prime} \times 2^{\prime \prime} .65$ to $33^{\prime \prime} .6 \times 6$ ". A comparison between the various resul ts would be interestins, but a direct comparison is rendered impossible by the fact that with two exceptions no biplane combination with the same stagger and gap chord ratio was tested by different experimenters. In Seotion VII we shall make a detailed comparison between our own results and these previous results. So suffice it here to say that the gist of the previous work was a fairly good determination of the effeot of gap
chord ratio variation on lift, drag, and lift drag ratio, at zero stagger. Part of thi s data was sumarizad in "biplane correction factors" by Which the aerodynamic coefricients of the airfoil as a monoplane must be multiplied in order to obtain the corresponding biplane coefficients. Practically no biplane correction factors were available to show how variation of the gap chord ratio at zero stagger would effect the moment and center of pressure coefficients, or the distribution of load between the two wings; and no correction factors were available to disclose how variation of stagger at various gap chord ratios would effect the lift drag ratio or the lift, drag, moment, and center of pressure coefficients. Having thus briefly reviewed our subject it seems that at the present time the airplane designer can neither obtain from previously published experimental data or from theory, mowledge of the aerodynamic coefficients of biplanes commensurate in acuracy with that available for monoplanes. We therefore propose to maire a complete test in the wind tunnel of a large number of biplane combinations, from gap chord ratio equal 0.50 to 2.00, and from stagger equal -40% to 400%. For each biplane combination we shell determine lift coefficients, drag coefficients, lift drag ratios, moment coefficients, and obater of pressure coefficients, for angles of attack from -6° to $\$ 20^{\circ}$. We shall then use this data (I) to verify the accuracy of var ious biplane formulae taken from lunis "General Biplane The ory" (ref. 1), which represents the application of the vortex the ory to biplanes; and (2) to calculate biplane correction factors at equal values of the lift coefficient for drag coefficient, lift drag ratio, moment coofficient, and center of pressure coefficient, and alsobipleme correction factors for the maximun lift coefficient, minimum drag coefficient, maximum lift drag ratio, and for the distribution of total lift and drag between the two wings.

It is desirable to calculate the correction factors by comparing biplane with monoplane results at the seme lift coefficient instead of at the same angle of attack, because from the standpoint of the designer the weight of the airplane is the primary quantity known, and from the standpoint of the v ortex theory the lift coefficient instead of the angle of attack is taken as the independent variable because all formulae are thereby simplified, end it is easier to calculate the angle if the lift coefficient is given, than the lift coefficient if the angle is given. In order to make these comparisons at equal lift coefficient it will be necessary first to plot all of our data, because in wind tumel tests the angle of attack is the primary quantity and the lift is measured afterwards.

After having tested the veracity of the theoretical biplane formulae, and calculated correction factors from our data, we hope to be able in the statement of our conclusions
(I) to ind icate which formulae represents the facts with sufficient accuracy to be immediately used as a routine method in the design room, and
(2) to present one or two small charts wich shall sumarize all the correction factors for biplane combinations fram gap chord ratio equal 0.50 to 2.00 and .stagger equal -40% to $\$ 60 \%$.

Section III.

DESORIFTION OF APPARATUS

All of the tests were caducted in the M.I.T. $4^{\prime} 0 \mathrm{wind}$ tmnel, with the N.P.I. type balance, at a wind velocity of 40.0 mep.h. The standard apparatus of the wind tunel was used'for testing each airfoll as a monoplane, and for momting the two biplane combinations in which each wing was tested separately in the presence of the interference of the other.

Each of the remaining combinations was tested as a biplane unit, and for this purpose we developed the type of mounting illustrated by Photos 1 and 2, and Plates 1 and 2. The camplete biplane structure, consisting of balance crosshead, 2 spindles, 2 airfoils, and one strut, is shown in Photo 1. The balance crosshead and spindles are shown in complete detail by Plates 1 and 2. So suffice it to say that the crossheed was designed to screw into the balance head in place of the regular chuck for mounting monoplanes, and was equipped with all the gadgets necessary to align it transverse to the wind tunnel axis, to hold the two spindles fimmy in alignment, and to quickly and accurately ad just the distance between their axes and the balance axis. In the Method of Procedure, p. 19, trie method of mounting is described. All parts of the crosshead were constructed of brass, with the exception of the chock (7), the two slider rods (5), and the spindles (2), which were of mild steel.

The airfoil models were of aluminum, $18{ }^{\prime \prime} \times 3^{\prime \prime}$, accurate to O". 0015 . For the purpose of holding the two airfoils rigidly spaced at their upper eni, three different lengths of strut were employed,

THE BI PLANE STRUCTURE
Composed of balance crosshead, spindles, airfoils, and strut.

$$
\text { PHOTO } 2 .
$$

BIPLANE MOUNTED IN FIND TUNNEL
Bałance crosshead protected from wind by discoid case.

which we shall refer to as the long, medium, and short struts. Dach strut was constructed of brass, ves prong-shaped throwhout half of its length, and was filed into a stream-line form, as far as possible. When a given strut had been attached to the biplane by means of two round-headed sorews, the prong part of the strut was filled in with putty in crder to decrease the resistance. Mis was also done of course whan the effective resis tance of the strut was measured separate1y.

It was found that the resistance of the balance crosshead was of the same order as that of the biplane model itself, so it was found desirable, in order to obtain more accurate values for the biplane drag, to protect the crosshead from the wind stream by means of some kind of a case. For this purpose we utilized a Cello hot watter bottle, which provided us with a hollow metal case, of discoid shene, 10". 5 in diameter by $2 " .0$ maximum thicimess, which we shall hereafter refer to as the "discoid case." From the top of the disc oid case a circular cover $8^{\prime \prime \prime} .0$ in diameter was cut, and 7 ith the exception of IIl at its center it was slotted across one 0 its diameters. The bottom of the discoid case ras attached to the ton of the fairuater through which the balance head projected, and the cover was attached to the central black (8) of the balance orosshead. The bottan thus remained stationary while the cover rotated with the crosshead, and the slots in the cover pemitted the distance between the spindles to be varied. The method of utilization is evident from Photo 2, which shows a biplane combination mounted in the wind tunnel, with the balance orossheed protected from the wind by the discoid case.

Section IV.

METHOD OF PROCEDURE

Each of the two U.S.A. 27 airfoils was tested twice as a monoplane, and the average (p . 103) taken as the standard to which to apply biplane correction factors.

The upper and lower wing of two biplane combinations were then tested separately, in the presence of the interfererce of the other, at $G O=1.00$ and 1.67 , and stagger $=0$ (pprow-109). It was originally intended to test all the biplane combinations in this way, but the vibration of the two airfoils, due to the repulsion exist ing between thom wriking against the elasticity of the material, was appreciable at $G / C=1.67$, and at $G / G=1.00$ it was entirely too large for accurate woric when this lift was larger than 1.2\#. It would have been possible to have rigidly fixed one of the two airfoils by means of an additional spindle supporting its upper em, but that would have increased the amplitude of vibration of the airfoil which was being tested, and the only way to decrease the latter would have been to decrease the wind speed.

It was not desirable to conduct the test at a wind speed below $40 \mathrm{~m} . \mathrm{p} . \mathrm{h} .$, since that is the standard speed at which most of the tests on airfoils have been conducted at L..I.T., and a direct comparision of results would thas be possible. So for the remainder of the tests we mointed the biplone model in the wind tumel as a risid unit, as describod in Section III.

We then conducted a series of tests to determine whether the balance crosshead should be protected from the wind, and what spindle length was most desirable. We first tested a single Uodo. 27 airioil
mounted on the balance crosshead exposed (p. 110). This showed that the resistance of the balence crosshead exposed was equal to about $3 \frac{1}{2}$ times the minimum drag of the airfoil, and thus necessitated the use of a protecting case, for which purpose we utilized the discoid case previously described. We then tested each of the two U.S.A. 27 airfoils twice as a monoplane, mounted on the balane crosshead protected by the discoid case, anc with standard spindle length, i.e., projecting 5"t.00 above the balance head (ppll-1/z). Owing to the presence of the discoid case within $3!0$ of the end of the airfoil, the lift and drag were both increased by about 4\%. In an attempto eliminate this interference we increased the spindle lencth to $8^{\prime \prime} .00$, i.e., $3^{\prime \prime} .00$ longer than the standard length, and ocnducted the same number of tests as before (pp.114-115), but the average results (p.116) were not so good as the previous averase (p. 113), most likely due to the larger deflection error arising from the bending of the spindle. For the biplane tests we therefore decided to protect the crosshead by means of the discoid case, and to use the $5 " .00$ spindle length. As an a id to comparison we have platted the results of the above mentioned preliminary tests in

The average velue of the four tests on the U.S.A. 27 monoplane with crosshead mounting frotected from the wind by discoid case, (p. 113 , and curve 3 on plate 3) is taiken as the standard to wich to compare U.S.A. 27 biplane resill ts and thereby obtain biplane correction factors. This procedure involves the assumption that the interference effects of the discoid case on the binlane are in the same proportion as for the monoplane. We later tested each of the two Gottingen 387 airfoils in the same way ($\mathrm{pp} \mu \mathrm{Hz-150}$), and took the average results (p .151 and curve

Plate:
USA-27 MONOPLANE COMPARISON OF $L_{c}, D_{c}, L / D, \&$ CP CURVES OBTAINED BY FOUR METHODS OF TESTING.
2. Sranonad
.094016
.0035 ft
.0030
12

$0025 \quad 10$
 0015
 .010
 $\frac{1}{2}$

 compatison of z.a. Lo a cre curves 1. STMMRARR2

.004010
.0030

2 on Plate 4) as a basis to which to compare the Göttingen 387 biplane results.

We then proceeded to test twenty-nine U.S.A. 27 and twelve Götingen 387 biplane cambinations. In each test we measured I, D, and N, the moment about the balame axis prolonged, and then calculated L / D, $\mathrm{M}_{\text {I.e., and C.P. The proed ure in each case was as follows: }}$

The set up. The cover of the discoid case ves removed and the balance crosshead aligned transverse to the axis of the wind tunnel. Collars (1) were attached to the spindies (2) by screws (3), so that the distance fron the top of the collar to the top of the spindie wes 3-11/32". Tris made the distane from the balance head to the airfoil 5".00. The distance between the spindle axes was then ad justed by moving the slides (4) along the slider rods (5), ard locking them in position by means of the slider clamp screws (6). The spacing was always previously calculated so that the chord of each airfoil would be equidistant from the balance axis; and the distance was laid off accurate to $0^{\prime \prime} .01$ by layine a smil steel rule flat on the upper surface of a slide(4), at the same tine placing its end squarely against the side surface of the central blocir (8), and measuring from the latter to the index line (9) on the surface of the slide. the bajance head was then rotated through the number of degrees of stagger which the given biplane conbination was to have, and locked. The airfoils were screwed on to the spindles and aligned parallel to the tumel axis by sighting along a batten. The spindles were then lociced by the screws (10), the airfoils rigidly and accurately spaced at their upper ends by means of a strut, the disc oid cover replaced, and the test was ready to begin.

The test. $L_{0}, I_{1}, D_{0}, D_{1}, M_{0}$, and M_{1} were measured in the usual maner. The center of rotation at the upper end of the model was then located, and its coordinates, p and d (fig. $1, p, 96$), measured. Frou p and d we then oaloulateda and h (fig. 1,), the coordinates of the mean center of rotation. After correcting the drag for effective spindle resistance, D_{s}, and effective strut resistance, D_{s}, we calculated $I, D, L / D, M_{1}$, and C.P. The values of the effective strut resistance had been previously masured so that in a given biplane test it was only necessary to taite them from the ourves on Plate4a. This strut resistance vas of course different for each angle of incidence of the biplene, whoreas for a given pair of spindies the resistance was practically constant. Lift and moment corrections due to strut and spindles being not equidistant from the balance axis were negligible.

All of the oriecinal data for the 41 biplane tests and for the sixteen or seventeen other tests are given in Appendix B.

PLATE $4 a$.
Curves of Effective Strut Resistance:

00330
 $-60-30 \quad 30 \quad 20-10 \quad 0 \quad+10 \quad 20 \quad 30 \quad 20 \quad 50$

Section V.
 ESTISATION OF ERROTS

It is unnecessary to mention here the errors inherent in a wind tunnel equipped with an N.P.I. type balane. We shall discuss only those errors arising when our procedure departed from routine procedure. (1) Mis-Alienment of biplane model. In setting up the biplane model the distance between the spindle axes and the balance axis could be set to the nearest $0^{\prime \prime} .01$, thus making the maximum error in gap equal to $x^{\prime \prime \prime} .01$ at zero stagger. Likewise at the other end of the model the strut distance could be set within 0".01. The maximum error in G/C ratio would then be $\mathbf{x} 0.003$ at zero stagger, and the maximum ercor in stagger would be $\theta^{\prime \prime} .01 \sin 50^{\circ} .2=0 \% .01$, i.e., 王 0.3%, at $G / C=.50$ and 60% stagger. In settins the number of decrees of stagger the balance head could be set to the nearest $0^{\circ}{ }_{0} I$, thus siving an error in stagger of ± 00.05, or $\pm 0.1 \%$, and a G / C error equal 0.0000. The sum of these factors gives a maximum error of ± 0.003 in G / C, and of $\pm 0.4 \%$ in stagger. Since the sum of the errors both in stagger and G / C can only produce an error of about $x 0.2 \%$ in L_{0} max., and f_{D} max., as showm by our final results, they aro entirely negligible, and would have to be neglected even if they were not so, because they are so far within the wind tumel error. No fucther mismalignment of the biplane model took place due to the forces acting upon it during the oourse of the wind tunnel test because the balance orosshead, the airfoils, and the stiff strut at the top formed a very rigid structure.
(II) Mis-Aligment between the model axis and the balance
axis, oocurred to a greater or less degree when the airfoil was screwed into the spindle, but a larger misaligment occurred in the case of those models which were mounted on the balance crosshead due tothe fact that the spindies supported there on were not exactly parallel to the balance axis. These two faotors, combined, served to give a small amount of roll and yaw to the model, which amounts can be estimated fram the coordinates of the center of rotation measured at each end of the model. " A^{H} and " 7 ", the average values of these coördinates measured at each end (Notation p. 96), have been set down at the head of the tabulated records for each test, and are summerized in the following table.

		(1)	(2)	(3)
h	Aver.	.15	.86	.07
	Max.	.19	.92	.21
a	Aver.	.	.98	
	Max.	.93	.79	.90
			.74	.81

All values are positive, and are given in inches. Column (I) gives the average and maximum values of " a " and " h " for the oight monoplanes tested in the routine way, with spindle mounted directly in the balence head; (2) gives the corresponding values for the four monoplane tests conducted with the airfoil mounted on the balame crosshead proteoted from the wind by the discoid case, with spindle axis 0 ". 75 from balance axis; (3) corresponding values for the 41 biplane tests.

From these values of "a" and "h" we have calculated the values in inches of roll and yaw at the upper end of the model.

		(1)	(2)	(3)
Holl	Aver.	.17	.08	.14
	Max.	.25	.15	.42
Yaw	Aver.	.04	.42	.21
	Max.	.14	.51	.38

In calculating the degrees of roll and yaw we divided the values in column (1) by 18.00 ($=$ span of airfoil in inches) and multiplied by 57.3, whereas in the case of (2) and (3) we divided by 22.00 ($=$ span of airfoil in inches, plus spindle distance from bottom of airfoil to axis of balance crosshead) and multiplied by 57.3. This method was followed because in the case of (1), a single airfoil mounted in the routine manner, the spindle was but a prolongation of the balance axis, and the mis-alignment was between the spingle axis and the airfoil axis; whereas In the case of (2) and (3) the mis-alignment between model axis and balance axis was due almost entirely to the fact that the spindle axes themselves were not parallel to the balare axis, the model axis being practically parallel to the spindie axes. The value of roll and yaw calculated in this way were:

		(1)	(2)	(3)
Roll.	Aver.	0.5	002	0.4
	Max.	0.98	0.4	$1: 1$
Yaw	Aver.	0.1	$1: 1$	0.5
	Max.	0.4	103	$1: 0$

All angles of roll and yaw were positive, according to M.A.C.A. notation.

The effect of the mis-alignment in roll would be negligible. The wind direction would still be parallel to the wing chord, and the forces measured on the balance would be (the actual forces) X cos (angle of roll).

The cosine of the largest angle of roll recorded, $\mathrm{l}^{0}{ }^{0}$, is 0.9998 , so the negligible error of only $1 / 50 \%$ would be involved. Even for 4.0 of roll the error would be only $\frac{10}{4}$.

The effect of yaw is more potent, because it puts the airfoil chord at an angle to the wind direction. The following orrors are taken from data on a Clark tractor biplane model tested at M. I.T.* \% Errors for angle of Yaw $=+2: 0$ Angle of attack $\quad 0^{\circ} \quad 6^{\circ} \quad 12^{\circ}$ Lift............... $-1.5 \quad-0.7 \quad-0.7$ Drag............... +2.6 +1.20
C.P................. Less than $\frac{1}{2} \%$ of chord.

These values were calculated for a complete model at $+2^{0}$ yaw, but for tests on airfoils only, the importance of accurate alignment is greatly lessened, because the forces which cause most of the difficulty arise principally from the fuselage and tail surfaces. If we assune that 25% of the errorarises from the airfoils alone, and remerber that the maximum yaw arising in any one of our tests was $+1.1_{3}^{0}$, it would seem by comparison that in our case the maximun error due to yaw was less than $+\frac{1}{2} \%$ for drag, less than $-\frac{10}{4} \%$ for lift, ant entirely negligible as regards moment. Detailed calculationgfor our specific case appear unnecessary.

[^0](III) Spindle and Strut Resistance. In the case of the 41 bi plane tests the effective spindle resistance, D_{S}, oould not be determined to any greater degree of accuracy than $\mathbf{x} 0.0009$ 華, due largely to the fact that slightly different lengths of tho spindie, as much as \mathbf{I} I/20", were inevitably exposed each time the discoid case cover was removed and replaced. Likewise we believe that the error involved in determining the effective strut resistance, D_{s}, was about ± 0.0003 共. This makes the sum of the deviations for effective strut and spindle resistance equal to $x 0.0012$ \#, and involves the following errors in our biplane computation.
\% Errors due to strut and spindles.

		$D_{\text {Min. }}$	I/D Max.	D at Inax.
U.S.A. 27 Biplane	Min.	± 1.5	± 1.0	± 0.3
	Max.	± 1.7	± 1.1	± 0.2
Gottinger 387 Biplane	Min.	± 1.3	± 0.8	± 0.2
	± 1.4	± 0.8	± 0.2	

All of these values really represent maximum orrors, the row designated "min" being calculated for $G / C=0.50$, stagger $=40 \%$, which involved the largest values of dras, while the row desigrated "max:" was caloul ated for $G / 0=2.00$, stegger $=60 \%$, involving the smallest values of drag. The maximum possible errors in measuring drag were thus about $\pm 1.7 \%$ at $D_{\text {min. }} \pm 1.1 \%$ at L / D max., $\pm 0.6 \%$ throughout the flying range $\left(4^{\circ}-10^{\circ}\right)$, and negligible when the lift was near its maxinum. The average errors were of course about one half of these values, say $1, \frac{1}{2}$, and $\%, r e s p e c t i v e l y$.

The fact that the spindle axes were not quite equidistant from the balame axis, but were so spaced as to make the wing choris equidistant, as well as the fact that the strut usually protruded over one end of the model (Photo 1), produced no appreciable error in measuring moments. This was determined both by computation and by ectual measurement.
(IV) Deflection and M.P.Le balance errors. Deflection of the biplane model would if ary thing be less than that of a single airfoil mornted in the usual manner, because in the case of the biplane any deflection in roll must cause distortion or slipping of the strut attached at the top. Eine Likewise spindle deflection would be less because the spindles hed a free length about 1:0 shorter than the usual free I ength. At the sare time all the errors involved in the N.P.L. type balance, whether of deflection or otherwise, remain entirely negligible, even though the forces were doubled as conpared to the forces on a single airfoil.

SUMMARY

We believe we have found and estimated approximately correctag most of the errors chergcteristic of the method we erployed in conducting our tests. These errors are sumarized in the following table, in which the Roman numerals refer to the sources of the error.

MAXIMUM \% ERRORS.							
Sounces of Error	${ }^{\circ} \mathrm{c}$		DC ;			L/D	
	$0^{\circ}-12^{\circ}$	Max.	Min.	$\begin{array}{c\|} \text { At } \\ L / D^{\text {max }} \end{array}$	$\begin{aligned} & \text { Flying } \\ & \text { Ramge } \\ & 40-10 \end{aligned}$	Max.	$\begin{aligned} & \text { Flying } \\ & \text { Range } \\ & 40^{2}-10^{2} \end{aligned}$
(I)		± 0.2				± 0.2	
(III)	-0.3		+0.5	+0.5	+0. 5	-0.8	-0.8
(III)	-		土1.7	± 1.1	± 0.6	± 1.1.	± 0.6
Total Max. Error	-0.3	± 0.2	+2.2	+1.6	+1.1	-2.1	-1.4

We have previously stated that the errorsarising in the determination of \mathbb{M}_{c} and C.P. were necligible, and wehere see that the L_{c} errors are also negligible, but the errors for D_{c} min., and I / D max. could be over 2%, while throughout the flying range the errors for D_{C} and I / D cald be as much as 1% and $1 \frac{7 \%}{2}$ respectively. These are the maximum errors. The average errors would be about half as much. But even at their maximum these errors are no larger than the wind tumel experimental error, which is considered to be about 2\%. Taling the latter into account the maximum errors could be about 4% for $D_{0} m i n$. and I/D max., and about 3% for D_{c} and L / D throughout the flying range.

However, our final biplane correction factors (plates 13,
14.) have a greater reliability tha this. They were obtained by comparing the data from 41 biplane tests and plotting smoth curves. We consider them to be accurate within $\pm 1 \%$.

But although these final generalized results have this degres of acouraoy, the specific results from a given biplane test may not have. In conduoting as many as 41 biplane tests It was inevitable that to one or two of them there should befall all of the maximum errors estimated above. Such was the lot of the U.S.A. 27 biplanes, $G / G=1.67$, vtagger $=0$, and of the upper wing tested separately for the U.S.A. 27 biplane, $G / G=1.00$, stagger $=0$.

Such individual discrepanoies as these have not vitiated the final results. By a comparison of the results as a whole they have been detected and eliminated.

Soction VI.

ANALYSIS OP RESULTS
PageI. Biplane Correction Factors at Equal α.$+32$

1. Lift ooeffiaient 3.3
2. Drag ooefficient. 3?.
3. IIft Drag ratio. 37
4. Momont coeffioient. 37
II. Loading on Upper and Lower Wings.
5. Conter of pressure. 39.
6. Moment coefficient. 39.
7. Ifft coef. Distribution of lift between upper and lower wings 40
8. Drag coof. Distribution of drag between upper and 10 wer wings. 77
III. Aerodynamical Coefficients of the Biplane asa Unit. (Comparison of theoretical with(experimental values, and caloulation(or biplane correction factors at(Equal $I_{c} \cdot$)5.3.
9. Lift ooefficients.570
10. Drag odeffioients.64.
11. Lift/drag ratios. 68.
12. Moment coefficients.0 .69
13. Center of pressure coeffioients.73

Section XI.

ANATYSIS OF RBSUT IS

The U.S.A. 27 airfoil was thoroughly tested as a monomane, and in 31 biplane combinations; while the Gottingen 387 airfoil was ${ }^{2}$ tested as a monoplane, and in 12 biplane combinations. All of the biplane cominations tested are listed in the following table:

Stagger	G/C					
	0.50	0.75	1.00	1.33	1.67	2.00
-10\%	u	UES	U8	ug	u	u
-20\%		u	148	\square	$-33^{\text {Y }}$	
0\%	u	U8	ung	48	uu	u
20\%		u	ug	u	$-3 \frac{u}{2}$	
40\%		u	ug	u		
60\%	u	ug	ug	Ug	u	u

$g=$ Gutt ingen 387; $u=$ U.S.A. 27 u $u=$ U.S.A. 27 tested both as a biplane unit, and in addition each wing tested sequrately in the presence of the other.

The orisinal data for these tests are tabulated in the order in which originally made, in Appendix B.

It must be remombered that this orisinal data represents the forces acting on the biplanes in the presence of the interferonce of the discoid case. As mentioned in Section $17,1 p \cdot 16$, it was thought that the easiest way to correct for this interference would be to compare the biplane results with the results obtained from a monoviene tested in the same way (p. 113). We made these comparisons et equal angles of attack, because to have done so at equel I_{c} would have necessitated platting all the orisinal data. Instead, we obtained biplane correction factors at equal α, for $I_{c}, D_{c}, I / D$, and M_{c},
(Tables 1-33). We then multiplied the aerodynamical coeficients for the U.S.A. 27 and Göttingen 387 monoplanes tested in the routine way (pp. 103, 146) by these biplane correction factors, and so obtained the true biplene values for the $L_{c}, D_{c}, I / D$, and H_{0} (Tables 34-55, 62-73); while the true biplane values for C.P. (Tables 56 - 61, 73-761 were more easily obtained by aiding certain corections to the original biplane data. Havinc thus arrived at true values of the biplare coefficients, we plotted thom (Plates 5-12), and by reading values from the curves were able to check the accuracy of liunk's formulae (pp.32-79) and to calculate biplane correction factors at equal values of the L_{C} (Tables 89-109).

Having thus outlined the use to which our oricinal data was put, we shall now analyze in detail the results obtained.

I. Biplane Correction Faotors at Equal © .

These factors (Tables 1 - 35) were obtained more or less as a byproduct in the process by which we arrived at the true biplane values for the $I_{c}, D_{c}, I / D$, and M_{c}. They are not of as much significance as the correction factors obtained by makins comparisons between the biplane and monoplane results at equal values of the I_{c}, because lift is really the primary datum in considering an airfoil, and the angle of attack at which the lift occurs is only a secondary consideration. Nevertheless, an analysis of these factors will doubtless repay the effort involved, for they show -
(1) The values of all biplane coefficients in terms of the correspondinf monoplane results at equal α,
(2) how the biplane coeffieicnts at equal α vary with stagger and G / C, and
(3) how for a civen biplane combination the effects of a given stageer
and G / C vary with \propto.
We shall analyze in turn the correction factors at equal
for $L_{c}, D_{c}, L / D$, and M_{c}.

1. Lift Coefficient. - For a given biplane combination the correotion factors are practically constant from $\alpha=0^{\circ}$ to $\alpha=12^{\circ}$ or 140. Thus for the U.S.A. 27 biplane, $G / O=1.00$, stagger $=0$, the values are-

α°	0	2	4	6	8	10	12	14
Correction Factor	$.85 \frac{1}{2}$	$.86 \frac{7}{2}$.87	$.86 \frac{1}{2}$	$.85 \frac{1}{2}$	$.86 \frac{1}{2}$	$.86 \frac{7}{2}$	$.87 \frac{1}{2}$

The average value is $.86 \frac{1}{2} \pm .01$, while the corresponding average for the Göt. 387 is $.85 \frac{1}{2} \pm .01$, thus making the average for the two,0.86. The constancy of the correction factors from 0° to $12^{\circ}-14^{\circ}$ for a given biplane combination, and the sood agreement between the U.s.A. 27 and Gסt. 387 results, are shown to better advantage by plotting the factors for eech combination, but we consider it unnecessary to include the chart so obtained here. In the way illustrated above we have found the averace factors for all the biplane combinations tested "and tabulate them below.

Table 75
Biplane Correction Factors for $I_{c}, \alpha=0^{\circ}$ to 13°. U.S.A. 27, and *Got. 387 Airfoils.

Stagger	Gag/chord					
	0. 50	0.75	1.00	1.33	1.67	2.00
60\%	. 89	$\begin{array}{r} .92 \frac{1}{2} \\ * \quad 91 \frac{1}{2} \end{array}$	$\begin{aligned} & .93 \frac{1}{2} \\ & * .95 \end{aligned}$	$\begin{aligned} & .89 \\ & * .90 \frac{7}{2} \end{aligned}$. 95	. 96
40\%		. 90	. 90	. 90		
20\%		.84*	*.90	. 94		
0\%	. $76 \frac{7}{4}$	-82	$\begin{aligned} & * .85 \frac{7}{2} \\ & .86 \frac{7}{2} \end{aligned}$. 897	-86吉	. 94
-20\%		$* .82$.78	$\text { *. } 85 \frac{1}{2}$	$* 89$.89		
10\%	. 697	$\begin{array}{r} .77 \\ * \cdot 78 \frac{1}{2} \\ \hline \end{array}$	$\begin{aligned} & .866 \\ & .82 \frac{7}{2} \\ & \hline 1.84 \frac{1}{2} \end{aligned}$	$\begin{array}{r} .87 \\ * .85 \\ \hline \end{array}$. $88{ }^{\text {a }}$	-91者

The data of Table 75 are platted in our final Chart, Plate 13 , and given a series of smooth curves which ve believe are accurate within $\pm 1 \%$, and from which we taike the following values as a comparion to Table 75.

Table 76
Biplane Correction Factor For $L_{c}, 0^{\circ}-13^{\circ}$

Gap/Chord						
Stagger	0.50	0.75	1.00	1.35	2.67	2.00
60\%	. 89	. 92	. 94	. 95	. $95 \frac{7}{2}$. 96
40\%		. 89	. $91 \frac{1}{2}$. 93		
20\%		. $94 \frac{7}{2}$. $88 \frac{1}{2}$. 91		
0\%	- $76 \frac{7}{2}$. 82	. $86 \frac{1}{2}$. 897	. $91 \frac{1}{2}$. 94
-20\%		. 80	. $84 \frac{1}{2}$	-88		
-10\%	. $69 \frac{1}{2}$. $77 \frac{7}{2}$. 83	. 86	. 89	. $917 \frac{7}{2}$

We shall now consider whether the factors in Table 76 are applicable to any airfoil. From the standpoint of the vortex thoory the lift of an airfoil may be divided into two parts, lift due to.curvature, and lift due to ancle of attack.

For a monopiane,

```
Lift coefficient *due to curvature = 2\pi}\operatorname{sin}\mp@subsup{\beta}{0}{(I)
" " " " angle of attack=2 \(\pi \sin \beta \ldots .\). (2)
```

While for a biplane,

If comparisons are then made at equal angles of attack (equal β) for monoplane and biplane, the biplane correction factor for the lift coef, due to curvature is

$$
\frac{2 \pi \sin \beta_{0} \mathcal{B}_{0}}{2 \pi \sin \beta_{0}}=\mathcal{B}_{0},
$$

and for the lift coef. due to angle of attack is

$$
\frac{2 \pi \sin \beta \beta}{2 \pi \sin \beta}=\beta .
$$

* C_{L}. Munk's nomamcla. See our App.A.

B and B_{0} are theoretically determined constants (ref. 9)

 which depend only on the biplane cambination, i.e., on the amount of stagger and G / C, so that these biplane correction factors for the two individual components of the lift coefficient are independent both of airfoil profile and angle of attack. But the lift due to angle of attack increases as the argle increases, while the ift due to curvature remains constant for a given airfoil. Therefore the biplane correction factor for total \mathbf{I}_{c} will be at least slifhtly different for every airfoil and every angle of attacis. Precisely it will be equal to -$$
\begin{equation*}
\frac{\sin \beta_{0} \cdot B_{0}+\sin \beta \cdot B}{\sin \beta_{0}+\sin \beta}=B+\left(B_{0}-B\right) \cdot\left(\frac{\sin \beta_{0}}{\sin \beta}-\frac{\sin ^{2} \beta_{0}}{\sin ^{2} \beta^{0}}+\ldots\right) . \tag{5}
\end{equation*}
$$

The value of this is $\left(B_{0}-1\right)$ when $\beta=\beta_{0}$, and gradually approaches B as the angle of attack is increased. Thus far the U.S.A. 27 airfoil, $G / C=1.00$, stagger $=0: 3=.054, B_{0}=.925$, and the theoretical and expcrimental values of the biplane correction factors are -

α°	0	$\underline{2}$	4	6	$\underline{3}$	10	12	14
Theor.	. 912	. 89 者	. $88 \frac{1}{2}$. 87 7	. $87 \frac{1}{2}$. 87	. 87	. $86 \frac{7}{2}$
Expor.	. $85{ }_{\text {E }}^{\text {? }}$. $86 \frac{7}{2}$. 87	. $86 \frac{1}{2}$. $85 \frac{7}{\text { 年 }}$. $86{ }^{\frac{1}{2}}$. 86	. $87 \frac{7}{2}$

The agreenent here is good from $6^{\circ}-14^{\circ}$, but the predictions of the vortex theory are usually restricted to this range anyway. It might be inquired as to why the biplane lift cauld not be determined directly by using formulae (3) and (4), but that camot be done, as shown by a detailed computation, p. 55, because these formulae represent a solution of the two - dimensional problem only. gut we can compare results obtained from (3) and (4) with those obtained from (1) and (2), and thus get biplane correction factors, based on the assumption that the effect of the 1 ateral dimensions (the 3rd dimension) is propor-
tionately the same for both monoplane and biplane.
From formula (5) we see that for a given biplane combination the value of the biplene correction factor depends on β_{0} and β. β_{0} represents the curvature effect, while $\beta=0$ represents the ansie of attack at which the moment about the center of the wing is zero. Since both of these factors are a function of camber, we should expect airfoils of approzimately equal canber to have approximately equal biplane correction factors. Our experimental results show this to be true for the U.S.A. 27 with maximum canber equal 10.98%, compared to the Got. 387 with meximum camber equal 15.14%. And a comparison of the correction factors for these two airfoils with the limited aata preViously published for the thin Eiffel 13 bis, R.A.F. Gc, F.A.F. 15%, and Eiffel 36 airfoils, shows that the latter are alvays about 5% lover than the former.* From formula (5) we also see that as the angle of attack (β) is chansed the biplane correction factor mast change, but our experimental results show that the deviation from the average taken between $0^{\circ}-12^{\circ}$ is only about $\pm 1 \%$ for the U.S.S. 27 and Got. 387 airfoils.

Suming up, we can therefore say of the factors given in table 76, that they are not of any especial significance, but afford a convenient means of comparing the lift of different biplane combinations throughout the flying range $\left(0^{\circ}-13^{\circ}\right)$, and are accurate within $\pm 1, \%$ for airfoils having a naximum camber of from 10 to 16%.

* For a detailed comarison see section VII.

2. Drag Coefficient - The biplane correction factors at equal \propto for D_{C} (Tables $\left.11-19\right)$ are invariably larger then 1.00 for minimum dragn, and show a steady decrease from that point onwards as α increases. However, they remain fairly constant from 6° to 16°, throushout which range an averase value anan be taken from which the deviations will not usually be greater than $\pm 2 \%$. The Got. 38% results as a whole agree with the U.S.A. 27 results within about 3% from $\alpha=$ 0° to 14°. The range of variation of the factors from $6^{\circ}-16^{\circ}$, as well as the lack of a closer agreement.between the results for the two airfoils, does not justify a tabulation similar to that made for L_{c} factors in lable 75. The effect of stagger is much more pronounced than that of G / C, whereas the bipline correction factors for D_{0} at equal I_{0}, as we shall see on $p_{0} .66$, are affected in exactly the opposite way.
3. Lift-drag Ratio. The correction factors at equal α (Tables 20-24) vary definitely for a given biplane combination as \propto is increased. They increase very little with stasger betroen $\alpha=0^{\circ}$ and 16°, the variation being within $\pm 2 \%$ from the average, but they increase rapidly as G / C is increased. The results for the U.S.A. 27 and GOt. 387 airfoils agree within about 2% from $\alpha=0^{\circ}$ to 14°.
4. Moment Coefficient - The correction factors for \mathbb{H}_{c} (Tables 25-2d) for a given biplane combination are fairly constant from about 4° to 14°, somotimes over a larger rarge, and sometimes not at all. \#o would expect constant factors from about 0° to 14°, because within that range $I_{c} \propto \infty$, and the curves of \boldsymbol{H}_{c} vs. L_{c} are practically straight lines radiating from a focus. as stagger is increased from 40% to 0% there is a slight decrease* in M_{c}, 68 from 1 to 5%; Thereas

[^1]from stagger $=0$ to 60% there is a decided decrease, of from 15 to 25\%. The effect of negative stagger is thus negligible; the effect of positive stager potent. The effect of increasing G / C is to de-- crease the M_{C}, but not to so great an extent as does stagger. The M_{c} correotion factors for the Göt. 387 airfoil are effected to a smaller extent by variations of staEger and G / C than is the U.S.A. 27, so that the latter has higher values at regative staggers and lower values at positive staggers.

This concludes the analysis (so-called) of the biplane correction factors at equal \propto for $I_{c}, D_{c}, L / D$, and I_{c}. They are not of mach significance. They befell us as a by-product from the procedure by which we tried to obtain true values of the $b i p l m e ~ a e r o d y n a m i c ~$ coefficients. We hoped to correlate them in some useful way. In the care of the correction factors for I_{c}, from 0° to 13°, we succeeded, and consider the bother repaid.

We shall now proceed to consider the data on the upper and lower wings tested separately.

II. Loading on Upper and Lower Vings

The upper and lower wings were tested secarately in the presence of the intefference of the other for two U.S.A. 27 biplane cambinations (stagger $=0$, and $G / C=1.00,1.67$). We consider this data to be very reliable for $G / C=1.67$ but not so reliable for $G / C=1.00$, because during the test of the latter biplane the vings Vibrated rather violently, whereas comparatively little vibration occurred in the case of the former. The $I_{C}, D_{C}, I / D, M_{c}$, and C.P. for each wing are tabulated with the Original Data, pp. 104-109. while the fractions of the total biplane lift and drag on each wing are listed on Table 34. We shall examine the aerodynamic coefficients for each wing in reverse of the order mentioned.

1. Center of Pressure. The vortex theory indicates that for unstaggered biplanes there should be little difference between the C.P. on the upper and lowerr wings. Our C.P.'s for $G / O=1.00$ are in eact agreement from $\alpha=0^{\circ}$ to 18°, but they differ by 4% of the chord for $G /=1.67$. There is nothing to indicate that these latter values are in error, for a combination of thom in such a way as to give the C.P. of the biplane as a whole (Lable 34) checks within $1 \frac{18}{4}$ with the correspondine values obtained when the biplane was tested as a unit (Table 53). The same holds true for the C.P.'s at $G \neq 1.00$. Our data is therefore insufficiont either to gainsay or verify the theory, and we have not been able to find ary published data of this specific type.
2. Moment Coefficient. The H_{0} 's for the upper $\begin{aligned} \text { ince are }\end{aligned}$ smaller than those for the lower wing at small angles of attack, and larger at large angles of attack. This holds true both at
$G / C=1.00$ and 1.67 , and checiks with the results for the R.A.F. 60 biplane (ref. 2).
3. Lift ooefficient. Distribution of lift between the upper and lower wings. The most significant way to deal with the lift on the upper and lower wings is to express the lift on each wing as a fraction of the total lift of the biplane. This is done in Table 34. The values there tabulated show that in gereral the lift on the upper wing is greater than on the lower except possibly at negative angles of attack. at $G / C=1.00$ the load on the upper wing, expressed as a fraction of the total biplane lift, increases from 0.50 at 4° angle of attack to 0.54 at 20°; while at $G / C=1.67$ the corresponding loads are 0.53 and 0.55 . These figures show in a genoral way the distribution of lift between the upper and lower wings, but the manifold advantages to be gained from a more careful detailed design of wines justifies a thorough analysis of the load distribution from both theoretical and experimental standpoints.

From the standpoint of the vortex the ory the lift on each wing of a biplane is considered to be the sum of pramary and secondary lifts (rei. l). The primary lift is the sum of lift and counterlift; it is that part of the entire lift of a vine which is produced by the interaction of the uniform flow with the circulation and counter-circulation flow around the wing. The sec cndary lift is a component of the mutual forces actinc between parts of the whole biplane, consisting in this case of the repulsion between the upper and lower wings, increasing the lift of the upper and decreasing the lift of the lower by equal amomis.

For a biplane without stagger the upper and lower primary lifts are equal, for the induction at the upper and lower wing is almost equal, and therefore the changes of lift are equal. But a secondary difference is induced between the primary lifts due to the change of "effective stagger" as the angle of attack is changed. The "effective stagger" is not measured parallel to the wing chord, but more nearly parallel to the direction of flight. For the effects of aerodynamioal induction are determined by the position of the vortex layer behind the vings, and the direction of this layer nearly coincides with the direction of flizght. The "effective stagger" must therefore alvays be considered whether the biplane is staggered or not. For an unstaggered biplane it is directly proportional to the gap and to the lift coefficient. Due to it the change of induced upper and lower lift coefficient is

$$
\begin{equation*}
c_{I_{1}}=\frac{C_{k}^{2}}{\pi B} \frac{S}{b^{2}} \frac{G}{b}\left[\frac{b}{R}\left(\frac{1}{k^{2}}-0.5\right)\right] \tag{6}
\end{equation*}
$$

This quantity must be added to the absolute lift coefficient of the forward wing, and subtracted from that of the rear wing. It constitutes the only appreciable change of upper ani lower primary lift on an unstaggered biplane.

We shall now analyze the secondary lift, whi ch is a repulsion between the two wings. This repulsive force is produced both by the circulation flow and the vertical flow around the wings. The component due to the vertical flow is proportional
*Ref. 9, p. 24. For notation see our Appendix A.
to the square of the angle of attack, and exmessed as a quantity to be added to the upper am subtracted from the lower absolute lift coefficient, it is

$$
\begin{equation*}
\sin ^{2} \beta \cdot v . * \tag{7}
\end{equation*}
$$

On the other hand, the c amonent due to the $c i r c u l a t i o n ~ f l o w ~ i s ~$ proportional to the square of the lift, and is

$$
\begin{equation*}
\frac{\mathrm{C} \cdot \mathrm{O}_{\mathrm{L}^{2}}^{* *}}{2 \pi^{2} \cdot \mathrm{~B}^{2}} \cdot \cdots \cdots \cdots \cdots \cdots \cdot \tag{3}
\end{equation*}
$$

Adding (7) and (8) we get the total sec cndary lift coefficient which must be added to the lift coefficient of the upper w ing and subtracted from that of the lower:

$$
C_{L_{2}}=\sin ^{2} \beta \cdot v+\frac{0 \cdot C_{L}^{2}}{2 \pi^{2} \cdot B^{2}} \cdots \cdots
$$

The first term of this expression is proportional to the square of the angle of attack, while the sec ond is proportional to the squere of the lift. But lift arises both from curvature and from angle of attack. So for a given biplane the lift due to angle involves a double repulsive force, that arising from both (7) and the part of (8) due to angle; whereas the lift due to curvature involves a single repulsive force, that arising from the part of (8) due to curvature. Thick wing biplanes therefore have smail er repulsive forces than thin wing biplanes, and upper and lower lifts are more equal for the former.

