

THE EFFECT OF BIPLANE COMBINATION

ON AIRFOIL CHARACTERISTICS

NOV 19 1927

by

James S. McDonnell, Jr. B.S., Princeton University, 1921

and

Constantine L. Zakhartchenko Graduate, Russian Naval Academy, 1920

Submitted in Partial Fulfillment of the Requirement For the Degree of

Master of Science in Aeronautical Engineering.

Signature Redacted Signature Redacted

US MARINE

Signature Redacted

Department of Aeronautical Engineering

September 1, 1923.

77 Massachusetts Avenue Cambridge, MA 02139 http://libraries.mit.edu/ask

DISCLAIMER NOTICE

Due to the condition of the original material, there are unavoidable flaws in this reproduction. We have made every effort possible to provide you with the best copy available.

Thank you.

The images contained in this document are of the best quality available.

Cambridge, Massachusetts

September 1, 1923.

Professor A. L. Merrill,

Secretary of the Faculty,

Massachusetts Institute of Technology.

Dear Sir:

In accordance with the requirement for the degree of Master of Science in Aeronautical Engineering, we submit herewith a thesis entitled "The Effect of Biplane Combinations on Airfoil Characteristics".

We wish to express our appreciation to Professor E. P. Warner for his cooperation in the development of this research.

Respectfully submitted,

Signature Redacted Signature Redacted

TABLE OF CONTENTS.

SECTION	I.	Object of Investigation	<u></u> 4.
SECT ION	II.	Review of the Subject.	••••
SECTION	III.	Description of Apparatus.	•••?•
SECTION	IV.	Method of Procedure.	.15
SECTION	₹.	Estimation of Errors.	22
SECTION	VI.	Analysis of Results.	.30
SECT ION	VII.	Review of Previous Experimental work.	80
SECTION	VIII.	General Summary and Conclusions.	86
SECT ION	IX.	References.	93

APPENDIX	A.	Notation, and Method of Calculations.	.94
APPENDIX	B.	Original Data.	.98
APPENDIX	C.	Tabulated Results.	/63
APPENDIX	D.	Curves.	209

Deme

TABLE OF CONTENTS

-Continued -

SUB	JECT	MATTER	

Pages

PHOTO	OGRAPHS		
•	Photo 1. Photo 2.	The biplane structure. Biplane mounted in wind tunnel.	10
FIGUE	RE 1.		96
PLATI	ES		
	Plates 1-2. Plates 3-4 Plate 4a. Plates 5-12 <u>Plates 13-14</u> Plate 15.	Balance crosshead. Curves of L_c , D_c , L/D , and M_c for U.S.A. 27 and Göt. 387 monoplanes. Curves of effective strut resistance. Curves of L_c , D_c , L/D , M_c , and C.P. for U.S.A. 27 and Göt. 387 biplanes <u>Curves of biplane correction factors</u> . α required to produce equal lifts at various staggers	<u>12-13</u> <u>17-18</u> <u>21</u> <u>209-217</u> <u>91-92</u> <u>61</u>
TABL	ES		
	Tables 1-33. Tables 34. Tables 35-76	Biplane correction factors at equal Loading on upper and lower wings L _c , D _c , L/D, M _c , and C.P. for U.S.A. 27 and Cot. 397 biplanes	<u>164 -17</u> 8 79
	Tables 35-76	L _c , D _c , L/D, M _c , and C.P. for U.S.A. 27 and Got. 387 biplanes (Appen. C.)	<u> 181 - 196</u>
		Comparison of Theoretical and Experi- mental Biplane Values For: -	
	Tables 77-89 Tables 81 Tables 82-85 Tables 86-88 Tables 98-99 Tables 104-10	Lift and Drag on upper wing Lift coefficient Angle of Attack Drag Coefficient Moment Coefficient 7 Center of Pressure Coefficient	<u>44-49</u> <u>55</u> <u>56-60</u> <u>64-66</u> <u>712</u> <u>75-78</u>
	,	Biplane Correction Factors (Appen. C.) For: -	
	Tables 89-92 Tables 93 Tables 94-95 Tables 95a Tables 96-97 Tables 100-10 Tables 108-10	D at equal L_c D minimum L/D maximum L/D at equal L_c D3 M at equal L_c D9 C.P. at equal L_c	200 202 203 204 205 206 208

З

Section I.

OBJECT OF INVESTIGATION

The object of this investigation is to make a complete test in the wind tunnel of a large number of biplane combinations having different proportions of stagger and gap/chord ratio, to derive a thoroughly accurate and systematic set of biplane correction factors from the results so obtained, and to verify the accuracy of the formulae from Munk's "General Biplane Theory" (ref. 9) by calculating corresponding results from them.

SECTION II.

REVIEW OF THE SUBJECT

The effects of biplane combinations on the aerodynamic characteristics of airfoils have been known in a general way for several years, but such knowledge as exists is based on scanty experimental data and on a theory which still lacks that exactitude of prediction necessary to win for it the authority of physical law. We shall review the theoretical and experimental sources of this knowledge in turn.

5

From the theoretical standpoint the effects of biplane combinations are bound up with the whole aerodynamical theory of airfoils. The only general theory dealing with the subject is the voxtex theory, which Lanchester in England first boldly applied as an explanation of the lift of wings, over twenty years ago, and by which he worked out a fairly complete descriptive account of the mechanism. Kutta in Germany and Joukowsky in Russia developed the mathematical details of the circulation for wings of infinite aspect ratio, i.e., of negligible end-effect. Then the whole school of German aerodynamicists, headed by Prandtl, took up the further theory of the effects caused by the trailing vortices, usually embodying their cogitations in exact mathematical language. In 1922, Munk, (ref. 1) also of the German school, made a quist complete application of the theory to biplanes, the previous work having been more or less restricted to monoplanes. The result is we now have a truly physical theory of the aerodynamics of airfoils. expressed in exact mathematical form, and capable of making some quite good predictions.

But although this theory is invaluable for the way in which it illuminates part of the mechanism behind the phenomena, it is still embryonic; it retains too many simplifying assumptions in its foundation, and must yet be worked out in greater detail before it will be adequate for obtaining exact numerical information. For instance, good agreement between theoretical and experimental values is restricted to about 8° of the ordinary flying range. The theory cannot predict maximum lift, or the flying range; and although the mechanism of the induced drag has been carefully worked out, that of the remaining part of the drag has not been elucidated with the same definiteness. In short, few calculations from the theory are now capable of being used as a routine method in the design room and drawing office.

On the other hand when we examine the empirical knowledge by which the airplane designer might predict the aerodynamical coefficients of biplanes, our satisfaction is not much greater. The only published data of this kind which we have been able to espy are incorporated in references 1 to 7, all of which only comprise wind tunnel tests on twelve biplane combinations of zero stagger and different gap chord ratios, and on six biplane combinations having miscellaneous stagger and gap chord ratios. These tests were performed by six different experimenters working in four different wind tunnels, each operating at a different wind speed. and the biplane models embodied five different types of airfoil ranging in size from 18" x 2".65 to 33".6 x 6". A comparison between the various results would be interesting, but a direct comparison is rendered impossible by the fact that with two exceptions no biplane combination with the same stagger and gap chord ratio was tested by different experimenters. In Section VII we shall make a detailed comparison between our own results and these previous results. So suffice it here to say that the gist of the previous work was a fairly good determination of the effect of gap

chord ratio variation on lift, drag, and lift drag ratio, at zero stagger. Part of this data was summarized in "biplane correction factors" by which the aerodynamic coefficients of the airfoil as a monoplane must be multiplied in order to obtain the corresponding biplane coefficients. Practically no biplane correction factors were available to show how variation of the gap chord ratio at zero stagger would effect the moment and center of pressure coefficients, or the distribution of load between the two wings; and no correction factors were available to disclose how variation of stagger at various gap chord ratios would effect the lift drag ratio or the lift, drag, moment, and center of pressure coefficients.

Having thus briefly reviewed our subject it seems that at the present time the airplane designer can neither obtain from previously published experimental data or from theory, knowledge of the aerodynamic coefficients of biplanes commensurate in accuracy with that available for monoplanes. We therefore propose to make a complete test in the wind tunnel of a large number of biplane combinations, from gap chord ratio equal 0.50 to 2.00, and from stagger equal -40% to +60%. For each biplane combination we shall determine lift coefficients, drag coefficients, lift drag ratios, moment coefficients, and center of pressure coefficients, for angles of attack from -6° to $\pm 20^{\circ}$. We shall then use this data (1) to verify the accuracy of various biplane formulae taken from Munks "General Biplane Theory" (ref. 1), which represents the application of the vortex theory to biplanes: and (2) to calculate biplane correction factors at equal values of the lift coefficient for drag coefficient, lift drag ratio, moment coefficient, and center of pressure coefficient, and also biplane correction factors for the maximum lift coefficient, minimum drag coefficient, maximum lift drag ratio, and for the distribution of total lift and drag between the two wings.

It is desirable to calculate the correction factors by comparing biplane with monoplane results at the same lift coefficient instead of at the same angle of attack, because from the standpoint of the designer the weight of the airplane is the primary quantity known, and from the standpoint of the vortex theory the lift coefficient instead of the angle of attack is taken as the independent variable because all formulae are thereby simplified, and it is easier to calculate the angle if the lift coefficient is given, than the lift coefficient if the angle is given. In order to make these comparisons at equal lift coefficient it will be necessary first to plot all of our data, because in wind tunnel tests the angle of attack is the primary quantity and the lift is measured afterwards.

After having tested the veracity of the theoretical biplane formulae, and calculated correction factors from our data, we hope to be able in the statement of our conclusions

(1) to indicate which formulae represents the facts with sufficient accuracy to be immediately used as a routine method in the design room, and

(2) to present one or two small charts which shall summarize all the correction factors for biplane combinations from gap chord ratio equal 0.50 to 2.00 and stagger equal -40% to $\frac{1}{60\%}$.

Section III.

DESORIPTION OF APPARATUS

All of the tests were conducted in the M.I.T. 4'0 wind tunnel, with the N.P.L. type balance, at a wind velocity of 40.0 m.p.h. The standard apparatus of the wind tunnel was used for testing each airfoil as a monoplane, and for mounting the two biplane combinations in which each wing was tested separately in the presence of the interference of the other.

Each of the remaining combinations was tested as a biplane unit, and for this purpose we developed the type of mounting illustrated by Photos 1 and 2, and Plates 1 and 2. The complete biplane structure, consisting of balance crosshead, 2 spindles, 2 airfoils, and one strut, is shown in Photo 1. The balance crosshead and spindles are shown in complete detail by Plates 1 and 2. So suffice it to say that the crosshead was designed to screw into the balance head in place of the regular chuck for mounting monoplanes, and was equipped with all the gadgets necessary to align it transverse to the wind tunnel axis, to hold the two spindles firmly in alignment, and to quickly and accurately adjust the distance between their axes and the balance axis. In the Nethod of Procedure, p. <u>19</u>, the method of mounting is described. All parts of the crosshead were constructed of brass, with the exception of the check (7), the two slider rods (5), and the spindles (2), which were of mild steel.

The airfoil models were of aluminum, 18" x 3", accurate to 0".0015. For the purpose of holding the two airfoils rigidly spaced at their upper end, three different lengths of strut were employed.

PHOTO 1.

THE BIPLANE STRUCTURE

Composed of balance crosshead, spindles, airfoils, and strut.

PHOTO 2.

BIPLANE MOUNTED IN WIND TUNNEL

Balance crosshead protected from wind by discoid case.

which we shall refer to as the long, medium, and short struts. Each strut was constructed of brass, was prong-shaped throughout half of its length, and was filed into a stream-line form, as far as possible. When a given strut had been attached to the biplane by means of two round-headed screws, the prong part of the strut was filled in with putty in order to decrease the resistance. This was also done of course when the effective resistance of the strut was measured separately.

It was found that the resistance of the balance crosshead was of the same order as that of the biplane model itself, so it was found desirable, in order to obtain more accurate values for the biplane drag, to protect the crosshead from the wind stream by means of some kind of a case. For this purpose we utilized a Cello hot watter bottle, which provided us with a hollow metal case, of discoid shape, 10".5 in diameter by 2".0 maximum thickness, which we shall hereafter refer to as the "discoid case." From the top of the discoid case a circular cover 8".0 in diameter was cut, and with the exception of 14" at its center it was slotted across one of its diameters. The bottom of the discoid case was attached to the top of the fairwater through which the balance head projected, and the cover was attached to the central black (8) of the balance crosshead. The bottom thus remained stationary while the cover rotated with the crosshead, and the slots in the cover permitted the distance between the spindles to be varied. The method of utilization is evident from Photo 2, which shows a biplane combination mounted in the wind tunnel, with the balance crosshead protected from the wind by the discoid case.

Section IV.

METHOD OF PROCEDURE

Each of the two U.S.A. 27 airfoils was tested twice as a monoplane, and the average (p. 103) taken as the standard to which to apply biplane correction factors.

The upper and lower wing of two biplane combinations were then tested separately, in the presence of the interference of the other, at G/C = 1.00 and 1.67, and stagger = 0 (pp/ $\frac{1}{2}$). It was originally intended to test all the biplane combinations in this way, but the vibration of the two airfoils, due to the repulsion existing between them working against the elasticity of the material, was appreciable at G/C = 1.67, and at G/C = 1.00 it was entirely too large for accurate work when this lift was larger than 1.2#. It would have been possible to have rigidly fixed one of the two airfoils by means of an additional spindle supporting its upper end, but that would have increased the amplitude of vibration of the airfoil which was being tested, and the only way to decrease the latter would have been to decrease the wind speed.

It was not desirable to conduct the test at a wind speed below 40 m.p.h., since that is the standard speed at which most of the tests on airfoils have been conducted at M.I.T., and a direct comparision of results would thus be possible. So for the remainder of the tests we mounted the biplane model in the wind tunnel as a rigid unit, as described in Section III.

We then conducted a series of tests to determine whether the balance crosshead should be protected from the wind, and what spindle length was most desirable. We first tested a single U.S.A. 27 airfoil mounted on the balance crosshead exposed (p. 110). This showed that the resistance of the balance crosshead exposed was equal to about $3\frac{1}{2}$ times the minimum drag of the airfoil, and thus necessitated the use of a protecting case, for which purpose we utilized the discoid case previously described. We then tested each of the two U.S.A. 27 airfoils twice as a monoplane, mounted on the balame crossheed protected by the discoid case, and with standard spindle length, i.e., projecting 5".00 above the balance head (pp///-//2). Owing to the presence of the discoid case within 3."O of the end of the airfoil, the lift and drag were both increased by about 4%. In am attempt to eliminate this interference we increased the spindle length to 8".00, i.e., 3".00 longer than the standard length, and conducted the same number of tests as before (pp.114-115), but the average results (p. 116) were not so good as the previous average (p. 113), most likely due to the larger deflection error arising from the bending of the spindle. For the biplone tests we therefore decided to protect the crosshead by means of the discoid case, and to use the 5".00 spindle length. As an aid to comparison we have platted the results of the above mentioned preliminary tests in Plate 3. -See back of provious page.

The average value of the four tests on the U.S.A. 27 monoplane with crosshead mounting protected from the wind by discoid case, (p.<u>113</u>, and curve 3 on Plate 3) is taken as the standard to which to compare U.S.A. 27 biplane results and thereby obtain biplane correction factors. This procedure involves the assumption that the interference effects of the discoid case on the biplane are in the same proportion as for the monoplane. We later tested each of the two Göttingen 387 airfoils in the same way (ppu<u>17-50</u>), and took the average results (p.<u>151</u> and curve

2 on Plate 4) as a basis to which to compare the Göttingen 387 biplane results.

We then proceeded to test twenty-nine U.S.A. 27 and twelve Göttingen 387 biplane combinations. In each test we measured L, D, and M, the moment about the balance axis prolonged, and then calculated L/D, M. 1.4., and C.P. The procedure in each case was as follows:

The set up. The cover of the discoid case was removed and the balance crosshead aligned transverse to the axis of the wind tunnel. Collars (1) were attached to the spindles (2) by screws (3), so that the distance from the top of the collar to the top of the spindle was 3-11/32". This made the distance from the balance head to the airfoil 5".00. The distance between the spindle axes was then adjusted by moving the slides (4) along the slider rods (5), and locking them in position by means of the slider clamp screws (6). The specing was always previously calculated so that the chord of each airfoil would be equidistant from the balame axis: and the distance was laid off accurate to o".OI by laying a small steel rule flat on the upper surface of a slide (4), at the same time placing its end squarely against the side surface of the central block (8), and measuring from the latter to the index line (9) on the surface of the slide. The balance head was then rotated through the number of degrees of stagger which the given biplane combination was to have, and locked. The airfoils were screwed on to the spindles and aligned parallel to the tunnel axis by sighting along a batten. The spindles were then locked by the screws (10), the airfoils rigidly and accurately spaced at their upper ends by means of a strut, the discoid cover replaced, and the test was ready to begin.

<u>The test.</u> L_0 , L_1 , D_0 , D_1 , M_0 , and M_1 were measured in the usual manner. The center of rotation at the upper end of the model was then located, and its coordinates, p and d (fig. <u>1</u>, p. <u>76</u>), measured. Frou p and d we then calculated a and h (fig. <u>1</u>), the coordinates of the mean center of rotation. After correcting the drag for effective spindle resistance, D_s , and effective strut resistance, D_s , we calculated L, D, L/D, M_{10} , and C.P. The values of the effective strut resistance hed been previously measured so that in a given triplane test it was only necessary to take them from the curves on Plate4ā. This strut resistance was of course different for each angle of incidence of the biplane, whereas for a given pair of spindles the resistance was practically constant. Lift and moment corrections due to strut and spindles being not equidistant from the balance axis were negligible.

All of the original data for the 41 biplane tests and for the sixteen or seventeen other tests are given in Appendix B.

Section V.

ESTIMATION OF ERRORS

It is unnecessary to mention here the errors inherent in a wind tunnel equipped with an N.P.L. type balame. We shall discuss only those errors arising when our procedure departed from routine procedure.

(1) <u>Mis-Alignment of biplane model</u>. In setting up the biplane model the distance between the spindle ages and the balance axis could be set to the nearest 0".01, thus making the maximum error in gap equal to ± 0".01 at zero stagger. Likewise at the other end of the model the strut distance could be set within 6".01. The maximum error in GL ratio would then be ± 0.003 at zero stagger, and the maximum error in stagger would be $6".01 \sin 50^{\circ}.2 = 0".01$, i.e., $\pm 0.3\%$, at G/C = .50 and 60% stagger. In setting the number of degrees of stagger the balance head could be set to the nearest 0°.1, thus giving an error in stagger of $\pm 0^{\circ}.05$, or $\pm 0.1\%$, and a G/C error equal 0.0000. The sum of these factors gives a maximum error of ± 0.003 in G/C, and of $\pm 0.4\%$ in stagger. Since the sum of the errors both in stagger and G/C can only produce an error of about $\pm 0.2\%$ in Lo max., and 14/2 max., as shown by our final results, they are entirely negligible, and would have to be neglected even if they were not so, because they are so far within the wind tunnel error. NO further mis-alignment of the biplane model took place due to the forces acting upon it during the course of the wind tunnel test because the balance crosshead, the airfoils, and the stiff strut at the top formed a very rigid structure.

(II) Mis-Alignment between the model axis and the balance

axis, occurred to a greater or less degree when the airfoil was screwed into the spindle, but a larger misalignment occurred in the case of those models which were mounted on the balance crosshead due to the fact that the spindles supported there on were not exactly parallel to the balance axis. These two factors, combined, served to give a small amount of roll and yaw to the model, which amounts can be estimated from the coördinates of the center of rotation measured at each end of the model. "A" and "N", the average values of these coördinates measured at each end (Notation p. $\frac{\pi}{2}$), have been set down at the head of the tabulated records for each test, and are summarized in the following table.

		(1)	(2)	(3)
%	Aver.	•15	•86	•07
n	Max.	.19	•92	.21
	Aver.	•98	•79	.90
୍ୟ 	Max.	• 93	•74	.81

All values are positive, and are given in inches. Column (1) gives the average and maximum values of "a" and "h" for the eight monoplanes tested in the routine way, with spindle mounted directly in the balance head; (2) gives the corresponding values for the four monoplane tests conducted with the airfoil mounted on the balance crosshead protected from the wind by the discoid case, with spindle axis 0".75 from balance axis; (3) corresponding values for the 41 biplane tests.

From these values of "a" and "h" we have calculated the values in inches of roll and yew at the upper end of the model.

		(1)	(2)	(3)
Poll	Aver.	.17	•08	.14
VOLT	Max.	•25	•15	•42
Vom	Aver.	•04	•42	.21
TOW	Max.	•14	•51	•38

In calculating the degrees of roll and yaw we divided the values in column (1) by 18.00 (= span of airfoil in inches) and multiplied by 57.3, whereas in the case of (2) and (3) we divided by 22.00 (= span of airfoil in inches, plus spindle distance from bottom of airfoil to axis of balance crosshead) and multiplied by 57.3. This method was followed because in the case of (1), a single airfoil mounted in the routine manner, the spindle was but a prolongation of the balance axis, and the mis-alignment was between the spingle axis and the airfoil axis; whereas in the case of (2) and (3) the mis-alignment between model axis and balance axis was due almost entirely to the fact that the spindle axes themselves were not parallel to the balance axis, the model axis being practically parallel to the spindle axes. The value of roll and yaw calculated in this way were:

		(1)	(2)	(3)
D-77	Aver.	0.5	002	0•4
KOLL.	Max .	0.8	0•4	101
37.000	Aver.	001	1.1	0.05
Iaw	Max	0.04	103	100

All angles of roll and yaw were positive, according to N.A.C.A. notation.

The effect of the mis-alignment in roll would be negligible. The wind direction would still be parallel to the wing chord, and the forces measured on the balance would be (the actual forces) X cos (angle of roll).

The cosine of the largest angle of roll recorded, 1°_{\cdot} l, is 0.9998, so the negligible error of only 1/50% would be involved. Even for 4°_{\cdot} O of roll the error would be only $\frac{1}{2}$.

The effect of yaw is more potent, because it puts the airfoil chord at an angle to the wind direction. The following % errors are taken from data on a Clark tractor biplane model tested at M.I.T.*

% Errors for angle Angle of attack	of Yaw = 0 ⁰	+2°0 6°	120
Lift	-1.5	-0.7	-0.7
Drag	+2.6	+1.2	0
C.P	Less that	1 ½% of	chord.

These values were calculated for a complete model at + 2° yaw, but for tests on airfoils only, the importance of accurate alignment is greatly lessened, because the forces which cause most of the difficulty arise principally from the fuselage and tail surfaces. If we assume that 25% of the error arises from the airfoils alone, and remember that the maximum yaw arising in any one of our tests was +1.3, it would seem by comparison that in our case the maximum error due to yaw was less than $+\frac{1}{2}$ % for drag, less than $-\frac{1}{2}$ % for lift, and entirely negligible as regards moment. Detailed calculations for our specific case appear unnecessary.

* N.A.C.A. Report, 1919, p. 633.

(III) <u>Spindle and Strut Resistance</u>. In the case of the 41 biplane tests the effective spindle resistance, D_s , could not be determined to any greater degree of accuracy than \pm 0.0009#, due largely to the fact that slightly different lengths of the spindle, as much as $\pm 1/20$ ", were inevitably exposed each time the discoid case cover was removed and replaced. Likewise we believe that the error involved in determining the effective strut resistance, D_s , was about \pm 0.0003#. This makes the sum of the deviations for effective strut and spindle resistance equal to \pm 0.0012#, and involves the following errors in our biplane computation.

· · · · · · · · · · · · · · · · · · ·		D _{Min.}	L/D Max.	Dat L _{Max} .
U.S.A. 27	Min.	±1. 5	±1.0	±0.3
Biplane	Max.	±1.7	±1.1	±0.2
Gottinger	Min.	±1.3	±0•8	±0.2
387 Biplane	Max.	±1.4	±0.8	±0.2

% Errors due to strut and spindles.

All of these values really represent maximum % errors, the row designated min." being calculated for G/C = 0.50, stagger = -40%, which involved the largest values of drag, while the row designated "max." was calculated for G/C = 2.00, stagger = 60%, involving the smallest values of drag. The maximum possible errors in measuring drag were thus about $\pm 1.7\%$ at $D_{\min,}, \pm 1.1\%$ at L/D max., $\pm 0.6\%$ throughout the flying range (4°-10°), and negligible when the lift was near its maximum. The average errors were of course about one half of these values, say 1, $\frac{1}{2}$, and $\frac{1}{2}$, respectively. The fact that the spindle axes were not quite equidistant from the balame axis, but were so spaced as to make the wing chords equidistant, as well as the fact that the strut usually protruded over one end of the model (Photo 1), produced no appreciable error in measuring moments. This was determined both by computation and by actual measurement.

(IV) <u>Deflection and N.P.L. balance errors</u>. Deflection of the biplane model would if anything be less than that of a single airfoil mounted in the usual manner, because in the case of the biplane any deflection in roll must cause distortion or slipping of the strut attached at the top. <u>Likewise spindle deflection at the top</u>. Likewise spindle deflection would be less because the spindles had a <u>free</u> length about 1.0 shorter than the usual <u>free</u> length. At the same time all the errors involved in the N.P.L. type balance, whether of deflection or otherwise, remain entirely negligible, even though the forces were doubled as compared to the forces on a single airfoil.

SUMARY

We believe we have found and estimated approximately corrected most of the errors characteristic of the method we employed in conducting our tests. These errors are summarized in the following table, in which the Roman numerals refer to the sources of the error.

MAXIMUM 0/0 ERRORS.								
L	~c '		De	1	Ľ/.	D		
0°-12°	Max.	Min.	At L/D max	Flying Range 4°-18°	Max.	Flying Range 4-10		
····	±0.2				±0.2			
-0.3		+0.5	*+0.5	+0.5	-0.8	-0.9		
		±1.7	±1.1	±0.6	± 1-1.	±0.6		
-0.3	±0.2	+2.2	+1.6	+1.1	- 2.1	-1.4		
	L 0°-12° -0.3 -	MA> L_C 0°-12° Max. ±0.2 -0.3 -0.3 ±0.2	MAXIMUM Lc 0°-12° Max. Min. ±0.2 -0.3 ±0.2 -0.3 ±0.2 +2.2	$\begin{array}{c c} MAXIMUM & f_0 \ ERF \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MAXIMUM 90 ERRORS. Lc Dc L/. $0^{\circ}-12^{\circ}$ Max. Min. At L/D max Flging Rome A^{\circ}-10^{\circ} ± 0.2 ± 0.2 ± 0.2 ± 0.2 ± 0.2 -0.3 ± 0.5 ± 0.5 ± 0.5 ± 0.5 -0.3 ± 0.2 ± 1.7 ± 1.1 ± 0.6 ± 1.1 -0.3 ± 0.2 ± 1.2 ± 1.6 ± 1.1 -2.1		

We have previously stated that the errors arising in the determination of M_c and C.P. were negligible, and wehere see that the L_c errors are also negligible, but the errors for D_c min., and L/D max. could be over 2%, while throughout the flying range the errors for D_c and L/D could be as much as 1% and 1⁴/₂% respectively. These are the maximum errors. The average errors would be about half as much. But even at their maximum these errors are no larger than the wind tunnel experimental error, which is considered to be about 2%. Taking the latter into account the maximum errors could be about 4% for D_c min. and L/D max, and about 3% for D_c and L/D throughout the flying range.

However, our final biplane correction factors (Plates 13, 14) have a greater reliability than this. They were obtained by comparing the data from 41 biplane tests and plotting smooth curves. We consider them to be accurate within $\pm 1\%$.

28.

But although these final generalized results have this degree of accuracy, the specific results from a given biplane test may not have. In conducting as many as 41 biplane tests it was inevitable that to one or two of them there should befall all of the maximum errors estimated above. Such was the lot of the U.S.A. 27 biplanes, G/C = 1.67, stagger = 0, and of the upper wing tested separately for the U.S.A. 27 biplane, G/C = 1.00, stagger = 0.

Such individual discrepancies as these have not vitiated the final results. By a comparison of the results as a whole they have been detected and eliminated.

Section VI.

ANALYSIS OF RESULTS

				Page
I.	Bip:	lane Correct	ion Factors at Equal \propto .	.32.
	1.	Lift coeffi	cient.	.33
	2.	Drag coeffi	cient.	.37
	3.	Lift Drag r	atio.	.37
	4.	Moment coef	ficient.	37
II.	Load	ling on Uppe	r and Lower Wings.	
	1.	Center of p	essure.	39
	2.	Moment coef	ficient.	39
	3.	Lift coef.	Distribution of lift between upper and lower wings	40
	4.	Drag coof.	Distribution of drag between upper and lower wings.	49
111.	<u>A</u> e: a T	rodynamical Jnit。(Comp (expe (of b (Equa	Coefficients of the Biplane as arison of theoretical with rimental values, and calculation iplane correction factors at $1 L_{c}$.	• 57.
	1.	Lift coeff	icients.	.52
	2.	Drag coeff	icients.	64
	3.	Lift/drag	ratios.	68
	4.	Moment coe	fficients.	69
	5₊	Center of	pressure coefficients.	.73

Section VI.

ANALYSIS OF RESULTS

The U.S.A. 27 airfoil was thoroughly tested as a monoplane, and in **31** biplane combinations; while the Göttingen 387 airfoil was 'tested as a monoplane, and in 12 biplane combinations. All of the biplane combinations tested are listed in the following table:

			G/(, (:	
Stagger	0.50	0.75	1.00	1.33	1.67	2.00
-40%	u	ug	ug	ug	u	บ
-20%	£	u	ug	u	-33%	
0%	u	ug	uug	ug	uu	u
20%		u	ug	u	-33%	
40%		u	ug	u		
60%	u	ug	ug	ug	u	u

g= Göttingen 387; u= U.S.A. 27; uu = U.S.A. 27 tested both as a biplane unit, and in addition each wing tested separately in the presence of the other.

The original data for these tests are tabulated in the order in which originally made, in Appendix B.

It must be remembered that this original data represents the forces acting on the biplanes in the presence of the interference of the discoid case. As mentioned in Section IV, p. <u>16</u>, it was thought that the easiest way to correct for this interference would be to compare the biplane results with the results obtained from a monoplane tested in the same way $(p \cdot \frac{H^3}{2L})$. We made these comparisons at equal angles of attack, because to have done so at equal L_c would have necessitated plotting all the original data. Instead, we obtained biplane correction factors at equal \propto , for L_c , D_c , L/D, and M_c ,

(Tables 1-33). We then multiplied the aerodynamical coefficients for the U.S.A. 27 and Göttingen 387 monoplanes tested in the routine way (pp. <u>103,146</u>) by these biplane correction factors, and so obtained the true biplane values for the L_c , D_c , L/D, and M_c (Tables 34 - 55, 62 - 73); while the true biplane values for C.P. (Tables 56 - 61, 73 - 76) were more easily obtained by adding certain corrections to the original biplane data. Having thus arrived at true values of the biplane coefficients, we plotted them (Plates <u>5-12</u>), and by reading values from the curves were able to check the accuracy of Munk's formulae (pp.<u>32-77</u>) and to calculate biplane correction factors at equal values of the L_c (Tables $\Re 7-107$).

Having thus outlined the use to which our original data was put, we shall now analyze in detail the results obtained.

I. Biplane Correction Factors at Equal a

These factors (Tables 1 - 33) were obtained more or less as a byproduct in the process by which we arrived at the true biplane values for the L_c , D_c , L/D, and M_c . They are not of as much significance as the correction factors obtained by making comparisons between the biplane and monoplane results at equal values of the L_c , because lift is really the primary datum in considering an airfoil, and the angle of attack at which the lift occurs is only a secondary consideration. Nevertheless, an analysis of these factors will doubtless repay the effort involved, for they show —

(1) The values of all biplane coefficients in terms of the corresponding monoplane results at equal \propto ,

(2) how the biplane coefficients at equal ∞ vary with stagger and G/C, and

(3) how far a given biplane combination the effects of a given stagger

and G/C vary with \propto .

We shall analyze in turn the correction factors at equal for L_c , D_c , L/D, and M_c .

1. <u>Lift Coefficient</u>. - For a given biplane combination the correction factors are practically constant from $\alpha = 0^{\circ}$ to $\alpha = 12^{\circ}$ or 14°. Thus for the U.S.A. 27 biplane, G/C = 1.00, stagger = 0, the values are —

œ	0	2	4	6	8	10	12	14		
Correction	1	7		7	7		o o 7			
Factor	. 85ġ		•87	86 2	- 85麦	•86 2	•86 <u>5</u>	.872	<u> </u>	
The average	ge value	is .8	5 2 ±	.01, w	hile t	he corr	espondj	ing aver	rage	for
the Göt. 3	87 is .	85 <u>1</u> ±	01,	thus m	aking t	the ave	rage fo	or the	two,	0.86.
The consta	ncy of	the co	rrect	ion fa	ctors f	rom 0 °	to 12	- 14 ⁰	for	8
given bipl	ane com	binati	on, a	nd the	good a	ng re eme	nt b et v	veen th	0 U.	S.A.
27 and Go	. 387 r	esults	, are	shown	to be	tter ad	vantage	by pl	otti	ng
the facto:	rs for e	ech co	mbina	tion,	but we	c onsid	er it ı	mneces	sary	to
include th	ne chart	do oz:	taine	d here	. In	the way	illust	trated	abov	e we
have found	l the av	erage :	facto	rs for	all tl	ne bipl	ane cor	nbinati	ons	tested
and tabula	ate them	n below	•							

			Tab	le 75		0
Bip	lane Cor	rection	Factors	for L, o	$L = 0^{\circ} tc$	13.
	U.S.A. Z	7, and "	Gan/Chor	AITIOILS	•	
Stagger	0.50	0.75	1.00	1.33	1.67	2.00
60%	•89	•92 1	•93 <u>1</u>	.89	.95	•96
		*•91=	*.95	*.90 ¹ 2		
40%		•90	.90	•90		
20%		•84 ¹ /2	*•90 •88≟	•94		
			* 85 2	• • ¹		
0%	•76 	.82	-86 5	•89 <u>8</u>	•86 2	•94
		*.82	* •85 ≩	-89 <u>2</u>		
-20%		.78	•86 ≩	•89		
			* 862			0.7.1
-40%	•69 ≩	.77	•82 2	.87	•88 <u>-</u> 2	•91 ģ
		* 78 -	"•84늘	*.85		

The data of Table 75 are plotted in our final Chart, Plate $\frac{/3}{}$, and given a series of smooth curves which we believe are accurate within $\pm 1\%$, and from which we take the following values as a comparison to Table 75.

Table	76
-------	----

Biplan Applia	ne Correc sable to	tion Fact Airfoils	or For L _c , having a M	0° - 13° Max. Camber	r = 10 to 1	6%.			
•	Gap/Chord								
Stagger	0.50	0.75	1.00	1.33	1.67	2.00			
60% 40%	.89	.92 .89	•94 •91 ≩	•95 •93	•95 <u>1</u>	•96			
20% 0% -20%	.762	•94 <u>2</u> •82	-88 5 -86 5 -844	•91 •89 <u>1</u> •88	•91 <u>5</u>	•94			
-40%	•6 9 1	.77글	.83	•86	.89	•91]			

We shall now consider whether the factors in Table 76 are applicable to any airfoil. From the standpoint of the vortex theory the lift of an airfoil may be divided into two parts, lift due to curvature, and lift due to angle of attack.

For a monoplane,

Lift coefficient due to curvature = $2\pi \sin\beta_0$ (1) """" angle of attack= $2\pi \sin\beta$(2)

While for a biplane,

Lift coefficient due to curvature = 2 m sin 3. Bo.....(3) """" angle of attack = 2 m sin 3. B**....(4) of comparisons are then made at equal angles of attack (equal 3) for monoplane and biplane, the biplane correction factor for the lift coef. due to curvature is

$$\frac{2\pi \sin \beta_{\circ} B_{\circ}}{2\pi \sin \beta_{\circ}} = B_{\circ}$$

and for the lift coef. due to angle of attack is

$$\frac{2\pi \sin \beta B}{2\pi \sin \beta} = B$$

* CL. Munk's nomemcla. See our App.A.
B and B_0 are theoretically determined constants (ref. 9) which depend only on the biplane combination, i.e., on the amount of stagger and G/O, so that these biplane correction factors for the two individual components of the lift coefficient are independent both of airfoil profile and angle of attack. But the lift due to angle of attack increases as the angle increases, while the lift due to curvature remains constant for a given airfoil. Therefore the biplane correction factor for total L_c will be at least slightly different for every airfoil and every angle of attack. Precisely it will be equal to —

 $\frac{\sin \beta_0 \cdot B_0 + \sin \beta \cdot B}{\sin \beta_0} = B + (B_0 - B) \cdot \left\{ \frac{\sin \beta_0}{\sin \beta} - \frac{\sin^2 \beta_0}{\sin^2 \beta} + \cdots \right\} \dots (5)$ The value of this is $(B_0 - 1)$ when $\beta - \beta_0$, and gradually approaches B as the angle of attack is increased. Thus far the U.S.A. 27 airfoil, G/C = 1.00, stagger = 0: B = .854, $B_0 = .925$, and the theoretical and experimental values of the biplane correction factors are -

ϡ	0	2	4	6	<u>8</u>	10	12	14
Theor.	.91 <u>1</u>	•89 <u>분</u>	•88 1	.87 <u>1</u>	.87 <u>1</u>	.87	.87	•86 ¹ 2
Exper.	•85 ¹ 2	•86 ¹ / ₂	.87	•86 ¹ 2	•85 ¹ /₂	.86 <u>1</u>	•86 ¹	•87 1
The agr	eament h	nere is	good from	n 6 ⁰ -]	4 ⁰ , bu	t the p	redictio	ons of the
vortex	theory a	re usua	lly restr	ricted t	to this	range a:	nyway.	It might
be inqu	ired as	to why	the bipla	ane lift	could :	not be d	letermir	ed directl;
by us in	g formul	ae (3)	and (4),	but the	at canno	t be do	ne, as s	shown by
a detai	led comp	utation	, p. <u>55</u> ,	because	these :	formula	e repres	sent a
solutio	n of the	e two -	limension	nal prob	lem onl;	y. Jut	we c an	compare
resul ts	o bta in e	ed from	(3) and ((4) with	h those	obtaine	l from ((1) and (2)
and thu	s get bi	iplane c	orrection	1 factor	rs, base	d on th	e assum	tion
that th	e effect	; of the	lateral	dimens	ions (the	3rd di	mension	is propor

tionately the same for both monoplane and biplane.

From formula (5) we see that for a given biplane combination the value of the biplane correction factor depends on β , and β . β represents the curvature effect, while $\beta = 0$ represents the angle of attack at which the moment about the center of the wing is zero. Since both of these factors are a function of camber, we should expect airfoils of approximately equal canber to have approximately equal biplane correction factors. Our experimental results show this to be true for the U.S.A. 27 with maximum camber equal 10.98%, compared to the Got. 387 with maximum camber equal 15.14%. And a comparison of the correction factors for these two airfoils with the limited data previously published for the thin Eiffel 13 bis. R.A.F. 6c. F.A.F. 15%. and Eiffel 36 airfoils, shows that the latter are always about 5% lower than the former.* From formula (5) we also see that as the angle of attack (13) is changed the biplane correction factor must change, but our experimental results show that the deviation from the average taken between $0^{\circ} - 12^{\circ}$ is only about $\pm 1\%$ for the U.S.A. 27 and Got. 387 airfoils.

Summing up, we can therefore say of the factors given in Table 76, that they are not of any especial significance, but afford a convenient means of comparing the lift of different biplene combinations throughout the flying range $(0^{\circ} - 13^{\circ})$, and are accurate within $\pm 1\%$ for airfoils having a maximum camber of from 10 to 16%.

* For a detailed comparison see Section VII.

2. <u>Drag Coefficient</u> - The biplane correction factors at equal \checkmark for D_c (Tables 11 - 19) are invariably larger than 1.00 for minimum drag, and show a steady decrease from that point onwards as \propto increases. However, they remain fairly constant from 6° to 16°, throughout which range an average value **gan** be taken from which the deviations will not usually be greater than $\pm 2\%$. The Göt. 387 results as a whole agree with the U.S.A. 27 results within about 3% from $\propto =$ 0° to 14°. The range of variation of the factors from 6° - 16°, as well as the læck of a closer agreement. between the results for the two airfoils, does not justify a tabulation similar to that made for L_c factors in Table 75. The effect of stagger is much more pronounced than that of G/C, whereas the biplane correction factors for D_c at equal L_c, as we shall see on p.<u>66</u>, are affected in exactly the opposite way.

3. <u>Lift - drag Ratio.</u> The correction factors at equal \propto (Tables 20-24) vary definitely for a given biplane combination as \propto is increased. They increase very little with stagger between $\propto = 0^{\circ}$ and 16°, the variation being within $\pm 2\%$ from the average, but they increase rapidly as G/C is increased. The results for the U.S.A. 27 and Göt. 387 airfoils agree within about 2% from $\propto = 0^{\circ}$ to 14°.

4. <u>Moment Coefficient</u> - The correction factors for M_c (Tables 25-27) for a given biplane combination are fairly constant from about 4[°] to 14[°], sometimes over a larger range, and sometimes not at all. We would expect constant factors from about 0[°] to 14[°], because within that range $L_c \propto \infty$, and the curves of M_c vs. L_c are practically straight lines radiating from a focus. As stagger is increased from -40% to 0% there is a slight decrease* in M_c , '69 from 1 to 5%; whereas * Decrease here means a decrease in the absolute value of the pitching moment about the L.E.

from stagger = 0 to 60% there is a decided decrease, of from 15 to 25%. The effect of negative stagger is thus negligible; the effect of positive stagger potent. The effect of increasing G/C is to decrease the $M_{\rm O}$, but not to so great an extent as does stagger. The M correction factors for the Göt. 387 airfoil are effected to a smaller extent by variations of stagger and G/C than is the U.S.A. 27, so that the latter has higher values at negative staggers and lower values at positive staggers.

This concludes the analysis (so-called) of the biplane correction factors at equal \propto for L_c, D_c, L/D, and M_c. They are not of much significance. They befell us as a by-product from the procedure by which we tried to obtain true values of the biplane aerodynamic coefficients. We hoped to correlate them in some useful way. In the care of the correction factors for L_c, from 0[°] to 13[°], we succeeded, and consider the bother repaid.

We shall now proceed to consider the data on the upper and lower wings tested separately.

* * * * * * * * *

II. Loading on Upper and Lower Wings,

The upper and lower wings were tested separately in the presence of the interference of the other for two U.S.A. 27 biplane combinations (stagger = 0, and G/O = 1.00, 1.67). We consider this data to be very reliable for G/O = 1.67 but not so reliable for G/O = 1.00, because during the test of the latter biplane the wings vibrated rather violently, whereas comparatively little vibration occurred in the case of the former. The L_O, D_C, L/D, M_C, and C.P. for each wing are tabulated with the Original Data, pp.104-109. while the fractions of the total biplane lift and drag on each wing are listed on Table 34. We shall examine the aerodynamic coefficients for each wing in reverse of the order mentioned.

1. <u>Center of Pressure</u>. The vortex theory indicates that for unstaggered biplanes there should be little difference between the C.P. on the upper and lowe r wings. Our C.P.'s for G/C = 1.00are in emact agreement from $d = 0^{\circ}$ to 18° , but they differ by 4%of the chord for G/C = 1.67. There is nothing to indicate that these latter values are in error, for a combination of them in such a way as to give the C.P. of the biplane as a whole (Table 34) checks within $1\frac{4\%}{4\%}$ with the corresponding values obtained when the biplane was tested as a unit (Table 58). The same holds true for the C.P.'s at G/C = 1.00. Our data is therefore insufficient either to gainsay or verify the theory, and we have not been able to find any published data of this specific type.

2. <u>Moment Coefficient.</u> The M_C's for the upper wing are smaller than those for the lower wing at small angles of attack, and larger at large angles of attack. This holds true both at G/C = 1.00 and 1.67, and checks with the results for the R.A.F. 6c biplane (ref. 2).

3. <u>Lift coefficient.</u> <u>Distribution of lift between the upper</u> and lower wings. The most significant way to deal with the lift on the upper and lower wings is to express the lift on each wing as a fraction of the total lift of the biplane. This is done in Table 34. The values there tabulated show that in general the lift on the upper wing is greater than on the lower except possibly at negative angles of attack. At G/C = 1.00 the load on the upper wing, expressed as a fraction of the total biplane lift, increases from 0.50 at 4° angle of attack to 0.54 at 20° ; while at G/C = 1.67 the corresponding loads are 0.53 and 0.55. These figures show in a general way the distribution of lift between the upper and lower wings, but the manifold advantages to be gained from a more careful detailed design of wings justifies a thorough analysis of the load distribution from both theoretical and experimental standpoints.

From the standpoint of the vortex theory the lift on each wing of a biplane is considered to be the sum of prdmary and secondary lifts (ref. 1). The primary lift is the sum of lift and counterlift; it is that part of the entire lift of a wing which is produced by the interaction of the uniform flow with the circulation and counter-circulation flow around the wing. The sec endary lift is a component of the mutual forces acting between parts of the whole biplane, consisting in this case of the repulsion between the upper and lower wings, increasing the lift of the upper and decreasing the lift of the lower by equal amounts.

For a biplane without stagger the upper and lower primary lifts are equal, for the induction at the upper and lower wing is almost equal, and therefore the changes of lift are equal. But a secondary difference is induced between the primary lifts due to the change of "effective stagger" as the angle of attack is changed. The "effective stagger" is not measured parallel to the wing chord, but more nearly parallel to the direction of flight. For the effects of aerodynamical induction are determined by the position of the vortex layer behind the wings, and the direction of this layer nearly coincides with the direction of flight. The "effective stagger" must therefore always be considered whether the biplane is staggered or not. For an unstaggered biplane it is directly proportional to the gap and to the lift coefficient. Due to it the change of induced upper and lower lift coefficient is

$$C_{\rm L_1} = \frac{C_{\rm L}^2}{\pi B} \frac{S}{b^2} \frac{G}{b} \left[\frac{b}{R} \left(\frac{1}{k^2} - 0.5 \right) \right]^* \qquad (6)$$

This quantity must be added to the absolute lift coefficient of the forward wing, and subtracted from that of the rear wing. It constitutes the only appreciable change of upper and lower primary lift on an unstaggered biplane.

We shall now analyze the secondary lift, which is a repulsion between the two wings. This repulsive force is produced both by the circulation flow and the vertical flow around the wings. The component due to the vertical flow is proportional

* Ref. 9, p. 24. For notation see our Appendix A.

to the square of the angle of attack, and expressed as a quantity to be added to the upper and subtracted from the lower absolute lift coefficient, it is

 $\sin \frac{2}{3} \cdot v$. (7) On the other hand, the component due to the circulation flow is proportional to the square of the lift, and is

 $\frac{C \cdot C_{L}^{2}}{2 \text{ TT} \cdot B^{2}}$ **

Adding (7) and (8) we get the total secondary lift coefficient which must be added to the lift coefficient of the upper wing and subtracted from that of the lower:

$$C_{L_{2}} = \sin^{2}/3 \cdot v + \frac{C \cdot C_{L}^{2}}{2 \tau \tau^{2} \cdot B^{2}} \cdot \cdot \cdot \cdot \cdot (9)$$

The first term of this expression is proportional to the square of the angle of attack, while the second is proportional to the square of the lift. But lift arises both from curvature and from angle of attack. So for a given biplane the lift due to angle involves a double repulsive force, that arising from both (7) and the part of (8) due to angle; whereas the lift due to curvature involves a single repulsive force, that arising from the part of (8) due to curvature. Thick wing biplanes therefore have small repulsive forces than thin wing biplanes, and upper and lower lifts are more equal for the former.

* Ref. 9, p. 25. For notation see our Appendix A. ** Ref. 1, p. 15. Calculations for a specific case, however, show that at equal values of the lift coefficient this factor causes negligible differences of loading for a thin wing as compared to/mediumly thick wing. The theoretical curves, showing the faction of total biplane lift on the upper wing platted against lift coefficient, coincide for the R.A.F.6_c (max. camber 6.95%) and the U.S.A. 27 (Max. camber 10.98%), both biplanes being at G/C = 1.00, and zero stagger. The corresponding experimental curves do not so agree, but for the reasons previously stated the k tter results are considered inaccurate. It seems safe to say that differences of curvature cause negligible differences of secondary lifts.

By adding the secondary lift coefficient (9) to the change of primary lift coefficient (6), we obtain

$$C_{L_{1}} + C_{L_{2}} = \pm \left[\frac{C_{L}^{2}}{\pi B} \frac{S}{b^{2}} \frac{G}{b} \frac{b}{R} \frac{b}{R^{2}} \frac{1}{k^{2}} \right] \pm \left[\sin^{2} \beta v + \frac{CC_{L}^{2}}{2\pi^{2}B^{2}} \right] \dots (10)$$

This expresses the equal and opposite amounts by which the upper and lower lift coefficients of an unstaggered biplane are changed. The first term of formula (10) must be added to the upper wing and subtracted from the lower at negative angles of attack, and vice versa at positive angles of attack. The second term is always added to the upper, and subtracted from the lower. According to the method of this formula we have calculated the lift on the upper wing of the three biplane combinations for which we have experimental data to serve as a basis of comparison. For one of these we give the detailed computations.

R.A.F.6g Biplane.*

Gap/Chord = 1.03, Stagger = 0, Aspect ratio = 6.

We calculate $5/b^2 = 1/3$, $G/b = \frac{1.03}{6} = 0.172$ From curves of the original data we find that

 $\beta = 0^{\circ}$ when $\alpha = 0.3$.

From ref. 9, Tables I and III, we obtain the following values:

B = 0.858, C = 1.88, V = 0.078, $\frac{b}{R} \left(\frac{1}{k^2} - 0.5\right) = 0.671$. We calculate $C_L = 0.0143 C_L^2$, $C_L = 0.078 \sin \frac{2}{3} + 0.130 C_L^2$. It is then easy to calculate the value of C_{L_1} and C_{L_2} for each angle of attack. These are tabulated in Table 77.

Table 77.

Amount, ($C_L + O_L$), by which upper lift coef. (C_L) is increased.

4	-1	~		•					
		R.A.	.F.6c	Bir	lane				
and to	- T	 00	Ctom		- 0	Amont	rotto =	6 .	

			C _L x10 ³	CL x	10 ³	
3	L _c x10 ⁵	C _L x10 ³	14.3.CL	78 sin ²	130 CL	$(C^{T'} + C^{T'}) \times 10_{3}$
-6.3	-67	-260	1	1	9	11
-4.3	-30	-118	0	0	2	2
-2.3	7	28	0	0	0 Ö	0
-0.3	46	178	0	0	4	4
1.7	87	340	-2	0	15	13
3.7	127	498	-4	0	32	28
5.7	161	630	-6	l	51	48
7.7	195	650	8	2	75	69
9.7	222	868	-11	3	98	90
11.7	253	990	-13	4	127	118
13.7	276	1076	-17	5	151	139
15.7	297	1160	-19	6	174	161
17.7	295	1150	-19	7	171	159
19.7	277	1080	-17	9	151	143

* Original data taken from ref. 2, Table 2.

In the 2nd and 3rd columns the lift coefficients of the biplane as a whole are tabulated. C_{L} and the two components of C_{L_2} are tabulated in separate columns so that the relative importance of each of these three factors can be gauged. It is evident that the component of the secondary lift which arises from the circulation flow, viz.,

$$\frac{C \cdot C_{L}^{2}}{2 \pi^{2} \cdot B^{2}} = 0.130 C_{L}^{2},$$

is by far the most important factor of the three involved. The other two, listed in the 4th and 5th columns could be omitted without causing an error of more than 1.1% in determining the % of lift on the upper wing. That amount is too large to be neglected, however.

The fraction of total biplane lift on the upper wing is equal to

 $0.50 + (C_{L_1} + C_{L_2}) / 2.C_{L_1}$ (11)

where C_L is the lift coefficient of the biplane as a whole. The values of this fraction were calculated for the R.A.F. 6c, and also for the U.S.A. 27 at G/C = 1.00 and 1.67, according to the method of computation illustrated above. The experimental values are listed next to the theoretical values in Table 78.

Theoretical and	experimental	values	of the	Lifton		·	
the Upper Wing,	expressed as	a fract	tion of	the tota	l biplane	lift.	1

	υ.	S.A. 27	Biplan	9			R.A.	F.60 Bip	lane	
G/C = 1.67			G/C	G/C = 1.00			G/C = 1.03			
<u>~</u>	L _o x10 ⁵	Theor.	Exper.	L _c x10 ⁵	Theor.	Exper.	Lox10 ⁵	Theor.	Exper.	
-6	-22	.51	.61	-16	.50	.89	-67	•52	•40	
-4	26	50	60 -	17	.50	.18	-30	.51	.32	
-2	58	.51	.54	48	.51	•41	7 •	.50	.83 ¹ 2	
Ö	91	.52	.54	77	.52	•46	46	•51	•62 <u>1</u>	
2	126	.52	.53	107	.53	•48	87	•52	•57]	
4	162	• 53	•53	143	•54	•50	127	.53	•54]	
6	191	.53	.53	169	•54	.51	161	•53 ¹ 2	•53	
8	223	5 4	.53	199	•54	.51	195	•54 [‡]	•53	
10	256	5 4	• 53 [.]	226	•55	.51	222	•55	•53]	
12	284	•54	.53	255	.56	• 52	253	•56	.54	
14	314	•55	•54	282	.57	•52	276	• 56 1	•55 ¹ 2	
16	337	.55	•54	306	.57	.52	297	.57	.56	
18	351	• 55	.55	325	.57	•53	295	•57	•54	
20	343	•55	•55	329	• 58	• 54	277	•56 <u>1</u>	.49	

Stagger = 0, Aspect ratio = 6.

 $L_{a} = lift coef.$ of the biplane as a whole.

We shall consider each of the three biplanes in turn. U.S.A. 27. G/C = 1.67. When compared at equal values of L_c , the theoretical and experimental values check within .01, from $L_c = .00126$ upwards, or from about $\alpha = 1^{\circ}$ upwards. U.S.A. 27, G/C = 1.00. There is a constant difference of about .04 between the theoretical and experimental values, from $L_c = .00107$ ($\alpha = 2^{\circ}$) upwards. It is evident that the experimental values are too low. The fraction of lift on the upper wing at $\alpha = 0^{\circ}$ should be at least .50, whereas the experimental value is only .46. <u>R.A.F.6c, G/C = 1.03.</u> Experimental and theoretical values check within an average of .01 from $L_c = .00127$ (4°) to L_c maximum.

* The lifts for the lower wing will of course be the complements of these values.

Table 78

'Thus, in general, the theoretical values check with the experimental values from L_c = .00125 (about 0.4 L_c max.) to L_{max.} or from about an angle of attack, of 4°, to the burble point. The exception is the U.S.A. 27 biplane, G/C = 1.00, the data for which have previously been shown to be unreliable. For all three biplanes, however, there is a wide divergence between the theoretical and experimental values above or below the limits of agreement just mentioned. But the theory is not supposed to make accurate prediations outside of that range anyhow. Within that range it appears safe to calculate the lift on the upper wing by making use of formula (10). But in the form stated the use of this formula is rather tedious. We therefore suggest the following simplification. It is evident from from (10) that for a given gap and aspect ratio the fraction representing the lift loading on the upper wing is directly proportional to the lift, provided we neglect the term, $\sin^2/3v$. This term does not usually amount to as much as $\frac{1}{2}$ of the total lift for angles of attack below 16°. We neglect it and reduce formulae (10) and (11) to the approximate form:

47

(Frac. of lift on upper) = 0.50 + $\frac{C_{L_{+}} + C_{L_{-}}}{2 \cdot C_{L_{-}}} = 0.50 + KC_{L_{+}}$

where K is a function only of gap/span and aspect ratios. This can be expressed in the alternative form,

(Frac. of lift on upper) = $0.50 + K_1L_c$(12) This represents a straight line, having its origin at $L_c = 0$, (Frac. of lift) = 0.50; and of slope K_1 ; and is only applicable for values of the $L_c > .000125$. Values of K_1 can be calculated for any gap/ span and aspect ratios. For aspect ratio equal 6.00,

<u>G/C</u>	K
1.00	23.5
1.67	16.1

By supplying these values of K_{1} in equation (12) we have obtained the following:-

Table 79

L x 10 ⁵	G/C	
	1.00	1.67
125	.53	• 52
150	•53 ¹ /2	·521
175	•54	₅53
200	•54를	, 53
225	•55 ¹ / ₂	•53 ¹ / ₂
250	• 56	•54
275	•56 ¹	•54클
300	.57	•55
325	•57 물	.55
350	•58	• 55 ¹ 2

Fraction of lift on upper wing.

A comparison of these values with the laboriously attained values of Table 78, shows that Table 79 is of anything the more accurate of the two.

In conclusion, therefore, we recommend equation (12) as a ready method of calculating the lift on the separate wings of an unstaggered biplane. It is applicable from $L_c = .00125$ to L_c max., and gives results as accurately as the experimental data justifes. Our analysis has been restricted to biplanes without stagger. The vortex theory indicates that stagger accentuates the load on the upper wing, but no experimental data are avilable. More experimental work is also needed to determine the distribution of lift at angles of attack below 4° .

We shall now proceed to consider the distribution of the total drag of the biplane between the upper and lower wings.

4. <u>Distribution of Drag between upper and lower wings.</u> Our results for the U.S.A. 27 biplane are given in Table 34. For the sake of ready comparison with the results for the R.A.F.6c,* we here reproduce the percentage of total drag on the upper wing.

Table 80.

	I DIGA UI	Upper win	<u>5</u>
a	(1)	(2)	(3)
-6	54 <u>1</u>	44	45 ¹ /2
-4	56 ¹ 2	46출	47
-2	55눈	48	48글
0	50	49물	49클
2	48글	50	50 7
4	49 1	51률	51 <u>7</u>
6	49 1	52	52 =
8	50 2	54	54]
10	51	55	55
12	51쿨	56	56
14	54	5 6 2	56
16	55	57를	50글
18	57	57	48 2
20	52	55	49

(1) U.S.A. 27, G/O = 1.00, (2) U.S.A. 27, G/O = 1.67, (3) R.A.F. 6c, G/O = 1.03. Stagger = 0, and aspect ratio = 6, in each case. See Table 78 for L_c 's.

One would expect that for an unstaggered biplane the drag would be equal on upper and lower wings at zero angle of attack, since the mutually induced downwash is then equal at both wings, and the "effective stagger" is also zero. In our experimental results this equal distribution occurs at 0° (1), 2° (2), and 1° (3). Starting from this position of equal distribution, as the angle of attack is decreased the effective stagger is increased, the induced downwash becomes less for the upper wing, and therefore the $\frac{2}{5}$ of drag on the * Ref. 2, Table 2. upper wing would decrease; and vice versa for increased angle of attack. Our data is in agreement with this reasoning. (2) and (3) show a uniform increase of the % on the upper wing from -6° to $+16^{\circ}$, while (1) shows a uniform increase for positive angles of attack, but does not show a decrease for negative angles. This discrepancy is due to experimental error, for there are also irregularities in the lift readings for the negative angles of attack.

After the uniform increase of the upper % of drag from -6° to +16°, there occurs a decided decrease, thus indicating that above about 16° the interference of the front (lower) wing actually decreases the drag of the upper wing. The front wing seems to shield the rear. All three of the tests show this effect. All thre-

Since we know of no facile theoretical means of calculating the drag on each wing, we shall now try to correlate the results of these three tests so as to obtain a more generalized expression for the % of drag on the upper wing. When the values of Table 80 are platted, first with the lift coefficients and then with the angles of attack as ordinates, it is seen that (1) is about 4% below (3) at equal L_c, and about 3% below at equal α , throughout the range $0^{\circ} - 14^{\circ}$. It has previously been pointed out that the % of lift on the upper wing was also too low for this same test, viz., the U.S.A. 27 biplane at G/C = 1.00. It appears that in testing the upper wing of the biplane combination, the wind speed was tempbrarily too low, or the angle of attack shifted through $\frac{1}{2}^{\circ}$ or so. This constituted our first test, and we were more or less inexperienced at the time. We shall therefore neglect the values (1).

The curves of (2) and (3), versus \prec , lie on approximately the same straight line,

% Drag on upper = $50 + \frac{e}{Z}$,(13) from $\alpha \pm -4^{\circ}$ to $\pm 14^{\circ}$. While the curves of (2) and (3), versus L_{c} , are parallel straight lines, from $L_{c} = 0$ to L_{c} max. For G/C = 1.03, Frac. of drag on upper = .48 + 33.3 L_{c} (14) For G/C = 1.67, " " " = .46 + 33.3 L_{c} (14) None of the plotted points deviate from these straight lines by more than $\pm \frac{3}{2}$. The average deviations are much less.

As an easy means of calculating the drag on each wing of a biplane we therefore recommend equations (14). They appear applicable to any biplane (aspect ratio equal 6) having the gap chord ratios indicated.

This concludes our analysis of the loading on the upper and lower wings.

* * * * * * * * * * * * * * * *

We shall now consider the aerodynamic coefficients of the biplane as a unit. In connection with each coefficient we shall verify the accuracy of predictions from the vortex theory (Munk's formulae), and derive biplane correction factors applicable at equal values of the lift coefficient.

III. Aerodynamical Coefficients of the Biplane as a Unit.

These coefficients, obtained by the Method of Procedure outlined in Section IV, are listed in Appendix C, Tables 34 to 76 inclusive. We shall consider them according to the order in which they are there tabulated.

1. <u>Lift Coefficients</u> - These are listed in Tables 35 - 41 (U.S.A. 27), and 62-64 (Göt. 387), and are plotted against angles of attack as ordinates in Plates 5 - 7, and 10, 12 respectively. The plotted points are not shown on the plates, because they would simply lead to confusion, with so many curves in close proximity. The deviations do not exceed $\pm 0.00002 \ \text{#/ft}^2/\text{mph}$. These curves show at a glande the effect of stagger and G/C variations on the lift. They are useful as a means of determining

(1) the different angles of attack at which the same lift is produced by different biplane combinations, and

(2) the different lifts which occur at the same angle of attack. They also constitute the best method of smoothing out or eliminating inaccurate data, and so improve the reliability of the results. Thus by glancing at Plates 5 and 7 one can immediately see that the curves for the U.S.A. 27 biplane combination, G/C = 1.67, stagger = 0, are out of place, and that the values of L_c and D_c which they represent are evidently too small. A comparison of these values (Tables 39, 46) with the results obtained when each wing of the biplane was tested separately (Table 34), shows that the two do not agree, and that the latter are correct. We therefore discord the results obtained when this specific biplane combination was tested as a unit, although shifting the angle of attack by 0.3° would probably account for the discrepancy.

No further mention of the plates need be made, except to call attention to the scale marked RATIO FACTOR, which is erected on the left hand side of Plates 5-7. This scale shows the ratio of the biplane lift to the maximum lift of the monoplane having the same wing area. It is a convenient means of comparing monoplane and biplane characteristics.

For atstaggered biplane the primary lift, due to curvature and angle of attack, is principally effected by interference, and change of "effective gap" as the angle of attack is changed. The interference effect is principally an increase of lift within the same limits for either positive or negative stagger: while increase of effective gap causes an increase of lift, and vice versa. The effective gap is measured practically perpendicular to the direction of flight: it is increased for positive stagger with positive angle of attack, and decreased for negative stagger with positive angle of attack. Thus as a whole, the effects of interference and effective gap have like signs for positive stagger, and opposite signs for negative stagger. The influence of positive stagger on lift should be much more pronounced than that of negative stagger. The L curves for the Got. 387 (Plate 10) and U.S.A. 27 biplanes (Plate 6) demonstrate this very strikingly. On the former plate the curves for the negative stagger almost coincide, whereas those for positive stagger are comparatively far apart.

According to theory, at zero lift the angle of attack should be the same for both monoplane and all biplanes having the same

wing section. Because the angle of attack for a specific L is composed of

(1) the original angle belonging to the wing section and the L_{a} ,

(2) the additional angle due to induction, and

(3) the additional angle due to interference, and

at zero lift (2) and (3) are equal to zero. A first glance at Plates 12, 5, and 10, would seem to indicate that our results check with this theoretical prediction, for on these plates the L_c curves certainly converge to a narrow band at zero lift. But a careful analysis shows that the deviations are too large to attribute to experimental errors. If we consider the error to be in the angle of attack, we find that the deviations from the average value of the angles of attack at zero lift are about as follows:

	Average deviations	Maximum deviations
Plate 5	+0.02	+0 ⁰ 6
6	±0°4	±0.08
7	±0°2	±0°4
10	±0°2	±0 •4
12	<u>+0°2</u>	+0 °3

Since the models, when set up in the wind tunnel, were accurately aligned to within 0.01, it is hard to see how the maximum deviations tabulated above can be attributed to experimental error. On the other hand, if we consider the errors to be in the measurement of lift near its zero value, we find the following approximate deviations in L_0 is

·	<u>Average</u>	Maximum
<u></u>	deviations	deviations
Plate 5	±. 00003	±. 00008
6	±. 00004	±.00012
7	±. 00003	±. 00009
10	±. 00003	±. 00005
12	±.00003	±. 00005

For the biplanes tested, ±.00012 corresponds to 0.144#, and #.00003 corresponds to 0.036#. It is difficult to see not only how an error of 0.144# could be made, or even how an error of 0.036# could have slipped in. We therefore believe that the different angles of attack, which our results indicate occurred at zero lift, cannot be attributed to experimental error, but can doubtless be accounted for by some of the factors neglected in the development of the theory.

We shall now make a few detailed comparisons between the values of lift and angle of attack obtained by us and those predicted by the vortex theory. We can compare lifts at equal angles of attack, or compare angles of attack at equal values of the lift. But so far as we know there are as yet no straightforward formulae by which the lift for a given angle of attack can be calculated. The formulae* --

Lift due to curvature = $2 \pi \text{Sq. sin } \beta_0 \cdot B_0$ " " " angle of attack = $2 \pi \text{Sq. sin } \beta \cdot B$) wrr(14) apply only to the two-dimensional biplane, and so give lifts very much higher than the three-dimensional actuality, as shown by the following table.

Table 81.

Lift et	efficient	due to curv	ature = 0.000	80.	
<u>a</u>	(1)	(8)	(3)		
-2	30	50	62		
[°] 0	17	97	84		
2	65	145	118		
4	112	192	150		
6	160	240	181		
8	208	288	208		
10	255	335	237		
12	302	2 82	266	٩.	
14	_ 348	428	293		
L) L_xl() ^D due to	angle of att	ack.		
2) Theor	retical L	x10 ⁵ , calcul	ated by equat	ions (14).	

(3) Experimental L_x105. Ref. 9, p. 31.

The lack of agreement is evidently the fault of the Z - dimensional values of the lift arising from angle of attack. Due to aerodynomical induction arising from the lateral dimensions, the angle of attack must be increased for equal values of L_c . But such corrections to the angle of attack involve very clumsy calculations.

It is much easier to start from the lift as the primary datum, and compare angles of attack at equal values of the lift. In doing this we can make use of a formula ready developed by Munk.

$$\alpha_{2} = \alpha_{1} - \frac{c_{L}}{\pi} \left[\left(\frac{s_{1}}{\frac{k_{1}^{2} b_{1}^{2}}{k_{1}^{2} b_{1}^{2}}} + 1 \right) - \left(\frac{s_{2}}{\frac{k_{2}^{2} b_{2}^{2}}{k_{2}^{2} b_{2}^{2}}} + 1 \right) \right]^{*} \dots \dots (15)$$

By the method of this formula we have calculated the theoretical values of \propto , compared to the experimental values in Tables 82 - 83.

Table 82

Gap /Chord.

(1) Theoretical and (2) Experimental values of the angle of attack expressed in degrees. GUL. 367 Biplane, Stagger = 0.

		0.7	75	1.	00	1	.33	
0 <u>.</u>	<u>L_ex10⁵</u>	(1)	(2)	(1)	(2)	(1)	(2)	
Ö	0	-7.1	⊕8 ₊0	0 7.1	-7.2	-711	-7.3	
.2	51	-3.5	-3.9	-3.7	-3.8	-3.7	-3.9	•
•4	102	0	-0.4	-0.4	-0.7	-0.7	-0.9	
•6	153	3.4	3.0	2.9	2.5	2.5	2.1	
.8	205	6.9	6.5	6.2	5.7	5.6	5.2	
1.0	256	10.4	9.7	9.5	8.8	8.8	8.3	
1.2	307	13.9	13.7	12.8	12.1	11.9	11.4	
1.4	358	18.1	19.1	16.9	16.5	15.8	15.4	

Table 83

5

(1) Theoretical and (2) Experimental Values of the Angle of Attack, Expressed in Degrees.

U.S.A. 27 Biplane, Stagger = 0.

		Gap/Chord											
		0.5	50	0.7	5	1.	00	· 1.	33	1.6	7	1 2	.00
<u>C</u>	L x10 ⁵	(1)	(2)	(1)	(2)	(1)	(2)	(1)	(2)	(1)	(2)	(1) N	(2)
. 0	0	-5.0	-6.2	 €5₊0	95 •5	₅ 5₊0	-5.5	-5.0	-5.2	-5.0	5.0	-5.0	-5.2
.2	51	-1.5	-2.4	-1.7	-2.0	-1.9	-2.2	-1.9	-2.3	-2.2	-2.1	-2.2	-2.7
.4	102	2.1	1.5	1.8	1.5	1.4	1.0	1.1	0.8	0.9	1.1	0.8	0.3
6 .	153	5.8	5.4	5.2	5.0	4.7	4.1	4.3	3.9	3.9	4.2	3.8	3.3
.8	205	9.5	9.4	8.9	8.6	8.2	7.5	7.6	7.1	7.2	7.5	7.0	6.5
1.0	256	13.7	14.2	12.7	12.4	11.8	10.6	11.1	10.5	10.5	10.9	10.3	9.8
1.2	307		<u> </u>	16.7	17.5	15.6	15.1	14.7	14.4	14.0	14.3	13.8	13.4
1.3	353	. +	-	····· ;	· •	17.9	18.8	16.9	17.2	16.2	17.7	-	

An analysis of these two tables shows that the theoretical curves of L_c plotted against \propto will be parallel to the experimental curves, the constant difference between the two being 0.4. The average differences between the theoretical and calculated values of the angle, from $L_c = .00025$ ($C_L = 0.1$), to 0.9 Lc max., are as follows for each biplane combination.

Stagger	8	C
---------	---	---

Gap/chord									
	0,50	0.75	1.00	1.33	1.67	2.00			
U.S.A. 27	0 <mark>0</mark> 4	0.3	0.5	0•4	-0°3	0.5			
Got. 387	-	0•4	0.4	0.4	-	-			

The theoretical angles are in each case larger than the experimental angles, with the exception of the values for the U.S.Al 27 biplane, stagger = 0, G/C = 1.67. But the experimental values for this biplane combination have previously been shown to be in error, and need not be considered further here. The average of the deviations tabulated above is 0.94. We can therefore say that for unstaggered biplanes, having any gap chord ratio, the angle of attack for a given value of the lift, from 0.1 to 0.9 L max., can be calculated (by formula (15)) to within 0.94. This deviation is always positive for U.S.A. 27 and Göt. 387 biplanes, so that for these biplanes the exact angle can be obtained by subtracting 0.94 from the theoretical value.

The foregoing applies only to unstaggered biplanes. We shall now consider the effect of stagger on the angle of attack required to produce a given lift. Referring back to formula (15) it is apparent that for a given value of the lift coefficient (G_L), on a biplane of given aspect ratio (S/b^2), the angle of attack (\propto) is a function only of the induction factor "k" and the interference factor "I". The induction factor "k" is the ratio of the span of a monoplane to the span of the equivalent biplane having the same induced drag under the same conditions. The values of "k" were determined by Munk empirically.* He states that stagger does not materially affect them; they depend only on the Gap/span ratio of the biplane. The interference factor "I" is approximately a function of Gap/chord ratio only. Munk states**that "I" varies somewhat with stagger and wing section, but that the entire result is not much affected if an average value of "I" is taken for each Gap/chord ratio.

Since "k" and "I" are little affected by stagger, therefore the angle of attack for equal lifts is not materially affected by stagger. So runs the theoretical argument, but in our experimental results, tabulated below for the Göt. 387, at G/C = 1.00, the differences between the angles of attack for the several staggers are not negligible.

General Theory of Their Wing Sections." N.A.C.A. Report 114.
** Ref. 9.

Table 84

Got. 387 Biplane, G/C = 1.00(Plate 10).

Comparison between experimental values of the angle of attack (degrees) required to produce equal lifts at various staggers.

-	5						
L.		-40%	-20%	0%	20%	40%	60%
0	0	-6.9	-7.5	-7.2	-6.8	-7.7	-7.4
.2	51	-3.7	-3.9	-3.8	-3.5	-4.0	-4.4
.4	102	-0.5	-0.8	-0.7	-0.4	-1.0	-1.4
•6	153	2.5	2.4	2.5	2.7	2.0	1.6
•8	205	5.7	5.5	5.7	5.9	5.2	4.6
1.0	256	8.9	8.7	8.8	9.0	8.2	7.5
1.2	307	12.4	12.2	12.1	12.1	11.2	10.6
1.4	558	19.1	17.1	16.5	15.9	14.8	13.9
	· · · · · · · · · · · · · · · · · · ·						

These values are plotted in Plate 15, together with the corresponding results for the U.S.A. 27 Biplanes at gap/chord ratio equal 0.75 and 1.00. An inspection of these curves shows that for the Göt. 387 biplane, G/c=1.00, the effect of negative stagger is entire-19 ly negligible, while the effect of positive stagger/to cause an appreciable decrease in the angle. For the U.S.A. 27, G/C = 1.00, there is a uniform decrease in angle as the stagger increases from -40% to +60%: there occurs a small decrease at negative stagger, and a more rapid decrease at positive stagger. The exact amounts are tabulated below.

Table 85

	Amour pond:	nts (in deg ing to equa	grees; by al lifts i	which t s decrea	he angle ased when	of attac n the sta	ek corres- agger is
	incre	eased from	-40% to +	60%.			
	сГ 	T ^Q XI0+	_(1)_	_(2)_	(3)	(4)	(5)
	.2	51	0.7	0.6	0.8	1.7	1.6
	•4	102	0.8	0.6	1.0	2.1	2.1
	•6	153	0.9	0.6	1.2	2.4	2.7
	•8	205	1.2	007	1.4	2.8	3.4
	1.0	256	1.4	0.8	1.6	3.3	4.6
(1)	Göt. 3	<u>387,</u> G/C =	1.00 (2)	U.S.A.	<u>27,</u> G/C:	-2.00 (3)	G/C=1.00
(4)	G/C =	0.75, (5)	G/C = 0.50	0.	-		·

In each case, with one or two exceptions, the effect of positive stagger is much more pronounced than that of negative, so that the decrements of angle tabulated above are due chiefly to the change of stagger from 0% to 60%. This is due to the fact that the effects of interference and effective gap have like signs for positive stagger, and opposite signs for negative stagger, as explained in the third paragraph, of this discussion on <u>lift coefficients</u>. As shown by the figures in columns (2) and (5), the decrements of angle due to stagger are about four times larger at G/C = 0.50 than at G/C = 2.00. But this influence of G/C on the potency of the stagger is only apparent. It is due to the fact that the stagger has been expressed as a % of the chord. 60% stagger at G/C = 0.50 corresponds to an angle of stagger equal to 49%, while 60% stagger at G/C = 2.00corresponds to an angle of only 16%, the ratio between the two being about 4;1

It is apparent that the decrements of angle due to stagger (Table 85) are too large to be neglected, even though the average deviations would be only about half the size of the amounts there tabulated if average values of "k" and "I" are used in calculating the angles. This is further strikingly shown by the curves of L_c plotted against \propto in Plates 6, 7 and 10. If the effects of stagger on $\not\ll$ were negligible, the L_c curves in Plate 6 would be grouped in three narrow bands, corresponding to the three gap/chord ratios; the curves in Plate 7 would be grouped in two narrow bands; and the curves in Plate 10 would practically coincide in one narrow band. But such is not the case; appreciable angles separate the curves. <u>Summary</u>. On this analysis of biplane lift coefficients we have compared the theoretical and experimental values (1) of lift coefficients at equal angles of attack, and (2) of angles of attack at equal lift coefficients.

(1) Calculation of L_c 's for given α 's was tried by means of the 2-dimensional formulae (14). These formulae give values of L_c very much too high, unless the α 's are increased to correct for the aerody-namical induction arising from the lateral dimensions. But such corrections involve unnecessary labor.

(2) It is easier to calculate \propto 's at equal L_{c} 's by means of formula (15). This we did for ten unstaggered U.S.A. 27 and Göt. 387 biplanes having gap/chord ratios from 0.50 to 2.00. The theoretical \propto 's so obtained were almost uniformly 0.4 too high.

Formula (15) applies only to unstaggered biplanes. Munk states that stagger does not materially affect the \propto required for a given L_c . Our data show that the average amounts by which \sim was decreased when the stagger was changed from -40% to +60% were 1.2 at G/C = 1.00, and 2.5 at G/C = 0.75. The average decrements were directly proportional to the stagger expressed in degrees. The effect of positive stagger was twice that of negative (averages), so that in the specific cases mentioned above the decreases of \propto due to positive stagger were 0.9, and 1.9, respectively.

It is evident that induction factors "k", and interference factors "I" should be calculated for stagger. Meantime we recommend our L_c correction factors at equal \propto , 0°-13°, (Table 1~10, and Plate 13) as a quick means of finding the lift on staggered biplanes.

* * * * * * * * * * * * * * * *

2. Drag Coefficients - These are listed in Tables 42 - 47for the U.S.A. 27, and 65-67 for the Göt. 387 biplanes, and are plotted against angles of attack as ordinates in Plates 5 - 7, and 10, 12, respectively. To avoid confusion the plotted points are not shown on the plates, but the deviations do not exceed $3x10^{-6}$ #/sq.ft/ m.p.h. (=0.0036# for the biplanes).

By means of these curves we have been able to make comparisons between the experimental values of the drag, and the theoretical values calculated by the method of Munk's formula:

These comparative values are tabulated in Tables 86 and 87.

Table 86 (1) Theoretical and (2) Experimental values of the Drag Coefficient $(D_c \times 10^6)$.

			·				
	=	0.75		1.0	00	1.	33
<u>0</u> 1	$L_0 \ge 10^5$	(1)	(2)	(1)	_(2)_	(1)	(2)
•0	0	97	125	97	106	97	108
.2	51	70	74	69	72	69	72
.4	102	91	90	89	90	86	90
.6	153	134	127	128	123	121	123
.8	205	201	190	191	180	189	176
1.0	256	292	267	27 5	251	258	248
1.2	307	400	365	375	338	351	3 8 2
1.4	358	545	500	512	453	478	446

Göt. 387 Biplane, Stagger = 0.

* Ref. 9, p. 26

Table 87

(1) Theoretical and (2) Experimental Values of Drag Coefficient $(D_0 \ge 10^6)$

U.S.A. 27 Biplane, Stagger = 0.

	Gap/chord												
0 _L	$L_{c} \ge 10^{5}$		0,50		0.75		L.00	1	.33		1.67		2.00
		<u>(1)</u>		(1)	(2)	(1)	(2)	(1)	(2)	(1)	(2)	(1)	(2)
•0	0	92	105	92	95	92	95	92	98	92	95	92	93
.2	51	62	65	62	63	61	63	61	63	60	60	60	65
.4	102	78	78	76	75	74	75	71	70	68	70	67	67
•6	153	127	125	123	118	117	112	110	105	105	104	103	98
•8	205	205	195	106	181	186	172	174	163	164	160	161	153
1.0	256	303	290	290	. 268	273	240	256	239	241	235	234	227
1.2	307			410	395	385	355	361	339	338	334	331	318
1.3	333					457	558	428	415	401	415	386	380

An inspection of these tables shows that --

(1) for the Göt. 387 biplanes the theoretical values of the drag agree with the experimental values within $\pm 5\%$, from $L_c = .00050$ to .00200 (-4° to 6°) while,

(2) for the U.S.A. 27 the same agreement occurs from $L_c = 0$ to .00200 (-50 to 8°).

In each case the theoretical values are too low for values of $L_c < 0.00100$, and too high values of $L_c > 0.00100$, while $L_c = 0.00100$ agreement is practically perfect.

Formula (16) covers the case of unstaggered biplanes only. Munk states that stagger does not materially affect the value of the induction factor "k". This means that for equal lifts, the value of the drag is not materially affected by stagger. On examining data (Table 88) taken from curves för Göt. 387 staggered biplanes (Plate 10), we find that variation of drag with stagger is indeed immaterial, being usually within 2% (the experimental error) from $L_c=0.00050$ (or from minimum drag) to 0.9 L_c max. The agreement is thus good throughout the whole useful range.

Table 88

Effect of stagger on drag $(D_c x 10^6)$ at equal lifts.

		Göt. 387	Biplane,	G/O =	1,00			
0L	L _c x10 ⁵	-40%	-20%	0%	Stagger	40%	<u>60%</u>	
.0	0	100	121	106	104	123	110	
.2	51	76	73	72	73	73	80	
.4	102	90	90	90	87	85	92	
.6	153	123	124	123	120	123	125	
.8	205	178	180	180	176	180	180	
1.0	256	250	253	251	246	250	250	
1.2	307	34 6	347	338	332	337	338	
1.4	358	542	481	453	443	453	445	

As a further means of showing the negligible effect which stagger has on drag, we have calculated the biplane correction factors for D_c at equal L_c's for both U.S.A. 27 and Göt. 387 biplanes at G/C = 1.00, and stagger -40% to 60%. These factors are summarized in Tables 89 and 90 (Appendix C), respectively. They show at a glame the variation of the biplane D_c in terms of the D_c of the monoplane having the same L_c. The average values of the correction factors for the whole range of stagger are tabulated at the right side of each table. An inspection of the factors will show that these average values can be used from L_c = .00050 to 0.9 L_c max., and from stagger equal -40% to 60%, without incurring an average error $> 2\frac{1}{2}$ %, for the Göt. 387, or $1\frac{1}{2}$ % for the U.S.A. 27. The average values are plotted in Plate 13, one curve being drawn.

We have also calculated the biplane correction factors at equal L_0 for the U.S.A. 27 and Göt. 387 at zero stagger, and several gap/ chord ratios (Tables 91 and 92, respectively). Since the effect of stagger is negligible, these may be used for all staggers as well. We have plotted them in Plate 13, drawing only one curve at each gap/chord ratio, to gerve both the U.S.A. 27 and Göt. 387 at all staggers. The correction factors differ somewhat for all airfoils in general, depending on the profile drag of the sections. But we estimate that the curves in Plate 13 will give drags accurate to $\pm 1/2 \%$ for all airfoils of maximum combination equal 10% to 16%. To avoid confusion the plotted points are not included on the plate. With the exception of three points, no deviations exceeded 0.015, while the average was not > 0.005. A separate curve (Plate 13) was plotted for the D_c min. correction factors (Table 93), since the minimum drags occur at somewhat different lifts. There is a definite decrease of D_c min. as the gap/chord ratio is increased, amounting to about 15% from G/C = 0.50 to 2.00. The effect of stagger is negligible when G/C is > 0.75.

Summary. The effect of stagger on the drag at equal lifts is neglible from 0.1 to 0.9 L max. Munk's formula therefore gives values of the drag accurate within $\pm 5\%$ for all staggers and gap/ chord ratios, but this accuracy holds only from L₀ = 0.00050 to 0100200, or from about 0.1 to 0.5 L₀ max. In Plate 13 we have plotted curves, showing the biplane correction factors for D₀, which we believe will give results accurate within $\pm 1\frac{1}{2\%}$ from about 0.1 to 0.9 L₀ max. These curves cover the case of all staggers and gap/chord ratios, but are applicable only to airfoils in the same general group as the UIS.A. 27 and Göt. 387 so far as profile drag is concerned.

3. <u>Lift/Drag Ratios</u> - These are tabulated in Tables 48 - 49for the U.S.A. 27, and 68-70 for the Göt. 387 biplanes, and are plotted against angles of attack as ordinates in Plates 8 - 9, and 11 - 12, respectively. The plotted points are not shown, but in no case did the deviations exceed 0.1, expressed in terms of L/D.

We have calculated and plotted L/D's for only a relatively small range of biplane combinations, because these ratios are secondary characteristics, and can always be computed from the values of lift and drag to which we have given greater consideration.

A direct comparison between theoretical and experimental values of L/D are unnecessary, since we have previously made such comparisons for lift and drag separately. Since at equal lifts, L/D is inversely proportional to the drag, we can draw our conclusions as regards L/D directly from our previous ones concerning drag.

The effects of stagger at equal lifts will be negligible. But L/D max. occurs at unequal lifts for different biplane combinations, so we have calculated the biplane correction factors for L/D max. for both the U.S.A. 27 and Göt. 387 biplanes. These are tabulated in Tables 94 and 95 (Appendix C), respectively. They show beyond peradventure that the effect of stagger on L/D max. is negligible. The factors for the U.S.A. 27 and Göt. 387 biplanes agree excellently. Average values (Table 94) can be taken at each gap/chord ratio and applied to all staggers without involving an error $> \pm 1\%$. These average values are plotted against gap/chord ratios in Plate 13. L/D max. shows a distinct improvement, about 25%, as the gap/chord ratio is increased from 0.50 to 2.00. Such an increase in efficiency is just what would be expected from the vortex theory.

The correction factors for L/D at equal lifts (Tables 96-97) are the reciprocals of the factors for D_c (Tables 91 - 92), and the same curves on Plate 13 serve for both, reciprocal scales being erected at the side. In general, the correction factors vary inversely as the lift, and directly as the gap/chord ratio.

4. <u>Moment Coefficients</u> - These are tabulated in Tables 50-55 for the U.S.A. 27, and 71-73 for the Göt. 387 biplanes, and are plotted

against L_{c} 's as ordinates in Plates 8-9, and 11-12, respectively. The plotted points are not included on the plates, but the deviations in no case exceeded $\pm 0.000 D$ bs. ft,/sq. ft/mph/ft. of chord. For our biplane models this way equivalent to a moment of ± 0.003 lbs. ft. about the leading edge.

A glance at the plates mentioned will show that the effect of stagger on M is much more potent than that of the gap/chord ratio. The effect of the latter, such as it is, is to increase M_c , * while the effect of positive stagger is just the opposite. The effect of negative stagger is negligible.

A simple theoretical formula for calculating the moment coefficient seems hard to attain. Munk states that the moment coefficient with respect to the center of the biplane (C_m) , is increased both from induction and interference. Due to induction -

*
$$\Delta O_{\rm m} = 4 \frac{{\bf s}^2}{{\bf T}^2} \cdot \frac{{\bf s}}{{\bf b}^2} \frac{{\bf T}}{{\bf b}} \left[{\bf b} \cdot (\frac{1/{\bf k}^2 - 0.5)}{{\bf R}} \right] O_{\rm m},$$
 (17)

while due to interference -

$$\Delta C_{m}^{n} = C_{m} \left(\cdot 08 + \frac{\cdot 16s^{2}}{G^{2}} \right) + C_{L} \cdot \frac{\cdot 16s}{G^{2}} .$$
 (18)

In these formulae C_m is the moment coefficient of the monoplane about its center point.

By means of (17) and (18) we have calculated C_m for both the U.S.A. 27 and Got. 387 biplanes at G/C = 1.00, with positive stagger from 0% to 60%. As aforementioned, the effect of negative stagger

* Disregarding the sign of M_C, an increase means an increase in diving moment about the L.E.

** Ref. 9, p. 28.
(1) Theoretical, and (2) Experimental Values of the Moment Coefficient with respect to the Center of the Biplane ($C_m \ge 10^3$).

· ·· ·· ·

.

TABLE 98

U.S.A. 27 Biplane

			G	$\frac{1}{0} = 1.0$	00				
			S	TAGGER					
CT.	Lax 105		0%	2	20%	4	0%	60	k
		(1)	(2)	(1)	(2)	(1)	(2)	(2)	[1]
.2	51	- 40	+ 41	~40	-27	- 40	-17	- 5	~ 42
.4	102	17	14	19	26	21	44	65	24
•6	153	74	67	78	85	83	113	132	90
.8	205	135	122	140	147	148	174	208	159
1.0	256	186	171	193	192	203	236	260	219
1.2	307	243	216	251	244	264	293	317	279

TABLE 99

Göt.	387	Biplane
------	-----	---------

			G.	/0 = 1.0	00				
				STAGGER					
CT.	Lax 10 ⁵		0%	1	20%		E 0%	60	k
	· · · · · · · · · · · · · · · · · · ·	(1)	(2)	(1)	(2)	(1)	(2)	(1)	(2)
.2	51	- 57	-42	- 57	- 34	- 58	-24	+ 60	+19
.4	102	- 6	- 4	- 5	17	-4	29	- 2	43
.6	153	45	51	48	6 5	51	88	57	112
.8	205	93	104	97	113	104	133	113	171
1.0	256	142	147	148	162	157	177	170	230
1.2	307	186	195	193	202	204	237	220	284
1.4	358	241	232	250	246	264	277	284	318

appears negligible, and formulae (17) and (18) are not applicable to negative stagger anyway. The theoretical and experimental values of C_m are compared in Tables 98 and 99, Appendix C. Values of C_m rather than of M_c were calculated and compared, because the theoretical values of the former could not be converted into the latter without assuming center of pressure values. An inspection of Tables 98-99 shows that agreement between the theoretical and experimental values of C_m is very poor. The former are almost invariably too low, the average error being about -18%.

These large discrepancies led us to examine formula (17) and (18) with greater care. The only ready possibility for revision which we could find was the fact that the derivation of (18) involved the assumption that $\frac{1}{4} C_L / C_m = 1$. For (18) is evidently derived from the following equation on p. 23 (Ref. 9).

$$C_{\rm m}^{\rm i} = \frac{\pi 3' s}{T}$$

$$= \frac{b^{2}+2s^{2}}{b^{2}} \left[\frac{b}{R} \left(\frac{1}{k^{2}} - 0.5 \right) \right] \cdot C_{L}$$
(19)

Equation (18) reduces to

$$\Delta C_{\rm m} = \frac{8}{{\rm b}^2} \left[\frac{{\rm b}}{{\rm R}} \left(\frac{1}{{\rm K}^2} - 0.5 \right) \right] \cdot C_{\rm m},$$

when we substitute S/bT - 2, which holds true for a biplane. Munk here uses C_m^1 and ΔC_m to designate the same thing, viz., the additional moment due to induction, thus involving the assumption mentioned above. But for the U.S.A. 27 monoplane, the value of C_L / C_m varies from -1.35 to 6.41, as shoonby the following figures:

0 _L	0.2	0.4	0.6	0.8	1.0	1.2
14 C _L /C _m	-1.35	6.41	2.28	1.61	1.45	1.33

We therefore hoped that by applying corrections for this we could obtain better theoretical values for C_{M} . But the increase of moment due to induction constitutes only about 8% of the total increase, so that the final values of C_m averaged only about 3% higher than before, and were still quite inadequate.

Since the theoretical formulae are apparently not of much use in finding the moment coefficients for a given biplane combination, we have calculated the biplane correction factors for Me at equal L_c, for both the U.S.A. 27 and Got. 387 biplanes at G/C = 1.00, all staggers, and at stagger = 0, all G/C's (Tables 100-103, Appendix C). These factors are practically constant for all lifts <L max/ This can be seen from Plates 8-9, 11-12, by the fact that the curves of Me vs. Le are practically straight lines radiating from a focus, which focus is approximately $L_c = 0$, $M_c \ge 10^5 = -23 \pm 2$, for both U.S.A. 27 and Göt. 387 monoplanes and biplanes. We have struck an average for each stagger and gap/chord ratio, and plotted them (Plate 14). These averages for the U.S.A. 27 and Got. 387 agree just about well enough to justify drawing only one smooth curve. Plotted points are not shown, but a comparison between plotted points and curve points is given in Tables 101 a and 103 a. Correction factors > 1.00 were reduced to 1.00, because theoretically it appears that the M about the leading edge can be reduced but not increased above the monoplane values. We have therefore considered that our Mg curve

for G/C = 2.00, stagger = 0 (Plate 8), is notably in error. The corresponding C.P. curve is also in error.