[^2]Calculations for a specific case, however, show that at equal values of the lift coefficient this factor causes neglisible differences of loading for a thin wing as compared to/mediumly thick wing. The theoretical curves, showigg the fetion of total biplane lift on the upper wing platted against lift coefficient, coincide for the R.A.F.6c (max. camber 6.95\%) and the U.S.A. 27 (Hax. camber 10.98%, both biplanes boins at $G / C=1.00$, and zero stagser. The corresponding experimental cuives do not so agree, but for the reasons proviously stated the letter results are considered inaccurate. It seems safe to say that differemes of curvature cause negligible differences of secondary lifts.

By adding the secondary lift coefficient (9) to the chance of primary lift coefficient (6), we obtain

$$
C_{I_{1}}+C_{I_{2}}= \pm\left[\frac{C_{I}^{2}}{\frac{\pi_{B}}{b^{2}}} \frac{G}{b} \frac{b}{B}\left(-S^{\prime}+\frac{1}{K^{2}}\right)\right]^{-}\left[\sin ^{2} \beta v+\frac{C C_{I}^{2}}{2 \pi^{2} B^{2}}\right] \ldots(10)
$$

This expresses the equal and opposite amounts by which the upper and lower lift coefficients of an unstaggered biplane are changed. The first term of formula (10) must be added to the upper wing and subtracted from the lower at negative areles of attack, and vice versa at positive areles of attack. The second term is always edded to the upper, and sibtracted from the lower. Aocording to the method of this formula me have calculated the lift on the upper wing of the three biplane cambinations for wich we have experinental data to serve as a basis of comparison. For one of these we wive the detailed computations.

$$
\text { R.A.F. } A_{G} \text { Biplane.* }
$$

Gap/Chord $=1.03, \quad$ Stagger $=0, \quad$ aspect ratio $=6$.
We calculate $\mathrm{S} / \mathrm{b}^{2}=1 / 3, \quad G / b=\frac{1.03}{6}=0.172$.
From curves of the original data we find that

$$
\beta=0^{\circ} \text { when } \alpha \dot{\alpha}=0.3
$$

From ref. 9, tables I and III, we obtain the followins values:

$$
B=0.858, \quad C=1.88, \quad v=0.078, \frac{b}{R}\left(\frac{1}{x^{2}}-0.5\right)=0.671 .
$$

We calculate $C_{L}=0.0143 C_{L}^{2}, \quad o_{I}=0.078 \sin ^{2} \beta+0.130 C_{L}^{2}$.
It is then easy to calculate the value of $C_{L_{1}}$ and $C_{L_{2}}$ for each angle of attack These are tabulated in Table 77.

Table 77.
Amount, $\left(C_{I_{1}}+\theta_{I_{z}}\right)$, by which upper lift c oef. $\left(C_{I}\right)$ is increased. R.A.F.6c Biplane Gep/chord $=1.00$, Stagger $=0$, Aspect ratio $=6$.

[^3]In the and and 3rd columns the lift coefficients of the biplene as a whole are tabulated. ${ }^{C_{L_{1}}}$ and the two components of $\mathrm{C}_{\mathrm{I}_{2}}$ are tabulated in separate columns so that the relative importance of each of these three factors cen be gauged. It is evident that the compenent of the secondary lift which arises from the circulation flow, $v i z .$,

is by far the most important factor of the three involved. The other two, listed in the 4th and 5th colums could be omitted without causing an error of more than 1.1 of in determining the \% of lift on the upper wing. That amount is too large to be neglected, hovever.

The fraction of total biplane lift on the upper wing is equal to

$$
\begin{equation*}
0.50+\left(C_{I_{1}}+O_{I_{z}}\right) / 2 \cdot C_{I} \tag{11}
\end{equation*}
$$

where C_{I} is the lift coefficient of the biplane as a whole. The values of this fraction were calculated for the R.A.F. of, and also for the U.S.A. 27 at $G / C=1,00$ and 1.67 , according to the nethod of computation illustrated above. The experimental values are listed next to the theoretical values in Table 78.

Table 78
Theoretical and experimental values of the Ifft on
the Upper Wing, expressed as a fraction of the total biplane lift.*

$$
\text { Stagger }=0, \text { Aspect ratio }=6 .
$$

U.S.A. 27 Biplane							R.A.F.Gc Biplane		
$G / O=1.67$				$G / C=1.00$			$G / C=2.03$		
	$\underline{I_{\theta} \times 10^{5}}$	Treo	Exper		Theor	Exper	$I_{0} \times 10^{5}$	Theor.	Exper.
-6	-22	. 51	. 61	-16	. 50	. 89	-67	. 52	. 40
-4	26	. 50	. 60	17	. 50	. 18	-30	. 51	. 32
-2	58	. 51	. 54	48	. 51	. 41	7 *	. 50	. $83 \frac{1}{2}$
0	91	. 52	. 54	77	. 52	. 46	46	. 51	-62
2	126	. 52	. 53	107	. 53	. 48	87	. 52	
4	162	$\stackrel{53}{ }$. 53	143	. 54	. 50	127	. 53	-542
6	191	. 53	. 53	169	. 54	. 51	161	. $53 \frac{1}{2}$. 53
8	223	/54	. 53	199	. 54	. 51	195	-54	. 53
10	256	. 54	. 53	226	. 55	. 51	222	. 55	. $53 \frac{1}{2}$
12	284	. 54	. 53	255	. 56	. 52	253	. 56	. 54
14	314	. 55	. 54	282	. 57	. 52	276	- $56 \frac{1}{2}$. $55 \frac{7}{2}$
16	337	. 55	. 54	306	. 57	. 52	297	. 57	. 56
18	351	. 55	. 55	325	. 57	. 53	295	. 57	. 54
20	343	. 55	. 55	329	. 58	. 54	277	. $56 \frac{7}{2}$. 49

$I_{c}=$ lift coef. of the biplane as a whole.
We shell consider each of the three biplanes in turn. U.S.A. 27. $G / C=1.60$. When compared at equal values of I_{C}, the theoreticel and experimental values check within .01 , from $I_{C}=.00126$ upwards, or from about $\alpha=1^{\circ}$ upwards. U.S.A. $27, G / G=1.00$. There is a comstant difference of about. 04 between the theoretical and experimental values, from $I_{c}=.00107\left(\alpha=2^{\circ}\right)$ upwards. It is evident that the experimental values are too low. The fraction of lift on the upper wing at $\alpha=0^{\circ}$ should be at least. 50 , whereas the exper imental value is only .46. B.A.F.6c, $G / C=1.03$. Experimental and theoretical values check within an average of .01 from $I_{c}=.00127\left(4^{\circ}\right)$ to L_{0} maximum.

* The lifts for the lower wing will of course be the complements of these values.

Thus, in general, the theoretical values.check with the experimental values from $I_{C}=.00125$ (about $0.4 I_{c}$ max.) to I_{c} max., or from about an angle of attack, of 4°, to the burble point. The exception is the U.S.A. 27 biplane, $G / C=1.00$, the data for which have previously been show to be unreliable. For all three biplanes, however, there is a wide divergence between the theoretical and experimental values above or below the limits of agreement just mentioned. But the the ory is not supposec to make accurate prediations outside of that range anyhow. Within that range it appears safe to calculate the lift on the upper wing by making use of formula (10). But in the form stated the use of this formula is rather tedious. We therefore suggest the following simpification. It is evident from from (10) that for a given gap and aspect ratio the fraction representing the lift loading on the upper wing is directly proportional to the lift, provided we negleot the term, $\sin ^{2} \beta$. This term does not usually amount to as much as of the total lift for andes of attack below 16°. We neglect it and reduce formulae (10) and (11) to the approximate form;
(Frac. of lift on upper) $=0.50+\frac{C_{L_{1}}+C_{L_{2}}}{2 \cdot C_{I}}=0.50+\mathbb{K} C_{I}$,
where K is a function only of gap/span and aspect ratios. This can be expressed in the alternative form,

$$
\text { (Frac. of lift on upper) }=0.50+K_{1} I_{c} \ldots \ldots(12)
$$

This represents a straight line, having its origin at $I_{c}=0$, (Frac. of lift| $=0.50$; and of slope K_{1}; and is only applicable for values of the $L_{c}>.000125$. Values of K_{1} can be oalculated for any gap/ span and aspect ratios. For aspect ratio equal 6.00,

G / C	\underline{K}
1.00	23.5
1.67	16.1

By supplying these values of K_{1} in equation (12) we have obtained the following: -

$$
\text { Table } 79
$$

Traction of lift on upper wing.

$L_{c} \times 10^{5}$	G / O	
	1.00	1.67
125	. 53	. 52
150	. 53 管	. $52 \frac{1}{2}$
175	. 54	. 53
200	. $54 \frac{1}{2}$. 53
225	. 55 砍	. $53 \frac{1}{2}$
250	. 56	. 54
275	. $56 \frac{1}{2}$.54
300	. 57	. 55
325	. $57 \frac{1}{2}$. 55
350	. 58	. $55-7$

A comparison of these values with the laboriously attained values of Table 79, shows that Table 79 is af anything the more accurete of the two.

In conclusion, therefore, we recommend equation (12) as a ready method of caloulating the lift on the separate wings of an unstaggered biplane. It is agplicable from $I_{C}=.00125$ to $I_{C} \max$., and gives results as accurately as the experimental data justifes. Our analysis has been restricted to biplanes without stagger. The vortex theory ind icates that stagger accentuates the load. on the upper wing, but no experimental data are avilable. More' exporimental work is also needed to determine the distribution of lift at angles of attack below 4^{0}.

We shall now proceed to consider the distribution of the total drag of the biplane between the upper and lower wings.
4. Distribution of Drag between upner and lover wings. Our results for the U.S.A. 27 biplane are given in Table 34. For the sake of ready comparison with the resul ts for the R.A.F.6e,* we here reproduce the percentage of total drag on the upper wing.

Table 80.

χ^{0}	(1)	(2)	(3)
-6	54.	44	$45 \frac{1}{2}$
-4	56.1	46- $\frac{1}{2}$	47
-2	55 근	48	487
0	50	49글	493
2	481 $\frac{1}{2}$	50	$50 \frac{7}{2}$
4	$49 \frac{1}{2}$	51 表	$51 \frac{1}{2}$
6	4931	52	52
8	50	54	$54 \frac{1}{6}$
10	51	55	55\%
12	$51 \frac{1}{2}$	56	56
14	54	56 -	56
16	55	$57 \frac{1}{2}$	$50 \frac{1}{2}$
18	57	57	48\%
20	52	55	49

(1) U.S.A. $27, G / 0=1.00$, (2) U.S.A. $27, G / C=1.67$, (3) R.A.F. $6 c$, $G / 0=1.03$. Stageier $=0$, and aspect ratio $=6$, in each case. See Table 78 for $I_{c}{ }^{\prime} s$.

One would expect that for an unstasgered biplene the drag would be equal on upper and lower wings at zero angle of attack, since tre mutually induced domwash is then equal at both wings, and the "effective stagger" is also zero. In our experimental results this equal distribution occurs at 0° (1), 2° (2), and 1° (3). Startinc from this position of equal distribution, as the angle of attack is decreased the effective stageer is increased, the ina uced downash becomes less for the upper wing, and therefore the \neq of drag on the * Ref. 2, Table 2.
upper wing would decrease; and vice versa for increased angle of attack. our data is in agreement with this reasoning. (2) and (3) show a uniform increase of the of the upper wing from -6° to $+16^{\circ}$, while (I) shows a uniform increase for positive angles of attack, but does not show a decrease for negative angles. This discrepancy is due to experimental error, for there are also irregularities in the lift readings for the negative angles of attack.

After the uniform increase of the upper \% of drag from -6° to $+16^{\circ}$, there oocurs a decided decrease, thus indicating that above about 16° the interference of the front (lower) wing actually decreases the drag of the upper wing. The front wins seems to shield the rear. All three of the tests show this effect. Ali the

Since we know of no facile theoretical means of calculatire the drag on each wing, we shall now try to correlate the resul ts of these three tests so as to obtain a more generalized expression for the of drag on the upper wing. Wen the values of Table 80 are pletted, first with the lift coefficients and then 7ith t'e angles of attack as ordinates, it is seen that (I) is about 4\% below (3) at equal L_{c}, and about 3% below at equal α, throughout the range $0^{\circ}-14^{\circ}$. It has previously been pointed out that the $\%$ of lift on the upper wing was also too low for this same test, Viz., the U.S.A. 27 biplane at $G / G=1.00$. It appears that in testing the upper wing of the biplane combination, the wind speed was temorarily too low, or the angle of attack shifted through" $\frac{10}{2}$ or so. This constituted our first test, and we were more or less inexperienced at the time. We shall therefore neglect the values (1).

The curves of (2) and (3), versus. α, lie on approximately the same straight line,

FDrag on upper $=50+\frac{\alpha^{0}}{Z}, \ldots \ldots \ldots \ldots \ldots \ldots(13)$
from $\alpha=-4^{\circ}$ to $+14^{\circ}$. While the curves of (2) and (3), versus L_{c}, are parailel straight lines, from $\mathbf{L}_{\mathrm{c}}=0$ to I_{c} max. For $G / K=1.03, \quad$ Frac. of drag on upper $=.48+33.3 I_{C}$
 None of the platted points deviate from these straight lines by more than \pm. The average deviations are much less.

As an easy means of calculating the drag on each wing of a biplane we therefore recoment equations (4). They ampear applicable to any biplane (aspect ratio equal 6) havinn the gap ohord ratios indicated.

This concludes our analysis of the loading on the upper and lower vings.

We shall now consider the aerodynamic coefficients of the biplane as a unit. In conneotion with each coefficiont we shall verify the accuracy of predictions from the vortex theory (Munk's formulae), and derive biplane correction factors applicable at equal values of the lift coefficient.

III. Aerodmamical Coefficients 0 . the Eiplane as a Unit.

These coefficients, obtained by the liethod of Prosedure outlined in Seotion IV, are listed in Appendix C, Tables 34 to 76 inclusive. We shall consider them aco ording to the order in which they are there tabulated.

1. Lift Ccefficients - These are Iisted in Tables 35-41 (U.S.A. 27), and 62-64 (GOt. 387), and are platted ageinst angles of attack as ordinates in Plates 5-7, and 10, 12 respectively. The plotted points are not show on the plates, because they mould simply lead to confusion, with so many curves in close proximity. The deviations do not exceed $\pm 0.00002 \frac{\pi}{2} / \mathrm{ft}_{0}^{2} / \mathrm{mph}$. These curves show at a glande the effect of stagger and G / C variations on the lift. They are useful as a means of deterainins
(1) the different ancles of attack at which the same lift is produced by difierent siplano combinations, and
(2) the different lifts which occur at the same ansle of attack. They also constitute the best method of smoothins out or eliminating inaccurate data, and so improve the reliability of the results. Thus by glancins at pletes 5 and 7 one can inmediately see that the curves for the U.S.A. 27 iplane combination, $G / C=1.67$, stagser $=0$, are out of place, and that the ralues of I_{c} and D_{c} which they represent are evidently too smail. A comearison of these values (Tables 39 , 46) with the results obtained when each wing of the biplane was tested separately. (Table 34), shows that the two do not agree, and that the latter are correct. We therefore discord the results obtained when this specific biplane combination was tested as a unit,
al though shifting the angle of attack by 0.3 would probably account for the discrepancy.

Ho fuxther mention of the plates noed be made, excopt to cell. attention to the soale marked BATIO FACHOR, which is erected on the left hand side of Plates 5-7. This seale shows the ratio of the biplene lift to the maximum lift of the monoplane hawine the same winc area. It is a convenient means of comarine monoplane and biplane charaoteristics.

Bor atstaggered biplane the primary lift, due to curvature and angle of attack, is principally offected by interference, and change of "effective gap" as the angle of attack is changed. The interference effect is principally an increase of lift within the same limits for either positive or negative stagger; while increase of effective gap causes an increase of lift, and vice versa. The effective gap is measured practically perpendicular to the direction of flight; it is increased for positive stacser with positive angle of attack, and decreased for negative stagger with positive angle of attacin. Thus as a whole, the effects of interference and effective can have like signs for positive stacger, and opposite signs for negative stageer. The influence of positive stasger on lift should be much more pronounced than that of negative stagger. The I_{c} curves for the got. 387 (Plate 10) and J. S.A. 27 oiplanes (Plate 6) demonstrate this very strikingly. On the former plate the curves for the negative stagger aimost coincide, whereas those for positive stacrer are comparatively far apert.

According to theory, at zero lift the angle of attacis should be the same for both monoplane and ell biplanes having the same
wing section. Because the angle of attaon for a specific I_{c} is composed of
(1) the original angle belonglins to the wing section and the I_{0},
(2) the additional angle due to induction, end
(3) the additional ançle due to interference, and
at zero lift (2) and (3) are equal to zero. A first glance at Dlates 12, 5 , and 10 , would seem to Indicate that our results checin $\begin{aligned} \text { ith this }\end{aligned}$ theoretical prediction, for on these plates the L_{c} curves certainly converge to a narrow band at zero lift. But a careful analysis shows that the deviations are too large to attribute to experimental errors. If we consider the error to be in the angle of attack, we find that the deviations from the average value of the angles of attack at zero Iift are about as follows:

	Average Ceviations	Yaximum deviations
Flate 5	± 0.2	
6	± 0.4	± 0.6
7	± 0.2	± 0.8
10	± 0.8	± 0.4
12	± 0.2	± 0.4

Since the models, when set up in the wind twnel, were accurately aligned to within 0:1, it is hard to see how the maximum deviations tabulated above can be attributed to experimental error. On the other hond, if we consider the errors to be in the measurement of list near its zero value, we find the following aproxinate deviations in I_{c}

	Average deviations	Heximum deviations
Plate 5	$\pm .00003$	$\pm .00008$
6	$\pm .00004$	$\pm .00012$
7	$\pm .00003$	$\pm .00009$
10	$\pm .00003$	$\pm .00005$
12	$\pm .00003$	

For the biplanes tested, $\pm .00012$ corresponds to $0.144 \frac{\pi}{7}$, end *. 00003 corresponds to 0.036%. It is difficult to see not only how an error of 0.144\# could be made, or even how an error of 0.036. could have slippod in. We therefore believe that the different angles of attack, which our results indicate occured at zero lift, camot be attributod to experimental error, but can doubtless be accounted for by some of the factors neslected in the developmont of the the ory.

We shall now make a few detailed camprisons between the velues of lift and angle of attacis obtained by us and those predicted by the vortex theory. We can compare lifts at equal angles of attack, or compare angles of attack at equal values of the list. Dut sc far as we know there are as yet no straightforward formu\{le by which the lift for a given angle of attack can be calculated. The formulae*-

apply only to the two-dimensional biplane, and so give lifts very much higher than the three-dimensional actuality, as shown by the following table.

Nable 82.
U.S.A. 27 Biplane, $G / G=1.00$, Stagser $=0$. Lift coefficient due to curvature $=0.00080$.

*Ref. 9, p. 31.

The lack of agreement is evidently the fault of the $2-$ dimensional values of the lift arising from angle of attack. Due to aerodymomical Induction arising fran the lateral dimensions, the ancle of attack must be increased for equal values of I_{c}. But such corrections to the angle of attack involve very clumsy caloulations.

It is much easier to start fran the Iift as the primary datrm, and compare angles of attack at equal values of the lift. In doing this we can make use of a formila ready developed by Lunis,

$$
\alpha_{2}=\dot{\alpha}_{1} \frac{c_{I}}{\pi}\left[\left(\frac{S_{1}}{\frac{1}{1}_{1}^{2} b_{1}^{2}}+I_{1}\right)-\left(\frac{S_{2}}{{L_{2}^{2}}_{2}^{2}}+I_{2}\right)\right] * \ldots .(15)
$$

By the method of this formula we have calculated the theoretical values of α, compared to the experimental values in Tables $82-83$.

Table 82
(1) The oretical and (2) Experimental values of the angle of attack expressed in decrees. sut. 387 Biplene, Stamser $=0$. Gap/Chord.

. $\mathrm{O}_{\text {I }} \mathrm{I}_{\mathrm{e}} \times 10^{5}$		0.75		1.00		1.33	
		(1)	(2)	(1)	(2)	(2)	(2)
0	0	-7.1	-8.0	$0 \% .1$	-7.2	- 721	-7.3
.2	51	-3.5	-3.9	-3.7	-3.8	-3.7	-3.9
. 4	102.	0	-0.4	-0.4	-0.7	-0.7	-0.9
. 6	153	3.4	3.0	2.9	2.5	2.5	2.1
. 8	205	6.9	6.5	6.2	5.7	5.6	5.2
1.0	256	10.4	9.7	9.5	8.8	8.8	8.5
1.2	307	13.9	13.7	12.8	12.1	11.9	11.4
1.4	358	18.1	19.1	16.9	16.5	15.8	15.4

(I) The oretical and (2) ixperimental Values of the Angle of fttack, Eypressed in Degrees. U.S.A. 27 Biplane, stagger $=0$.

Gap/Chord

		0.50		0.75		1.00		1.33		2.67		2.00	
$\underline{C}_{\text {I }}$	$\underline{4} \times 10^{5}$	(1)	(2)	(1)	(2)	(1)	(2)	(1)	(2)	(1)	(2)	(1)	(2)
0	0	-5.0	-6.2	65.0	05.5	5.0	-5.5	-5.0	-5.2	-5.0	-5.0	-5.0	-5.2
. 2	51	-1.5	-2.4	-1.7	-2.0	-1.9	-2.2	-1.9	-2.3	-2.2	-2.1	-2.2	-2.7
. 4	102	2.1	1.5	1.8	1.5	1.4	1.0	1.1	0.8	0.9	1.1	0.8	0.3
. 6	153	5.8	5.4	5.2	5.0	4.7	4.1	4.3	3.9	3.9	4.2	3.8	3.3
. 8	205	9.5	9.4	8.9	8.6	8.2	7.5	7.6	7.1	7.2	7.5	7.0	6.5
1.0	256	13.7	14.2	12.7	12.4	11.8	10.6	11.1	10.5	10.5	10.9	10.3	9.8
1.2	307	-	-	16.7	17.5	15.6	15.1	14.7	14.4	14.0	14.3	13.8	13.4
1.3	353	-	-	-	-	17.9	18.8	16.9	17.2	16.2	17.7	-	-

An analysis of these two tables shows that the theoretical ourves of I_{c} plotted against α will be parallel to the experimental curves, the constant difference between the two being 0.4. The average differences between the theoretical and calculated values of the angle, from $L_{C}=.00025\left(C_{L}=0.1\right)$, to 0.9 Lo mox., are as follows for ach biplane combination.

Stagger = 0
Gar/chord

	0.50	0.75	1.00	1.33	1.67	2.00
U.S.A. 27	0.84	0.93	0.5	0.9	-0.83	0.5
Got. 387	-	0.84	0.84	0.4	-	-

The theoretical angles are in each oase larger than the experimental angles, with the exception of the values for the U.S.AI 27 biplane, stagger $=0, G / O=1.6 \%$. But the experimental values for this biplane combination have previously been shown to be in error, and need not be considered further here. The average of the deviations tabulated above is 0\%4. We can therefore say that for montaggered biplanes, having any gap chord ratio, the angle of attack for a given value of the ifft, from 0.1 to 0.9 L max., can be calculated (by formula (15)) to within 0.4 . This deviation is always posit ive for U.S.A. 27 and Göt. 387 biplanes, so that for these biplanes the exact angle can be obtained by subtracting 0.4 from the theoretical value.

The foregoing applies only to unstaggered biplanes. We shall now consider the effect of stagger on the angle of attack required
to produce a given lift. Referring back to formula (15) it is apparent that for a given value of the lift cooffioient $\left(C_{L}\right)$, on a biplane of given aspect ratio ($\mathrm{s} / \mathrm{b}^{2}$), the angle of attack (α) is a function only of the induction factor "x" and the interference factor "I". The induction factor "k" is the ratio of the span of a monoplene to the span of the equivalent biplane having the same induced drag under the same conditions. The values of "k" were determined by Munk empirically. * He states that stagger does not materially affect them; they depend only on the Gap/span ratio of the biplane. The interference factor "I" is approximately a function of Gap/chord ratio only. Munk states**that "I" varies somewhat with stagger and wing section, but that the entire result is not much affected if an average value of "I" is taken for each Gap/chord ratio.

Since "k" and "I" are little affected by stagger, therefore the angle of attack for equal lifts is not materially affected by stagger. So runs the theoretical argment, bat in our experimental results, tabulated below for the Göt. 387 , at $G / C=1.00$, the differences between the angles of attack for the several staggers are not negligible.

* General Theory of Thyin Wing Sections." N.A.C.A. Report 114.
** Ref. 9.

GÖt. 387 Biplane, $G / C=1.00 \quad$ (P1ate 10). Comparison between experimental values/of the angle of attack (degrees) required to produce equal lifts at various staggers.

${ }^{C}$	$I_{c} \times 10^{5}$	Stagger					
		-40\%	-20\%	0%	20\%	40\%	60\%
0	0	-6.9	-7.5	-7.2	-6.8	-7.7	-7.4
. 2	51	-3.7	-3.9	-3.8	-3.5	-4.0	-4.4
. 4	102	-0.5	-0.8	-0.7	-0.4	-1.0	-1.4
. 6	153	2.5	2.4	2.5	2.7	2.0	1.6
. 8	205	5.7	5.5	5.7	5.9	5.2	4.6
1.0	256	8.9	8.7	8.8	9.0	8.2	7.5
1.2	307	12.4	12.2	12.1	12.1	11.2	10.6
1.4	858	19.1	17.1	16.5	15.9	14.8	13.9

These values are plotted in Plate 15, together with the corresponding results for the U.S.A. 27 Biplanes at gap/chord ratio equal 0.75 and 1.00. An inspection of these curves shows that for the GOt. 387 biplane, $G / c=1.00$, the effect of negative stagger is entireis ly negligible, while the effect of positive stagger/to cause an apprec iable deorease in the angle, For the U.S.A. $27, G / K=1.00$, there is a uniform decrease in angle as the stagger increases from -40% to $+60 \%$; there occurs a small decrease at negative stagger, and a more rapid decrease at positive stagger. The eract amounts are tabulated below.

Table 85
Amounts (in degrees) by which the angle of attack corresponding to equal lifts is decreased when the stagger is increased from -40% to $+60 \%$.

CI	$\mathrm{I}_{0} \times 10^{\text {² }}$	(1)	(2)	(3)	(4)	(6)
. 2	51	0.7	0.6	0.8	1.7	1.6
. 4	102	0.8	0.6	1.0	2.1	2.1
. 6	153	0.9	0.6	1.2	2.4	2.7
. 8	205	1.2	0.7	1.4	2.8	3.4
1.0	256	1.4	0.8	1.6	3.3	4.6

(1) GOt. $387, G / C=1.00$ (2) U.S.A. $27, G /(C=2.00$ (3) $G / G=1.00$
(4) $G / G=0.75,(5) G / C=0.50$.

PLATE 15
CURVES SHOWING THE ANGLE OF OF ATTACK (Q) REQUIRED TO PRODUCE EQUAL LIFTS AT VARIOUS STAGGERS.

In each case, with one or two exceptions, the effect of positive stagger is much more pronowned than that of negetive, so that the decrements of angle tabulated above are due chiefly to the change of stagger from 0% to 60%. This is due to the fact that the effects of interference and effective gap have like signs for positive stagger, and opposite signs for negative stagger, as explained in the third paragraph, of this discussion on lift coefficients. As shown by the figures in columns (2) and (5), the decrements of angle due to stagger are about four times larger at $G / C=0.50$ than at $G / C=2.00$. But this influence of G / C on the potency of the stagger is only apparent. It is due to the fact that the stagger has been expressed as a \% of the chord. 60% stagger at $G / C=0.50$ corresponds to an angle of stagger equal to 49%, while 60% atagger at $G / C=2.00$ corresponds to an angle of only $16 \% \%$, the ratio between the two being about 4il

It is apparent that the decrements of angle due to stagger (Table 85) are too large to be neglected, even though the average deviations would be only about half the size of the amomts there tabulated if average values of "r" and "I" are used in calculating the angles. This is further strikingly shown by the curves of I_{c} plotted against \propto in Plates 6, 7 and 10. If the offects of stagger on p were negligible, the I_{c} curres in Plate 6 would be grouped in three narrow bands, corresponding to the three gap/chord ratios; the curves in Plate 7 would be grouped in two narrow bandss and the curves in plate 10 would practically coincide in one narrow band. But such is not the case; appreciable angles separate the curves.

Summary. In this anslysis of biplane lift coefficients we have compared the theoretical and experimental values (1) of lift coefficients at equal angles of attack, and (2) of angles of attack at equal lift coefficients.
(1) Calculation of L_{c} 's for given $\alpha^{\prime} s$ was tried by means of the 2-dimensional formulae (14). These formulae give values of L_{0} very much too high, unless the α 's are increased to correct for the aerodynamical induction arising from the lateral dimensions. But such corrections involve nnnecessary labor.
(2) It is easier to calculate α^{\prime} s at equal I_{o} 's by means of formula (15). This we did for ten unstaggered U.S.A. 27 and Göt. 387 biplanes having gap/chord ratios from 0.50 to 2.00. The theoretical α^{\prime} s so obtained were almost uniformly 0.4 too high.

Formula (15) applies only to unstaggered biplanes. Munk states that stagger does not materially affect the α required for a given I_{0}. Our data show that the average amounts by which α was decreased whem the stagger wes changed from -40% to $+60 \%$ were 1.2 at $G / C=1.00$, and 2.5 at $G / C=0.75$. The average decrements were directly proportional to the stagger expressed in degrees. The effect of positive stagger was twice that of negative (averages), so that in the specific cases mentioned above the decreases of α due to positive stagger were 099 , and $1: 9$, respectively.

It is evinent that induction factors "K", and interference factors "I" should be calculated for stagger. Meantime we recomend our I_{c} correction factors at equal $\propto, 0^{0}-13^{\circ}$, (Table 1-10, and Plate 13) as a quick means of finding the lift on staggered biplanes.
2. Drag Coefficients - These are listed in Tables $42-47$ for the U.S.A. 27, and 65-67 for the Göt. 387 biplanes , and are plotted against angles of attack as ordinates in Plates 5-7, and 10, 12, respectively. To avoid confusion the plotted points are not shown on the plates, but the deviations do not exceed $3 \times 10^{-6} \# / \mathrm{sq} . \mathrm{ft} /$ mep.h. ($=0.0036 \#$ for the biplanes).

By means of these curves we have been able to make comparisons between the experimental values of the drag, and the theoretical values calculated by the method of Munk's formula:

$$
C_{D_{2}}=C_{D_{1}}-\frac{c_{I}^{2}}{\pi}\left[\frac{s_{1}}{b_{1}^{2} k_{1}^{2}}-\frac{S_{2}}{b_{2}^{2} k_{2}^{2}}\right] * \ldots \ldots \ldots . .(16)
$$

These comparative values are tabulated in Tables 86 and 87.
Table 86
(1) Theoretical and (2) Experimental values of the Drag Coefficient $\left.^{\left(D_{0}\right.} \times 10^{6}\right)$ 。

Göt. 387 Biplane, Stagger $=0$.

O_{1}	
$L_{0} \leq 10$	
.0	0
.2	51
.4	102
.6	153
.8	205
1.0	256
1.2	307
1.4	358

0.75		1.00		1.33	
(1)	(2)	(1)	(2)	(1)	(2)
97	125	97	106	97	108
70	74	69	72	69	72
91	90	89	90	86	90
134	127	128	123	121	123
201	190	191	180	189	176
292	267	275	251	258	248
400	365	375	338	351	382
545	500	512	453	478	446

* Ref. 9, p. 26

Table 87

(1) Theoretical and (2) Experimental Values of Drag Coefficient ($D_{0} \times 10^{6}$)
U.S.A. 27 Biplane, Stagger $=0$.

Gap/Chord													
${ }^{0} 1$	$L_{C} \times 10^{5}$	0,50		0.75		1.00		1.33		1.67		2.00	
		(1)	(2)	(1)	(2)	(1)	(2)	(1)	(2)	(1)	(2)	(1)	(2)
. 0	0	92	105	92	95	92	95	92	98	92	95	92	93
. 2	51	62	65	62	63	61	63	61	63	60	60	60	65
. 4	102	78	78	76	75	74	75	71	70	68	70	67	67
. 6	153	127	125	123	118	117	112	110	105	105	104	103	98
. 8	205	205	195	186	181	186	172	174	163	164	160	161	153
1.0	256	303	290	290	268	273	240	256	239	241	235	234	227
1.2	307			410	396	385	355	361	339	338	534	331	318
1.3	333					457	558	428	415	401	415	386	380

An inspection of these tables shows that -
(1) for the Göt. 387 biplanes the theoretical values of the drag agree with the expermiental values within $\pm 5 \%$, from $I_{c}=00050$ to $.00200\left(-4^{0}\right.$ to $\left.6^{\circ}\right)$ while,
(2) for the U.S.A. 27 the same agreement occurs from $L_{c}=0$ to $.00200\left(-5^{\circ}\right.$ to $\left.8^{\circ}\right)$.

In each oase the theoretical values are too low for values of $I_{c}<0.00100$, and too high values of $I_{C}>0.00100$, whil ${ }_{\wedge}{ }^{\text {at }} I_{C}=0.00100$ agreement is practically perfect.

Formula (16) covers the case of mstaggered biplanes only. Munk states that stagger does not materially affect the value of the induotion factor mo". This means that for equal lifts, the value of the drag is not materially affected by stagger. On examining data (Table 88) taken from curves för Got. 387 staggered biplanes (Plate 101, we find that variation of drag with stagger is indeed immaterial, being usually within 2% (the experimental error) from $L_{C}=0.00050$ (or from minimum drag) to $0.9 \mathrm{~L}_{\mathrm{c}}$ max. The agreement is thas good throughout the whole useful range.

Table 88
Effect of stagger on drag $\left(D_{c} \times 10^{6}\right)$ at equal lifts.
Göt. 38% Biplane, $G / 0=1,00$
Stagger

${ }^{0} \mathrm{~L}$	$I_{C} \times 10^{5}$	-40\%	-20\%	0%	20\%	40\%	60%
. 0	0	100	121	106	104	123	110
. 2	51	76	73	72	73	73	80
. 4	102	90	90	90	87	85	92
. 6	153	123	124	123	120	123	125
. 8	205	178	180	180	176	180	180
1.0	256	250	253	251	246	250	250
1.2	307	346	347	338	352	337	338
1.4	358	542	481	453	443	453	445

As a further means of showing the negligible effect which stagger has on drag, we have calculated the biplane correction factore for D_{0} at equal L_{0} 's for both U.S.A. 27 and G8t. 387 biplanes at $G / C=1.00$, and stagger -40% to 60%. These factors are sumarized in Trables 89 and 90 (Appendix C), respectively. They show at a glame the variation of the biplane D_{c} in terms of the D_{C} of the monoplane having the same I_{c}. The average values of the correction factors for the whole range of stagger are tabulated at the right side of each table. An inspeotion of the factors will show that these average values can be used from $L_{c}=.00050$ to $0.9 L_{c}$ max., and from stagger equal -40% to 60%, without incurring an average error $>2 \frac{3}{2} \%$, for the Göt. 387 , or $1 \frac{1}{2} \%$ for the U.S.A. 27. The average values are plotted in Plate 13, one curve being drawn.

We have also calculated the biplane correction factors at equal I_{0} for the U.S.A. 27 and Göt. 387 at zero stagger, and several gap/ chord ratios (Tables 91 and 92, respectively). Since the effect of stagger is negligible, these may be used for all staggers as well. We have plotted them in Plate 13, drawing only one curve at each gap/chord ratio, to serve both the U.S.A. 27 and Göt. 387 at all staggers. The correction factors differ somewhat for all airfoils in general, depending on the profile drag of the sections. But we esti- : mate that the curves in Plate 13 will give drags accurate to $\pm 1 \frac{1}{2} \%$ for all airfoils of maximum combination equal 10% to 16%. To avoid confusion the plotted points are not included on the plate. With the exception of three points, no deviations exceeded 0.015, while the average was not $>0,005$. A separate curve (Plate 13) was
plotted for the D_{0} min. correotion factors (Table 93), since the minimum drags occur at somernat different lifts. There is a definite decrease of D_{0} min. as the gap/chord ratio is increased, amounting to about 15% from $G / 0=0.50$ to 2.00. The effect of stagger is negligible when G / O is >0.75.

Sumary. The effect of stagger on the drag at equal lifts is negsible from 0.1 to 0.9 I mex. kunk's formula therefore gives valnes of the drag accurate within $\pm 5 \%$ for all staggers and gap/ chord ratios, but this accuracy holds only from $L_{0}=0.00050$ to 0100200 , or from about 0.1 to $0.5 \mathrm{I}_{0}$ max. In Plate 13 we have plotted curres, showing the biplane correotion factors for D_{0}, Which we believe will give results acourate within $\pm 1 \frac{1}{2} \%$ from about 0.1 to $0.9 I_{c}$ max. These curves oover the case of all staggers and gap/chord ratios, bat are applioable only to airfoils in the same general group as the USS.A. 27 and GUt. 28780 far as profile drag is conoerned.
3. Lift/Dras Ratios - These are tabulated in Tables 48 - 49 for the U.S.A. 27, and 68-70 for the GOt. 387 biplanes, and are plotted against angles of attack as ordinates in plates $8-9$, and 11 - 12, respectively. The plotted points are not shown, but in no case did the deviations exceed 0.1 , expressed in terms of L / D. We have calculated and plotted L/D's for only a relatively small range of biplane combinations, because these ratios are secondary characteristios, and can always be computed from the values of lift and drag to which we have given greater consideration.

A direct comparison between theoretical and experimental values of I/D are umecessary, since we have previously made such comparisons for lift and drag separately. Since at equal lifts, L / D is inversely proportional to the drag, we can draw our oonclusions as regards L/D directly from our previous ones concerning drag.

The effeots of stagger at equal lifts will be negligible. But I/D max. occurs at unequal lifts for different biplane combinations, so we have calculated the biplane correction factors for L / D max. for both the U.S.A. 27 and GUt. 387 biplanes. These are tabulated in Tables 94 and 95 (Appendix C), respeotively. They show beyond peradiventure that the effect of stagger on L / D max. is negligible. The factors for the U.S.A, 27 and Got. 387 biplanes agree excellently. Average values (Table 94) can be taken at each gap/chord ratio and applied to all staggers without involving an error $> \pm 1 \%$. These average values are plotted against gap/chord ratios in Plate 13. I/D max. shows a distinct improvement, about 25%, as the gap/chord ratio is increased from 0.50 to 2.00. Such an increase in efficiency is just whet would be expected from the vortex theory.

The correction factors for L / D at equal lifts (Tables 96-97) are the reciprocals of the factors for D_{C} (Tables 91-92), and the same curves on plate 13 serve for both, reciptocel scales being erected at the side. In general, the correction factors vary inversely as the lift, and directly as the gap/chord ratio.
4. Moment Coefficients - These are tabulated in Tables 50-55 for the U.S.A. 27, and 71-73 for the GOt. 387 biplanes, and are plotted
against $L_{C}{ }^{\prime} \mathrm{s}$ as ordinates in Plates 8.9, and 11-12, respectively. The plotted points are not incladed on the plates, but the deviations in no oase exceeded $\pm 0.000 \mathrm{Dlibs} . \mathrm{ft}, / \mathrm{sq}$. ft/mph/ft. of chord. For. our biplane models this way equivalent to a moment of $\pm 0.003 \mathrm{lbs}$. ft . about the leading edge.

A glance at the plates mentioned will show that the effect of stagger on M_{c} wa moch more potent than that of the gap/chond ratio. The effect of the latter, sach as it is, is to inorease H_{0}, * while the effect of positive stagger is just the opposite. The effect of negative stagger is negligible.

A simple theoretical formuls for caloulating the moment coefficient seems hard to attain. Krunk states that the moment coefficient with respect to the center of the biplane $\left(O_{m}\right)$, is increased both from induotion and interference. Due to induction -

$$
\begin{equation*}
\Delta 0_{m}=\frac{4 g^{2}}{T^{2}} \cdot \frac{s}{b^{2}} \cdot \frac{T}{b}\left[b \cdot \frac{\left(1 / x^{2}-0.5\right)}{R}\right] 0_{m} \tag{17}
\end{equation*}
$$

While due to interference -

$$
\begin{equation*}
\Delta * c_{m}^{\prime \prime}=c_{m}\left(.08+\frac{.16 \mathrm{~g}^{2}}{G^{2}}\right)+c_{I} \cdot \frac{.16 \mathrm{~s}}{G^{2}} \tag{18}
\end{equation*}
$$

In these formalae C_{m} is the moment coefficient of the monoplane about its center point.

By means of (17才 and (18) we have calculated C_{m} for both the U.S.A. 27 and Got. 387 biplanes at $G / K=1,00$, with positive stagger from 0% to 60%. As aforementioned, the effect of negative stagger

* Disregarding the sign of M_{0}, an increase means an increase in diving moment about the L.E.
** Ref. 9, p. 28.
(1) Theoretioal, and (2) Experimental Values of the Moment Coeffioient with respect to the Center of the Biplane $\left(C_{m} \times 10^{3}\right)$.

TABLE 98

$\begin{aligned} & \text { U.S.A. } 27 \text { Biplane } \\ & G / C=1,00 \end{aligned}$									
STAGGEA									
$\mathrm{C}_{\text {L }} \quad I_{0} \pm 10^{5}$		0\% 20\%				40\%		60\%	
		(1)	(2)	(1)	(2)	(1)	(2)	(2)	(1)
. 2	51	-40	-41	- 40	-27	-40	-17	-5	- 42
. 4	102	17	14	19	26	21	44	65	24
. 6	153	74	67	78	85	83	113	132	90
. 8	205	135	122	140	147	148	174	208	159
1.0	256	186	171	193	192	203	236	260	219
1.2	307	243	216	251	244	264	293	317	279

TABIE 99
GO゙t. 387 Biplane
$\theta / C \equiv 1.00$

- STAGGER									
$\mathrm{CI} \mathrm{I}_{0} \times 10^{5}$		0%		20\%		20\%		60\%	
		(1)	(2)	(1)	(2)	(1)	(2)	(1)	(2)
. 2	51	-57	-42	-57	-34	-58	-24	-60	-19
. 4	102	- 6	-4	- 5	27	-4	29	-2	43
. 6	153	45	51	48	68	51	88	57	112
. 8	205	93	104	97	113	104	133	113	171
1.0	256	142	147	148	162	157	177	170	230
1.2	307	186	195	193	202	204	237	220	284
1.4	358	242	232	250	246	264	277	284	318

appears negligible, and formulae (17) and (18) are not applicable to negative stagger anyway. The theoretical and experimental values of C_{m} are compared in Tables 98 and 99. Appornan of C_{m} rather than of H_{0} were calculated and compared, because the theoretical values of the former could not be converted into the latter without assuming center of pressure values. An inspection of Tables 98-99 shows that agreement between the theoretical and experimental values of C_{m} is very poor. The former are almost invariably too low, the average error being about -18%.