Summary.

We have previously seen that the theoretically predicted values of the moment coefficient were hopelessly too low, the errors averaging about -18%. From our experimental data we have therefore attempted to derive some useful approximations. The results are incorporated in the two M_c correction factor curves in Plate 14. These are applicable from about $L_c = 0.00050$ to L_c pax. The curve showing variation with stagger at G/C = 1.00 can be taken as accurate to within about $\pm 0.01\frac{1}{2}$, while the corresponding figure curve showing variation with Gap/chord ratio at zero stagger is about $\pm 0.02\frac{1}{2}$. The difference is due to the fact that our experimental data for the former showed a more uniform variation than did that for the latter.

5.

CENTER OF PRESSURE COEFFICIENTS.

These are tabulated in Tables 56-61 for the U.S.A. 27, and 73-76 for the Got. 387. They were obtained by subtracting the following corrections from the original C.P.'s (Appendix B) obtained for the biplane subject to the interference of the discoid case.

€¥°		-2	0	2	4	6	8	10	12	14	16	18	20	22
U.S.A.27	0	0	0	.01	.01 ¹ /2	.02	•02	.02	.02	.02	.01	.01 1	.01 ¹ /2	.01
These cor	rect	ions.		nstitu	te the	diff	ereno	•VI	ween	the C	•01	-UL	for	*01

the monoplanes tested in the routine way, and the C.P. curves for the corresponding monoplane tested in the presence of the interference of the discoid case. (Plates 3-4). The assumption is made that the effect of the discoid case interference was to move the C.P.'s forward by equal amounts on both monoplane and all biplanes incorporating the same wing section.

The C.P.'S (Tables 56-61, 73-76) were plotted against L_c 's as ordinates (Plates 8-9, 11-12). The plotted points are not included, but they did not deviate from their respective curves by a fraction of the chord >.005, when L_c >.00050. A glance at the curves shows that in general the C.P. moves forward as the stagger is increased from -40% to 60%, and backward as G/G is increased from 0.50 to 2.00. The effect of positive stagger is much larger than that of G/C. The effect of negative stagger is negligible. Theory indicates that the biplane C.P. is never farther back from the leading edge than the monoplane C.P. for the same L_c . In general our curves bear this out, the principal exception being that for the U.S.A. 27 biplane G/C = 2.00, stagger = 0, the value for which we consider to be in error.

We shall now consider the theoretical calculation of the C.P.. The problem may be divided into two parts, (1) the variation with $G/C_{,}$ at stagger = 0, and (2) the variation with stagger, at G/c = 1.00.

In order to calculate the C.P.'s for unstaggered biplanes at various G/C's, we first made use of the method indicated by Munk, Part 1 of the Appendix (ref.9). The procedure is to calculate separately the lifts due to curvature and angle of attack, multiphy each by its C.P., add, and then divide by the sum of the two lifts. This gives the

C.P. for the total lift of the biplane. The formulae given by Munk appley to two-dimensional flow only, but the results obtained can be corrected to take account of the aerodynamical induction arising from the lateral dimensions. We calculated these corrections first, making use of the formula -

$$\Delta T = T \frac{S}{b^2} \left[\left(\frac{1}{k^2} - 0.5 \right) \frac{b}{R} \right] \left(\frac{s}{T} \right)^2 \frac{T}{5}^*,$$

where \triangle T is the additional arm of moment about the center of the biplane produced by stagger and induction. Expressed as a fraction of the chord abaft the leading edge, and substituting S/bT=2 (for a biplane) this becomes -

$$\Delta C_{\circ}P_{\circ} = -\frac{AT}{T} = -2 \left(\frac{3}{b}\right)^{2} \left[\left(\frac{1}{k^{2}} - C_{\circ}5\right) \frac{b}{R} \right] \qquad (17)$$

This expression involves the stagger (s). For an unstaggered biplane the value of the "effective stagger" is substituted, and (17) becomes -

 $C_{\rm L}$ (life coefficient), G (gap), and b (span), are known, while the values of B and $\left[\left(\frac{1}{k^2}-0.5\right)\frac{b}{R}\right]$ can be obtained from Tables I and III, ref. 9. The corrections to take account of the lateral dimensions, calculated by equations (17) and (18), are listed in Table 104.

		TABLE 104			
A.C.P. (fraction	of chord	abaft L.E.	due to	lateral	dimensions
G/C = 1.00, Appl	icable t	o all wing	sections,		

414		<u> </u>	T ATTY DOOR		
CL	L _o x 10 ⁵		STAGGER		
	•	0%	20%	40%	60%
.2	51	•000	002	006	014
•4	102	· • • • • • • • • • • • • • • • • • • •	002	006	014
•6	153	001	002	007	014
.8	205	001	002	₹•007	015
1.0	256	001	-,003	007	-,015
1.2	307	002	003	-,008	016
1.4	358	003	004	008	016
Aver	Age	001	003	007	015

*Ref. 9. p. 32 Derived on p.23

It is seen that the corrections for zero stagger are entirely negligible. For biplanes without stagger, therefore, we can calculate the C.P. by the two-dimensional procedure previously mentioned (ref.9, p.31).

The C.P.'s calculated in this way averaged $4\frac{1}{2}\%$ of the chord too low. But the theoretical values of lift, which this method involves, have previously been shown to be very much too high. The lift due to curvature $(2\pi \sin \beta_B_0)$ seems to be about right, the discrepancy being in the balues of lift due to the angle of attack $(2\pi \sin \beta_B_g)$. It therefore seemed apparent that the theoretical values of the lift due to curvature should be used, but that the differences between these values and the experimentally determined values of the total lift should be substituted for the theoretical lifts due to angle. This we did, at the same time incorporating the procedure in the following formules -

 $C.P. = 0.50 - \mathbf{z} + \frac{2 \pi \sin \beta_0 \times B_0}{G_1}^*, \dots \dots \dots (19)$ in which C.P. is the fraction of the chord abaft the leading edge, x is

the distance (fraction of chord) of the center of pressure from the center of the biplane for a wing section without curvature, $2 \pi \sin \beta_0 B_0$ is the lift coefficient due to curvature, B_0 is a constant, and C_L is the total lift coefficient determined experimentally. Values of x and B_0 were obtained from Table I. Ref. 9.

A comparision between the theoretical C.P.'s, calculated by equation (19), and the corresponding experimentally determined values, are is given in Tables 105-106. Agreement is comparatively excellent, the average deviations of the theoretical from the experimental C.P.'s "Variation of Munk's formula, ref. 9, p. 14.

TABLE 105

Theoretical (Equation (19) and experimental values of the center of pressure coefficient (C.P.)

		STA	GGER =	0.			
F		GAP	CHORD				
$L_{a} = 10^{5}$	0.50	0.75	1.00	1.33	1.67	2.00	Monoplane
			TH	CORETIC	<u> </u>	·····	
51	. 62	•64	•65	•65 1	•66	•66]	•67
102	.42	.43	.44	•44]	.45	45	.46
153	•35 1	.363	.37	375	.38	385	.39
205	.32	.33	33	.34	341	35	351
256	.30	.31	315	.32	32	.33	33
307	•	.29]	•30	•30 1	.31	.31]	.32
			EXP	GR TIMDA IV	NL		
5 1	•60 <u></u>	.62	•69	•65	•67	•71	•68
•02	•38	•40 1	•46 1	421	.45	.483	451
•53	•31물	₀ 33 [¯]	•39	₀ 35	-37 1	40 1	-38 1
205	•28 2	.29	.35	·301	. 33	365	-34 3
		.		റപ്	cra 1	17 A T	
256	•27	•27	•00•	-20 3	•01 5	.045	• 3%
	L _o x 10 ⁵ 51 102 153 205 256 307 51 .02 .53 205	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{r cccccccccccccccccccccccccccccccccccc$	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$

76a.

TABLE 106

(1) Theoretical, and (2) Experimental values of the center of pressure coefficient (C.P.)

Got. 387 Biplane

	•			GAP/CI	IORD				
GT.	$L_{a} = 10^{5}$		0.75	1	00		1.33	Monoplane	
		(1)	(2)	(1)	(2)	(1)	(8)	(1)	(2)
.2	51	741	<u>_65</u>	751	-68 1	-761	•6 81	.78	- 76
.4	102	.48	•45 1	491	•48]	.50	•48 1	•51=	-51 1
•6	153	•40	•39 [~]	•40 1	•41 [~]	.41	.41	42	43
•8	205	•35 1	•35 1	.36	.37	.37	.37	•38	.39
1.0	256	•33	. 34	•33]	•35	.34	•35	•35]	-36 1
1.2	307	.31	.31]	•32	•33 5	.321	•33 2	.34	34
1.4	358	.30	315	•30 3	. 32	.31	.32	-321	33 1

.

being as follows -

GAP/CHORD 0.50	0.75 1.00	1.33	1.67	2.00	MONOPLANE	
U.S.A. 27 .03 (O _L = .2 to 1.3) T	•03 -•02	02	00 ¹	02 <u>1</u>	001	
Got. 387 (OL =.4 to 1.4)	.0001	00	-		002	

From Tables 105-106 it is seen that the theoretical effect of G/C variation amounts to just about one half the experimental effect (apparent), and all of the theoretical biplane C.P.'s are <the monoplane C.P., which is not true of the experimental values. The range of variation between the C.P. curves for G/C = 0.50 and G/O = 2.00, amounts to .03 for the theoretical as compared to $.07\frac{1}{2}$ for the experimental curves. But we have no reason to doubt the experimental values as a whole, although the two curves for G/C = 1.00 and 2.00, Plate 8, seem to represent values about .02 too high. For the ordinary run of GAP/CHORD ratios -(0.75-1.33), it is considered that equation (19) will give results accurate within $\pm 0.01\frac{1}{2}$, while a correlation of experimental results (Plate 14) will give values accurate within ± 0.01 .

The foregoing applies only to unstaggered biplanes, equation (19) being applicable only to such. We performed similar calculations however, on a staggered biplane using the method indicated in Part II of Munk's Appendix (ref. 9, p. 32).

The lift due to angle of attack was again taken as the difference between the lift due to curvature, and the total lift determined experimentally. In addition, we took into account the fact that the center of pressure of the component of force parallel to the wing ohord is samewhat above the mean chord of the biplane. Corrections $_{++}(equa. (17))$ were also applied to take into account the aerodynamical induction due to the lateral dimensions. C.P.'s for only one staggered biplane (U.S.A.27%, G/C = 0.75, stagger = 40%) were calculated, because that was the only one for which the required constants could be obtained from Munk's table. * The results are given here.

TABLE 107.

(1) Theoretical, and (2) Experimental values of C.P.

					The strength way was		
			G/C	3 =0.75	Stagge	r = 40%	•
LgI 105	33	96	127	189	246	300	333
(1) (2)	•781 •72	•40 1 •38	•34 3 •32 3	•28] •28]	•25] •26]	•23 2 •26	•23 •26
Deviat- ions	•06 1	•02 1	.02	•00	01	021	03
the second se							

U.S.A. 27 Biplane

The agreement shown between these values is not discouraging, but is not so good as was that for the unstaggered biplanes.

The variation of our experimental C.P.'s with stagger is very regular, and in addition covers a larger range than was the case for G/C variation (See Plates 11 and 9). We have calculated biplane corrections for C.P., showing the effect of stagger variation at G/C = 1.00, and the effect of G/C variation at stagger = 0. These corrections, expressed as fractions of the chord by which the C.P. is displaced towards the leading $edge_{A}$ from 0.1 L₀ max. to L₀ max., are tabulated in Tables 108-109, Appendix C. Averages are taken of the G⁵t. 387 and U.S.A. 27 results and plotted in Plate 14. We consider

*Table II, ref. 9.

the curves there given to be accurate within \pm .01.

SUMMARY.

In this analysis of C.P.'s we have found that equation (19) can be used to calculate the C.P. for unstaggered biplanes, the accuracy being about ± 0.01 from G/C = 0.75 to 1.33. The same method applied to staggered biplanes can be used with a lesser degree of accuracy. In each of these theoretical methods, accurate results require the assumption that =

(Lift due to angle) =

(Total lift, experimental)-(Curvature lift, theoretical). The accuracy of the results thereby obtained indicates that the theoretical lift due to curvature is about right.

In Flate 14 we have plotted our experimental results in the form of corrections to be subtracted from the monoplane C.P. Values taken from the curves are accurate within about ± 0.01 .

THIS CONCLUDES THE ANALYSIS OF RESULTS. In connection with each part of the analysis a brief summary has been given. After we have made a REVIEW OF PREVIOUS EXPERIMENTAL WORK, SECTION VII, WE SHALL IN SECTION VIII GIVE A CONCISE GENERAL SUMMARY AND CONCLUSIONS.

SECTION VII.

REVIEW OF PREVIOUS EXPERIMENTAL WORK.

We are making this review to see if previous results check with ours for the variation with Stagger and G/C of the biplane correction factors for:

```
L<sub>G</sub> max.

L<sub>G</sub> at equal values of \propto, 0<sup>0</sup> - 13<sup>0</sup>

D<sub>G</sub> at equal L<sub>G</sub> *

D<sub>C</sub> min.

L/D at equal L<sub>G</sub> *

L/D max.

M<sub>G</sub> at equal L<sub>G</sub> *

C.P. at equal L<sub>G</sub>*
```

Our results are always given in column (2), and taken where possible from our two final charts (Plates 13-14), and those of the experimenter under consideration in column (1).

1. L. Bairstow, Tech. Report A.C.A., 1911-12, p.73-74.
Name of Section: Eiffel 13 bis (Bleriot 11a), maximum camber = 4.35%
Size of Model: 30"x 5".
Wind Velocity: 19 m.p.h.
Where Tested: N.P.L. 4 foot tunnels.
Number of Tests: 6, 4 without stagger at G/C = 0.4, 0.8, 1.2, 1.6; and 2 at G/C = 1.00 and Stagger = 44% and -38%.

RESULTS: A table of L_0 and L/D correction factors at equal \propto for 6°, 8°, and 10°; and small curves for L_0 , D_0 and L/D from -2° to 12°, from which results the following comparisons of correction factors is derived.

* Can only be computed from curves, and published curves are seldom accurate enough.

Lo at	equal a.	6 ⁰ - 10.0	I/D	MAX.
		STAG	GER = O.	
G/0	(1)	(2)	(1)	(2)
0.4	.62	•73 1	•75	•67
0.8	•77	•83 [¯]	•79	•76 2
1.0	.82	.86	.81	•78]
1.2	.8 6	∕ ₀ 88 1	•84	•80
1.6	.89	.91	•87]	.81 2

2. J. R. Pannell, Tech. Report A.C.A., 1915-16, pp. 99-110.

Name of Section:	<u>RAF 60</u> , maximum camber = 6.95%
Size of Model:	18" x 3"
Wind Velocity:	27.3 m.p.h.
Where Tested:	N.P.L. 3 foot tunnel.
Number of Tests:	8, 6 without Stagger at $G/C = 0.67$, 1.00, 1.33, 1.67, 2.00, and 2 at $G/C = 0.9$, with
	Stagger = 52% and -50%

RESULTS: Tables and curves showing the variation with G/C of Lo, Dc, L/D, Mc, and C.P., from -6° to 20° ; and showing the variations with Stagger of L_c, D_c, and L/D; and also loading of upper and lower planes for G/C = 1.03, Stagger = 0. From these we have derived corrections factors so as to make the following comparison. We have made as many comparisons as the author's data would permit.

VARIATION OF CORRECTION FACTORS WITH G/c. AT STAGGER = 0

G/0	Ic	Max.	Do	Min.	L/D	L/D Max.	
	(1)	(2)	(1)	(2)	(1)	(2)	
.67	.871	.883	.98	1.151	.773	.75	
.90	-91 5	93 5	-		805	.78	
1.00	.93	95	•9 9]	$1.12\frac{1}{2}$.84	•78]	
1.33	.94	967	• 98	1.12	.88	•80 1	
1.67	.99	•96]	•98]	1.11	•88 1	. 82	
2.00	.98 1	96 1	.95]	1.05	.92	.88	
STAG.		GAI	CHORD =	0.9			
+52%	•96 1	•98 2			.811	.78	
0	•91]	•93 [•	•80]	.78	
-50%	•86 1	85			. 82	•78	

Correct at equa	ion factor $1 \ll 0^{\circ}$ -	for L _C 10 ⁰
<u>G/C</u>	(1)	(2)
1.00	.81	.86
1.33	•84 1	.8 91
1.67	•87 1	•92 [~]
2.00	•90	.94

The correction factors for L_C at equal \propto show the same amount of variation, viz. 9% and 8% respectively, but (2) is always about 5% higher than (1). That this difference is considerable is shown by the fact that even at -40% stagger (2) does not become as low as (1). However, it is significant that the only two airfoils tested in the same tunnel at the same time by the same personnel and with conditions similar in every way, even though their camber differed by 4.16%, check within $\frac{1}{2}$ % for L_C correction factors at equal between 0⁰ - 13⁰.

 D_G , L/D, Mc, and C.P. correction factors at equal value of L_G cannot be obtained from the author's data.

D and L loading factors for upper and lower wings fit in very well with our values.

A comparison is made in Section VI.

3. L. W. Bryant, Tech. Report A.C.A., 1917-18, Vol. 1, pp. 184-187.

Name of Section: RAF 15, maximum camber = 6.38%Size of Model: 33%6 x 6", Rake = 21.03 Wind Velocity: 35.7 m.p.h. 50 foot section Where Tested: N.P.L. 7 foot tunnel No. 1 Number of Tests: 1, at G/C = .884, Stagger = 23.03 = 43\%

RESULTS: L₀. D₀. L/D, and C.P. at 4° intervals, $0^{\circ} = 16^{\circ}$. From these we have deduced the following correction factors: Lo Max. (1) .97 (2) .95 Lo at equal ∞ , 40-120 (1) .85 $\frac{1}{2}$ (2) .873 D_0 Min. (1) .98 $\frac{1}{2}$ (2) 1.13 W. L. Cowley, Tech. Report A.C.A., 1917-18, Vol. 1, p. 194 4. Name of Section: RAF 15. Size of Model: 18" x 3". Wind Velocity: 27.3 m.p.h. = 40 feet./seation. Where Tested: N.P.L. 4 foot tunnel No. 1 . 1 at G/C = 0.75, Stagger = 0. Number of Tests: RESULTS: The following comparison is made with correction factors deduced from Cowley's data: (2) (1)•881 ·903 Lo Max. L_c at equal \sim , 0°-12° •77글 .82 1.32 (.00121 1.293 D_{α} at equal L_{α} , $L_{\alpha} = (.00227)$ 1.462 1.40 1.12 1.13 D_a Min. L/D at equal $L_a = (.00227)$ •71금 •68 •71금 L/D Min. .76 J. C. Hunsaker, Engineering, January 7, 1916, as reported 5. by Alexander Klemin, Aviation, November 15, 1916. Name of Section: RAF 6, Maximum camber = 6.82% 18" x 13" Size of Model: Wind Velocity: 30 m.p.h. Where Tested: M.I.T. Number of Tests: 1 at G/C = 1.2, Stagger = 0. RESULTS: L_0 Maximum (1) .95 $\frac{1}{2}$ (2) .96 Dc and L/D correction factors for G/C = 1.00, Stagger = 0:-

·	Biplane C	prrection J	Factors		
L _g ± 10 ⁵]	u/D]	Do	
	(1)	(2)	(1)	(2)	
40	1.10	-	•90	-	
60	1.07	•941	•93	1.06)	
80	•99	•86 1	1.01	1.151)	Very poor
120	.85	•80 [~]	1.15	1.25)	Agreement
160	•85	•77	1.15	1.29 1]	-
200	•75	•76	1.25	1.31]	Good
240	•73	•75	1.27	1.33)	Agreement

These results attributed to Hunsaøker by Klemin show very poor agreement with ours, (except for $L_0 = .00200$ to .00240), and are evidently in error, for on none of our 42 separate tests from G/O = 50, to 200, and Stagger = -40% to 60%, did we get an L/D correction factor greater than 1.00, or a D₀ correction factor less than 1.00, at equal values of L₀. At the same time it is evident that for equal L₀, the values of the L/D correction factors will be the reciprocals of the D₀ correction factors; whereas the inaccuracy of these results attributed to Hunsaker is shown by the fact that they do not even meet this simple test.

Alexander Klemin (ref. above) deduced from N.P.L. results the following correction factor for L_0 , $4^0 - 8^0$; to which we compare our own:-

	L _o Correct:	lon Factors,	₽ ⁰ - 8 ⁰ .	
	GAP	CHORD		
	60	1.00	1.20	1.60
(1) (2)	•76 •83	.81 .86	•86 •88 1	.89 .91

6. E. P. Warner, A. Klemin, G. C. Denkinger, N.A.C.A. Report, 1917, pp. 289-292.

Name of Section: Eiffel 36, maximum camber = 6.88% Size of Model: Complete model of JN-2 Biplane 18" x 2%65 wings. Wind Velocity: 30 m.p.h. Where Tested: M.I.T. 4 foot tunnel. Number of Tests: 1 at G/c = 1.00, Stagger = 20%, Rake = about 20°. RESULTS: L_c max. (1) .93¹/_E (2) .96¹/_E L_c for practical range of flight, average (1) .88, (2) .88¹/_E

 7. Lt. Col. Robert, International Air Congress, London, 1923, pp. 357-367.
 Name of Section: SC 56a (upper), SC 56c (lower). Joakowski

profiles. Size of Model: 706 x 118 mm. = 27%80 x 4%65 Wind Velocity: 40 m/s = 89.5 m.p.h. Where Tested: Institute Aerodynamique St. Cyr, wind tunnel No. 1 (2 metres). Number of Biplane Combinations Tested: 4, stagger = 0, G/C = 0.51, 0.74, 1.14, 1.59. The upper and lower wings were separately tested.

RESULTS: L and D only were measured, and no data published on these, except small curves showing a fairly good agreement between the experimental and theoretical curves (from Prandtl's formulae) for L and D. This means that at equal values of L the theoretical values of D and \prec were in fair agreement with the experimental values.

Section VIII.

GENERAL SUMMARY AND CONCLUSIONS.

When this thesis was undertaken it appeared that the airplane designer could neither obtain from theory or experimental data an exact knowledge of the aerodynamic coefficients of biplanes. Certain formulae from the vortex theory showed good possibilities, but insufficient data, especially for staggered biplanes, existed to verify them.

We therefore proceeded to make a complete test in the wind tunnel of a large number of biplane combinations. Two U.S.A. 27 airfoil models were tested in 31 biplane combinations, from G/C equal 0.50 to 2.00, and stagger + 60% to -40%; while two Göttingen 387 airfoil models were tested in 12 combinations, from G/C equal 0.75 to 1.33, and stagger equal 60% to -40%. Each of the four airfoil models utilized was of course first tested thoroughly as a monoplane. The material of each was aluminum; the size 18" x 3", and all tests were conducted in the $4_{4}'00$ M.I.T. wind tunnel at 40 m.p.h.

The following is an outline of the specific results obtained from the original data. In each case we refer the reader to specific tables or charts.

(1). Tabulated values of L_c , D_c , L/D, M_c , and C.P. at equal values of \propto for all tests. Tables 35 - 76. Curves for L_c , D_c , and L/D plotted against \propto , and for M_c , and C.P., plotted against L_c , for 63% of all tests. Plates 3-4, 5-12.

(2) Tabulated values of L_c , D_c , L/D, M_c , and C.P. for upper and lower wings tested separately, U.S.A. 27 biplane at G/C = 1.00 and 1.67, and stagger = 0. Fraction of total lift and drag on each wing. Tables 34, q/pp./04-109. (3) Comparison at equal values of the L_c between the experimentally determined values and the values calculated by Munk's formulae, for $\frac{16ading}{he_{\Lambda}L_c}$, D_c , L/D, M_c , C.P., and \propto . Tables 77-88, 98-99, 104-107. (4) Biplane correction factors at equal values of \propto , for L_c , D_c , L/D, and M_c , for all tests. Tables 1-33.

(5) Biplane correction factors for L_c max., D_c min. and L/D max.; and for D_c , L/D, M_c and C.P., at equal values of the L_c . Plates 13-14, Tables 89-97, 100-103, 108-109.

All biplane correction factors mentioned in (5), as well as those for L_c at equal \sim (0^o - 13^o), have been plotted in Plates 13-14, in a form directly available for practical use. Correction factors taken from these curves have the following approximate degrees of accuracy:

±.01 for L_c max., L_c, at equal $\propto (0^{\circ}-13^{\circ})$, L/D max., and C.P.; **±.01** $\frac{1}{2}$ for D_c, D_c min., L/D, and *****M_c; and **±.02** $\frac{1}{2}$ for ******M_c.

A comparison with previously published data for the Eiffel 13 bis, Eiffel 36, R.A.F. 6, R.A.F. 6c, and R.A.F. 15, (Section VII), indicates that correction factors read from the our curves can be applied to this whole range of airfoils without incurring errors materially larger $(\pm .00\frac{1}{2})$ than those cited above. Agreement in specific cases did not usually come within this range of error, but the previous results, taken as a whole, bracket our correction factors. That is the significant fact, because these previous tests were performed at

* G/C = 1.00, stagger = -40% to 60% ** Stagger = 0, G/C = 0.50 to 2.00. several different wind tunnels, wind speeds, and model sizes.

All of our results outlined in (1) to (5) above have been thoroughly analyzed in Section VI. The correction factors at equal \sim (4) were found to be of little significance, with the exception of those for L_c, which had practically the same values (±.01) from 0[°] to 13[°] for both the U.S.A. 27 and G[°]t. 387. These have been incorporated in Plate 13.

The lift loading can be found within $\pm .01$ by the empirical equation (13): -

(Frac. of lift on upper wing) = $0.50 + K_1 L_c$,

where $K_1 = 23.5$ for G/C = 1.00, and 16.1 for G/C = 1.67. This applies only to unstaggered biplanes from $L_c = .00125$ to L_c max, but it gives just as good results as Munk's more complicated theoretical formula (10). More experimental work is needed to determine the distribution for staggered biplanes, and for $\propto < 4^{\circ}$. Drag loading can be found to $\pm .01$ by the empirical equation : --

(Frac. of drag on upper wing) = $K_2 + 33.3L_c$, (14) where $K_2 = 0.48$ for G/C=1.00, and .46 for G/C = 1.67. This applies only to unstaggered biplanes, from $L_c = 0$ to L_c max. A relationship which gave just as good agreement so far as our results were concerned, was:-

(% Drag on upper) = $50 + \frac{\alpha^{\circ}}{2}$. (13) The comparison of theoretical and experimental values of D_c , L/D, M_c, and C.P., at equal L_c (3), showed that: --(a) L_c cannot be theoretically calculated for a given ∞ , but that ∞ for a given L_c can be calculated for unstaggered biplanes by Munk's equation:-

$$\alpha_2 = \alpha_1 - \frac{c_{\mathrm{L}}}{\pi} \left[\left(\frac{s_1}{k_1^2 b_1^2} + I_1 \right) - \left(\frac{s_2}{k_2^2 b_2^2} + I_2 \right) \right]$$
(15)

This gives results accurate within 0.4° (average) from 0.1 to 0.9 L_{c} max. Munk dismisses stagger as negligible. We found that the average amount by which \propto was decreased, when the stagger was increased from 0% to 60%, was 1.2 at G/C = 1.00, and 2.5 at G/C = 0.75. The effect of positive stagger was twice that of negative. (b) D_{c} and L/D for a given L_{c} can be calculated by means of Munk's

$${}^{C}{}_{D_{2}} = {}^{C}{}_{D_{1}} - \frac{{}^{C}{}_{L}}{\pi} \left[\frac{s_{1}}{b_{1}^{2} \mathbf{k}_{1}^{2}} - \frac{s_{2}}{b_{2}^{2} \mathbf{k}_{2}^{2}} \right].$$
(16)

This gives results accurate within $\pm 5\%$ from 0.1 to 0.5 L_c max., for biplanes both with and without stagger. The effect of stagger at equal lifts is negligible from 0.1 to 0.9 L_c max.

(c) The values of M_{C} calculated by Munk's formulae (17) and (18), were hoplessly too low, averaging -18%.

(d) C.P. can be calculated within $\pm .01$ for unstaggered biplanes, G/C = 0.75 to 1.33, by Munk's formula -

$$C_{\bullet}P_{\bullet} = 0.50 - \pi + \frac{2 \pi \sin \beta_{\bullet} - \pi}{C_{L}}$$
(19)

Accurate results require the assumption that -

formula -

(Lift due to \propto) = (Total lift, experimental) - (Curvature lift, theoretical). The accuracy of the results thereby obtained indicates that the theoretical lift due to curvature is about correct. The theoretical lift due to \propto is entirely too high. If the assumption made above had been incorporated into the method for calculating M_c, results of greater accuracy might have been obtained. Our analysis of results has disclosed in general that an increase in the gap/chord ratio of a biplane -

- (1) equalizes the load on upper and lower wings,
- (2) increases L max, and L/D for a given L_c ,
- (3) decreases D_c min., and \propto and D_c for a given L_c , and

(4) increases M_c and C.P. by small amounts.

While an increase in stagger -

- (1) increases the load on the upper wing,
- (2) decreases L_o max.,
- (3) decreases ∞ for a given L_c,
- (4) increases M_c and C.P. by material amounts, and
- (5) has a negligible effect on L/D and D_c for a given lift.

Plates 13 and 14 present a concise quantitative estimate of these various effects due to stagger and gap/chord variation; while Munk's formulae, specified above, can predict loading, $\alpha_{\rm c}$, D_c, L/D, and C.P. with rough accuracy over limited ranges.

SECTION IX.

REFERENCES

Experimental

L. Bairstow, Tech. Report of the A.C.A. (British), 1911 p. 73 - 74.

2. J.R.Pannell, Tech. Report of the A.C.A., 1915 - 16, pp. 99 - 110.

3. L.W.Bryant, Tech. Report of the A.C.A., 1917 - 18, Vol. 1, pp. 184 - 187.

4. W.L.Cowley, Tech. Report of the A.C.A., 1917 - 18, Vol.1, p. 194.

5. J.C.Hunsaker, Engineering, Jan. 7, 1916.

6. E.P.Warner, A. Klemin, G.M.Denkinger, N.A.C.A. Report, 1917, pp. 289 - 292.

7. Lt. Col. Robert, Report of the International Air Congress, London, 1923, pp. 357 - 367.

Theoretical

8. L. Prandtl, Applications of Modern Hydrodynamics to Aeronautics, N.A.C.A. Report No. 116, Sections 18 - 19.

9. Max M. Munk, General Biplane Theory, M.A.C.A. Report No. 151.

Appendix A.

NOTATION AND METHOD OF CALCULATIONS.

Symbol	Unit of Measure	Meaning of Symbol							
LO	Lbs.	Zero reading of lift arm on wind tunnel balance.							
Ll	Lbs.	Reading in 1bs. on lift arm with wind at 40 m.p.h.							
Ls	Lbs.	Apparent lift due to spindle, or to spindle and balance crosshead combined. This only appeared when one airfoil was tested in the presence of another or when balance crosshead was not protected by the discoid case.							
L	Lbs.	Equal to $L_1 - L_0$ or $L_1 - L_0 - L_s$, gives the actual lift on the airfoil, except in the case of the test made with spindle 3%00 larger than standard where $L = (L_1 - L_0)/(.923)$.							
Do	Lbs.	Zero reading of balance drag arm.							
D	Lbs.	Reading of balance drag arm with wind velocity 40 m.p.h.							
D _s	Lbs.	Apparent drag due to spindle, or to spindle and balance crosshead combined when the latter was exposed.							
D	Lbs.	Equal to $D_1 - D_0$ or $D_1 - D_0 - D_s$ as the case may be, gives the drag on the airfoil.							
Lc	(Lbs./ft ² /mph)	The lift coefficient of the airfoil.							
D L/D	ŧŧ	"drag " " " " "lift/drag ratio " " "							
Mo	Revolutions of moment wheel.	Zero position of moment wheel							
Ml	**	Position of moment wheel, after pitching moment on the airfoil with wind velicity at 40 mph, has been counterbalanced by rotating the moment wheel, which operates a torsion wire.							

Symbol	Unit of Measure	Meaning of Symbol
Ms	Revolutions of moment wheel.	Moment of spindle about balance axis, or of spindle and exposed balance crosshead about balance axis, as the case may be.
М	In.Lbs.	Equal to $(M_1 - M_0)/3.78$ or $(M_1-M_0-M_8)/3.78$ as the case may be, represents the pitching moment on the airfoil about the balance axis prolonged. $3.78 = \text{torsion}$ wire constant.
^M l.e.	In.Lbs.	For monoplane: - pitching moment of the air- foil about its leading edge, and equal to M - Za - Xh. For biplane: - pitching moment about leading edge of mean geometrical chord, and equal to M-Za and Xh, where H is taken as positive (+), whether measured above or below the M.G.C.
Mc	(Lbs. ft./Sq.ft/ M. ft. of Chord)	P.H./ For monoplane: moment coefficient of the airfoil about its leading edge, equal to $M_{1.0.}/(12 \text{ c } \text{SV}^2)$, where $C = \text{chord}$ in ft, S = area in sq. ft., $V = velbcity$ of wind in m/p/h. For biplane: Homent coefficient about leading edge of geogetrical mean chord, equal to $M_{1.0.}/12 \text{ C } \text{SV}^2$.
Z	Lbs.	Force parallel to the Z - axis. Equal to L cas \propto - D sin \propto .
X	Lbs.	Force parallel to the X - axis. Equal to $D \cos \ll -L \sin \propto$.
œ	Degrees	Angle of attack, where $\ll = 0$ means that the chord coinsides with the direction of the airflow.
C.P.		Center of pressure coefficient expressed as a fraction of the Chord abaft the leading edge.
G	Ins.	Gap.
C	Ins.	Chord.
đ.	Ins.	Distance from the axis of rotation (= mean of upper and lower centers of rotation) to The leading edge, measured parallel to the X - axis. $d = 1.00 - d - (G/2-p) tan/3(Fig. 1).$

•

Symbol	Unit of Measure	Meaning of Symbol
h	Ins.	Distance from mean axis of rotation to the chord of the airfoil (or to mean geometrical chord of biplane), measured parallel to the $Z - axis$. $h = G/4 - p/2$. (Fig. 1.).
q	Ins.	Distance from chord of lower wing (at upper end of biplane as mounted in wind tunnel) to upper center of rotation, measured parallel to Z - axis.(Fig. 1).
đ	Ins.	Distance from upper center of rotation to center line of strut, measured parallel to the X - axis. (Fig. 1).
ß	Degrees.	Angle between strut and line parallel to $Z - Axis$. This angle was recorded as negative (-) for positive stagger, and positive (-) for negative stagger. (Fig. 1).

Υ LOWER AIRFOIL b d, a MEAN GEOM. CHORD FIG. 1 UPPER AIRFOIL

Munk's (Ref. 9) nomenclature was used in the theoretical calculations involving his equations.

q c.g.s. Dynamic pressure, equal to $\frac{1}{2} \rho v^2$

ß

Radians Angle of attack, where $\beta = 0$ means that the moment around the center of the wing is zero.

Symbol	Unit of Measure	Meaning of Symbol
Bo	Radians	The effect due to curvature, $\begin{bmatrix} C_{L_o} \\ -L_{T_o} \end{bmatrix}$ being the lift coefficient for $/3 = 0$.
C _L	C . g. S.	Absolute lift coefficient = L/qS .
Ъ	C . m. s.	Span.
T	C 5.	Chord.
8	C S.	Stagger
z		Center of pressure of airfoil without curva- ture effect, expressed as frac. of chord.
B ,C,∀,		Constants for a given biplane combination.
Bo		Equal \sqrt{B}
I		Interference factor.
k		Induction factor (empirical).

.

Appendix B.

ORIGINAL DATA.

N.B. In all tabulations of data, negative sign\$ (-) are inserted, but all positive signs (+) are omitted. The absence of a sign means that the value is positive (+).

÷

U.S.A.-27 Monoplane #1

lst Test

 $D_{g} = .0450$

п

#

#

a = 098

h = 0

<u>a</u>		Ľ <u>ľ</u>	$\underline{\mathbf{L}_1 - \mathbf{L}_0^{\#}}$	Do	$\underline{\mathbf{D}_1}$	$\underline{\mathbf{D}_1 - \mathbf{D}_0 - \mathbf{D}_s}$	Mo	Ml	M _l -M _o
-6	.368	.252	-,116	.0727	.1920	.0743	12.47	10.93	-1.54
-4	.366	.515	.149	.0728	.1586	.0408	12.47	11.13	-1.34
-2	•366	.746	•380	.0729	.1514	.0335	12.47	11.35	-1.12
0	.366	.945	.579	.0730	.1550	.0370	12.47	11.63	84
2	.366	1.196	. 830	.0730	.1643	.0463	12.47	11.83	64
4	•364	1,427	1.063	.0730	.1811	.0631			
6	•364	1.628	1.264	.0730	.2001	.0821	12.47	12.36	11
8	.364	1845	1.481	.0730	.2241	.1061			
10	.364	2041	1.677	.0730	.2494	.1314	12.47	12.80	.33
12	•363	2232	1,869	.0730	.2762	1582			
14	.362	2383	2.021	.0730	.3063	1883	12.47	13.18	.71
16	.362	2,456	2.094	, 0730	.3380	2200			• • •
18	.361	2.434	2.073	.0728	.4068	.2809	12.47	12.94	.47

End Test

 $D_{g} = .0450$ a = 1,00h = 0I. L1-L0 Mo Do $D_1 - D_0 - D_s$ \propto ւղ D₁ **№**1 $M_1 - M_0$ -6 .290 .164 -.126 .1445 .2691 .0796 14.28 12.73 -1.55 -4 .291 .428 .137 .1446 .2324 .0429 14.28 12.91 -1.37 .360 -2 .291 .651 .1447 .2238 .0341 14.28 13.18 -1.20 .853 0.290 .563 14.28 13.45 - .83 .2251 .1447 .0354 2 .290 .812 .1447 .2351 1.102 .0454 14.28 13.68 - .60 4 .289 1.320 1.031 .1447 .2507 .0610 14.28 13.91 - .37 6 .289 1.528 1.239 .1447 .2695 14.28 14.17 - .11 .0798 8 .288 1.733 1.445 .1447 .2932 1035 10 .288 1.927 1.639 .1284 .1447 .3181 14.28 14.71 •43 12 .287 2.122 1.835 .1551 .1448 .3449 14 .287 2.276 1.989 .1448 .3766 .1868 14.28 15.17 .89 16 .286 2.359 2.073 .2168 .1448 .4066 14.28 15.31 1.03 18 .285 2.330 2.045 .2760 .1448 .4658 14.28 15.01 .76 20 .285 2.267 1.982 .3366 .1448 .5264 22 .285 2.166 1.881 .1448 .5799 .3901 14.28 14.45 .17 99.

U.S.A.-27 Monoplane #1

Mean Values of Two Tests

a = 0,99 h = 0,11

<u>a</u>	L1-Lo	D ₁ -D ₀ -D ₅	L/D	L _c	B _C	M _l -M _o	<u>1-Mo</u> <u>3.78</u>
- 6	121	.0770	-1.57	00020	.000128	-1.55	410
- 4	.143	.0419	3.42	.00024	.000070	-1.36	- 360
- 2	.370	•0338	10.93	.00062	.000056	-1.16	- 307
0	.571	•0367	15.58	.00095	.000061	84	- 222
2	.821	.0459	17.90	.00137	.000077	62	164
4	1.047	.0620	16.89	.00175	.000103	38	101
6	1,251	.0810	15.46	.00209	.000135	11	- 029
8	1,463	.1048	13.98	.00244	.000175	•	•••••
10	1,658	1299	12.78	.00276	.000217	-37	.098
12	1.847	.1567	11.80	.00308	.000261	•	••••
14	2.005	.1876	10.70	00334	.000313	-80	.212
16	2.084	.2184	9.55	.00347	.000364	•••	• • • • • •
18	2.059	.2785	7.39	.00343	.000464	.62	.164
20	1.982	.3366	5.89	.00330	.000561	• • •	•=• •
22	1.881	.3901	4.82	.00314	.000650	.17	.045

<u>~</u>	x	Z	Za	Xh	<u>M</u> <u>1.e</u> .	<u>C.P</u> .%	Mc
- 6	,064	129	128	.0070	275	- 71.1	00015
- 4	. 051	.140	.139	.0056	493	117.2	00027
- 2	.047	.369	.365	.0052	667	- 60.3	00037
0	•038	.571	.566	.0042	784	45.7	00044
2	.018	.820	.811	.0020	973	39.5	00054
· 4	011	1.048	1.037	0012	-1.139	36.3	00063
6	050	1.251	1.240	0055	-1.275	- 33.9	00071
8	100	1,461	1.447	0110			
10	160	1.654	1.639	0176	-1.555	- 31.4	00086
12	231	1.838	1.819	0254			-
14	303	1,989	1.969	0333	-1.790	30.0	00099
16	364	2,061	2.040	0400			
18	370	2.042	2.021	0407	-1.898	30.9	00105
20	360	1.977	1.957	0396			
22	344	1,890	1.871	0378	-1.865	- 32.9	00104

lst Test

D_s =.0450,

a = 0.197 h = 0.14

å	<u>L</u> 1	L _o	L _l -L _o	$\frac{D_1}{D_1}$	Do	$D_1 - D_0 - D_1$	Ml	Mo	M _l -M _o
- 6	.146	,288	142	.2596	.1439	.0707	14,48	16,00	-1.52
- 4	.447	.288	.159	.2342	.1439	.0453	14.58	16.00	-1,42
- 2	,646	.287	.359	.2241	.1440	.0351	14.79	16.00	-1.21
0	,863	.286	.577	.2255	.1440	.0365	15.02	16.00	98
2	1.105	.286	.819	.2354	.1440	.0464	15.28	16.00	72
4	1.327	.285	1.042	,2500	.1440	,0610	15.53	16.00	47
6	1,528	.285	1.243	,2694	.1439	.0805	15.77	16.00	23
8	1,735	.284	1.451	.2903	.1438	.11 15	-	-	
10	1,932	.284	1.648	.3166	.1437	.1279	16.23	16.00	
12	2,122	.284	1.838	.3450	1436	.1564			
14	2,282	,283	1,999	3730	.1435	.1845	16.69	16.00	69
16	2,385	. 283	2.102	.4044	1434	.2160	16.72	16,00	.72
18	2.371	.282	2.089	.4603	.1432	.2721	16.65	16.00	,65
20	2,287	.282	2,005	.5264	.1430	.3384			
22	2.186	.281	1.905	,5874	.1428	.3994	15,97	16.00	03

2nd Test

 $D_{g} = .0450$ a = 0.000 h = 0.000

<u>_~</u>	, <u>L</u> o	<u>L</u>	Ll-ro	Do	Dl	$\underline{D_1 - D_0 - D_8}$	Mo	Ml	<u>M₁-Mo</u>
- 6	.3650	.239	-,127	.0716	.1964	.0798	11.97	10.41	-1,56
- 4	.3653	,503	,138	.0719	,1585	.0416	11.97	10.52	-1,45
- 2	.3648	.738	.373	.0719	,1510	.0341	11,97	10.77	-1.20
0	.3643	.962	,598	.0719	.1.540	.0371	11.97	10,92	-1,05
2	.3638	1,199	.835	.0719	,1630	.0461	11,97	11,27	70
. 4	.3631	1,419	1,055	,0719	.1795	.0626	11,97	11,47	- ,50
6	.3624	1,628	1,266	,0718	.1990	.0822	11.97	11.75	22
8	.3628	1.830	1.468	.0718	,2200	.1032	11,97	12.02	05
10	.3613	2.024	1.663	.0716	.2463	.1297	11.97	12,28	.31
12	.3614	2,225	1.864	.0714	.2750	.1586	11,97	12.46	.49
14	.3606	2,378	2,017	.0712	.3055	.1893	11,97	12.71	.74
16	.3601	2,477	2,116	.0711	.3355	.2194	11.97	12.92	.95
18	.3597	2,439	2,079	.0710	,3934	.2774	11.97	12,56	.59

U.S.A.-27 Monoplane #2

• . .