These large discrepanoies led us to examine formula (17) and (18) with greater care. The only ready possibility for revision which we could find was the fact that the deriskion of (18) involved the assumption that $\frac{1}{4} C_{I} / C_{m}=1 . \quad$ For (18) is evidently derived from the following equation on p. 23 (Ref. 9).

$$
\begin{align*}
& C_{m}^{1}=\pi \frac{3}{T} \\
& =\frac{42 s^{2}}{b^{2}}\left[\frac{b}{I}\left(\frac{\frac{1}{L^{2}}}{L^{2}}-0.5\right)\right] \cdot C_{I} \tag{19}
\end{align*}
$$

Equation (18) reduces to

$$
\Delta c_{m}=\frac{\theta g^{2}}{b^{2}}\left[\frac{b}{R}\left(\frac{1}{k^{2}}-0.5\right)\right] \cdot c_{m}
$$

When we substitute $S / \mathrm{bT}-2$, which holds true for a biplane. Munk here uses C_{m}^{l} and ΔC_{m} to designate the same thing, $\nabla i z_{0}$, the additional moment due to induction, thas involving the assumption mentionod above. But for the U.S.A. 27 monoplane, the value of C_{L} / C_{m} varies from -1.35 to 6.41 , as shwopy the following figures:

0_{I}	0.2	0.4	0.6	0.8	1.0	1.2
$\frac{1}{4} C_{\mathrm{L}} / C_{m}$	-1.35	6.41	2.28	1.61	1.45	1.33

We therefore hoped that by applying corrections for this we could obtain better theoretical values for C_{M}. But the increase of moment due to induction constitutes only about 8% of the total increase, so that the final values of C_{m} averaged only about 3% higher than before, and were still quite inadequate.

Since the theoretical formalae are apparently not of much use in finding the moment coefficients for a given biplane combination, we have calculated the biplane correction factors for M_{c} at equal I_{C}, for both the U.S.A. 27 and Göt. 387 biplanes at $G / 0=1.00$, all staggers, and at stagger $=0$, all G/C's (Tables 100-103, Appendix C). These factors are practically constant for all lifts $<$ I_{c} max. This can be seen from Plates 8-9, 11-12, by the fact that the curves of $M_{c} \nabla 8 . L_{c}$ are practically atraight lines radiating from a focus, which focus is approximately $I_{0}=0, M_{c} \times 10^{5}=-23 \pm 2$, for both U.S.A. 27 and GOt. 387 monoplanes and biplanes. We have struck an average for each stagger and gap/chord ratio, and plotted them (Plate 14). These averages for the U.S.A. 27 and Göt. 387 agree just about well enough to justify drawing only one smooth curve. Plotted points are not show, but a oomparison between plotted points and curve points is given in Tables 101 a and 103 a. Correction factors >1.00 were reduced to 1.00 , because theoretically it appears that the H_{c} about the leading edge can be reduced but not increased above the monoplane values. We have therefore considered that our M_{0} curve
for $G / C=2.00$, stagger $=0$ (Plate 8$)$, is notably in error. The corresponding C.P. curve is also in error. Summary.
We have previously seen that the theoretically predicted values of the moment coefficient were hopelessly too low, the errors averaging about -18\%. From our experimental data we have therefore attempted to derive some useful approximations. The results are incorporated in the two M_{c} correction factor curves in Plate 14. These are applicable from about $I_{c}=0,00050$ to L_{c} max. The curve showing variation with stagger at $G / O=1.00$ can be taken as acourate to within about $\pm 0.01 \frac{1}{2}$, while the corresponding figure ourve showing variation \#ith Gap/ohord ratio at zero stagger is about $\pm 0.02 \frac{1}{2}$. Ihe difference is due to the fact that our experimental data for the former showed a more uniform variation than did that for the latter.

5.

GEMTER OF PRESSURE COEFEIC IENTS.
These are tabulated in Tables 56-61 for the U.S.A. 27, and 7376 for the Got. 387. They were obtained by subtracting the following oorrectiong from the original C.P.'s (Appendix B) obtained for the biplane subject to the interference of the discoid case.

0°		-2	0	2	4	6	8	10	12	14	16	18	20	22
E.S.A. 27	0	0	0	. 01	.017	. 02	. 02	. 02	. 02	. 02	. $01 \frac{1}{8}$. 017	.01震	. 01
Go゙t. 387	0	0	0	. $00 \frac{1}{2}$. 01	. 01	. 01	. 01	. 01	. 01	. 01	. 01	. 01	. 01

the monoplanes tested in the routine way, and the C.P. curves for the corresponding monoplane tested in the presence of the interference of the discoid case. (Plates 3-4). The assumption is made that the effeot of the discoid case interference mas to move the C.P. 's forward by equal amounts on both monoplane and all biplanes incorporating the same wing seotion.

The O.P.'18 (Tables 56-61, 73-76) were plotted against $I_{c}{ }^{\prime}$ s as ordinates (P1ates 8-9, 11-12). The plotted points are not included, but they did not deviate from their respeotive ourves by a fraction of the chord $>.005$, when $I_{c}>, 00050$. A glance at the ourves ahows that In general the C.P. moves f orward as the stagger is increased from -40% to 60%, and backward as G / G is increased from 0.50 to 2.00. The effeot of positive stagger is much larger than that of G / C. The effect of negative stagger is negigible. Theory indicates that the biplane C.P. is never farther back from the leading edge than the monoplane C.P. for the same I_{0}. In general our curves bear this out, the prinoipal exception being that for the U.S.A. 27 biplane $G / C=2.00$, stagger $=0$, the value for which we consider to be in error.

We shall now consider the theoretical calculation of the C.P.. The problem may be divided into two parts, (l) the variation with G / C, at stagger $=0$, and (2) the variation with stagger, at $G / c=1,00$.

In order to calculate the C.P.'s for unstaggered biplanes at various $G / \mathcal{C l}^{\prime}$, we first made use of the method indicated by Munk, Part 1 of the Appendix (ref.9). The procedure is to calculate separately the lifts due to ourvature and angle of attaok, multiphy each by its C.P., add, and then divide by the sum of the two lifts. This gives the
C.P. for the total lift of the biplane. The formulae given by Munk applay to two-dimensional flow only, but the results obtained can be oorrected to take acoount of the aerodynamioal induction arising from the lateral dimensions. We calculated these corrections first, making use of the formula -

$$
\Delta T=T \frac{\mathrm{~s}}{\mathrm{~b}^{2}}\left[\left(\frac{\mathrm{k}}{\mathrm{k}} 2-0.5\right) \frac{\mathrm{b}}{\mathrm{E}}\right]\left(\frac{\mathrm{B}}{\mathrm{~T}}\right)^{2} \frac{T}{\mathrm{E}} \text {, }
$$

Where ΔT is the additional arm of moment about the center of the biplane produced by stagger and induction. Expressed as a fraction of the chord abaft the leading edge, and substituting $s / b r=2$ (for a biplane) this becomes -

$$
\begin{equation*}
\Delta C . \text { P. }=-\frac{A T}{T}<-2\left(\frac{g}{\mathrm{~B}}\right)^{2} \cdot\left[\left(\frac{2}{\mathrm{k}^{2}}-0.5\right) \frac{\mathrm{b}}{\mathrm{R}}\right] \tag{17}
\end{equation*}
$$

This expression involves the stagger (s). For an unstaggered biplane the value of the "effeotive stagger" is substituted, and (17) becomes -

$$
\Delta 0 . P .=-\frac{1}{2}\left(\frac{C}{B} \frac{G}{b}\right)^{2}-\left[\left(\frac{1}{x^{2}}-0.5\right) \frac{b}{R}\right] \ldots \ldots . . .(18)
$$

G_{L} (Iife coeffioient), G (gap), and b (span), are known, while the values of B and $\left[\left(\frac{l}{k^{2}}-0.5\right) \frac{\mathrm{b}}{\mathrm{R}}\right]$ oan be obtained from Tables I and III, ref. 9. The corrections to take acoount of the lateral dimensions, calculated by equations (27) and (18), are listed in Table 104.

TABLE 104
AcG.P.(fraotion of chord abaft L.E.) due to lateral dimensions,

${ }^{6}$	$\mathrm{I}_{0} \times 10^{\text {b }}$	STAGGER			
		0\%	20\%	40%	60\%
. 2	51	. 000	-. 002	-. 006	-. 014
. 4	102	. 000	-.002	-. 006	-. 014
. 6	253	-.001	-. 002	-. 007	-. 014
. 8	205	-. 001	-. 002	-. 007	. .015
1.0	256	-. 001	-. 003	-. 007	-. 015
1.2	307	-. 002	-. 003	-. 008	-. 016
1.4	358	$-.003$	-. 004	-. 008	-. 016
Aver		-. 001	-203	-007	-. 015

*Rer. 9, p. 32 Derived on p. 23

It is seen that the corrections for zero stagger are entirely negilgible. For biplanes without stagger, therefoe, we oan calculate the C.P. by the two-dimensional procedure previousiy mentioned (ref.9, p.31).

The C.P.'s oaloulated in this way averaged $4 \frac{1}{2} \%$ of the chord too 20w. But the theoretioal vialues of lift, whioh this method invoives, have previously been shom to be very mach too high. The lift due to ourvature ($2 \pi \sin \beta_{\beta} B_{0}$) seoms to be about right, the discrepancy being In the balues of lift due to the angle of attaok ($2 \pi \mathrm{sin} \beta \mathrm{B}_{\mathrm{g}}$). It therefore seemed apparent that the theoretioal values of the lift due to curvature should be used, but that the differences between these values and the experimentally determined values of the total lift should be substituted for the theoretioal lifts due to angle. This we did, at the same time incorporating the procedure in the following formulea -

$$
\text { O.P. }=0.50-\pi+\frac{2 \pi \sin \beta_{0} \pi B_{0}}{C_{1}} * \ldots(19)
$$

in which C.P. is the fraction of the ohord abaft the leading edge, x is the distance (fraction of chord) of the center of pressure from the center of the biplane for a wing section without ourvature, $2 \pi \sin \beta_{0} B_{0}$ is the iff ooofficient due to curvature, B_{0} is a oonstant, and C_{L} is the total ift coefficient determined experimentally. Values of x and B_{0} were obtained from Table I, Ref. 9.

A compasision between the theoretical C.P.'s, calculated by equation (19), and the oorresponding experimentally determined values, are is given in Tables 105-106. Agreement is comparatively excellent, the average deviations of the theoretioal from the experimental C.P.'s *Variation of Munk's formala, ref. 9, p. 24.

TABLE 105
Theoretical (Equati on (19) and experimental values of the center of pressure coefficient (C.P.)

STAGGER = 0 .

EXPERTMGTTAT

Table 106
(1) Theoretical, and (2) Experimental values of the conter of pressure coofficient (C.P.)

Got. 387 Biplane
STAGGER $=0$.

$\mathrm{O}_{\mathrm{L}} \quad \mathrm{L}^{\prime} \times 10^{5}$		GAP/CHORD							
		0.75		$\frac{1.00}{}$		2.33		Yonoplane	
		(1)	(2)	(1)	(2)	(1)	(8)	(1)	(2)
. 2	51	. $74 \times \frac{1}{8}$. 65	. $75 \frac{1}{2}$.688	. $76 \frac{1}{2}$.68雱	. 78	.76
-4	102		.459	-4.92	.487	. 50	. $48 \frac{1}{2}$	-51需	. 512
- 6	153	. 40	. 39	. $40 \frac{1}{2}$	-41	.41	.41	-42 ${ }^{\text {d }}$. 43
. 8	205	-351	. $35 \frac{1}{2}$. 36	. 37	. 37	. 37	. 38	. 39
1.0	256	. 33	. 34	. $33 \frac{1}{8}$. 35	. 34	-35	. $35 \frac{1}{2}$. 367
1.2	307	. 31	.317	-32	. $33 \frac{1}{2}$. $32 \frac{1}{2}$. $33 \frac{1}{2}$. 34	. 34
1.4	358	. 30	. 312	. $30 \frac{7}{2}$. 32	. 31	. 32	. $32 \frac{1}{8}$. 83

being as follows -

GAP/CHOPD 0.50	$0.75 \quad 1.00$	1233	7.67	2000	MOHOPLANS
	. 03 -.02	-. 02	- $0.00 \frac{7}{2}$	-. $02 \frac{1}{2}$	-.007
	$.00 \quad .01$	~. 00	--	--	-.00 ${ }^{\frac{1}{2}}$

From Tables 105-106 it is seen that the theoretioal effect of $G / 0$ variation mounts to just about one half the experimental effect (apparent), and all of the theoretioal biplane 0.P.'s are $<$ the monoplane C.P., whioh is not true of the experimental ∇ alues. The range of variation between the $0 . P$. ourves for $G / 0=0.50$ and G/O =2.00, amonts to .08 for the theoretical as oompared to $.07 \frac{1}{2}$ for the experimental corves. But we have no reason to doubt the experimental vaiues as a whole, although the two curves for $G / G=1.00$ and 2.00, Plate 8, seem to represent values about . 02 too high. For the ordinary ran of GAP/CHORD ratios $-(0,75-1,33)$, it is considered that equation (19) will give results accurate within $\pm 0.01 \frac{1}{n}$, while - correlation of experimental results (Plato li) will give values eocurate within ± 0.02.

The foregoing applies only to unstaggered biplanes, equation (19) being applioable only to such. We performed similar oalonlations however, on a ataggered biplane using the method indioated in Part II of Yonk's Appendix (ref. 9, g. 32).

The lift due to angle of attack was again taken as the difference between the lift due to curvature, and the total lift determined experimentally. In addition, we took into acoount the faot that the
center of pressure of the oomponent of force parallel to the wing ohord is stmewhat above the mean chord of the biplane. Corrections (equa. (17)) were also applied to take into acoount the aerodynam10al induction due to the lateral dimensions. C.P. fa for only one staggered biplane (U.S.A.27才, G/C = 0.75, stagger = 40\%) were calculated, beoause that was the oniy one for which the required constants oould be obtained from lank's table. * The results are given here.

- Mablis 10\%.
(1) Theoretioal, and (2) Experimental values of O.P.

U.S.A. 27 Biplane							
$x^{x} 10^{5}$	33	96	227	189	246	300	333
(1)	.763 .72	.401 .38	. 34.	-287	. $25 \frac{1}{2}$	$.23 \frac{1}{2}$.26	.23 .26

Deviat-

10ns . $06 \frac{1}{2} \quad .02 \frac{1}{2} \quad .02 \quad .00 \quad-.01 \quad-.02 \frac{1}{2} \quad-.03$

The agreement shown between these values is not discouraging, but is not so good as was that for the unstaggered biplanes.

The variation of omr experimental O.P.'s with stagger is very regular, and in addition covers a larger renge than was the case for G/O variation (See Plates 11 and 91. We bave caloulated biplane corrections for C.P., showing the effeot of stagger variation at $G / C=$ 1.00, and the effeot of G / C variation at atagger $=0$. These correotions, expressed as fractions of the chord by whioh the C.P. is dism placod towards the leading edgeinflicable $0.1 I_{0}$ max. to I_{0} max., are tabulated in Tablea 108-109. Appendix O. Averages are taken of the GOt. 387 and U.S.A. 27 resuzts and plotted in Plate 14. We consider
the ourves there given to be acourate within $\pm .01$.

SURMARY.

In thes analysis of C.P.'s we have fomd that equation (19) can be used to oaloulate the C.P. PDr unstaggered biplanes, the acouraoy being about ± 0.01 from $G / 0=0.75$ to 1.33 . The same method applied to staggered biplanes oan be used with a lesser degree of gocuraoy. In eaoh of these theoretical methods, acourate results require the assumption that -
(Lift due to angle) $=$
(Total lift, experimental)-(Curvature lift, theoretioal). The accuracy of the results thereby obtained indioatbsthat the theoret1081 lift due to curvetare is about right.

In Flate 14 we have plotted our experimental results in the form of corrections to be subtracted from the monoplane O.P. Values taken Irom the ourves are accurate within about ± 0.01.

THIS CONCLUDES THE ANALYSIS OF RESULIS. In conneotion with each part of the analysis a brief summary has been given. After we have made a REVIET OF PREVIOUS EXPFRIMETTMAL WORK, SEOTION VII, WE SHALU IN SBOTION VIII GIVE A CONCISE GENERAL SUMMARY AND CONOIUSIONS.

REVIEN OF PREVIOUS EXPERIMENTAL YORK.

We are making this review to see if previous results oheok with ours for the variation with Stagger and G / C of the biplane correotion factors for:

Io max.
I_{0} at equal values of $\alpha, 0^{0}=13^{\circ}$
D_{0} at equal L_{o} *
Do min.
I/D at equal I_{0} *
I/D max.
M_{0} at equal L_{0}
O.P. at equal $\mathrm{L}_{0}{ }^{*}$

Our results are always given in 001 um (2), and taken where possible from our two final oharts (Plates 13-14), and those of the experimenter mader consideration in colum (1).:

1. L. Bairstow, Teoh. Report A.O.A., 1911-12, p.73-74.

Name of Section: Eiffel 13 bis (Bleriot 1la), maximum camber $=4.35 \%$
Size of Model: $\quad 30^{n} 25^{\prime \prime}$.
Wind Velooity: 19 m.p.h.
Where Tested: N.P.I. 4 foot tunnel\$.
Number of Tests: 6,4 without stagger at $G / C=0.4,0.8,1.2$, 1.6; and 2 at $G / C=1.00$ andstagger $=44 \%$ and -38%.

RESULTS: A table of I_{0} and L / D oorreotion factors at equal α for $6^{\circ}, 8^{\circ}$, and 10°; and small curves for L_{C}, D_{C} and L / D irom -8° to 120. from whioh results the following oomparisons of oorrection faotors Is derived.

[^4]| Lo at equal $\alpha, 6^{\circ}-10^{\circ}$ | | | I／D | Max． |
| :---: | :---: | :---: | :---: | :---: |
| $9 / 0$ | （1） | （2） | （1） | （2） |
| 0.4 | ． 62 | ． 737 | ． 75 | ． 67 |
| 0.8 | ． 77 | ． 83 | ．79 | ．762 |
| 1.0 | ． 82 | ． 86 | ． 81 | ． 78 者 |
| 1.2 | ．86 | ． $88 \frac{1}{2}$ | ． 84 | ． 80 |
| 1.6 | ． 89 | ． 91 | ．872 | ．81䨖 |

2．J．R．Pannell，Teoh．Report A．C．A．，1915－16，pp．99－110．
Hame of Seotion：RAP 6q，maximum camber $=6.95 \%$

Size of Model：
Wind Velooity：
Where Tested： Humber of Tests：
$18^{\prime \prime} \times 3^{n}$
27.3 m．p．${ }^{\text {h．}}$

I．P．I． 3 foot tunnel．
8,6 without Stagger at $G / \mathrm{C}=0.67,1.00$ ， $1,33,1,67,2.00$ ，and 2 at $G / 0=0.9$ ，with Stagger $=52 \%$ and -50%

RESULIS：Tables and ourves showing the variation with $G / 0$ of $I_{0}, D_{0}, I / D, M_{0}$ ，and C．P．，from -6° to 20° ；and showing the variations with Stagger of I_{c}, D_{0} ，and I／D；and also loading of upper and lower planes for $G / G=1.03$ ， 3 tagger $=0$ ．From these we have derived corrections factors so as to make the following oomparison．We have made as many comparisons as the author＇s data would permit．

VARIATION OF CORRECTION FACTORS WITR $G / 0$ ．AT STAGGRR $=0$

G／0	Ic Max．		Do Min．		I／D Max．	
	（1）	（2）	（1）	（2）	（1）	（2）
． 67	．877	．887	． 98	1．15 ${ }^{\frac{1}{2}}$	．772	． 75
． 90	．912	．93娄	－		．802	． 78
1.00	． 93	． 95	．997	$1.12 \frac{1}{2}$	． 84	． $78 \frac{7}{2}$
1.33	． 94	． $96 \frac{1}{2}$	． 98	1.12	． 88	． $80 \frac{1}{2}$
1.67	． 99	． 96 素	． $98 \frac{1}{2}$	1.11	． $88 \frac{1}{2}$	． 82
2.00	． $98 \frac{1}{8}$	． 967	． $96 \frac{1}{8}$	1.05	． 92	． 88
STAGe			HORD			
＋52\％	． $96 \frac{1}{2}$	． $98 \frac{1}{2}$			－817	． 78
0	－91竞	－932			． $80 \frac{7}{2}$	． 78
－50\％	． $86 \frac{7}{2}$	． 86			． 82	． 78

The oorreotion factors for L_{0} at equal α show the same amount of variation, viz. 9% and 8% respeotively, but (2) is always about 5% higher than (1). That this difference is oonsiderable is shown by the faot that even at -40% stagger (2) does not beoome as 10w as (1). However, it is signifioant that the only two airfoils tested in the same twnel at the same time by the same personnel and with oonditions similar in every way, even though their oamber differed by 4.16%, cheak win $\frac{1}{2} \%$ for L_{0} oorreation faotors at equal between $0^{\circ}-23^{\circ}$.
$D_{0}, L / D, M_{0}$, and C.P. oorreotion factors at equal value of I_{0} oannot be obtained from the author's data.
D and I loading faotors for upper and lower wings fit in very well with our values.

A comparison is made in Section VI.

$$
\text { 3. L. W. Bryant, Tech. Report A.C.A., } \begin{aligned}
& \text { 1917-18, Vol. 1, pp. } \\
& \begin{aligned}
184-187 .
\end{aligned}
\end{aligned}
$$

Name of Seotion: RAF 15, maximum camber $=6.38 \%$
S1ze of Hodel: $\quad 3386 \times 6^{\prime \prime}$, Rake $=21^{\circ}: 93$
Wind Velocity: $\quad 35.7 \mathrm{~m} . \mathrm{p} . \mathrm{h} . \quad 50$ foot seotion
Where Tested: I.P.L. 7 foot tunnel No. 1
Number of Tests: I, at $G / C=.884$, Stagger $=23 .{ }^{\circ}{ }_{3}=43 \%$

BESULTS：$L_{0}, D_{0}, I / D$ and C．P．at 4° intervals， $0^{\circ}=16^{\circ}$ ． From these we have deduced the following correation factors： L_{0} Max．（1）．97尝（2）$\cdot 95 \frac{1}{8}$
I_{0} at equal $\alpha, 40-12^{\circ}$（1）． $85 \frac{1}{2}$
（2） $87 \frac{7}{2}$
D_{0} Min．（1）．98菽（2） 1.13

4．W．I．Cowley，Teoh．Report A．C．A．，1917－18，Vol．1，D． 194
Name of Seotion：RAF 15．
Size of Model：$\quad 18^{n} \times 3^{n}$ ．

Where Tested：N．P．I． 4 foot tunnel Mo． 1 ．
Humber of Tests： 1 at $G / C=0.75$ ，Stagger $=0$ ．
RESULTS：The following comparison is made with correotion factors deduoed from Cowley＇s data：

	（1）	（2）
L_{0} Max．	． 88 굴	．907
Ice at equal $\dot{\alpha}, 0^{0}-12^{\circ}$	． $777 \frac{1}{8}$	． 82
1.00121	1.32	1．29줄
D_{0} at equal $I_{0,} I_{0}=1.00227$	$1.46 \frac{1}{2}$	1.40
$\mathrm{D}_{0} \mathrm{Min}$ 。	1.12	1．13 ${ }^{\frac{1}{2}}$
L / D at equal $\mathrm{I}_{0}=(.00227)$	． 68	－717
L／D Min．	．71妾	.76

5．J．C．Hunsaker，Enginearing，January 7，1916，as reported by Alexander Klemin，Aviation，November 15， 1916.

Name of Sections RAP 6，Maximum camber $=6.82 \%$
Size of Model：$\quad 18^{\prime \prime} \times 13^{n}$
Wind Velooitys $30 \mathrm{~m}, \mathrm{p} \cdot \mathrm{h}$ ．
Where Tested：M．I．T．
IIumber of Tests： 1 at $G / C=1.2, S t a g g e r=0$ ．
RESULIS：I_{0} Maximum（1）． $95 \frac{1}{2}$（2）． 96
D_{0} and L / D correction factors for $G / G=1.00$ ，Stagger $=0:-$

Biplane Correction Factors

$I_{0} \pm 10^{5}$	L/D		D_{e}		
	(1)	(2)	(1)	(2)	
40	1.10	-	. 90	-	
60	1.07	. $94 . \frac{1}{8}$. 93	2.061	
80	-99	-86木砍	1.01	1.151 ${ }^{\text {d }}$	Very poor
120	. 85	. 80	1.15	1.25)	Agreement
160	. 85	. 77	1.15	1.291	
200	. 75	.76	1.25	1.31 $\frac{1}{2}$	Good
240	.73	.75	1.27	1.33)	Agreement

These results attributed to Honsaфker by Klemin show very poor agreement with ours, (exoept for $L_{0} \equiv .00200$ to .00240), and are evidentiy in error, for on none of our 42 separate tests from $G / 0=50$, to 200 , and Stagger $=-40 \%$ to 60%, did we get an $1 / D$ oorreotion faotor greater than 1.00 , or a D_{0} oorrection factor 1ess then 1.00 , at equal values of L_{0}. At the same time it is evie dent that for equal L_{0}, the values of the I / D oorrection factors Wlll be the reoiprocals of the D_{0} oorrection factors; whereas the inaocuracy of these results attributed to Hunsaker is shown by the fact that they do not even meet this simple test.

Alezander Klemin (ref. above) deduced from N.P.I. results the following oorreotion factor for $I_{0}, 4^{\circ}-8^{\circ}$; to whioh we compare our pwn:-
I_{0} Correction Faotors, ${ }^{0}=8^{\circ}$.
GAP/CHORD

	. 80	1.00	2 k 20	1.60
(1)	. 76	. 81	. 86	. 89
(2)	. 83	. 86	. 888	. 91

6. E. P. Warner, A. Elemin, G. C. Denkinger, N.A.C.A. Report, 1917, pp. 289-292.

7. Lt. Col. Robert, Internationsl Air Congress, London, 1923, ps. 367 -367.

Name of Section: SC 56a (upper), SC 560 (Iower). Joakrowaki profiles.
Size of Model: $\quad 706 \times 118 \mathrm{mme}=27480 \times 4865$
Wind Velooity: $\quad 40 \mathrm{~m} / \mathrm{s}=89,5 \mathrm{~m}_{\circ} \mathrm{p} . \mathrm{h}_{\mathrm{o}}$
Where Tested: Institute Aerodynamique St. Cyr, wind tunnel Ho. 1 (2 metres).
Yumber of Biplane CombinationsTested: 4, stagger $=0, G / 0=0.51$, $0.74,1.14,1.59$.
The upper and lower wings were separately tested.
RESULTS: L and D only were measured, and no data published on these, except amall aurves showing a fairly good agreement between the experimental and theoretioal ourves (from Prandtifs formulae) for I and D. This means thet at equal values of I the theoretioal values of D and α were in fair agreement with the experimental values.

Section VIII.
 GENERAL SUMMARY AND CONOLUSIONS.

When this thesis was undertaken it appeared that the airplane designer could neither obtain from theory or experimental data an exact knowledge of the aerodynamic coefficients of biplanes. Certain formulae from the vortex theory showed good possibilities, but insuffioient data, especially for staggered biplanes, existed to verify them.

We therefore proceeded to make a complete test in the wind tunnel of a large number of biplane combinations. Two U.S.A. 27 airfoil models were tested in 31 biplane combinations, from G / C equal 0.50 to 2.00 , and stagger $+60 \%$ to -40% while two Göttingen 387 airfoil models were tested in 12 combinations, from G / C equal 0.75 to 1.33 , and stagger equal 60% to -40%. Each of the four airfoil models utilized was of course first tested thoroughly as a monoplane. The material of each was aluminum; the size $18^{\prime \prime} \times 3^{\prime \prime}$, and all tests were conduoted in the $4: 00 \mathrm{M} . \mathrm{I}_{1} \mathrm{~T}$. Wind tumel at $40 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.

The following is an outline of the spocific results obtained from the original data. In each case we refer the reader to specific tables or charts.
(1). Tabulated values of $L_{c}, D_{c}, I / D, M_{c}$, and C.P. at equal values of \propto for all tests. Tables 35-76. Curves for I_{c}, D_{c}, and L / D plotted against α, and for M_{c}, and C.P., plotted against I_{c}, for 63% of all tests. plates 3-4, 5-12.
(2) Tabulated values of $I_{c}, D_{c}, L / D, M_{c}$, and C.P. for upper and lower wings tested separately, U.S.A. 27 biplane at $G / C=1.00$ and 1.67, and stagger $=0$. Fraction of total lift and drag on each wing. Tablog $34-80^{\circ}$ q pp. 104-10\%
(3) Comparison at equal values of the I_{c} between the experimentally determined values and the values calculated by Munk's formulae, for loading,
the $L_{c} ;$
$D_{c}, L / D, M_{c}, ~ C . P_{0}$, and α.

Tables 77-88, 98-99, 104-107.
(4) Biplane correction factors at equal values of α, for L_{c}, $D_{c}, L / D$, and M_{c},for all tests. Tables $1-33$.
(5) Biplane correction factors for I_{c} max., D_{c} min. and L / D max.; and for $D_{c}, I / D, M_{c}$ and C.P., at equal values of the I_{c}. Plates 13-14, Tables89-97, 100-103, 108-109.

All biplane correction factors mentioned in (5), as well as those for I_{c} at equal o ($0^{\circ}-13^{\circ}$), have been plotted in plates 1314, in a form directly available for practical use. Correction factors taken from these curves have the following approximate degrees of acouracy:
t. 01 for L_{0} max., I_{c}, at equal $\alpha\left(0^{\circ}-13^{\circ}\right), L / D$ max., and C.P.; $\pm 001 \frac{1}{2}$ for D_{C}, D_{0} min.,L / D, and M_{C}; and $\pm .02 \frac{1}{2}$ for $\#_{c}$ 。

A comparison With previously published data for the Eiffel 13 bis, Eiffel 36, R.A.F. 6, R.A.F. 6c, and R.A.F. 15, (Seotion VII), indicates that correction factors read from the our curves can be applied to this whole range of airfoils without incurring errors materially larger ($\pm .00 \frac{7}{2}$) than those cited above. Agreement in specific cases did not usually oome within this range of error, but the previous results, taken as a whole, bracket our correction factors. That is the significant fact, because these previous tests were performed at
$* G / K=1.00$, stagger $=-40 \%$ to 60%
$* *$ Stagger $=0, G / C=0.50$ to 2.00
several different wind tmnels, wind speeds, and model sizes.
All of our results outlined in (7) to (5) above have been thoroughly analyzed in Section VI. The correction factors at equal o (4) were found to be of little significance, with the exception of those for I_{C}, which had practically the same values ($\pm .01$) from 0° to 13° for both the U.S.A. 27 and Göt. 387. These have been incorporated in Plate 13.

The lift loading can be found within 4.01 by the empirical equation (13): -
(Frac. of lift on upper wing) $=0.50+K_{1} L_{0}$, Where $K_{1}=23.5$ for $G / O=1.00$, and 16.1 for $G / C=1.67$. This applies only to unstaggered biplanes from $L_{C}=.00125$ to I_{c} max, but it gives just as good results as Munk's more complicated theoretical formula (10). More experimental work is needed to determine the distribution for staggered biplanes, and for $\alpha<4^{\circ}$. Drag loading can be found to $\pm .01$ by the empirical equation : -
(Frac. of drag on upper wing) $=\mathrm{K}_{2}+33.3 \mathrm{~L}_{\mathrm{c}}$,
where $K_{2}=0.48$ for $G / C=1.00$, and .46 for $G / C=1.67$. This applies only to unstaggered biplanes, from $I_{C}=0$ to I_{c} max. A relationship whdoh gave just as good agreement so far as our results were concerned, was :-
(\% Drag on upper) $=50+\frac{\alpha^{0}}{2}$.
The comparison of theoretical and experimental values of
$D_{c}, L / D, M_{c}$, and C.P., at equal $L_{c}(3)$, showed that: -
(a) I I_{c} cannot be theoretically calculated for a given α, but that α for a given I_{c} can be calculated for unstaggered biplanes by Munk's equation:-

$$
\begin{equation*}
\alpha_{2}=\alpha_{1}-\frac{c_{L}}{\pi}\left[\left(\frac{S_{1}}{L_{1}^{2} b_{1}^{2}}+I_{1}\right)-\left(\frac{S_{2}}{x_{2}^{2} b_{2}^{2}}+I_{2}\right)\right] . \tag{15}
\end{equation*}
$$

This gives results acourate within 0.4 (average) from 0.1 to 0.9 I_{c} max. Munk dismisses stagger as negigible. We found that the average amount by which α was deoreased, when the stagger was incraased from 0% to 60%, was 1% at $G / C=1.00$, and 2.5 at $G / C=0.75$. The effect of positive stagger was twice that of negative.
(b) D_{c} and L / D for a given I_{c} can be caloulated by means of Munk's formula -

$$
\begin{equation*}
C_{D_{2}}=c_{D_{1}}-\frac{c_{L}^{2}}{\pi}\left[\frac{s_{1}}{b_{1}^{2} B_{1}^{2}}-\frac{s_{2}}{b_{2}^{2} \underline{k}_{2}^{2}}\right] . \tag{16}
\end{equation*}
$$

This gives results accurate within $+5 \%$ from 0.1 to $0.5 \mathrm{I}_{\mathrm{c}}$ max., for biplanes both with and without stagger. The effect of stagger at equal lifts is negligible from 0.1 to $0.9 \mathrm{I}_{\mathrm{c}}$ max.
(c) The values of M_{c} calculated by Munk's formulee (17) and (18), were hoplessly too low, averaging -18%.
(d) C.P. can be calculated within $\pm .01$ for unstaggered biplanes, $G / E=0.75$ to 1.33 , by Munk's formula -

$$
\begin{equation*}
\text { C.P. }=0.50-x+\frac{2 \pi \sin \beta_{0} x B 0}{C L} \tag{19}
\end{equation*}
$$

Acourate resulte require the assumption that -
(Lift due to $\propto)=($ Thtal lift, experimental) - (Curvature Iift, theoretical). The acouracy of the results thereby obtained indicates that the theoretical lift due to curvature is about correct. The theoretical lift due to α is entirely too high. If the assumption made above had been incorporated into the method for oalculating M_{c}, results of greater accuracy might have been obtained.

Our analysis of results has disclosed in general that an increase in the gen/chord ratio of a biplane -
(1) equalizes the load on upper and lower wings,
(2) increases I_{C} max, and L / D for a given L_{C},
(3) decreases D_{0} min., and α and D_{c} for a given I_{c}, and
(4) increases M_{c} and C.P. by small amounts.

While an increase in stagger -
(1) increases the load on the upper wing,
(2) deoreases I_{C} max.,
(3) decreases α for a given L_{c},
(4) inoreases M_{C} and C.P. by material amounts, and
(5) has a negligible effect on L / D and D_{c} for a given lift. Plates 13 and 14 present a concise quantitative estimate of these various effects due to stagger and gep/chord variation; while Munix's formalae, specified above, can predict loading, ok, $D_{c}, I / D$, and C.P. with rough accuracy over limited ranges.

CURVES SHOWING THE YARIATION WITH STAGGER AND G/C OF THE BIPLANE CORRECTION FACTORS FOR
 OF THE BIPLAVE CORRECTION FACTORS FOR

PLATE IG

 M_{C} AT GQUAL VALUES OF $L_{c}$$C P$.

\} YARIATION OF THESE CORRECTION FACTORS WATH $\angle \mathrm{C}$ IS NES LIGIBLE Read Gorrection. Factores Only To The Nearest $1 / 2 \%$ \%

SECTION IX.

REFEAETCES

Experimental

1. I. Bairstow, Tech. Report of the A.C.A. (British), 191112, p. $73-74$.
2. J.R.Pannell, Tech. Report of the A.C.A., 1915-16, pp. 99 - 110.
3. L.F.Bryant, Teoh. Report of the A.C.A., 1917-18, Vol. 1, pp. $184-187$.
4. W.I.Cowley, Tech. Report of the A.C.A., 1917 - 18, Vol.1, p. 194.
5. J.C.Hunsairer, Engineering, Jan. 7, 1916.
6. D.P.Warner, A. Memin, G.M.Denkinger, N.A.C.A. Report, 1917, pp. 289 - 292.
7. Lt. Col. Robert, Report of the International Air Congress, Iondon, 1923, pp. 357-367.

Theoretical

8. L. Prandtl, Applications of Hodern Hydrodynamios to Aeronautics, M.A.O.A. Report No. 116, Sections 18 - 19.
9. Max Li. Munc, General Biplane Theory, I. A.C.A. Poport NO. 151.

Symbol	Unit of Measure	Meaning of Symbol
Lo	Lbs.	Zero reading of lift arm on wind tunnel balance.
L_{1}	Ibs.	Reading in lbs. on lift arm with wind at $40 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.
I_{8}	Lbs.	Apparent lift due to spindie, or to spindle and balance crosshead combined. This only appeared when one airfoil was tested in the presence of another or when balance crosshead was not protected by the discoid case.
I	Libs.	Equal to $I_{1}-I_{0}$ or $I_{I}-I_{0}-I_{s}$, gives the actual lift on the airfoil, except in the case of the test made with spindle 3*00 larger than standard where $L=$ $\left(I_{1}-I_{0}\right) /(.923)$.
D_{0}	Lbs.	Zero reading of balance drag arm.
D_{1}	Lbs.	Reading of balance drag arm with wind velocity $40 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.
D_{8}	Lbs.	Apparent drag due to spindle, or to spindle and balanoe orosshead combined when the latter was exposed.
D	Ibs.	Equal to $D_{1}-D_{0}$ or $D_{1}-D_{0}-D_{8}$ as the case may be, gives the drag on the alrfoil.
L_{0}	(Lbs. $/ \mathrm{ft}^{2} / \mathrm{mph}$)	The lift coefficient of the airfoil.
$\begin{aligned} & D_{q} \\ & L / p \end{aligned}$	\#	$\begin{array}{lllll} \text { " drag } & \text { " } \end{array}$
HO_{0}	Revolutions of moment wheel.	Zero position of moment wheel
M_{1}	*	Position of moment wheel, after pitching moment on the airfoil with wind velicity at 40 mph , has been counterbalanced by rotating the moment wheel, which operates a torsion wire.

Symbol	Unit of Measure	Meaning of Symbol
M_{s}	Revolutions of moment wheel.	Moment of spindle about balance axis, or of spinde and exposed balance crosshead about balance axis, as the case may be.
M	In.Ibs.	Equal to ($\left.M_{1}-M_{0}\right) / 3.78$ or $\left(M_{1}-M_{0}-M_{s}\right) /$ 3.78 as the case may be, represents the pitching moment on the airfoil about the balance axis prolonged. $3.78=$ torsion wire constant.
M_{1}.e.	In.Ibs.	For monoplane:- pitching moment of the airfoil about its leading edge, and equal to M - 2a - Xh. For biplane:- pitching moment about leading edge of mean geometrical chord, and equal to $\mathrm{M}-\mathrm{Za}$ and Xh , where K is taken as positive (+), whether measured abore or below the M.G.O.
Mc_{c}	$\begin{aligned} & \text { (Ibs. ft./Sq.ft/M.P } \\ & \text { ft. of Chord) } \end{aligned}$	H. $/$ For monoplene: moment coefficient of the airfoil about its leading edge, equal to $\mathrm{M}_{1}, \mathrm{\theta} /\left(12 \subset \mathrm{SV}^{2}\right)$, where $\mathrm{C}=$ chord in $\mathrm{f} \mathrm{t}_{\mathrm{t}}$, in $\mathrm{m} / \mathrm{p} / \mathrm{h}$. For biplane: thoment coefficient about leading edge of geogetrical mean chord, equal to $\mathrm{M}_{1}, \theta, 12 \mathrm{C} \mathrm{SV}^{2}$.
Z	Ibs.	Force parallel to the 2 - axis. Equal to $I \cos \alpha-D \sin \alpha$.
X	Lbs.	Force parallel to the \mathbf{X} - axis. Equal to $D \cos \alpha-I \sin \alpha$.
\propto	Degrees	Angle of attack, where $\alpha=0$ means thet the chord coinsides with the direction of the airflow.
O.P.	-•••	Center of pressure coefficient expressed as a fraction of the chord abaft the leading edge.
G	Ins.	Gap.
0	Ins.	Chord.
d	Ins.	Distance from the axis of rotation ($=$ mean of upper and lower centers of rotation) to the leading edge, measured parallel to the $X-a x i s$. (Fig. 1).

Munk's (Ref. 9) nomenclature was used in the theoretical calculations involving his equations.
c.g.s.

Radians

Angle of attack, where $\beta=0$ means that the moment around the center of the wing is zero.

Symbol	Unit of Measure	Meaning of Symbol
β_{0}	Radians	lift coefficient for $\beta=0$.
${ }^{\text {c }}$	c.g.s.	Absolute lift ooefficient $=I / q$.
b	- ms.	Span.
T	c.ms.	Ghord.
8	c.ms.	Stagger
\boldsymbol{x}	-•••	Center of pressure of airfoil withdut curvature offect, expressed as frac. of chord.
B, C, V	- • •	Constants for a given biplane combination.
B_{0}	-	Equal $\sqrt{\text { B }}$
I	- . .	Interference factor.
k	Induction faotor (empirical).

Appendix B_{0}

ORIGINAL DATA.
N.B. In all tabulations of data, negative sign (-) are inserted, but all positive signs (t) are omitted. The absence of a sign means that the value.is positive (4).

U.S.A.-27 Monoplane \#1

1st Test

$$
D_{\mathrm{s}}=.0450
$$

$\underline{\sim}$	$\mathbf{I}_{Q}^{\#} \quad \underline{I}_{\text {II }}^{\#}$	$\underline{I_{1}-I_{0}^{\#}}$	D_{0}	D_{1}	$D_{1}-D_{0}-D_{s}$	M_{0}	M_{1}	$M_{1}-M_{0}$
-6	. 368 . 252	-. 116	. 0727	. 1920	. 0743	12	10.93	
-4	. 366.515	. 149	. 0728	. 1586	. 0408	12.47	11.13	-1.34
2	. 366.746	. 380	. 0729	. 1514	. 0335	12.47	11.35	-1.12
0	. 366.945	. 579	. 0730	. 1550	. 0370	12.47	11.63	84
	. 3661.196	. 830	. 0730	. 1643	. 0463	12.47	11.83	64
4	. 3641.427	1.063	. 0730	. 1811	. 0631			
	. 3641.628	1. 264	. 0730	. 2001	. 0821	12.47	12.36	- . 11
8	. 3641845	1.481	. 0730	. 2241	.1061			
10	. 3642041	1.677	. 0730	. 2494	. 1314	12.47	12.80	. 33
12	. 3632232	1.869	. 0730	. 2762	. 1582			
14	. 3622383	2.021	. 0730	. 3063	.1883	12.47	13.18	
16	. 3622.456	2.094	. 0730	. 3380	2200			
18	. 3612434	2.073	. 0728	. 4068	2809	12.47	12.94	. 47

2nd Test
$D_{s}=.0450$

$$
a=1: 00
$$

$h=0811$

α	\underline{L}_{0}	I_{1}	$\underline{I_{1}-I_{0}}$	D_{0}	D_{1}	$\underline{D_{1}-D_{0}-D_{s}}$	\underline{M}_{0}	\underline{M}_{1}	$\mathrm{M}_{1}-\mathrm{M}_{0}$
6	. 290	. 164	-. 126	. 1445	. 2691	. 0796	14.28	. 73	
4	. 291	. 428	. 137	. 1446	. 2324	. 0429	14.28	12.91	-1.37
2	. 291	. 651	. 360	. 1447	. 2238	. 0341	14.28	13.18	-1.20
0	. 290	. 853	. 563	. 1447	. 2251	. 0364	14.28	13.45	83
2	. 290	1.102	. 812	. 1447	. 2351	. 0454	14.28	13.68	60
4	. 289	1.320	1.031	. 1447	. 2507	. 0610	14.28	13.91	. 37
6	. 289	1.528	1.239	. 1447	. 2695	. 0798	14.28	14.17	11
8	. 288	1.733	1.445	. 1447	. 2932	.1035			
10	. 288	1.927	1.639	. 1447	. 3181	. 1284	14.28	14.71	43
12	. 287	2.122	1.835	. 1448	3449	. 1551			
14	. 287	2.276	1.989	. 1448	3766	. 1868	14.28	15.17	89
16	. 286	2.359	2.073	. 2448	4066	2168	14.28	15.31	. 03
18	. 285	2.330	2.045	. 1448	4658	. 2760	14.28	15.01	. 76
20	. 285	2.267	1.982	. 1448	. 5264	. 3366			
22	. 285	2.166	1.881	. 1448	. 5799	. 3901	14.28	14.45	17

U.S.A.-27 Monoplane \#1

Mean Values of Two Tests

$$
a=0.99 \quad \mathrm{~h}=0811
$$

$\underline{\alpha}$	$I_{1}-I_{0}$	$\underline{D_{1}-D_{0}-D_{s}}$	I/D	$\underline{L}_{\text {c }}$	R_{c}	$\underline{M_{1}-X_{0}}$	$\frac{M_{1}-1 H_{0}}{3.78}$
6	-. 121	. 0770	-1.57	-. 00020	. 000128	-1.55	-. 410
4	. 143	. 0419	3.42	. 00024	. 000070	-1.36	-. 360
2	. 370	. 0338	10.93	. 00062	. 000056	-1.16	-. 307
0	. 571	.0367	15.58	. 00095	. 000061	-. 84	-. 222
2	. 821	. 0459	17.90	. 00137	. 000077	-. 62	-. 164
4	1.047	. 0620	16.89	. 00175	. 000103	. 38	-. 101
6	1.251	. 0810	15.46	. 00209	. 000135	-. 11	-. 029
8	1.463	. 1048	13.98	. 00244	. 000175		. 02
10	1.658	. 1299	12.78	. 00276	.000217	- 37	. 098
12	1.847	. 1567	11.80	. 00308	.000261		
14	2.005	. 1876	10.70	. 00334	. 000313	80	212
16	2.084	.2184	9.55	. 00347	. 000364		
18	2.059	. 2785	7.39	. 00343	. 000464	. 62	164
20	1.982	. 3366	5.89	. 00330	. 000561		
22	1.881	. 3901	4.82	. 00314	. 000650	. 17	. 045

$\underline{\sim}$	X	$\underline{\mathbf{z}}$	22	X	M ${ }_{3}$ e.	C.P.\%	M_{c}
6	. 064	-. 129	-. 128	. 0070	- . 275	- 71.1	-. 00015
4	. 051	. 140	.139	. 0056	-. 493	117.2	-. 00027
2	. 047	. 369	. 365	. 0052	-. 667	60.3	-. 00037
0	. 038	. 571.	. 566	. 0042	-. 784	45.7	-. 00044
2	. 018	. 820	. 811	. 0020	-. 973	39.5	-. 00054
4	. 011	1.048	1.037	-. 0012	-1.139	36.3	-. 00063
6	-. 050	1.251	1.240	-. 0055	-1.275	33.9	.. 00071
8	-. 100	1.461	1.447	-. 0110			
10	-. 160	1.654	1.639	-. 0176	-1.555	31.4	-. 00086
12	-. 231	1.838	1.819	-. 0254			
14	-. 303	1.989	1.969	-. 0333	-1.790	30.0	-. 00099
16	-. 364	2.061	2.040	-. 0400	-1.790		-.0009
18	-. 370	2.042	2.021	-. 0407	-1.898	30.9	-. 00105
20	-. 360	1.977	1.957	-. 0396			
22	- . 344	1.890	1.871	-. 0378	-1.865	32.9	-. 00104

U.S.A.-27 Monoplane \#2

lst Test
$D_{S}=.0450$,
$a=0!97$
$h=0: 14$

α^{0}	I_{1}	I_{0}	$I_{1}-I_{0}$
-6	.146	.288	-.142
-4	.447	.288	.159
-2	.646	.287	.359
0	.863	.286	.577
2	1.105	.286	.819
4	1.327	.285	1.042
6	1.528	.285	1.243
8	1.735	.284	1.451
10	1.932	.284	1.648
12	2.222	.284	1.838
14	2.282	.283	1.999
16	2.385	.283	2.102
18	2.371	.282	2.089
20	2.287	.282	2.005
22	2.186	.281	1.905

D_{1}	D_{0}	$D_{1}-D_{0}-D_{s}$	Mr_{2}	Mo_{0}	$\mathrm{IN}_{1}-\mathrm{M}_{0}$
2596	. 1439	. 07071	14.48	16.00	-1.52
. 2342	. 1439	.04531	14.58	16.00	-1.42
. 2241	. 1440	.0351	14.79	16.00	-1. 21
. 2255	.1440	.03651	15.02	16.00	. 98
. 2354	. 1440	. 04641	15.28	16.00	.72
. 2500	. 1440	. 06101	15.53	16.00	. 47
. 2694	. 1439	.08051	15.77	16.00	. 23
. 2903	. 1438	. 1115			
. 3166	. 1437	.12791	16.23	16.00	. 23
. 3450	. 1436	.1564			
. 3730	. 1435	.18451	16.69	16.00	. 69
. 4044	. 1434	. 21601	16.72	16.00	. 72
. 4603	. 1432	. 2721.1	16.65	16.00	.65
. 5264	. 1430	. 3384			
. 5874	. 1428	39941	15.97	16.00	-. 03

2nd Test
$D_{\mathrm{s}}=.0450$

α^{0}	I_{0}	I_{1}	$I_{1}-I_{0}$
-6	.3650	.239	-.127
-4	.3653	.503	.138
-2	.3648	.738	.373
0	.3643	.962	.598
2	.36381 .199	.835	
4	.3631	1.419	1.055
6	.3624	1.628	1.266
8	.36281 .830	1.468	
10	.3613	2.024	1.663
12	.3614	2.225	1.864
14	.36062378	2.017	
16	.36012 .477	2.116	
18	.35972 .439	2.079	

$a=0!99$
$h=0019$

D_{0}	D_{1}	$D_{1}-D_{0}-D_{8}$	M_{0}	M_{1}	$\mathrm{M}_{1}-\mathrm{M}_{0}$
0716	. 1964	. 0798	11.97	10.41	-1. 56
.0719	. 1585	.04161	11.97	10.52	-1,45
.0r179	. 1510	.03411	11.97	10.77	-1.20
. 0719	. 1.540	. 03711	11.97	10.92	-1.05
. 0719	. 1630	.04611	11.97	11.27	70
.0719	. 1795	.06261	11.97	11.47	. 50
. 0718	. 1990	. 08221	11.97	11.75	. 22
.0718	. 2200	. 10321	11.97	12.02	. 05
. 0716	. 2463	. 12971	11.97	12.28	. 31
. 0714	. 2750	.15861	11.97	12.46	49
. 0712	. 3055	.18931	11.97	12.71	74
. 0711	. 3355	. 2194	11.97	12.92	. 95
.0710	. 3934	2774	11.97	12.56	. 59

U.S.A.-27 Monoplane \#2

Mean Values of Two Tests

$$
a=0: 98 \quad h=0.16
$$

α	$L_{2}-I_{0}$	$D_{1}-D_{0}-D_{8}$	$\mathrm{M}_{2}-\mathrm{H}_{0}$	I_{c}	D_{c}	$\frac{\Sigma}{\mathfrak{D}}$	$\frac{M_{1}-M_{0}}{3.78}$
6	-. 134	. 0753	-1.54	-.00022	. 000126	-1.78	-. 407
4	. 149	. 0435	-1.44	. 00025	. 000073	3.42	-. 381
- 2	. 366	. 0346	-1.21	. 00061	. 000058	10.59	-. 320
0	. 587	. 0368	-1.02	. 00098	. 000061	15.98	- . 270
2	. 827	. 0463	-. 71	. 00138	. 000077	17.86	-. 188
4	1.049	. 0618	-. 49	. 00175	. 000103	16.98	- . 130
6	1.254	. 0813	-. 23	. 00209	. 000136	15.43	-. 061
8	1.459	. 1074		. 00243	. 000179	13.58	.
10	1.656	. 1288	. 27	. 00276	. 000215	12.88	071
12	1.851	. 1575		. 00309	. 000263	11.77	
14	2.008	.1869	. 72	. 00335	. 000312	10.75	190
16	2.109	. 2177	. 84	. 00352	. 000363	9.70	. 222
18	2.084	. 2748	. 62	. 00347	. 000458	7.48	. 164
20	2.005	. 3384		. 00334	. 000564	5.93	
22	1.905	. 3994	-. 03	.00318	. 000666	4.77	. 008

α	I	Z	Za	Xh		C.P.\%	$\underline{H}_{\text {c }}$
	. 060	. 140	. 137	. 0096	-. 260	62.0	-. 00015
4	. 053	. 146	. 143	. 0085	-. 515	+ 117.6	-. 00028
2	. 048	. 364	. 357	.0077	-. 669	+ 61.2	-. 00038
0	. 037	. 587	. 575	. 0059	-. 839	+ 47.7	-. 00046
2	. 018	. 828	. 811	. 0029	-. 996	+ 40.3	-. 00055
4	-. 012	1.050	1.029	-. 0019	-1.161	+ 36.9	-. 00064
6	-. 050	1.254	1.229	-. 0080	-1.298	+ 34.4	-. 00072
8	-. 097	1.458	1.429	-. 0155			
10	-. 160	1.651	1.619	-. 0256	-1. 574	+ 31.8	8
12	-. 232	1.840	1.802	-. 0371			
14	-. 303	1.991	1.950	-. 0485	-1.809	+ 30.2	-. 00100
16	-. 373	2.085	2.044	-. 0596	-1.882	+ 30.1	-. 00105
18	-. 382	2.064	2.022	-. 0611	-1.919	+30.9	-. 00106
20	-. 371	1.997	1.956	-.0594			
22	-. 344	1.914	1.875	-. 0550	-1.938	33.7	00

U.S.A.-27 Monoplane

Mean Values of Two Tests on \#l and Two Tests on \#2
To be used as the standard to which to apply biplane correction factors.

α	$\underline{\Sigma_{1}-L_{0}}$	$\underline{D_{1}-D_{0}-D_{s}}$	$\underline{I}_{\text {c }}$	${ }^{D_{c}}$	I/D	C.Po\%	$\mathbb{M}_{\text {c }}$
- 6	- . 128	. 0762	. 00021	. 000127	- 1.68	-66.6	-. 00015
- 4	. 146	. 0427	. 00024	. 000071	3.42	+17.4	-. 000028
-2	. 368	. 0342	. 00061	. 000057	10.76	+60.8	-. 00038
0	. 579	. 0368	. 00097	. 000061	15.71	+46.7	-. 00045
2	. 824	. 0461	. 00137	. 000077	17.85	+39.9	-. 00055
4	1.048	. 0619	. 00175	. 000103	16.92	+36.6	-. 00064
6	1.253	. 0812	. 00209	. 000135	15.45	+34.2	.. 00072
8	1.461	. 1061	. 00244	. 000177	13.76		
10	1.651	. 1294	. 00276	. 000216	12.70	+31.6	.. 00087
12	1.849	. 1571	. 00309	. 000262	11.78		
14	2.007	. 1873	. 00335	. 000312	10.71	+30.1	-. 00100
16	2.097	. 2181	. 00350	. 000364	9.60		
18	2.072	. 2767	. 00345	. 000461	7.49	+30.9	-. 00105
20	1.994	. 3375	. 00332	. 000563	5.91		
22	1.893	.3948	. 00316	. 000658	4.80	+33.3	-. 00106

U.S.A.-27 As Upper Flane

 of Biplane Combination$G / C=1.00$, Stagger $=0$

- Continued -
$\alpha=0: 99$
$h=0: 19$

α	K	Z	Za	Xh	${ }^{1 / 2}$	C.P.	${ }_{\underline{1}}$
- 6	. 064	-. 184	. 182	. 012	-. 187	-. 339	-. 00010
- 4	.053	. 032	.0317	. 010	-. 385	4.010	-. 00021
2	.050	. 237	.235	. 009	-. 524	. 736	-. 00029
0	.039	-429	. 425	.007	-. 664	.515	-. 00037
2	.023	. 612	. 606	.004	-. 806	. 439	-. 00045
4	0	. 860	. 851	0			
6	-. 039	1.028	1.018	-. 007	-1.091	.356	-.00061
8	-. 068	1.213	1.202	.. 013			
10	-. 113	1.387	1.372	-. 022	-1.362	.328	-. 00076
12	-. 170	1.572	1.556	-. 032			
14	-. 225	1.740	1.721	-. 043	-1. 587	.304	-. 00088
16	-. 299	1.907	1.888	-. 057			
18	-. 363	2.060	2.040	-. 069	-1.752	. 283	-. 00097

α	I_{0}	$\underline{\underline{I n}}$	$\underline{L_{8}}$	I	D_{0}	D_{1}	$\underline{D_{8}}$	D
-6	. 332	. 309	. 002	. 022	. 0712	. 1785	. 0374	. 0699
-4	. 332	. 495	. 002	.165	. 0712	. 1482	. 0374	. 0396
-2	. 332	. 668	. 002	. 338	. 0712	. 1418	. 0374	. 0332
0	. 331	. 830	. 002	. 501	. 0712	. 1468	. 0374	. 0382
2	. 330	1.006	. 002	.678	. 0712	. 1556	. 0373	. 0471
4	. 330	1.188	. 002	. 859	. 0712	. 1701	. 0373	. 0616
6	. 329	1.333	. 002	1.005	. 0710	. 1890	. 0372	. 0808
8	. 329	1.501	. 002	1.174	. 0709	. 2083	. 0372	. 1002
10	. 328	1.664	. 002	1.338	. 0708	. 2308	. 0371	. 1229
12	. 327	1.813	. 002	1.488	. 0707	. 2558	. 0370	. 1481
14	. 327	1.961	. 002	1.635	. 0705	. 2791	. 0369	. 1717
16	. 327	2.079	. 001	1.754	. 0704	. 3023	. 0368	. 1951
18	. 327	2.168	. 001	1.843	. 0703	. 3297	. 0367	. 2227
20	. 326	2.129	. 001	1.804	. 0700	. 3850	. 0366	. 2784
22	. 325	2.110	. 001	1.786	. 0699	. 4538	. 0365	. 3574

$$
\begin{aligned}
& \text { U.S.A. }-27 \text { As Lower } \\
& \text { Plane of Bi-Plane Combination } \\
& G / C= 1.00, \text { Stagger }=0 \\
& \text { Continued }
\end{aligned}
$$

α	L/D	$\underline{L C}$	${ }^{\text {D }}$	${ }_{\mathbf{M}}^{0}$	$\underline{\mathbf{Y}_{1}}$	$\underline{M_{1}-\underline{Y}_{0}}$	$\begin{aligned} & x_{1}-y_{0} \\ & -\frac{1}{3.78} \end{aligned}$
6	. 31	-. 00004	. 000116	14.45	12.67	-1.78	-. 471
4	4.16	. 00028	. 000066	14.45	12.81	-1.64	. 434
2	10.18	. 00056	. 000055	14.45	13.06	-1.39	- . 368
0	13.12	. 00084	. 000064	14.45	13.32	-1.13	- . 299
2	14.39	. 00113	. 000079	14.45	13.45	-1.00	. 264
4	13.91	. 00143	. 000103	14.45			
6	12.45	. 00168	.000135	14.45	13.82	-. 63	-. 169
8	11.70	. 00195	. 000167	14.45			
10	10.89	. 00223	. 000205	14.45	14.20	. 25	. 06
12	10.01	. 00248	.000247	14.45			
14	9.53	. 00273	. 000286	14.45	14.69	. 24	. 064
16	9.00	. 00292	. 000325	14.45			
18	8.29	. 00307	. 000371	14.45	15.03	. 58	153
20	6.49	. 00301	. 000464	14.45	14.78	. 33	. 087
22	5.00	. 00298	. 000596	14.45	14.51	. 06	. 016

$a=0.93 \quad h=0.14$

α	X	E	Za	Xh	${ }^{M}{ }_{I R}$	C.P.	$\mathbf{M}_{\text {c }}$
- 6	. 068	-. 029	-. 028	. 010	-. 434	-1.496	-. 00024
- 4	.050	.161	.150	.007	-. 577	1.196	-. 00032
- 2	. 044	. 337	.313	. 006	-. 675	. 669	-. 00038
0	. 038	. 501	. 466	.005	-. 760	. 506	-. 00042
2	. 024	. 679	. 630	.003	-. 895	. 440	-. 00050
4	. 001	. 860	. 800	.000			
6	-. 024	1.007	. 937	..003	-1. 109	.368	-. 00062
8	-. 064	1.176	1.092	-. 009			
10	. .111	1.338	1.241	.. 016	-1.323	.330	-. 00074
12	-. 165	1.486	1.381	. . 023			
14	-. 229	1.626	1.511	. .032	-1.479	.304	. .00082
16	-. 297	1.738	1.614	-. 042			
18	-. 358	1.820	1.692	-. 050	-1.589	. 291	-. 00088
20	-. 355	1.790	1.665	-. 050	-1.628	.303	-. 000091
22	-. 340	1.790	1.665	.. 048	-1.697	.315	.. 00094

U.S.A.-27 As Opper Plane
 of Biplene Combination

$$
G / C=1.67 \quad \text { Stagger }=0
$$

α	$\underline{\mathbf{L}_{\mathbf{8}}}$	\underline{I}_{0}	\underline{L}_{1}	\underline{L}	D_{B}	D_{0}	D_{1}	D
-6	. 002	. 333	. 178	. 157	. 0373	. 0687	. 1694	. 0634
-4	. 002	. 333	. 520	. 185	. 0375	. 0687	. 1450	. 0388
-2	. 001	. 333	. 714	. 380	. 0377	. 0687	.1417	. 0353
0	. 001	. 332	. 921	. 587	. 0379	. 0687	.1453	. 0387
2	. 001	. 331	1.140	. 808	. 0381	. 0687	. 1564	. 0496
4	. 001	. 331	1.357	1.025	. 0382	. 0687	. 1739	. 0676
6	. 001	. 331	1.550	1.218	. 0383	. 0687	. 1964	. 0894
8	. 001	. 330	1.751	1.420	. 0383	. 0687	. 2236	. 1166
10	. 001	. 330	1.969	1.638	. 0383	. 0687	. 2565	. 1495
12	. 001	. 330	1.140	1.809	. 0383	. 0682	. 2947	. 1882
14	. 001	. 329	2.351	2.022	. 0383	. 0682	. 3347	. 2282
16	. 000	. 329	2.498	2.168	. 0383	. 0680	. 3761	. 3698
18	. 000	. 328	2.626	2.298	. 0383	. 0675	. 4153	. 3095
20	. 000	. 327	2.589	2.262	. 0383	. 0675	. 4724	. 3666

α	$\underline{L / D}$	$\underline{I_{c}^{c}}$	${ }^{\text {D }}$	$\xrightarrow{\underline{M}}$	$\underline{M_{2}}$	$\underline{M}-M_{0}$	$\begin{array}{r} \mathrm{M}_{1}-\mathrm{W}_{0} \\ -{ }_{3}-78 \\ \hline \end{array}$
-6	-2.47	-.00026	. 000106	12.51	10.90	-1.61	-. 426
-4	4.78	. 00031	. 000065	12.51	11.10	-1.41	-. 373
-2	10.76	.00063	. 000059	12.51	11.31	-1.20	-. 318
0	15.19	. 00098	. 000065	12.51	11.58	-. 93	-. 246
2	16.28	. 00135	. 000083	12.51	11.80	- . 71	-. 188
4	15.30	. 00171	. 000112	12.51			
6	13.61	. 00203	. 000149	12.51	12,28	-. 23	-. 061
8	12.22	.00237	. 000194	12. 51			
10	10.95	. 00273	. 000249	12.51	12.81	. 30	. 079
12	9.61	. 00302	. 000314	12.51			
14	8.86	. 00337	. 000380	12.51	13.40	. 89	. 236
16	8.05	. 00361	. 000450	12.51			
18	7.42	. 00383	. 000516	12.51			
20	6.18	. 00377	. 000611	12.51	13.69	1.18	. 313

> U.S.A. -27 As Opper Plane of Biplane Combination

$$
G / C=1.67 \quad \text { Stagger }=0
$$

- Continued -

$$
a=0: 99
$$

$$
h=0.19
$$

α	X	Z	Za	$\underline{\mathrm{Xh}}$	$\mathrm{M}_{\text {LE }}$	C.P.	M0
- 6	. 047	-. 165	-. 163	.009	-. 254	-. 514	-. 00014
- 4	.050	.181	. 178	. 010	-. 542	. 999	. .00030
- 2	. 048	-378	. 374	. 009	-. 683	.601	.. 00038
0	. 039	. 587	. 581	.007	-. 820	. 470	-. 00046
2	. 022	. 808	. 800	. 004	-. 984	. 406	.. 00055
4	-. 004	1.025	1.015	.001			
6	-. 038	1.220	1.208	. 007	-1.276	.348	-.00071
8	-. 081	1.421	1.407	-. 015			
10	. .136	1.638	1.622	-. 026	-1.569	. 319	-. 00087
12	-. 192	1.807	1.789	-.037			
14	-. 267	2.014	1.994	..051	-1.809	. 299	.. 00100
16	-. 339	2.156	2.135	-. 065			
18	. .416	2. 279	2. 256	.. 079			
20	-. 430	2.250	2. 228	-. 082	-1.997	. 296	-. 00111

> U.S.A.-27 As Lower Plane of Biplane Combination $G / C=1.67 \quad$ Stagger $=0$

α	\underline{I}_{8}	I_{0}	I_{1}	I	$\mathrm{D}_{\mathbf{s}}$	D_{0}	D_{1}	D
- 6	-. 002	.338	. 234	.102	. 0358	. 0707	.1877	. 0812
- 4	.. 002	. 337	. 458	. 123	. 0358	. 0707	.1517	. 0452
- 2	-. 002	. 336	.. 653	.318	. 0358	. 0707	. 1448	. 0383
0	-.002	. 336	. 840	. 506	. 0358	. 0707	. 1465	. 0400
2	.. 002	. 336	1.040	. 706	. 0358	. 0706	. 1560	. 0496
4	..002	. 336	1. 244	. 910	. 0358	. 0706	. 1702	. 0638
6	-. 002	. 335	1.411	1.077	. 0358	. 0705	. 1885	. 0822
8	..002	. 335	1.590	1.257	. 0359	. 0705	. 2055	. 0991
10	-. 002	. 334	1.762	1.430	. 0359	. 0704	- 2288	. 1225
12	-. 001	. 334	1.936	1.604	. 0360	. 0701	. 2540	. 1479
14	..001	. 333	2.080	1.748	. 0360	.0700	. 2813	.1753
16	.. 001	. 333	2.204	1.872	. 0361	. 0700	. 3069	. 2008
18	-. 001	. 332	2.239	1.908	. 0361	. 0698	. 3405	. 2346
20	. 001	. 332	2.188	1.956	. 0362	. 0696	. 4057	. 2999

$$
\begin{gathered}
\text { U.S.A. }-27 \text { As Lower Plane } \\
\text { of Biplane } \\
\begin{array}{c}
G / C= \\
= \\
\\
\end{array}-\text { Continued - } 67, \quad \text { Stagger }=0
\end{gathered}
$$

$\underline{\alpha}$	$\underline{L} / \mathrm{D}$	$\underline{I_{c}^{c}}$	$D_{\text {e }}$	$\xrightarrow{\mathbf{H}}$	M_{1}	$\underline{M_{1}-\mathbf{M}_{0}}$	$\begin{array}{r} M_{1}-M_{0} \\ \hdashline 3.78 \end{array}$
- 6	- 1.25	-. 00017	. 000135	12.48	10.83	-1.65	. 436
4	2.73	. 00021	. 000075	12.48	10.85	-1.63	. 431
- 2	8.32	. 00053	. 000064	12.48	11.13	-1.35	. 357
0	12.68	. 00084	. 000067	12.48	11.36	-1.12	. 296
2	14.22	. 00118	. 000083	12.48	11.58	-. 90	. 238
4	14.28	. 00152	. 000106	12.48			
6	13.12	. 00180	. 000137	12.48	11.97	-. 51	. 135
8	12.69	. 00210	. 000165	12.48			
10	11.71	. 00238	. 000204	12.48	12.37	- . 11	. 029
12	10.85	. 00267	. 000246	12.48			
14	9.98	. 00291	. 000292	12.48	12.54	. 06	. 016
16	9.32	. 00312	. 000335	12.48			. 016
18	8.13	.00318	. 000391	12.48	12.97	.49	. 130
20	6.19	.00309	. 000500	12.48	12.60	.12	. 032

α	X	[Ea	Xh	$\underline{M}_{1 . e}$.	C.P.	${ }_{\underline{M}}$
6	. 070	.110	-. 109	. 013	-. 324	-. 95	-. 00017
- 4	. 053	.121	. 112	. 010	-. 533	1.470	-. 00030
- 2	. 049	. 316	. 313	. 009	-. 661	. 698	-. 00037
0	. 040	. 506	. 501	. 008	-. 789	. 520	-. 00044
2	. 025	. 708	. 700	. 005	- . 933	. 440	..00052
4	. 000	. 911	. 902	. 000			
6	-. 031	1.079	1.068	-. 006	-1.262	. 390	-. 00070
8	-. 078	1.257	1.244	-. 015			
10	-. 128	1.428	1.412	.. 024	-1.465	. 342	. 00081
12	-. 189	1.599	1.581	-. 036			
14	-. 242	1.694	1.678	-. 046	-1.708	. 336	-. 00095
16	-. 322	1.853	1.835	.. 061			
18	-. 366	1.885	1.867	-. 070	-1.806	. 319	-. 00100
20	-. 352	1.845	1.827	-. 067	-1.862	. 337	.. 00104

U.S.A.*27 Monoplane \#1

Mounted on Balance Crosshead

Drag (D_{g}) Lift (L_{s}), of $5-7 / 8^{\prime \prime}$ spindle and balance cross. head on which spindle was mounted $3 / 4^{\prime \prime}$ from balance axis.

U.S.A.-27 Monoplane \#1

Crosshead mounting protected by discoid case

lst Test

$$
\mathbf{D}_{\mathbf{B}}=.0327 \quad a=0.79 \quad h=0.83
$$

α	LI	\underline{I}_{0}	$\mathrm{I}_{1}-\mathrm{I}_{0}$	D_{1}	O	$\mathrm{D}_{2}-\mathrm{D}$	M_{1}	\mathbf{M}_{0}	${ }^{M_{s}}$	3.38M
	. 17	. 270	. 100	. 1762	. 0719	. 0716	9.18	10.80	09	1.53
	. 44	. 270	. 177	. 1432	. 0715	. 0390	9.02	10.80	09	
2	. 688	. 270	. 418	. 1364	. 0708	. 0329	9.04	10.80	09	67
0	. 907	. 269	. 638	. 1378	. 0698	. 0353	9.10	10.80	. 08	
2	1.159	.1268	. 891	. 1484	. 0683	. 0474	9.15	10.81	. 08	
4	1.379	. 268	1.111	. 1634	. 0671	. 0636	9.21	10.81	-. 08	
6	1.601	. 267	1.334	. 1821	. 0661	. 0833	9.38	10.81	. 08	
8	1.824	. 267	1.557	. 2067	. 0649	. 1091	9.55	10.81	. 08	-1.18
10	2.033	. 266	1.767	. 2343	. 0635	1381	9.75	10.81	08	B
12	2.241	. 266	1.975	. 2600	. 0621	.1652	10.00	10.81	. 08	73
14	2.400	. 265	2.135	. 2940	. 0613	. 2000	10.33	10.82	. 08	41
16	2.469	. 265	2.204	. 3358	. 0598	. 2383	10.51	10.82	. 08	23
18	2.446	. 265	2.181	. 3979	. 0590	. 3062	10.38	10.82	. 09	5
20	2.364	. 264	2.100	. 4672	. 0575	.3770	10.08	10.82	. 09	
22	2.238	. 264	1.9	. 5300	. 05	. 4411	9.8			

2nd Test

$$
D_{B}=.0327
$$

α	I_{1}	I_{0}	$I_{1}-I_{0}$	D_{1}	D_{0}	$D_{1}-D_{0}-D_{0}$
6	.139	.270	-.131	.1775	.0677	.0771
-4	.406	.269	.137	.1407	.0664	.0416
-2	.650	.268	.382	.1314	.0655	.0332
0	.879	.268	.611	.1334	.0648	.0359
2	1.115	.267	.848	.1426	.0630	.0452
4	1.351	.267	1.084	.1574	.0622	.0625
6	1.558	.266	1.292	.1761	.0613	.0921
8	1.799	.266	1.533	.2000	.0598	.1075
10	2.009	.266	1.743	.2258	.0592	.1339
12	2.194	.266	1.928	.2530	.0579	.1624
14	2.352	.265	2.087	.2864	.0563	.1974
16	2.447	.264	2.183	.3215	.0553	.2435
18	2.418	.264	2.154	.3878	.0541	.3010

U.S.A.- 27 Monoplane \#2

Crosshead mounting, protected by discoid case.

> lat Teat
$D_{8}=.0301 \quad a=0.75 \quad h=0.87$

		I_{0}	$\mathrm{In}_{1}-\mathrm{I}_{0}$	D_{1}	D_{0}	$\mathrm{D}_{1}-D_{0}-\mathrm{D}_{\mathrm{E}}$	$\underline{8}$	3.78
	. 206	. 254	8	. 1934	. 0839		,	
	. 384	. 253	. 131	. 1556	. 0879	. 0436	9.49 II	1.73
	. 634	. 252	. 382	. 1460	. 0818	. 0341	$9.53 \mathrm{n} .31-.09$	
0	. 858	. 251	. 607	. 1482	. 0808	. 0373	$9.5811 .30-.08$	1.64
2	1.093	. 250	. 843	. 1559	.0797	. 046	$9.621130-.08$	
4	1.337	. 250	1.087	. 1728	. 0786	-0461		
	1.560	. 249	1.311	. 1.913	. 0775	. 083	9.	
	1.777	. 249	1.528	. 2144	. 0763	. 108	10.04 $1130-.08$	18
10	1.972	. 248	1.724	. 2400	. 0751	. 134	$10221730-.08$. 00
12	2.150	. 247	1.903	. 2676	. 0738	. 163	$10.4611 .29-.08$	75
14	2.341	. 246	2.095	. 3008	. 0725	. 1982	$10.76111 .29-.08$	
16		. 246	2.201	. 3358	. 0712	. 2345	$109517.29-.08$	-
18		. 245	2.186	. 3975	0699	. 2975	10.85 $11.29-.09$	
20	2.357	. 245	2.112	. 4706	. 0687	718	104411	
22	2.234	. 244	1.990	. 5300	. 0674	4325	10.1911.	

2nd Test

$$
\mathbf{D}_{\mathrm{s}}=.0327
$$

α	I_{1}	I_{0}	$I_{1}-I_{0}$	D_{1}	D_{0}	$D_{1}-D_{0}-D_{s}$
-6	.201	.331	-.130	.1830	.0617	.0886
-4	.479	.331	.148	.1446	.0633	.0486
-2	.727	.330	.401	.1331	.0641	.0375
0	.958	.330	.628	.1392	.0659	.0406
2	1.194	.330	.871	.1475	.0666	.0502
4	1.427	.329	1.098	.1658	.0677	.0654
6	1.637	.328	1.309	.1870	.0686	.0857
8	1.843	.328	1.818	.2101	.0691	.1083
10	2.039	.327	1.712	.2376	.0698	.1351
12	2.229	.327	1.902	.2661	.0705	.1 .629
14	2.384	.326	2.058	.2981	.0716	.1938
16	2.470	.325	2.145	.3306	.0723	.2246
18	2.451	.325	2.126	.2851	.0736	.2788
20	2.387	.324	2.063	.4702	.0746	.3629
22	2.271	.323	1.948	.5395	.0758	.4310

U.S.A.-27 Monoplane

Mean of 4 tests for Lift and Drag and 2 Tests for Moments. Mounted on balance crosshead; crosshead protected from wind by discoid case.

To be used as standard to which to compare biplane results and thereby obtain biplane correction factors.

α	\underline{L}	D	$\underline{I}_{\text {c }}$	${ }_{\text {D }}^{\text {c }}$	$\underline{L} / \mathrm{D}$	2 I	2D	$2 \mathrm{M}_{23}$
	127	. 0791	-. 000	. 000132	-1.63	. 254	. 1582	. 500
4	. 148	. 0432	. 00025	. 000072	3.42	. 296	. 0864	-1.038
2	. 396	. 0343	. 00066	. 000057	11.54	. 792	. 0686	-1.416
0	. 622	. 0373	. 00104	. 000062	16.71	1.244	. 0746	-1.758
2	. 863	. 0473	. 00144	. 000079	18.30	1.726	. 0946	-2. 136
4	1.095	. 0639	. 00183	. 000106	17.20	2.190	. 1278	-2.510
	1.311	. 0838	.00219	. 000140	15.70	2.622	. 1676	-2.830
8	1.533	. 1082	.00256	. 000180	14.20	3.066	. 2164	-3.166
10	1.737	. 2355	. 00289	.000226	12.82	3.474	. 2710	3.486
12	1.927	. 1636	. 00321	.000273	11.79	3.854	. 3272	3.754
14	2.091	. 1976	. 00349	. 000329	10.60	4.182	. 3952	-3.960
16	2.183	. 2329	. 00364	. 000388	9.38	4.366	. 4658	-4.096
18	2.162	. 2958	. 00360	. 000493	7.30	4.324	5916	4.172
20	2.092	. 3707	. 00349	. 000618	5.64	4.184	. 7414	-4.218
22	1.971	. 4350	.00320	. 000725	4.53	3.942	. 8700	-4.142

$a=0: 77 \quad h=0 \% 85$

α	Y X	I	Za	Xh	$\underline{M}_{1} e$	$\underline{u}_{\text {c }}$	C.P.
-6	-. 410.066	.135	.104	. 056	. 250	-. 00014	. 62
- 4	-. 452.053	.145	. 112	.045	. 519	-. 00029	1.19
- 2	-. 445.048	. 394	.304	. 041	-.708	-. 00039	.60
0	-. 431.037	. 622	. 479	.031	.879	-. 00049	.47
2	-. 418.018	. 864	.665	.015	-1.068	-. 00059	41
4.	-.399-. 013	1.097	. 845	. .011	-1.255	-. 00070	38
6	-.360-.053	1.312	1.011	. . 045	-1.415	-. 00079	6
8	-.312-. 105	1.535	1.182	.. 089	-1.583	-. 000088	$41 / 2$
10	-. 262-. 168	1.734	1.338	-. 143	-1.743	. .00097	3 1/2
12	-. $196-.241$	1.918	1.476	-. 205	-1.877	. . 00104	.32 1/2
14	-. 114-. 313	2.075	1.600	-. 266	-1.980	-. 00110	. 32
16	-. $066-.370$	2.162	1.667	-. 315	-2.048	-. 00114	. 31 1/2
18	-. $106-.385$	2.146	1.654	-. 328	-2.086	. .00116	. $321 / 2$
20	-. $188-.366$	2.092	1.610	-. 311	-2.109	-. 00117	. 33 1/2
22	-. 254-. 335	1.990	1.532	. 285	-2,071	-.00115	.34 1/2

U.S.A.-27 Monoplane \#1

Crosshead mounting protected by discoid case.
Length of spindle $=8,00$, i.e., 3:00 longer than standard length.
$D_{s}=.0547$
1st Teat

$\underline{\sim}$	\underline{L}_{0}	I_{1}	$\underline{I L}^{-}-I_{0}$	D_{0}	D_{1}	$D_{1}-D_{0}-D_{8}$
- 6	. 328	.148	-. 180	. 0570	. 2130	. 1013
- 4	. 327	. 445	. 128	. 0583	. 1652	.0522
-2	. 327	. 717	. 391	. 0598	. 1563	. 0418
0	. 326	. 968	. 642	. 0606	. 1595	. 0442
2	. 326	1.205	. 883	. 0617	. 1690	. 0526
4	. 326	1.462	1.136	. 0626	. 1866	. 0693
6	. 325	1.706	1.381	. 0637	. 2088	. 0904
8	. 325	1.925	1.600	. 0651	. 2372	. 1174
10	. 324	2.158	1.834	. 0661	. 2682	. 1474
12	. 324	2.352	2.028	. 0670	. 2971	.1754
14	. 323	2.503	2.180	. 0680	. 3282	. 2055
16	. 322	2.645	2.323	. 0690	. 3679	. 2442
18	. 321	2.625	2.304	. 0702	. 4221	. 2972

2nd Test

α	\underline{I}_{0}	$\underline{I_{1}}$	$\underline{I_{2}-I_{0}}$	D_{0}	D_{1}	$\mathrm{D}_{1}-\mathrm{D}_{0}-\mathrm{D}_{\mathrm{s}}$
6	. 267	. 155	. 118	. 0695	. 2041	. 0799
4	. 266	. 446	. 180	. 0693	. 1684	. 0444
2	. 265	$\text { 7日0木 } 08$. 443	. 0690	. 1598	. 0361
0	. 265	. .946	. 681	. 0678	. 1632	. 0407
2	. 265	1.217	. 944	. 0665	. 1742	. 0630
4	. 264	1.459	1.195	. 0655	. 1914	. 0812
6	. 263	1.703	1.440	. 0644	. 2129	. 0938
8	. 263	1.932	1.669	. 0630	. 2383	. 1206
10	. 262	2.139	1.877	. 0620	. 2657	. 1490
12	. 262	2.362	2.100	. 0610	. 2983	. 1826
14	. 262	2.544	2.282	. 0600	. 3343	. 2196
16	. 261	2.604	2.343	. 0590	.3741	. 2604
18	. 261	2.513	2.312	. 0576	. 4418	.3295

U.S.A.-27 Monoplane \#2

Crosshead mounting protected by discoid case.
Length of spindle $=8 \% 00$, i.e., $3: 00$ longer than standard.
$D_{\mathrm{B}}=.0547$
1st Test

α	\underline{L}_{0}	I_{1}	$I_{1}-I_{0}$	D_{0}	D_{1}	$\mathrm{D}_{1}-D_{0}-D_{8}$
- 6	. 266	. 188	-. 078	.0706	.1980	. 0727
- 4	. 266	.473	.207	.0695	.1670	. 0428
-2	. 265	. 733	. 468	. 0680	.1600	.0373
0	. 264	.973	. 709	. 0665	. 1652	. 0440
2	. 264	1. 244	.980	.0684	.1770	. 0569
4	. 263	1.491	1.228	.0642	. 1945	. 0756
6	. 262	1.729	1.467	. 0632	. 2155	. 0976
8	. 261	1.955	1.694	. 0622	. 2405	. 1236
10	. 261	2.185	1.924	. 0613	. 2720	.1560
12	. 261	2.404	2.143	.0603	. 3048	. 1898
14	. 261	2.555	2. 294	. 0594	. 3366	. 2215
16	. 260	2.616	2.356	. 0584	. 3749	. 2618
18	. 260	2.600	2.340	.0569	. 4495	.3379
α	I_{0}	I_{1}	$I_{1}-I_{0}$	Test D_{0}	D_{1}	$\mathrm{D}_{1}-\mathrm{D}_{0}-\mathrm{D}_{8}$
- 6	. 268	.213	-. 055	.0703	. 1923	.0673
- 4	. 267	. 497	.230	. 0695	.1656	. 0514
-2	. 266	.754	. 488	. 0688	$\begin{aligned} & 1606 \theta 6 \\ & 1606 \end{aligned}$.0371
0	. 265	1.006	. 741	. 0675	.1663	. 0441
2	. 265	1.273	1.008	. 0668	$\begin{aligned} & 1789_{87} \\ & .179187 \end{aligned}$.0568
4	. 264	1.509	1. 245	. 0660	.1957	. 0750
6	. 264	1.737	1.473	.0650	. 2184	. 0987
8	. 263	1.960	1.697	. 0640	. 2442	. 1255
10	. 263	2. 200	1.937	.0627	. 2744	. 1570
12	. 262	2.386	2.124	. 0615	- 3044	. 1882
14	. 262	2.538	2. 276	. 0603	. 3396	. 2246
16	. 262	2.595	2.334	.0592	38	. 2735
18	. 261	2.553	2.292	.0578	. 4514	.0578

U.S.A.-27 Monoplane

Length of Spindle $=8400$, i.e., $3: 00$ longer then standard Average of 2 tests on \#1 and 2 tests on \#2.