Mean Values of Two Tests

a = 0.98 h = 0.16

	•					Т.	M. M
~	LI-L	$\mathbf{D}_{1} - \mathbf{D}_{2} - \mathbf{D}_{2}$	$M_2 - M_1$	Tuo	D		<u></u>
	0	-1 -0 -8	-1 -0	20	² c	<u>n</u>	3 78
		-		· · · · · · · · · · · · · · · · · · · 			
- 6	134	.0753	-1.54	-,00022	.000126	-1.78	- 407
- 4	.149	.0435	-1.44	.00025	.000073	3.49	- 391
- 2	-366	.0346	-1.21	00063	.000058	10 50	- 330
Õ	-587	8950	-1.02	00004	000061	15 09	
2	.827	.0463	- 71	00138	000001	10,50	270
Ã	1.049	.061.8	- 10	00138	.000077	16 00	100
Â	1 954	0010		.00175	•000103	TO* 40	130
g	1 450	1074	- •4)	.00209	.000136	15.45	- •00T
10	1 656	•.LV /4	07	.00243	•000179	13.58	
10	1 050	•1400 1505	• 27	.00276	•000512	12,88	•071
74	T*00T	.1975	-	.00309	.000263	11.77	·
14	2.008	.1869	•72	•00335	.000312	10,75	.190
10	2.109	.2177	.84	.00352	•000363	9.70	•222
18	2.084	•2748	•62	.00347	.000458	7.48	.164
20	2.005	•3384		•00334	•000564	5.93	
22	1.905	•3994	- •03	.00318	•000666	4.77	008
		_	_				
a	<u>x</u>	<u>Z</u> .	Za	Xh	M _{lie}	C.P.º	70 M.
- 6	.060	140	137	.0096	260	- 62.0	00015
- 4	.053	.146	.143	0085	515	+ 117.6	00028
- 2	.048	364	357	0077	669	+ 61.2	- 00038
0	.037	587	.575	.0059	- 839	+ 47.7	- 00046
2	.018	828	.811	.0029	- 996	+ 40.3	- 00055
Ã	012	1,050	1.029	- 0019	-1,161	+ 36 0	- 00064
6	- 050	1,254	1.990	- 0080	-1 208	+ 24 4	- 00079
Ř	097	1 / 50	1 / 20	- 0155	-10220	≠)4+4	00072
10	- 160	1 651	1 610	0100 0056	1 504		00000
19	- 230	1 940	1 000	0020	-1+074	+ 3700	00087
14	- 202	1 001		0371	1 000		
14 76	=•3V3 2#3	0 00E T*AAT	T*A00	0485	-T-808	+ 30.2	00100
10	373	2.085	2.044	-,0596	-1.882	+ 30.1	00105
19	9.j02	2.004	2.022	0611	-1,919	+ 30.9	00106
20	571	T.884	7.926	-,0594	1 0 2 0		001.00
22	144	1.914	1,875		-T*A29	+ 35.7	=_00108

U.S.A.-27 Monoplane

r

Mean Values of Two Tests on #1 and Two Tests on #2

. . .

To be used as the standard to which to apply biplane correction factors.

d	$\frac{L_1 - L_0}{2}$	D ₁ -D ₀ -D ₈	Lc	D _c	T/D	<u>C.P.</u> #	Mc
- 6	128	.0762	.00021	.000127	- 1.68	-66.6	00015
- 4	.146	.0427	.00024	.000071	3.42	217.4	00028
-2	.368	.0342	.00061	.000057	10.76	+60.8	00038
. 0	.579	.0368	.00097	.000061	15.71	+46.7	00045
2	.824	.0461	.00137	.000077	17.85	+39.9	00055
4	1.048	.0619	.00175	.000103	16.92	+36.6	00064
6	1.253	.0812	.00209	.000135	15.45	+34.2	00072
8	1.461	.1061	.00244	.000177	13.76	-	••••
10	1.651	.1294	.00276	.000216	12.70	+31.6	00087
12	1.849	.1571	.00309	.000262	11.78	•	-
14	2.007	.1873	.00335	.000312	10.71	+30,1	00100
16	2.097	.2181	.00350	.000364	9.60		
18	2.072	.2767	.00345	.000461	7.49	+30.9	00105
20	1,994	.3375	•00332	.000563	5.91	- "	
22	1.893	.3948	.00316	,000658	4.80	+33.3	00106
U.S.A.-27 As Upper Plane of Bi-Plane Combination

G/C = 1.00, Stagger = 0

~	Lo	L1	L ₈	Ŀ	Do	$\frac{D_1}{D_1}$	Ds	D
- 6	.332	.155	.002	175	.0687	.1880	•0365	.0828
- 4	•332	.371	.002	.037	.0 687	.1569	.0366	.0516
- 2	•331	• 573	.002	•239	•0687	.1471	.0368	.0416
. 0	•330	.759	.002	.427	.0687	.1443	.0370	.0386
2	•330	.943	.002	.611	.0687	.1503	.0372	.0444
4	•770	1.191	.002	.859	.0685	, 1665	.0375	.0605
6	• 329	1,358	.002	1,027	•0685	.1852	•0378	.0789
8	•329	1.543	.002	1.212	•0685	.2079	.0380	.1014
10	•3%9	1.718	\$002	1.387	•0684	.2357	.0382	.1291
74	•)%0	1,905	.002	1 070	+V00)	2000	.0382	.1023
14	•] & O	2 246	002	1 01 8	0890	3164	.0382	.2024
.18	327	2.401	001	2.073	0678	3878	0302	· 2402 201 9
20	326	2.469	.001	2.142	.0683	. 4004	.0382	3020
22	323	2.409		2.086	.0683	4805	0382	3740
	•0~0		Ŭ	~	•••••			•J14V
	- /-	_	_				M_1 .	•M_
<u>- ~ ~</u>	$\underline{\Gamma/D}$	L _C	D	Mo	Ml	M _l -M _o	• -	
	aa .			•••••				.78
- 6	-2.12	00029	.000138	11,56	10,12	-1.44		381
- 4	.72	•00006	•000086	11.56	10,19	-1.37	· • •	,363
- 2	5.75	.00040	.000069	11,56	10.43	-1.13		299
0	11,07	.00071	.000064	11,56	10.63	- •93		246
2	13.79	.00102	.000074	11,56	10,79	77		204
4	14.20	.00143	.000101	11,56				
0	13.04	.00171	•000132	11,56	11.31	25		,006
10	10 AV	-00202	•000T03	11,50	11 200			~ ~ ~
19	0 70	•00251	+000213	11 56	TT*00	•12	•	032
12	8.62	00205	.0008327	11,00 11 66	10.02	67		ממר
16	7.98	.003.20	.000400	11.56	16.4)	•07	•	
18	7,10	.00344	.000486	11.56	12.01	7 25		3.57
20	7.08	00357	.000505		₩₩\$ 71			1001
22	5.58	.00347	.000623					

U.S.A.-27 As Upper Plane

of Biplane Combination

G/C = 1.00, Stagger = 0

- Continued -

a = 0."99

h = 0,19

<u> </u>	X	<u>Z</u>	Za	Xh	MIE	<u>C.P</u> .	Mc
- 6	.064	184	182	.012	187	339	00010
- 4	.053	.032	.0317	.010	385	4.010	00021
- 2	.050	.237	. 235	.009	524	.736	00029
0	.039	429	.425	007	- ,664	.515	00037
2	.023	.612	.606	.004	806	.439	00045
4	Ū.	.860	.851	0			
6	039	1,028	1,018	007	-1,091	.356	00061
8	068	1.213	1,202	013		•	
10	113	1,387	1,372	-,022	-1,362	.328	00076
12	170	1,572	1,556	032			-
14	-,225	1.740	1.721	043	-1,587	.304	00088
16	-,299	1,907	1,888	-,057			
18	363	2.060	2.040	-,069	-1.752	. 283	-,00097

U.S.A.-27 As Lower Plane

of Biplane Combination

G/C = 1.00, Stagger = 0

<u>~</u>	Lo	L	$\underline{\mathbf{L}_{\mathbf{g}}}$	L	Do	<u>D</u> 1	$\frac{D_s}{2}$	Ð
-6	.332	.309	.002	•022.J	.0712	.1785	.0374	.0699
-4	.332	.495	.002	.165	.0712	.1482	.0374	.0396
-2	.332	668	.002	.338	.0712	.1418	0374	.0332
0	.331	.830	.002	.501	.0712	.1468	.0374	.0382
2	.330	1.006	002	.678	.0712	1556	0373	.0471
4	.330	1,188	.002	.859	.0712	.1701	.0373	.0616
6	329	1.333	.002	1.005	.0710	1890	0372	.0808
8	329	1,501	.002	1.174	0709	2083	0372	.1002
10	.328	1.664	.002	1.338	.0708	.2308	.0371	.1229
12	.327	1.813	.002	1.488	.0707	.2558	.0370	.1481
14	327	1.961	.002	1.635	0705	2791	0369	.1717
16	.327	2.079	.001	1.754	0704	.3023	.0368	.1951
18	.327	2.168	.001	1.843	.0703	3297	.0367	.2227
20	.326	2.129	.001	1.804	.0700	.3850	.0366	.2784
22	.325	2.110	.001	1.786	.0699	.4538	.0365	.3574

U.S.A.-27 As Lower

Plane of Bi-Plane Combination

G/C = 1.00, Stagger = 0

Continued

α.	т/п	T	Th	17	36	17. IF	M _l -M _o
	<u>11 1</u>	TC		<u></u>	<u> </u>	<u>m1-mo</u>	3,78
		· •	· -	,		-	
- 6	31	00004	.000116	14.45	12.67	-1.78	471
- 4	4.16	.00028	.000066	14.45	12.81	-1.64	434
- 2	10.18	.00056	.000055	14,45	13.06	-1.39	368
0	13.12	.00084	.000064	14.45	13.32	-1.13	299
2	14.39	.00113	.000079	14.45	13.45	-1,00	264
4	T3.9T	.00143	.000103	14.45	• 2 • 00		
6	12,45	.00168	+000135	14,45	13.82	- •63	169
10	11,70	•00133	.000107	14.40	14 00	05	068
10	10.03	.00225	.000205	14,40 1 <i>4 4</i> 5	14.20	- ,20	000
7.8	0 53	00240	000247	14+40 1 <i>1 1</i> 5	14 60	24	064
16		00202	000200	14,40	74002	• 64	.004
า้อ	.8.29	00292	000323	14.45	15 03	59	1 52
20	6.49	.00301	.000464	14.45	14.78	.33	.087
22	5.00	00298	000596	14.45	14.51	.06	.016
	-•	••••••	•••••			•••	
		•		b = 0			
		ä	= 039)	$\mathbf{H} = 0$	5 14		
o.	Ŧ	7.	7.0	ኝኩ	v	с р	1C
	4	#	<u></u>	<u>~u</u>	LE	<u>0.F</u> .	<u> </u>
- 6	.068	- 029	- 028	010	- 434	-1 406	- 00024
- 4	.050	.161	-150	.007	577	1,196	00032
- 2	.044	337	313	.006	675	.669	00038
õ	.038	.501	466	.005	760	.506	00042
2	.024	.679	630	.003	- 895	.440	00050
4	.001	.860	.800	.000	••••	• - • •	
6	024	1,007	.937	003	-1.109	.368	00062
8	-,064	1.176	1.092	-,009	·		
10	111	1,338	1.241	016	-1,323	.330	00074
12	165	1,486	1.381	023			
14	-,229	1.626	1,511	032	-1.479	.304	00082
16	297	1.738	1.614	042	•		-
18	÷ ,358	1.820	1.692	050	-1.589	.291	00088
20	355	1.790	1.665	050	-1.628	•303	00091
22	340	1.790	1.665	048	-1.697	.315	-,00094

U.S.A.-27 As Upper Plane of Biplane Combination

G/C = 1.67 Stagger = 0

<u>a</u>	Lg	Lo	Ll	L	D_{s}	De	D ₁	D
-6 -4 -2 0 2 4 6 8 10 12 14 16 18 20	002 001 001 001 001 001 001 001 001 001	•333 •333 •333 •331 •331 •331 •330 •330	.178 .520 .714 .921 1.140 1.357 1.550 1.751 1.969 1.140 2.351 2.498 2.626 2.589	.157 .185 .380 .587 .808 1.025 1.218 1.420 1.638 1.809 2.022 2.168 2.298 2.262	.0373 .0375 .0377 .0379 .0381 .0382 .0383 .0383 .0383 .0383 .0383 .0383 .0383 .0383 .0383	.0687 .0687 .0687 .0687 .0687 .0687 .0687 .0687 .0687 .0682 .0682 .0682 .0680 .0675 .0675	.1694 .1450 .1417 .1453 .1564 .1739 .1964 .2236 .2947 .3347 .3761 .4153 .4724	.0634 .0388 .0353 .0387 .0496 .0676 .0894 .1166 .1495 .1882 .2282 .3698 .3095 .3666
<u>~</u>	<u>l/D</u>	L _C	Dc	M	<u>0</u>	M ₁ y	<u>1-Mo</u>	M1-Mo 3.78
-6 -4 -2 0 2	-2.47 4.78 10.76 15.19 16.28	000 .000 .000 .000 .000 .001	26 .000 31 .000 63 .000 98 .000 35 .000	0106 12, 065 12, 059 12, 065 12, 065 12, 083 12,	51 1 51 1 51 1 51 1 51 1	1,10 1,31 1,58 1,80	1.61 1.41 1.20 .93 .71	426 373 318 246 188
6 8 10 12	13.61 12.22 10.95 9.61	.002 .002 .002 .003	03 .000 37 .000 73 .000 02 .000	$(149 \ 12)$ $(194 \ 12)$ $(249 \ 12)$ $(314 \ 12)$ $(314 \ 12)$	51 1 51 51 51 1 51 51	.2,28 -	.23 .30	061 .079
16 18 20	8.05 7.42 6.18	003 003 003	61 .000 83 .000 77 .000	450 12, 516 12, 611 12,	51 51 51 1	.3.69	1.18	.313

U.S.A.-27 As Upper Plane of Biplane Combination G/C = 1.67 Stagger = 0

- Continued -

a = 0**#**99

h = 0!19

4	X	<u>Z</u>	Za	Xh	MIE	<u>C.P.</u>	Mc
- 6	.047	165	163	.009	254	514	00014
- 4	.050	.181	.178	.010	542	.999	00030
- 2	.048	.378	.374	.009	683	601	00038
0	.039	.587	.581	.007	820	470	00046
2	.022	.808	.800	.004	984	.406	00055
4	004	1.025	1.015	.001	-	-	
6	038	1,220	1.208	.007	-1.276	.348	00071
8	081	1.421	1.407	015			•••
10	136	1.638	1.622	026	-1,569	.319	00087
12	192	1.807	1,789	4.037	•		• • • •
14	- 267	2.014	1,994	051	-1.809	.299	00100
16	339	2,156	2.135	- 065	, — •	-	
18	- 416	2.279	2.256	079			
20	430	2.250	2.228	082	-1.997	.296	00111

U.S.A.-27 As Lower Plane of Biplane Combination

G/C = 1.67 Stagger = 0

<u>~</u>	L _B	L _o	L1	Ŀ	Ds	Do	<u>D</u> 1	D
- 6	002	.338	•234	102	.0358	.0707	1877	.0812
- 4	002	.337	.458	.123	.0358	.0707	.1517	.0452
- 2	002	.336	. 653	.318	.0358	.0707	.1448	.0383
0	002	.336	.840	.506	0358	.0707	.1465	.0400
2	002	.336	1.040	.706	.0358	0706	1560	.0496
4	- 002	.336	1.244	.910	.0358	.0706	.1702	.0638
6	002	.335	1.411	1.077	.0358	0705	.1885	.0822
8	- 002	335	1.590	1,257	0359	0705	2055	.0991
10	002	.334	1.762	1.430	0359	.0704	2288	1225
12	001	.334	1.936	1.604	.0360	.0701	2540	.1479
14	001	333	2,080	1.748	.0360	0700	.2813	.1753
16	001		2,204	1.872	.0361	.0700	.3069	2008
18	001	.332	2.239	1,908	.0361	.0698	.3405	.2346
20	001	.332	2,188	1,956	.0362	.0696	.4057	.2999

U.S.A.-27 As Lower Plane

.

6 1 1.00

of Biplane

G/C = 1.67, Stagger = 0

- Continued -

4	<u>L/D</u>	Lc	Dc	<u>n</u> o	<u>M</u> 1	<u>M1-Mo</u>	<u>M</u> 1-Mo 3,78
- 6	- 1,25	00017	.000135	12.48	10.83	-1,65	.436
- 4	2.73	.00021	.000075	12,48	10,85	-1.63	.431
- 2	8,32	,00053	.000064	12.48	11.13	-1.35	357
0	12,68	.00084	.000067	12,48	11.36	-1.12	.296
2	14.22	.00118	.000083	12.48	11.58	90	238
4	14,28	.00152	.000106	12.48		• • •	
6	13.12	.00180	.000137	12.48	11.97	51	.135
8	12.69	.00210	.000165	12.48		•	•=•
10	11.71	00238	.000204	12.48	12.37	11	.029
12	10.85	.00267	.000246	12.48		• • • • •	•••••
14	9,98	.00291	.000292	12.48	12.54	. 06	.016
16	9.32	.00312	.000335	12.48		••••	
18	8.13	.00318	.000391	12.48	12.97	. 49	.130
20	6.10	00300	000500	19 /9	19 60	10	
~~	V&17	•00109	• • • • • • • • • •	<i>₩₩</i> 0	T~•00	♦ ⊥ <i>G</i>	• • • • •

a = 0.099 h = 0.019

~	X	Z	Za	Xh	<u>M_{l.e}.</u>	<u>C.P</u> .	<u>u</u> c
- 6	.070	110	109	.013	314	95	00017
- 4	.053	,121	.112	.010	533	1.470	00030
- 2	.049	.316	.313	.009	661	.698	00037
0	.040	.506	.501	.008	789	.520	00044
2	.025	<u>,</u> 708	.700	.005	933	.440	00052
4	.000	.911	.902	.000			
6	031	1.079	1.068	-,006	-1,262	.390	00070
8	078	1,257	1,244	-,015			-
10	-,128	1,428	1,412	-,024	-1.465	.342	00081
12	-,189	1,599	1,581	036	·	-	
14	242	1,694	1,678	046	-1.708	.336	00095
16	322	1.853	1.835	061	·		
18	366	1,885	1.867	070	-1,806	.319	00100
20	352	1,845	1,827	-,067	-1.862	.337	00104

.

U.S.A.*27 Monoplane #1

Mounted on Balance Crosshead

<u>~</u>	L	Lo	<u>D</u> 1	Do	$\underline{\mathbf{D}_1} - \underline{\mathbf{D}_0} - \underline{\mathbf{D}_8}$	$L_1-L_0-L_s$	<u>L/D</u>
-6 -4	.118 .394	.272 .271	.2725 .2335	.0672	.0826 .0447	158 .119	- 1.9 2.8
-20	.637 .865	.271 .270	.2240 .2273	.0657 .0647	•0360 •0403	.462 .696	10.2
246	1.328	•270 •269	.2359 .2516	.0639	•0487 •0650	.826 1.058	17.0
8	1.751	• 269 • 268	.2741	•0607 •0595	•0885 •1089 •1364	1.483	14.4
12 14	2.149	•267,	•3498 •3826	.0586	.1653	1.883	12.4
16 18	2.408 2.380	.267 .266	.4169 .4732	.0562 .0554	.2331 .2954	2,145 2,119	9,2 7,2

Drag (D_s) Lift (L_s) , of 5-7/8" spindle and balance crosshead on which spindle was mounted 3/4" from balance axis.

<u>~</u>	Do	<u>D1</u>	Ds=D1-Da	L	L	$L_s = L_1 - L_0$
-6	.0451	.1678	1227	.304	.300	.004
-4	.0451	.1674	.1223	.304	.300	.004
-2	.0449	.1672	1223	.303	.299	.004
0	.0449	.1672	.1223	.302	.299	.003
2	.0447	.1680	.1233	.302	.299	.003
4	.0445	.1680	.1235	.301	.300	.001
6	.0443	.1680	.1237	300	299	.001
8	.0442	1705	1263	299	299	
10	.0442	.1699	.1257	299	299	· Õ
12	.0440	.1699	.1259	299	.300	001
14	.0440	.1699	.1259	.298	300	002
16	.0440	.1706	.1266	296	.300	004
18	.0440	.1704	.1264	.295	.300	005

U.S.A.-27 Monoplane #1

Crosshead mounting protected by discoid case

lst Test

		D _s :	= .0327	8.	= 077	9 h •	= 0#83			
<u>a</u>		Lo	L ₁ -L ₀	$\underline{D_1}$	Do	D ₁ -D ₀ -D ₁	<u>M</u> 1	<u>u</u> 0	Ms	3.78 M
- 6	.170	.270	100	.1762	.0719	.0716	9.18	10.80	09	-1.53
- 4	•447	•270	.177	.1432	.0715	•0390	9.02	10,80	09	-1,69
- 2	• 688	.270	.418	.1364	.0708	.0329	9.04	10.80	09	-1.67
0	.907	. 269	.638	.1378	.0698	0353	9.10	10.80	08	-1.62
2	1,159	268	.891	.1484	.0683	.0474	9.15	10.81	08	-1.56
4	1.379	.268	1,111	.1634	.0671	.0636	9.21	10.81	08	-1.48
6	1.601	.267	1.334	1821	.0661	.0833	9.38	10.81	08	-1.35
8	1.824	.267	1.557	.2067	.0649	.1091	9,55	10.81	08	-1.18
10	2.033	.266	1.767	.2343	.0635	.1381	9.75	10.81	08	98
12	2.241	.266	1.975	.2600	.0621	.1652	10.00	10.81	08	73
14	2.400	.265	2,135	.2940	.0613	.2000	10.33	10.82	08	41
16	2.469	.265	2.204	.3358	.0598	•2383	10.51	10.82	08	23
18	2.446	.265	2.181	.3979	.0590	.3062	10.38	10.82	09	35
20	2.364	.264	2.100	.4672	.0575	.3770	10.08	10.82	09	65
22	2.238	.264	1.974	.5300	.0562	.4411	9,83	10.82	09	- ,90

2nd Test

				$D_{g} = .0$	327	
<u>~</u>	Ll	Lo	$\mathbf{L}_1 - \mathbf{L}_0$	$\underline{D_1}$	Do	D ₁ -D ₀ -D ₈
- 6 - 4 - 2 0 2 4 6	.139 .406 .650 .879 1.115 1.351 1.558	.270 .269 .268 .268 .268 .267 .267 .267	131 .137 .382 .611 .848 1.084 1.292	.1775 .1407 .1314 .1334 .1426 .1574 .1761	.0677 .0664 .0655 .0648 .0630 .0622 .0613	.0771 .0416 .0332 .0359 .0452 .0625 .0921
8 10 12 14 16 18	1.799 2.009 2.194 2.352 2.447 2.418	.266 .266 .265 .264 .264	1.533 1.743 1.928 2.087 2.183 2.154	.2000 .2258 .2530 .2864 .3215 .3878	0598 0592 0579 0563 0553 0553	.1075 .1339 .1624 .1974 .2435 .3010

U.S.A.- 27 Monoplane #2

.

Crosshead mounting, protected by discoid case.

.

lst Test

	•	D ₈ ≕	.0301	8.	= 077	5	h =	0 # 87		
<u>_</u>	L	L	L _l -L _o	<u>D1</u>	Do	D ₁ -D ₀ -D	<u>e 1</u>	Mo	M _s	3,78 M
- 6	.106	.254	148	.1934	.0839	.0794	9.65	11.31	09	-1.57
- 4	.384	.253	.131	.1556	.0879	.0436	9.49	11.31	09	-1.73
- 2	.634	.252	.382	.1460	.0818	.0341	9.53	n.31	09	-1.69
0	.858	.251	607	.1482	.0808	.0373	9.58	11.30	08	-1.64
2	1.093	.250	.843	.1559	.0797	.0461	9.62	11.30	08	-1.60
4	1.337	.250	1.087	.1728	.0786	.0641	9.69	11.30	08	-1.53
6	1,560	249	1.311	.1913	.0775	.0837	9.86	11.30	08	-1.36
8	1.777	249	1.528	.2144	.0763	.1.080	10.04	11.30	08	-1.18
10	1.972	.248	1.724	.2400	.0751	.1348	10.22	11.30	08	-1.00
12	2.150	247	1.903	.2676	.0738	.1637	10.46	11.29	08	75
14	2.341	.246	2.095	3008	0725	1982	10.76	11.29	08	45
16	2.447	.246	2.201	.3358	.0712	.2345	10.95	11.29	08	- 26
18	2.431	245	2.186	3975	.0699	2975	10.85	11.29	09	45
20	2.357	.245	2.112	.4706	0687	.3718	10.44	11.29	09	76
22	2.234	.244	1.990	.5300	.0674	.4325	10,19	11.29	09	-1.01

2nd Test

$D_{s} = .0327$

<u>~</u>	Ll	Lo	L ₁ -L _o	Dl	Do	D ₁ -D ₀ -D ₅
- 6	.201	.331	130	.1830	.0617	.0886
- 4	479	.331	.148	.1446	.0633	.0486
- 2	.727	-330	.401	.1331	.0641	.0375
0	.958	.330	.628	1392	.0659	.0406
2	1.194	.330	.871	.1475	.0666	.0502
4	1.427	329	1.098	.1658	.0677	.0654
6	1.637	.328	1.309	.1870	.0686	.0857
8	1.843	.328	1.515	.2101	.0691	.1083
10	2.039	.327	1.712	.2376	.0698	.1351
12	2.229	.327	1.902	2661	.0705	1629
14	2.384	.326	2,058	.2981	.0716	.1938
16	2.470	.325	2,145	.3306	.0723	.2246
18	2.451	.325	2.126	2851	.0736	.2788
20	2.387	.324	2.063	.4702	.0746	.3629
22	2.271	.323	1.948	.5395	.0758	.4310

112

U.S.A.-27 Monoplane

Mean of 4 tests for Lift and Drag and 2 Tests for Moments. Mounted on balance crosshead; crosshead protected from wind by discoid case.

To be used as standard to which to compare biplane results and thereby obtain biplane correction factors.

<u></u>	Ţ	Ð	L _c	Dc	<u>r/d</u>	<u>2 L</u>	<u>2 D</u>	2 M LR
- 6	127	.0791	00021	.000132	-1.63	254	.1582	500
- 4	,148	.0432	.00025	.000072	3.42	.296	.0864	-1.038
- 2	•396	•0343	.00066	.000057	11.54	.792	.0686	-1.416
0	.622	•0373	.00104	.000062	16,71	1.244	.0746	-1.758
2	• 863	•0473	.00144	.000079	18.30	1.726	.0946	-2.136
-4	1.095	.0639	.00183	.000106	17.20	2,190	1278	-2.510
6	1.311	.0838	.00219	.000140	15.70	2.622	.1676	-2.830
8	1,533	.1082	.00256	.000180	14,20	3.066	2164	-3.166
10	1.737	.1355	.00289	,000226	12,82	3.474	2710	-3.486
12	1,927	.1636	.00321	.000273	11,79	3,854	3272	-3.754
14	2.091	.1976	.00349	.000329	10.60	4.182	3952	-3.960
16	2,183	•2329	•00364	.000388	9,38	4.366	4658	-4.096
18	2,162	.2958	•00360	.000493	7.30	4.324	.5916	-4.172
20	2.092	.3707	. 00349	.000618	5.64	4.184	.7414	-4.218
22	1.971	•4350	<u>00320</u>	.000725	4.53	3.942	.8700	-4.142

a = 0,77 h = 0,85

<u>a</u>	<u>x</u> x	X.	Za	Xh	M _{le} ,	<u>¥</u> c	<u>C.P.</u>
- 6	410 .066	135	104	.056	250	00014	62
- 4	452 .053	.145	.112	.045	519	00029	1,19
- 2	445 .048	.394	.304	.041	708	00039	60
0	431 .037	•622	.479	.031	879	00049	.47
2	418 .018	.864	. 665	.015	-1.068	00059	.41
4.	399013	1,097	.845	011	-1,255	-,00070	.38
6	-,360-,053	1,312	1.011	045	-1.415	-,00079	.36
8	312105	1,535	1,182	089	-1,583	00088	.34 1/2
10	262168	1.734	1,338	143	-1.743	00097	.33 1/2
12	196241	1.917	1,476	-,205	-1.877	00104	.32 1/2
14	114313	2.075	1,600	-,266	-1.980	00110	.32
16	-,066-,370	2.162	1.667	315	-2,048	00114	.31 1/2
18	106385	2,146	1.654	328	-2.086	-,00116	.32 1/2
20	188366	2.092	1.610	311	-2,109	00117	.33 1/2
22	254335	1.990	1.532	285	-2.071	00115	.34 1/2

Crosshead mounting protected by discoid case. Length of spindle = 8:00, i.e., 3:00 longer than standard length.

 $D_{g} = .0547$

lst Test

<u>_a</u>	Lo	<u>L</u> l	L1-L0	Do	Dl	D ₁ -D ₀ -D ₈
- 6	.328	.148	180	.0570	.2130	.1013
* 4	+327	•445	.128	•0583	.1652	.0522
- 2	• 327	•717	.391	.0598	.1563	.0418
0	• 3 20	.908	.642	.0606	.1595	.0442
A A	. 520	1.205	•883	.0617	.1690	.0526
* 6	•)~0 205	1 806	1.130	.0626	.1866	•0693
g	205	1 005	1.381	.0637	•2088	.0904
10	304	1.920 9 169	1.000	.0651	•2372	.1174
19	*76 *	2 2 5 0	1.014	•0001	.2682	.1474
1 4	303	2 502	2.020	.0670	•2971	.1754
16	300	2,000	0 2 02	.0080	• 3282	.2055
18	201	2 626	2 2 0 4	.0090	• 3079	•2442
-0	للدري (2.020	2014	.0702	•4221	• 2972
			2nd	Test		
a	Lo	$\underline{L_1}$	L_1-L_0	Do		D ₁ -D ₀ -D ₅
- 6	.267	.155	118	.0695	.2041	.0799
- 4	.266	.446	.180	.0693	.1684	.0444
- 2	.265	.70908	.443	.0690	.1598	.0361
		, 706	_		.1598	• •
0	.265	.946	.681	.0678	.1632	.0407
2	.265	1.217	.944	•0665	.1742	.0630
- 4	.264	1.459	1,195	•0655	.1914	.0812
6	•263	1.703	1.440	.0644	.2129	.0938
8	•263	1,932	1.669	•0630	•2383	.1206
10	.262	2.139	1.877	.0620	.2657	.1490
12	.262	2.362	2.100	.0610	.2983	.1826
14	• 262	2.544	2.282	.0600	•3343	.2196
10	.261	2.604	2.343	.0590	.3741	.2604
18	.261	z.513	2.312	▲0576	.4418	.3295

U.S.A.-27 Monoplane #2

Crosshead mounting protected by discoid case. Length of spindle = 8.00, i.e., 3.00 longer than standard.

$D_8 = .0547$

lst Test

~	Lo	<u>L</u>	$\underline{L_1 - L_0}$	Do	<u>D</u> 1	$\frac{D_1 - D_0 - D_8}{2}$
- 6	.266	.188	078	.0706	.1980	.0727
- 4	. 266	.473	.207	.0695	.1670	.0428
- 2	.265	•733	468	.0680	.1600	.0373
- O	.264	.973	•709	•0665 [°]	.1652	.0440
2	.264	1.244	•980	.0654	.1770	.0569
4	. 263	1.491	1.228	.0642	.1945	.0756
6	.262	1,729	1,467	•0632	.21 55	.0976
8	,261	1.955	1.694	.0622	.2405	.1236
10	.261	2.185	1.924	. 0613	.2720	.1560
12	. 261	2.404	2.143	.0603	.3048	. 1898
14	.261	2,555	2.294	•0594	.3356	.2215
16	.260	2.616	2,356	.0584	.3749	.2618
18	.260	2.600	2.340	•0569	.4495	•3379
				0		
-1	-	-		zna rest	_	
			T T			
<u>~</u>	T ⁰	1	L1-L0	O	D	<u>D1-D0-D8</u>
<u>~</u> - 6	<u>Lo</u> 268	<u>L1</u> .213	<u>LL</u> 055	 0703	.1923	<u>D1-D0-D8</u>
- 6 - 4	<u>Lo</u> .268 .267	<u>L</u> .213 .497	$\frac{L_1 - L_0}{055}$.0703 .0695	<u>D</u> 1 .1923 .1656	.0673 .0514
- 6 - 4 - 2	<u>10</u> .268 .267 .266	1 .213 .497 .754	$L_1 - L_0$ 055 .230 .488	.0703 .0695 .0688	<u>D</u> .1923 .1656 .1606	$D_1 - D_0 - D_8$.0673 .0514 .0371
α - 6 - 4 - 2	.268 .267 .266	1 213 497 754	L ₁ -L ₀ 055 .230 .488	0 .0703 .0695 .0688	D1 .1923 .1656 .1606 .1606	D ₁ -D ₀ -D ₈ .0673 .0514 .0371
- 6 - 4 - 2 0	.268 .267 .266 .265	<u>L</u> .213 .497 .754	L1-L0 055 .230 .488 .741	0 .0703 .0695 .0688 .0675	D1 .1923 .1656 .1606 .1606 .1606	$D_1 - D_0 - D_8$.0673 .0514 .0371 .0441
- 6 - 4 - 2 0 2	Lo .268 .267 .266 .265 .265	<u>1</u> .213 .497 .754 1.006 1.273	<u>L</u> 1-L ₀ 055 .230 .488 .741 1.008		D .1923 .1656 .1606 .1606 .1663 .1787 or	$\begin{array}{c} D_1 - D_0 - D_8 \\ .0673 \\ .0514 \\ .0371 \\ .0441 \\ .0568 \end{array}$
- 6 - 4 - 2 0 2	Lo .268 .267 .266 .265 .265	<u>L</u> .213 .497 .754 1.006 1.273	L1-L0 055 .230 .488 .741 1.008		D1 .1923 .1656 .1606 .1606 .1663 .1787 .1791	D ₁ -D ₀ -D ₈ .0673 .0514 .0371 .0441 .0568
- 6 - 4 - 2 0 2 4	Lo .268 .267 .266 .265 .265 .265	<u>1</u> .213 .497 .754 1.006 1.273 1.509	L ₁ -L ₀ 055 .230 .488 .741 1.008 1.245	 .0703 .0695 .0688 .0675 .0668 .0668	D ₁ .1923 .1656 .1606 .1603 .1663 .1787 .1791 .1957	$\begin{array}{c} D_1 - D_0 - D_8 \\ .0673 \\ .0514 \\ .0371 \\ .0441 \\ .0568 \\ .0750 \end{array}$
- 6 - 4 - 2 0 2 4 6	Lo .268 .267 .266 .265 .265 .265 .264 .264	<u>1</u> .213 .497 .754 1.006 1.273 1.509 1.737	$ \begin{array}{r} L_1 - L_0 \\ 055 \\ .230 \\ .488 \\ .741 \\ 1.008 \\ 1.245 \\ 1.473 \end{array} $		D ₁ .1923 .1656 .1606 .1606 .1663 .1787 .1791 .1957 .2184	$\begin{array}{c} D_1 - D_0 - D_8 \\ .0673 \\ .0514 \\ .0371 \\ .0441 \\ .0568 \\ .0750 \\ .0987 \end{array}$
- 6 - 4 - 2 0 2 4 6 8	Lo .268 .267 .266 .265 .265 .265 .264 .264 .264	<u>1</u> .213 .497 .754 1.006 1.273 1.509 1.737 1.960	L ₁ -L ₀ 055 .230 .488 .741 1.008 1.245 1.473 1.697		$\begin{array}{r} \underline{D_{1}}\\ .1923\\ .1656\\ .1606\\ .1606\\ .1663\\ .1787\\ .1787\\ .1791\\ .1957\\ .2184\\ .2442 \end{array}$	$\begin{array}{c} D_1 - D_0 - D_8 \\ .0673 \\ .0514 \\ .0371 \\ .0441 \\ .0568 \\ .0750 \\ .0987 \\ .1255 \end{array}$
- 6 - 4 - 2 0 2 4 6 8 10	Lo .268 .267 .266 .265 .265 .265 .265 .264 .264 .264 .263 .263	<u>1</u> .213 .497 .754 1.006 1.273 1.509 1.737 1.960 2.200	L1-L0 055 .230 .488 .741 1.008 1.245 1.473 1.697 1.937	D .0703 .0695 .0688 .0675 .0668 .0660 .0650 .0640 .0627	D 1923 .1656 .1606 .1606 .1663 .1787 .1957 .1957 .2184 .2442 .2744	$\begin{array}{c} D_1 - D_0 - D_8 \\ .0673 \\ .0514 \\ .0371 \\ .0441 \\ .0568 \\ .0750 \\ .0987 \\ .1255 \\ .1570 \end{array}$
- 6 - 4 - 2 0 2 4 6 8 10 12	Lo .268 .267 .266 .265 .265 .265 .265 .264 .264 .264 .263 .263 .263	1 .213 .497 .754 1.006 1.273 1.509 1.737 1.960 2.200 2.386	$ \begin{array}{r} L_1 - L_0 \\ 055 \\ .230 \\ .488 \\ .741 \\ 1.008 \\ 1.245 \\ 1.473 \\ 1.697 \\ 1.937 \\ 2.124 \\ $	D .0703 .0695 .0688 .0675 .0668 .0660 .0650 .0640 .0627 .0615	$\begin{array}{r} \underline{D_{1}}\\ .1923\\ .1656\\ .1606\\ .1606\\ .1663\\ .1787\\ .1787\\ .1957\\ .2184\\ .2442\\ .2744\\ .3044 \end{array}$	$\begin{array}{c} D_1 - D_0 - D_8 \\ .0673 \\ .0514 \\ .0371 \\ .0441 \\ .0568 \\ .0750 \\ .0987 \\ .1255 \\ .1570 \\ .1882 \end{array}$
$ \begin{array}{c} 2 \\ - 6 \\ - 4 \\ - 2 \\ 0 \\ 2 \\ 4 \\ 6 \\ 8 \\ 10 \\ 12 \\ 14 \\ 14 $	Lo .268 .267 .266 .265 .265 .265 .264 .264 .264 .263 .263 .263 .262 .262	1 .213 .497 .754 1.006 1.273 1.509 1.737 1.960 2.200 2.386 2.538	$ \begin{array}{r} L_1 - L_0 \\ 055 \\ .230 \\ .488 \\ .741 \\ 1.008 \\ 1.245 \\ 1.473 \\ 1.697 \\ 1.937 \\ 2.124 \\ 2.276 \end{array} $	D .0703 .0695 .0688 .0675 .0668 .0660 .0650 .0640 .0627 .0615 .0603	D 1923 1656 1606 1663 1787 1791 1957 2184 2442 2744 3044 3396	$\begin{array}{c} D_1 - D_0 - D_8 \\ .0673 \\ .0514 \\ .0371 \\ .0441 \\ .0568 \\ .0750 \\ .0987 \\ .1255 \\ .1570 \\ .1882 \\ .2246 \end{array}$
$ \frac{2}{2} - 6 - 4 - 2 0 2 4 6 8 10 12 14 16 $	Lo .268 .267 .266 .265 .265 .265 .265 .264 .264 .264 .263 .263 .262 .262 .262	1 .213 .497 .754 1.006 1.273 1.509 1.737 1.960 2.200 2.386 2.538 2.595	$ \begin{array}{r} L_1 - L_0 \\ 055 \\ .230 \\ .488 \\ .741 \\ 1.008 \\ 1.245 \\ 1.473 \\ 1.697 \\ 1.937 \\ 2.124 \\ 2.276 \\ 2.334 \\ \end{array} $	D .0703 .0695 .0688 .0675 .0668 .0660 .0650 .0640 .0627 .0615 .0603 .0592	$\begin{array}{c} \underline{D}_{1} \\ .1923 \\ .1656 \\ .1606 \\ .1606 \\ .1663 \\ .1787 \\ .1791 \\ .1957 \\ .2184 \\ .2442 \\ .2744 \\ .2442 \\ .2744 \\ .3044 \\ .3396 \\ .3844 \\ .384$	$\begin{array}{c} D_1 - D_0 - D_8 \\ 0.0673 \\ 0.0514 \\ 0.0371 \\ 0.0441 \\ 0.0568 \\ 0.0750 \\ 0.0987 \\ 0.1255 \\ 0.1570 \\ 0.1882 \\ 0.2246 \\ 0.2735 \end{array}$
$ \frac{2}{2} $ - 6 - 4 - 2 0 2 4 6 8 10 12 14 16	Lo .268 .267 .266 .265 .265 .265 .264 .264 .264 .263 .263 .262 .262 .262	1 .213 .497 .754 1.006 1.273 1.509 1.737 1.960 2.200 2.386 2.538 2.595	$ \begin{array}{r} L_1 - L_0 \\ 055 \\ .230 \\ .488 \\ .741 \\ 1.008 \\ 1.245 \\ 1.473 \\ 1.697 \\ 1.937 \\ 2.124 \\ 2.276 \\ 2.334 \\ $	D .0703 .0695 .0688 .0675 .0668 .0660 .0650 .0640 .0627 .0615 .0603 .0592	$\begin{array}{c} \underline{D}_{1} \\ .1923 \\ .1656 \\ .1606 \\ .1606 \\ .1663 \\ .1787 \\ .1791 \\ .1957 \\ .2184 \\ .2442 \\ .2744 \\ .3044 \\ .3044 \\ .3396 \\ .3854 \\ .3854 \end{array}$	$D_1 - D_0 - D_8$.0673 .0514 .0371 .0441 .0568 .0750 .0987 .1255 .1570 .1882 .2246 .2735

U.S.A.-27 Monoplane

Length of Spindle = 8"00, i.e., 3"00 longer than standard Average of 2 tests on #1 and 2 tests on #2.