α	$I_{1}-I_{0}$	$D_{1}-D_{0}-D_{B}$	$\mathbf{I c}_{\mathbf{c}}$	D_{0}	I / D
- 6	-. 106	.0803	. .00016	.000125	- 1.3
- 4	. 186	. 0477	. 00029	. 000073	3.9
-2	. 4.48	. 0381	. 00069	.000059	11.8
0	. 694	. 0433	. 00107	. 000067	16.0
2	. 954	.0573	. 00147	. 000088	16.7
4	1.201	. 0752	. 00185	.000116	16.0
6	1.440	. 0951	.00222	. 000146	15.1
8	1.665	.1218	. 00256	. 000187	13.7
10	1.893	.1524	. 00292	. 000235	12.4
12	2.099	.1840	.00323	. 000283	11.4
14	2.258	. 2178	. 00347	.000335	10.4
16	2.339	. 2600	.00360	.000400	9.0
18	2.312	. 3259	.00356	.000502	7.1

$$
\begin{gathered}
\text { U.S.A, }-27 \text { Biplane } \\
G / C=.50 \quad \text { Stagger }=-40 \%
\end{gathered}
$$

$$
D_{s}=.0556, \quad a=0885, \quad h=0 \quad \text { Short Strut, } \beta=38^{\circ} .7
$$

$$
\begin{array}{ll}
\text { U.S.A.-27 } & \text { Biplane } \\
G / C=.50 & \text { Stagger }=0
\end{array}
$$

$$
D_{\mathrm{B}}=.0571 \quad a=0.85 \quad h=0.12 \quad \text { Short Strut, } \beta=0^{\circ}
$$

α	$\mathrm{I}_{0}{ }^{\text {a }}$	I_{1}	\underline{I}	$\mathrm{D}_{8}^{\text {P }}$	D_{0}	D_{1}	D	I/D
6	- 296	. 320	. 024	. .0083	. 0837	. 2635	.1144	2
4	- 296	. 665	.369	. 0085	. 0843	. 2364	. 0865	4.3
-2	. 294	. 968	. 674	. 0088	. 0843	- 2283	. 0781	8.6
0	. 293	1.287	. 994	. 0089	. 0842	.2333	.0831	11.9
2	. 291	1.617	1.326	. 0088	. 0840	.2535	.1036	12.8
4	.290	1.986	1,696	. 0086	. 0839	. 2854	. 1358	12.5
6	-295	2.304	2.009	. 0084	. 0838	. 3204	.1711	11.7
8	. 299	2.607	2.308	. 0082	. 0834	.3579	-2092	11.5
10	. 298	2.923	2.625	. 0080	. 0831	. 4058	.2576	10.2
12	. 297	3.217	2.920	.0077	. 0829	. 4531	.3054	9.6
14	. 296	3.470	3.174	. 0075	. 0827	. 5086	.3613	8.8
16	. 295	3.689	3.394	.0073	. 0822	. 5607	.4141	8.2
18	. 294	3.836	3.542	$\bigcirc 0071$. 0820	. 6130	. 4668	7.6
20	. 293	3.956	3.663	. 0069	. 0818	.6731	. 5273	7.0
22	. 282	3.859	3.567	. 0067	. 0816	. 7980	.6526	B. 5

α	$\mathbf{H o}_{0}$	\mathbf{H}_{1}	H	X	\underline{Z}	Za	xh	\%	C.P.
	9.98	7.07	-. 7770	.115	. 012	. 010	-. 0	. 766	. 77
	9.98	7.27	-. 716	. 112	. 361	.307	-. 013	-1.010	. $931 / 2$
	9.98	7.70	-. 604	. 100	. 664	. 564	-. 012	-1.156	58
0	9.98	8.07	-. 505	. 083	. 994	. 844	-. 010	-1.339	45
2	9.98	8.40	-. 418	. 057	1.328	1.129	-. 007	-1.540	$81 / 2$
4	9.98	8.61	-. 352	. 017	1.700	1.445	. 002	-1.795	
6	9.98	8.95	-. 273	. 040	2.015	1.712	. 005	-1.990	1
8	9.98	9.27	-. 188	. 114	2.313	1.968	. 014	-2.170	$311 / 2$
10	9.97	9.50	-. 124	. 200	2.628	2.235	. 024	-2.383	30
12	9.97	9,89	-. 021	. 305	2.920	2.483	. 037	-2.541	. 29
14	9.97	10.13	. 042	406	3.125	2.655	. 049	2.662	. 29
16	9.97	10.52	. 146		3.374	2.870	. 065	-2.789	27
18	9.96	11.17	. 320	650	. 508	2.983	. 078	-2.741	26
20	9.96	11.01	. 279	-. 756	.620	3.076	. 091	-2.888	$261 / 2$
22	9.95	10.87	. 244	73	. 548	3.015	. 088	-2.859	27

U.S.A.-27 Biplane
$G / C=.50 \quad$ Stagger $=60 \%$
$D_{\mathbf{g}}=.0556, \quad a=0889, \quad h=0: 16$, Short Strut, $\beta=50: 2$

α	I_{0}	I_{1}	I	D'	D_{0}	D_{1}	D	$\underline{L} / \mathrm{D}$
- 6	.305	. 321	. 016	. 0023	. 0492	. 2271	. 1200	1
- 4	. 305	. 697	.392	.0025	. 0502	. 1941	.0858	4.6
-2	. 304	1.078	.774	.0028	. 0512	.2895	.0799	9.7
0	. 304	1.451	1.147	. 0030	.0527	. 2017	. 0904	12.7
2	. 304	1.843	1.539	. 0032	.0543	. 2289	.1158	13.3
4	. 303	2.228	1.925	.0035	.0547	- 2644	.1506	12.7
6	. 303	2.613	2.310	. 0037	. 0552	. 3111	. 1966	11.8
8	. 303	3.006	2.703	.0040	. 0563	. 3693	. 2534	10.7
10	. 302	3.376	3.074	. 0042	.0574	. 4293	. 3121	9.8
12	. 302	3.730	3.428	. 0044	. 0584	. 4980	.3796	0.0
14	. 301	4.046	3.745	.0047	. 0595	. 5747	. 4549	8.2
16	.301	4.297	3.996	. 0049	. 0604	. 6937	. 5728	7.0
18	. 301	4.418	4.119	. 0052	. 0614	. 8506	. 7284	5.7
20	.300	4.433	4.133	.0054	. 0622	1.0230	.8998	4.6
22	. 300	4.289	3.989	.0056	.0630	1.2764	1.1512	3.5

α	$\mathbf{M o}_{0}$	${ }_{\underline{1}}^{1}$	M $\underline{\underline{x}}$	$\underline{\underline{z}}$	Za	$\mathrm{Xh} \quad \mathbf{M m R}^{\text {L }}$	C.P.
	10.11	8.41	. 450.120	. 003	. 003	. $0192-.472$	52.50
	10.11	9.43	.180 .112	.383	. 343	. $0179-.541$. 47
2	10.11	10.37	.069 .107	. 770	. 685	. 0171 -. 633	.271
0	10.11	11.29	. 312.090	1.147	1.021	$.0144-.723$. 21
2	10.11	12.13	.535 .063	1.541	1.372	. 0101 -. 847	. 18
4	10.11	12.93	.746 .016	1.930	1.720	. $0026-.977$. 17
6	10.11	13.63	.931-.046	2.317	9.062	-. 0074-1.123	.16
	10.11	14.35	1.120-124	2.712	9.412	-. 0199 -1. 272	.15 1/2
10	10.11	14.98	$1.289-225$	3.080	2.741	. $0360-1.416$. 15 1/4
12	10.11	15.51	$1.429-342$	3.428	3.052	0546-1.568	. 15
14	10.11	15.80	1. $503-455$	3.745	3.335	. 0728 - 1.759	15 1/2
16	10.11	15.28	1. 369.550	3.996	3.557	. $0870-2.101$	17 1/2
18	10.11	14.04	$1.040 \sim 580$	4.140	3.680	-. 0929-2.647	.21 1/2
20	10.11	12.49	. $630-.564$	4.190	3.722	-.0902-3.002	24
22	10.11	11.29	$312-.428$	4.134	3.676	. 0685 -3.295	.261

> U.S.A. $-27 \quad$ Biplane G/C $=.75 \quad$ Stagger $=-40 \%$
$\boldsymbol{D}_{\mathbf{g}}=.0556, \quad \mathbf{a}=0 \mathbf{8 6}, \quad \mathrm{~h}=0.02$, Short Itrut, $\beta=28: 1$

α	\underline{L}_{0}	I_{1}	\underline{L}	$\mathrm{D}_{\mathbf{B}}{ }^{\text {P }}$	${ }_{0}$	D_{1}	D	L/D
-6	. 294	. 062	. 232	. 0067	. 0926	. 3189	. 1640	1.4
-4	. 292	. 482	.190	. 0065	. 0935	. 2520	. 0964	1.9
-2	. 291	. 857	. 566	. 0063	. 0943	. 2357	. 0795	7.1
0	. 290	1.221	. 931	. 0061	. 0947	. 2376	. 0812	11.5
2	. 289	1.577	1.288	. 0059	. 0950	. 2509	. 0944	13.7
4	. 287	1.928	1.641	. 0056	. 0957	. 2795	. 1226	13.4
	. 284	2.282	1.998	. 0054	. 0963	. 3136	.1563	12.8
8	. 282	2.648	2.366	. 0052	. 0967	. 3573	. 1998	11.8
10	. 281	3.000	2.719	. 0050	. 0971	. 4073	. 2496	10.9
12	. 279	3.311	3.032	. 0048	. 0972	. 4632	. 3056	9.9
14	. 278	3.578	3.300	. 0046	. 0976	. 5232	. 3654	9.3
16	. 276	3.791	3.515	. 0044	. 0977	. 5874	. 4297	8.2
18	. 274	3.878	3.604	. 0042	. 0978	. 6755	. 5179	7.0
20	. 272	3.859	3.587	. 0040	. 0978	. 7579	. 6005	6.0

\mathbf{M}_{0}	w_{1}	M	X	Z	Za	Xh	$\mathrm{M}_{1 \mathrm{e}}$	C.
-6 11.80	8.79	. 795	. 138	. 250	. 215	. 0028	. 583	
-4 11.80	8.82	-. 788	. 108	. 182	. 156	. 0022	. 946	1.
11.80	8.85	. 780	. 099	. 561	. 48	. 0020	1.165	. 69
011.80	9.20	. 687	. 081	. 931	. 801	. 001	-1.490	
11.80	9.41	. 632	. 048	1.289	1.109	. 0010	-1.742	
11.80	9.60	. 582	. 008	1.645	1.415	. 0002	-1.997	
11.80	9.78	. 534	. 054	2.002	1.721	-. 0011	-2. 254	
11.80	9.75	. 542	13	2.370	2.040	-. 0027	-2.579	
1011.80	10.02	470	. 228	2.720	2.340	-. 0046	-2.805	
1211.80	10.20	423	. 330	3.028	2.605	-. 0066	3.02	
1411.80	10.29	100		3.286	2.815	. 008	. 204	
1611.80	9.99	479	558	3.496	3.005	011	472	
1811.80	9.02	. 735	. 620	3.584	3.082	. 0124	805	
2011.80	8.41	. 896	660	3.575	3.075	01	. 958	

> U.S.A.-27 Biplane
> $G / C=.75, \quad$ Stagger $=-20 \%$
$D_{s}=.0556, \quad a=0887, h=0,07 \quad$ Short Strut, $\beta=14: 9$
α
-6
64
-2
0
2
4
6
8
10
12
18
16
18
20
22

α	${ }^{\mathbf{u}}{ }_{0}$	M_{1}	$\underline{\underline{L}}$	X	Z	2a	Xh	M_{10}	C.E.
-6	11.50	8.50	-. 794	. 130	-. 180	-. 157	. 0091	. 646	-1.37
-4	11.50	8.53	-. 785	. 108	. 215	. 187	. 0076	. 980	1.52
-2	11.50	8.73	-. 732	. 096	. 578	. 503	. 0067	-1.242	715
0	11.50	8.88	.. 693	. 081	. 937	. 815	. 0057	-1.514	54
2	11.50	9.10	-. 635	. 048	1.290	1.122	. 0034	-1.760	455
4	11.50	9.10	-. 635	. 005	1.672	1.455	. 0004	-2.090	415
6	11.50	9.14	-. 625	-. 085	2.077	1.805	. 0039	-2.426	39
8	11.50	9.36	. 566	-. 130	2.384	2.074	-. 0091	-2.631	65
10	11.50	9.53	-. 521	-. 220	2.700	2.348	-. 0154	-2.854	
12	11.50	10.04	-. 386	-. 330	3.032	2.638	-..0231	3.001	
14	11.50	9.91	-. 420	-. 456	3.340	2.905	- 0319	3.293	
16	11.50	9.90	-. 423	. 580	3.544	3.084	. 0406	466	25
18	11. 50	9.67	-. 484	-. 690	3.700	3.220	-. 0483	656	
20	11.80	9.14	-. 624	-. 774	3.726	3.240	. 0541	. 840	345
22	11.50	8.18	-. 878	-. 698	3.601	3.132	. 0489	.961	365

$$
\begin{array}{ll}
\text { U.S.A.-27 } & \text { Biplane } \\
G / C=.75 & \text { Stagger }=0
\end{array}
$$

$$
D_{\mathrm{g}}=.0571 \quad a=0.877 \quad h=0: 08 \text { Short Strut } \beta=0^{\circ} \text {. }
$$

α	Lo	I_{1}	\underline{I}	D_{1}^{1}	D_{0}	D_{1}	D	I/D
-6	. 313	. 219	. 094	. 0083	. 0808	. 2829	. 1367	
-4	. 313	. 598	. 285	. 0085	. 0819	. 2372	. 0897	3.2
-2	. 312	. 956	. 644	. 0088	. 0825	. 2272	. 0788	8.2
0	. 311	1.327	1.216	. 0089	. 0832	. 2339	. 0847	13.2
2	. 310	1.673	1.363	. 0088	. 0839	. 2518	. 1020	13.39
4	. 309	2.142	1.832	. 0086	. 0846	. 2872	. 1369	13.40
6	. 308	2.454	2.146	. 0084	. 0853	. 3219	.1711	12.5
8	. 307	2.768	2.461	.0082	. 0858	. 3637	. 2126	11.6
10	. 306	3.107	2.801	. 0080	. 0862	. 4155	. 2642	10.6
12	. 306	3.438	3.132	. 0077	. 0866	. 4720	. 3206	9.8
14	. 305	3.701	3.396	. 0075	. 0870	. 5301	.3785	9.0
16	. 303	4.007	3.704	. 0073	. 0875	.6017	. 4498	8.2
18	. 301	4.180	3.879	. 0071	. 0880	. 6695	. 5173	7.5
20	. 300	4.285	3.985	. 0069	. 0880	. 7494	. 5974	6.7
22	. 299	4.213	3.909	. 0067	. 0880	. 8891	. 7373	5.3

	${ }_{\underline{1}}^{0}$	M_{1}	H	X	Z	Za	Xh	${ }^{\text {M }}$	C.P.
-6	9.82	6.75	-. 812	. 126	. 108	. 094	. 010	2	-2.24
-4	9.82	7.13	-. 711	. 110	.279	. 243	. 009	. 96	1.15
-2	9.82	7.46	-. 624	. 101	. 640	. 556	. 008	-1.188	. 62
0	9,82	7.92	-. 502	. 085	1.116	. 971	. 007	-1. 480	44
2	9.82	8.20	-. 428	. 054	1.366	1.189	. 00	-1.62]	395
4	9.82	8.44	-. 365	. 008	1.836	1.598	. 000	-1.96	355
6	9.82	8.85	-. 257	-. 053	2.151	1.870	-. 00	-2.123	33
8	9.82	9.18	-. 169	-. 132	2.466	2.148	-. 01	-2.306	31
10	9.82	9.48	-. 090	-. 222	2.800	2.436	-. 017	-2.509	30
12	9.82	9.88	. 016	. 334	3.129	2.722	-. 027	-2.679	285
14	9.82	10.1 .5	. 087	-. 455	3.386	2.945	-. 036	-2.822	. 28
16	9.81	10.31	. 132	-. 586	3.682	3.203	-. 047	-3.024	275
18	9.81	10.34	. 140	-. 704	3.844	3.344	-. 056	-3.148	. 275
20	9.81	10.21	. 106	0	3.943	3.432	-. 064	-3.262	-275

U.S.A.-27 Biplene

$$
G / C=.75, \quad \text { Stagger }=20 \%
$$

$D_{\mathfrak{B}}=.0556, \quad a=0886, \quad h=0: 09$, Short Strut, $\beta=-14: 9$

α	I_{0}	I_{1}	I	D_{8}^{1}	D_{0}	D_{1}	D	\underline{L} / D
-6	.300	. 282	-. 018	. 0065	.0747	. 2542	.1174	-. 15
-4	. 299	. 664	.365	. 0068	. 0757	. 2210	.0829	4.41
-2	. 298	1.024	. 726	.0070	. 0766	.2145	.0753	9.65
0	. 297	1.387	1.090	.0072	.0771	. 2204	.0805	13.53
2	- 296	1.818	1.522	.0075	.0777	. 2461	. 1053	14.43
4	. 295	2.176	1.881	.0077	.0784	. 2791	.2374	13.70
6	. 294	2.545	2.251	.0080	.0791	. 3218	. 1791	12.57
8	. 293	2.867	2.574	.0082	.0797	.3644	. 2209	11.62
10	. 292	3.182	2.890	. 0084	.0803	. 4197	. 2754	10.54
12	. 291	3.495	3.204	.0087	.0811	. 4750	. 3296	9.74
14	. 290	3.799	3.509	. 0089	. 0818	. 5409	. 3946	8.90
16	. 289	4.057	3.768	.0084	. 0827	. 6025	. 4553	8.27
18	. 287	4.278	3.991	.0087	.0835	. 6711	.5233	7.64
20	- 285	4.345	4.060	.0085	.0838	. 7628	. 6149	6.61
22	. 284	4.276	3.992	.0083	.0840	. 8869	.7390	5.40

α	M_{0}	M_{1}	M	X	2	Ea	Xh	M_{12}	C.P.
	11.51	8.53	-. 788	.114		. 025	. 0203	.773	8.88
-4	11.51	9.02	-. 659	.107	.360	. 310	. 0096	. 979	905
-2	11.51	9.35	-. 571	.100	. 723	. 621	. 0090	-1.200	555
0	11.51	9.65	-. 490	. 081	1.090	.937	. 0073	-1.434	4.4
2	11.51	9.94	-. 415	. 083	1.524	1.311	. 0048	-1.731	38
4	11.51	10.09	-. 376	. 005	1.893	1.629	. 0005	-2.006	55
6	11. 51	10.38	. 299	. .046	2.257	1.940	-. 0041	-2.235	3
8	11.51	10.60	241	..138	2.580	2. 220	-. 0124	-2.449	5
10	11.51	10.84	.177	-. 210	2.886	2.482	. 0189	-2.640	05
12	11.51	11.00	. 135	-. 324	3.240	2.787	-. 0292	-2.893	295
14	11. 51	11.08	. 114	. 560	3.470	2.985	-. 0504	-3.049	29
16	11. 51	11.28	. 061	-. 600	3.742	3.220	-. 0540	3.227	285
28	11. 51	11.33	. 048	.. 736	3.952	3.400	-. 0662	-3.382	. 285
20	11. 51	11.32	-. 050	-. 810	4.220	3.630	.. 0729	3.607	. 285
22	11.51	10.86	.. 172	-. 814	3.970	3.415	-. 0733	-3.514	. 295

$$
\begin{array}{cc}
\text { U.S.A.-27 } \quad \text { Biplane } \\
G / C=.75 & \text { Stagger }=40 \%
\end{array}
$$

$$
D_{s}=.0556, a=.0^{n} .91, h=0.112, \text { Short strut, } \beta=-28 .{ }^{\circ} 1
$$

α	\underline{L}_{0}	L_{1}	\underline{L}	D_{1-}	$\mathrm{D}_{\text {d- }}$	$\mathrm{D}_{5}{ }^{\text {l }}$	D	L / D
-6	. 301	. 380	.079	. 2382	. 0686	. 0049	. 1091	72
-4	. 300	.747	. 447	. 2100	.0700	. 0052	. 0792	5.65
-2	. 299	1.130	. 831	. 2086	. 0707	. 0054	. 0769	10.81
0	. 298	1.519	1.221	. 2214	. 0714	. 0057	. 0887	13.78
2	. 297	1.905	1.608	. 2495	. 0721	. 0059	. 1159	13.89
4	. 296	2.288	1.992	. 2856	. 0731	. 0061	.1508	13.21
6	. 295	2.673	2.378	. 3300	. 0740	. 0064	. 1940	12.26
8	. 294	3.004	2.710	. 3841	. 0747	. 0066	. 2472	10.97
10	. 203	3.379	3.086	. 4418	. 0753	. 0069	. 3040	10.16
12	. 292	3.706	3.414	. 5021	. 0760	.0071	. 3633	9.40
14	. 291	4.059	3.768	. 5784	. 0766	.0073	. 4389	8.60
16	. 291	4.326	4.035	. 6525	. 0771	.0076	. 5122	7.88
18	. 290	4.458	4.168	. 7447	. 0776	. 0078	. 6037	6.92
20	. 288	4.483	4.195	. 8610	. 0782	. 0081	. 7191	5.84
22	. 286	4.353	4:067	. 9833	. 0788	. 0083	. 8406	4.84

α	MI	M_{0}	X	2	Za	Xh	MIE,	C.P.	
-6	9.15	11.78	. 118	. 067	. 061	. 014	-. 7770	3.83	
-4	9.74	"	. 108	. 440	. 400	. 013	-. . 953	. 72	
-2	10.25	"	. 106	. 826	. 752	. 013	-1.170	. 47	
0	10.75	"	. 089	1.281	1.102	. 011	-1,386	. 38	
2	11.20	"	. 059	1.611	1. 468	. 007	-1.628	. 33	1/2
4	11.48	"	-. 023	1.996	1.817	-. 003	-1.893	. 31	1/2
6	11.83	11.78	. 057	2.384	2.170	-. 007	-2.137	.30	
8	12.20	"	-. 108	2.720	2.475	-. 013	-2.351	. 29	
10	12.39	4	-. 223	3.050	2.775	-. 027	-2.587	. 28	
12	12.65	"	. 356	3.410	3.102	-. 043	-2.829	. 27	1/2
14	12.81	\cdots	. 484	3.758	3.420	-. 058	-3.089	. 27	1/2
16	12.97	"	-. 620	4,013	3.658	-. 074	-3.269	. 27	
18	12.54	"	-. 715	4.145	3.770	-. 086	-3.483	. 28	
20	11.06	11.78	-. 760	4.182	3.805	. . 091	-3.524	. 27	1/2

U.S.A.-27 Biplane
$G / C=.75 \quad$ Stagger $=60 \%$
$D_{s}=.0556, a=0.190, h=0.107$, Short strut, $\beta=-38.07$

α	Σ_{1}	I_{0}	工	D_{1}	D_{0}	$D_{g}{ }^{I}$	D	I/D
-6	. 357	. 304	. 053	. 2489	. 0725	. 0037	. 1171	. 5
-4	. 764	. 302	. 462	. 2166	. 0743	. 0039	. 0828	5.6
-2	1.152	. 302	. 850	. 2141	. 0743	. 0042	. 0700	12.2
0	1.549	. 302	1.247	. 2276	. 0752	. 0044	. 0924	13.5
2	1953	. 301	1.652	. 2564	.0761	. 0046	. 1201	13.7
4	2340	. 301	2.039	. 2944	. 0770	. 0049	. 1569	13.0
6	2.747	.300	2.447	. 3470	. 0779	. 0051	. 2084	11.7
8	3.155	. 300	2.855	. 4038	. 0787	. 0053	. 2642	10.8
10	3508	. 299	3.209	. 4649	. 0795	. 0056	. 3242	9.9
12	3.854	. 298	3.556	. 5380	. 0799	. 0058	. 3967	9.0
14	4.199	. 297	3.902	. 6164	. 0803	. 0061	. 4744	8.2
16	4439	. 296	4.143	. 7177	. 0810	. 0063	. 5748	7.2
18	4588	. 295	4.293	. 8410	.0817	. 0065	. 6972	6.2
20	4601	. 295	4.306	. 9777	.0827	. 0068	. 8326	5.2
22	4525	. 294	4.231	1.1906	. 0838	.0070	1.0442	4.1

α	M_{1}	M_{0}	X	Z	Za	Xh	M I县	C.P.
-6	9.74	11.68	. 122	. 039	. 035	. 009	. 560	-4.79
-4	10.41	11.68	. 115	. 456	. 410	. 008	-. 754	.55
-2	11.11	11.67	. 100	. 847	. 762	. 007	-. 917	. 36
0	11.77	11.66	. 092	1.247	1.122	. 006	-1.099	. 29
2	12.42	11.65	. 062	1.656	1.490	. 004	-1.290	. 26
4	12.94	11.64	. 018	2.044	1.840	. 011	-1.497	. 24
6	13.44	11.64	-. 049	2.544	2.290	-. 003	-1.811	. 23
8	13.82	11.64	-. 140	2.860	2.574	-. 010	-1.978	. 23
10	14.25	11.65	-. 235	3.215	2.993	-. 016	-2.289	. 23
12	14.48	11,66	-. 350	3.560	3.204	-. 025	-2.434	. 23
14	14.86	11.67	-. 484	3.900	3.510	-. 034	-2.632	. 22
16	14.38	11.68	-. 592	4.133	3.720	-. 041	-2.965	. 23
18	13.69	11.69	-. 663	4.293	3.864	-. 046	-3.289	. 25
20	12.98	11.69	-. 685	4.320	3.888	-. 048	-3.499	. 27

$$
\begin{array}{cc}
\text { U.S.A.-27. } & \text { Biplane } \\
G / C=1.00, & \text { Stagger }=-40 \%
\end{array}
$$

$$
\mathbf{D}_{\mathrm{s}}=.0556, \mathrm{a}=0.492, \mathrm{~h}=0.105, \text { Short strut, } \beta=21.08
$$

α	L_{1}	L_{0}	\underline{L}	D_{1}	D_{0}	$\mathrm{D}_{\mathrm{s}}{ }^{\text {I }}$	D	L/D
-6	. 030	. 302	-. 272	. 3156	. 0873	.0073	. 1654	-1.6
-4	.491	. 301	. 190	. 2452	. 0892	. 0071	. 0933	2.0
-2	. 916	. 300	. 616	. 2268	. 0890	. 0069	. 0753	8.2
0	1.296	. 298	. 998	.2299	. 0893	. 0067	. 0783	12.7
2	1.677	. 296	1.381	. 2493	. 0905	. 0065	. 0967	14.3
4	2.078	. 294	1.784	. 2786	. 0910	. 0063	. 1257	14.2
6	2.476	. 293	2.183	. 3200	.0915	. 0061	. 1668	13.1
8	2.807	. 291	2.516	. 3690	. 0920	. 0059	. 2155	11.7
10	3.202	. 290	2.912	. 4238	. 0926	. 0057	. 2699	10.8
12	3.503	. 288	3.215	. 4852	. 0929	. 0055	. 3312	9.7
14	3.835	. 287	3.548	. 5505	. 0931	. 0052	. 3966	9.0
16	4.091	. 285	3.806	. 6218	. 0933	. 0050	. 4679	8.2
18	4.223	. 283	3.940	. 7111	. 0935	. 0048	. 5572	7.1
20	4.207	. 281	3.926	. 8014	. 0937	. 0046	. 6475	6.1

α	M_{1}	M_{O}	X	2	Z_{a}	X / h	$\mathrm{M}_{\text {LE }}$	C.P.
-6	4.59	7.56	. 132	. 289	. 266	. 007	-. 526	-. 61
-4	4.48	."	. 106	. 182	. 167	. 005	-. .987	1.80
-2	4.60	"	. 097	. 613	. 564	. 005	-1.352	. $731 / 2$
0	4.87	"	. 078	. 998	. 918	. 004	-1.633	. $541 / 2$
2	5.09	*	. 048	1.383	1.272	. 002	-1.928	. $46 \mathrm{I} / 2$
4	5.26	"	. 000	1.785	1.641	. 000	-2,250	. 42
6	5.29	7.56	-. 062	2,187	2.013	-. 003	-2.610	. 40
8	5.53	"	-. 138	2.515	2.313	-. 007	-2,843	. 38
10	5.79	${ }^{\prime}$	-. 238	2.913	2.680	-. 012	-3:136	. 36
12	5.95	"	-. 345	3.210	2.962	-. . 017	-3,381	. 35
14	5.97	"	-. 474	3.535	3.252	-. 0224	-3.648	. $341 / 2$
16	5.74	"	-. 600	3.780	3.478	-. 030	-3.929	. $341 / 2$
18	4.74	"	-. 685	3.918	3.601	-. 034	-4,313	. 37
20	3.72	7.56	-. 543	3.974	3.656	-. 027	-4.644	. 39

U.S.A.-27 Biplane

$$
G \% C=1,00, \quad \text { Stagger }=-20 \%
$$

$D_{s}=.0571, a=0.189, h=0.121$, Short strut, $\beta=11.03$

U.S.A.-27 Biplane

$$
G / C=1.00 \quad \text { Stagger }=0
$$

$D_{s}=.0571, a=0.188, h=0.108$, Short strut, $\beta=0^{\circ}$

α	I_{1}	L_{0}	工	D_{1}	D_{0}	$D_{8}{ }^{1}$	D	$\underline{I} / \mathrm{D}$
-6	. 186	. 320	-. 134	. 2998	. 0934	. 0083	. 1406	-1.0
-4	. 604	. 319	. 285	. 2495	. 0941	. 0085	. 0898	3.2
-2	1.011	. 318	. 793	. 2381	. 0949	. 0088	. 0773	10.3
0	1.382	.316	1.066	. 2457	. 0956	. 0089	. 0841	12.7
2	1.805	. 314	1.491	. 2651	. 0964	. 0088	. 1028	14.5
4	2.214	. 313	1.901	. 3012	. 0972	. 0086	. 1383	13.8
6	2.586	. 311	2.275	. 3431	. 0975	. 0084	. 1801	12.6
8	2.932	. 310	2.622	. 3900	. 0983	. 0082	. 2264	11.6
10	3.293	. 309	2.984	. 4456	. 0990	. 0080	. 2815	10.6
12	3.637	. 307	3.330	. 5060	. 0995	.0077	. 3417	9.7
24	3.966	. 305	3.661	. 5730	.1000	. 0075	. 4104	8.9
16	4.238	.303	3.935	. 6419	. 1004	. 0073	. 4771	8.2
18	4.471	. 302	4.169	. 7161	.1007	.0071	. 5512	7.6
20	4.459	.300	4.159	. 8091	. 1008	. 0069	. 6443	6.5

∞	M_{1}	M_{0}	X	Z	Za	Xh	$\mathrm{M}_{\text {LE }}$	C.P.
-6	4.64	7.63	.127	-. . 148	-. 130	.010	-.671	-1.51
-4	4.45	"	. 107	. 279	. 246	. 009	-1.058	1.26
-2	4.77	"	.206	. 790	. 695	. 008	-1.459	. 61 1/2
0	4.99	*	. 084	1.066	. 939	. 007	-1.644	. 51 1/2
2	5.10	"	. 051	1.492	1.313	. 004	-1.986	. $441 / 2$
4	5.02	7.64	. 004	1.901	1.673	. 000	-2.366	. 41 1/2
6	5.21	.	. .058	2.278	2.004	-. 005	-2.642	. $381 / 2$
8	5.28	"	-. 140	2.622	2.307	-. 011	-2.918	.37
10	5.41	"	-. 240	2.984	2.626	-. 019	-3.197	. $351 / 2$
12	5.51	"	-. 360	3.323	2.925	-. 029	-3.460	. $341 / 2$
14	5.52	"	-. 485	3.647	3.210	-. 039	-3.731	. 34
16	5.56	7.65	-. 624	3.900	3.432	-. 050	-3.935	. $331 / 2$
18	5.61	7.65	-. 763	4.123	3.628	-. 061	-4.107	. 33
20	5.11	7.65	-. .815	4.122	3.628	-. 065	-4.235	. 34

U.S.A.-27	Biplane
$G / C=1.00$	Stagger $=20 \%$

$D_{s}=.0571, a=0.187, h=0.106$, Short strut, $\beta=-11.03$

α	I_{1}	I_{0}	L	D_{1}	D_{0}	D_{s}^{1}	D	L / D
-6	. 227	. 323	-. 096	. 2865	. 0856	.0070	. 1368	-. 7
-4	. 638	. 321	. 317	. 2385	. 0863	. 0072	. 0879	3.6
-2	1.040	. 320	. 720	. 2290	. 0872	.0074	. 0773	9.3
0	1.418	. 319	1.099	. 2337	.0879	.0077	. 0810	13.6
2	1.858	. 318	1.540	. 2568	. 0890	. 0079	. 1028	15.0
4	2.275	. 317	1.958	. 2945	. 897	. 0082	. 1395	14.0
6	2.640	. 315	2.325	. 3391	. 0902	.0084	. 1834	12.7
8	3.008	. 314	2.694	.3897	.0910	. 0086	. 2330	11.5
10	3.357	. 313	3.044	. 4454	. 0919	. 0088	. 2867	10.6
12	3.690	. 312	3.378	. 5043	. 0925	.0089	. 3458	9.8
14	4.058	. 310	3,748	. 5714	. 0931	.0087	. 4225	8.9
16	4.362	. 308	4.054	. 6482	.0936	. 0085	. 4890	8.3
18	4.567	.307	4.260	. 7163	.0944	.0083	. 5565	7.7
20	4.568	. 305	4.263	. 8215	. 0949	. 0081	. 6614	6.5
22	4.420	.304	4,116	. 9680	.0959	.0079	. 8071	5.1

α	M_{1}	${ }_{\text {M }}^{0}$	X	2	Za	Xh	$\mathrm{M}_{\text {IW }}$	C.P.
-6	4.15	7.23	. 127	-. 108	-. 094	. 008	-. 879	-2.71
-4	4.44	.	.105	.311	. 271	. 006	-1.015	1.09
-2	4.79	"	. 102	. 71.6	. 624	.006	-1.275	. 59
0	5.00	"	. 081	1.099	. 955	. 005	-1.550	.47
2	5.19	"	. 049	1.542	1.342	. 003	-1.885	. 41
4	5.43	7.24	. 002	1.958	1.702	.000	-2.181	.37
6	5.65	"	-. 060	2.330	2.027	-. 004	-2.443	. 35
8	5.82	"	-. 144	2.700	2.368	-. 009	-2.735	. 33
10	5.94	*	-. 244	3.042	2.648	-. 015	-2.977	. 32
12	6.09	"	-. 364	3.373	2.935	-.022	-3.217	.31
14	6.19	"	-. 495	3.738	3.250	-. 030	-3.498	.31
16	6.27	'4	-. 647	4,028	3.504	-. 039	-3.721	. 30
18	6.38	"	-. 785	4.220	3.675	-. 047	-3.855	.30
20	6.04	7.24	-. 833	4.223	3.677	-. 050	-3.944	.31

U.S.A.-27 Biplanc
$G / C=1.00, \quad$ Stagger $=40 \%$
$D_{m}=.0556, \quad a=0: 86, \quad h=0!09 \frac{1}{2}$, Short strut, $\beta=-.21: 8$

α	\mathbf{I}_{1}	L_{0}	I	\mathbf{D}_{1}	D_{0}	D_{8}	D	I/D
-6	247	. 304	-. 057	. 2577	. 0700	. 0057	. 1264	-. 5
-4	.673	. 302	. 371	. 2173	. 0712	. 0060	. 0845	4.5
-2	1.068	. 301	. 767	. 2110	. 0724	. 0062	. 0768	10.0
0	1.454	. 300	1.154	. 2216	. 0731	. 0064	. 0865	13.3
2	1.887	. 299	1.588	. 2468	. 0738	. 0066	. 1108	14.3
4	2.230	. 298	1.932	. 2837	. 0746	. 0069	. 1466	13.2
6	2.658	. 298	2.360	. 3256	. 0754	.0071	. 1875	12.6
8	3.028	. 297	2.731	. 3754	. 0763	. 0074	. 2361	11.5
10	3.406	. 296	3.110	. 4362	. 0772	. 0076	. 2958	10.5
12	3.759	. 295	3.464	. 5024	. 0778	. 0079	. 3611	9.6
14	4.098	. 294	3.804	. 5736	. 0783	. 0081	. 4317	8.8
16	4.379	. 293	4.086	. 6441	. 0787	. 0083	. 5015	8.1
18	4.588	. 292	4.296	. 7256	. 0791	. 0086	. 5823	7.4
20	4.569	. 290	4.279	. 8339	. 0795	. 0088	.6900	6.2

α	M_{1}	m_{0}	X	Z	Za	Xh	M_{10}	C.P.
6	6.71	9.74	. 119	-. 070	. 060	. 011	-. 753	-3.585
-4	7.21	9.74	. 110	. 364	. 313	. 011	-. 994	. 91
-2	7.69	9.74	. 104	. 763	. 655	. 010	-1.207	. 525
0	8.15	9.74	. 087	1.154	. 993	. 008	-1.413	. 41
2	8.57	9.74	. 055	1.590	1.369	. 005	-1.683	.355
4	8.84	9.74	. 012	1.937	1.664	. 001	-1.903	. 325
6	9.21	9.74	. 061	2.366	2.034	. .006	-2.219	. 31
8	9.54	9.74	-. 148	2.736	2.350	-. 014	-2.389	. 29
10	9.82	9.74	. 246	3.112	2.675	. 023	-2.631	. 28
12	10.05	9.74	-. 358	3.464	2.980	-. 034	-2.864	.275
14	10.26	9.74	-. 500	3.794	3.260	-. 048	-3.074	. 27
16	10.42	9.74	-. 630	4.066	3.500	-. 060	-3.260	. 265
18	10.54	9.74	-. 774	4.260	3.670	-. 074	-3.384	. 265
20	9.99	9.74	-. 814	4.254	3.660	-. 077	-3.517	. 275

$$
\begin{array}{ll}
\text { U.S.A.-27 } & \text { Biplane } \\
G / C=1.00, & \text { Stagger }=6.0 \%
\end{array}
$$

$$
D_{s}=.0571, a=0 . " 81, h=0.105, \text { Short strut, } \beta=-31.00
$$

α	I_{0}	I_{1}	L	D_{1}	D_{0}	$\mathrm{D}_{\mathrm{s}}{ }^{\text {I }}$	D	I/D
-6	. 328	. 276	-. 052	. 2660	. 0771	. 0046	. 1272	-. 4
-4	. 327	. 672	.345	. 2246	. 0783	. 0048	. 0844	4.1
-2	. 325	1.106	. 781	. 2150	. 0795	. 0051	. 0733	10.7
0	. 324	1.518	1.194	. 2295	. 0803	.0053	. 0868	13.7
2	. 323	1.927	1.604	. 2550	.0810	. 0056	. 1113	14.4
4	. 322	2.362	2.040	. 2955	.0821	. 0058	. 1505	13.6
6	. 321	2.759	2.438	. 3433	. 0832	. 0060	. 1970	12.4
8	. 320	3.160	2.840	. 4000	. 0840	.0063	. 2526	11.2
10	. 319	3.542	3.223	. 4623	. 0847	. 0065	. 3140	10.3
12	. 318	3.927	3.609	. 5288	. 0856	.0068	. 3793	9.3
14	. 317	4.238	3.921	. 5979	. 0865	. 0070	. 4473	8.8
16	.317	4.558	4.241	. 6861	. 0875	.0072	. 5343	7.9
18	. 315	4.725	4.410	. 7900	. 0882	.0075	. 6372	6.9
20	.313	4.706	4.393	. 9130	. 0892	.0077	. 7590	5.8

α	Hi_{1}	M_{0}	X	2	Za	X h	$M_{\text {TE }}$	C.P.
-6	8.49	11.59	.110	-. 064	-. 052	. 006	-. 774	-4.96
-4	9.20	"	. 108	. 338	. 274	. 005	-. .910	. 90
-2	9.85	"	. 100	. 778	. 630	. 005	-1.095	.47
0	10.43	$"$. 087	1.194	. 968	. 004	-1.279	$.351 / 2$
2	11.06	"	. 057	1.601	1.299	. 003	-1.442	. 30
4	11.38	"	. 011	2.008	1.628	. 001	-1.685	. 28
6	11.81	"	-. 060	2.443	1.980	-. 003	-1.919	. 26
8	12.16	"	-. 126	2.886	2.336	-. 006	-2.179	. 25
10	12.44	11.60	-. 250	3.224	2.612	-. 013	-2.377	. $241 / 2$
12	12.68	"	-. 382	3.602	2.918	-. 019	-2.613	. 24
14	12.85	"	-. 515	3.908	3.166	-. 026	-2.809	. 24
16	12.78	"	-. 659	4.220	3.420	-. .033	-3.076	. 24
18	12.38	"	-. 755	4.380	3.548	-. 038	-3.304	. 25
20	11.97	11.61	-. 788	4.380	3.548	-. 039	-3.408	. 26

$$
\begin{gathered}
\text { U.S.A.-27 Biplane } \\
G / C=1.33, \quad \text { Stagger }=-40 \% \\
D_{s}=.0556, a=0.192, h=0.106, \text { Medium strut, } \beta=16 .{ }^{\circ} 7
\end{gathered}
$$

α	Σ_{1}	L_{0}	工	D_{1}	D_{0}	$\mathrm{D}_{8}{ }^{1}$	D	L/D
-6	. 078	. 301	-. 223	. 3249	. 0983	. 0089	. 1621	-1.4
-4	. 534	. 300	. 234	. 2595	. 0990	. 0087	. 0962	2.4
-2	. 964	. 299	. 665	. 2435	. 0997	. 0085	. 0797	8.3
0	1.359	. 298	1.061	. 2490	. 1004	. 0082	. 0848	12.5
2	1.778	. 297	1.481	. 2695	. 1010	. 0080	. 1049	14.14
4	2.197	. 295	1.902	. 3001	. 1016	.0077	. 1352	14.07
6	2.592	. 294	2.298	. 3420	. 1022	.0075	. 1767	13.0
8	2.996	. 292	2.704	. 3935	. 1028	. 0073	. 2278	11.9
10	3.366	. 290	3.076	. 4500	. 1034	.0070	. 2940	10.5
12	3.699	. 289	3.410	. 5095	. 1040	. 0068	. 3431	10.0
14	3,975	. 287	3.678	. 5723	. 1046	. 0065	. 4056	8.9
16	4.257	. 285	3.972	. 6497	. 1046	. 0063	. 4832	8.2
18	4.377	. 283	4.094	. 7466	. 1045	. 0060	. 5805	7.0
20	4.371	. 281	4.090	. 8495	. 1046	. 0058	. 6835	6.0

α	M_{1}	M_{0}	X	Z	Za	Xh	TE	C.P.
-6	11.59	14.30	.136	-. 238	-. 219	. 008	-. 505	-. 77
-4	11.58	14.30	. 110	. 227	. 209	.007	- . 935	1.37
-2	11.70	14.31	.103	. 661	. 609	. 006	-1.305	. 66
0	11.92	14.31	. 085	1.061	. 977	.005	-1.614	. $501 / 2$
2	12.16	14.32	. 054	1.482	1.364	. 003	-1.938	. 43 1/2
4	12.24	14.32	. 002	1,906	1.753	.000	-2.303	. 40
6	12.35	14.32	-. .065	2.302	2,119	-. 004	-2.635	. 38
8	12.41	14.32	. 150	2.706	2.490	-. 0009	-2.986	. $351 / 2$
10	12.82	14.32	-. 233	3.076	2.830	-. 014	-3.213	. $341 / 2$
12	12.83	14.32	. 371	3.402	3.130	-. 022	-3.502	$.341 / 2$
14	12.84	14.32	-. 494	3.661	3.368	2. ${ }^{\text {c }}$. 030	-3.729	. 34
16	12.51	14.32	-. 630	3.946	3.631	-. 038	-4.072	. 34 1/2
18	10.73	14.33	-. 710	4.068	3.745	-. 043	-4.654	. 38
20	9.51	14.33	. . 755	4.072	3.748	-. 045	-4.975	. $40 \mathrm{l} / 2$