~	$L_1 - L_0$	$D_1 - D_0 - D_8$	$\underline{\mathbf{L}_{\mathbf{c}}}$	Do	L/D
- 6	106	•0803	00016	.000125	- 1.3
- 4	.186	.0477	.00029	.000073	3.9
- 2	.448	.0381	.00069	.000059	11.8
0	.694	•0433	.00107	.000067	16.0
2	.954	.0573	.00147	.000088	16.7
4	1.201	.0752	.00185	.000116	16.0
6	1.440	.0951	.00222	.000146	15.1
8	1.665	1218	00256	.000187	13.7
10	1.893	.1524	.00292	.000235	12.4
12	2.099	.1840	.00323	.000283	11.4
14	2,258	.2178	.00347	.000335	10.4
16	2.339	.2600	.00360	.000400	9.0
18	2,312	•325 9	.00356	.000502	7.1

G/C = .50 Stagger =-40%

 $D_{g} = .0556$, a = 0.85, h = 0 Short Strut, $\beta = 38.7$

<u>d</u>	Lo	<u>L</u> 1	Ŀ		P _o	D	D	<u>r/d</u>
- 6	.296	.051	245	.0056	.0969	.3431	. 1950	-1.3
- 4	.294	.442	.148	.0054	.0976	.2733	.1147	1.3
- 2	.292	.797	.505	.0052	.0982	.2508	.0918	5.5
0	.290	1,126	. 836	.0050	.0988	.2480	.0886	9.4
2	.288	1,455	1,167	.0047	.0994	.2595	•0998	11.7
4	.286	1,798	1.512	.0045	.0995	.2809	.1213	12.5
6	.285	2,102	1.817	.0043	.0996	.3108	.1513	12.0
8	•283	2.423	2.140	.0041	.0999	.3499	.1903	11.2
10	.281	2,727	2.446	•0039	.1002	.3928	.2331	10.5
12	.279	3.021	2.742	.0037	1005	.4445	.2847	9.6
14	.277	3.302	3.025	.0035	.1007	•4945	.3347	9.0
16	.274	3,521	3.247	•0032	.1006	.5577	3983	8.2
18	.272	3,579	3.307	.0030	.1005	6296	.4705	7.0
20	•270	3.475	3.205	.0028	.1004	•7038	•5450	5.9

<u> </u>	Mo	<u><u><u></u></u></u>	M	X	Z	Za	MIE	<u>C.P</u> .
- 6	9,86	6.74	825	.165	267	227	598	74 1/2
- 4	9.86	6.57	870	.120	.143	.122	992	2.32
- B	9,86	6,76	-,820	.110	,500	.425	-1.245	.83
0	9,86	7.03	749	.089	.836	.711	-1.460	58
2	9.86	7.23	695	. 660	1.169	994	-1,689	.48
4	9,86	7.49	627	.015	1.517	1.290	-1.917	.42
6	9.86	7.70	572	039	1.822	1,550	-2.122	.39
8	9.86	7.95	- 505	110	2.143	1.821	-2.326	36
10	9,86	8,17	- 447	- 183	2.450	2.083	-2.530	.34 1/2
12	9.86	8.25	- 426	- 290	2.740	2.330	-2.756	321/2
14	9.86	8.42	- 354	- 407	3.014	2.572	-2.926	321/2
16	9.86	8.30	- 413	510	3.230	2.745	-3.158	32 1/2
18	9.86	7.82	- 540	- 552	3.296	2,802	-3,342	34
20	9.86	8,09	468	- 583	3,196	2.718	-3,186	33

G/C = .50 Stagger = 0

 $D_{g} = .0571$ a = 0.85 h = 0.12 Short Strut, $\beta = 0^{\circ}$

<u> </u>	Lo	L	Ŀ		Do	D	D	$\overline{\Gamma}/\overline{D}$
- 6	.296	.320	.024	.0083	.0837	.2635	.1144	.2
- 4	•296	.665	.369	.0085	.0843	.2364	.0865	4.3
- 2	.294	•968	.674	.0088	.0843	.2283	.0781	8.6
0	•293	1,287	.994	.0089	.0842	.2333	.0831	11.9
2	.291	1,617	1,326	.0088	.0840	2535	.1036	12.8
4	.290	1,986	1,696	.0086	.0839	.2854	.1358	12.5
6	.295	2,304	2.009	.0084	.0838	.3204	.1711	11.7
8	.299	2.607	2.308	.0082	.0834	. 3579	2092	11.5
1Õ	. 298	2.923	2.625	.0080	.0831	.4058	2576	10.2
12	.297	3,217	2,920	.0077	.0829	.4531	3054	9.6
14	.296	3.470	3.174	.0075	.0827	.5086	3613	8.8
16	•295	3,689	3.394	.0073	.0822	.5607	4141	8.2
18	.294	3,836	3.542	.0071	.0820	. 6130	4668	7.6
20	.293	3.956	3,663	.0069	.0818	.6731	•5273	7.0
22	.292	3.859	3,567	.0067	.0816	.7980	.6526	5.5

~	<u>и</u> о	Ml	Ā	X	Z	<u>Za</u>	Xh	M LE	<u>C.P.</u>	
- 6	9,98	7.07	-,770	.115	.012	.010	014	766	-21,77	
- 4	9,98	7.27	716	.112	.361	.307	013	-1.010	. 93	1/2
- 2	9,98	7.70	604	.100	.664	.564	012	-1.156	.58	•
0	9,98	8,07	-,505	.083	.994	.844	010	-1.339	.45	
2	9,98	8.40	-,418	.057	1.328	1,129	007	-1.540	.38	1/2
4	9.98	8.61	352	.017	1.700	1.445	002	-1.795	35	•
6	9,98	8,95	273	.040	2,015	1.712	.005	-1,990	•33	
8	9,98	9,27	-,188	-,114	2,313	1,968	.014	-2.170	.31	1/2
10	9,97	9,50	124	200	2.628	2.235	.024	-2.383	.30	•
12	9.97	9,89	021	305	2.920	2.483	.037	-2.541	. 29	
14	9.97	10,13	.042	406	3.125	2.655	.049	-2.662	.29	
16	9.97	10,52	.146	540	3.374	2.870	.065	-2.789	.27	1/2
18	9.96	11.17	.320	650	3.508	2.983	.078	-2.741	26	•
20	9.96	11.01	.279	-,756	3,620	3.076	.091	-2.888	.26	1/2
22	9.95	10.87	.244	732	3.548	3.015	.088	-2.859	.27	•

G/C = .50 Stagger = 60%

 $D_{g} = .0556$, a = 0.89, h = 0.16, Short Strut, $\beta = 50.2$

<u>a</u>	Lo	Ll	L	D'	Do	$\underline{\mathbf{D}_1}$	Ð	<u>l/D</u>
- 6	.305	.321	.016	•0023	.0492	.2271	.1200	.1
- 4	.305	.697	.392	.0025	.0502	.1941	.0858	4.6
- 2	.304	1.078	.774	.0028	.0512	.1895	•0799	9.7
0	.304	1,451	1.147	0030	.0527	.2017	.0904	12.7
2	.304	1.843	1,539	.0032	. 0543	.2289	.1158	13.3
4	•303	2,228	1,925	.0035	.0547	.2644	.1506	12.7
6	.303	2,613	2.310	•0037	•0552	.3111	.1966	11.8
8	.303	3.006	2.703	.0040	•0563	.3693	. 2534	10.7
10	.302	3.376	3.074	.0042	.0574	•4293	.3121	9,8
12	.302	3.730	3.428	.0044	.0584	.4980	.3796	9.0
14	.301	4.046	3.745	.0047	.0595	•5747	.4549	8,2
16	.301	4.297	3,996	.0049	.0604	.6937	.5728	7.0
18	.301	4.418	4,119	.0052	.0614	.8506	.7284	5.7
20	.300	4.433	4.133	.0054	.0622	1.0230	. 8998	4.6
22	.300	4,289	3.989	.0056	,0630	1.2764	1,1512	3.5

<u>~</u>	<u>n</u> o	$\overline{\pi^{J}}$	M	X	<u>Z</u>	<u>Za</u>	Xh	<u>u</u> lb	<u>C.P</u> .	
- 6	10.11	8.41	450	.120	.003	.003	.0192	472	52.50	
- 4	10,11	9,43	- ,180	.112	.383	•343	.0179	541	.47	-
- 2	10.11	10,37	.069	.107	.770	,685	.0171	-,633	.27	1/2
0	10.11	11,29	.312	.090	1.147	1,021	.0144	-,723	.21	•
2	10,11	12.13	535	.063	1,541	1.372	.0101	-,847	.18	1/2
4	10,11	12,93	.746	.016	1.930	1,720	.0026	977	.17	•
6	10.11	13.63	.931-	•046	2.317	9,062	0074	-1.123	.16	
8	10.11	14.35	1.120	-124	2.712	9,412	0199	-1,272	.15	1/2
10	10.11	14.98	1.289	- 225	3.080	2.741	0360	-1.416	. 15	1/4
12	10.11	15,51	1.429	- 342	3.428	3.052	0546	-1,568	.15	
14	10,11	15,80	1.503	- 455	3.745	3.335	0728	1.759	.15	1/2
16	10,11	15,28	1,369	-, 550	3.996	3.557	0870	-2.101	.17	1/2
18	10,11	14.04	1.040	- 5 80	4.140	3,680	0929	-2.647	.21	1/2
20	10,11	12,49	. 630	564	4.190	3.722	0902	-3.002	.24	
22	10,11	11,29	.312	428	4.134	3.676	0685	-3.295	.26	1/2

G/C = .75 Stagger = -40%

 $D_{s} = .0556$, a = 0, b = 0, b = 0, b = 28

<u>~</u>	Lo	L	Ĩ		Do	<u>D</u> 1	D	<u>l/D</u>
-6	.294	.062	232	.0067	.0926	.3189	.1640	- 1.4
-4	.292	.482	. 190	•0065	.0935	.2520	.0964	1,9
-2	.291	.857	.566	.0063	.0943	.2357	.0795	7.1
0	.290	1.221	.931	.0061	.0947	.2376	.0812	11.5
2	.289	1.577	1.288	.0059	.0950	.2509	.0944	13.7
4	.287	1.928	1.641	.0056	.0957	.2795	.1226	13.4
6	.284	2,282	1,998	.0054	.0963	.3136	.1563	12.8
8	,282	2.648	2.366	.0052	.0967	.3573	. 1998	11.8
10	.281	3.000	2.719	.0050	.0971	.4073	.2496	10,9
12	.279	3.311	3.032	.0048	.0972	.4632	.3056	9.9
14	.278	3.578	3.300	.0046	.0976	.5232	.3654	9.3
16	.276	3.791	3.515	.0044	0977	.5874	4297	8.2
18	.274	3.878	3.604	.0042	.0978	.6755	.5179	7.0
20	.272	3,859	3,587	.0040	.0978	.7579	.6005	6.0

<u>~</u>	Mo	Ml	M	X	<u>Z</u>	Za	<u>Xh</u>	Mle	<u>C.P</u> .
-6	11,80	8.79	795	.138	250	215	.0028	583	775
-4	11.80	8.82	788	.108	.182	.156	.0022	946	1,735
-2	11.80	8,85	780	.099	.561	.483	.0020	-1.165	.695
0	11,80	9,20	-,687	.081	.931	.801	.0016	-1.490	,535
2	11.80	9.41	632	.048	1,289	1.109	.0010	-1.742	.45
4	11.80	9.60	582	.008	1.645	1,415	.0002	-1.997	.405
6	11.80	9,78	534	054	2.002	1.721	0011	-2.254	.375
8	11.80	9.75	542	132	2.370	2.040	-,0027	-2.579	•36
10	11,80	10.02	470	228	2.720	2,340	0046	-2,805	•345
12	11,80	10.20	423	330	3.028	2.605	0066	-3.021	•335
14	11.80	10,29	-,400	442	3.286	2.815	0088	-3.204	.325
16	11.80	9,99	479	-, 558	3.496	3,005	-,0112	-3.472	•33
18	11,80	9.02	735	620	3.584	3.082	0124	-3.805	.355
20	11.80	8,41	896	-,660	3.575	3.075	0132	-3,958	.37

G/C = .75, Stagger = -20%

 $D_{g} = .0556$, a = 0.87, h = 0.07 Short Strut, $\beta = 14.9$

<u>d</u>	I.	r	Ŀ	DI	Do	D ₁	Ð	<u>r/d</u>
-6	298	.131	167	.0080	.0870	.3010	.1504	-1.1
₩4	296	.518	.222	.0078	0880	.2436	.0922	2.4
-2	.295	.876	.581	.0076	.0888	2283	.0763	7,6
0	. 293	1.230	.937	.0074	.0889	2325	.0806	11.6
2	,292	1.581	1,289	.0072	.0900	.2477	,0949	13.6
4	.290	1.959	1.669	.0070	.0905	.2744	.1213	13.7
6	289	2.361	2.072	.0068	0909	.3155	.1622	12.8
8	287	2,668	2.381	.0066	.0915	.3571	.2034	11.7
10	.286	2,986	2,700	.0064	0920	.4060	.2520	10.7
12	284	3.320	3.036	.0062	0923	.4600	3059	9.9
14	282	3.636	3.354	.0060	.0925	.5200	.3659	9.2
16	281	3.852	3.571	.0058	.0928	.5746	.4204	8.5
18	.280	4.017	3.737	0056	.0931	.6419	.4876	7.7
20	.278	4.044	3.762	0053	.0936	.7302	.5757	6.5
22	.277	3.878	3.601	.0051	.0940	.8513	.6966	5.2

<u>~</u>	Mo	$\underline{\mathtt{M}_{l}}$	Ā	x	<u>Z</u>	Za	Xh	Mle	<u>C.P</u> .
-6	11.50	8,50	794	.130	180	157	.0091	646	-1.37
-4	11.50	8.53	785	.108	.215	.187	.0076	980	-1.52
-2	11.50	8.73	732	.096	578	.503	.0067	-1.242	.715
0	11.50	8.88	693	.081	.937	.815	.0057	-1.514	.54
2	11.50	9.10	635	.048	1.290	1,122	.0034	-1.760	.455
4	11,50	9.10	635	.005	1.672	1.455	.0004	-2.090	.415
6	11.50	9.14	- 625	055	2.077	1.805	0039	-2.426	.39
8	11.50	9.36	566	130	2.384	2.074	0091	-2.631	.365
10	11.50	9.53	521	220	2.700	2.348	0154	-2.854	.35
12	11.50	10.04	386	330	3.032	2.638	0231	-3.001	•33
14	11.50	9.91	420	456	3.340	2,905	0319	-3,293	.33
16	11,50	9,90	- 423	-,580	3.544	3.084	0406	-3.466	325
18	11.50	9.67	484	690	3.700	3,220	0483	-3.656	•33
20	11.50	9.14	-,624	774	3,726	3.240	0541	-3.840	.345
22	11,50	8,18	878	-,698	3,601	3,132	0489	-3.961	.365

	υ	.S.A27	Biplane		
	G/C = .	75	Stagger	= 0	
$\mathtt{D}_{\mathtt{g}}$	0571	a = 0,87	$h = 0^{H}_{*}$	8 Short	Strut, 3= 0°
a Lo -6 .313 -4 .313 -2 .312 0 .311 2 .310 4 .309 6 .308 8 .307 10 .306 12 .306 12 .306 12 .306 14 .305 16 .303 18 .301	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	D8 0083 0085 0088 0088 0088 0086 0084 0082 0080 0077 0075 0073 0071	D D 0808 283 0819 23 0825 222 0832 23 0839 25 0846 28 0853 32 0858 36 0858 36 0862 41 0866 47 0870 53 0875 60	D 29 .1367 72 .0897 72 .0788 39 .0847 18 .1020 72 .1369 19 .1711 37 .2126 55 .2642 20 .3206 01 .3785 17 .4498 95 .5173	L/D 7 3.2 8.2 13.2 13.40 12.5 11.6 10.6 9.8 9.0 8.2 7.5
20 .300 22 .299	4.285 3.985 4.213 3.909	•0069 •0067	.0880 .749 .0880 .889	94 .5974 91 .7373	6.7 5.3
<u>~ 10</u>	MJ M	x	<u>z za</u>	Xh	<u>M</u> <u>c.p</u> .
-6 9.82 -4 9.82 -2 9.82 0 9.82 2 9.82 4 9.82 6 9.82 8 9.82 10 9.82 12 9.82 14 9.82 14 9.82 16 9.81 18 9.81 20 9.81	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} .126 \\ .101 \\ .101 \\ .085 \\ .054 \\ .008 \\ .053 \\ .0$.108094 .279 .243 .640 .556 .116 .971 .366 1.189 .836 1.598 .151 1.870 .466 2.148 .800 2.436 .129 2.722 .386 2.945 .682 3.203 .844 3.344 .943 3.432	010 - 009 - 008 - 1 007 - 1 004 - 1 000 - 1 004 - 2 011 - 2 017 - 2 017 - 2 027 - 2 036 - 2 047 - 3 056 - 3 064 - 3	.728 -2.24 .963 1.15 .188 .62 .480 .44 .621 .395 .963 .355 .123 .33 .306 .31 .509 .30 .679 .285 .822 .28 .024 .275 .148 .275 .262 .275

•...

122

			G/C ≖	.75,	Stagge	r = 20%	,	
	D _g ≓ .	0556,	a = 0.8	6, h	= 0:09	, Short	Strut, j	3 =-14:9
d	Lo	Ll	F		Do	Dl	D	<u>l/D</u>
-6	.300	.282	018	.0065	.0747	.2542	.1174	15
-4	.299	.664	.365	.0068	.0757	.2210	.0829	4.41
-2	.298	1.024	.726	.0070	.0766	.2145	.0753	9,65
0	.297	1.387	1,090	.0072	.0771	.2204	.0805	13.53
2	.296	1,818	1.522	.0075	.0777	.2461	.1053	14.43
4	.295	2,176	1,881	.0077	.0784	.2791	.1374	13,70
6	.294	2.545	2.251	.0080	.0791	.3218	.1791	12,57
8	• 293	2,867	2,574	•0082	.0797	.3644	.2209	11,62
10	•292	3.182	2.890	.0084	•0803	.4197	.2754	10,54
12	.291	3.495	3.204	.0087	.0811	.4750	.3296	9.74
14	.290	3.799	3,509	.0089	.081.8	•5409	.3946	8,90
16	•289	4.057	3.768	.0084	.0827	.6025	•4553	8,27
18	.287	4,278	3.991	.0087	.0835	.6711	•5233	7.64
20	₄ 285	4.345	4.060	.0085	.0838	.7628	.6149	6.61
22	284	4.276	3.992	.0083	.0840	8869	.7390	5.40

<u>a</u>	Mo	MJ	Ā	X	2	Za	Xh	Mle	<u>C.P</u> .
-6	11.51	8.53	788	.114	029	025	.0103	773	-8.88
-4	11.51	9.02	- 659	.107	.360	.310	.0096	- 979	.905
-2	11.51	9.35	- 571	100	723	.621	.0090	-1.200	.555
0	11.51	9.65	- 490	.081	1.090	.937	.0073	-1.434	.44
2	11.51	9.94	- 415	. 953	1.524	1.311	.0048	-1,731	.38
4	11.51	10.09	376	.005	1.893	1.629	.0005	-2.006	.355
6	11.51	10.38	- 299	- 046	2.257	1.940	0041	-2.235	.33
8	11.51	10.60	241	- 138	2.580	2,220	0124	-2.449	315
10	11.51	10.84	177	210	2.886	2.482	0189	-2.640	.305
12	11.51	11.00	135	324	3.240	2.787	0292	-2.893	.295
14	11.51	11.08	114	- 560	3.470	2.985	0504	-3.049	.29
16	11.51	11.28	061	600	3.742	3,220	0540	-3.227	. 285
18	11.51	11.33	048	- 736	3.952	3.400	0662	-3.382	.285
20	11.51	11.32	050	- 810	4.220	3.630	0729	-3.607	285
22	11.51	10.86	172	814	3.970	3.415	0733	-3.514	.295

G/C = .75 Stagger = 40 %

 D_{g} = .0556, a = .0".91, h = 0."12, Short strut, β = -28.°1

_~	<u> </u>	<u>L</u> 1	<u>L</u>	<u></u> 1	_D_a_	$\underline{\mathbf{D}}_{\mathbf{S}}^{\perp}$		L/D
-6	.301	.380	.079	.2382	.0686	.0049	.1091	.72
-4	,300	.747	.447	.2100	.0700	,0052	.0792	5.65
-2	.299	1,130	.831	.2086	.0707	.0054	.0769	10.81
0	.298	1.519	1,221	.2214	.0714	.0057	.0887	13.78
2	.297	1.905	1,608	.2495	.0721	.0059	,1159	13.89
4	.296	2.288	1.992	.2856	.0731	.0061	,1508	13.21
6	.295	2,673	2,378	.3300	.0740	.0064	.1940	12.26
8	.294	3.004	2.710	.3841	.0747	.0066	.2472	10.97
10	.203	3.379	3,086	.4418	.0753	,0069	.3040	10.16
12	.292	3.706	3,414	.5021	.0760	.0071	.3633	9.40
14	.291	4,059	3.768	.5784	.0766	.0073	,4389	8,60
16	.291	4,326	4.035	,6525	.0771	.0076	.5122	7.88
18	.290	4.458	4,168	.7447	.0776	.0078	.6037	6.92
20	.288	4,483	4.195	.8610	.0782	.0081	.7191	5.84
22	.286	4.353	4:067	.9833	.0788	.0083	,8406	4,84

d	Ml	™o	x	Z	Za	Xh	MIE.	C.P.	
<u> </u>									
-6	9.15	11,78	,118	.067	,061	.014	770	3.83	
-4	9.74	ħ	.108	. 440	.400	.013	953	.72	
-2	10.25	q	.106	.826	.752	.013	-1.170	.47	
0	10.75	'n	.089	1.221	1,102	.011	-1,386	.38	
2	11.20		.059	1.611	1.468	.007	-1.628	,33	1/2
4	11.48	H	023	1.996	1,817	003	-1.893	.31	1/2
6	11.83	11.78	057	2.384	2,170	-,007	-2.137	.30	
8	12.20	n	108	2.720	2.475	013	-2.351	.29	
10	12.39	4	223	3.050	2.775	027	42.587	.28	
12	12,65	н	356	3.410	3,102	043	-2,829	.27	1/2
14	12.81	ų	484	3.758	3.420	058	-3.089	.27	1/2
16	12.97	11	-,620	4,013	3.658	074	-3,269	.27	•
18	12,54	"	715	4.145	3,770	086	-3.483	,28	
20	11.06	11.78	760	4.182	3.805	-,091	-3.524	.27	1/2

G/C = .75 Stagger = 60 %

 $D_s = .0556$, a = 0."90, h = 0."07, Short strut, $\beta = -38.°7$

æ		L ₀	L		0	D _s l	D	L/D
-6	.357	.304	.053	.2489	.0725	.0037	.1171	.5
-4	.764	.302	.462	2166	0743	.0039	.0828	5.6
-2	1152	.302	.850	.2141	.0743	.0042	.0700	12.2
õ	1549	.302	1.247	.2276	.0752	.0044	.0924	13.5
2	1,953	.301	1.652	.2564	.0761	.0046	1201	13.7
4	2340	.301	2,039	.2944	.0770	.0049	.1569	13.0
6	2747	.300	2.447	.3470	.0779	.0051	.2084	11.7
8	3155	,300	2.855	.4038	.0787	.0053	.2642	10.8
10	35 08	.299	3,209	.4649	.0795	.0056	.3242	9.9
12	3,854	.298	3,556	. 5380	.0799	.0058	.3967	9.0
14	4199	. 297	3.902	.6164	.0803	.0061	.4744	8.2
16	4439	.296	4.143	.7177	.0810	.0063	,5748	7.2
18	4588	.295	4.293	.8410	,0817	.0065	.6972	6.2
20	4601	.295	4.306	.9777	.0827	.0068	.8326	5.2
22	4525	.294	4.231	1.1906	.0838	,0070	1.0442	4.1

$\underline{\alpha}$	M ₁	<u>М</u> о		Z	Za	Xh	M IE.	C.P.	
-6	9.74	11.68	.122	.039	.035	- ,009	560	-4.79	
-4	10.41	11.68	.115	.456	,410	.008	754	.55	
-2	11.11	11.67	.100	.847	.762	,007	917	.36	
0	11.77	11,66	.092	1.247	1.122	.006	-1.099	.29	1/2
2	12,42	11,65	.062	1.656	1.490	,004	-1.290	.26	•
4	12.94	11.64	,018	2.044	1.840	.011	-1.497	.24	1/2
6	13,44	11.64	049	2.544	2.290	003	-1.811	.23	1/2
8	13.82	11.64	140	2.860	2.574	010	-1.978	,23	
10	14.25	11,65	-,235	3.215	2.993	016	-2,289	.23	1/2
12	14.48	11,66	350	3.560	3.204	025	-2,434	.23	-
14	14.86	11.67	484	3,900	3,510	034	-2.632	.22	1/2
16	14.38	11.68	592	4.133	3,720	041	-2.965	.23	•
18	13.69	11.69	663	4.293	3.864	046	-3.289	.25	1/2
20	12.98	11.69	685	4.320	3.888	048	-3.499	.27	

G/C = 1.00, Stagger = -40 %

 D_{s} = .0556, a = 0."92, h = 0."05, Short strut, β = 21.°8

∠	L	Lo	L	Dl	Do	D _s	D	L/D
-6	.030	.302	272	.3156	.0873	,0073	.1654	-1.6
-4	.491	.301	.190	.2452	.0892	.0071	.0933	2.0
-2	.916	.300	.616	.2268	.0890	,0069	.0753	8.2
0	1.296	.298	.998	.2299	.0893	.0067	.0783	12.7
2	1.677	.296	1.381	.2493	.0905	.0065	.0967	14.3
4	2.078	.294	1.784	.2786	.0910	.0063	,1257	14,2
6	2.476	.293	2,183	.3200	.0915	.0061	,1668	13,1
8	2.807	.291	2,516	.3690	.0920	.0059	.2155	11.7
10	3,202	.290	2,912	,4238	.0926	.0057	.2699	10.8
12	3,503	. 288	3.215	.4852	.0929	.0055	.3312	9.7
14	3.835	.287	3.548	.5505	.0931	.0052	.3966	9.0
16	4.091	.285	3,806	.6218	.0933	,0050	.4679	8.2
18	4,223	.283	3.940	.7111	.0935	.0048	.5572	7.1
20	4.207	.281	3,926	.8014	.0937	.0046	.6475	6.1

8	Ml	M_{O}	X	Z	Za	Xh	MLE	C.P.	
	·								
-6	4.59	7.56	.132	.289	.266	.007	526	61	
-4	4.48	f4	.106	.182	.167	.005	-,987	1,80	
-2	4.60	"	.097	.613	.564	.005	-1.352	.73	1/2
0	4.87		.078	,998	.918	.004	-1.633	.54	1/2
2	5.09	#	.048	1.383	1.272	.002	-1.928	.46	1/2
4	5.26	**	.000	1.785	1,641	.000	-2,250	.42	
6	5.29	7.56	062	2,187	2.013	003	-2,610	.40	
8	5.53	11	138	2,515	2.313	007	-2,843	.38	
10	5.79	48	238	2.913	2.680	012	-3,136	.36	
12	5.95	4	345	3,210	2.962	017	-3.381	.35	
14	5,97	н	474	3.535	3.252	024	-3,648	.34	1/2
16	5.74	11	-,600	3.780	3.478	030	-3.929	.34	1/2
18	4.74	48	685	3.918	3.601	034	-4,313	.37	
20	3.72	7.56	543	3.974	3.656	027	-4.644	.39	

$$G/C = 1.00,$$

Stagger = -20 %

 $D_{s} = .0571$, a =0."89, h = 0."21, Short strut, $\beta = 11.^{\circ}3$

			•	· · · ·		_	•		
æ	L	Lo	L	D	Do		D	L/D	
-6	.171	.315	144	,3123	.0966	.0085	.1501	9	
-4	. 597	.313	.284	.2562	.0979	.0082	.0930	3,1	
-2	.995	.312	.683	.2438	.0983	.0080	.0804	8.5	
0	1.398	.310	1.088	.2512	.0989	.0078	.0874	12.5	
2	1.778	.309	1.469	.2695	.0994	.0076	.1054	13.9	
4	2,206	.307	1.899	.3035	.1000	.0074	,1390	13.6	
6	2.589	,306	2.283	.3466	.1005	.0072	.1818	12.6	
8	2.949	,304	2.645	.3921	.1011	.0070	,2269	11.7	
10	3.297	.303	2.994	.4473	.1016	.0068	.2818	10.6	
12	. 3.649	,302	3.347	.5090	.1021	.0066	.3432	9.8	
14	3.975	.300	3.675	.5733	.1025	.0064	.4073	9.0	
16	4.226	.299	3.927	.6395	.1027	.0061	,4736	8.3	
18	4.369	.298	4.071	.7269	.1028	.0059	.5611	7.2	
20	4.345	,296	4.049	.8235	.1030	.0057	.6577	6.2	
a	X	M	x	7.	7.2	Хh	M~	C.P	·
			41 						
-6	4.41	7.34	.146	-,160	-,142	.031	-,664	-1.38	7 /0
-4	4.29	7.33	.115	,277	.247	.024	-1.076	T.29	1/2
-2	4,38	7.32	.107	.679	.604	.022	-1.404	.69	7 /0
0	4,59	7.31	.087	1.088	,969	.018	-1.707	.5%	1/5
2	4.75	7.31	•053	1.471	1,310	.011	-1.998	,45	7 /0
4	4.72	7.30	.006	1.902	1.693	.001	-2.376	.41	1/5
6	4.82	7.30	-,059	2.288	2.038	012	-2.681	•39	
8	4,96	7.30	145	2,647	2,358	-,030	-2.947	•37	n /n
10	5.12	7.31	239	2.996	2,663	050	-3.193	.35	T/S
12	5.25	7.31	-,360	3.341	2,974	076	-3,443	.34	T/S
14	5.38	7.32	-,493	3.655	3.252	-,104	-3.661		1/2
16	5.42	7.33	-,629	3,900	3.471	-,132	-3.844	•33	

4.032 4.448

4,83

4.02

18

20

7.33

7,34

-.740

-.920

3.585

3.959

-,155

-.193

.34

.35

-4.090

-4.645

G/C = 1.00 Stagger = 0

 $D_{g}=.0571$, a=0."88, h = 0."08, Short strut, $\beta = 0^{\circ}$

<u>~</u>	L	L _o	L	D	Do		D	L/D	
-6	.186	.320	134	.2998	,0934	.0083	,1406	-1,0	
-4	.604	.319	.285	.2495	.0941	.0085	.0898	3.2	
-2	1.011	.318	.793	.2381	.0949	.0088	.0773	10.3	
0	1.382	.316	1.066	.2457	.0956	.0089	.0841	12.7	
2	1.805	,314	1,491	.2651	.0964	.0088	.1028	14.5	
4	2.214	.313	1.901	.3012	.0972	.0086	.1383	13.8	
6	2.586	.311	2,275	.3431	.0975	.0084	.1801	12.6	
8	2.932	.310	2.622	.3900	.0983	.0082	,2264	11.6	
10	3,293	,309	2.984	.4456	.0990	.0080	.2815	10.6	
12	3.637	.307	3,330	.5060	,0995	.0077	.3417	9.7	
14	3.966	.305	3.661	.57 5 0	.1000	. 0075	.4104	8.9	
16	4.238	.303	3. 935 [°]	.6419	.1004	.0073	.4771	8.2	
18	4.471	.302	4.169	.7161	.1007	.0071	,5512	7.6	
20	4.459	.300	4.159	.8091	.1008	,0069	.6443	6.5	
		•							
<u>~</u>	Ml	M	<u> </u>	<u>Z</u>	Za	Xh	MLE	C.P.	
-6	4,64	7.63	,127	-,148	130	-010	671	-1.51	
-4	4,45	11	,107	.279	.246	.009	-1.058	1.26	
-2	4.77	μ	.106	.790	.695	.008	-1.459	.61	1/2
0	4.99		.084	1,066	•939	.007	-1.644	.,51	1/2
2	5,10	н	.051	1.492	1,313	.004	-1,986	,44	1/2
4	5.02	7.64	.004	1,901	1.673	.000	-2,366	.41	1/2
6	5.21	"	-,058	2.278	2.004	,005	-2.642	- ,38	1/2
8	5,28	u	-,140	2.622	2.307	011	-2.918	,37	
10	5.41	4	-,240	2.984	2.626	019	-3,197	.35	1/2
12	5.51	H	-,360	3.323	2.925	029	-3.460	,34	1/2
14	5,52	H	485	3.647	3.210	-,039	-3.731	,34	
16	5,56	7,65	624	3.900	3,432	050	-3,935	.33	1/2
18	5.61	7,65	763	4.123	3.628	061	-4.107	,33	
20	5.11	7.65	-,815	4.122	3.628	065	-4.235	.34	•

G/C = 1.00 Stagger = 20%

 D_{g} =,0571, a = 0."87, h=0."06, Short strut, β = -11.°3

<u></u>	L	L	L	D ₁	0	D _s l	D	L/D	
-6	997	393	- 096	2865	0856	0070	1368	_ 7	
4	638	321	317	2385	0863	0072	0879	3 6	
-2	1.040	320	720	.2200	0872	0074	0773	9.3	
0	1.418	.319	1,099	2337	0879	.0077	0810	13.6	
ž	1.858	.318	1.540	.2568	.0890	.0079	.1028	15.0	
4	2.275	.317	1,958	.2945	.897	0082	.1395	14.0	
6	2,640	.315	2.325	.3391	-0902	.0084	.1834	12.7	
8	3.008	.314	2,694	.3897	.0910	.0086	.2330	11.5	
-10	3.357	.313	3.044	4454	.0919	.0088	.2867	10.6	
12	3,690	.312	3.378	.5043	.0925	.0089	.3458	9.8	
14	4.058	.310	3,748	.5714	.0931	.0087	.4225	8.9	
16	4.362	.308	4.054	.6482	.0936	.0085	.4890	8.3	
18	4.567	.307	4.260	.7163	.0944	.0083	,5565	7.7	
20	4,568	,305	4.263	.8215	,0949	.0081	.6614	6.5	
22	4,420	.304	4,116	.9680	,0959	.0079	.8071	5.1	
~	Ma	М	х	Z	Za	Xh	Mara	C.P.	
							نظيل		
-6	4,15	7,23	.127	-,108	- 094	.008	879	-2.71	
-4	4,44	a	.105	.311	.271	.006	-1,015	5 1,09	
-2	4,79	n	.102	.716	.624	,006	-1,275	.59	1/2
0	5,00		•081	1,099	•955	,005	-1,550	.47	•
2	5.19	4	•049	1.542	1.342	.003	-1.885	,41	
4	5.43	7.24	.002	1,958	1.702	000	-2,181	37	
6	5.65	u	060	2.330	2.027	004	-2.443	5 .35	

2,700

3,042

3.373

3,738

4,028

4.220

4.223

-,144

-,244

-.364

-,495

-.647

-.785

-,833

2.368

2,648

2,935

3.250

3,504

3.675

3,677

-,009

-.015

-.022

-,030

-.039

-.047

-,050

8

10

12

14

16

18

20

5,82

5,94

6.09

6,19

6,27

6.38

6.04

#

ø

"

۰4

"

7.24

.33 1/2

.32 1/2

.31 1/2

.30 1/2

.30 1/2

.31

.31

-2,735

-2.977

-3.217

-3.498

-3.721

-3.855

-3.944

G/C = 1.00, Stagger = 40%

 $D_{g}=.0556$, a=0.86, $h=0.09\frac{1}{2}$, Short strut, $\beta=-.21.8$

×	Ľl	Lo	ľ	Dl	Do	ם י ש	D	L/D
-6	.247	.304	057	.2577	.0700	.0057	.1264	5
-4	.673	.302	.371	.2173	.0712	.0060	.0845	4.5
-2	1.068	.301	.767	.2110	.0724	.0062	.0768	10.0
0	1.454	.300	1.154	.2216	.0731	.0064	.0865	13.3
2	1.887	.299	1.588	.2468	.0738	.0066	.1108	14.3
4	2,230	.298	1.932	.2837	.0746	.0069	.1466	13,2
6	2.658	.298	2.360	.3256	.0754	.0071	.1875	12.6
8	3.028	.297	2.731	.3754	.0763	.0074	.2361	11.5
10	3.406	.296	3.110	. 4362	.0772	.0076	.2958	10.5
12	3.759	.295	3.464	.5024	.0778	.0079	.3611	9.6
14	4.098	.294	3.804	.5736	.0783	.0081	.4317	8.8
16	4.379	.293	4.086	.6441	.0787	.0083	.5015	8.1
18	4.588	.292	4.296	.7256	.0791	.0086	.5823	7.4
20	4.569	.290	4.279	.8339	.0795	.0088	.6900	6.2

<u>م</u>	<u>M</u> 1	Mo	<u> </u>		Za	Xh 	Mle	<u>C.P.</u>
-6	6.71	9.74	.119	070	060	.011	753	-3,585
-4	7.21	9.74	.110	.364	.313	.011	- 994	.91
-2	7.69	9.74	.104	.763	.655	.010	-1.207	.525
0	8.15	9.74	.087	1.154	.993	.008	-1,413	.41
2	8.57	9,74	.055	1.590	1.369	.005	-1.683	.355
4	8.84	9.74	.012	1.937	1.664	.001	-1.903	.325
6	9.21	9.74	061	2.366	2.034	-,006	-2.219	.31
8	9.54	9.74	148	2.736	2.350	014	-2.389	.29
10	9.82	9.74	246	3.112	2.675	023	-2.631	.28
12	10.05	9.74	358	3.464	2,980	034	-2.864	.275
14	10.26	9.74	-,500	3.794	3.260	048	-3.074	.27
16	10.42	9.74	-,630	4.066	3,500	060	-3.260	.265
18	10.54	9.74	774	4.260	3.670	- 074	-3.384	.265
20	9.99	9.74	814	4.254	3.660	077	-3,517	.275

1

G/C = 1.00, Stagger = 60%

 $D_{a} = .0571$, a = 0.81, h = 0.05, Short strut, $\beta = .31.00$

<u>`</u> ~	Lo		L		0	D _s l		L/D
-6 -4 -2	.328 .327 .325	.276 .672	052 .345 .781	.2660 .2246 .2150	.0771 .0783 .0795	.0046 .0048 .0051	.1272 .0844 .0733	4 4.1 10.7
0	.324	1.518	1.194	.2295	.0803	.0053	.0868	13.7
2	.323	1.927	1.604	.2550	.0810	.0056	.1113	14.4
4	.322	2.362	2.040	.2955	.0821	.0058	.1505	13.6
6	.321	2.759	2.438	.3433	.0832	.0060	.1970	12.4
8	.320	3.160	2.840	.4000	.0840	.0063	.2526	11.2
10	.319	3.542	3.223	.4623	.0847	.0065	.3140	10.3
12	.318	3,927	3.609	.5288	.0856	,0068	.3793	9.3
14	.317	4,238	3.921	.5979	.0865	,0070	,4473	8.8
16	.317	4,558	4.241	.6861	.0875	.0072	.5343	7.9
18	.315	4,725	4.410	.7900	.0882	,0075	.6372	6.9
20	.313	4,706	4.393	.9130	.0892	.0077	.7590	5.8

MIE Za Xh C.P. M_1 х Z Mo. X -6 8.49 11.59 .110 -,064 -.052 .006 - .774 -4.96 - ,910 -4 9.20 .108 .338 .274 .005 .90 # -1.095 .100 .47 -2 9.85 .778 .630 .005 ;; ,968 .087 -1.279.35 1/210.43 1,194 .004 0 H -1.442.30 2 11.06 .057 1.601 1.299 .003 4 11,38 ,011 2.008 1.628 .001 -1.685 .28 4 u -1.919 11,81 H -.060 2.443 1,980 -,003 .26 6 12.16 n -.126 2,886 2.336 -.006 -2.179 .25 8 12,44 11,60 -,250 3.224 2.612 -,013 -2.377 .24 1/210 .24 12 12.68 ., -,382 3.602 2.918 -.019 -2.613 -2,809 12,85 -.515 3.908 3,166 -.026 .24 14 81 4 12,78 -,659 4.220 3.420 -.033 -3.076 .24 16 -.755 -3,304 .25 12,38 4,380 3.548 -,038 18 " -3.408 11.61 -.788 4.380 3.548 -,039 ,26 20 11.97

G/C = 1.33, Stagger = -40 %

 D_{g} = .0556, a = 0."92, h = 0."06, Medium strut, β = 16.°7

,						-		
ol	r1	I.	L	Dl	Do	Dsl	D	L/D
-6	.078	,301	223	.3249	.0983	.0089	.1621	-1.4
-4	.534	300	.234	.2595	.0990	.0087	.0962	2.4
-2	.964	.299	.665	.2435	.0997	.0085	.0797	8.3
0	1.359	.298	1.061	.2490	.1004	.0082	.0848	12.5
2	1.778	.297	1.481	.2695	,1010	.0080	.1049	14.14
4	2,197	.295	1,902	.3001	.1016	.0077	.1352	14.07
6	2.592	.294	2.298	.3420	.1022	.0075	.1767	13.0
8	2.996	.292	2.704	.3935	,1028	.0073	.2278	11.9
10	3,366	.290	3.076	.4500	,1034	.0070	.2940	10.5
12	3,699	.289	3,410	.5095	.1040	,0068	.3431	10.0
14	3,975	.287	3.678	.5723	.1046	,0065	.4056	8,9
16	4.257	.285	3,972	.6497	.1046	.0063	,4832	8.2
18	4.377	.283	4.094	.7466	.1045	.0060	.5805	7.0
20	4.371	.281	4.090	.8495	.1046	.0058	.6835	6.0

æ	Ml	Mo	X	<u>Z</u>	Za	Xh	MLE	C.P.	
-6	11.59	14.30	.136	- ,238	219	,008	-,505	77	-
-4	11,58	14,30	.110	.227	,209	.007	935	1,37	
-2	11.70	14.31	,103	.661	.609	.006	-1.305	. 66	
0	11,92	14.31	.085	1,061	.977	,005	-1.614	.50	1/2
2	12,16	14.32	.054	1.482	1,364	,003	-1.938	,43	1/2
4	12.24	14.32	,002	1,906	1.753	.000	-2,303	.40	
6	12,35	14.32	065	2,302	2,119	-,004	-2,635	.38	
8	12.41	14.32	150	2.706	2.490	009	-2,986	.35	1/2
10	12.82	14,32	-,239	3,076	2,830	-,014	-3.213	.34	1/2
12	12,83	14.32	371	3,402	3,130	-,022	-3.502	.34	1/2
14	12.84	14.32	-,494	3.661	3,368	₹.030	-3.729	.34	
16	12,51	14,32	-,630	3.946	3.631	038	-4.072	.34	1/2
18	10,73	14.33	-,710	4,068	3.745	043	-4.654	.38	
20	9.51	14.33	755	4.072	3.748	045	-4.975	.40	1/2

G/C = 1.33, Stagger = -20%

· •

 $D_{s} = .0556$, a = 0, h = 0, h = 0, medium strut, $\beta = 8$, 5

<u>d</u>	Lo	Ll	Ţ	B	Do	Dl	Ð	<u>L/D</u>
-6	.302	.144	158	.0099	.0957	.3092	.1480	- 1.1
-4	.301	• 592	.293	.0097	.0967	•2526	.0906	3.2
-2	.300	1,002	.722	.0095	.0976	.2404	.0777	9.2
0	.299	1.410	1,111	.0092	.0983	.2459	.0828	13.4
2	.298	1,822	1.524	•0090	.0990	.2678	.1042	14.6
4	.296	2.277	1.981	•0087	•0996	.3045	,1406	14.1
6	.294	2,656	2.362	•0085	.0999	.3464	.1824	13.0
8	.292	3.024	2.732	.0082	.1002	.3955	.2315	11.8
10	.291	3.369	3.078	•0080	.1004	.4548	2908	10.6
12	.290	3.734	3.444	. 0077	.1006	.5159	3502	9.8
14	•288	4.062	3.774	.0075	.1011	• 5788	.41.46	9.1
16	•286	4.298	4.012	. 0073	.1016	.6535	.4890	8.2
18	.286	4.475	4,189	.0070	.1018	•7384	.5740	7.3
20	.284	4,458	4.174	.0068	.1018	.8519	. 6877	6.1

<u>~</u>	Mo	<u>M</u> 1		M	₹.	<u>_</u>	Za	<u>Xh</u>	<u>M</u> le	<u>C.P</u> .
-6	11.70	8.51	-	.844	.128	173	159	.005	690	-1.33
-4	11.70	8.59	-	.822	.111	. 285	.262	.004	-1.088	1.27
-2	11.70	8.76	-	.778	.105	.718	.660	.004	-1.442	.67
0	11.70	9.01	-	.710	.083	1.111	1.022	.003	-1.735	.52
2	11.70	9.16	-	.672	.051	1.526	1.403	.002	-2.077	455
4	11.70	9.14	-	.677	.003	1,985	1.827	.000	-2.504	.42
6	11.70	9.37	-	.616	067	2,367	2.180	003	-2.799	.39
8	11.70	9.60	-	•555	-,149	2.734	2,515	006	-3.064	.375
10	11.70	9.70	-	• 529	251	3.080	2.835	010	-3.354	.365
12	11.70	9.82	-	.497	377	3.438	3.160	015	-3.642	355
14	11.70	9,96		.460	-,509	3.770	3.468	-,020	-3,908	.345
16	11.70	9.89	-	.479	637	3.986	3,668	026	-4,121	.345
18	11.70	9.14	-	.677	750	4.158	3.824	030	-4.471	.36
20	11.70	8.14	-	.942	780	4,152	3.820	031	-4.731	.38

•

G/C = 1.33 Stagger = 0

 $D_{g} = .0571$, a = 0.88, h = 0.06, Medium Strut, $\beta = 0^{\circ}$

<u>d</u>	Lo	L	L		Do	<u> D1</u>	D	<u> </u>
-6	.311	.134	177	.0094	.0826	.3012	.1515	- 1.2
-4	.311	.587	.276	.0097	.0835	.2408	.0905	3.1
-2	.310	1,000	.690	.0099	.0847	.2277	.0760	9.1
0	.309	1.387	1.078	.0100	•0849	.2329	.0809	13.3
2	.308	1,829	1.521	.0099	.0855	.2526	.1001	15,2
4	.308	2,272	1,964	.0097	.0861	.2897	.1368	14.4
6	.306	2,651	2.345	.0095	.0863	.3295	.1766	13.3
8	.302	3.025	2.723	•0093	.0873	.3791	.2254	12.1
10	.303	3,369	3.066	.0090	.0873	.4299	. 2865	10.7
12	.302	3.706	3.404	.0088	.0873	.4957	.3425	9.9
14	.301	4.079	3.778	.0085	.0878	•5650	.4116	9,2
16	.300	4.328	4,028	•0083	.0878	.6510	4 978	8,1
18	.300	4.529	4.229	.0081	.0885	.7577	.6040	7.0
20	•299	4,478	4.179	.0078	.0880	.8246	.6717	6.2

\propto	Mo	Ml	M	X	<u>z</u>	$\frac{z_o}{z_o}$	Xh	<u>M_{le}</u>	<u>C.P</u> .
-6	9,97	6.77	847	.130	194	171	.008	688	-1.18
-4	9.97	7.02	780	.110	.268	•236	.007	-1.023	1.27
-2	9,97	7.36	-,690	.100	.686	.604	.006	-1.300	.63
0	9.97	7.81	571	.081	1.078	.948	.005	-1,524	.47
2	9.97	8.21	466	.047	1.522	1.340	.003	-1.809	.395
4	9.97	8.44	405	001	1.968	1.731	.000	-2,136	.36
6	9.97	8.83	302	069	2,349	2.067	004	-2.366	.335
8	9,97	9,20	-,204	150	2.726	2.400	009	-2,595	.315
10	9.97	9.51	122	249	3.064	2.696	-,015	-2,803	.305
12	9.97	9.80	-,045	374	3.400	2,992	-,022	-3,015	,295
14	9.97	10.01	.011	512	3.760	3,308	-,031	-3,266	.29
16	9.96	10.15	.050	632	4.004	3.523	-,038	-3.485	.29
18	9,96	10.22	.069	732	4.202	3.700	044	-3.604	,285
20	9.96	10.12	.042	- 794	4.150	3.652	048	-3.562	.285

G/C = 1.33 Stagger = 20%

 $D_{3} = .0556$, a = 0.88, h = 0.06, Medium Strut, $\beta = -8.5$

d	L ₀	Ll	L		Do	<u>D</u> 1	Ð	<u>l/D</u>
-6	.304	.258	046	,0083	.0894	.2824	.1291	4
-4	.303	.703	. 400	•0085	•0898	.2377	•0838	4.8
-2	.302	1.113	.811	.0088	• 0903	•2322	.0775	10,5
0	.300	1.519	1,219	.0091	.0911	.2435	.0877	13.9
2	,299	1.947	1.648	.0093	.0918	.2685	.1118	14.7
4	.298	2,368	2,070	.0096	.0926	.3026	1448	14.2
6	.297	2.754	2,457	.0098	•0933	•0933	.1898	13.0
8	,295	3.136	2.841	.0100	.0940	.0940	.2416	11.8
10	,294	3.520	3.226	0100	.0947	.0947	.3037	10.6
12	.293	3.907	3.614	.0098	.0951	.0951	.3691	9,8
14	.292	4.214	3.922	.0096	.0955	.0955	•4358	9.0
16	.291	4.507	4.216	.0093	,0958	.0958	• 5033	8.4
18	290	4.602	4.312	.0091	.0961	.0961	•5842	7.4
20	.288	4.547	4,259	.0088	.0962	.0962	.7174	6.0

<u>~</u>	Mo	Ml	M	X	Z	Za	Xh	<u>M</u> le	<u>C.P</u> .
-6	12,10	8.95	833	.123	060	053	.007	787	-4.37
-4	12.10	9.31	738	,112	.392	.345	.007	-1.090	•93
-2	12.10	9.56	672	.106	.807	.710	.006	-1.388	.575
0	12.10	9.91	-,580	.088	1,219	1,071	, 005	-1.626	.445
2	12.10	10.09	531	.054	1.650	1.451	• 003	-1,985	<u>,4</u> 0
4	12.10	10,28	481	000	2.074	1.824	•000	-2.305	.37
6	12.10	10,50	424	069	2.462	2.167	004	-2.587	•35
8	12.10	10.72	-,365	155	2.844	2,503	009	-2.859	•335
10	12.10	11.01	290	-,261	3.228	2.840	016	-3.149	,325
12	12.10	11.01	290	392	3,608	3.175	024	-3,441	.315
14	12.10	11.17	-,246	-,461	3,916	3.442	-,028	-3.660	.31
16	12.10	11.28	217	680	4.188	3,680	041	-3.856	.305
18	12,10	11.34	201	775	4,276	3.760	047	-3.914	.305
20	12,10	10.53	-,415	780	4.243	3,730	047	-4,098	.31

	G	/C = 1.3	3	Stagger	= + 40%			
D _s =	,0556,	a = 0.	90, h	= 0\$08,	, Mediu	m Stru	$t_{\beta} = -10$	5 97
Ŀo	Li	т.	D†	D.	Da	D	ת/.ד	

Lo	L1	L		Do	Dl	D	T/D
.305	.161	144	.0072	.0853	.2918	.1437	- 1.0
•304	.600	.296	.0075	•0863	. 2389	.0895	3.3
.303	1.025	.722	.0077	.0872	.2278	.0773	9,3
.301	1.432	1,131	.0080	.0880	.2346	.0830	13.6
.300	1.861	1,561	.0082	.0888	.2566	.1040	15.0
300	2.293	1,993	.0085	.0896	.2926	.1389	14.4
.299	2.706	2.407	.0087	.0904	.3364	.1817	13.2
.297	3.071	2.774	.0090	.0911	.3858	.2301	12.0
.296	3.462	3,166	.0093	.0917	.4439	.2873	11.0
.295	3.843	3.548	.0096	.0924	.5093	.3517	10,1
.294	4,198	3,904	.0098	.0930	.5786	.4202	9,3
. 293	4.476	4,183	.0100	•0938	.6518	.4924	8,5
.291	4.621	4.330	.0100	.0946	.7269	.5667	7.6
.290	4,598	4,308	.0098	.0946	.8462	.6862	6.3
	Lo .305 .304 .303 .301 .300 .299 .297 .296 .295 .294 .293 .291 .290	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

<u>~</u>	Mo	MI	M	X	<u>Z</u>	Za	Xh	Mle	<u>C.P</u> .
-6	12.11	8.91	-,846	.127	158	142	.010	714	-1.51
-4	12.11	9.26	754	.110	.290	.261	.009	-1.024	1,18
-2	12.11	9.60	-,664	103	.718	.646	.008	-1.318	.61
0	12.11	9,96	569	•083	1.131	1.018	.007	-1.594	.47
2	12.11	10.44	-,442	.049	1,564	1.508	.004	-1.854	.395
4	12,11	10.63	-,392	.000	1.993	1.794	÷000	-2.186	.365
6	12.11	11.04	281	072	2.412	2,171	006	-2,446	•34
8	12,11	11,25	227	157	2.776	2.598	013	-2.812	•34
10	12.10	11.62	-,127	280	3.163	2.847	022	-2.952	.31
12	12,10	11,75	093	394	3.541	3.187	032	-3.248	.305
14	12.10	12.02	021	536	3.886	3.497	043	-3.475	.30
16	12,10	12,12	+.005	-,680	4.152	3.737	055	-3.677	,295
18	12.10	12,25	+.048	-,798	4.290	3.861	064	-3.157	.29
20	12,10	11.81	077	828	4,280	3.852	066	-3.709	.29

.