U.S.A.-27 Biplane

$$
G / C=1.33, \quad \text { Stagger }=-20 \%
$$

$D_{s}=.0556, \quad a=0.92, \quad h=0004$, medium strut $\beta=885$

α	I_{6}	I_{1}	\underline{L}	D_{8}^{\prime}	D_{0}	D_{1}	D	I/D
-6	. 302	. 144	. 158	. 0099	. 09	. 30	. 1480	
4	. 301	. 592	. 293	. 0097	.0967	. 2526	. 0906	3.2
-2	. 300	1.002	. 722	. 0095	. 0976	. 2404	. 0777	9.2
0	. 299	1.410	1.111	. 0092	. 0983	. 2459	. 0828	13.4
2	. 298	1.822	1.524	. 0090	. 0990	. 2678	. 1042	14.6
4	. 296	2.277	1.981	. 0087	. 0996	.3045	. 1406	14.1
6	. 294	2.656	2.362	. 0085	. 0999	. 3464	. 1824	13.0
8	. 292	3.024	2.732	. 0082	.1002	. 3955	. 2315	11.8
10	. 291	3.369	3.078	. 0080	. 1004	. 4548	. 2908	10.6
12	. 290	3.734	3.444	. 0077	.1006	. 5159	. 3502	9.8
14	. 288	4.062	3.774	. 0075	.1011	. 5788	. 4146	9.1
26	. 286	4.298	4.012	. 0073	.1016	. 6535	. 4890	8.2
18	. 286	4.475	4.189	. 0070	. 1018	.7384	. 5740	7.3
20	. 284	4.458	4.174	. 0068	. 1018	. 8519	. 6877	6.1

0	M	M	X	Z	Za	奴	\mathbf{M}_{10}	C.P.
11.70	8.51	. 844	. 128	. 173	. 159	. 005	690	-
11.70	8.59	. 822	. 111	. 285	. 262	. 004	-1.088	. 27
11.70	8.76	. 778	. 105	. 718	660	. 004	-1.442	67
11.70	9.01	. 710	. 083	1.111	1.022	. 003	-1.735	52
11.70	9.16	. 672	. 051	1.526	1.403	. 002	-2.077	455
11.70	9.14	. 677	. 003	1.98	1.827	. 000	-2.504	48
11.70	9.37	. 616	. 067	2.367	2.180	. 003	-2.799	-
11.70	9.60	. 555	. 149	2.734	2.515	. 00	3.064	-
1011.70	9.70	. 529	. 251	3.080	2.835	. 010	. 354	
1211.70	9.82	. 497	. 377	3.438	3.160	. 015	. 642	
1411.70	9.96	. 460	. 509	3.770	3.468	. 020	.908	
1611.70	9.89	. 479	. 637	3.986	3,668	. 026	-4.121	
1811.70	9.14	. 677	750	4.158	3.824	030	. 471	
2011.70	8.14	-. 942		4.152	3.820			

U.S.A. 27 Biplane

$$
G / C=1.33 \quad \text { Stagger }=0
$$

$$
D_{8}=.0571, \quad a=0.88, \quad h=0: 06, \text { Medium Strut, } \beta=0^{\circ}
$$

α	Σ_{0}	In_{1}	\underline{L}	$\mathrm{D}_{\text {' }}{ }^{\prime}$	D_{0}	D_{1}	D	L/D
-6	.311	.134	. 177	. 0094	. 0826	. 3012	. 1515	. 2
-4	. 311	. 587	. 276	. 0097	. 0835	. 2408	. 0905	3
-2	. 310	1.000	. 690	. 0099	. 0847	. 2277	. 0760	9.1
0	. 309	1.387	1.078	. 0100	. 0849	. 2329	. 0809	13.3
2	. 308	1.829	1.521	. 0099	. 085	. 2526	.1001	15.2
4	. 308	2.272	1.964	. 0097	. 0861	. 2897	. 1368	14.4
6	. 306	2.651	2.345	. 0095	. 0863	. 3295	. 2766	13.3
8	. 302	3.025	2.723	. 0093	. 0873	. 3791	. 2254	12.1
10	. 303	3.369	3.066	. 0090	. 0873	. 4299	. 2865	10.7
12	. 302	3.706	3.404	. 0088	. 0873	. 4957	.3425	9.9
14	. 301	4.079	3.778	. 0085	. 0878	+5650	. 4116	9.2
16	. 300	4.328	4.028	. 0083	. 0878	. 6510	. 4978	8.1
18	. 300	4.529	4.229	. 0081	. 0885	. 7577	. 6040	7.0
20	. 299	4.478	4.1 .79	. 0078	. 0880	. 8246	. 6717	6.2

\propto	Mo	M_{1}	M	X	\underline{z}	z_{0}	\underline{x}	$\mathrm{m}_{1 \mathrm{e}}$	C.P.
6	9.97	6.77	-. 847	. 130	. 194	.171	. 008	. 688	-1.18
4	9.97	7.02	-. 780	. 110	. 268	. 236	. 007	-1.023	1.27
-2	9.97	7.36	-. 690	.100	. 686	. 604	. 006	-1.300	. 63
0	9.97	7.81	-. 571	. 081	1.078	. 948	. 005	-1.524	47
2	9.97	8.21	-. 466	. 047	1.522	1.340	. 003	-1.809	395
4	9.97	8.44	-. 405	. 001	1.968	1.731	. 000	-2.136	
6	9.97	8.83	-. 302	-. 069	2.349	2.067	-. 004	-2.366	. 335
8	9.97	9.20	-. 204	-. 150	2.726	2.400	-. 009	-2.595	315
10	9.97	9.51	. 122	-. 249	3.064	2.696	-. 015	-2.803	05
12	9.97	9.80	. 045	-. 374	3.400	2.992	-. 022	-3,015	295
14	9.97	10.01	. 011	. 512	3.760	3.308	. 031	-3.266	29
16	9.96	10.15	. 050	-. 632	4.004	3.523	-. 038	-3.485	. 29
18	9.96	10.22	. 069	-. 732	4.802	3.700	-. 044	3.604	285
20	9.96	10.12	. 042	-. 794	4.150	3.652	. 048	-3.562	. 285

$$
\begin{aligned}
\text { U.S.A. }-27 & \text { Biplane } \\
G / C=1.33 & \text { Stagger }=20 \%
\end{aligned}
$$

$D_{8}=.0556, \quad a=0888, \quad h=0806, \quad$ Medium Strut, $\beta=-895$

α	Io	\underline{I}_{1}	I	$\mathrm{D}_{\text {¢ }}$	Do	D_{1}	D	\underline{L}
-6	. 304	. 258	. 046	. 0083	. 0894	. 2824	. 1291	
-4	. 303	. 703	. 400	. 0085	. 0898	. 2377	. 0838	4.
-2	. 302	1.113	. 811	. 0088	. 0903	. 2322	. 0775	10.5
0	. 300	1.519	1.219	. 0091	. 0911	. 2435	. 0877	13.9
2	. 299	1.947	1.648	. 0093	. 0918	. 2685	. 1118	14.7
4.	. 298	2.368	2.070	. 0096	. 0926	. 3026	. 1448	14.2
6	. 297	2.754	2.457	. 0098	. 0933	. 0933	. 1898	13.0
8	. 295	3.136	2.841	. 0100	. 0940	. 0940	. 2416	11.8
10	. 294	3.520	3.226	.0100	. 0947	. 0947	.3037	10.6
12	. 293	3.907	3.614	. 0098	. 0951	. 0951	. 3691	9.8
14	. 292	4.214	3.922	. 0096	. 0955	. 0955	. 4358	9,
16	. 291	4.507	4.216	. 0093	. 0958	. 0958	. 5033	8.
18	. 290	4.602	4.312	. 0091	. 0961	. 0961	. 5842	7.4
20	. 288	4.547	4.259	. 0088	. 0962	. 0962	. 7174	6.0

\mathbf{M}_{0}	M_{2}	M	X	$\underline{\underline{z}}$	2a	x		C. P
12.10	8.95	-. 833	. 123		. 053	. 00	. 78	. 37
412.10	9.31	-. 738	. 112	. 392	. 345	. 007	-1.090	
212.10	9.56	-. 672	. 106	. 807	. 710	. 00	-1.388	57
12.10	9.91	-. 580	. 088	1.219	1.071	. 005	-1.626	44
12.10	10.09	. 531	. 05	1.650	1.45	. 00	-1.98	40
2.10	10.28	. 481	. 00	2.074	1.824	. 00	-2.305	37
12.10	10.50	424	. 06	2.462	2.167	. 00	-2. 587	
12.10	10.78	. 365	. 155	2.844	2.503	. 00	-2.859	
1012.10	11.01	. 290	. 261	3.228	2.840	. 016	-3.149	
1212.10	11.01	-. 290	. 392	3.608	3.175	. 024	. 441	
1432.10	11.17	-. 246	. 4.61	3.916	3.442	. 028	660	
1612.10	11.28	-. 217	. 680	4.188	3.880	. 04	. 856	
12.10	11.34	101		4. 276	3.760	.. 047	18	
12.1	10.	-. 415		4.243	3.73		4.098	

$$
\begin{array}{cl}
\text { U.S.A.-27 } & \text { Biplane } \\
G / C=1.33 & \text { Stagger }=+40 \%
\end{array}
$$

$$
D_{s}=.0556, \quad a=0: 90, \quad h=0: 08, \quad \text { Medium Strut } \beta=-16: 7
$$

$\underline{\alpha}$	I_{0}	LI_{1}	\underline{I}	D:	D_{0}	D_{1}	D	L/D
-6	. 305	. 161	-. 144	. 0072	. 0853	. 2918	. 1437	1.0
4	. 304	. 600	. 296	.0075	. 0863	. 2389	. 0895	3.
-2	. 303	1.025	. 722	. 0077	.0872	. 2278	. 0773	9,3
0	. 301	1.432	1.131	. 0080	. 0880	. 2346	. 0830	23.6
2	. 300	1.861	1.561	. 0082	. 0888	. 2566	. 1040	15.0
4	. 300	2.293	1.993	. 0085	. 0896	. 2926	. 1389	14.4
6	. 299	2.706	2.407	. 0087	. 0904	. 3364	. 1817	13.2
8	. 297	3.071	2.774	. 0090	. 0911	. 3858	. 2301	12.0
10	. 296	3.462	3.166	. 0093	. 0917	. 4439	. 2873	11.0
12	. 295	3.843	3.548	. 0096	. 0924	. 5093	. 3517	10.1
14	. 294	4.198	3.904	. 0098	. 0930	.5786	. 4202	9.3
16	. 293	4.4.76	4.183	. 0100	. 0938	. 6518	. 4924	8.5
18	. 291	4.621	4.330	. 0100	. 0946	. 7269	. 5667	7.6
20	. 290	4.598	4.308	. 0098	. 0946	. 8462	. 6862	6.3

α	\mathbf{w}_{0}	M_{1}	M	즈ㅈㅡㅔ	$\underline{\underline{2}}$	Za	$x h$,	C.P.
6	12.11	8.91	-. 846	. 127	. 158	. 142	. 010	714	1.51
-4	12.11	9.26	-. 754	. 110	. 290	261	. 009	-1.024	1.18
-2	12.11	9.60	-. 664	. 103	. 718	. 646	. 008	-1.318	61
0	12.11	9.96	-. 569	. 083	1.131	1.018	. 007	1.594	47
2	12.11	10.44	-. 442	. 049	1.564	1.808	. 004	1.85	395
4	12.11	10.63	. 392	. 000	1.99	1.794	. 000	-2.18	365
6	12.11	11.04	. 281	072	2.412	2.171	. 006	-2.446	
	2.11	11.25	227	157	2.776	2.598	. 013	-2.812	
10	12.10	11.62	. 127	. 280	3.163	2.847	. 022	-2.952	31
12	12.10	11.75	. 093	. 394	3.541	3.187	. 032	-3.248	305
14	12.10	12.02	. 021	. 536	3.886	3.497	. 043	. 475	30
16	12.10	12.12	+.005	. 680	4.152	3.737	. 055	. 677	295
18	12.10	12. 25	+.010	. 798	4.290	3.861	. 064	57	. 29
20	12.10	11.81	07	82	4.280	3.852		. 709	. 29

O.S.A.-27 Biplane

$$
G / C=1.33 \quad \text { Stagger }=60 \%
$$

$D_{s}=.0571$,
$a=0.86$,
$h=0.517$, Medium Strut, $\beta=-2492$

α	I_{0}	I_{2}	I	D 8	D_{0}	D_{1}	D	L/D
-6	. 320	. 099		. 0062			$.1565$	
4	. 320	- 549	. 229	.0065	. 0814	$\text { - } 2393$	$.0943$	2.4
2	. 319	. 996	. 677	. 0067	. 0826	. 2250	. 0796	8.5
0	. 318	1.398	1.080	. 0070	. 0835	. 2297	. 0821	13.2
2	. 317	1.831	1.514	. 0073	. 0844	. 2520	. 1032	14.7
4	. 315	2.276	1.961	. 0075	. 0852	. 2880	. 1382	14.2
6	. 314	2.638	2.324	. 0078	. 0860	. 3267	. 1758	13.2
8	. 312	3.059	2.747	. 0080	. 0869	. 3813	. 2293	12.0
10	. 311	3.418	3.107	. 0083	. 0877	. 4402	. 2971	10.5
12	. 311	3.809	3.498	. 0086	. 0883	. 5083	. 3543	9.9
14	. 310	4.200	3.890	. 0089	. 0888	. 5821	. 4273	9.1
16	. 309	4.479	4.170	. 0091	. 0897	. 6495	. 4936	8.5
18	. 308	4.698	4.390	. 0094	. 0906	. 7307	. 5736	7.2
20	. 306	4.678	4.372	. 0096	. 0912	. 8474	. 6895	6.3

α	M_{0}	${ }^{15}$	M	$\underline{\underline{x}}$	$\underline{2}$	Za	Xh	M_{12}	C. P.
6	13.4	10.37	-. 811	.132	. 236	. 203	. 022	. 630	
4	13.44	10.60	-. 750	. 110	. 222	. 191	. 019	960	1.44
2	13.44	11.08	-. 624	. 104	.672	. 578	. 018	-1.220	. 605
0	13.44	11.52	-. 508	. 082	1.080	. 930	. 014	-1.452	. 45
2	13.44	12.06	-. 365	.051	1.516	1.303	. 009	-1.677	. 38
4	13.44	12.29	-. 304	. 001	1.961	1.689	. 000	-1.993	
6	13.43	12.64	. 209	.. 068	2.329	2.004	-. 012	-2.201	315
8	13.43	13.02	-. 108	-. 151	2.748	2.365	. 026	-2.447	. 295
10	13.43	13.25	-. 048	. 244	3.106	2.672	. 042	-2.678	. 285
12	13.43	13.37	-. 002	. 382	3.492	3.001	. 065	-2.938	28
14	13.43	13.49	+.011	. 524	3.875	3.332	. 089	. 232	275
16	13.43	13.71	+.074	675	4.140	3.555	. 115	. 366	27
18	13.43	13.55	. 032	-. 808	4.346	3.735	. 137	.566	. 275
20	13.43	13.33	. 026	844	4.340	3.730	143	. 661	28

$$
\begin{aligned}
\text { U.S.A. }-27 & \text { Biplane } \\
G / C=1.67 & \text { Stagger }=-40 \%
\end{aligned}
$$

$D_{s}=.0556, \quad a=0.91, \quad h=0.06, \quad$ Medium $\quad \mathrm{Strut}, \beta=13: 5$

α	I_{0}	I_{1}	I	D_{1}	D_{0}	D_{1}	\underline{D}	I / D
-6	.302	.103	-.199	.0093	.0812	.2973	.1512	-1.3
-4	.301	.572	.271	.0091	.0822	.2331	.0862	3.1
-2	.300	1.003	.704	.0088	.0833	.2215	.0738	9.5
0	.298	1.401	1.103	.0086	.0843	.2270	.0785	14.1
2	.297	1.807	1.510	.0084	.0852	.2490	.0998	15.1
4	.295	2.223	1.928	.0081	.0856	.2811	.1318	14.6
6	.294	2.630	2.336	.0079	.0860	.3243	.1748	13.4
8	.293	2.996	2.703	.0076	.0868	.3758	.2258	12.0
10	.291	3.379	3.088	.0074	.0876	.4339	.2833	10.9
12	.290	3.714	3.424	.0071	.0880	.4909	. .3402	10.1
14	.289	4.056	3.767	.0069	.0883	.5607	.4099	9.2
16	.288	4.280	3.992	.0067	.0885	.6358	.4835	8.3
18	.286	4.406	4.120	.0064	.0887	.7100	.5593	7.4
80	.285	4.398	4.113	.0062	.0889	.8261	.6754	6.1

α	M_{0}	M_{1}	H	X	\underline{Z}	Za	Xh	$\stackrel{M}{1 e}^{1}$	C.P.
-6	7.54	4.53	-. 795	. 128	. 214	. 195	. 008	. 608	. 95
-4	7.54	4.46	-. 815	.105	. 263	. 239	. 006	-1.060	1.34
-2	7.54	4.78	-. 730	. 100	.700	. 637	.006	-1.373	. 655
0	7.54	5.08	-. 650	. 079	1.103	1.029	. 005	-1.684	. 51
2	7.54	5.35	-. 580	. 047	1.512	1.378	. 003	-7.961	. 43
4	7.54	5.45	-. 553	-. 003	1.928	1.753	-. 000	-2.306	. 40
6	7.54	5.75	-. 473	-. 071	2.342	2.135	-. 004	-2.604	. 37
8	7.54	5.99	-. 410	-. 150	2.708	2.465	-. 009	-2.866	355
10	7.54	6.12	-. 376	-. 2.57	3.090	2.812	-. 015	-3.173	345
12	7.54	6.23	-. 347	-. 378	3.420	3.112	-. 023	-3.436	
14	7.54	6.32	-. 323	-. 514	3.752	3.413	-. 031	-3.705	
16	7.54	5.98	-. 413	-. 638	3.968	3.610	-. 038	-3.985	
18	7.54	5.08	-. 650	-. 740	4.089	3.715	-. 044	-4.321	355
20	7.54	3.74	-1.005	-. 7770	4.093	3.720	.. 046	-4.679	. 38

$$
\begin{gathered}
\text { U.S.A.-27 Biplane } \\
G / C=1.67 \quad \text { Stagger }=-33 \%
\end{gathered}
$$

$$
D_{\mathrm{g}}=.0571 \quad a=0.93 \quad h=0.04 \quad \text { Medium Strut } \beta=1183
$$

α	I_{0}	I_{1}	\underline{L}	$\mathrm{D}^{\mathbf{8}}$	D_{0}	D_{1}	[1	$\underline{L / D}$
6	. 276	. 129	. 147	. 0096	. 0895	. 3000	. 1438	1.
4	. 275	. 608	. 333	. 0093	. 0892	. 2440	. 0874	3.8
-2	. 274	1.038	. 764	. 0091	. 0890	. 2319	. 0757	10.1
0	. 272	1.453	1.181	. 0089	. 0889	. 2395	. 0854	13.
2	. 271	1.885	1.614	. 0086	. 0886	. 2622	. 1091	14.
4	. 270	2.308	2.038	.0084	. 0884	. 2966	. 1445	14.
6	. 269	2.709	2.440	. 0081	. 0881	. 3387	. 1875	13.
8	. 268	3.099	2.831	. 0079	. 0079	. 3905	. 2404	11.
10	. 267	3.474	3.207	. 0077	. 0077	. 4432	. 2932	10.
12	. 266	3.820	3.554	. 0074	. 0074	. 5104	. 3686	9.
14	. 265	4.171	3.906	. 0072	. 0072	. 5751	. 4283	9.
16	. 264	4.405	4.141	. 0069	. 0069	. 6395	. 4940	8.
18	. 263	4.452	4.189	. 0067	. 0067	. 7301	. 5867	7.
20	-261	4.376	4.105	. 0065	. 0065	. 8495	. 7065	5

α	M_{0}	M_{1}	M	X	2	Za	Xh	1 l	C.P.
-6	7.54	45	817	. 128	. 161	. 150	. 005	672	1.49
-4	7.54	4.49	-. 806	. 109	. 326	. 303	. 004	-1.113	1.14
-2	7.54	4.52	. 799	. 102	. 760	. 707	. 004	-1.510	. 665
0	7.54	5.05	. 659	. 085	1.181	1.100	. 003	-1.762	. 495
2	7.54	5.41	. 564	. 052	1.616	1.502	. 002	-2.068	. 425
4	7.54	5.66	. 497	. 002	2.043	1.900	. 000	-2.397	39
6	7.54	5.99	. 410	. 069	2.445	2.374	-. 003	-2.781	. 38
8	7.54	6.37	. 310	. 152	2.836	2.636	. 006	-2.940	345
10	7.54	6.73	. 214	. 270	3.206	2.981	-. 011	-3.184	33
12	7.54	7.11	114	. 380	3.550	3.301	-. 015	-3.400	32
14	7.54	7.39	. 040	. 528	3.892	3.612	. 021	-3.621	31
16	7.54	7.43	. 029	. 664	4.213	3.830	-. 027	.832	31
18	7.54	6.31	. 325	. 754	4.152	3.861	-. 030	-4.156	. 335
20	7.54	5.3	59	-. 740	4.094	3.808	-. 030	-4.368	. 355

U.S.A.-27 Biplane
$G / C=1.67 \quad$ Stagger $=0$
$D_{s}=.0556, a=0.190, h=0.106$, Medium strut, $\beta=0^{\circ}$

U.S.A.-27 Biplane

$G / C=1.67 \quad$ Stagger $=33 \%$
$D_{s}=.0571, \quad a=0: 81, \quad h=0: 07$, Medium Strut, $\beta=-11: 3$

U.S.A.-27 Biplane

$$
G / C=1.67 \quad \text { Stagger }=60 \%
$$

$D_{8}=.0571, \quad a=0.92, \quad h=006$, Medium Strut, $\beta=-19: 8$

U.S.A,-27 Biplane

$$
\begin{array}{cc}
G / C=2.00 & \text { Stagger }=-40 \% \\
D_{s}=.0556, \quad a=0.92, \quad h=0 \% 04, \quad \text { Long Strut, } \beta=11: 3
\end{array}
$$

> U.S.A.-27 Biplane

$$
G / C=2.00 \quad \text { Stagger }=0
$$

$$
D_{s}=.0571, a=0.95, h=0, \text { Long strut, } \beta=0
$$

α	L_{0}	L_{1}	L	$\mathrm{D}_{\mathrm{S}}^{\prime}$	D_{0}		1	D		I/D
-6	.323	. 190	-. 233	. 0132	. 0892		28	. 14		-1.6
-4	. 322	.670	. 348	. 0136	. 0902		452	. 08		4.1
-2	. 320	1. 106	. 786	. 0140	.0911		357	. 07		10.7
0	. 319	1.518	1.199	. 0141	. 0919		437	. 08		14.9
2	. 318	1.932	1. 614	. 0140	. 0930		639	. 09		16.2
4	. 318	2.418	2.100	. 0136	. 0938		037	.13		15.1
6	.315	2.775	2.460	. 0133	. 0941		450	. 18		13.6
8	. 313	3.167	2.854	.0130	. 0950		971	. 23		12.3
10	. 312	3.548	3,236	. 0127	. 0958		501	. 28		11.4
12	. 311	3.876	3.565	. 0123	. 0964		146	. 34		10.2
14	. 310	4.230	3.920	. 0120	. 0969		805	. 41		9.5
16	. 309	4.489	4.180	. 0116	. 0971		04	. 4		8.6
18	.307	4.555	4.248	. 0113	. 0978		313	. 56		7.5
20	.305	4.439	4.134	.0110	. 0979		641			5.9
α	M_{0}	M_{1}	M h	$\times X n$	2	Za				.P.
-6	9.17	6.25	772	117	247	. 235		37		725
-4	9.17	6.09	815	110	. 340	. 323		238		. 21
-2	9.17	6.37 -	741	098	. 783	. 744		485		. 63
0	9.17	6.61	678	081	1991	1.139		817		. 505
2	9.17	6.77	635	044	6161	1.536		171		. 45
4	9.17	6.94 -	590	0082	1031	1.998	-2.	588		. 41
6	9.17	7.12-	542	0782	.4662	2.392		884		.39
8	9.17	7.29 -	497	1662	. 8582	2.713		210		. 375
10	9.17	7.38	474	2803	.2353	3.073	-3.	47		, 365
12	9.17	7.54	431	4003	.5563	3.376	-3.	807		. 355

$$
\begin{aligned}
\text { U.S.A.-27 } & \text { Biplane } \\
G / C=2.00 & \text { Stagger }=60 \%
\end{aligned}
$$

$$
D_{s}=.0571, a=0493, h=-.0401, \text { Long strut, } \beta=-1697
$$

α	I_{0}	I_{1}	I	$D_{\text {g }}^{\prime}$	D_{0}	D_{1}	D	L/D	
-6	.316	. 293	. 023	. 0099	, 0810	. 2740	. 1260	-. 2	
-4	. 757	.757	. 443	.0103	. 0824	. 2295	. 0797	5.5	
-2	-. 313	1.183	.870	. 0107	. 0839	. 2230	.0713	12.2	
0	. 312	1. 579	1.267	. 0111	. 0849	. 2344	. 0813	15.6	
2	. 311	2.032	1.721	.0115	. 0859	. 2596	. 1051	16.4	
4	. 310	2.460	2.150	. 0119	. 0866	. 2975	. 1419	15.2	
6	. 309	2.838	2.529	.0122	. 0874	. 3410	. 1848	13.7	
8	. 308	3.221	2.913	. 0126	. 0882	. 3927	. 2348	12. 4	
10	. 306	3.609	3.303	.0130	. 0890	. 4520	. 2929	11.3	
12	. 304	3.974	3.670	. 0134	. 0897	. 5159	. 3557	10.3	
14	. 303	4.283	3.980	. 0138	. 0904	. 5826	. 4213	9.4	
16	. 302	4.509	4,207	. 0141	. 0909	. 6496	. 4875	8.6	
18	. 301	4.605	4.304	. 0141	. 0914	. 7396	. 5770	7.5	
20	.300	4.550	4.250	.0138	. 0924	. 8895	. 7262	5.9	
α	$\stackrel{M}{M}$	Na_{1}	M	X	Z	Za	Xh	$1 e$	c.P.
-6	11.87	8.93	. 778	. 2.23	-. 036	-. 034	.002	-. 743	. 69
-4	11.87	9.35	-. 666	. 112	. 436	. 406	-. 001	-1.071	. 82
-2	11.88	9.70	-. 576	. 100	. 867	. 806	-. 001	-1.381	. 53
0	11.88	10.04	-. 486	. 081	1. 267	1.178	-. 001	-1.663	. 44
2	11,89	10.42	-. 389	. 045	1.723	1.603	. 000	-1.992	. 385
4	11.89	10.61	-. 338	-. 008	2.153	2.002	.000	-2.340	.365
6	11.90	10.88	-. 270	-. 080	2.533	2.355	. 001	-2.626	. 345
8	11.89	11.07	-. 217	-. 174	2.916	2.714	. 002	-2.933	. 335
10	11.89	11.27	. 164	-. 284	3.300	3.070	. 003	-3.237	. 325
12	11.88	11.35	ㅎ. 140	-. 414	3.660	3.405	. 004	-3. 349	325
14	11.87	11.43	-. 116	-. 553	3.960	3,684	. 006	-3.806	. 32
16	11.86	11.75	-. 029	-. 692	4.173	3.880	. 007	-3.916	. 315
18	11.85	11.50	-. 093	-. 780	4.268	3.975	. 008	-4.076	. 32
20	11.85	10.90	-. 251	-. 771	4.236	3,932	. 008	-4.191	.33

Gottingen 387 Monoplane

Test made by Aeronautical Department, M. I. T., Nov. 8,1922. To be used as standard to which to apply biplane correction factors

$\underline{\sim}$	I	D	I/D	$\underline{I}^{\text {ع }}$	${ }^{D_{c}}$	${ }^{H_{c}}$	C.P.
	- 0.093	. 08680	-1.08	-. 000016	. 0	19	8
	. 229	. 0412	5.56	. 00038	. 000069	. 00036	95
4	. 340	.0397	8.56	-00057	.000066	-. 00040	.72
	. 452	. 0411	11.00	. 00075	. 000068	-. 00045	-60
2	. 565	. 0432	13.10	. 00094	.000072	-. 00050	.53
0	. 796	. 0522	15.24	. 00133	. 000087	-. 00060	. 45
2	1.028	. 0648	15.86	. 00171	. 000108	-. 00069	40
4	1.258	. 0832	15.13	. 00209	.000139	-. 00079	
6	1.477	.1068	13.82	. 00246	.000178	-. 00088	析
8	1.699	.1337	12.72	. 00283	.000223	-. 00097	
10	1.920	.1645	11.67	. 00320	.000274	-. 00107	
12	2.097	.1961	10.70	. 00349	. 000327	-. 00114	
14	2.235	. 2282	9.79	. 00372	.000380	. 00118	
16	2.312	. 2630	8.79	. 00385	. 000438	-. 00121	32
18	2.363	. 3060	7.72	. 00394	. 000501	-. 00124	2
20	2.368	. 3582	6.62	. 00395	.000597	-. 00126	1-3
22	2.314	.4284	5.40	.00386	. 000714		

Crosshead Mounting Protected By Discoid Case

$$
D_{s}=.0301, \quad a=0: 74, \quad h=0.92
$$

α	I_{1}	I_{0}	L	D_{1}
-8	. 188	. 251	-. 063	. 1880
-6	. 401	. 250	. 151	. 1525
-4	. 614	. 249	. 365	. 1465
-2	. 816	. 247	. 569	. 1490
0	1.076	. 247	. 829	. 1567
2	1.310	. 246	1.064	. 1703
4	1.550	. 245	1.305	. 1895
6	1.779	. 244	1.535	. 2146
8	2.001	. 243	1.758	. 2402
10	2.205	. 242	1.963	. 2701
12	2.405	. 242	2.163	. 3031
14	2.519	. 241	2,278	. 3364
16	2.606	. 241	2.365	. 3747
18	2.610	. 240	2.370	. 4203
20	2.605	. 240	2.365	. 4757

α	D_{0}	D	X	Z
-8	. 0793	. 0786	. 070	-. 073
-6	. 0776	. 0448	. 060	. 147
-4	. 0768	. 0397	. 065	. 361
-2	. 0760	. 0429	. 063	. 567
0	. 0750	. 0516	. 052	. 829
2	. 0740	. 0662	,029	1.066
4	. 0726	. 0868	-. 003	1.307
6	. 0712	. 1133	-. 049	1.538
8	. 0698	. 1403	-. 105	1.760
10	. 0685	. 1715	-. 170	1.962
12	. 0670	. 2060	-. 249	2.157
14	. 0665	. 2408	-. 317	2.268
16	. 0639	. 2807	-. 380	2.340
18	. 0622	. 3280	-. 422	2.353
20	. 0608	. 3848	-. 448	2.353

Göttingen 387 Monoplane \#1(Cont.)

α	M_{1}	M_{0}	m_{s}	M
-8	8.84	10.72	-. 09	-. 474
-6	8.62	10.72	-. 09	-. 532
-4	8.60	10.72	-. 09	-. 537
-2	8.56	10.72	-. 09	-. 548
0	8.58	10.72	-. 08	-. 545
2	8.56	10.72	-. 08	-. 550
4	8.64	10.72	-. 08	-. 529
6	8.77	10.71	-. 08	-. 492
8	8.87	10.71	-. 08	-. 465
10	9.05	10.71	-. 08	-. 418
12	9.28	10.71	-. 08	-. 357
14	9.57	10.71	-. 08	-. 281
16	9.74	10.71	-. 08	-. 235
18	9.82	10.71	-. 09	-. 212
20	9.75	10.71	-. 09	-. 233

α
-8
-6
-4
-2
0
2
4
6
8
10
12
14
16
18
20

Xh	$\frac{\mathrm{M}_{1 e}}{}$
.064	-.355
.055	-.686
.060	-.744
.058	-.910
.048	-1.110
.027	-1.312
-.003	-1.499
-.045	-1.676
-.097	-1.864
-.156	-2.026
-.229	-2.183
-.292	-2.253
-.350	-2.316
-.388	-2.340
-.412	$\mathbf{1 2 . 3 8 5}$

C.P.
-1.62
1.56
.685
.535
.445
.41
.385
.365
.355
.345
.335
.33
.33
.33
.335

Göttingen 387 Monoplane ${ }^{\text {H2 }}$

Crosshead Mounting Protected By Discoid Case

$$
D_{s}=.0301, a=0.87, h=0.82
$$

α	L_{1}	Σ_{0}	L	D_{1}
-8	. 217	. 255	-. 038	. 1637
-6	. 434	. 254	. 180	. 1441
-4	. 653	. 253	. 400	. 1395
-2	. 881	. 252	. 629	. 1435
0	1.118	. 251	. 867	. 1524
2	1.345	. 250	1.095	. 1662
4	1.588	. 250	1.338	. 1863
6	1.807	. 250	1.557	. 2000
8	2.020	. 249	1.772	. 2369
10	2,225	. 249	1.976	. 2680
12	2.419	. 248	2.171	. 3011
14	2.524	. 248	2,276	. 3341
16	2.603	. 247	2.356	. 3755
18	2.622	. 246	2.376	. 4177
20	2.617	. 246	2.371	4796

α	D_{0}	D	X	2
-8	. 0715	. 0621	. 057	-. 047
-6	. 0707	. 0433	.062	. 174
-4	. 0699	. 0395	. 067	. 395
-2	. 0690	. 0444	. 068	. 627
0	. 0681	. 0540	. 054	. 867
2	. 0667	. 0694	. 031	1.097
4	. 0649	. 0913	-. 003	1.340
6	. 0639	. 1060	-. 058	1.558
8	. 0629	. 1439	-. 103	1.774
10	. 0619	. 1760	-. 170	1.976
12	. 0609	. 2101	-. 246	2.166
14	. 0598	. 2442	-. 313	2.267
16	. 0583	. 2871	-. 373	2.342
18	. 0568	. 3308	-. 442	2.353
20	. 0555	. 3940	-. 442	2.363

Göttingen 387 Monoplane \#2(Cont.)

α	M_{1}	MO_{0}	M_{g}	M
-8	8.71	10.69	-. 09	-. 500
-6	8.74	10.69	-. 09	-. 492
-4	8.80	10.69	-. 09	-. 476
-2	8.87	10.69	-. 09	-. 458
0	9.006	10.69	-. 08	-. 426
2	9.12	10.69	-. 08	-. 394
4	9.28	10.69	-. 08	-. 352
6	9.47	10.69	-. 08	-. 302
8	9.72	10.68	-. 08	-. 233
10	9.96	10.68	-.08	-. 169
12	10.23	10.68	-. 08	-. 098
14	10.56	10.68	-. 08	-. 011
16	10.73	10.68	. .08	. 034
18	10.81	10.68	-. 09	. 058
20	10.72	10.68	-. 09	. 034
α	Za	Xh	$\mathrm{M}_{1 \mathrm{e}}$	C.P.
-8	-. 041	.047	-. 412	-2.92
-6	. 151	. 051	-. 592	1.13
-4	. 344	. 055	-. 765	. 645
-2	. 545	. 056	-. 947	. 505
0	. 754	. 044	-1.136	. 435
2	. 954	. 025	-1.323	. 405
4	1.167	-. 002	-1.521	. 38
6	1.356	-. 048	-1.706	. 365
8	1.543	-. 085	-1.861	. 35
10	1.719	-. 139	-2.027	. 34
12	1.884	-. 202	-2.184	. 335
14	1.972	-. 257	-2.240	. 33
16	2,039	-. 306	-2.311	, 33
18	2.047	-. 363	-2.352	. 335
20	2.057	-. 363	12.386	. 335

GÖTTINGEN 387 Monoplane

Crosshead Mounting Protected by Discoid Case Mean of 1 Test on \#1 and 1 Test on \#z.

To be used as standard of comparison in obtaining biplane correction factors.

α	\underline{L}	D	I/D	I_{c}	${ }^{\text {d }}$	Mr_{10}	$\xrightarrow{\underline{M_{c}}}$
-8	-. 051	. 0703	-0.73	-. 00009	. 000117	. 384	-. 00021
-6	. 166	. 0441	3.76	. 00028	. 000074	. 639	-. 00035
-4	. 383	. 0396	9.69	. 00064	. 000066	. 755	-. 00042
-2	. 599	. 0437	13.71	. 00140	. 000073	. 929	-. 00052
0	. 848	. 0528	16.07	. 00141	. 000088	-1.123	-. 00063
2	1.082	. 0678	15.98	. 00180	. 000113	-1.318	-. 00073
4	1.322	. 0891	14.81	.00220	. 000149	-1.510	-. 00084
6	1.546	. 1097	14.10	. 00258	. 000183	-1.691	-. 00094
8	1.765	.1421	12.41	. 00294	. 000237	-1.863	-. 00104
10	1.970	. 1738	11.34	. 00328	. 000290	-2.097	-. 00113
12	2.167	. 2081	10.40	. 00361	. 000347	-2.184	-. 00121
14	2.277	. 2425	9.39	. 00380	. 000404	-2.247	.00125
16	2:361	. 2839	8.33	. 00394	. 000473	-2.314	-. 00129
18	2.373	. 3294	7.20	. 00396	. 000549	-2.346	-. 00130
20	2.368	. 3894	6.09	. 00395	. 000649	2.386	-. 00133

\propto	X	Z	24	2D	$2 \mathrm{H}_{19}$	G.P.
-8	. 064	. 060	- . 102	. 1406	. 768	2.13
-6	. 061	. 061	. 332	. 0881	- 1.278	1.32
-4	. 066	. 378	. 767	. 0792	-1.510	. 665
-2	. 065	. 597	1.198	. 0874	-1.858	. 52
0	. 053	. 848	1.696	. 1056	-2.246	. 44
2	. 030	1.082	2.164	. 1356	-2.636	. 405
4	-. 003	1.324	2.644	. 1782	-3.020	. 38
6	-. 054	1.548	3.092	. 2194	-3.382	. 365
8	-. 104	1.767	3.530	. 2842	-3.726	. 35
10	-. 170	2.969	3.940	. 3476	-4.054	. 345
12	-. 248	2.162	4.334	. 4162	-4.368	. 335
14	-. 315	2.268	4.554	. 4850	-4.494	33
16	-. 377	2.341	4.722	. 5678	-4.628	. 33
18	-. 432	2.353	4.746	. 6588	-4.692	. 335
20	-. 445	2.358	4.736	. 7788	-4.772	.34

$$
G / C=.75, \quad \text { Stagger }=-40 \%
$$

$D_{\mathrm{s}}=.0556, \quad \mathrm{a}=0.90, \quad \mathrm{~h}=-0105$, Short strut, $\beta=2891$

α	I_{0}	I_{1}	I_{1}	D_{S}^{1}	\boldsymbol{D}_{0}	D_{1}
-8	.286	.155	-.131	.0069	.0896	.3169
-4	.283	.862	.579	.0065	.0908	.2487
0	.280	1.595	1.315	.0061	.0918	.2709
2	.279	2.008	1.729	.0059	.0921	.3001
6	.276	2.693	2.417	.0054	.0926	.3708
10	.273	3.362	3.089	.0050	.0929	.4736
14	.270	3.990	3.720	.0046	.0928	.6038
18	.268	4.309	4.041	.0042	.0927	.7497
20	.267	3.950	3.683	.0040	.0925	.8943

Göttingen 387 Biplane

$$
\begin{gathered}
G / C=.75, \quad \text { Stagger }=0 \\
D_{s}=.0556, \quad a=0.90, h=0: 08, \text { Short strut }, \beta=0
\end{gathered}
$$

α	I_{0}	Σ_{1}	I	$\mathrm{D}_{\mathrm{s}}{ }^{\prime}$	D_{0}	D_{1}
-8	. 304	317	. 013	. 0081	. 0829	. 2687
-4	. 301	. 996	. 695	. 0085	. 0855	. 2382
0	. 299	1.706	1.407	. 0089	. 0873	. 2682
2	. 299	2.059	1.760	. 0088	. 0887	. 2953
6	. 296	2.809	2.513	. 0084	. 0902	. 3823
10	. 293	3.500	3.207	. 0080	. 0916	. 4950
14	. 290	4.116	3.826	.0075	.0937	. 6278
18	. 287	4.555	4.268	.0071	. 0947	. 7684
20	. 285	4.609	4.324	. 0069	. 0951	. 8504
22	. 284	4.670	4.386	. 0067	. 0955	. 9463
24	. 283	4.400	4.117	. 0065	. 0959	1.0700

\propto	D	I/ $/ \mathrm{D}$	II_{1}	M_{0}	M
-8	. 1221	. 11	7.62	10.86	-. 856
-4	. 0886	7.84	8.07	10.86	-. 738
0	. 1164	12.09	8.47	10.86	-. 632
2	. 1422	12,37	8.73	10.86	-. 563
6	. 2281	11.00	9.02	10.86	-. 487
10	.3398	9.45	9.32	10.86	-. 408
14	. 4710	8.11	9.68	10.86	-. 312
18	. 6110	6.99	9.95	10.86	-. 241
20	. 6928	6.25			
22	. 7886	5.56	9.66	10.86	-. 317
24	. 9120	4.51			

α	X	Z	Za	Xh_{n}	$\mathrm{M}_{1 \mathrm{e}}$	C.P.
-8	.122	-. 005	-. 004	. 010	-. 862	-71.78
-4	.137	. 686	. 617	. 011	-1.366	. 665
0	. 116	1.407	1. 266	. 009	-1.907	. 45
2	. 080	1.762	1.576	. 006	-2.155	. 405
6	.. 035	2.521	2.269	-. 003	-2.753	. 365
10	-. 220	3.216	2.894	-. 018	-3.284	. 34
14	-. 466	3.824	3.442	-. 037	-3.717	. 325
18	-. 732	4.242	3.818	-. 058	-4.001	. 315
22	-. 915	4.356	3.920	-. 0.073	-4.164	.32

Göttingen 387 Biplane

$G / C=.75, \quad$ Stagger $=60 \%$
$D_{s}=.0556, \quad a=0.86, \quad h=0.04$, Short strut, $\beta=-3897$

\propto	I_{0}	L_{1}	L	$\mathrm{D}_{\mathbf{S}}^{\mathbf{\prime}}$	D_{0}	D_{1}
-8	. 301	. 387	. 086	. 0037	. 0695	2433
-4	. 299	1.107	. 808	. 0039	. 0710	. 2203
0	. 297	1.873	1.576	. 0044	. 0727	. 2585
2	. 297	2.279	1.982	. 0046	. 0742	. 2934
6	. 295	3.049	2.754	. 0051	. 0757	. 3984
10	. 294	3.871	3.577	. 0056	. 0769	. 5338
14	. 292	4.568	4.276	. 0061	. 0790	.6982
18	. 290	5.100	4.810	. 0065	. 0805	. 9200
20	. 289	5.150	4.861	. 0068	. 0808	1.0800
82	. 288	4.900	4.612	.0072	. 0810	1.3500

α	D	I/D	M_{0}	M_{1}	M
-8	. 1135	. 76	10.55	8.05	-. 661
-4	. 0898	9.00	10.55	9.32	-. 325
0	. 1258	12.52	10.55	10.52	-. 008
2	. 1590	12.48	10.55	11,12	. 151
6	. 2620	10.50	10.55	11.97	. 376
10	. 3957	9.05	10.56	12.69	. 563
14	. 5575	7.67	10.56	12.85	. 605
18	. 7774	6.20	10.56	12.24	. 445
20	. 9368	5.19	10.56	11,42	. 228
22	1.2062	3.84			

\propto	X	Z	Za	Xh	$\mathrm{H}_{1 \mathrm{e}}$	C.P.
-8	. 125	-. 070	-. 060	. 005	-. 606	-2.88
-4	.146	. 800	. 688	. 006	1.019	. 425
0	. 126	1.576	1.355	. 005	1.368	. 29
2	. 089	1.985	1.700	. 004	1.552	. 26
6	-. 028	2.762	2.376	-. 001	1.999	. 24
10	-. 230	3.590	3.087	-. 009	2.515	. 235
14	-. 492	4.279	3,680	-. 020	3.055	. 24
18	-. 748	4.812	4.145	-. 030	3.670	. 255
20	-. 786	4,883	\$4.200	-. 032	3.940	. 27

$$
G / C=1.00, \quad \text { Stagger }=-40 \%
$$

$D_{s}=.0556, a=0494, \quad h=0404$, Short strut, $\beta=2198$

α	I_{0}	I_{1}	L	D_{0}	D_{1}	$\mathrm{D}_{\text {s }}{ }^{\prime}$
-8	.313	. 216	$-.097$. 0921	.3117	. .0055
-4	. 311	. 957	. 646	. 0948	. 2478	. 0060
0	. 308	1.758	1.450	.0965	. 2788	. 0064
2	. 306	2.130	1.824	. 0975	. 3074	. 0066
6	.302	2.934	2.632	.0990	. 3959	. 0071
10	. 299	3.665	3.366	. 1001	. 5177	. 0076
14	. 296	4.309	4.013	. 1005	. 6592	. 0081
18	.293	4.615	4.322	.1009	. 8183	. 0086
20	.291	4.600	4.309	. 1014	.9333	. 0088

α	D	I/D	M_{1}	Ma_{0}	1
-8	. 1585	-0.61	7.19	10.79	-. 953
-4	. 0914	7.07	7.50	10.79	-. 870
0	.1203	12.04	7.97	10.79	-. 746
2	. 1477	12.35	8.17	10.79	-. 693
6	. 2342	11.22	8.69	10.79	-. 555
10	. 3544	9.50	9.07	10.79	-. 455
14	. 4950	8.11	9.37	10.79	-. 376
18	. 6482	6.67	8.35	10.79	-. 645
20	.7675	5.62	8.11	10.79	-. 709

α	X	2	Za	Xh	$\mathrm{M}_{1 \mathrm{e}}$	C.P.
-8	. 144	-. 118	-. 111	. 006	-. 848	-2.39
-4	. 136	. 638	. 600	. 005	1.475	. 77
0	. 120	1.450	1.361	.005	2.112	. 485
2	. 083	1.828	1.718	. 003	2.414	. 44
6	-. 042	2.641	2.482	-. 002	3,035	. 385
10	-. 235	3.378	3.175	-. 009	3.621	. 355
14	-. 490	4.008	3.767	-. 020	4.123	. 345
18	-. 718	4.304	4.046	-. 029	4.662	. 36
20	-. 750	4.305	4.047	-. 030	4.726	.365

$$
G / C=1.00, \quad \text { Stagger }=-20 \%
$$

$D_{s}=.0556, a=0.92, h=0.05$, Short $\operatorname{strut}, \beta=1183$

α	L_{0}	I_{1}	工	$\mathrm{D}_{5}{ }^{\prime}$	D_{0}	D_{1}
-8	. 310	. 287	-. 023	. 0086	. 0864	. 2875
-4	. 307	1.008	. 701	-0082	. 0896	-2412
0	. 304	1.789	1.485	. 0078	.0908	. 2757
2	. 303	2.177	1.874	. 0076	. 0916	. 3044
6	. 300	2.973	2.673	. 0072	. 0932	. 3987
10	. 298	3.707	3.409	. 0068	. 0944	. 5195
14	. 295	4.328	4.033	. 0064	. 0957	. 6610
18	. 292	4.694	4.402	. 0059	. 0970	. 8074
20	. 290	4.724	4.434	. 0057	. 0972	. 9087
22	. 288	4.200	3.912	. 0055	. 0974	1.1200

α	D	I/D	M_{1}	M_{0}	M
-8	. 1369	-0.17	7.20	10.85	-. 965
-4	. 0878	7.99	7.65	10.85	-. 846
0	. 1215	12.21	8.22	10.85	-. 695
2	. 1496	12.53	8.38	10.85	-. 654
6	. 2427	11.00	8.82	10.85	-. 537
10	. 3627	9.40	9.21	10.85	-. 434
14	. 5033	8.02	9.51	10.85	-. 355
18	. 6489	6.80	9.48	10.85	-. 362
20	. 7502	5.91	8.96	10.85	-. 500
22	. 9615	4.11			

\propto	X	Z	Za	Xn	$M_{1 .}$.	C. P.
-8	. 133	-. 042	-. 039	.007	-. 933	-7.40
-4	. 146	. 693	. 638	. 007	-1.491	. 72
0	. 122	1.485	1.367	. 006	-2.068	. 465
2	. 083	1. 878	1.728	. 004	-2.386	. 425
6	-. 070	2.981	2.843	-. 004	-3,278	. 365
10	-. 234	3.419	3.141	-. 012	-3.563	. 345
14	-. 488	4.032	3.710	-. 024	-4.041	. 335
18	-. 745	4.380	4.029	-. 037	-4.354	. 33
20	-.811	4.418	4.066	-. 041	-4.520	. 34

$$
G / C=1.00 \quad \text { Stagger }=0
$$

$D=.0556, a=0!90, h=0$, Short strut, $\beta=0$ S

α	L_{0}	L_{1}	I	D_{S}	D_{0}	D_{1}
-8	. 295	. 247	-. 048	.0081	. 0853	. 2889
-4	. 293	. 972	. 679	. 0085	. 0874	. 2397
0	. 290	1.746	1.456	. 0089	. 0886	. 2706
2	. 290	2.129	1.839	. 0088	. 0896	. 2989
6	. 287	2.937	2.650	. 0084	. 0906	. 3920
10	. 284	3.700	3.416	. 0080	. 0914	. 5113
14	. 281	4.350	4.069	. 0075	. 0922	. 6458
18	. 278	4.759	4.481	. 0071	.0931	.7900
20	. 276	4.852	4.576	. 0069	. 0933	. 8836
22	. 275	4.830	4.555	. 0067	. 0935	1.0036

α	D	I/D	M_{2}	M_{0}	M
-8	. 1399	-0.35	7.35	10.94	-. 950
-4	. 0882	7.70	7.75	10.94	-. 844
0	. 1175	12.40	8.20	10.94	-. 725
2	. 1449	12.70	8.43	10.94	-. 664
6	. 2376	13.17	8.84	10.94	-. 555
10	. 3563	9.59	9.22	10.94	-. 455
14	. 4905	8.30	9.56	10.94	-. 365
18	. 6342	7.07	9.90	10.94	-. 275
20	. 7278	6.30	9.75	10.94	-. 315
22	. 8478	5.38	9.29	10.94	-. 436

α	X	z	2 a	$\mathrm{M}_{1, \mathrm{e}}$	C.P.
-8	. 131	-. 136	-. 122	-. 828	-2.03
-4	. 135	. 670	. 603	-1.447	. 72
0	. 118	1.456	1.310	-2.035	. 465
2	. 080	1.841	1.657	-2.321	. 42
6	-. 041	2.659	2.393	-2.948	. 37
10	-. 242	3.424	3.082	-3.537	. 345
14	-. 508	4.062	3.656	-4.021	. 33
18	-. 780	4.450	4.005	-4.280	. 32
20	-. 880	4.544	4.090	-4.405	. 325
22	-. 922	4.536	4.082	-4.528	. 335

Göttingen 387 Biplane

$$
G / C=1.00, \quad \text { Stagger }=20 \%
$$

$D_{s}=.0556, \quad a=0492, \quad h=0408$, Short strut, $\beta=-1193$

α	I_{0}	I_{1}	\underline{L}	$\mathrm{D}_{\mathrm{S}}^{\prime}$	D_{0}	D_{1}
-8	. 306	. 200	-. 106	. 0067	. 0774	.3000
-4	. 303	.921	. 618	. 0072	.0800	.2302
0	.301	1.701	1.400	.0077	.0816	-2576
2	. 300	2.114	1.814	. 0079	. 0824	.2870
6	. 298	2.912	2.614	. 0084	. 0842	.3758
10	. 296	3.692	3.396	. 0088	. 0868	. 4971
14	. 293	4.377	4.084	.0087	. 0880	. 6432
18	. 290	4.905	4.615	. 0083	. 0895	. 8019
20	. 289	4.992	4.703	. 0081	. 0902	. 8800
22	. 288	5.046	4.758	.0079	. 0905	. 9895
24	. 287	4.941	4.654	. 0077	. 0910	1.1518

\propto	D	I/1	M_{1}	M_{0}	M
-8	. 1603	-0.66	7.64	10.87	-. 855
-4	. 0874	7.08	8.05	10.87	-. 745
0	. 1127	12.42	8.71	10.87	-. 571
2	. 1411	12,86	8.98	10.87	-. 500
6	. 2276	11.50	9,45	10.87	-. 376
10	. 3459	9.82	9.87	10.88	-. 267
14	. 4909	8.32	10.18	10.88	-. 185
18	. 6485	7.13	10.51	10.88	-. 098
20	.7261	6.49	10,47	10.88	-. 108
22	. 8355	5.70	10.25	10.88	-. 167
24	. 9975	4.67	9.85	10.88	-. 273

\propto	X	z	Za	xn	M1.e.	C.P.
-8	. 144	-. 129	-. 119	. 012	-. 748	-1.93
-4	. 129	. 610	. 561	. 010	-1.316	. 72
0	. 113	1.400	1.289	. 009	-1.869	. 445
2	. 078	1.817	1.671	. 006	-2.177	. 40
6	-. 046	2.620	2.410	-. 004	-2,782	. 355
10	-. 247	3.401	3.128	-. 020	-3.375	. 33
14	-. 510	4.078	3.752	-. 041	-3.896	. 32
18	-. 810	4.584	4.210	~. 065	-4.243	. 31
20	-. 926	4.664	4.296	-. 074	-4.340	. 31
22	-1.012	4.718	4.345	-. 079	-4.433	. 315
24	. 983	4.654	4.281	-. 081	-4.473	. 32

$$
G / G=1.00 \quad \text { Stagger }=40 \%
$$

$D_{s}=.0556, \quad a=0.91, \quad h=0.08$, Short strut, $\beta=-2198$

α	Σ_{0}	J_{1}	I	D_{0}	D_{1}	$\mathrm{D}_{\mathrm{S}}^{\prime}$
-8	.317	. 300	-. 017	.0747	. 2692	.0075
-4	. 31.5	1.042	. 727	. 0766	. 2254	. 0071
0	. 313	1. 848	1.535	. 0788	. 2602	. 0067
2	. 312	2.250	1.938	.0800	. 2959	. 0065
6	. 311	3.079	2.768	. 0818	. 3961	. 0061
10	. 309	3.859	3.550	. 0836	. 5238	. 0057
14	.307	4.576	4.269	. 0856	. 6815	. 0052
18	.305	5.059	4.754	. 0868	. 8501	. 0048
20	. 304	5.130	4.826	. 0881	. 9460	. 0046
22	.303	5.191	4.888	. 0892	1.0631	. 0044
24	. 302	4.850	4.548	. 0897	1.3500	. 0042

α	D	L/D	${ }_{1}$	H_{0}	M
-8	.1314	-0.13	7.66	10.94	-. 867
-4	. 0861	8.44	8.51	10.94	-. 643
0	. 1191	12.89	9.34	10.94	-. 424
2	. 1538	12.60	9.78	10.94	-. 307
6	. 2526	10,96	10.43	10.94	-. 135
10	. 3789	9.37	10.84	10.94	-. 026
14	. 5351	7.97	11.11	10.94	. 045
18	. 7029	6.77	11.21	10.94	. 071
20	. 7977	6.05	11.06	10.94	. 032
22	. 9139	5.35	10.70	10.94	-. 063
24	1.2005	3.78			

α	X	2	Za	Xh_{n}	${ }^{M 1}{ }_{10}$	C.P.
-8	. 127	-. 037	-. 034	. 010	-. 843	-7.59
-4	. 136	. 720	. 655	. 011	1.309	. 605
0	. 119	1.535	1.398	. 010	1.832	. 40
2	. 086	1.941	1.768	. 007	2.082	. 355
6	-. 036	2.773	2.523	-. 003	2.655	. 325
10	-. 245	3.560	3.240	-. 020	3.246	. 305
14	-. 510	4.270	3.887	-. 041	3.801	. 295
18	-. 800	4.732	4.300	-6064	4.165	. 295
20	-. 900	4.800	4.362	-. 072	4.258	. 295
22	-. 986	4.868	4.436	-. 078	4.420	. 305

$$
G / C=3.00, \quad \text { Stagger }=60 \%
$$

$$
D_{s}=.0556, \quad a=0: 86, \quad h=0: 06, \text { Short strut, } \beta=-31: 0
$$

α	I_{0}	I_{1}	L	D_{8}	D_{0}	D_{1}
-8	.300	.365	-. 065	. 0043	.0725	. 2553
-4	. 299	1.130	. 831	. 0048	.0749	. 2284
0	. 297	1.954	1.657	.0053	.0772	. 2702
2	. 296	2.369	2.073	. 0055	.0779	. 3041
6	. 294	3.186	2.892	. 0060	. 0796	. 4103
10	. 292	3.982	3.690	. 0065	. 0815	. 5490
14	. 290	4.708	4.418	. 0070	. 0826	. 7114
18	. 288	5.169	4.881	.0075	. 0841	. 9005
20	. 287	5.281	4.994	.0077	. 0845	1.0300
22	.286	5.142	4.856	.0080	. 0849	1.1600

α	D	I/D	M_{1}	M_{0}	M
-8	. 12229	-0.50	7.82	10.83	-. 796
-4	. 0931	6.77	8.80	10.83	-. 537
0	. 1321	12.52	9.80	10.83	-. 273
2	. 1651	12.55	10.36	10.83	-. 124
6	. 2691	11.75	11.12	10.83	.077
10	. 4054	9.10	11.62	10.83	. 209
14	. 5662	7.80	11.87	10.83	. 275
18	. 7533	6.48	11.69	10.83	. 228
20	. 8822	5.66	11.29	10.83	. 122
22	1.0115	4.80	10.48	10.83	. . 093

α	X	Z	Za	Xh	M_{12}	C.P.
-8	. 114	-. 081	-. 070	. 007	-. 733	-3.02
-4	. 149	. 822	. 707	. 009	-1,353	. 55
0	. 132	1.657	1.425	. 008	-1.706	. 345
2	. 094	2.077	1.786	.006	-1.916	. 305
6	-. 035	2.901	2.498	-. 002	-2,419	. 275
10	-. 257	3.798	3.265	-. 015	-3.041	. 265
14	-. 518	4.420	3,804	-. 031	-3.498	. 265
18	-. 790	4.870	4.191	-. 047	-3.916	. 27
20	-. 878	4.990	4.290	-. 053	-4.115	. 275
22.	-. 883	4,880	4,200	-. 053	-4.240	. 29

$G / C=1.33 \quad$ Stagger $=-40 \%$
$D_{s}=.0556, \quad a=0.95, \quad h=0$, Medium strut, $\beta=1697$

α	I_{0}	I_{1}	工	$D_{s}^{\text {P }}$	D_{0}	D_{1}
-8	. 300	. 118	-. 182	.0092	. 0860	.3271
-4	. 298	. 877	. 581	. 0087	. 0874	. 2406
0	. 296	1.680	1.384	. 0082	. 0886	. 2660
2	. 294	2.086	1.792	. 0080	. 0891	. 2939
6	. 291	2.909	2.618	.0075	. 0900	. 3843
10	. 289	3.726	3.435	.0070	.0905	. 5079
14	. 286	4.366	4.080	. 0065	. 0915	. 6440
18	. 283	4.779	4.496	. 0060	. 0917	. 8002
20	. 282	4.799	4.517	. 0058	. 0919	. 8932
22	. 281	4.460	4.179	.0055	.0921	1.0980

α	D	I/D	M_{0}	M_{1}	M
-8	. $\overline{1763}$	-1.03	$\overline{10.59}$	$\overline{7.99}$	-. 688
-4	. 0889	6.55	10.59	7.45	-. 830
0	. 1136	12.20	10.59	8.19	-. 635
2	. 1412	12.70	10.58	8.34	-. 592
6	. 2312	11.31	10.58	8.84	-. 460
10	. 3548	9.68	10.58	9.34	-. 328
14	. 4904	8.31	10.57	9.67	-. 238
18	. 6469	6.95	10.57	9.25	-. 349
20	. 7399	6.11	10.57	8.71	-. 492
22	. 9448	4,43			

$$
h=0, \quad x h=0
$$

α	X	2	$\mathbf{Z a}$	$\mathrm{M}_{1 \mathrm{e}}$	C.P.
-8	. 200	-. 155	-. 147	-. 541	-1.16
-4	. 130	. 573	. 545	1.375	. 80
0	. 114	1.384	1.315	1.950	. 47
2	. 078	1.795	1.705	2.297	. 425
6	. 001	2.624	2.494	2.954	. 375
10	-. 247	3.440	3.268	3.596	. 35
14	-. 510	4.074	3.872	4.110	. 345
18	-. 776	4.472	4.250	4.599	. 345
20	-. 850	4.494	4.270	4.762	. 355

GOttingen 387	Biplane
$G / C=1.33$	Stagger $=0$

$D_{s}=.0556, a=0: 93, h=0104$, medium strut, $\beta=0$

$\underline{\sim}$	L_{0}	\pm_{1}	1	D_{8}	D_{0}	D_{1}
-8	. 299	. 260	-. 039	. 0095	. 0815	. 2754
-4	. 296	1.009	. 713	. 0097	. 0829	. 2359
0	. 294	1.829	1.535	. 0100	. 0844	.2708
2	. 293	2.233	1.940	. 0099	. 0856	. 3024
6	. 290	3.047	2.757	. 0095	. 0870	, 3967
10	. 288	3.828	3.540	. 00090	. 0884	. 5251
14	-285	4.503	4.218	. 0085	.0898	. 6683
18	. 282	4.891	4,609	. 0081	. 0910	- 8180
20	-281	4.929	4.648	. 0078	. 0908	. 9100
22	. 280	4.872	4.592	. 0075	. 0916	1.0260
\propto	D	L/D	M	M	M	
-8	.1288	-0.30	10.58	7.05	-. 934	
-4	. 0877	8.13	10.58	7.65	-. 775	
0	. 1208	12.70	10,58	8.10	-. 656	
2	. 1513	12.81	10,59	8.44	-. 569	
6	. 2446	11.28	10.59	8.94	-. 436	
10	. 3721	9.51	10.59	9.37	-. 323	
14	. 51.44	8.21	10.59	9.73	-. 227	
18	. 6633	6.95	10.60	9.87	-. 196	
20	. 7558	6.14	10.60	9.57	-. 275	
22	. 8713	5.15	10.60	9.02	-. 418	

\propto	X	2	z_{a}	Xn	$\mathrm{M}_{\text {L }}$.E.	C.P.
-8	. 132	-. 020	-. 019	.005	-. 920	-15.32
-4	. 137	. 705	. 656	. 005	-1.436	. 68
0	.121	1.535	1:429	. 005	-2.090	. 455
2	. 083	1.942	1.808	. 003	-2.380	.41
6	-. 041	2.766	2.573	-. 002	-3.007	. 36
10	-. 249	3.548	3.301	-. 010	-3.614	:34
14	-. 520	4.212	3.925	-. 021	-4.131	. 325
18	-.792	4.584	4.262	-. 032	-4.426	-32
20	-. 879	4.619	4.300	-. 035	-4.540	. 325
22	-. 916	4.578	4.257	-. 037	-4.638	. 335

Göttingen 387 Biplane
$G / C=1.33 \quad$ Stagger $=60 \%$

APPENDIX C.

TABUTATTED RESULTS

tebles

I. Biplane Correction Factors at Equal \propto for \quad 1-33
$I_{C}, D_{C}, L / D$, and M_{C}.
II. Loading on Upper and Lower Wings . 34
III. Aerodynamic Coefficients ($I_{c}, D_{c}, I_{1} / D, M_{c}$, and C.P.)
for the Biplane as a Unit.

1. UnS.A. 27 biplanes. 35-61
2. Gठt. 387 biplanes. 62-76
IV. Biplane Correction Factors for $D_{C}, L / D, M_{C}$, and C.P. at Equal I_{c}; and for L_{c} max., D_{c} min., and L / D max.

89-97 100-103 108-109

NoB. In all tabulations of data, negative signs (-) are inserted, but positive signs (t) are omttted. The absence of a sign means that the value is positive (t).

BIPLALE CORREOTIOL FACTORS FOR L_{C} AT ERUAL \propto.

α^{0}	.50	.75	1.00	1.35	$\underline{2.67}$	$\underline{2.00}$
-6	-.105	.412	.588	.776	1.113	1.021
-4	1.280	.990	.990	.959	.718	1.208
-2	.864	.825	1.016	.885	.826	1.010
0	.756	.895	.855	.872	.842	.961
2	.766	.789	.864	.880	.835	.933
4	.775	.835	.870	.899	.870	.962
6	.764	.817	.866	.892	.859	.936
8	.755	.805	.857	.890	.866	.933
10	.759	.810	.864	.887	.878	.936
12	.700	.815	.867	.887	.876	.929
14	.759	.812	.876	.904	.887	.938
16	.776	.848	.899	.922	.916	.956
18	.820	.896	.965	.978	.970	.981
20	.876	.953	.996	.999	.998	.989
22	.905	.992				

Table 2. U.B.A. 27 Biplane $G / C=0.50$

BIPLANE CORREC TION FACIORS FOR I_{C} AT EQUAL α.

Table 3
U.S.A. 27 Biplene
$G / C=0.75$
stagger.
-40%
-20%
-1.018
.660
.726
.704
.745
.751
.760
-2010
0
$20 \% \quad 60 \%$ 60\%
-.732
.771
$.412 \quad-.079$
$.346 \quad .232$
.745
. 990 1. 268
.708
$.825 \quad .930$
$1.551 \quad 1.602$
$.825 \quad .930 \quad 1.065 \quad 1.089$
.746
.895
.873
.882
.763
.789
.979 .999
.882 .. . 930 . 856
4
6

8	.773	.778	.805	.841	.885	.933
10	.786	.781	.810	.836	.893	.928
12	.789	.790	.815	.787	.889	.926
14	.788	.801	.812	.838	.900	.908
16	.805	.818	.848	.863	.923	.949
18	.834	.864	.896	.923	.964	.991
20	.858	.900	.953	.971	1.002	1.029
22		.913	.992	1.011	1.031	1.071

α°	$\text { Got. Table } 48 .$		
	-40\%	$\begin{gathered} \text { agger. } \\ 0 \end{gathered}$	60\%
-8	1.364	-. 135	-. 896
-4	. 710	. 851	. 990
0	. 766	. 820	. 919
2	. 796	. 811	-914
6	. 783	. 815	. 892
10	.778	. 808	. 900
14	. 814	. 836	. 935
18	. 845	. 893	1.007
20	. 776	. 913	1.027
22		. 946	. 997

BIPTALE COMBCMION FAOTOES $202 I_{C}$ AT EQUAL \propto

S.A. 27 Biplane
$G / C=1.00$
$G / C=1.00$
stacger

α^{*}	-40\%	-20\%	0	20\%	40\%	60\%
-6	1.191	. 631	. 588	. 421	. 250	. 228
-4	. 660	. 986	. 990	1.101	1. 289	1.199
-2	. 790	. 875	1.016	. 924	. 984	1.002
0	.800	. 872	. 855	. 881	. 925	. 958
2	.800	. 848	. 864	. 890	. 917	. 928
4	. 817	. 869	. 870	. 894	. 884	. 933
6	. 818 m	. 860	. 866	. 877	. 888	. 928
8	. 822	. 864	. 857	- 881	. 892	. 927
10	. 842	. 866	. 864	. 880	. 899	. 932
12	. 837	. 872	. 867	. 879	. 902	. 939
14	. 849	. 879	. 876	. 896	. 910	. 938
16	. 871	. 899	. 899	. 928	. 934	. 970
18	. 910	. 941	. 965	. 985	. 993	1.020
20	. 939	. 968	. 995	1.020	1.023	1.050
22				1.045		

Table 6
Gots. 387 Bipland $G / G=1.00$

Stagger

α^{0}	-40%	$\underline{20 \%}$	$\underline{0}$	$\underline{20 \%}$	$\underline{20 \%}$	$\underline{20 \%}$
-8	1.010	.243	.477	1.104	.178	.077
-4	.792	.859	.831	.758	.891	1.019
0	.845	.866	.849	.816	.895	.965
2	.840	.864	.846	.836	.892	.955
6	.854	.866	.860	.849	.894	.934
10	.848	.859	.860	.855	.896	.933
14	.879	.882	.890	.894	.934	.967
18	.905	.921	.938	.967	.995	1.021
20	.910	.935	.966	.993	1.019	1.053
22			.983	1.028	1.054	1.050

BIPLANE CORTES ION FACTOR FOR I_{0} at EQUAL \propto

> Table 7
> U.S.A. 27 Biplane
> $G / C=1.33$

Stagger

Table 8
Gout. 387 Bipland $G / C=1.33$

Stagger

α°	10%	$\underline{0}$	$\underline{00 \%}$
-8	1.898	.407	.875
-4	.712	.874	.849
0	.807	.895	.889
2	.826	.894	.896
6	.849	.894	.900
10	.865	.891	.902
14	.892	.923	.944
18	.941	.965	1.000
20	.954	.981	1.030
22	.902	.991	1.037

BIPLANE COMRECTION EACTORS FOR I_{c} AT EQUAL α

Table 9
U.S.A. 27 Biplane
$G / C=1.67$
Stagger

α°	-40\%	-33\%	$\underline{0}$	33\%	60\%
-6	$-.873$	-. 645	2.113	-. 592	-. 364
4	. 941	1.156	. 718	1.156	1.336
-2	. 902	. 979	. 826	1.100	1.045
0	. 885	. 866	. 842	. 915	. 981
2	. 874	. 935	. 835	. 918	. 971
4	. 882	. 940	. 870	.922	. 956
6	. 888	. 928	. 859	. 913	. 940
8	. 884	. 925	. 866	. 913	. 936
10	. 894	. 928	7878	. 913	. 938
12	. 893	. 926	. 876	. 919	. 939
14	. 900	. 933	. 887	. 924	. 947
16	. 913	. 948	. 916	. 954	. 968
18	. 953	. 969	. 970	. 977	1.002
20	. 933	. 881	. 998	. 978	. 997
22					

Table 10
U.S.A. 27 Biplane
$G / C=2.00$
Stagger

α^{0}	-40%	0%	60%
-6	.711	1.021	-.101
-4	1.072	1.208	1.540
-2	.961	1.010	1.115
0	.932	.961	1.015
2	.977	.933	1.003
4	.919	.962	.922
6	.917	.936	.963
8	.917	.933	.952
10	.919	.936	.956
12	.924	.929	.956
14	.922	.938	.950
16	.938	.956	.964
18	.966	.981	.995
20	.964	.989	.985
22		-	

BIPLANE CORRECTION FACTORS FOR D_{c} AT EQUAL \propto

Table 11
U.S.A. 27 Biplane
$G / C=0.50$
Stagger

α^{0}	-10%	0	$\underline{0} 00 \%$
-6	1.230	.722	.758
-4	1.346	1.015	1.006
-2	1.341	1.141	1.168
0	1.210	1.137	1.233
2	1.065	1.107	1.236
4	.963	1.077	1.195
6	.901	1.019	1.170
8	.876	.963	1.166
10	.894	.954	1.156
12	.869	.931	1.159
14	.861	.929	1.170
16	.854	.886	1.228
18	.800	.795	1.239
20	.747	.723	1.232
22		.747	1.320

Table 12
GOt. 387
$G / C=0.75$
Stagger

α^{0}	-40%	$\underline{0}$	$\underline{60 \%}$
-8	1.17	.871	.809
-4	1.21	1.11	1.13
0	1.10	1.08	1.18
2	1.07	1.04	1.16
6	.957	1.01	1.16
10	.924	.979	1.14
14	.940	.982	1.16
18	.915	.935	1.19
20	.951	.889	1.20
22		.846	1.29

Table 13
U.S.A. 27 Biplane
$G / C=0.75$

Stagger

α^{0}	-40%	$\underline{20 \%}$	$\underline{0}$	$\underline{20 \%}$	$\underline{20 \%}$	$\underline{20 \%}$
-6	1.035	.950	.862	.741	.690	.740
-4	1.130	1.081	1.052	.972	.930	.971
-2	1.161	1.114	1.151	1.100	1.121	1.023
0	1.109	1.101	1.157	1.100	1.211	1.260
2	1.007	1.012	1.090	1.127	1.238	1.283
4	.972	.963	1.085	1.090	1.197	1.243
6	.930	.965	1.019	1.068	1.153	1.240
8	.919	.936	.979	1.018	1.138	1.218
10	.924	.933	.979	1.020	1.127	1.200
12	1933	.934	.979	1.006	1.109	1.211
14	.940	.941	.974	1.014	1.129	1.220
16	.920	.901	.964	.976	1.097	1.230
18	.880	.830	.880	.889	1.027	1.185
20	.823	.790	.819	.843	.985	1.141
22		.799	.799	.845	.846	.964

BIFIANE CORREGTIOIN FACTOAS FOR D_{C} AT EQIAL α

> Table 14
> U.S.A. $27-$ Biplane
> G/C -1.00

Stagger

$\underline{\alpha}$	-40\%	-20\%	0	20\%	40\%	60\%
-6	1.044	. 946	. 887	. 864	. 798	. 804
-4,	1.093	1.091	1.052	1.031	. 992	. 991
-2	1.100	1.174	1.129	1.129	1.121	1.071
0	1.069	1.191	1.150	1.107	1.181	1.184
2	1.052	1.128	1.098	1.098	1.182	1.190
4	$\therefore .997$	1.102	1.099	1.107	1.161	1.193
6	. 992	1.080	1.071	1.091	1.116	1.171
8	. 992	1.044	1.041	1.071	1.089	1.161
10	1.000	1.043	1.042	1.061	1.095	1.161
12	1.010	1.048	1.042	1.056	1.101	1.158
14	1.020	1.049	1.057	1.088	1.110	1.150
16	1.001	1.013	1.022	1.048	1.074	1.143
18	. 948	. 955	. 940	. 947	. 950	1.082
20	. 888	. 901	. 883	. 908	. 946	1.040
22			\cdots	. 925		

Table 15
Gőt. 387
$G / C-1.00$
Stagger

α	-40%	-20%	$\underline{0}$	$\underline{2} \%$	$\underline{\%}$	$\underline{\%}$
-8	1.13	.975	.997	1.14	.937	.876
-4	1.15	1.11	1.11	1.10	1.09	1.18
0	1.13	1.14	1.10	1.05	1.02	1.24
2	1.08	1.09	1.06	1.03	1.12	1.21
6	1.03	1.07	1.05	1.00	1.11	1.19
10	1.02	1.05	1.03	.997	1.09	1.17
14	1.03	1.05	1.02	1.02	1.12	1.18
18	.993	.994	.920	.993	1.08	1.15
20	.984	.962	.933	.931	1.02	1.07
22			.910	.897	.980	1.09

BIPIANE CORPECTION EACTORS FOR D_{C} AT DGUAL

> Table 16
> U.S.A. 27 Biplene
> G/C -1.33

Stagger

α	$\underline{-10 \%}$	-20\%	0	20%	40\%	603
-6	1.02	. 935	. 956	. 816	. 906	. 989
-4	1.13	1.06	2.06	. 984	1.05	1.11
-2	1.17	1.14	1.11	1.13	1.15	1.16
0	1.16	1.13	1.10	1.20	1.15	1.12
2	1.12	1.12	1.07	1.19	1.11	1.10
4	1.07	1.12	1.08	1.15	1.10	1.10
6	1.05	1.09	1.05	1.13	1.07	1.05
8	1.05	1.07	1.04	1.11	1.06	1.06
10	1.09	1.08	1.06	1.12	1.06	31.10
12	: 1.05	2.07	1.05	1.13	2.07	1.08
14	1.04	1.07	1.06	1.12	1.08	. 925
16	1.03	1.07	1.06	1.07	1.05	1.06
18	. 988	. 975	1.03	. 992	. 965	. 975
20	. 935	. 941	. 920	. 984	. 940	. 944

Table 17
Gott. 387 Biplane
$G / C-1.33$

	Stasger		60\%
∞	-10\%	-	
-8	1.26	. 917	1.05
-	1.12	1.11	1.12
0	1.06	1.13	1.12
2	1.03	1.11	1.08
6	1.02	1.08	1.07
10	1.02	1.07	1.07
14	1.02	1.07	1.10
18	. 991	1.02	1.06
20	. 947	. 969	1.01
22	1.01	. 935	. 996

BIPIANE GORRECTIOIT FACTONS FOR D_{C} AT EQUAL α

```
Table 18
U.S.S. 27 Biplane
\(G / G-1.67\)
```

Stagger

$\underline{\alpha}$	-40\%	-33\%	0	33\%	60\%
-6	. 955	. 908	1.02	. 886	. 854
-4	1.01	1.03	1.06	1.02	1.00
-2	2.08	1.11	1.06	1.17	1.14
0	1.07	1.17	1.03	1.12	1.17
2	1.07	1.17	1.01	1.14	1.19
4	1.05	1.15	. 996	. 910	1.17
6	1.04	1.12	. 974	1.07	1.13
8	1.04	1.11	. 976	1.06	1.11
10	1.05	1.09	. 990	1.05	1.10
12	1.04	1.13	1.00	1.06	1.11
14	1.10	1.05	1.01	1.06	1.12
16	1.03	1.06	. 990	1.05	2.07
18	. 950	. 999	. 910	. 960	. 981
20	. 921	. 969	. 891	. 941	. 976

Table 19 U. S.A. 27 Biplane $G / C-2.00$

Stagger

$\underline{\alpha}$	-40\%	0\%	60\%
-6	. 920	. 905	. 796
4	. 990	. 990	. 936
-2	2.06	1.07	1.04
0	1.08	1.10	1.11
2	1.08	1.07	I. 12
4	1.06	1.11	1.12
6	1.05	1.07	1.10
8	1.04	1.07	1.08
10	1.05	1.05	1.08
12	1.05	1.06	1.09
14	1.05	1.07	1.08
16	1.02	1.04	1.04
18	. 954	. 961	. 980
20	. 949	. 955	. 995

BIPLANE CORRBCTION FAGTORS FOR I/D at EQUAL α

rable 20
U.S.A. 27 Biplane
G/0-0

Stagger

\propto	.50	.75	1.00	1.33	1.67	$\underline{2.00}$
-6	.131	.440	.589	1.33	1.67	2.00
-1	1.10	.819	.819	.751	.585	1.11
-2	.757	.704	.901	.796	.775	.976
0	.709	.789	.763	.815	.837	.880
2	.692	.720	.777	.827	.820	.825
4	.718	.765	.791	.824	.764	.852
6	.756	.809	.809	.848	.884	.855
8	.796	.843	.859	.873	.904	.882
10	.799	.831	.829	.859	.882	.867
12	.809	.828	.824	.837	.868	.847
14	.812	.850	.826	.850	.874	.860
16	.868	.871	.870	.858	.918	.908
18	1.03	1.02	1.02	.950	1.06	.995
20	1.22	1.17	1.12	1.09	1.12	1.00
22	1.21	1.17				

> Table 21
> U.S.A. 27 Biplane
> G/C -1.00

Stagser

α	-40%	-20%	0%	20%	40%	60%
-6	1.04	.649	.589	.440	.298	.238
-4	.524	.787	.819	.921	1.13	1.04
-2	.709	.735	.901	.814	.872	.980
0	.763	.740	.763	.804	.804	.850
2	.770	.747	.777	.804	.775	.774
4	.816	.790	.791	.810	.759	.780
6	.825	.797	.804	.805	.797	.795
8	.846	.844	.859	.841	.845	.814
10	.845	.834	.829	.852	.820	.804
12	.820	.825	.824	.825	.811	.803
14	.851	.857	.826	.821	.815	.812
16	2861	.877	.870	.877	.859	.837
18	.956	.984	1.02	1.04	1.01	. .935
20	1.06	1.08	1.12	1.12	1.08	1.01
22						1.13

BIPLANE CORRETION RAMTORS FOR L/D AT EQUAL α

$$
\begin{aligned}
& \text { Table } 23 \\
& \text { Got. } 387 \text { Biplane } \\
& G / G-1.00
\end{aligned}
$$

Stagerer

α	-40%	-20%	0%	20%	$\underline{40 \%}$	$\underline{80 \%}$
-8	.916	.324	.518	.629	.204	.814
-4	.691	.785	.754	.690	.828	.880
0	.743	.755	.793	.770	.799	.779
2	.776	.790	.795	.805	.792	.785
6	.825	.806	.820	.847	.803	.784
10	.830	.819	.836	.860	.821	.799
14	.852	.843	.871	.872	.834	.820
18	.921	.936	.979	.987	.936	.896
20	.924	.960	1.03	1.07	.997	.930
22			1.08	1.15	1.08	.965

Stagger
nable 24
Gơt. 387 Biplane
$G / C-1.53$
Stagger

α	-10%	0.0
-8	1.60	-.148
-4	.597	.774
0	.690	.754
2	.739	.782
6	.818	.807
10	.845	.825
14	.842	.853
18	.934	.966
20	.815	1.03
22		1.12

60.8
-1.12
.874
.770
.782
.768
.793
.805.
.856
.855
.774
α
-8
-1
0
2
6
10
14
18
20
22
-40%
$0 \% 6$
1.55 . 491 . 860 .646 .800 .758
$.756 \quad .790 \quad .766$
.794 .799 .824
.832 .828 .837
.849 .831 . 841
.873 . 861 . 860
.965 . 961 . 959
$\begin{array}{llll}774 & 22 & .965 & .997 \\ & 1.02\end{array}$

B Iplane Correction Factors for M_{c} at Iqual \propto

TABIX 25

U.S.A. 27 Biplane

CAD/CEORD $=.50$			
STAGGER			
a	-40\%	0\%	60\%
-6	1.19	1.53	. 945
-4	. 955	. 975	. 523
-2	. 880	. 816	. 447
0	. 831	. 761	. 411
2	. 790	. 721	. 396
4	. 764	. 715	. 389
6	. 750	. 704	. 397
8	. 735	. 685	. 402
10	.725	. 683	. 406
12	. 734	. 677	. 417
14	. 739	. 673	. 444
16	. 770	. 681	. 514
18	. 801	. 681	. 635
20	. 754	. 684	. 711
22	--	. 690	. 795

TABLE 26
GOt. 387 Biplane

$G / c=.75$			
α	-40%	STAGGIR	0%
-8	1.16	1.12	.790
-4	.905	.904	.7788
0	.836	.850	.609
2	.827	.818	.589
6	.800	.813	.899
10	.754	.810	.620
14	.778	.826	.680
18	.825	.853	.871
20	--	.873	.825

table 2 ?