G/C = 1.33 Stagger = 60%

 $D_s = .0571$, a = 0 86, h = 0 17, Medium Strut, $\beta = -24$ 2

d'	Lo	T J	F	Dt s	Do	D	D	<u>r/d</u>
-6 -4	.320 .320	.099 .549	221 .229	.0062	.0802	•3000 •2393	.1565 .0943	- 1.4 2.4
-2 0 2	.319 .318	.996 1.398	.677 1.080	•0070 •0070	.0826	.2250 .2297 .2520	.0796	8.5 13.2 14.7
~4 6	.315 .314	2.276 2.638	1.961 2.324	.0075	0852	.2880 .3267	•1382 •1758	14.2
8 10	.312	3.059	2.747	.0080	.0869	.3813	.2293 .2971	12.0
12 14 16	.310 .309	3.809 4.200 4.479	3.498 3.890 4.170	•0086 •0089 •0091	•0883 •0888 •0897	.5083 .5821 .6495	• 3 5 4 3 • 4 2 7 3 • 4 9 3 6	9.9 9.1 8.5
18 20	.308	4.698 4.678	4.390 4.372	.0094	.0906	•7307 •8474	.5736 .6895	7.2 6.3

\propto	Mo	м ₁	Ж	X	<u>Z</u>	Za	Xh	M _{le}	<u>C.P</u> .
-6	13.44	10.37	811	.132	236	203	.022	630	89
-4	13.44	10,60	750	.110	.222	.191	.019	- ,960	1.44
-2	13.44	11.08	624	.104	.672	.578	.018	-1,220	.605
0	13.44	11.52	508	.082	1.080	.930	.014	-1.452	.45
2	13.44	12.06	365	.051	1,516	1.303	.009	-1.677	•38
4	13.44	12.29	304	.001	1,961	1,689	.000	-1.993	•34
6	13.43	12.64	209	068	2,329	2.004	012	-2,201	.315
8	13.43	13.02	108	-,151	2.748	2,365	026	-2.447	.295
10	13.43	13.25	048	244	3.106	2,672	042	-2.678	. 285
12	13.43	13.37	002	382	3.492	3.001	065	-2.938	. 28
14	13.43	13.49	+.011	524	3.875	3.332	089	-3.232	. 275
16	13.43	13.71	+.074	675	4.140	3.555	115	-3.366	.27
18	13.43	13.55	.032	-,808	4.346	3.735	137	-3.566	.275
20	13.43	13.33	.026	844	4.340	3.730	143	-3.661	.28

134

G/C = 1.67 Stagger = -40%

Ds a = 0,91, Medium Strut, $\beta = 13.5$ **≈** .0556, h = 0,000,D Į D₀ <u>r/d</u> ol L L F D! D 8 .302 .0093 .2973 -1.3 .103 .0812 .1512 -6 -.199 3.1 .572 .2331 -4 .301 .0822 .271 .0091 .0862 -2 .300 1.003 .704 .0088 •0833 .2215 .0738 9.5 0 .0843 .0785 1.401 .2270 14.1 .298 1.103 •0086 2 15.1 .297 1,807 1.510 .0084 .0852 .2490 .0998 4 1,928 .1318 2.223 .2811 14.6 .295 .0081 .0856 6 .3243 2.336 .1748 2.630 .0860 13.4 .294 .0079 8 .3758 2,996 2.703 .293 .0076 .0868 .2258 12.0 10 3.379 3.714 3.088 3.424 .0876 **.**2833 10.9 .291 .0074 •4339 12 ..3402 .290 .4909 10.1 .0071 .0880 3.767 9.2 14 ,289 4.056 .0069 •0883 .5607 .4099 3.992 8.3 16 .0885 .6358 .4835 .288 4,280 .0067 18 .0064 .7100 7.4 .286 4.406 4.120 .0887 .5593 6.1 20 .285 4,398 4.113 .0062 .0889 .8261 ,6754

<u>d</u>	Mo	Ml	<u>M</u>	x	<u>z</u>	Za	<u>Xh</u>	- <u>1</u> e	<u>C.P</u> .
-6	7.54	4.53	-,795	.128	214	195	.008	608	- ,95
-4	7.54	4.46	815	.105	• 263	.239	.006	-1.060	1.34
-2	7.54	4.78	730	.100	.700	•637	.006	-1.373	, 655
0	7.54	5.08	650	•079	1.103	1.029	.005	-1.684	. 51
2	7.54	5.35	580	.047	1,512	1.378	.003	-1.961	.43
4	7.54	5.45	553	003	1.928	1.753	000	-2.306	.40
6	7.54	5.75	- 473	071	2.342	2.135	004	-2.604	.37
8	7.54	5.99	410	150	2,708	2.465	009	-2,866	.355
10	7.54	6.12	376	257	3.090	2.812	015	-3.173	.345
12	7.54	6.23	347	378	3.420	3.112	023	-3,436	•335
14	7.54	6.32	323	514	3.752	3.413	031	-3.705	•33
16	7.54	5.98	413	-,638	3.968	3.610	038	-3.985	•335
18	7.54	5.08	- 650	740	4.089	3.715	044	-4.321	.355
20	7.54	3.74	-1.005	-,770	4.093	3.720	046	-4.679	•38

G/C = 1.67 Stagger = -33%

 $\mathbf{D}_{\mathbf{g}}$ Medium Strut, B= 11:3 .0571 a = 0**?**93 h = 0.04# L₀ Do <u>r/d</u> α L ī ת D -6 .276 .129 .147 .3000 .0096 .0895 .1438 - 1.0 -4 .275 .608 .333 .0093 .2440 .0892 3.8 .0874 -2 .274 1.038 .0091 .2319 .764 .0890 .0757 10.1 0 1.181 .272 .2395 .0854 1.453 .0089 .0889 13.8 2 .271 1,885 1,614 .0886 .2622 .1091 14.8 .0086 4 2.308 .270 2.038 .0084 .0884 .2966 1445 14.1 6 2.709 .3387 .269 13.0 2.440 .0081 .0881 .1875 8 3.099 .3905 .268 2.831 .0079 .0079 .2404 11.8 3.207 .4432 10 .267 .0077 .0077 .2932 10.9 3,820 3.554 3.906 .3686 12 .266 .0074 .0074 .5104 9,6 14 .265 4.171 .5751 .0072 .0072 .4283 9.1 16 .264 4.405 4.141 .0069 .0069 .6395 .4940 8.4 7.1 18 4.189 .0067 .7301 .263 4.452 .0067 .5867 4.376 20 4.105 .0065 .0065 .261 .8495 .7065 5.8

<u>a</u>	Mo	Ml	M	- <u>Y</u>	Z	Za	<u>Xh</u>	[™] le	<u>C.P.</u>
-6	7 54	4 45	- 817	.198	- 161	150	.005	- 672	- 1.49
_4	7.54	4.49	- 806	.109	.326		.004	-1.113	1.14
-2	7.54	4.52	799	.102	.760	707	.004	-1.510	
0	7.54	5,05	659	.085	1,181	1,100	.003	-1.762	.495
2	7:54	5,41	-,564	.052	1.616	1.502	.002	-2.068	.425
4	7.54	5.66	497	.002	2.043	1.900	.000	-2.397	•38
6	7.54	5.99	-,410	-,069	2.445	2.374	003	-2.781	•38
8	7.54	6.37	310	152	2.836	2.636	006	-2,940	.345
10	7.54	6.73	214	270	3.206	2,981	011	-3,184	•33
12	7.54	7.11	114	-,380	3,550	3.301	015	-3.400	•32
14	7.54	7,39	040	528	3,892	3.612	021	-3.621	.31
16	7.54	7.43	029	664	4.113	3.830	027	-3.832	• 31
18	7.54	6.31	325	754	4,152	3.861	030	-4,156	•335
20	7.54	5.31	-,590	-,740	4.094	808 , ر	030	-4.368	a355
G/C = 1.67 Stagger = 0

 $D_{B} = .0556$, a = 0."90, h = 0."06, Medium strut, $\beta = 0^{\circ}$

~	L ₁	L	L .		0	D	D	L/D
-6	.049	.303	254	.3040	.0770	.0094	.1620	-1,57
-4	.509	.302	.207	.2334	.0779	.0097	,0902	2,29
-2	.946	.301	.645	.2165	.0787	.0099	.0723	8.92
0	1.350	.300	1,050	.2205	.0793	.0100	.0756	13.89
2	1.740	.299	1.441	.2398	,0798	.0099	.0945	15,25
4	2,198	.298	1,900	.2716	,0806	.0097	.1257	15,12
6	2,557	,297	2,260	.3100	.0813	.0095	.1636	13,82
8	2,948	.295	2.653	.3590	,0821	.0093	.2120	12.50
10	3,328	,293	3,035	.4150	.0828	,0090	,2676	11,34
12	3,651	.291	3,360	.4750	.0834	.0088	.3272	10.3
14	3,998	.290	3,708	.5403	.0837	.0085	.3925	9.2
16	4,295	.289	4,006	.6098	.0840	.0083	.4619	8,8
18	4.479	.288	4.191	. 6833	.0843	.0081	.5353	7.8
20	4.459	.287	4.172	.7985	.0847	.0078	.6504	6.3

α	M	_M	X	Z	Z	Xh	M _{L.E.}	C.P.
-6	4.95	7.79	,134	270	243	.008	516	-0.71
-4	4.87	7,79	,106	.199	,179	.006	957	1.60
-2	5.06	7.79	.096	.642	.578	,006	-1.306	. 68
0	5.32	7.79	.076	1,050	.945	. 005	-1.604	.51
2	5,63	7.79	.045	1.443	1.299	.003	-1.873	.431/2
4	5.77	7.79	-,007	1,903	1.713	.000	-2.247	.39 1/2
6	6.09	7.79	074	2.264	2.038	004	-2,484	.36 1/2
8	6.32	7.79	-,176	2.655	2,389	011	-2,767	.34 1/2
10	6.57	7.79	- ,262	3,032	2.729	-,016	-3,036	.33 1/2
12	6.75	7.79	- 378	3,353	3.018	023	-3,270	.32 1/2
14	6.86	7.79	- 515	3.690	3.321	031	-3.536	.32
16	6.99	7.79	660	3.977	3.579	040	-3.751	.31 1/2
18	6.78	7.79	- 790	4.146	3.731	-,047	-3.951	,31 1/2
20	5.99	7.79	812	4.140	3,726	- .049	-4,153	.33 1/2

G/C = 1.67 Stagger = 33%

 $D_{g} = .0571$, a = 0.81, h = 0.07, Medium Strut, $\beta = -11.3$ of L L₂ L D³ D D₂ D L/D

	1 0	_ 1	1	л В	്റ	<i>P</i> 1	<u> –</u>	
-6	•285	.150	135	.0079	.0981	.3033	.1402	- 1.0
-4	•283	.616	• 333	.0082	.0976	.2495	,0866	+ 3.8
-2	•282	1.036	.858	.0084	.0972	.2431	.0804	10.7
0	.280	1,425	1.145	.0087	.0968	. 2443	.0817	14.0
2	.279	1.865	1,585	.0090	.0965	₊ 2693	.1067	14,9
4	.277	2.294	2,017	.0092	.0960	.3006	.1383	14,6
6	.276	2,676	2,400	.0095	,0955	.3424	.1803	13.3
8	,274	3.069	2,795	.0098	.0948	.3922	.2305	12.1
10	•273	3.426	3.153	.0100	.0942	.4441	,2827	11,1
12	.272	3.812	3.530	.0100	•0937	.5072	.3464	10.2
14	.271	4.137	3,866	• 0099	.0933	,5745	.4142	9.3
16	.270	4.428	4.158	•0096	•0923	,648 8	.4898	8.5
18	•268	4.521	4.253	. 0094	.0914	,7229	.5650	7.5
20	.266	4,353	4,087	,0091	.0907	,8446	.6877	5.9

<u>a</u>	Mo	Ml	М	x	Z	Za	Xh	Mle	C. Þ
-6	10,40	7.24	-,836	.126	150	122	.009	723	-1.61
-4	10.38	7.15	855	.109	.325	. 263	.008	-1,126	1.15
-2	10.37	7.50	759	.109	.854	.691	.008	-1,458	.57
0	10,36	7.70	704	.082	1,145	, 928	.006	-1,638	.475
2	10.34	7.95	632	.050	1.588	1.385	•004	-2.021	.425
4	10,32	8.02	609	002	2.021	1,638	.000	-2,247	.37
6	10,30	8.32	524	073	2.406	1,949	005	-2.468	•34
8	10.31	8,38	510	158	2.798	2.265	-,011	-2.764	•33
10	10.32	8,61	453	270	3.152	2,552	019	-2,986	.315
12	10.33	8,77	413	-,398	3.521	2.855	028	-3.240	.305
14	10.34	8. 93	373	531	3.848	3.118	037	-3,454	•30
16	10.35	9.24	294	-,678	4.130	3.341	048	-3.587	•29
18	10,35	9.44	241	775	4.214	3.419	054	-3,606	. 285
20	10,35	8,91	-:,381	750	4.072	3,300	052	-3,628	, 29

,

G/C = 1.67 Stagger = 60%

 $D_{g} = .0571$, a = 0.92, h = 0.06, Medium Strut, $\beta = -19.8$

<u>d</u>	Lo	L1	L		Do	Dl	D	<u>l/D</u>
-6	,315	.232	083	.0068	.0812	.2802	.1351	- 0.6
-4	.313	•698	.385	.0070	.0822	.2317	.0854	4.5
-2	.312	1.127	.815	.0073	•0832	.2255	.0779	10.5
0	.311	1.536	1,225	.0076	.0840	.2340	.0853	14.4
2	.310	1.988	1.679	.0078	.0847	•0847	.1118	15.0
4	.309	2.399	2,090	.0081	.0854	.0854	.1478	14.2
6	.308	2.779	2.471	•0083	.0861	.0861	.1895	13.1
8	.307	3.169	2,862	.0086	.0867	.0867	.2413	11.8
10	.306	3.548	3.242	.0089	.0872	.0872	. 2978	10.9
12	.305	3.910	3,605	.0092	.0879	.0879	.3628	10.0
14	•303	4.264	3,961	.0094	.0886	.0886	•4349	9.1
16	.302	4.526	4.224	•0097	•0892	•0892	•4985	8.5
18	.301	4.605	4.304	.0099	.0898	.0898	•5769	7.4
20	. 299	4.497	4.198	.0100	•0900	•0900	.7129	5,9

<u>a</u>	<u>n</u> o	Ml	Ā	Y	<u>Z</u>	Za	Xh	Mle	<u>C.P</u> .
-6	11,91	8.36	940	. 126	096	088	.008	860	-2.98
-4	11,91	8,69	851	.112	.378	.348	.007	-1,206	1.06
-2	11.91	9.10	-,743	.110	.811	,746	.007	-1,496	615
0	11,91	9.59	610	•085	1.225	1,128	,005	-1.743	.475
2	11.91	9,83	-,550	.052	1,681	1.549	.003	-2,102	.415
4	11,91	10,21	450	+001	2.096	1.928	.000	-2.378	.38
6	11,91	10,58	-,352	-,080	2,478	2,280	-,005	-2,627	.355
8	11.91	10.88	272	155	2.870	2.640	09	-2.903	.335
10	11 . 91	11.11	212	268	3.242	2,983	016	-3.179	.325
12	11,91	11,28	167	-,395	3,600	3.312	024	-3.455	.32
14	11,92	11.53	103	-,536	3.945	3.630	032	-3.701	.315
16	11.92	11.83	024	688	4.193	3.855	041	-3.838	.305
18	11.92	11.76	-,042	-,780	4.268	3.930	047	-3.925	.305
20	11.92	11.04	- 233	762	4.186	3.848	046	-4.035	.32

G/C = 2.00 Stagger = - 40%

 $D_{g} = .0556$, a = 0.92, h = 0.04, Long Strut, $\beta = 11.3$

<u>d</u>	Lo	L	Ŀ	D† 8	Do	D	D	<u>г/л</u>
-6	.300	.138	162	.0134	.0966	.3144	.1458	- 1,1
-4	.298	.607	•309	.0131	.0975	.2505	,0843	3.7
-2	.296	1.046	. 750	•0128	.0984	.2391	.0723	10.4
θ	.295	1,458	1,163	.0124	.0989	.2462	.0793	14.7
2	.294	1.878	1,584	.0121	.0994	.2682	.1011	15.7
4	.293	2.301	2,008	.0118	.0999	.3005	.1332	15.1
6	.291	2,700	2.409	.0114	.1003	.3442	.1769	13.6
8	.290	3.093	2 . 803`	0111	.1005	.3932	.2260	12,4
10	,289	3.467	3,178	.0108	.1006	•4513	. 2843	11,2
12	,288	3,836	3.548	.0105	.1011	.5119	.3447	10.3
14	. 286	4.145	3,859	•0101	.1015	.5756	.4084	9,5
16	,284	4.383	4,099	.0098	.1017	.6454	.4783	8,6
18.	,282	4.456	4,174	.0095	.1018	.7271	.5602	7.5
20	.281	4.317	4.036	.0091	.1020	.8591	.6924	5.8

™le ¢ ¥6 M1 Σ Т <u>Z</u>_ Za <u>C.P</u>. Xh 14.33 .128 - .176 - .162 -.005 - .634 11.30 -6 -.801 -1.20 14.33 14.33 14.33 14.33 .278 -.004 -1.068 11.33 -.794 .106 .302 1,18 -4 11.51 -.746 .746 -2 .099 .686 -.004 -1.428 .635 0 11,83 -,661 .079 1.163 1,070 -.003 -1.728 .495 2 12,03 -,608 .045 -.002 1,586 1.459 -2,065 .435 14.33 14.34 .000 -2.440 4 12,10 -.590 -.007 2.012 1.850 .405 12.38 -.518 -.075 2,412 2,220 -2,741 6 .38 .003 14.34 12.53 -.455 -.164 .007 -3.044 8 2.806 2,582 .36 14.34 14.34 3.178 -3.356 10 12.74 -.423 -.270 2,922 .011 .35 .016 -3.673 3.542 3.837 3.260-12 12.84 -.397 -.400 .345 3,528 .022 -3.920 14 14.34 12.94 -.370 -.537 •34 14.34 .345 3.740 12.65 -.447 -.670 .027 -4.214 16 4.065 3.800 .030 -4.600 .37 18 14.34 11.43 -.770 -.756 4.140 14.34 10.48 1.020 -.725 4.030 3.705 .029 -4.754 20 .395

υ.	A.B	27	Biplane
----	-----	----	---------

G/C = 2.00 Stagger = 0

 $D_{s} = .0571$, a = 0.95, h = 0, Long strut, $\beta = 0$

<u>م</u> ل	Lo	1			Do	<u>D</u> 1	<u>D</u>	L/D
-6	.323	.190	233	.0132	.0892	.3028	.1433	-1.6
-4	.322	.67 0	.348	.0136	.0902	.2452	.0843	4.1
-2	,320	1.106	.786	.0140	.0911	.2357	.0735	10.7
0	.319	1.518	1,199	.0141	,0919	.2437	,0806	14.9
2	.318	1,932	1.614	,0140	.0930	,2639	.0998	16,2
4	,318	2.418	2,100	.0136	.0938	,3037	,1392	15,1
6	.315	2.775	2,460	.0133	.0941	.3450	.1805	13.6
8	.313	3,167	2,854	,0130	,0950	.3971	.2320	12.3
10	.312	3,548	3,236	.0127	.0958	.4501	.2845	11.4
12	.311	3,876	3,565	.0123	.0964	.5146	.3479	10.2
14	.310	4.230	3,920	.0120	.0969	.5805	.4145	9.5
16	.309	4.489	4.180	.0116	.0971	.6504	.4846	8.6
18	.307	4.555	4,248	.0113	.0978	.7313	.5651	7.5
20	.305	4.439	4.134	,0110	,0979	,8641	.6981	5.9
æ	^м о	<u>M</u> 1	M h	=0 Xh=	2	Za. M.	le	C.P.
-6	9.17	6.25	772	.117 -	.247 -	.235 -	.537 .	725
-4	9.17	6.09	815	,110	.340	.323 -1	,238	1.21
-2	9,17	6.37	741	,098	,783	.744 -1	.485	•63
0	9.17	6.61	678	.081 1	.199 l	.139 -1	.817	.505
2	9,17	6.77	635	.044 1	.616 1	.536 -2	.171	.45
4	9,17	6.94 -	590 -	.008 2	.103 1	.998 -2	,588	.41
6	9.17	7.12	,542 -	078 2	.466 2	.392 -2	,884	.39
8	9,17	7.29	497 -	166 2	,858 2	.713 -3	.210	.375
10	9.17	7.38	474 -	.280 3	.235 3	.073 -3	.547	,365
10	0 1 0	0 54	127 _	100 3	556 3	376 .3	807	355

G/C = 2.00 Stagger = 60 %

 $D_{g} = .0571$, a = 0.93, h = -.0.01, Long strut, $\beta = -16.7$

ح	L _O	L	L		Do	D ₁	D	L/D	_
-6	,316	.293	-,023	. 40 09 9	,0810	.2740	.1260	.2.	
-4	.757	,757	,443	.0103	.0824	.2295	.0797	7 5.5	
-2	.313	1.183	,870	.0107	.0839	,2230	.0713	12.2	
0	.312	1.579	1.267	.0111	.0849	.2344	.0813	5 15,6	
2	.311	2.032	1.721	.0115	,0859	,2596	.1051	L 16.4	
4	.310	2.460	2.150	.0119	.0866	.2975	.1419	9 15.2	
6	.309	2,838	2.529	,0122	.0874	.3410	.1842	3 13.7	
8	.308	3,221	2,913	.0126	.0882	.3927	.2348	3 12.4	
10	,306	3,609	3,303	.0130	.0890	.4520	.2929) 11,3	
12	.304	3.974	3,670	.0134	.0897	.5159	.3557	7 10.3	
14	.303	4,283	3,980	.0138	.0904	.582 6	,4213	3 9.4	
16	.302	4,509	4,207	.0141	.0909	,6496	.4875	5 8,6	
18	,301	4.605	4.304	.0141	.0914	.7396	.577(7.5	
20	.300	4.550	4,250	.0138	.0924	.8895	.7262	2 5.9	
~	Mo	Ml	M	X	Z	Za	Xh	Mle	C.P.
<u>~</u> -6	<u>M</u> o 11.87	$-\frac{M_1}{8.93}$	M 778	X .123	Z -,036	Za.	Xh	$\frac{M_{le}}{743}$	C.P. 69
≪ -6 -4	Mo 11.87 11.87	$-\frac{M_1}{8.93}$ 9.35	M 778 666	X .123 .112	Z -,036 .436	Za. 034 .406	Xh 001	M _{le} 743 -1.071	C.P. 69 .82
 ✓ -6 -4 -2 	<u>M</u> 11.87 11.87 11.88	$-\frac{M_{1}}{8.93}$ 9.35 9.70	M 778 666 576	X .123 .112 .100	Z -,036 ,436 ,867	Za 034 .406 .806	Xh 001 001	$\frac{M_{1e}}{743}$ -1.071 -1.381	C.P. 69 .82 .53
 √ -6 -4 -2 0 	<u>M</u> 11.87 11.87 11.88 11.88	<u>M</u> 1 8.93 9.35 9.70 10.04	M 778 666 576 486	X .123 .112 .100 .081	Z -,036 .436 .867 1,267	Za 034 .406 .806 1.178	Xh 001 001 001	M _{le} 743 -1.071 -1.381 -1.663	C.P. 69 .82 .53 .44
x -6 -4 -2 0 2	<u>N</u> 11.87 11.87 11.88 11.88 11.88 11.89	M ₁ 8.93 9.35 9.70 10.04 10.42	M 778 666 576 486 389	X .123 .112 .100 .081 .045	Z -,036 ,436 ,867 1,267 1,723	Za. 034 .406 .806 1.178 1.603	Xh 001 001 001 001 .000	M _{le} 743 -1.071 -1.381 -1.663 -1.992	C.P. 69 .82 .53 .44 .385
2 642024	<u>N</u> 11.87 11.87 11.88 11.88 11.88 11.89 11.89	M ₁ 8.93 9.35 9.70 10.04 10.42 10.61	M 778 666 576 486 389 338	X .123 .112 .100 .081 .045 008	Z 036 .436 .867 1.267 1.723 2.153	Za. 034 .406 .806 1.178 1.603 2.002	Xh 001 001 001 001 .000 .000	M _{le} 743 -1.071 -1.381 -1.663 -1.992 -2.340	C.P. 69 .82 .53 .44 .385 .365
× 6420246	<u>No</u> 11.87 11.87 11.88 11.88 11.88 11.89 11.90	M ₁ 8.93 9.35 9.70 10.04 10.42 10.61 10.88	M 778 666 576 486 389 338 270	X .123 .112 .100 .081 .045 008 080	Z 036 .436 .867 1.267 1.723 2.153 2.533	Za. 034 .406 .806 1.178 1.603 2.002 2.355	Xh 001 001 001 001 .000 .000 .000	M _{le} 743 -1.071 -1.381 -1.663 -1.992 -2.340 -2.626	C.P. 69 .82 .53 .44 .385 .345
2 64202468	<u>No</u> 11.87 11.87 11.88 11.88 11.89 11.89 11.90 11.89	M ₁ 8.93 9.35 9.70 10.04 10.42 10.61 10.88 11.07	M 778 666 576 486 389 338 270 217	X .123 .112 .100 .081 .045 008 080 174	Z 036 .436 .867 1.267 1.723 2.153 2.533 2.916	Za. 034 .406 .806 1.178 1.603 2.002 2.355 2.714	Xh 001 001 001 001 .000 .000 .000	Mle 743 -1.071 -1.381 -1.663 -1.992 -2.340 -2.626 -2.933	C.P. 69 .82 .53 .44 .385 .365 .345
× 6420246810	<u>N</u> 11.87 11.87 11.88 11.88 11.89 11.89 11.90 11.89 11.89 11.89	M ₁ 8.93 9.35 9.70 10.04 10.42 10.61 10.88 11.07 11.27	M 778 666 576 486 389 338 270 217 164	X .123 .100 .081 .045 008 080 174 284	Z -,036 .436 .867 1.267 1.723 2.153 2.533 2.916 3.300	Za. 034 .406 .806 1.178 1.603 2.002 2.355 2.714 3.070	Xh 001 001 001 001 .000 .000 .001 .002 .003	M _{le} 743 -1.071 -1.381 -1.663 -1.992 -2.340 -2.626 -2.933 -3.237	C.P. 69 .82 .53 .44 .385 .345 .345 .325
× -6 -4 -2 0 2 4 6 8 0 12	<u>N</u> 11.87 11.87 11.88 11.88 11.89 11.89 11.89 11.89 11.89 11.89 11.89 11.89 11.89 11.89	M ₁ 8.93 9.35 9.70 10.04 10.42 10.61 10.88 11.07 11.27 11.35	M 778 666 576 486 389 338 270 217 164 ±.140	X .123 .112 .100 .081 .045 008 080 174 284 414	Z 036 .436 .867 1.267 1.723 2.153 2.533 2.916 3.300 3.660	Za. 034 .406 .806 1.178 1.603 2.002 2.355 2.714 3.070 3.405	Xh 001 001 001 001 .000 .000 .000	M _{le} 743 -1.071 -1.381 -1.663 -1.992 -2.340 -2.626 -2.933 -3.237 -3.549	C.P. 69 .82 .53 .44 .385 .345 .345 .325 .325
× -6 -4 -2 0 2 4 6 8 10 2 14	<u>N</u> 11.87 11.87 11.88 11.88 11.89 11.89 11.90 11.89 11.89 11.89 11.89 11.89 11.89 11.89 11.89 11.89	M ₁ 8.93 9.35 9.70 10.04 10.42 10.61 10.88 11.07 11.27 11.35 11.43	M 778 666 576 486 389 338 270 217 164 ±.140 116	X .123 .112 .100 .081 .045 008 080 174 284 414 553	Z 036 .436 .867 1.267 1.723 2.153 2.533 2.916 3.300 3.660 3.960	Za. 034 .406 .806 1.178 1.603 2.002 2.355 2.714 3.070 3.405 3.684	Xh 001 001 001 001 .000 .000 .000	M _{1e} 743 -1.071 -1.381 -1.663 -1.992 -2.340 -2.626 -2.933 -3.237 -3.549 -3.806	C.P. 69 .82 .53 .44 .385 .345 .345 .325 .325 .32
× -6 -4 -2 0 2 4 6 8 10 12 14 16	<u>N</u> 11.87 11.87 11.88 11.88 11.89	M ₁ 8.93 9.35 9.70 10.04 10.42 10.61 10.88 11.07 11.27 11.35 11.43 11.75	M 778 666 576 486 389 338 270 217 164 ±.140 116 029	X .123 .112 .100 .081 .045 008 080 174 284 414 553 692	Z -,036 .436 .867 1.267 1.723 2.153 2.533 2.916 3.300 3.660 3.960 4.173	Za. 034 .406 .806 1.178 1.603 2.002 2.355 2.714 3.070 3.405 3.684 3.880	Xh 001 001 001 001 .000 .000 .000	M _{1e} 743 -1.071 -1.381 -1.663 -1.992 -2.340 -2.626 -2.933 -3.237 -3.549 -3.806 -3.916	C.P. 69 .82 .53 .44 .385 .345 .345 .325 .325 .325 .325 .325 .325
X -6 -4 -2 0 2 4 6 8 10 12 4 16 18	<u>N</u> 11.87 11.87 11.88 11.88 11.89 11.89 11.89 11.89 11.89 11.89 11.89 11.88 11.87 11.86 11.85	M ₁ 8.93 9.35 9.70 10.04 10.42 10.61 10.88 11.07 11.27 11.35 11.43 11.75 11.50	M 778 666 576 486 389 338 270 217 164 ±.140 116 029 093	X .123 .112 .100 .081 .045 008 080 174 284 414 553 692 780	Z 036 .436 .867 1.267 1.723 2.153 2.153 2.533 2.916 3.300 3.660 3.960 4.173 4.268	Za. 034 .406 .806 1.178 1.603 2.002 2.355 2.714 3.070 3.405 3.684 3.880 3.975	Xh 001 001 001 001 .000 .000 .000	Mle 743 -1.071 -1.381 -1.663 -1.992 -2.340 -2.626 -2.933 -3.237 -3.549 -3.806 -3.916 -4.076	C.P. 69 .82 .53 .44 .385 .345 .325 .325 .325 .325 .325 .325 .325 .32

Gottingen 387 Monoplane

Test made by Aeronautical Department, M.I.T., Nov.8, 1922. To be used as standard to which to apply biplane correction factors

æ	Ē	Ð	<u>r/d</u>	Lc	Dc	Mc	<u>C.P</u> .
- 8	093	.0860	-1.08	00016	.000143	00019	- 1.08
- D	•151	.0457	2,65	.00020	.000076	00031	1,60
- 5	.229	.0412	5.56	,00038	.000069	00036	.95
- 4	.340	.0397	8,56	.00057	.000066	00040	.72
- 3	.452	.0411	11.00	.00075	.000068	00045	.60
- 2	565	.0432	13.10	.00094	.000072	00050	. 53
0	. 796	.0522	15,24	.00133	.000087	00060	45
. 2	1,028	.0648	15.86	.00171	.000108	00069	40
4	1,258	.0832	15,13	.00209	.000139	00079	.37
6	1.477	.1068	13.82	00246	,000178	-,00088	.36
8	1,699	.1337	12.72	.00283	.000223	00097	.34
10	1,920	.1645	11,67	.00320	.000274	00107	.33
12	2,097	.1961	10.70	.00349	.000327	00114	. 33
14	2,235	2282	9.79	.00372	.000380	00118	.32
16	2.312	.2630	8.79	.00385	.000438	00121	.32
18	2.363	3060	7.72	.00394	.000501	00124	.32
20	2.368	3582	6.62	.00395	.000597	00126	.31
22	2,314	.4284	5.40	.00386	.000714		- J -

Gottingen 387 Monoplane #1

Crosshead Mounting Protected By Discoid Case

$$D_s = .0301$$
, $a = 0.74$, $h = 0.92$

<u>~</u>	L	Lo	L	Dl
-8	.188	,251	-,063	.1880
-6	.401	,250	,151	.1525
-4	.614	.249	.365	,1465
-2	.816	.247	.569	.1490
0	1,076	.247	.829	.1567
2	1.310	.246	1.064	.1703
4	1,550	.245	1,305	.1895
6	1.779	244	1.535	.2146
8	2.001	.243	1.758	.2402
10	2,205	.242	1.963	.2701
12	2.405	.242	2.163	.3031
14	2,519	.241	2.278	.3364
16	2,606	.241	2,365	.3747
18	2.610	.240	2.370	.4203
20	2,605	.240	2,365	.4757
<u>α.</u>	Do	D	<u>x</u>	Z
-8	.0793	.0786	.070	-,073
-6	.0776	.0448	.060	.147
-4	0768	.0397	.065	.361
-2	.0760	.0429	,063	,567
0	.0750	.0516	.052	. 829
2	,0740	,0662	,029	1,066
4	.0726	.0868	-,003	1,307
6	.0712	.1133	049	1,538
8	.0698	.1403	-,105	1.760
10	.0 6 85	.1715	170	1.962
12	.0670	.2060	249	2,157
14	,0665	,2408	317	2.268
16	.0639	.2807	380	2,340
18	.0622	,3280	422	2,353
20	,0608	.3848	-,448	2,353

Gottingen 387 Monoplane #1(Cont.)

α	Ml	Mo	MB	M
		10 80		
-8	8.84	T0*15	09	-,474
-6	8.62	10.72	- .09	-,532
-4	8,60	10.72	-,09	-,537
-2	8,56	10,72	09	548
0	8,58	10.72	08	-,545
2	8,56	10,72	08	-,550
4	8,64	10,72	08	-,529
6	8.77	10,71	-,08	492
8	8,87	10.71	-,08	465
10	9,05	10.71	08	418
12	9,28	10.71	-,08	357
14	9,57	10.71	08	-,281
16	9.74	10,71	-,08	235
18	9,82	10.71	-,09	21 2
20	9.75	10.71	÷.09	233

X	Za	Xh	Mle	C.P.
-8	055	.064	-,355	-1.62
-6	109	055	- 686	1,56
-4	267	1.060	744	.685
-2	420	.058	-,910	,535
õ	.613	.048	-1,110	.445
2	789	.027	-1,312	.41
4	.967	- 003	-1.499	,385
6	1.139	045	-1,676	,365
8	1.302	097	-1.864	.355
10	1.452	156	-2,026	,345
12	1.597	- 229	-2,183	.335
14	1,680	- 292	-2,253	.33
16	1.731	350	-2.316	.33
18	1.740	388	-2.340	.33
20	1,740	412	12.385	.335

Göttingen 387 Monoplane #2

Crosshead Mounting Protected By Discoid Case

$D_g = .0301$, a = 0"87, h = 0"82

<u>~</u>	L	L _o	L	Dl
-8 -4 -2 24 80 12 14 18 20	217 ,434 ,653 ,881 1,118 1,345 1,588 1,807 2,020 2,225 2,419 2,524 2,603 2,622 2,617	255 254 253 252 251 250 250 250 250 249 249 249 249 248 248 248 248 248 246 246	038 ,180 ,400 .629 .867 1.095 1.338 1.557 1.771 1.976 2.171 2.276 2.356 2.376 2.371	.1637 .1441 .1395 .1435 .1524 .1662 .1863 .2000 .2369 .2680 .3011 .3341 .3755 .4177 .4796
× -86-4202468012468 102468012461820	D ₀ .0715 .0707 .0699 .0690 .0681 .0667 .0649 .0639 .0629 .0619 .0609 .0598 .0583 .0568 .0555	D .0621 .0433 .0395 .0444 .0540 .0694 .0913 .1060 .1439 .1760 .2101 .2442 .2871 .3308 .3940	X .057 .062 .067 .068 .054 .031 003 058 103 170 246 313 373 442 442	Z 047 .174 .395 .627 .867 1.097 1.340 1.558 1.774 1.976 2.166 2.267 2.342 2.353 2.363

<u>M</u> 1	Mo	M	
8.71 8.74 8.80 8.87 9.000 9.12	10.69 10.69 10.69 10.69 10.69 10.69	<u>s</u> 09 09 09 09 08 08	-,500 -,492 -,476 -,458 -,426 -,394
9.28	10,69	08	352
9.47	10.69 10.68	08 08	302 233
9,96	10,68	08	-,169
10.23	10.68	08	-,098
10.56 10.73 10.81 10.72	10.68 10.68 10.68 10.68	08 08 09 09	011 .034 .058 .034
	$ \frac{M_1}{8.74} 8.74 8.80 8.87 9.000 9.12 9.28 9.47 9.72 9.96 10.23 10.56 10.73 10.81 10.72 $	$\begin{array}{c c} \underline{M_1} & \underline{M_0} \\ 8.71 & 10.69 \\ 8.74 & 10.69 \\ 8.80 & 10.69 \\ 8.87 & 10.69 \\ 9.000 & 10.69 \\ 9.12 & 10.69 \\ 9.12 & 10.69 \\ 9.28 & 10.69 \\ 9.28 & 10.69 \\ 9.72 & 10.68 \\ 10.68 \\ 10.23 & 10.68 \\ 10.56 & 10.68 \\ 10.56 & 10.68 \\ 10.73 & 10.68 \\ 10.68 \\ 10.72 & 10.68 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

•
2
3
45
05
35
05
8
65
5
4
35
3
3
35
35

GÖTTINGEN 387 Monoplane

Crosshead Mounting Protected by Discoid Case Mean of 1 Test on #1 and 1 Test on #2.

To be used as standard of comparison in obtaining biplane correction factors.

<u>~</u>	L	<u>, D</u>	<u>r/d</u>	Lc	Dc	Mie	Mc
-8	051	.0703	- 0.73	00009	.000117	384	00021
-6	.166	.0441	3.76	.00028	.000074	639	00035
-4	•383	.0396	9.69	.00064	.000066	755	00042
-2	• 599	.0437	13.71	.00140	.000073	929	-,00052
0	.848	.0528	16,07	.00141	.000088	-1.123	-,00063
2	1.082	. 0678	15.98	.00180	,000113	-1.318	00073
4	1.322	.0891	14.81	.00220	.000149	-1.510	00084
6	1,546	.1097	14.10	. 00258	.000183	-1.691	00094
_8	1,765	.1421	12.41	.00294	•000237	-1.863	00104
10	1.970	.1738	11.34	.00328	.000290	-2,097	00113
12	2.167	.2081	10.40	.00361	.000347	-2.184	00121
14	2.277	.2425	9,39	•00380	.000404	-2.247	-,00125
16	2.361	.2839	8.33	•00394	.000473	-2,314	00129
18	2.373	.3294	7.20	•00396	.000549	-2.346	00130
20	2.308	.3894	6.09	•00395	.000649	-2,386	00133
<u>×</u>	<u>x</u>	<u></u>	<u>2L</u>	<u>2D</u>	2M _{le}	<u>C.</u> 1	•
-8	.064	060	102	.1406	768	- 2,13	i
-6	.061	.061	.332	.0881 -	- 1,278	1.32	2
-4	.066	.378	.767	.0792	-1.510	.66	5
-2	.065	•597	1,198	.0874	-1,858	.52	3
0	•053	.848	1.696	.1056	-2,246	.44	2
2	•030	1.082	2.164	. 1356	-2.636	.40	5
4	003	1.324	2.644	.1782	-3.020	•3e	3
6	054	1.548	3.092	. 2194 .	-3.382	•36	5
8	104	1.767	3.530	.2842	-3.726	.35	•
10	170	1.969	3.940	.3476	-4.054	•34	5
12	248	2.162	4.334	.4162	-4.368	.33	5
14	315	2,268	4,554	. 4850	-4.494	•33	
16	377	2.341	4.722	•5678	-4.628	•33	, I
18	432	2,353	4.746	.6588	-4.692	•33	5
20	445	2.358	4.736	.7788	-4.772	.34	

		Gottir	igen 387	Bipl	ane	
	•	G/C = .75	ō,	Stagger	= -40 %	
D ₈ =	.0556,	a = 0,90), h =	-0"05, S	hort stru	1t,/3= 289
æ	r ^o	r'	L	D's	D	Dl
-8	286	.155	131	.0069	.0896	.3169
-4	.283	.862	.579	.0065	.0908	.2487
0	.280	1.595	1,315	.0061	.0918	.2709
2	.279	2,008	1.729	.0059	.0921	.3001
6	.276	2.693	2.417	.0054	,0926	.3708
10	.273	3,362	3,089	.0050	.0929	.4736
14	.270	3,990	3.720	.0046	.0928	.6038
18	.268	4.309	4,041	.0042	,0927	.7497
20	.207	3,900	3 ,583	.0040	.0925	.8940
<u>~</u>		L/D	Mo	Ml	M	
-8	.1648	-0.80	10.61	6.85	995	
-4	,0958	6.05	10.61	7,35	863	
0	.1174	11.20	10.61	7.96	700	
2	.1465	11,80	10.61	8,24	626	
6	.2172	11.12	10.60	9.00	423	
10	.3201	9.65	10.60	9.62	259	
14	.4508	8.25	10,60	10.10	132	
T8	.5972	6,76	T0*60	9,75	225	

<u>~</u>	<u>x</u>	<u>Z</u>	Za	Xh	M _L .E	. <u>C.P.</u>
8	,182	107	-,096	009	890	-2,77
-4	.135	.570	.513	007	-1.369	80
0	.117	1,315	1,183	-,006	-1.877	.475
2	.087	1,732	1,558	004	-2.180	.42
6	037	2,426	2.283	.002	-2.708	.37
10	219	3.096	2.786	,011	-3.056	.33
14	464	3.714	3,343	.023	-3.498	.315
18	681	4.020	3,618	.034	-3.877	.32

152

,

٠		G/C =	,75,	Stag	ger = 0	
D _s =	• 0556	, a = 0	90 , h =	= 0 " 08,	Short st	$rut, \beta = 0$
	,					
æ	r°	r_1	\mathbf{L}	ם י _ב ע	Do	$\mathtt{D}_{\mathtt{l}}$
-8	.304	.317	.013	.0081	.0829	.2687
-4	.301	.996	.695	.0085	.0855	.2382
0	.299	1,706	1.407	,0089	.0873	.2682
2	.299	2.059	1.70U 9.513	8800.	.0887	.2900 3203
10	.293	3.500	3,207	.0080	.0916	.4950
14	.290	4.116	3.826	.0075	.0937	.6278
18	.287	4.555	4,268	.0071	.0947	.7684
20	.285	4.609	4.324	.0069	.0951	.8504
22	.284	4.670	4.386	.0067	.0955	.9463
24	.283	4.400	4.117	.0065	•0959	1.0700
oc	Ð	L/D	H l	M _o .	M	
	- <u></u>		7 62	10 86	856	
-0 - 1	1221	7 84	8 07	10.86	- 738	
	.1164	12.09	8.47	10.86	632	
2	1422	12,37	8.73	10,86	-,563	
6	.2281	11.00	9.02	10.86	487	
10	,3398	9,45	9.32	10.86	 408 ·	
14	.4710	8.11	9,68	10,86	312	
18	.6110	6.99	9,95	10,86	241	
20	.6928	5,20	0 66	10 86	317	
22 21	1000 0190	4 51	9,00	T0*00		
~ T	• 9 T QU				* 1	
æ	x	Z	Za	Xì	ı M _l	C.P.
						<u> </u>
-8 -4	.122 .137	005	004 .617	.010)86 l -1.36	2 -71,78 6 ,665

.116 1,407 1.266 .009 -1,907 ,45 -2.155 1.762 1.576 .006 .405 .080 .365 2.521 2.269 -2.753 -.035 -.003 3,216 2.894 -3.284 .34 -.220 -,018 3.824 3.442 -.037 -3.717 .325 -.466 -4,001 ,315 -.732 4,242 3.818 -.058 -4.164 -.915 4.356 -.073 .32 3,920

0

2

6

10

14

18

153

Göttingen	387	Biplane
-----------	-----	---------

G/C = .75, Stagger = 60 % $D_{g} = .0556$, a = 0.86, h = 0.04, Short strut, $\beta = -38.7$

<u>م</u>	L ₀	L _l	L	D's	Do	D1
-8	.301	.387	.086	.0037	,0695	,2433
-4	299	1,107	,808	.0039	.0710	.2203
0	297	1.873	1,576	.0044	.0727	,2585
2	297	2,279	1,982	,0046	.0742	. 2934
6	,295	3.049	2,754	.0051	.0757	.3984
10	,294	3,871	3.577	,0056	.0769	•5338
14	.292	4,568	4.276	.0061	.0790	,6982
18	.290	5,100	4,810	.0065	,0805	.9200
20	,289	5,150	4.861	,0068	.0808	1.0800
82	.288	4,900	4,612	.0072	.0810	1,3500

~	D	L/D	Mo	Ml	<u> </u>	
-8	,1135	.76	10.55	8,05	661	
-4	0898	9,00	10,55	9.32	325	
0	,1258	12,52	10,55	10.52	008	
2	,1590	12,48	10.55	11,12	.151	
6	.2620	10,50	10,55	11.97	.376	
10	.3957	9,05	10,56	12,69	,563	
14	,5575	7.67	10,56	12.85	.605	
18	.7774	6.20	10,56	12.24	.445	
20	,9368	5.19	10.56	11,42	.228	
22	1.2062	3.84				

æ	X	Z	Za	Xh	Mle	C.P.
-8	,125	-,070	060	.005	-,606	-2,88
-4	.146	.800	6 88	,006	1,019	.425
0	126	1.576	1,355	.005	1,368	.29
2	089	1,985	1,700	,004	1,552	.26
6	- 028	2.762	2,376	001	1,999	.24
10	- 230	3,590	3,087	009	2,515	.235
14	492	4.279	3,680	020	3,055	.24
18	748	4.812	4,145	-,030	3,670	.255
20	-,786	4.883	4,200	032	3,940	.27

		••••••	-0				
	•	G/C = 1.0	00,	Stagger	: = - 40	%	
D _s :	= .0556,	a ≤ 0 " 94	h, $h =$	0"04, Sł	ort stru	t, /3 =	2198
<u>~</u>	<u> </u>	<u> </u>	L		<u>D</u> 1	Ds	
-8	.313	.216	097	.0921	.3117	.0055	
-4	.311	.957	•646	,0948	.2478	.0060	
0	.308	1.758	1.450	.0965	.2788	.0064	
2	•306	2.130	1.824	.0975	.3074	.0066	
6	.302	2.934	2.632	.0990	.3959	.0071	
10	•299	3,665	3,366	.1001	.5177	.0076	
14	•296	4.309	4.013	.1005	.6592	-008T	
18	.293	4.615	4.322	.1008	.8133	.0086	
20	.591	4,600	4.309	.1014	.9333	.0088	
\propto	D	l/D	M	Mo	M		
	7505			10 80			
	.1989		7.TA	10,79	900		
~4	*0914 1903	10.07	7.00	10.19	- +070		
0	• TEAA	10 35	1.071	TO 10	~•(40 603		
<i>к</i> 6	+14(1 97/9	11 90	0.11	10.79			
10	3511	11.000 0 50	0,07	10.79	- 465		
	10544	ອ .ບບ ຊຳາ	0 37	10.79	- 376		
10	006 7 .	6 67	8 35	10 70	- 645		
20	040A	5 62	8 11	10,70	- 709		
20	÷ () ()		0.11	TO \$ 65			
~	x	2	Za	Xh	И.	C.P.	
<u>~</u>					<u>le</u>		
-8	.144	118	111	.006	848	-2.39	
-4	,136	.638	. 600	•005	1.475	.77	
0	.120	1.450	1.361	.005	2,112	.485	
2	,083	1.828	1.718	.003	2.414	.44	
6	042	2.641	2.482	002	3,035	.385	
10	235	3.378	3.175	009	3.621	.355	
14	490	4.008	3.767	020	4.123	.345	
18	718	4.304	4.046	029	4.662	.36	
20	-,750	4.305	4.047	030	4.726	.365	

.