$\begin{array}{r} \text { U.S.A. } \\ \text { GAP/CBORD } \end{array}$				$\begin{aligned} & \text { Biplane } \\ & .75 \\ & \hline \end{aligned}$		
α	-40\%	-20\%	0\%	20%	40\%	60%
-6	1.17	1.29	1.45	1.54	1.54	1.12
-4	. 913	. 945	. 929	. 944	. 919	. 726
-2	. 823	. 879	. 839	. 848	. 826	. 648
0	. 848	. 862	. 843	. 816	. 789	. 625
2	. 816	. 824	. 760	. 811	. 758	. 604
4	. 795	. 833	. 783	. 800	.755	. 596
6	. 797	. 858	.750	. 790	.755	. 641
8	. 814	. 830	. 728	. 774	. 741	. 625
10	. 805	. 817	.720	.757	.742	. 656
12	. 805	. 800	. 714	. 770	.754	. 649
14	. 810	. 831	. 713	. 770	. 780	. 664
16	. 848	. 846	. 739	. 788	.798	. 724
18	. 911	. 875	. 755	. 810	. 835	. 789
20	. 936	. 909	. 772	. 854	. 835	. 828
22	--	. 957	--	. 849	--	--

Biplane Correction Factors for M_{c} at Equal α

TABLII 28

U.S.A. 27 Biplane

$G / C=1.00$

STAGGER

STAGGFR							
α	-40%	-20%	0%	20%	40%	60%	
-6	1.05	1.33	1.34	1.76	1.51	1.55	
-4	.951	1.04	1.02	.979	.958	.878	
-1	.956	.992	1.03	.900	.852	.774	
0	.930	.971	.936	.882	.805	.728	
2	.901	.935	.929	.882	.788	.675	
4	.896	.947	.943	.870	.759	.671	
6	.923	.948	.935	.864	.784	.678	
8	.899	.931	.920	.864	.755	.688	
10	.899	.915	.916	.853	.754	.681	
12	.900	.918	.921	.856	.764	.696	
14	.921	.925	.942	.883	.776	.710	
16	.960	.939	.961	.909	.795	.751	
18	1.03	.980	.985	.924	.811	.792	
20	1.10	1.10	1.00	.934	.832	.807	

TABLE 29
GOt. 387 Biplane
$G / C=1.00$ STAGGER

STAGGER						
α	-40\%	-20\%	0\%	20\%	40\%	60\%
-8	1.103	1.215	1.07	. 975	1.10	. 955
-4	. 977	1.01	. 958	. 871	. 866	. 896
0	. 941	. 922	. 905	. 834	. 816	. 760
2	. 915	. 905	. 880	. 825	. 790	. 726
6	. 895	. 968	. 870	. 821	. 784	. 714
10	. 893	. 879	. 871	. 832	. 800	. 750
14	. 917	. 898	. 895	. 866	. 846	. 778
18	. 974	. 928	. 911	. 904	. 889	. 834
20	. 990	. 948	. 923	. 908	. 893	. 863

Biplane Correction Factors for M_{c} at Equal α

TABLE 30

$\begin{gathered} \text { U.S.A. } 27 \text { Biplane } \\ G / C=1.33 \\ \hline \end{gathered}$						
STAGGER						
0	-40\%	-20\%	0%	20%	40\%	60\%
-6	1.01	1.38	1.37	1.57	1.43	1.26
-4	. 902	1.05	. 987	1.05	. 988	. 925
-2	. 921	1.02	. 918	. 980	. 930	. 862
0	. 920	. 988	. 868	. 925	. 908	. 827
2	. 906	. 972	. 845	. 929	. 868	. 785
4	. 919	. 998	. 851	. 919	. 871	. 795
6	. 931	. 989	. 836	. 915	. 865	. 778
8	. 944	. 968	. 820	. 903	. 888	. 773
10	. 921	. 961	. 804	. 903	. 846	. 767
12	. 934	. 970	. 804	. 918	. 865	. 780
14	. 941	. 987	. 800	. 924	. 878	. 816
16	. 994	1.01	. 851	. 940	. 897	. 822
18	1.12	1.07	. 864	. 938	. 899	. 855
20	1.18	1.12	. 843	. 970	. 878	. 867

TABLE 31
Gft. 387 Biplane
$G / C=1.33$

$G / C=1.33$			
\%		LAGGER	
-	-40\%	0%	60\%
-8	. 706	1.20	1.09
-4	. 911	. 950	. 864
0	. 809	. 931	. 818
2	. 871	. 903	. 790
6	. 871	. 888	. 775
10	. 886	. 891	. 785
14	. 915	. 919	. 847
18	. 980	. 943	. 867
20	. 998	. 950	. 879

Biplane Correction Factors for M_{c} at Equal

TABLE 32
U.S.A. 27 Biplane
$G / C=1.67$

(2 pages)

U.S.A. 27 Biplane

Combination of results obtained by testing each plane
separately in the presence of the other.
$G / C=1.00 \quad$ STAGGER =

α	L/D	L0\% 10^{6}	Dox 10^{5}	C.P.	$\mathrm{Max}_{0} 10^{5}$	Loading on Upper and Lower Planes Ift Drag			
						Ipper	Iowar	Unper	Lower
-6	-1.26	. 016	. 227	-. 496	-. 017	-. 888	-. 112	. 543	. 457
-	2.24	. 017	. 076	2.662	-. 027	. 183	.817	. 566	. 434
-2	7.74	. 048	. 062	. 708	-. 034	. 414	. 586	. 557	. 443
0	12.02	. 077	. 064	. 510	-. 040	. 460	. 540	. 500	. 500
2	13,90	. 207	. 077	. 440	-. 048	. 475	. 625	. 424	. 518
4	14.01	. 143	. 102			. 500	. 500	. 495	. 505
6	12.61	. 169	. 134	. 361	-.062	. 505	. 496	. 498	. 505
8	11.83	. 199	. 168			. 508	. 492	. 503	.497
10	10.77	. 226	. 210	. 329	-. 075	. 510	. 490	. 512	. 488
12	9.85	. 255	. 259			. 515	. 485	. 514	. 486
14	9,04	. 282	. 312	. 304	-. 085	. 516	. 484	. 541	. 459
16	8.44	. 306	. 363			. 523	.477	. 552	. 448
18	7.58	. 325	. 429	. 287	-. 093	. 529	. 471	. 568	. 432
20	6.78	. 329	. 485			. 542	. 458	. 522	.478

```
U.S.A. 27 Biplane
```

Combination of resuits obtained by testing each plane separately in the presence of the other.
$9 / 0=1.67$
STAGGER = 0

α	$\underline{L} / \mathrm{D}$	$\underline{L 0 x} 105$	Dox 20^{5}	C.P.	Max 10^{5}	Loading on opper and Lower Planes			
									rag
						Inpoer	H0wer	Upper	Lower
- 6	-1.82	-. 022	. 121	-. 776	-. 016	-. 607	-. 393	. 440	. 560
-4	8.71	. 026	. 070	1.188	-. 030	. 602	. 398	. 465	- 535
-2	9.36	. 058	. 062	. 645	-. 088	. 544	. 456	. 480	. 520
0	13.79	. 091	. 066	. 493	-. 045	. 536	. 464	. 493	. 507
2	25.18	. 126	. 083	. 422	-. 054	. 533	. 467	. 500	. 500
4	14.86	. 162	. 109			. 530	. 470	. 514	. 486
6	13.36	. 191	. 143	. 368	- 071	- 530	. 470	- 521	-479
8	12.40	. 223	. 180			. 530	. 470	. 540	. 460
10	21.29	. 256	. 227	. 330	-.084	. 534	. 466	. 550	. 450
12	10.15	. 284	. 280			. 530	. 470	. 560	. 440
14	9.35	. 314	. 336	. 316	-. 098	. 536	. 464	. 566	-434
16	8.57	. 337	. 393			. 537	. 463	. 573	.427
18	7.74	. 351	. 454			. 546	. 454	. 570	. 430
20	6.16	. 343	. 556	. 325	-. 108	. 550	. 450	. 550	. 450

Lift Coofifioients (Icx 10^{5}) for U.S.A. 27 Biplanes

$$
\begin{gathered}
\text { TABLS } 37 \\
G / C=1.00
\end{gathered}
$$

STAGGER						
α	-4088	-20\%	0\%	20\%	40\%	60\%
-6	-23	- 12	-11	-8	-5	-4
-4	14	21	21	23	27	25
-2	48	53	62	56	60	61
0	78	85	84	86	91	94
2	110	116	118	122	126	127
4	141	150	150	155	153	161
6	171	180	181	183	186	194
8	200	219	208	214	227	225
10	232	238	237	242	247	256
12	257	268	266	270	277	288
14	284	294	293	299	304	313
16	305	314	314	325	327	339
18	314	325	333	340	345	351
20	312	322	--	339	340	349

$\stackrel{\text { PBLB }}{ } 38$
$G / G=1.33$

	- 69	20 STRGGER				
0	-40\%	-20\%	0%	20\%	40\%	60\%
-6	- 19	- 23	-15	-4	-12	-18
-4	17	21	20	29	22.	17
-2	52	56	54	63	56	53
0	83	87	85	96	89	85
2	118	121	121	130	124	120
4	150	157	155	164	158	155
6	183	188	286	195	192	185
8	215	217	216	225	220	218
10	245	245	244.	257	252	247
12	272	275	273	289	283	279
14	293	301	302	313	311	310
16	318	321	323	337	334	333
18	326	334	337	344	345	351
20	325	331	333	338	342	347

Lift Coefficionts ($L_{C} \times 10^{5}$) for U.S.A. 27 Biplane
table 39

$G / C=2.67$

STAGGER					
α	-40\%	-33\%	0\%	33\%	60%
-6	-17	-12	-21	-11	-7
4	20	24	25	24	28
-2	55	$\because 60$	50	67	64
0	87	85	83	90	96
2	120	128	114	126	133
4	153	163	151	159	165
6	186	194	179	191	196
8	215	224	210	222	227
10	246	255	241	251	258
12	274	284	269	282	288
14	300	311	296	308	316
16	319	331	321	333	338
18	329	334	335	337	346
20	309	326	333	324	331

TABIE 40

$G / G=2.00$			
STAGGER			
\propto	-408	0%	60\%
-6	-14	- 29	-2
-4	23	25	32
-2	69	62	68
0	91	94	99
2	126	128	138
4	159	166	160
6	197	196	201
8	223	227	231
10.	252	258	263
12	274	285	293
14	308	313	317
16	328	335	337
18	333	338	343
20	320	331	327

Lift Coefficients ($L_{0} \times 10^{5}$) for U.S.A. 27 Biplane

TABLE 41

STAGGER $=$GAP/OHORD						
α	. 50	. 75	1.00	1.33	1.67	2.00
-6	2	-8	-11	-15	-21	-19
-4	27	21	21	20	15	25
-2	53	50	62	54	50	62
0	77	88	84	85	83	94
2	105	108	118	121	114	128
4	134	144	150	155	151	166
6	160	171	181	186	179	196
8	183	196	208	216	210	227
10	209	223	237	244	240	258
12	233	250	266	273	269	285
14	253	271	293	302	296	313
16	272	297	314	323	321	335
18	283	309	333	337	335	338
20	293	318	380	333	333	331

Drag Coofficients (Do $\times 10^{6}$) for U.S.A. 27 Biplane
TABLS 42

$a / C=0.50$			
STAGGER			
α	-40\%	0\%	60\%
-6	155	91	96
-4	96	72	71
-2	76	65	67
0	74	69	75
2	82	85	95
4	98	110	122
6	222	137	158
8	152	167	202
10	187	206	250
12	228	245	305
14	270	291	367
16	314	326	451
18	370	368	572
20	420	406	693
22		492	870

TABLE 43

STAGGER						
α	-40\%	-20\%	0%	20\%	40\%	60\%
-6	130	119	108	93	87	93
-4	80	77	75	69	66	69
-2	66	64	66	63	64	58
0	68	67	71	-67	74	77
2	78	78	84	87	95	99
4	99	98	111	111	122	127
6	126	130	137	144	156	167
8	159	162	169	176	197	211
10	199	202	211	220	243	259
12	246	246	257	268	292	319
14	294	295	305	318	353	382
16	339	332	355	359	404	453
. 18	407	384	407	411	475	548
20	462	444	460	474	554	641
22		526	557	557	635	789

Drag Coefficients ($D_{0} \times 10^{6}$) for U.S.A. 27 Biplane
table 44
$G / C=1,00$

STAGGER						
α	-40\%	-20\%	0%	20\%	40\%	60\%
-6	132	119	111	108	100	100
-4	78	78	75	73	70	70
-2	63	67	64	64	64	61
0	65	73	70	68	72	72
2	80	87	85	85	91	92
4	102	112	112	113	119	122
6	134	146	145	147	151	158
8	172	181	180	185	188	201
10	216	225	225	229	237	251
12	266	276	274	278	290	305
14	319	328	331	340	348	360
16	369	373	376	386	396	421
18	438	491	435	438	458	501
20	499	506	496	510	532	584

TABIE 45

$G / C-1.33$						
STAGGER						
α	-40\%	-20\%	0%	20%	40\%	60%
-6	129	118	120	103	114	124
-4	80	76	75	70	75	79
-2	66	65	63	65	65	66
0	71	69	67	73	69	69
2	86	86	82	92	86	85
4	109	114	111	117	112	112
6	142	147	242	162	146	141
8	182	184	180	192	183	183
10	235	233	229	243	230	238
12	275	281	277	296	282	285
14	327	334	332	351	338	344
16	380	385	392	396	388	389
18	456	451	474	459	445	450
20	525	529	517	551	529	530

Drag Coefficients ($D_{0} \times 10^{5}$) for U.S.A. 27 Biplane
TABLE 46

TABLE 47

Lift Drag Ratios for U.S.A. 27 Biplane

TABIS 48

STAGGER $=0 \%$

GAP/OHORD						
\propto	. 50	$\underline{.75}$	1,00	1.33	1.67	2.00
-6	. 22	-. 74	-. 99	-1.25	-1.63	-1.90
-4	3.75	2.80	2.80	2.67	2.00	3.79
-2	8.15	7.58	9.70	8.56	8.34	30.50
0	11.15	12.40	12.00	12.70	13.17	13.81
2	12.35	12.85	13.89	14.76	14.61	14.71
4	12.17	12.98	13.40	13.96	14.80	14.42
6	11.69	12.49	12.48	13.10	13.67	13.21
8	10.95	11.59	11. 53	12.00	12.41	12.13
10	20.14	10.56	10.52	10.65	11.20	11.01
12	9.51	9.74	9.70	9.86	10.21	9.97
14	8.70	8.89	8,85	9.10	9.36	9.21
16	6.34	8.36	8.35	6.24	8.81	8.73
18	7.69	7.60	7.65	7.11	7.95	7.45
20	7.21	6.90	6.65	6.44	6.62	5.93
22	5.81	5.64				

TABIR 49
$G / C=1,00$

STAGGER						
\propto	-40\%	-20\%	0%	20%	40\%	60\%
-6	-1.74	-2.09	$-.99$	-. 74	-. 50	-. 40
-4	1.79	2.69	2.80	3.15	3.86	3.57
-2	7.62	7.91	9.70	8.75	9.38	20.00
0	12.00	11.64	12.00	12.63	12.63	13.04
2	13.74	13.32	13.89	14.35	13.84	13.80
4	13.81	13.39	13.40	13.71	12.85	13.20
6	12.76	12.31	12.49	12.43	12.31	12.28
8	11.62	11.60	11.63	11.57	11.51	11.20
10	10.72	10.59	10.52	10.57	10.41	10.20
12	9.65	9.71	9.70	9.71	9.55	9.45
14	8.90	8.96	8.85	8.80	8.74	8.70
16	8.26	8.42	8.35	8.41	8.25	8.04
18	7.16	7.36	7.65	7.76	7.53	7.00
20	6.26	6.36	6.65	6.65	6.39	5.98
22				5.42		

Moment Coefficients (M0 $\times 10^{5}$) for U.S.A. ${ }^{2} 7 \mathrm{BIPlanes}$
All of the following values denote diving moments, and should be prefixed by a minus sign.

TABLE 50

$G / 0=0.50$			
	STAGGRR		0%
α	40%	60%	
-6	18	23	14
-4	27	27	15
-2	33	31	17
0	37	34	19
2	43	40	22
4	49	46	25
6	54	51	29
8	59	55	32
10	63	69	35
12	69	64	39
14	74	67	44
16	79	70	53
18	84	72	67
20	80	73	75
22		73	84

TABITI 51

G/O $=0.75$						
α	-40\%	-20%	0%	20%	40\%	60\%
-6	17	19	22	23	23	17
-4	26	26	26	26	26	20
-2	31	33	32	32	31	25
0	38	39	38	37	35	28
2	45	45	42	45	42	33
4	51	53	50	51	48	38
6	57	62	54	57	54	46
8	65	66	57	62	59	50
10	70	71	63	66	65	57
12	76	75	67	72	71	61
14	81	83	71	77	78	66
16	87	87	76	81	82	75
18	96	92	79	85	88	83
20	99	96	82	91	89	88
22		101		90		

Moment Ooeffioients ($M_{0} \times 10^{5}$) for U.S.A. 27 Biplane

> All of the following values denote diving moments, and should be preisxed by a minus sign.

TABLR 52

$G / G=2,00$

STAGGMR						
α	-40\%	-20\%	0%	20\%	40%	60\%
-6	16	20	20	26	23	23
-4	27	29	29	27	27	25
-2	36	38	39	34	32	29
0	42	44	42	40	36	33
2	50	51	51	49	43	37
4	57	61	60	56	49	43
6	66	68	67	62	56	49
8	72	75	74	69	60	55
10	78	80	80	74	56	59
12	85	86	87	80	72	65
14	92	93	94	88	78	71
16	99	97	99	94	82	78
18	109	103	103	97	85	83
20	117	117	106	99	88	86

TABLIH 53

STAGGER						
α	-4.0\%	-20\%	0%	20\%	40\%	60\%
-6	15	21	21	24	21	19
-4	25	29	28	29	28	26
-2	35	39	35	37	35	33
0	41	44	39	42	41	37
2	50	53	47	51	48	43
4	59	64	54	59	56	51
6	67	72	60	66	62	56
8	75.	77	66	72	71	62
10	80	84	70	79	74	67
12	88	91	76	86	81	73
14	94	99	80	92	88	82
16	99	104	88	97	93	85
18	117	112	91	98	94	90
20	125	119	89	103	93	92

Moment Coefficients $\left(M_{C} \times 10^{5}\right)$ for U.S.A. 27 Biplane

$\Delta 11$ of the following values denote diving moments, and should be prefixed by a minus sign.

TABLE 54
$G / 0=1.67$

$G / 0=1,67$					
STAGGER					
\propto	-40\%	-33\%	0%	33%	60\%
-6	18	20	15	22	26
-4	29	30	26	30	33
-2	37	40	35	39	40
0	43	45	41	42	45
2	51	53	48	52	54
4	59	61	57	57	61
6	66	71	63	63	67
8	72	74	70	70	73
10	79	79	76	74	79
12	86	85	82	81	87
14	94	92	89	87	94
16	100	96	94	90	97
18	109	105	100	91	99
20	117	110	204	91	101

TABLE 55

$G / 0=2.00$			
STAGGER			
0	-40\%	0%	60\%
-6	19	16	22
-4	29	33	29
-2	38	40	37
0	44	47	43
2	63	56	51
4	62	66	60
6	70	73	67
8	77	81	74
10	84	89	81
12	92	95	89
14	99		96
16	106		99
18	116		102
20	119		105

TABLB 56

$G / C=0.50$			
STAGGER			
2	－40\％	0%	60\％
4	2.32	．937	.47
－2	． 83	． 58	．272
0	． 58	． 45	． 21
2	.47	． 377	． $17 \frac{1}{8}$
4	－407	． 331	．15
6	． 37	.31	． 24
8	． 34	． 297	． $23 \frac{1}{2}$
10	．327	． 28	． $13 \frac{1}{2}$
12	． 312	． 27	． 13 年
14	．30 ${ }^{\text {a }}$	． 27	． $14 \frac{1}{8}$
16	． 31	． 26	． 25
18	． $32 \frac{1}{2}$	． $24 \frac{1}{8}$	． 20
20	． $31 \frac{1}{2}$	． 25	． 221

TABLE 57

$G / C-0.75$						
STAGGER						
\propto	－40\％	－20\％	0%	20%	40%	60%
－4	2．73 ${ }^{\text {c }}$	1.52	1.15	． $90 \frac{7}{2}$	． 72	． 55
－2	．691	．712 ${ }^{\frac{1}{2}}$	． 68	． $55 \frac{1}{2}$	． 47	． 36
0	． 53 竟	． 54	． 44	． 44	.38	．2912
2	． 44	． $44 \frac{1}{2}$	．387	.37	． $32 \frac{1}{2}$	． 25
4	． 39	． 40	． 34 年	． 34	． $30 \frac{1}{2}$	． $23 \frac{1}{2}$
6	． $35 \frac{1}{2}$	． 377	－312	． $31 \frac{7}{2}$	．28＊	．22年
8	． 34	． 35	．29\％	． 30	． $27 \frac{1}{2}$	． 22
10	． $32 \frac{7}{2}$	． 34	．288	.29	． $26 \frac{7}{2}$	－222
12	．312	． 32	． 27	． 28	． 26	． 22
14	． $30 \frac{1}{2}$	． 32	． $26 \frac{1}{2}$	－272	． 26	．2121
16	．3178	．31－	． 26	． 27	． $25 \frac{1}{2}$	． 22
18	． 34	． 32	． 26	． 27	． $26 \frac{1}{2}$	． 24
20	．35㐌	． $33 \frac{1}{2}$	． 26	.27	． 26	． $25 \frac{7}{2}$

Center of Pressure Coefficients for U．S．A． 27 Biplane

TABLHE 58
$0 / 0=200$

STAGGER						
α	－40\％	－20\％	0%	20\％	40%	60\％
－4	1.80	1．297	1.25	1.09	． 91	． 90
－2	73 需	69	．611	． 597	． $52 \frac{7}{2}$	． 47
0	54	$52 \frac{1}{2}$	．511	.47	． 41	． $35 \frac{1}{2}$
2	451	44	．43委	． 40	．341	． 29
4	$40 \frac{1}{2}$	40	． 40	． $35 \frac{1}{2}$	．311	． 27
6	38	37	． $36 \frac{1}{2}$	． 33	． 29 年	． $24 \frac{1}{2}$
8	36	35	.35	． 32	． $27 \frac{1}{2}$	． 24
10	34	34	．33굴	.31	． $26 \frac{1}{2}$	． $23 \frac{1}{2}$
12	331	53	． 33	． 30	． 26	． 23
14	33^{2}	32	． 327	． 297	． $25 \frac{1}{2}$	． 23
16	33	317	． 32	． 29	． 25	． 23
18	35	321	． 31	． 29	． 25	． 24
20	37	33 $\frac{1}{2}$	． $32 \frac{1}{2}$	． 29 乭	． 26	． $24 \frac{1}{2}$

TABLE 59
$G / C=1,33$

STAGGER						
0	-40%	－20\％	0%	20%	40\％	60\％
－4	2.37	1.27	1.27	． 93	1.18	1.44
－2	． 66	． 67	． 63	． 577	． 61	． $60 \frac{1}{2}$
0	． $50 \frac{1}{2}$	． 52	． 47	．44总	． 47	． 45
2	．423	． $44 \frac{1}{2}$	． 38 吾	． 39	－387	． 37
4	． 38 妾	．407	． 35	． 36	－360	． 33
6	． 36	． 37	． 32	． 33	． 32	．291
8	．337	－351	． 30	． 32	． 32	． 28
10	． $32 \frac{1}{2}$	． $34 \frac{1}{2}$	． 29	.31	． $29 \frac{1}{2}$	． 27
12	． 32 者	． 33	． 28	.30	－29	． 267
14	． 32	－322	．273	．297	． $28 \frac{1}{2}$	． 26
16	－327	． $38 \frac{1}{2}$	－27\％	． 29	.28	．251
18	． 36	． 34	． 27	．297	．27t	． 26
20	． 38 㠻	.36	． 27	． $29 \frac{1}{8}$	． 278	． $26 \frac{1}{2}$

Center of Pressure Coefficients for U．S．A． 27 Biplane

PABLE 60

STAGGER					
α	－40\％	－33\％	0%	33\％	60\％
－4	1.34	1.14	1.60	1.15	2.06
－2	－65䂞	－661	． 68	． 57	．617
0	． 51	－4912	． 51	． 478	． 478
2	． 42	－417	． 427	．31．$\frac{1}{2}$	．40 ${ }^{\frac{3}{2}}$
4	． $38 \frac{1}{8}$	． 378	． 38	． 36	． 36
6	． 35	． 36	－341	． $32 \frac{1}{2}$	． 33 年
8	． 34	． 33	． 33	．31告	． 32
10	． 33	．317	． 32	． 30	． 31
12	． 32	． 391	.31	． 29	． $30 \frac{1}{2}$
14	－321	． 29 老	． $30 \frac{7}{2}$	． 287	.30
16	． 32	． $29 \frac{1}{2}$.30	． $27 \frac{1}{2}$	． 29
18	.34	． 32	.30	． 27	． 29

TABLE 61

$G / C=2.00$			
STAGGER			
α	－40\％	0\％	60\％
－4	1.18	1．21	． 82
－2	． $63 \frac{1}{2}$	． 63	． 53
0	．492	． $50 \frac{7}{8}$	． 44
2	． 42 年	． 44	． 377
4	． 39	． 397	． 35
6	． 36	． 37	． 38
8	． 34	． 351	． 32
10	． $33 \frac{1}{2}$	． $34 \frac{1}{2}$.31
12	． 33	． 34	.31
14	． 327	．331	．307
16	． 33	． 34	． 30
18	.35	． 36	．30才

Ift Coeffioients ($I_{0} \times 10^{5}$) for Ght. 387 Biplane

TABLE 62

Got. 387 Biplana$G / G=.75$			
STAGGEP			
α	-40\%	0%	60%
-8	-29	2	14
-4	41	49	56
0	101	108	121
2	136	139	156
6	192	200	219
10	249	258	288
14	302	311	348
18	333	352	397
20	306	361	406
22	-	365	385

TABLI 64
Got. 387 Biplane
$G / Q=1,33$
STAGGER

STAGGER			
α	-40\%	0\%	60\%
-8	-30	-7	-14
-4	41	50	48
0	106	118	112
2	141	152	153
6	208	220	221
10	277	285	288
14	332	343	351
18	371	380	394
20	377	387	407
22	348	383	400

TABLS 63
Got. 387 Biplane
$G / C=1,00$
STAGGER

STAGGER						
α	-40\%	-20\%	0%	20%	40\%	60%
-8	-16	-4	-8	-27	-3	-11
-4	45	49	47	43	51	58
0	121	114	116	108	118	127
2	144	148	145	143	158	163
6	210	213	211	208	220	229
10	271	274	275	274	287	298
14	327	328	331	332	347	359
18	356	363	370	381	392	403
20	359	365	381	392	403	416
22			379	397	407	405

Drag Coeffioients ($D_{C} \times 10^{6}$) for G8t. 387 Blplanes.

TABLE 65

TABLE 67

$G / C=1,33$			
STAGGRR			
α	-40%	0%	60%
-8	180	131	150
-4	74	73	74
0	92	98	96
2	112	120	117
6	181	192	191
10	280	294	294
14	389	407	417
16	499	512	532
20	565	577	603
22	668	724	711

TABIM 66
$\theta / C=1.00$

Lift Drag Ratios for Git. 387 Biplanes

table 69

STAGGER						
α	-40\%	-20\%	0%	20\%	40\%	60\%
-8	-. 99	-. 35	-. 56	-. 68	-. 22	-. 88
-4	6.92	6.71	6.45	5.90	7.09	7.53
0	11.31	11.50	12.09	11.74	13.27	11.88
2	12.30	12.53	12.61	12.77	12.57	12.43
6	11.40	11.16	11.33	11.70	11.10	10.84
10	9.69	9.55	9.75	10.02	9.57	9.31
14	8.34	8,25	8.53	8.54	8.16	8,02
18	7.12	7.24	7.56	7.62	7.24	6.93
20	6.12	6.36	6.85	7.06	6.60	6.16
22	-	-	5.83	6.20	5.81	5.21

TABLE 68

6/0 $=75$			
STAGGER			
0	-40\%	0\%	60\%
-8	- 1.73	. 16	1.21
-4	5.11	6.62	7.47
0	10.51	11.49	11.72
2	11.71	12.40	12.39
6	11.30	11.18	10.61
10	9.85	9.63	9.24
14	8.24	8,35	7.88
18	7.21	7.46	6.61
20	6. 40	6.81	5.67
22	-	6.05	4.18

TABLE 70

$G / 6=1.33$			
STAGGER			
0	-40\%	0%	60\%
-8	-2.67	-. 53	$-.93$
-4	5.54	6.85	6.49
0	11.52	12.03	11.69
2	12.59	12.68	13.08
6	11.50	11.45	11.58
10	9.90	9.70	9.80
14	8.54	8.43	8.41
18	7.44	7.42	7.40
20	6.68	6.60	6.76
22	5.21	5.30	5.62

Moment Coefficients ($M_{C} \times 10^{5}$) for Got. 387 Biplanes.
All the following values denote diving moments and should be prefixed by a minus sign.

TABLE 72

$G / C=1.00$

STLAGGER						
α	-40\%	-20\%	0%	20\%	40%	60\%
-8	21	23	20	19	21	18
-4	39	40	38	35	35	36
0	57	55	54	50	49	96
2	63	62	61	57	55	50
6	79	85	77	72	69	63
10	96	94	93	89	86	80
14	108	106	106	102	100	92
18	121	115	113	112	110	103
20	125	119	116	114	113	108

TABLE 71

G / C			
	STAGGER		
α	-40%	0%	60%
-8	22	21	25
-4	36	36	32
0	50	51	37
2	57	56	41
6	70	71	62
10	81	87	66
14	92	98	80
18	102	106	97
20	-	110	104

TABLE 73

$G / G=1,33$			
STAGGER			0%
α	-40%	60%	
-8	14	23	21
-4	36	38	35
0	52	56	49
2	60	62	55
6	77	78	68
10	95	96	89
14	108	108	100
18	121	117	107
20	126	120	111

Conter of Pressure Coeffioients for Got． 387 Biplanes．

TABIE 74

$0 / 0=0.75$			
STAGGER			
α	－40\％	0%	60\％
－8	-2.77	－71．78	－2．88
－4	． 80	． $66 \frac{1}{2}$	． $42 \frac{1}{8}$
0	． 478	.45	． 29
2	．421	． 40	，25글
6	． 36	． 358	． 23
10	． 32	.33	． 22 妾
14	．307	.31	． 23
18	． 31	． $30 \frac{7}{8}$	． $24 \frac{7}{2}$
20	－	－	． 26
22	－	． 32	－

TABLE 76

$G / G=1.38$			
		TAGGER	
\cdots	－40\％	0\％	60\％
－8	－2．16	$-15,32$	－4．50
－4	． 80	． 68	．631
0	.47	． $46 \frac{1}{8}$	． 40
2	． 42	． 40 域	.35
6	． $36 \frac{1}{2}$.35	． $30 \frac{1}{6}$
10	． 34	． 33	． 28.
14	． 33 尔	． $31 \frac{1}{8}$	． $27 \frac{1}{6}$
18	． 33 年	． 31	．27\％
20	． 34 寿	．31者	． 278
22	－	． 32 L	． 28 竟

TABLE 75

$G / 0=1.00$

STAGGER						
\propto	－40\％	20\％	0%	20\％	40%	60\％
－8	－2．39	－7．40	－2．08	-1.93	－7．59	－3．02
4	.77	.72	.72	． 72	． $60 \frac{7}{8}$	． 65
0	． 488	． $46 \frac{1}{2}$	．46妾	．444	． 40	． $34 \frac{1}{2}$
2	． $43 \frac{1}{8}$	． 42	．421	． 39	． 35	． 30
6	． $37 \frac{1}{6}$	． $35 \frac{1}{2}$	． 36	． $34 \frac{1}{8}$	．317	． $26 \frac{1}{5}$
10	． 344	． 33	． $33 \frac{1}{2}$	． 32	－292	． $25 \frac{1}{}$
14	． $33 \frac{1}{1}$	．32	． 32	． 31	． 29.	．251
28	． 35	． 32	． 31	． 30	． $29 \frac{1}{2}$	． 26
20	．35党	． 33	．31咅	． 30	． $28 \frac{1}{2}$	． $26 \frac{1}{2}$
22	－	－	． 32 空	． 30 者	． $29 \frac{1}{2}$	． 28

Biplante Correotion Factors for D_{0} at Equal I_{0} ．

TABLE 89
U.S.A.27 Biplane
$G / C=1.00$
STAGGER

STAGGER								
O_{2}	Lax 10^{5}	－40\％	－20\％	0\％	20\％	40\％	60\％	Average
.2	． 051	1.07	1.12	1.12	1.12	$1.15 \frac{1}{2}$	1.12	1.12
.4	． 102	1.21	1．22\％	1.21	1.24	1.21	1.21	1.22
． 6	.153	1.25	$1.30 \frac{1}{2}$	1．307	1．272	1.30	1.26	1.28
． 8	． 205	1.32	1.33 㐌	1.32	1.30	1.30	1.30	1.31
1.0	． 256	1.37	1．32 ${ }^{\text {2 }}$	1．312 ${ }^{\text {E }}$	1.29	$1.30 \frac{1}{2}$	$1.30 \frac{7}{2}$	1.32
1.2	． 307	－	1.36	1.34	1.30	1.32	1.32	1.33
2.3	． 333	－	－	1．351	1.31	3．321	1.31	1．327

TABIE 90
G8t． 387 Biplane
$G / 0 \equiv 1,00$

SRAGGER								
O_{4}	Iox 205	－40\％	－20\％	0\％	20\％	40\％	60\％	Avarage
.2	． 051	1.31	1.26	1.24	1.26	1.26	2.38	1．36年
． 4	． 102	1.50	1.50	1.50	1.45	1.42	2.53	1.48
． 6	． 153	1.43	2.44	1.43	1.40	1.43	1.45	1.48
.8	． 205	2.35	1.37	2.37	1．3488	1.37	1.37	$1.36 \frac{1}{2}$
1.0	． 256	1.33	1．34 $\frac{7}{8}$	2.33 早	1.31	1.33	1.33	1.33
1.2	． 307	1．31者	1.32	$1.28 \frac{1}{8}$	1．263	1.28	1．20\％	1.29
1.4	． 358	－	－	1.45	1．412	1.45	1.42	1．4318

Blplant Oorreotion Factors for D_{C} at Equal L_{0} ．

TABLR 91

$$
\text { U.S.A. } 27 \text { Biplane }
$$

Stagger $=0$

GAP／OHORD							
O_{1}	Inx 10^{6}	.50	.75	1.00	1.33	1.67	2.00
0	0	1.14	1．03妾	1．037	1．067	$1.03 \frac{1}{2}$	1.01
.2	． 051	1.12	1．08 ${ }^{\text {2 }}$	1．08\％	1．08穻	$1.03 \frac{1}{2}$	1.12
． 4	． 102	1.30	1.25	1．25	1.17	1.17 ．	1.12
． 6	． 153	1．451	1.37	1.30	1.22	1.21	1.14
． 8	． 205	1．49	1.38	1.31	1．24 ${ }^{\text {2 }}$	1.22	1.17
1.0	． 256	1．54	1．41妾	$1.27 \frac{1}{2}$	1.27	1.25	1.21
1.2	． 307	－	2.50	1.35	1.29	1.27	1.21
2.3	． 333	－	－	1.78	1，323	1．321	$1.21 \frac{1}{2}$

TABIE 92

Stagger $=0$

Biplane Correotion Faotors for D_{C} Minimam

TABLE 93

$$
\text { U.S.A. } 27 \text { Biplane }
$$

TABLR 94
GOt. 387 Biplane

Biplane Ooxrection Faotors for L/D max.

TABLE 94

$$
\text { U.S.A. } 27 \text { BipIane }
$$

TABLS 95
G8t. 387 Biplane

Stagger	0.75	1,00	1.33
60%	.78	.78	.82
40%		.80	
20%		.80	
0%	.77	.79	.80
-20%	.78		
-40%	$.73 \frac{1}{z}$.77	.79

Table 95a
Biplane Correction Factors for I_{0} max．

Stagger	Gap／Chord				$1.67 \quad 2,00$	
	0.50	0.75	1.00	1.33		
	U．S．A． 27 Biplane					
60\％	． 94	． 98	1.00	1.00	． 99	． 98
40\％		． 95	－981	． $98 \frac{1}{2}$		
20\％		． 92	． $97{ }^{2}$	．98妾		
0\％	．837	－ 91	． 95	． $96 \frac{1}{2}$	． 96	． 977
－20\％		．852	． 93	． 95 咅		
－40\％	275	． 82	．897	． 93	． 94	． 95
08t． 387 Biplanos						
60\％		1.03	$1.05 \frac{1}{2}$	1.03		
40\％			1.03			
20\％			$1.00 \frac{7}{2}$			
0\％		． $98 \frac{7}{2}$	．96竞	． 98		
－20\％			． 92 竟			
－40\％		． $84 \frac{7}{2}$	． 91	． $95 \frac{7}{2}$		

Biplane Correotion Paotors for I / D at Bqual I_{0} ．

TABLE 96

$$
\text { U.S.A. } 27 \text { Biplane }
$$

STAGGER $=0$

GAP／CHORD							
O_{1}	10×20^{5}	0.50	0.75	1.00	1.33	1.67	2.00
． 2	51	． 92	． $93 \frac{1}{2}$	． 95	． 95	． $96 \frac{1}{7}$	． $96 \frac{1}{2}$
－4	102	． 77	． 79	． 81	－84글	． 88	． 89 年
． 6	153	． 69	.73	． 77	． 82	． 83	． 87 立
－8	205	． 67	－721	－ 76	－807	． 82	． 85 年
1.0	256	． 65	． 70	． $74 \frac{1}{2}$	． 78 告	.80	． 83
1．2	307		． $66 \frac{1}{2}$	． 74	－772	． 79	． $82 \frac{1}{2}$
1.3	333				－76年	． $75 \frac{1}{2}$	． 82 总

TABLE 97
Gクt．387 BIplane
STAGGER $=0$

GAP／CHORD				
$\mathrm{C}_{\text {I }}$	$L_{0} \times 10^{5}$	0.75	1.00	1.33
． 2	51	． 898	． 92	． 92
． 4	102	－8318	． 83 坴	． $83 \frac{1}{2}$
． 6	153	－767	－79	． 79
． 8	205	－711	－75\％	．771
1.0	256	－ 71	－751	． $76 \frac{1}{2}$
1.2	307	．691	.75	． 76
1.4	358	． 69	． 76	.77

Biplane Correction Faotors for \mathbb{M}_{0} at Equal I_{0} ．

table 100
U．S．A． 27 Biplane 6／O $=1.00$

0_{1}	$L_{0} \times 10^{5}$	Stagzer			
		0%	20\％	40\％	60\％
．	51	2．027	． $91 \frac{1}{2}$	．831	． 78
－	102	1.00	． $95 \frac{5}{2}$	． 828	． 74
。	153	1.031	． 95	． 83	．697
－	205	1.03	． $94 \frac{7}{2}$	． 83	． 72
1.	256	1．031	． 94	． 83	． 72
1.	307	3.04	． 96	． 83	． $73 \frac{1}{2}$
Average		$1.02 \frac{1}{2}$	． $94 \frac{1}{8}$	． 83	.73

table 101
Got． 387 Biplane

		Stagger			
	$\times 10^{5}$	0\％	20\％	40\％	60\％
． 2	51	1.00	． 95	． 90	． 87
． 4	102	． 98	－947	．88老	．847
． 6	153	.97	． 91	－841	．752
． 8	205	．972	． 91	－84란	． $74 \frac{1}{2}$
1.0	256	． 97	． $92 \frac{1}{2}$	．847	． 76
1.2	307	． 98	． 93	． 88 妾	．797
1.4	358	． 95	． $92 \frac{1}{8}$	． 88	－797
Aver		．971	.93	． $85 \frac{1}{2}$	．797

Dorreotion Factors for negative stagger：For U．S．A．27，these practically coinoide with the values for zero stagger；for G＂t．387，they are practioally equal to 1.00 ．
tabie 101a
（1）Average for U．S．A． $27 \& G^{7 \prime} t .387$ ，combined．
（2）Corresponding vajues taken irom a smooth ourve（Plate 14）

Stagger	-40%	-20%	0%	20%	40%	60%
(1)	1.00	1200	1.00	.931	.84	.76
(2)	1.00	1.00	.98	.98 年	.84	.76

Biplane Correction Faotors for K_{0} at Fqual I_{O}.

TABLE 102

TABLE 103

Got. 387, Blplane$G / C \equiv 1.00$				
$\mathrm{C}_{\mathrm{L}} \mathrm{I}_{0} \times 20^{5}$			H0RD	
		. 75	1600	1.33
. 2	51	.96	1.00	. 98
-4	108	. $95 \frac{1}{2}$. 98	1.00
. 6	153	. 91	. 97	. 96
. 8	205	. 93	.971	. 95
1.0	256	. 95 意	. 97	. 97
1.2	307	. 94	. 98	. 98
1.4	358	-93竟	. 95	.96
Average		.94	. $97 \frac{1}{2}$. 97

TABLE 103a
(1) Averages for U.S.A. 27 \& G"ot. 387 combined.
(2) Corresponding Values taken from a smooth curve(Plate 14)

G / C	0.59	0.75	$\mathbf{2 . 0 0}$	$\mathbf{1 . 3 3}$	1.67	2.00
(1)	.84	.90	1.00	$.94 \frac{7}{2}$.98	1.07
(2)	.87	.93	$.97 \frac{1}{2}$	$.98 \frac{7}{2}$	$.99 \frac{7}{2}$	1.00

Biplane oorrections for C.P., expressed as fractions of ohord by which C.P. is displaced towards leading edge, applicable from 0.1 Icc max. to I_{0} max.

mABIR 108
$G / 0=1.00$
(1) Average of Got. 387 and U.S.A. 27.
(2) Ayerage:taken from ourve (Plate 14).

Stagger	Gote 387	UeSeAe 27	(1)	(2)
-40\%	. 00	m.013	-. $00 \frac{1}{2}$. 00
-20\%	. $01 \frac{1}{2}$	-.01	-.00	. 01
0\%	-02	-. $00 \frac{8}{4}$. $00 \frac{1}{2}$. 02
20\%	.037	.023	.03	.03委
40\%	. $06 \frac{1}{8}$. $06 \frac{1}{8}$. $06 \frac{1}{2}$. $06 \frac{1}{2}$
60\%	$.10^{\circ}$.10	. 10	. 10

TABLE 109

STAGGER = 0 .

(1) Average of Gott. 387 and U.S.A. 27.
(2) Average from curve (Plate 14).

G/0	G0t. 387	U.SeA. 27	(1)	(2)
0.50	\cdots	. $06 \frac{1}{2}$. $06 \frac{1}{8}$.067
0.75	. $03 \frac{1}{2}$.05䍃	.04\%	. 04
1.00	.02	-.00 ${ }^{\text {a }}$. $00 \frac{3}{4}$. 02
1.33	. 02	. $03 \frac{1}{2}$.02\%	. 01
1.67	-	.08	. 01	. $00 \frac{1}{8}$
2.00	-	-. $02 \frac{1}{2}$	-. $02 \frac{1}{2}$	$.00{ }^{\circ}$

Appendix D.

CURVES

Plate 5. $\quad L_{c}$, and D_{c} vi. a for 6 U.S.A. 27 biplanes, stagger $=0 ; G / C=0.50$ to 0.75

Plate 6. I_{c} and D_{C} Vs. α for 16 U.S.A. 27 biplanes, stagger $=40 \%$ to $60 \%, G / C=0.50$ to 1.00 .

Plate 7. I_{c} and D_{c} Vs. α for 8 U.S.A. 27 biplanes, stagger $=-40 \%$ to 60%, G/C $=1.67$ and 2.00.
 biplanes. $S t$ agger $=0, G / C{ }^{c} 0.50$ to 2.00 .

Plate 9. L/D $\mathrm{Fs} . \alpha, M_{C}$ and C.P. vs. L_{c}, for 6 U.S.A. 27 biplanes, $G / C=1.00$. Stagger $=-40 \%$ to 60%.

Plate 10. $L_{\text {a }}$ and $D_{0} \nabla s . \propto$ for 6 Got. 387 biplanes. $G / C=1.00$. stagger $=40 \%$ to 60%.

Plate 11. L/D vs. α, M_{c} and C.P. vs. I_{c}, for 6 Got. 387 biplanes. G/C $=1.00$. Stagger -40% to 60%.

Plate 12. ($\left.W_{c}, D_{c}, I / D\right)$ Vs. $\alpha,\left(M_{c}, C . P.\right) V s . I_{c}$, for 3 Got. 387 biplanes. Stagger $=0, G / C=0.75$ to 1.33 .

$+$

37

$$
\underset{y}{x}
$$

eoes

ANGLE OF ATTACK OF WING CHORD. (DEG.)

PLATE 11
607. 387

-20%
$\frac{1}{--}=$

orero
on=2
C.R cENTER OF PRESSURA COEF. (FPACTION DR CHCRD ABAFT LIE.)
α ANGLE OF ATTACX OF WING EHORD (DEEG)
MC MOMENT COLF (RBSFT/SQRTH/MRH/FTOG CHORO)

[^0]: * N.A.C.A. Report, 1919, p. 633.

[^1]: * Decrease here means a decrease in the absolute value of the pitching moment about the L.E.

[^2]: *Ref. 9, p. 25. For notation see our Appendix A.

[^3]: * Original data taken from ref. 2, Table 2.

[^4]: * Can only be computed from curves, and published ourves are seldom aoourate enough.