.

•

G/C = 1.00, Stagger = -20 %

 $D_{s} = .0556$, a = 0.92, h = 0.05, Short strut, $\beta = 11.3$

æ	I,	r	L	D _s	Do	Dl
-8	.310	.287	023	.0086	.0864	.2875
-4	.307	1.008	.701	,0082	.0896	,2412
0	.304	1,789	1.485	.0078	•0908	.2757
2	.303	2.177	1.874	.0076	.0916	.3044
6	.300	2,973	2.673	.0072	.0932	,3987
10	.298	3.707	3,409	.0068	.0944	,5195
14	.295	4,328	4.033	.0064	0957	,6610
18	.292	4,694	4.402	.0059	.0970	.8074
20	.290	4,724	4.434	.0057	.0972	.9087
22	.288	4.200	3,912	.0055	.0974	1,1200

æ	D	L/D	Ml	Mo	M	
-8	,1369	-0.17	7.20	10.85	965	
-4	.0878	7.99	7.65	10.85	846	
0	.1215	12.21	8.22	10.85	-,695	
2	.1496	12.53	8,38	10.85	-,654	
6	.2427	11.00	8.82	10.85	537	
10	.3627	9.40	9.21	10,85	434	
14	.5 033	8.02	9.51	10.85	-,355	
18	.6489	6,80	9,48	10,85	-,362	
20	.7502	5.91	8,96	10.85	500	
22	.9615	4.11				

æ	X	Z	Z a	Xh	M _{l.e.}	C.P.
-8	,133	042	039	.007	-,933	-7.40
-4	,146	.693	.638	.007	-1.491	.72
0	122	1,485	1.367	,006	-2,068	.465
2	.083	1,878	1,728	.004	-2.386	.425
6 ·	070	2.981	2.843	004	-3,278	.365
10	234	3,419	3,141	012	-3.563	.345
14	488	4.032	3,710	024	-4.041	.335
18	745	4.380	4.029	037	-4,354	,33
20	811	4.418	4,066	041	-4.520	.34

$ \begin{array}{c c} & & & \\ \hline G^{\prime}C = 1.00 & \\ \hline Stagger = 0 \\ \hline D \\ p \\ = .0556, a \\ = 0!90, h \\ = 0, \\ \hline S \\ \hline \\$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Gottir	ngen 38'	7 Bipla	ane	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			G/C = 1.0	00	Stagge:	$\mathbf{r} = 0$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	D s	= .0556,	a = 0 ! 9(), h =	0, Shor	t strut	, <i>(</i> 3 = 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	α	Lo	L	L	Ds	Do	$\underline{D_1}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-8	.295	,247	048	.0081	.0853	.2889
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-4	,293	.972	.679	.0085	.0874	,2397
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	บ จ	•290	L.746	1.456	•0089	•0886	.2706
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	يم 6	.287	2.037	2.650	0084	.0090	. 3090
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	284	3.700	3,416	.0080	.0914	.5113
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	,281	4.350	4,069	.0075	0922	6458
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	.278	4.759	4.481	.0071	.0931	.7900
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	.276	4.852	4.576	.0069	.0933	.8836
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	.275	4.830	4,555	•0067	•0935	1.0036
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	~	D	т./р	M-	. M	1	M
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-8	.1399	-0.35	7.3	5 10.94	- , 9	50
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-4	.0882	7.70	7.7	5 10.94	8	44 DF
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	.1175	12.40	8,2	U 10.94	7	20 6 A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	.2376	12.17	8.8	4 10.94	- • 0 - • 5	65
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	.3563	9.59	9.2	2 10.94	- 4	55
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	.4905	8.30	9.5	6 10.94	3	65
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	.6342	7.07	9.9	0 10.94	2	75
22 .8478 5.38 9.29 10.94 436 h = 0, Xh = 0 $\frac{\alpha}{131}$ $\frac{X}{136}$ $\frac{Z}{2a}$ $\frac{M_{1.6}}{1.6}$ $\frac{C.P.}{1.6}$ -8 .131136122828 -2.03 -4 .135 .670 .603 -1.447 .72 0 .118 1.456 1.310 -2.035 .465 2 .080 1.841 1.657 -2.321 .42 6041 2.659 2.393 -2.948 .37 10242 3.424 3.082 -3.537 .345 14508 4.062 3.656 -4.021 .33 18780 4.450 4.005 -4.280 .32 20880 4.544 4.090 -4.405 .325 22922 4.536 4.082 -4.528 .335	20	.7278	6,30	9.7	5 10.94	3	15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	.8478	5,38	9.2	9 10.94	4	36
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			ł	n = 0, 3	kh = 0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	~~	X		Za	M _{l.e.}	C.P.	× .
-4.135.670.603 -1.447 .720.1181.4561.310 -2.035 .4652.0801.8411.657 -2.321 .426 041 2.6592.393 -2.948 .3710 242 3.424 3.082 -3.537 .34514 508 4.062 3.656 -4.021 .3318 780 4.450 4.005 -4.280 .3220 880 4.544 4.090 -4.405 .32522 922 4.536 4.082 -4.528 .335	-8	.131	136	122	828	-2.03	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-4	,135	.670	.603	-1.447	.72	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	.118	1.456	1.310	-2,035	.465	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	.080	1,841	1.657	-2.321	•42	
10 242 3.424 3.002 -3.557 $.345$ 14 508 4.062 3.656 -4.021 $.33$ 18 780 4.450 4.005 -4.280 $.32$ 20 880 4.544 4.090 -4.405 $.325$ 22 922 4.536 4.082 -4.528 $.335$	0	041	3 101	x,090	-4.940	107 1215	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		- 6 444 - 609	1 060	3 656	-0.007	1040 . 33	
20 880 4.544 4.090 -4.405 .325 22 922 4.536 4.082 -4.528 .335	18	- 780	4,450	4,005	-4.280	32	
22922 4.536 4.082 -4.528 .335	20	880	4.544	4.090	-4,405	.325	
	22	- ,922	4.536	4.082	-4.528	.335	

- 157

```
G/C = 1.00,
```

Stagger = 20 %

 $D_{s} = .0556$, a = 0.92, h = 0.08, Short strut, $\beta = -11.3$

~	L ₀	L ₁	L	Ds	D _o	<u>D</u> 1
~ 8	.306	.200	106	.0067	.0774	.3000
-4	.303	,921	618	0072	.0800	.2302
0	301	1,701	1,400	0077	.0816	2576
2	.300	2.114	1,814	.0079	.0824	2870
6	.298	2,912	2.614	.0084	,0842	.3758
10	.296	3.692	3.396	.0088	.0868	.4971
14	.293	4.377	4.084	.0087	•0880	. 6432
18	.290	4.905	4.615	.0083	.0895	.8019
20	.289	4.992	4,703	.0081	.0902	,8800
22	.288	5.046	4,758	.0079	.0905	.9895
24	. 287	4.941	4.654	.0077	,0910	1.1518
æ	D	L/D	M ₁	Mo		M
-8	.1603	-0.66	7.64	10.8	78	355
-4	.0874	7.08	8,05	10.8	7 – .7	45
ō	1127	12.42	8.71	10.8	7 - 15	571
2	1411	12.86	8.98	10.8	7 - 5	500
6	.2276	11,50	9.45	10.8	73	576
10	.3459	9.82	9,87	10.88	32	267
14	.4909	8.32	10,18	10,88	33	.85
18	.6485	7.13	10.51	10.88	30	98
20	,7261	6.49	10,47	10.88	в - .]	.08
22	. 8355	5.70	10.25	10.80	B - .]	.67
24	.9975	4.67	9.85	10.80	8 - •\$	273
æ	x	Z	Za	Xh	M _{1,6}	C.P.
-8	.144	129	119	.012	-,748	-1.93
-4	,129	. 610	.561	.010	-1.316	.72
0	.113	1.400	1,289	.009	-1.869	.445
2	.078	1.817	1.671	.006	-2.177	.40
6	046	2.620	2,410	004	-2,782	.355
10	247	3.401	3.128	020	-3.375	•33
14	510	4.078	3.752	041	-3.896	.32
18	810	4.584	4.210	~.065	-4.243	.31
20	926	4.664	4.296	074	-4.340	.31
22	-1.012	4.718	4,345	079	-4.433	.315
24	.983	4.654	4.281	081	-4.473	•32

.

.

			0	*			
·		G/C = 1.0	00	Stagger	r = 40 %		
D ₈ =	.0556,	a = 0.93	L, <u>h</u> =	0 " 08, Sł	nort stru	t, <i>(</i> 3 =	-2198
~~~	Lo	Ll	L	D ₀	D ₁	Dis	
-8 -4 0 2 6 10 14 18 20 22 24	.317 .315 .313 .312 .311 .309 .307 .305 .304 .303 .302	.300 1.042 1.848 2.250 3.079 3.859 4.576 5.059 5.130 5.191 4.850	017 .727 1.535 1.938 2.768 3.550 4.269 4.754 4.826 4.888 4.548	.0747 .0766 .0788 .0800 .0818 .0836 .0856 .0868 .0881 .0892 .0897	.2692 .2254 .2602 .2959 .3961 .5238 .6815 .8501 .9460 1.0631 1.3500	.0075 .0071 .0067 .0065 .0061 .0057 .0052 .0048 .0046 .0044 .0044	
~	D	L/D	<u>M</u> 1	O	M		
-8 -4 0 2 6 10 14 18 20 22 24	1314 0861 1191 1538 2526 3789 5351 7029 7977 9139 1.2005	-0.13 8.44 12.89 12.60 10.96 9.37 7.97 6.77 6.05 5.35 3.78	7.66 8.51 9.34 9.78 10.43 10.84 11.11 11.21 11.06 10.70	10.94 10.94 10.94 10.94 10.94 10.94 10.94 10.94 10.94 10.94	867 643 424 307 135 026 .045 .071 .032 063		
<ul> <li><i>∞</i></li> <li><i>−</i>8</li> <li><i>−</i>4</li> <li><i>0</i></li> <li><i>2</i></li> <li><i>6</i></li> <li><i>10</i></li> <li><i>14</i></li> <li><i>18</i></li> <li><i>20</i></li> <li><i>22</i></li> </ul>	X 127 136 119 .086 036 245 510 800 900 986	Z 037 .720 1.535 1.941 2.773 3.560 4.270 4.732 4.800 4.868	Za 034 .655 1.398 1.768 2.523 3.240 3.887 4.300 <b>4.</b> 362 4.436	Xh .010 .011 .010 .007 003 020 041 064 072 079	M 843 1.309 1.832 2.082 2.655 3.246 3.801 4.165 4.258 4.258 4.420	C.P. -7.59 .605 .40 .355 .325 .305 .295 .295 .305	· •

•

G/C = 1.00, Stagger = 60 %

 $D_{g} = .0556$ , a = 0.86, h = 0.06, Short strut,  $\beta = -31.0$ 

					• •	
<u>~</u>	L _o		L	D:	D _o	$\underline{\mathbf{D}_{1}}$
-8	.300	,365	-,065	,0043	.0725	.2553
-4	,299	1,130	.831	,0048	.0749	,2284
0	.297	1.954	1.657	.0053	.0772	,2702
2	.296	2,369	2.073	.0055	.0779	.3041
6	.294	3.186	2,892	.0060	.0796	.4103
10	,292	3,982	3.690	.0065	.0815	,5490
14	.290	4.708	4.418	.0070	.0826	.7114
18	. 288	5.169	4.881	,0075	.0841	.9005
20	.287	5.281	4,994	.0077	.0845	1.0300
22	.286	5,142	4,856	.0080	,0849	1.1600
~	D	L/D	Ml	<u>М</u> о	M	
-8	.1229	-0.50	7.82	10.83	- 796	
-4	.0931	6.77	8.80	10.83	~ .537	
ō	.1321	12.52	9,80	10.83	- 273	
ž	.1651	12.55	10.36	10.83	- 124	
6	2691	11.75	11.12	10.83	077	
-						

0	• <b>1</b> 0000		فيسكو باستواك بيلم	TA . 00	• • • • • •
10	,4054	9,10	11,62	10.83	- ,209
14	.5662	7.80	11.87	10,83	.275
18	.7533	6.48	11,69	10,83	,228
20	.8822	5,66	11,29	10.83	,122
22	1.0115	4.80	10.48	10.83	~.093

æ	X	Z	Za	Xh	M	C.P.
-8	,114	081	-,070	.007	733	-3.02
-4	,149	.822	,707	.009	-1,353	,55
0	.132	1,657	1.425	<b>800</b>	-1.706	,345
2	.094	2.077	1.786	.006	-1,916	.305
6	035	2,901	2.498	002	-2,419	.275
10	257	3,798	3,265	015	-3.041	.265
14	-,518	4.420	3,804	031	-3,498	.265
18	790	4.870	4,191	047	-3.916	.27
20	- ,878	4.990	4.290	-,053	-4,115	.275
22	883	4,880	4,200	053	-4,240	.29

•

		- GO G G T	Sou do			
		G/C = 1.3	33 .	Stagger	= -40	%
D _s	= .0556,	a = 0.95	5, h =	O, Mediu	m strut	, B= 1697
~	Lo	L	L		Do	Dl
-8 -4 0 2 6 10 14 18 20 22	.300 .298 .296 .294 .291 .289 .285 .285 .283 .282 .281	.118 .877 1.680 2.086 2.909 3.726 4.366 4.779 4.799 4.799	182 .581 1.384 1.792 2.618 3.435 4.080 4.496 4.517 4.179	.0092 .0087 .0082 .0080 .0075 .0070 .0065 .0060 .0058 .0055	.0860 .0874 .0886 .0891 .0900 .0905 .0915 .0917 .0919 .0921	.3271 .2406 .2660 .2939 .3843 .5079 .6440 .8002 .8932 1.0980
8 -8 -4 0 2 6 10 14 18 22	D .1763 .0889 .1136 .1412 .2312 .3548 .4904 .6469 .7399 .9448	L/D -1.03 6.55 12.20 12.70 11.31 9.68 8.31 6.95 6.11 4.43	Mo 10.5 10.5 10.5 10.5 10.5 10.5 10.5	M 59 7.9 59 7.4 59 8.1 58 8.3 58 8.8 58 9.3 57 9.6 57 9.2 57 8.7	9 9  4  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  34  3  3	M 688 830 635 592 460 328 238 349 492
x -8 -4 0 2 6 10 14 18 20	X 200 130 114 .078 .001 247 510 776 850	h=0, Z 155 .573 1.384 1.795 2.624 3.440 4.074 4.472 4.494	$\begin{array}{r} \mathbf{x}h = 0\\ \mathbf{z}a\\147\\ .545\\ 1.315\\ 1.705\\ 2.494\\ 3.268\\ 3.872\\ 4.250\\ 4.270\end{array}$	<u>Le</u> 541 1.375 1.950 2.297 2.954 3.596 4.110 4.599 4.762	C.P. -1.16 .80 .47 .425 .375 .35 .345 .345 .355	

• .

G/C = 1.33				Stagg	er = 0		
$D_s =$	.0556,	a =	0493,	h =	0404,	medium	strut, $\beta = o$

<u>~</u>	<u> </u>	<u>L</u> 1	L		Do	<u>D</u> 1
-8 -4 0 26 10 14 18 20 22	299 296 294 293 290 288 285 282 282 281 281 280	260 1.009 1.829 2.233 3.047 3.828 4.503 4.891 4.929 4.872	039 .713 1.535 1.940 2.757 3.540 4.218 4.609 4.648 4.592	0095 0097 0100 0099 0095 0090 0085 0081 0078 0075	.0815 .0829 .0844 .0856 .0870 .0884 .0898 .0910 .0908 .0916	.2754 .2359 .2708 .3024 .3967 .5251 .6683 .8180 .9100 1.0260
~		L/D	<u> </u>	MI	<u> </u>	
-8 -4 0 2 6 10 14 18 20 22	1288 0877 1208 1513 2446 3721 5144 6633 7558 8713	-0.30 8.13 12.70 12.81 11.28 9.51 8.21 6.95 6.14 5.15	10.58 10.58 10.59 10.59 10.59 10.59 10.60 10.60 10.60	7.05 7.65 8.10 8.44 9.37 9.73 9.73 9.87 9.57 9.02	934 775 656 569 436 323 227 196 275 418	
æ	<u> </u>	Z	Za	Xh	M _{L.E.}	C.P.
-8 -4 0 2 6 10 14 18 20 22	.132 .137 .121 .083 041 249 520 792 879 916	020 .705 1.535 1.942 2.766 3.548 4.212 4.584 4.619 4.578	019 .656 1.429 1.808 2.573 3.301 3.925 4.262 4.300 4.257	.005 .005 .005 .003 002 010 021 032 035 037	920 -1.436 -2.090 -2.380 -3.007 -3.614 -4.131 -4.426 -4.540 -4.638	-15.32 68 455 41 36 34 325 32 325 325 325 335

.

					•• •		
		Götti	ngen 387	7 Bip	lane		
	G/O	= 1.33		Stagge	r = 60 %		
Ds	= .0556,	a = 0	92, h =	0,10, M	edium St	rut, /3 =-	24 <mark>0</mark> 2
8	Lo	<u>L1</u>	L	Dj	Do	Dl	
-8 -4 0 2 6 10 14 18 20 22	.305 .303 .301 .300 .299 .297 .295 .295 .293 .291 .290	221 996 2245 3074 3879 4609 5075 5182 5092	084 .693 1.523 1.945 2.775 3.582 4.314 4.782 4.891 4.802	.0059 .0065 .0070 .0072 .0078 .0083 .0089 .0094 .0096 .0099	.0728 .0744 .0768 .0780 .0800 .0816 .0834 .0848 .0854 .0859	.2813 .2250 .2580 .2886 .3867 .3165 .6742 .8394 .9394 1.0800	
<u>~</u>	D	L/D	Mo	Ml	M		
-8 -4 0 2 6 10 14 18 20 22	.1470 .0885 .1186 .1478 .2433 .3710 .5253 .6896 .7888 .9286	57 7.83 12.86 13.17 11.40 9.66 8.22 6.94 6.20 5.18	$10.63 \\ 10.63 \\ 10.63 \\ 10.63 \\ 10.63 \\ 10.64 \\ 10.64 \\ 10.64 \\ 10.64 \\ 10.64 \\ 10.64 \\ 10.64 $	7.31 8.14 9.02 9.55 10.35 10.98 11.38 11.49 11.35 10.94	878 659 426 286 071 .090 .196 .225 .188 .079		
8 -84 -02 -02 -00 -14 -18 -02 -00 -14 -18 -02 -00 -14 -18 -02 -00 -14 -18 -20 -20 -18 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19	X 157 136 119 078 -042 -274 -530 -822 -932 -932 -945	Z 062 .686 1.523 1.945 2.782 3.588 4.308 4.308 4.756 4.860 4.796		Xh 016 014 012 008 -004 -027 -053 -082 -093 -095	<u>M1.e</u> 837 -1.304 -1.839 -2.084 -2.627 -3.183 -3.711 -4.071 -4.194 -4.236	C.P. -4.50 .635 .40 .355 .315 .295 .285 .285 .285 .285 .295	

•

162a.

#### APPENDIX C.

#### TABULATED RESULTS

	· · · · · · · · · · · · · · · · · · ·	Tables
<b>1.</b>	Biplane Correction Factors at Equal $\infty$ for L _c , D _c , L/D, and M _c .	1-33
II.	Loading on Upper and Lower Wings .	34
LLL.	Aerodynamic Coefficients ( $L_c$ , $D_c$ , $L/D$ , $M_c$ , and C.P.) for the Biplane as a Unit.	
	1. U _A S.A. 27 biplanes. 2. Göt. 387 biplanes.	<b>3</b> 5-61 62-76
IV.	Biplane Correction Factors for $D_c$ , L/D, $M_c$ , and C.P. at Equal $L_c$ ; and for $L_c$ max., $D_c$ min., and L/D max.	89 <b>-97</b> 100 <b>103</b> 108 <b>-</b> 109

N.B. In all tabulations of data, negative signs (-) are inserted, but positive signs (+) are omitted. The absence of a sign means that the value is positive (+).

# BIPLANE CORRECTION FACTORS FOR L AT EQUAL $\sim$ .

Table 1 U.S.A. 27 Biplane Stagger = 0

	G/C						
<u>~</u>	<u>•50</u>	.75	1.00	1.33	1.67	2.00	
-6	105	.412	.588	.776	1.113	1.021	
-4	1.280	.990	•990	•959	•718	1.208	
-2	.864	<b>.</b> 825	1.016	<b>.</b> 885	.826	1.010	
0	.786	.895	.855	.872	.842	.961	
2	•766	.789	<b>.</b> 864	<b>880</b>	<b>.</b> 835	.933	
4	.775	.835	<b>.</b> 870	.899	.870	.962	
6	.764	.817	.866	<b>.8</b> 92	.859	•936	
8	.755	.805	.857	<b>.</b> 890	.866	.933	
10	•759	.810	.864	.887	.878	.936	
12	.760	.815	.867	.887	.876	.929	
14	.759	.812	.876	.904	.887	.938	
16	.776	.848	.899	.922	.916	.956	
18	.820	.896	•965	.978	.970	.981	
20	.876	.953	.996	•999	•998	.989	
22	.905	.992					

		Table 2.	
		U.S.A. 27 Bipla	ne
		G/C = 0.50	
		J Stagger.	
<u>o</u> ∠°	-40%	_0%	<u>60%</u>
-6	-1.074	105	.072
-4	•514	1.280	1.362
-2	.648	.864	.992
0	.669	.786	.918
2	.675	•766	.890
4	.692	•775	.880
6	.691	.764	.879
8	.700	.775	.892
10	.708	.759	.887
12	.715	.760	.893
14	.723	759	894
16	744	.776	915
18	.765	.820	952
20	.766	.876	.985
22	••••	.905	1.071

# BIPLANE CORRECTION FACTORS FOR $\mathbf{L}_{\mathbf{C}}$ AT EQUAL $\boldsymbol{\curvearrowright}.$

	· · ·	*	Ta U.S.A. G/C	ble 3 27 Bipla = 0.75	ne	
L	-40%	-20%	j <del>sta</del> O	99er. 20%	40%	60%
6	-1.018	732	.412	079	•346	.232
-4	• 660	.771	.990	1.268	1.551	1.602
-2	.726	.745	.825	• 930	1.065	1.089
0	•704	.708	.895	.873	.979	.999
-2	•745	.746	.789	.882	. •930	.856
4	.751	.763	<b>.835</b>	.860	.912	932
6	.760	.788	.817	.856	•904	.932
8	•773	•778	.805	.841	<b>.</b> 885	933
10	.786	.781	.810	.836	.893	928
12	•789	.790	.815	.787	.889	.926
14	•788	.801	.812	.838	.900	.908
16	.805	<u>.</u> 818	.848	.863	.923	949
18	<b>.83</b> 4	.864	.896	923	.964	.991
20	<b>•</b> 858	•900	.953	.971	1.002	1.029
22		.913	992	1.011	1.031	1.071

	Göt. G/C	able 4. 387 Biplan = 0.75	10
<del>م</del> °	-40%	0	60%
8	1.364	135	896
-4	.710	.851	.990
0	.766	.820	.919
2	.796	.811	.914
6	.783	.815	.892
10	.778	.808	. 900
14	.814	<b>.83</b> 6	.935
18	<b>.</b> 845	.893	1.007
20	•776	.913	1.027
22		•946	.997

## BIPLANE CORRECTION FACTORS FOR L_c AT EQUAL $\checkmark$

166

Table 5 U.S.A. 27 Biplane G/C = 1.00

### stagger

<u>~</u>	<u>-40%</u>	-20%	0%	20%	40%	<u>60%</u>
6	1.191	.631	.588	.421	.250	.228
-4	•660	.986	•990	1.101	1.289	1.199
-2	.790	.875	1.016	.924	.984	1.002
0	.800	.872	.855	.881	•925	•958
2	.800	.848	.864	.890	.917	•928
4	.817	.869	.870	.894	.884	.933
6	<b>.818</b> m	<b>.</b> 860	<b>.</b> 866	.877	.888	•928
8	.822	.864	.857	. 881	.892	.927
10	.842	.866	.864	.880	.899	•932
12	.837	.872	.867	.879	.902	•939
14	.849	.879	.876	<b>.</b> 896	.910	.938
16	.871	.899	.899	• 928	.934	.970
18	.910	.941	.965	•985	.993	1.020
20	.939	.968	.995	1.020	1.023	1.050
22				1.045		

Table 6 Göt: 387 Bipland G/0 = 1.00

<u>~</u>	-40%	-20%	<u>0</u>	20%	40%	<u>60%</u>
ф 40261	1.010 .792 .845 .840 .854 .848	.243 .859 .866 .864 .866 .859	.477 .831 .849 .846 .860	1.104 .758 .816 .836 .849 .855	.178 .891 .895 .892 .894 .896	.077 1.019 .965 .955 .934 .933
14 18 20 22	.879 .905 .910	.882 .921 .935	.890 .938 .966 .983	.894 .967 .993 1.028	.934 .995 1.019 1.054	.967 1.021 1.053 1.050

# BIPLANE CORRECTION FACTORS FOR Lo AT EQUAL $\propto$

167

#### Table 7 U.S.A. 27 Biplane G/C = 1.33

#### Stagger

<u>~</u>	-40%	-20%	0%	20%	40%	<u>60%</u>
-6	.978	693	.776		632	969
4	.813	1.017	.959	1.380	1.027	•795
-2	.852	.925	.885	1.040	•925	.867
0	.850	.891	.872	.976	.907	.865
2	.858	.883	.880	.953	.905	.877
4	.869	• 906	.899	.947	.912	.897
6	.874	.899	.892	•934	.917	.885
8	.884	.893	.890	.929	•906	•898
10	.890	<b>.</b> 890	.887	.934	.916	.900
12	<b>.</b> 888	.897	.887	.941	•924	.911
14	.878	.902	.904	. 937	•933	.929
16	.910	.919	.922	•965	.957	, 954
18	.945	.968	.978	.998	1.001	1.015
20	.978	.997	•999	1.018	1.030	1.045
22	1.2.2.2					

Table 8 Göt. 387 Bipland G/C = 1.33

<b>م°</b>	- <u>40%</u>	<u>0</u>	60%
-8	1.898	•407	.875
-4	•712	•874 005	.849
0	•807	•090	•009
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	•040	•074	•0%0
5	•849	•094	•900
10 10	•665	•03T	.902
14	•83%	•920 005	.944
18	•941	• 905	T.000
20	•954	• 98T	1.030
22	.902	• AAT	1.037

BIPLANE CORRECTION FACTORS FOR L AT EQUAL \propto

Table 9 U.S.A. 27 Biplane G/C = 1.67

C	+0000	
-	CORROT.	

<u>a</u> °	-40%	-33%	<u>0</u>	33%	<u> 60%</u>
-6	873	645	1.113	-,592	364
-4	.941	1.156	.718	1.156	1.336
-2	.902	.979	.826	1.100	1.045
0	.885	.866	.842	.915	.981
2	.874	935	.835	918	.971
4	.882	.940	.870	.922	.956
6	.888	. 928	.859	913	.940
8	.884	925	.866	.913	.936
10	.894	.928	1878	913	938
12	.893	926	.876	.919	939
14	900	933	.887	924	.947
16	913	948	.916	954	968
18	953	.969	.970	.977	1.002
20	.933	.981	.998	•978	.997
22					

Table 10 U.S.A. 27 Biplane G/C = 2.00

∝ ి	-40%	0%	60%
-6	.711	1.021	101
-4	1.072	1.208	1.540
-2	.961	1.010	1.115
0	•932	.961	1.015
2	.977	.933	1.003
4	.919	.962	.922
6	.917	.936	• 963
8	.917	.933	.952
10	.919	.936	.956
12	.924	.929	.956
14	.922	•938	•950
16	•938	•956	.964
18	.966	.981	.995
20	.964	.989	• 985
22			

BIPLANE CORRECTION FACTORS FOR D_c AT EQUAL \prec

U.\$	Table : $S \cdot A \cdot 27 = 0$ G/C = 0	11 Biplane .50		Table 12 Göt. 387 G/C = 0.75				
	Stagg	er				Sta	gger	
<u>~</u>	-40%	0	60%		$\underline{\prec}^{\circ}$	-40%	<u>0</u>	<u>60%</u>
6	1.230	.722	.758		-8	1.17	.871	.809
-4	1.346	1.015	1.006		-4	1.21	1.11	1.13
-2	1.341	1.141	1.168		0	1.10	1.08	1.18
0	12210	1.137	1.233		2	1.07	1.04	1.16
2	1.065	1.107	1.236		6	.957	1.01	1.16
4	• 963	1.077	1.195		10	.924	.979	1.14
6	.901	1.019	1.170		14	.940	.982	1.16
8	.876	.963	1.166		18	•915	.935	1.19
10	.894	.954	1.156		20	.951	.889	1.20
12	.869	.931	1.159	•	22		.846	1.29
14	.861	.929	1.170					
16	.854	.886	1.228					
18	.800	.795	1.239					
20	.747	.723	1.232					
22		747	1.320					

Table 13 U.S.A. 27 Biplane G/C - 0.75

Stagger

ک °	-40%	-20%	<u>0</u>	20%	40%	<u>60%</u>
-6	1.035	•950	.862	•741	.690	•740
-4	1.130	1.081	1.052	.972	.930	.971
2	1.161	1,114	1.151	1.100	1,121	1.023
0	1.109	1.101	1.157	1.100	1.211	1.260
2	1.007	1.012	1.090	1.127	1.238	1,283
4	.972	.963	1.085	1.090	1.197	1.243
6	.930	.965	1.019	1.068	1.153	1.240
8	.919	.936	.979	1.018	1.138	1.218
10	.924	•933	.979	1.020	1.127	1.200
12	1933	•934	.979	1.006	1.109	1.211
14	.940	.941	.974	1.014	1.129	1.220
16	.920	.901	.964	.976	1.097	1.230
18	. 880	.830	.880	.889	1.027	1.185
20	.823	•790	.819	.843	.985	1.141
22		•799	. 845	. 846	.964	1.198

BIPLANE CORRECTION FACTORS FOR $D_{\rm C}$ AT EQUAL \prec

Table 14 U.S.A. 27 - Biplane G/C - 1.00

Stagger

2	-40%	-20%	<u>0</u>	20%	40%	<u>60%</u>
6	1.044	•948	.887	.864	.798	.804
-4	1.093	1.091	1.052	1.031	.992	.991
-2	1.100	1.174	1,129	1.129	1.121	1.071
0	1.069	1.191	1.150	1.107	1.181	1.184
2	1.032	1.128	1.098	1.098	1.182	1.190
4	L. 997	1.102	1.099	1.107	1.161	1.193
6	.992	1.080	1.071	1.091	1.116	1.171
8	.992	1.044	1.041	1.071	1.089	1.161
10	1.000	1.043	1.042	1.061	1.095	1.161
12	1.010	1.048	1.042	1.056	1.101	1.158
14	` 1. 020	1.049	1.057	1.088	1.110	1.150
16	1.001	1.013	1.022	1.048	1.074	1.143
18	•948	•95 5	•940	.947	•990	1.082
20	.888	.901	.883	.908	•946	1.040
22			• •	.925		

Table 15 Göt. 387 G/C - 1.00

Stagger

<u>æ</u>	-40%	-20%	<u>0</u>	20%	40%	<u> 60%</u>
8	1.13	.975	.997	1.14	.937	.876
-4	1.15	1.11	1.1.11	1.10	1.09	1.18
0	1.13	1.14	1.10	1.05	1.02	1.24
2	1.08	1.09	1.06	1.03	1,12	1.21
6	1.03	1.07	1.05	1.00	1.11	1.19
. 10	1.02	1.05	1.03	997	1.09	1117
14	1.03	1.05	1.02	1.02	1.12	1.18
18	.993	•994	.920	.993	· 1.08	1.15
20	.984	.962	• 933	•931	1.02	1.07
22		_	.910	.897	• 980	1.09

170

BIPLANE CORRECTION FACTORS FOR D_C AT EQUAL

Table 16 U.S.A. 27 Biplane G/C - 1.33

Stagger

<u>-40%</u>	-20%	<u>0</u>	20%	40%	<u>60%</u>
1.02	•935	•956	.816	.906	.989
1.13	1.06	1.06	•984	1.05	1.11
1.17	1.14	1.11	1.13	1.13	1.16
1.16	1.13	1.10	1.20	1.13	1.12
1.12	1.12	1.07	1.19	1.11	1.10
1.07	1.12	1.08	1.15	1.10	1.10
1.05	1.09	1.05	1.13	1.07	1.05
1.05	1.07	1.04	1.11	1.06	1.06
1.09	1.08	1.06	1.12	1.06	3. 1.10
1.05	1.07	1.05	1.13	1.07	1.08
1.04	1.07	1.06	1.12	1.08	. 925
1.03	1.07	1.06	1.07	1.05	1.06
. 988	.975	1.03	•992	•965	.975
935	.941	•920	.984	•940	•944
	-40% 1.02 1.13 1.17 1.16 1.12 1.07 1.05	$\begin{array}{c cccc} -40\% & -20\% \\ \hline 1.02 & .935 \\ \hline 1.13 & 1.06 \\ \hline 1.17 & 1.14 \\ \hline 1.16 & 1.13 \\ \hline 1.12 & 1.12 \\ \hline 1.07 & 1.12 \\ \hline 1.07 & 1.12 \\ \hline 1.05 & 1.09 \\ \hline 1.05 & 1.07 \\ \hline 1.09 & 1.08 \\ \hline 1.05 & 1.07 \\ \hline 1.04 & 1.07 \\ \hline 1.03 & 1.07 \\ \hline .988 & .975 \\ \hline .935 & .941 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 17 Göt. 387 Biplane G/C - 1.33

Stagger								
~	-40%	<u>0</u>	<u>60%</u>					
8	1.26	.917	1.05					
-4	1.12	1,11	1.12					
0	1.06	1.13	1.11					
2	1.03	1.11	1.08					
6	1.02	1.08	1.07					
10	1.02	1.07	1.07					
14	1.02	1.07	1.10					
18	.991	1.02	1.06					
20	.947	•969	1.01					
22	1.01	.935	.996					

BIPLANE CORRECTION FACTORS FOR D_C AT EQUAL &

Table 18 U.S.A. 27 Biplane G/C - 1.67

Stagger

$\underline{\alpha}$	-40%	-33%	<u>0</u>	<u>33%</u>	<u>60%</u>
-6	• 955	. 908	1.02	.886	.854
-4	1.01	1.03	1.06	1.02	1.00
-2	1.06	1.11	1.06	1.17	1.14
0	1.07	1.17	1.03	1.12	1.17
2	1.07	1.17	1.01	1.14	1.19
4	1.05	1.15	•996	•910	1.17
6	1.04	1.12	.974	1.07	1.13
8	1.04	1.11	.976	1.06	1.11
10	1.05	1.09	•990	1.05	1.10
12	1.04	1.13	1.00	1.06	1.11
14	1.10	1.05	1.01	1.06	1,12
16	1.03	1.06	•990	1.05	1.07
18	•950	•999	.910	•960	.981
20	•921	•969	•891	.941	.976

Table 19 U.S.A. 27 Biplane G/C - 2.00

$\underline{\alpha}$	-40%	0%	60%
6	- 920	.905	.796
4	.990	.990	.936
0 2	1.06	1.07	1.04
0	1.08	1.10	1.11
2	1.08	1.07	1.12
4	1.06	1.11	1.12
6	1.05	1.07	1.10
8	1.04	1.07	1.08
10	1.05	1.05	1.08
12	1.05	1.06	1.09
14	1.05	1.07	1.08
16	1.02	1.04	1.04
18	.954	.961	•980
20	.949	.955	.995

BIPLANE CORRECTION FACTORS FOR L/D at EQUAL ~

Table 20 U.S.A. 27 Biplane G/C - 0

Stagger

			<i>.</i>			
8	•50	•75	1.00	1.33	1.67	2.00
-6	.131	.440	•589	1.33	1.67	2.00
<u>_</u>	1.10	.819	.819	.751	.585	1.11
-2	.757	.704	.901	.796	.775	.976
0	.709	.789	•763	.815	.837	.880
2	.692	.720	.777	.827	. 820	.825
4	.718	.765	.791	.824	.764	.852
6	.756	. 809	.809	.848	. 884	. 855
8	.796	.843	.839	.873	.904	.882
10	.799	.831	.829	.839	.882	.867
12	. 809	.828	.824	.837	.868	.847
14	.812	.8 30	.826	.850	.874	.860
16	.868	.871	.870	. 858	.918	.908
18	1.03	1.02	1.02	.950	1.06	•995
20	1.22	1.17	1.12	1.09	1.12	1.00
22	1.21	1117				

Table 21 U.S.A. 27 Biplane G/C - 1.00

<u>~</u>	-40%	-20%	0%	20%	403	60%
-6	1.04	.649	.589	. 440	.298	.238
-4	.524	.787	.819	.921	1.13	1.04
-2	.709	.735 •	.901	.814	.872	.900
0	.763	•740	.763	.804	.804	.830
2	.770	.747	•777	.804	.775	.774
4	.816	.790	.791	.810	•759	.780
6	.825	.797	. 804	.805	•797	•795
8	.846	.844	.839	.841	.845	.814
10	. 845	. 834	.829	.832	.820	.804
12	. 820	. 825	.824	.825	.811	.803
14	.831	.837	.826	.821	.815	.812
16	1861	.877	.870	.877	.859	.837
18	.956	•984	1.02	1.04	1.01	•935
20	1.06	1.08	1.12	1.12	1.08	1,01
22				1.13		

BIPLANE CORRECTION FACTORS FOR L/D AT EQUAL 🗻

"Table 23 Got. 387 Biplane G/C - 1.00

Stagger

<u>d</u>	<u>-40%</u>	-20%	0%	<u>20%</u>	<u>40%</u>	60%
8	.916	.324	.518	.629	. 204	.814
-4	.691	•785	.754	.690	.828	.880
0	•743	•755	.793	.770	.799	.779
2	.776	.790	.795	.805	.792	.785
6	.825	•806	.820	.847	.803	.784
10	.830	.819	.836	.860	.821	.799
14	.852	.843	.871	.872	.834	.820
18	.921	.936	.979	.987	.936	.896
20	.924	•960	1.03	1.07	.997	.930
22			1.08	1.15	1.08	•965

T:	able	22			
Got.	387	Bipl	ane		
G/t) – .	75			

Stagger

Table 24 Göt. 387 Biplane G/C - 1.33

Stagger

<u>ar</u> :	-40%	0%	60%	2	-40%	0%	<u>60%</u>
8	1.60	148	-1.12	-8	1.55	.491	.860
-4	.597	.774	.874	-4	•646	.800	.758
0	.690	.754	.770	0	•756	.790	.766
2	.739	.782	.782	2	•794	.799	.824
6	.818	.807	.768	6	.832	.828	.837
10	. 845	.825	.793	10	.849	.831	.841
14	. 842	.853	●805 ·	14	.873	.861	.860
18	.934	.966	•856	18	963	.961	959
20	.815	1.03	. 855	20 .	1.01	.997	1.02
22	-	1.12	.774	22	965	.981	1.04

174.
B iplane Correction Factors for $M_{\tt C}$ at Equal \sim

TABLE 25

U.S.A. 27 Biplane

TABLE 26

Got. 387 Biplane

CAD/CHORD = .50							
	STAG	GER					
œ	-40%	0%	60%				
-6	1.19	1.53	.945				
-4	•955	.975	.523				
-2	•880	.816	.447				
0	. 831	.761	.411				
2	•790	.721	.396				
4	.764	.715	.389				
6	. 750	.704	.397				
8	•735	.685	.402				
10	.725	.683	.406				
12	.734	.677	.417				
14	.739	.673	•444				
16	.770	.681	.514				
18	.801	.681	.635				
20	.754	•684	.711				
22		. 690	.795				

G/c = .75								
STAG	GER							
-40%	0%	60%						
1.16	1.12	•790						
.905	.904	.788						
.836	. 850	.609						
.827	.818	•589						
.800	.813	•589						
•754	.810	.620						
.778	.826	•680						
.825	.853	.781						
	.873	.825						
	G/c = STAG -40% 1.16 .905 .836 .827 .800 .754 .778 .825 	G/c = .75 STAGGER -40% 0% 1.16 1.12 .905 .904 .836 .850 .827 .818 .800 .813 .754 .810 .778 .826 .825 .853 .873						

TABLE 27

		U.S GAP/CH	IORD = .	lplane 75		
æ	-40%	-20%	0%	20%	40%	60%
-6	1.17	1.29	1.45	1.54	1.54	1.12
-4	.913	.945	.929	.944	.919	.726
-2	.823	. 879	. 839	.848	.826	.648
0	. 848	.862	. 843	.816	.789	.625
2	.816	.824	.760	.811	.758	•604
4	.795	.833	.783	.800	.755	.596
6	.797	.858	.750	.790	.755	.641
8	.814	.830	.728	.774	.741	.625
10	.805	.817	.720	.757	.742	.656
12	.805	.800	.714	.770	.754	.649
14	.810	.831	.713	.770	.780	•664
16	.848	.846	.739	.788	.798	.724
18	.911	.875	.755	.810	.835	.789
20	.936	.909	.772	.854	.835	.828
22		.957		.849		

TABLE 28

U.S.A. 27 Biplane

	G/C = 1.00							
		S	TAGGER		•			
d	-40%	-20%	0%	20%	40%	60%		
-6	1.05	1.33	1.34	1.76	1.51	1.55		
-4	.951	1.04	1.02	.979	.958	.878		
-1	.956	.992	1.03	.900	.852	.774		
0	.930	.971	.936	.882	.805	.728		
2	.901	.935	.929	.882	.788	.675		
4	•896	.947	.943	.870	.759	.671		
6	.923	•948	. 935	.864	.784	.678		
8	.899	.931	.920	. 864	.755	.688		
10	.899	.91 5	.916	.853	.754	.681		
12	•900	.918	.921	. 856	.764	.696		
14	.921	.925	.942	.883	.776	.710		
16	. 960	.939	.961	.909	.795	.751		
18	1.03	•980	. 985	.924	.811	.792		
20	1.10	1.10	1.00	.934	.832	.807		

TABLE 29

Göt. 387 Biplane

	$\frac{G/C = 1.00}{STRACOTER}$							
<u>~ -40% -20% 0% 20% 40% 60%</u>								
-8	1.103	1.215	1.07	.975	1.10	.955		
-4	.977	1.01	.958	.871	•866	.896		
0	.941	.922	.905	.834	.816	.760		
2	.915	.905	.880	.825	.790	.726		
6	.895	.968	.870	.821	•784	.714		
10	893	.879	.871	.832	.800	.750		
14	.917	.898	.895	.866	.846	.778		
18	.974	.928	.911	.904	.889	.834		
20	•990	.948	.923	.908	.893	.863		

176

Biplane Correction Factors for M_c at Equal

TABLE 30

U.S.A. 27 Biplane

G/C = 1.33							
	STAGGER						
ol	-40%	-20%	0%	20%	40%	60%	
-6	1.01	1.38	1.37	1.57	1.43	1.26	
-4	.902	1.05	•987	1.05	.988	.925	
-2	.921	1.02	.918	.980	.930	.862	
Õ	.920	.988	.868	.925	.908	.827	
2	.906	.972	.845	.929	.868	.785	
4	.919	.998	.851	.919	.871	.795	
6	.931	.989	.836	.915	.865	.778	
8	.944	.968	.820	.903	. 888	.773	
10	.921	.961	.804	.903	.846	.767	
12	.934	.970	.804	.918	. 865	.780	
14	.941	.987	.800	.924	.878	.816	
16	.994	1.01	.851	•940	.897	.822	
18	1.12	1.07	.864	.938	.899	. 855	
20	1.18	1.12	.843	.970	.878	.867	

TABLE 31

Göt. 387 Biplane

.:		G/C = 1.33		
÷ę ,		STAGGER		
-	-40%	0%	60%	
11				
-8	.706	1.20	1.09	
-4	.911	.950	.864	
0	.809	.931	.818	
2	.871	.903	.790	
6	.871	•888	.775	
10	.886	.891	.785	
14	.915	.919	.847	
18	.980	.943	.867	
20	.998	.950	.879	

TABLE 32 U.S.A. 27 Biplane							
			STAGGER				
α	-40%	-33%	0%	33%	60%		
6	1.22	1.34	1.03	1.44	1.72		
-4	1.02	1.07	.924	1.08	1.16		
-2	.970	1.07	.922	1.03	1.06		
0	•959	1.00	.914	.932	.994		
2	.919	.969	.878	.946	.985		
4	.919	.95 5	.895	.895	•948 ·		
- 6	.920	.984	. 879	.873	.930		
8	.905	•92 9	.975	.874	.917		
10	.910	.913	.870	.855	.911		
12	.915	. 906 [°]	.871	.864	•920		
14	•936	.916	.893	.871	.935		
16	.973	•935	.915	.876	•936		
18	1.03	.99 6	.947	.864	.940		
20	1.11	1.03	.983	.859	.955		

Biplane Correction Factors for ${\tt M}_{\tt C}$ at Equal

\sim	-40%	070	00%
-6	1.26	1.07	1.48
-4	1.03	1.19	1.03
-2	1.01	1.05	.976
0	.984	1.03	.947
2	.966	1.02	.934
4	.973	1.03	.933
6	.970	1.02	•929
8	.961	1.02	. 926
10	.961	1.02	.927
12	.979	1.01	•946
14	.990		.961
16	1.03		.956
18	1.10		.976
20	1.13		.993
			19

TABLE 34

(2 pages)

U.S.A. 27 Biplane

,

Combination of results obtained by testing each plane separately in the presence of the other.

			<u>G/C</u> =	1.00	STAGE	<u>ER = 0</u>				
æ	l/D	Lox 10 ⁵	Dex 10 ⁵	C.P.	Mox 10 ⁵	· ·	Loading Lower Lift	on Uppe Planes Dr	r and	•
		-				Upper	Lower	Upper	Lower	_
-6	-1.26	.016	.127	496	017	886	-,112	•543	.457	
-4	2.24	.017	.076	1.662	027	.183	,817	•566	.434	
-2	7.74	.048	.062	.708	034	.414	.586	.557	.443	
0	12.02	.077	.064	.510	040	.460	• 540	.500	.500	
2	13.90	.107	.077	.440	048	.475	.525	.424	.516	
4	14.01	.143	.102			.500	.500	.495	.505	
6	12.61	.169	.134	.361	062	.505	.495	.495	.505	
8	11.83	.199	.168			.508	.492	.503	.497	
10	10.77	.226	.210	.329	075	.510	.490	.512	.488	
12	9.85	255	.259	-		.515	.485	.514	.486	
14	9404	.282	.312	.304	-,085	.516	.484	.541	.459	
16	8.44	.306	.363			•523	.477	.552	.448	
18	7.58	.325	.429	.287	093	.529	.471	.568	.432	
20	6.78	329	485			.542	.458	.522	.478	

-continued on next page -

TABLE 34 (concluded from previous page)

U.S.A. 27 Biplane

Combination of results obtained by testing each plane separately in the presence of the other.

		G	/0 = 1.67		STAGGER I	<u> </u>				
			. · · · ·				Loading Low	on Uppe er Plane	r and B	
o L	гþ	Lox 10 ⁵	Dox 10 ⁵	C.P.	$M_0 = 10^5$	Li	ft		Drag	
	=1=			a i		Upper	Lower	Upper	Lower	_
	-1.82	022	.121	776	016	607	393	.440	.560	
_4	5:71	.026	-070	1.188	030	.602	.398	.465	•535	
-2	0:36	.058	.062	645	038	544	.456	.480	.520	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	13 70	.097	.066	493	045	536	464	493	.507	
2	15-19	126	.083	422	054	.533	.467	.500	.500	
44 A	14 96	1.62	100	• • • • • • • • • • • • • • • • • • • •	••••	-530	470	.514	.486	
	97 7C	107	143	. 368	071	.530	-470	.521	.479	
9	12.40	● <del>↓ 7 ↓</del> 99 ⊄	180		~~~~~	.530	.470	.540	.460	
10	12.00	• CHU 964	997	\$30	084	534	466	.550	.450	·
10	17963	● <i>₩D</i> Ω 204	990 290			.530	470	.560	.440	
14	10.10	€ <del>6</del> 0 ± 7 5 4		<b>77</b> 4	- 098	. 536	.464	.566	.434	
14	9,00	.014	.000	•010	-,070	5000 577	202 •	6773	101 101	
16	8.57	.337	•393			.007	•400	.570	• **** 1	
18	7.74	.351	.454			•546	.404	.570	.400	
20	6.16	.343	•556	.315	108	•550	.450	• 550	.450	

180

# Lift Coefficients (L_Cx 10⁵) for U.S.A. 27 Biplanes

TABLE 35									
-	<u> </u>								
	STAGGER								
d	-40%	0%	60%						
_	24	0	•						
	64 <u>8</u>	6	+						
-4	11	27	29						
-2	40	53	61						
0	65	77	90						
2	93	105	122						
4	120	134	152						
6	145	160	184						
8	170	183	216						
10	195	209	244						
12	219	233	274						
14	241	253	298						
16	260	272	320						
18	264	283	328						
20	252	293	327						
22		286	320						

TABLE 36 G/C = 0.75

-	-	Y	IA - AFLA			
			STAGGER			
æ	-40%	-20%	0%	20%	40%	60%
-6	- 19	-14	-8	- 2	7	4
-4	14	16	21	27	33	34
-2	44	45	50	57	65	67
0	69	69	88	86	96	98
2	102	102	108	121	127	117
4	130	132	144	149	158	161
6	159	165	171	179	189	195
8	188	189	196	204	215	227
10	216	215	223	230	246	255
12	242	242	250	241	273	284
14	263	267	271	280	300	303
16	281	286	297	302	323	332
18	287	298	309	318	332	342
20	285	299	318	322	333	341
22		289	314	320	326	339

.

			STAGGER			
æ	<b>-40%</b> T	-20%	0%	20%	40%	60%
-6	- 23	- 12	-11	- 8	- 5	- 4
-4	14	21	21	23	27	25
-2	48	53	62	56	60	61
0	78	85	84	86	91	94
2	110	116	118	122	126	127
4	141	150	150	155	153	161
6	171	180	181	183	186	194
8	200	219	208	214	217	225
10	232	238	237	242	247	256
12	257	268	266	270	277	288
14	284	294	293	299	304	313
16	305	314	314	325	327	339
18	314	325	333	340	345	351
20	312	322		339	340	349

TABLE 37 G/C = 1.00

 $f_{ABLE} = 38$ G/C = 1.33

	-+0%	-20-	STAGER			
æ	-40%	-20%	0%	20%	40%	60%
					•	
6	- 19	- 13	-15	-4	-12	-18
-4	17	21	20	29	22	17
-2	52	56	54	63	56	53
0	83	87	85	96	89	85
2	118	121	121	130	124	120
4	150	157	155	164	158	155
6	183	188	186	195	192	185
8	215	217	216	225	220	218
10	245	245	244	257	252	247
12	272	275	273	289	283	279
14	293	301	302	313	311	310
16	318	321	323	337	334	333
18	326	334	337	344	345	351
20	325	331	333	338	342	347

# Lift Coefficients ( $L_{G} = 10^{5}$ ) for U.S.A. 27 Biplane

· · · · · · · · · · · · · · · · · · ·		G/C	= 1.67					
	STACGER							
α	-40%	-33%	0%	33%	60%			
-6	-17	-12 (	-21	-11	- 7			
-4	20	24	15	24	28			
-2	55	° 260	50	67	64			
0	87	85	83	90	96			
2	120	128	114	126	133			
4	153	163	151	159	165			
6	186	194	179	191	196			
8	215	224	210	222	227			
10	246	255	241	251	258			
12	274	284	269	282	288			
14	300	311	296	308	316			
16	319	331	321	333	338			
18	329	334	335	337	346			
20	309	326	333	324	331			

TABLE 39

TABLE 40

	G/	6 = 2.00	
	3	TAGGER	
<b>~</b>	-40%	0%	60%
	,		
-6	-14	-19	- 2
-4	23	25	32
-2	59	62	68
•	91	94	99
2	126	128	138
4	159	166	160
6	197	196	201
8	223	227	231
10 -	252	258	263
12	274	285	293
14	308	313	317
16	328	335	337
18	333	338	343
20	320	331	327

# Lift Coefficients (Lo x 10⁵) for U.S.A. 27 Biplane

			STAGGER	= 0				
	GAP /OHORD							
æ	.50	.75	1.00	1.33	1.67	2.00		
-6	2	-8	-11	-15	-21	-19		
-4	27	21	21	20	15	25		
-2	53	50	. 62	54	50	62		
0	77	88	84	85	83	94		
2	105	108	118	121	114	128		
4	134	144	150	155	151	166		
6	160	171	181	186	179	196		
8	183	196	208	216	210	227		
10	209	223	237	244	240	258		
12	233	250	266	273	269	285		
14	253	271	293	302	296	313		
16	272	297	314	323	321	335		
18	283	309	333	337	335	338		
20	293	318	330	333	333	331		

#### TABLE 41

# Drag Coefficients (Do x 10⁶) for U.S.A. 27 Biplane

G/C = 0.50							
	STAGGER						
æ	-40%	0%	60%				
-6	155	91	96				
-4	96	72	71				
-2	76	65	67				
0	74	69	75				
2	82	85	95				
4	98	110	122				
6	122	137	158				
8	152	167	202				
10	187	206	250				
12	228	245	305				
14	270	291	367				
16	314	326	451				
18	370	368	572				
20	420	406	693				
22		492	870				

TABLE 42

TABLE 43

.

- 1-

			G/C = 0.	75		
STAGGER						
æ	-40%	-20%	0%	20%	40%	60%
-6	130	119	108	<b>9</b> 3	87	93
-4	80	77	75	69	66	6 <b>9</b>
-2	66	64	66	63	64	58
0	68	67	71	67	74	77
2	78	78	84	87	95	99
4	99	98	111	111	122	127
6	126	130	137	144	156	167
8	159	162	169	176	197	211
10	199	202	211	220	243	259
12	246	246	257	265	292	319
14	294	295	305	318	353	382
16	339	332	355	359	404	453
18	407	384	407	411	475	548
20	462	444	460	474	554	641
22		526	557	55 <b>7</b>	635	789

# Drag Coefficients (Dc x 10⁶) for U.S.A. 27 Biplane

G/C = 1.00STAGGER 20% 40% 60% -40% -20% d 0% --6 -2 

TABLE 44

TABLE 45

G/C = 1.33

			STAGGER			
α	-40%	-20%	0%	20%	40%	60%
6	129	118	120	103	114	124
-4	80	76	75	70	75	79
-2	66	65	63	65	65	6 <b>6</b>
0 3	<b>71</b>	69	6 <b>7</b>	73	69	6 <b>9</b>
2	86	86	82	92	86	85
4	109	114	111	117	112	112
6	142	147	142	152	146	141
8	182	184	180	192	183	183
10	235	233	229	243	230	238
12	275	281	277	296	282	285
14	327	334	332	351	338	344
16	380	385	392	396	388	389
18	456	451	474	459	445	450
20	525	529	517	551	529	530

# Drag Coefficients (Do x 10⁶) for U.S.A. 27 Biplane

		G/0	= 1.67				
STAGGER							
X	-40%	-33%	0%	33%	60%		
-6	120	114	129	112	107		
-4	72	73	75	72	71		
-2	62	63	60	u67	65		
0	65	71	63	68	71		
2	82	90	78	88	92		
4	107	117	102	112	119		
6	140	151	131	145	152		
8	180	192	169	184	192		
10	227	234	214	226	238		
12	273	296	263	278	291		
14	330	345	316	333	350		
16	381	389	364	386	393		
18	439	461	421	444	454		
20	520	544	503	529	549		

TABLE 46

TABLE 47

G/C = 2.00								
	STAGGER							
$\propto$	-40%	0%	60%					
-6	116	114	100					
-4	70	70	66					
-2	60	61	59					
0	66	67	68					
.2	83	82	87					
4	108	113	115					
6	142	145	148					
8	180	185	187					
10	228	228	234					
12	277	279	286					
14	329	334	340					
16	377	382	384					
18	440	444	454					
20	533	537	559					

TABLE	48
-------	----

		STA	GGER=0%						
	GAP /OHORD								
æ	.50	.75	1.00	1.33	1.67	2.00			
-6	.22	74	99	-1.25	-1.63	-1.90			
-4	3.75	2.80	2.80	2.67	2.00	3.79			
-2	8.15	7.58	9.70	8.56	8.34	10.50			
0	11.15	12.40	12.00	12.70	13.17	13.81			
2	12,35	12.85	13.89	14.76	14.61	14.71			
4	12.17	12.98	13.40	13.96	14.80	14.42			
6	11.69	12.49	12.48	13.10	13.67	13.21			
8	10.95	11.59	11.53	12.00	12.41	12.13			
10	10.14	10.56	10.52	10.65	11.20	11.01			
12	9.51	9.74	9.70	9.86	10.21	9.97			
14	8.70	8.89	8.85	9.10	9.36	9.21			
16	8.34	8.36	8.35	8.24	8.81	8.73			
18	7.69	7.60	7.65	7.11	7.95	7.45			
20	7.21	6.90	6.65	6.44	6.62	5,93			
22	5.81	5.64							

TABLE 49

		G/C	= 1.00					
STAGGER								
°∕	-40%	-20%	0%	20%	40%	60%		
_			•					
6	-1.74	-1.09	— <b>. 9</b> 9	-,74	50	40		
-4	1.79	2.69	2.80	3,15	3.86	3.57		
-2	7.62	7.91	9.70	8.75	9.38	10.00		
0	12.00	11.64	12.00	12.63	12.63	13.04		
2	13.74	13.32	13.89	14.35	13.84	13.80		
4	13.81	13.39	13.40	13.71	12.85	13.20		
6	12.76	12.31	12.49	12.43	12.31	12.28		
8	11.62	11.60	11.53	11.57	11.51	11.20		
10	10.72	10.59	10.52	10.57	10.41	10.20		
12	9.65	9.71	9.70	9.71	9.55	9.45		
14	8.90	8.96	8.85	8.80	8.74	8.70		
16	8.26	8.42	8.35	8.41	8.25	8.04		
18	7.16	7.36	7.65	7.76	7.53	7.00		
20	6.26	6.36	6.65	6.65	6.39	5.98		
22				5.42				

# Moment Coefficients (Mc x 10⁵) for U.S.A.²⁷Biplanes

# All of the following values denote diving moments, and should be prefixed by a minus sign.

#### TABLE 50

1

STAGGER									
<u>~ 40% 0% 60%</u>									
6	18	23	14						
-4	27	27	15						
-2	33	31	17						
0	37	34	19						
2	43	40	22						
4	49	46	25						
6	54	51	29						
8	59	55	32						
10	63	59	35						
12	69	64	39						
14	74	67	44						
16	79	70	53						
18	84	72	67						
20	80	73	75						
22		73	84						

TABLE	51
-------	----

		<u> </u>		2				
STAGGER								
æ	-4.0%	-20%	0%	20%	40%	60%		
-6	17	19	22	23	23	17		
-4	26	26	26	26	26	20		
-2	31	33	32	32	31	25		
0	38	39	38	37	35	28		
2	45	45	42	<b>4</b> 5	42	33		
4	51	53	50	51	48	38		
6	57	62	54	57	54	46		
8	65	66	57	62	59	50		
10	70	71	63	66	65	57		
12	76	75	67	72	71	61		
14	81	83	71	. 77	78	66		
16	87	87	76	81	82	75		
18	96	92	79	85	88	83		
20	<b>9</b> 9	96	82	91	89	88		
22		101		90	- •			

G/C = 0.75

# Moment Coefficients ( $M_c \times 10^5$ ) for U.S.A. 27 Biplane

# All of the following values denote diving moments, and should be prefixed by a minus sign.

# TABLE 52

			G/C :	= 1.00					
	STAGGER								
æ	-40%	-20%	0%	20%	40%	60%			
-6	16	20	20	26	23	23			
-4	27	29	29	27	27	25			
-2	36	38	39	34	32	29			
0	42	44	42	40	36	33			
2	50	51	51	<del>49</del>	43	37			
4	57	61	60	56	49	43			
6	66	68	67	62	<b>5</b> 6	49			
8	72	75	74	69	60	55			
10	78	80	80	74	56	59			
12	85	86	87	80	72	65			
14	92	93	94	88	78	71			
16	99	97	<b>9</b> 9	94	82	78			
18	109	103	103	97	85	83			
20	177	117	106	99	. 88	86			

TABLE 53

			G/C =	1.33				
STAGGER								
QL	-40%	-20%	0%	20%	40%	60%		
-		• -	•		-			
6	15	21	21	24	21	19		
-4	25	29	28	29	28	26		
-2	35	39	35	37	35	33		
0	41	44	39	42	41	37		
2	50	53	47	51	48	43		
4	59	64	54	59	56	51		
6	67	71	60	66	62	56		
8	75-	77	66	72	71	62		
10	80	84	70	79	74	67		
12	88	91	76	86	81	73		
14	94	99	80	92	88	82		
16	<b>9</b> 9	104	88	97	93	85		
18 '	117	112	91	98	94	90		
20	125	119	89	103	93	92		

# Moment Coefficients (Mc x 10⁵) for U.S.A. 27 Biplane

#### All of the following values denote diving moments, and should be prefixed by a minus sign.

#### TABLE 54

G/C=1.67								
	STAGGER							
2	-40%	-33%	0%	33%	60%			
6	18	20	15	22	26			
-4	29	30	26	30	33			
-2	37	40	35	39	40			
0	43	45	41	42	45			
2	51	53	48	52	54			
4	59	61	57	57	61			
6	66	71	63	63	67			
8	72	74	70	70	73			
10	79	79	76	74	79			
12	86	85	82	81	87			
14	94	92	89	87	94			
16	100	96	94	90	97			
18	109	105	100	91	99			
20	117	110	104	91	101			

#### TABLE 55

G/0 = 2.00								
STAGGER								
~	-40%	0%	60%					
-6	19	16	22					
-4	29	33	29					
-2	38	40	37					
0	44	47	43					
2	- 53	56	51					
4	62	66	60					
6	70	73	67					
8	77	81	74					
10	84	89	81					
12	92	95	89					
14	99		96					
16	106		99					
18	116		102					
20	119		105					

# Center of Pressure Coefficients for U.S.A. 27 Biplanes

	G/C	= 0.50						
STAGGER								
d.	-40%	0%	60%					
	2.32	•93 <del>1</del>	.47					
-2	.83	<b>.</b> 58	.27音					
0	.58	.45	.21					
2	.47	375	.173					
4	.403	.33 <del>1</del>	.15					
6	.37	.31	.14					
8	.34	295	.131					
10	.32 <del>1</del>	.28	.13 <del>1</del>					
12	.31 <del>5</del>	.27	.13					
14	305	.27	141					
16	.31	.26	.15					
18	323	243	20					
20	.31 <del>3</del>	25	221					

TABLE 56

TABLE 57

	G/C - 0.75								
	STAGGER								
æ	_40%	-20%	0%	20%	40%	60%			
-4	1.731	1.52	1.15	•90 <del>]</del>	.72	.55			
-2	•69 <del>]</del>	.71	.62	•55 <del>2</del>	.47	.36			
0	53	.54	.44	.44	.38	.293			
2	44	.441	.381	.37	.321	<b>.</b> 25			
4	.39	.40	•34 <del>]</del>	.34	•30 <del>1</del>	.23			
6	.351	·37	•31 <del>]</del>	.31 <del>}</del>	•28 <del>5</del>	.225			
8	.34	.35	.29 <del>5</del>	.30	• 27 <del>5</del>	<b>.</b> 22			
10	•32 <del>1</del>	.34	•28 <del>]</del>	.29	•26 <del>]</del>	.221			
12	.315	.32	.27	.28	.26	.22			
14	•30 <del>]</del>	.32	.26 <del>1</del>	.27놀	.26	.212			
16	•31 <del>]</del>	.31 <del>]</del>	.26	.27	.25 <del>]</del>	<b>,</b> 22			
18	.34	<b>.</b> 32	.26	.27	•26 <del>]</del>	.24			
20	•35 <del>1</del>	.33 <del>1</del>	.26	.27	.26	.251			

#### Center of Pressure Coefficients for U.S.A. 27 Biplane

6/0 = 1.00 STAGGER 40% a -40% -20% 20% 60% 0% 1.80 1.292 1.25 1.09 .91 .90 -4 69 .61<del>]</del> -2 73 .59<del>]</del> .521 .47 52<del>1</del> .51¹/₂ 0 54 .47 .41 .35<del>1</del> 2 45 .43¹/₂ .40 .29 44 .34 40분 .35<del>1</del> 4 .40 40 .315 .27 .36<del>1</del> .241 6 38 37 .33 .29 .27 8 36 35 .32 ,24 .35 .26 34 34 .31 10 ·33 .231 12 33 .26 .23 332 .33 .30 .32<del>1</del> .25¹/₂ .23 14 33 32 .293 .23 3话 33 .32 .29 .25 16 32<del>]</del> .24 18 35 .31 .29 .25 292 33<del>1</del> .241 20 37 .323 .26

TABLE 58

TABLE 59

	$\frac{G/C = 1.33}{\text{STAGGER}}$							
d	-40%	-20%	0%	20%	40%	60%		
-4	1.37	1.27	1.27	.93	1.18	1.44		
-2	•66	.67	•63	•57물	.61	•60 <u></u>		
0	·501	, 52	•47	•44 <del>1</del>	•47	<b>.</b> 45		
2	•42 <del>1</del>	.44	•38 <del>}</del>	.39	•38 <del>]</del>	.37		
4	•38 <del>1</del>	•40 <del>2</del>	•35	.36	·351	•33		
6	.36	<b>,</b> 37	.32	.33	<b>.</b> 32	.2 <del>9]</del>		
8	•33 <del>1</del>	•35 <del>]</del>	•30	.32	.32	<b>.</b> 28		
10	.32 <del>1</del>	• 34 <del>2</del>	.29	.31	•2 <del>9]</del>	.27		
12	•32 <del>]</del>	•33 <del>1</del>	.28	.30	•29 [¯]	•26 <del>]</del>		
14	<b>.</b> 32	•32 <del>]</del>	·27 <del>]</del>	.2 <del>9]</del>	•28 <del>]</del>	<b>.</b> 26		
16	.32 <del>2</del>	•32 <del>5</del>	•27 <del>]</del>	<b>,</b> 29 [~]	<b>2</b> 8	•25 <del>]</del>		
18	•36	•34 [~]	.27	.29 <del>]</del>	•27 <del>]</del>	<b>.</b> 26		
20	.38 <del>2</del>	.36	.27	•29 <del>]</del>	•27 <del>}</del>	.262		

. . . .

## Center of Pressure Coefficients for U.S.A. 27 Biplane

	G/C = 1.67								
	STAGGER								
	40%	-33%	0%	33%	60%				
-4	1,34	1,14	1.60	1.15	1.06				
-2	•65 <del>]</del>	• 66 <del>1</del>	•68	.57	.617				
0	<b>.</b> 51	4 <del>9</del>	.51	.473	475				
2	.42	•41 <del>ડ</del> ੋ	421	.31 <del>1</del>	401				
4	•38 <del>}</del>	.37	.38	.36	.36				
6	<b>.</b> 35	36	341	321	.33				
8	.34	.33	.33	.315	.32				
10	.33	.31 <del>]</del>	.32	.30	.31				
12	.32	.39 <del>]</del>	.31	29	.301				
14	•31음	29 <del>1</del>	.301	.281	.30				
16	.32	295	.30	271	.29				
18	.34	.32	.30	.27	,29				

TABLE 60

TABLE 61

	G/C = 2.00							
	STAGGER							
α,	-40%	0%	60%					
-4	1,18	1.21	.82					
-2	.63 <del>]</del>	.63	.53					
0	•4 <del>9</del>	· 507	.44					
2	•42 <del>4</del>	.44	.371					
4	.39	•3 <del>92</del>	.35					
6	.36	.37	.38					
8	.34	•35 <del>]</del>	.32					
10	•33 <del>1</del>	•34 <del>3</del>	.31					
12	•33	.34	.31					
14	.321	•33 <del>1</del>	.30금					
16	<b>.</b> 33	<b>.</b> 34	.30					
18	<b>.</b> 35	.36	.30 <del>1</del>					

# Lift Coefficients (L₀ x $10^5$ ) for Göt. 387 Biplane

TABLE 62

TABLE 64

	Göt. 387 Biplane G/C = .75			Göt. 387 Biplane G/C = 1.33				
	STA	GER			STAC	GER		
X	-40%	0%	60%	d	-40%	0%	60%	
8	- 29	2	14	-8	- 30	-7	-14	
-4	41	49	56	-4	41	50	48	
•	101	108	121	0	106	118	112	
2	136	139	156	2	141	152	153	
6	192	200	219	6	208	220	221	
10	249	258	288	10	277	285	288	
14	302	311	348	14	332	343	351	
18	333	352	397	18	371	380	394	
20	306	361	406	20	377	387	407	
22		365	385	22	348	383	400	

#### TABLE 63

...

		Göt.	387 Biple	ne				
G/C = 1.00								
		S	TAGGER		-			
∞	-40%	-20%	0%	20%	40%	60%		
-8	-16	-4	-8	-17	- 3	-11		
-4	45	49	47	43	51	58		
0	111	114	116	108	118	127		
2	144	148	145	143	152	163		
6	210	213	211	208	220	229		
10	271	274	275	274	287	298		
14	327	328	331	332	347	359		
18	356	363	370	381	392	403		
20	359	365	381	392	403	416		
22			379	397	407	405		

# Drag Coefficients ( $D_{C} \ge 10^{6}$ ) for Göt. 387 Biplanes.

TABLE 65

TABLE 67

	G/C =	.75			G/C = 1.33			
	STAGGE	R			STAG	GER		
<u>~</u>	-40%	0%	60%	X	-40%	0%	60%	
8	168	124	116	-8	180	131	150	
-4	80	74	75	-4	74	73	74	
0	96	94	103	0	92	98	96	
2	116	112	126	2	112	120	117	
6	170	179	206	6	181	192	191	
10	253	268	312	10	280	294	294	
14	367	373	442	14	389	407	417	
18	461	471	600	18	499	512	532	
20	566	530	716	20	565	577	603	
22	-	604	921	22	668	724	711	

TABLE 66

وبمردود المتكمر	G/C = 1.00								
	STAGGER								
<u>~</u>	-40%	-20%	0%	20%	40%	60%			
-8	162	139	143	163	134	125			
-4	76	73	73	73	72	78			
0	<b>9</b> 8	99	96	97	89	107			
2	117	118	115	112	121	131			
6	184	191	186	178	198	211			
10	280	287	282	273	300	320			
14	392	398	388	389	425	448			
18	500	501	489	500	542	581			
20	586	574	556	555	610	675			
22			650	640	700	778			

# Lift Drag Ratios for Got. 387 Biplanes

والمراجع المراجع والمعول المتعاد

			G/O =	1.00		,			
		STAGGER							
d	-40%	-20%	0%	20%	40%	60%			
-8	<b>-,9</b> 9	<b>~.</b> 35	-,56	68	22	88			
-4	5,92	6.71	6.45	5.90	7.09	7.53			
0	11,31	11,50	12.09	11.74	13.27	11.88			
2	12.30	12,53	12.61	12.77	12.57	12.43			
6	11.40	11.16	11.33	11.70	11.10	10.84			
10	9,69	9.55	9.75	10.02	9.57	9.31			
14	8.34	8.25	8.53	8.54	8.16	8.02			
18	7.11	7.24	7.56	7.62	7.24	6.93			
20	6,12	6.36	6.85	7.06	6.60	6.16			
22	-	-	5,83	6.20	5.81	5.21			

TABLE 69

TABLE 68

	<u>G/C = .75</u> STAGGER								
OL.	-40%	0%	60%						
-8	- 1,73	.16	1.21						
-4	5,11	6.62	7.47						
0	10.51	11.49	11.72						
2	11.71	12,40	12.39						
6	11.30	11.18	10.61						
10	9,85	9,63	9,24						
14	8.24	8,35	7.88						
18	7.21	7.46	6.61						
20	5,40	6.81	5.67						
22	-	6.05	4.18						

TABLE 70

_	G/C	= 1.33							
STAGGER									
04	-40%	0%	60%						
	. •								
-8	-1.67	<b>_</b> • 53	93						
-4	5.54	6,85	6.49						
0	11.52	12.03	11.69						
2	12,59	12.68	13.08						
6	11.50	11.45	11,58						
10	9.90	9.70	9.80						
14	8,54	8.43	8.41						
18	7.44	7.42	7,40						
20	6,68	6.60	6,76						
22	5.21	5.30	5.62						

## Moment Coefficients (Mg x 10⁵) for Got. 387 Biplanes.

All the following values denote diving moments and should be prefixed by a minus sign,

G/C = 1.00									
	STAGGER								
æ	-40%	-20%	0%	20%	40%	60%			
-8	21	23	20	19	21	18			
-4	39	40	38	35	35	36			
0	57	55	54	50	49	96			
2	63	62	61	57	55	50			
6	79	85	77	72	69	63			
10	96	94	93	89	86	80			
14	108	106	106	102	100	92			
18	121	115	113	112	110	103			
20	125	119	116	114	113	108			

TABLE 72

TABLE 71

TABLE 73

	G/C	<b>z</b> .75		G/C = 1.33				
STAGGER				SI	AGGER			
α	-40%	0%	60%	æ	-40%	0%	60%	
-8	22	21	15	-8	14	23	21	
-4	36	36	32	-4	36	38	35	
0	50	51	37	0	52	56	49	
2	57	56	41	2	60	62	55	
6	70	71	52	6	77	78	68	
10	81	87	66	10	95	95	89	
14	92	98	80	14	108	108	100	
18	102	106	97	18	121	117	107	
20		110	104	20	126	120	111	

# Center of Pressure Coefficients for Got. 387 Biplanes.

TABLE 74

TABLE 76

	<u>a/a</u>	= 0.75			G	0 = 1.33			
	STA	GGER			STAGGER				
X	-40%	0%	60%	<u>e</u>	-40%	0%	60%		
8	-2.77	-71.78	-2.88	-8	-1.16	-15,32	-4,50		
-4	.80	. 667	.421	-4	<b>•80</b>	<b>,</b> 68	.63 <del>]</del>		
Ō	471	45	.29	0	.47	.45	<b>.</b> 40		
2	41	.40	251	2	.42	•40 <del>1</del>	<b>.</b> 35		
6	36	351	.23	6	.36 <del>1</del>	.35	.301		
10	.32	33	221	10	.34	.33	•28 <del>1</del>		
14	.301	.31	23	14	331	.311	.27		
18	.31	301	241	18	33	.31	•27 <del>5</del>		
20			.26	20	34	.311	275		
22	-	.32		22	-	•32 <del>2</del>	282		

TABLE 75

		g/0	= 1.00									
	STAGGER											
8	-40%	-20%	0%	20%	40%	60%						
8	- 2.39	-7.40	-2,03	-1.93	-7.59	-3.02						
-4	.77	.72	.72	.72	<b>.</b> 60麦	•55						
Õ	481	461	.463	.441	.40	•34 <del>]</del>						
2	43	42	.41 <del>.</del>	-39 <del>]</del>	.35	.30						
6	37	.351	.36	.345	•31 <del>}</del>	.26 <del>3</del>						
10	341	.33	.33	32	29 <del>]</del>	25 <del>1</del>						
14	33	32	.32	.31	29 <del>1</del>	•25 <del>\</del>						
18	35	.32	.31	.30	295	<b>.</b> 26						
20	351	.33	.317	.30	•28 <del>5</del>	263						
22		-	.32	·301	.29 <del>1</del>	.28						

TABLE 89

U.S.A.27 Biplane

	G/C = 1.00											
	STAGGER											
OL	Lox 10 ⁵	-40%	-20%	0%	20%	40%	60%	Average				
.2	.051	1.07	1.12	1.12	1.12	1.15	1.12	1.12				
.4	.102	1.21	1,22	1,21	1.24	1.21	1.21	1.22				
.6	.153	1.25	1.30	1.301	1.27물	1.30	1.26	1.28				
.8	205	1.32	1.33	1.32	1.30	1.30	1.30	1.31				
1.0	.256	1.37	1.32	1.31	1.29	1.301	1.302	1.32				
1.2	.307	- <b>-</b>	1.36	1.34	1.30	1.32	1.32	1.33				
1.3	.333	-	-	1.351	1.31	$1.32\frac{1}{2}$	1,31	1.32 <del>1</del>				

TABLE 90

Göt. 387 Biplane

G/C = 1.00STAGGER 60% Average L_ox 10⁵ -40% -20% 20% 40% 0% 0L 1.262 1.24 1.26 1.38 ,2 1,26 1.26 .051 1.31 1.481 .102 1.45 1.42 1.53 1.50 1.50 1.50 .4 1.43 .153 1.43 1,45 1.43 1.44 1.40 1,43 .6 1.34 1.37 1.37 1.361 .205 1.35 1.37 1.37 •8 1.33 1.34 1.33 1.31 1.33 1.33 1.33 1.0 .256 1.28 1.261 1.28 1,29 1.31 1.32 1.28 .307 1.2 1,42 1.43 1.45 1.41 1.45 1.4 .358

.

المعالية المحالية المعالية ال المعالية المحالية المعالية الم

#### TABLE 91

U.S.A. 27 Biplane

			5	tagger =	0						
GAP/CHORD											
OL	Lox 10 ⁵	•50	•75	1.00	1,33	1.67	2.00				
0	0	1.14	1.03	1.03	1.061	1.031	1.01				
.2	.051	1.12	1.08	1,081	1.08	1.03	1.12				
.4	.102	1.30	1.25	1,25	1.17	1.17	1.12				
•6	.153	1.451	1.37	1,30	1,22	1.21	1.14				
•8	.205	1.49	1.38	1,31	1,241	1.22	1.17				
1.0	.256	1,54	1.41	1.27	1,27	1,25	1.21				
1.2	.307		1.50	1.35	1.29	1.27	1.21				
1.3	•333	-		1.78	$1,32\frac{1}{2}$	$1,32\frac{1}{2}$	1.211				

#### TABLE 92

## Göt. 387 Biplane

	Stagger = 0									
	GAP /CHORD									
OL	L ₀ x 10 ⁵	0,75	1.00	1,33						
.2	.051	1,12	1.08	1.08						
.4	.102	1.20	1.20	1.20						
•6	153	1.31	1.261	1.261						
.8	.205	1.40	1.32 <del>5</del>	1.29						
1.0	.256	1.41	1.32	1.31						
1.2	.307	1.44	1.33	1.311						
1.4	.358	1,45	1.312	1.30						

Biplane Correction Factors for D_C Minimum

## TABLE 93

U.J.A. AY DIDLE	10
-----------------	----

		G	AP/CHORD	•		
Stagger	0.50	0.75	1.00	1.33	1.67	2,00
60%	$1.17\frac{1}{2}$	1.02	1.07	1.101	1.14	1.031
40% 20%		1.12 $1.10\frac{1}{5}$	1.12	1.14		
0% -20%	1.14	1.16 1.12 <del>1</del>	1.12 1.17 <del>1</del>	1.10 <del>1</del> 1.14	1.05	1.07
-40%	1.30	1.16	1.10	1.16	1.09	1.05
Average of Tables	,					
93 and 94	1.201	1.121	1.12	1.13	1.11	1.05

#### TABLE 94

# Got. 387 Biplane

	GAP /CHORD									
Stagger	0.75	1.00	1.33							
60%	1.13	1.18	1.12							
40%		1.09								
20%		1.102								
0%	1,12	1.10	1.101							
-20%		1.10	-							
-40%	1.21	1.15	1.12							

Biplane Correction Factors for L/D max.

#### TABLE 94

<b>U.S.A</b> .	27	Biplane

GAP /OHORD									
Stagger	0.50	0.75	1.00	1.33	1.67	2.00			
60% 40%	.721	.75	•78	.801	.82	•89 <del>]</del>			
20% 0%	.70	•79 •73 <del>]</del>	-82 -79 <del>1</del>	.801 .83	.81 <del>]</del> .835	•88 <del>]</del>			
-20% -40%	•68 <del>]</del>	•75 •75	•78 •78	.80 .77 <del>1</del>	.81 .82½	•86			
Average for U.S.A. 27 &			· ·						
Got. 387	.703	.76	.783	.803	.82	88			

#### TABLE 95

Göt. 387 Biplane

Stagger	0.75	1.00	1.33
60%	.78	•78	.82
40%	·	.80	•
20%		.80	
0%	.77	.79	.80
-20%	•.	.78	
-40%	•73 <del>1</del>	.77	.79

.. .

## Table 95a

· · · · · · · · · · · · · · · · · · ·		<u></u>				
Stagger	0.50	0.75	1.00	1.33	1.67	2,00
		U.S.A.	27 Biplane			
60%	• 94	•98	1.00	1.00	.99	. 98
40%		.95	•98 <del>1</del>	•98 <del>]</del>		
20%	ozl	.92	.97	•98 <del>5</del>	06	071
-20%	+0 <u>05</u>	• 91 • 85 <del>1</del>	• 95 • 95	• 90g	• 70	• 2 (2
-40%	.753	.82	.893	. 93	• 94	• 95
		Q8t. 387	Biplanes			
60%		1.03	1.053	1.03		
40%			1.03	,		
20%			1.00%			
0% ~20%		•9 <del>23</del>	• 96 <del>7</del>	• 98		
-40%		.841	• 35.2	•95 <del>]</del>		

Biplane Correction Factors for  $L_C$  max.

# Biplane Correction Factors for L/D at Equal $L_c$ .

#### TABLE 96

#### U.S.A. 27 Biplane

STAGGER = 0										
GAP/CHORD										
0 _L	L _a x 10 ⁵	0.50	0.75	1.00	1.33	1.67	2.00			
•2	51	.92	•93 <del>]</del>	•95	•95	•96 <del>1</del>	.96 <del>1</del>			
•4	102	•77	•79	.81	•84 <del>3</del>	<u>88 ،</u>	•8 <del>9</del> 5			
•6	153	•69	•73	•77	<b>.</b> 82	.83	.87 <del>5</del>			
•8	205	.67	.721	.76	•80 <del>3</del>	.82	85			
1.0	256	. 65	•70	.743	785	.80	.83			
1,2	307		•66 <del>1</del>	•74	•77 <del>3</del>	.79	827			
1.3	333		~		•75	•75 <del>1</del>	·821			

#### TABLE 97

# Göt. 387 Biplane

		STAGGER = (	Q`	
		GAP/CHORD		
CL	L _C x 10 ⁵	0.75	1.00	1.33
.2	51	•8 <del>9]</del>	.92	. 92
.4	102	●83 <del>1</del>	•83 <del>]</del>	.83
•6	153	•76 <del>1</del>	<b>₀</b> 79	•79
•8	205	•71 <del>]</del>	•75 <del>}</del>	.77
1.0	256	•71	•75 <del>5</del>	•76 <del>3</del>
1.2	307	●69 ¹ / ₂	•75	•76
1.4	358	<b>₀69</b>	•76	•77

#### TABLE 100

_		.         •	G/C = 1.00		
	· · · · · · · · · · · · · · · · · · ·		Ste	ager	
O _L	L ₀ × 10 ⁵	0%	20%	40%	60%
.2	51	1.02	•91 <del>]</del>	•83 <del>]</del>	•78
.4	102	1.00	•95 <del>}</del>	.82 <del>]</del>	•74
•6	153	1.03	<b>9</b> 5	•83 [~]	•69 <del>1</del>
.8	205	1.03	941	.83	•72
1.0	256	1.03	.94	.83	.72
1,2	307	1.04	•96	•83	•73 <del>]</del>
Aver	.age	1.023	•941	.83	•73

U.S.A.27 Biplane

#### TABLE 101

Göt. 387 Biplans G/C = 1.00

			S	agger				
CL	L ₀ x 10 ⁵	0%	20%	40%	60%			
.2	51	1.00	•95	.90	.87			
.4	102	.98	•943	•88 <del>1</del>	•84 <del>]</del>			
.6	153	.97	.91	•84 <u>1</u>	•75 <del>1</del>			
.8	205	•97 <del>}</del>	.91	•84 <del>5</del>	•74 <del>5</del>			
1.0	256	<b>.</b> 97	•92 <del>]</del>	•84 <del>1</del>	<b>.</b> 76 [™]			
1.2	307	•98	<b>•</b> 93	•88 <del>1</del>	•7 <del>9물</del>			
1.4	358	•95	.92 <del>1</del>	•88 [¯]	•79 <u>2</u>			
Avei	rage	•97 <del>]</del>	. 93	•85 <del>1</del>	.791			

Correction Factors for negative stagger: For U.S.A. 27, these practically coincide with the values for zero stagger; for Got. 387, they are practically equal to 1.00.

(1)	Average f	or U.S.A.	TABLE 27 & Göt	101a t. 387, d	ombined.	
(2)	Correspon	nding valu	es taken	from a s	smooth curve	(Plate 14)
Stag	ger -40	1% -20%	0%	20%	6 40%	60%
(1)	1.0	0 1200	1,00	•93	.84	•76
<u>(2)</u>	1.0	0 1.00	98	.93	.84	•76

## Biplane Correction Factors for Mc at Equal Lc.

#### TABLE 102

Aver	'age	.84	.861	1.02	•91 <del>]</del>	•98	1.07
1.2	307		.84	1.04	•88 <del>]</del>	•97 <del>물</del>	-
1.0	256	•81 <del>1</del>	<b>∙</b> 83ິ	1.03	.88	•96	1.07 -
•8	205	·821	•84 <del>1</del>	1.03	•90	•97 <del>둘</del>	1.06
•6	153	•84 <del>]</del>	.88	1.03	•91 <del>]</del>	·97	1.07
.4	102	•85	.89	1.00	•92 <del>]</del>	•98	1.061
.2	51	.86	.90	1.02	•97 <del>]</del>	1.00	1.07
	.50	•75	1.00	1.33	1.67	2.00	
CL	Lox 100 ⁵			GAP/	CHORD		
	G/C = 1.00						

# U.S.A. 27 Biplane

#### TABLE 103

CL Lox 105		G	P/CHORD	
		•75	1.00	1.33
.2	51	•96	1.00	•98
.4	102	·95	•98	1.00
•6	153	•91	•97	•96
•8	205	.93	•97불	•95
1.0	256	•95 <del>3</del>	•97	•97
1.2	307	•94	•98	•98
1.4	358	•93 <del>1</del>	•95	•96
Average		•94	•97 <del>]</del>	.97

## Cot. 387 Binlone

#### TABLE 103a

(1) Averages for U.S.A. 27 & Göt. 387 combined.
(2) Corresponding Values taken from a smooth curve(Plate 14)

<u>a/c</u>	0,50	0.75	1.00	1.33	1.67	2.00
(1)	•84	·90물	1.00	•94 <del>]</del>	.98	1.07
(2)	.87	•93	•97 <del>]</del>	•98 <del>5</del>	•99 <del>2</del>	1.00
					-	

Biplane corrections for C.P., expressed as fractions of chord by which C.P. is displaced towards leading edge, applicable from 0.1 La max. to La max.

#### TABLE 108

$$G/C = 1.00$$

(1) Average of Got. 387 and U.S.A. 27. (2) Average taken from curve (Plate 14).

Stagger	Got. 387	U.S.A. 27	(1)	(2)
-40%	•00	011	001	•00
-20%	·01	01	~.00	.01
0%	•02	003	.00 <del>1</del>	.02
20%	•03 <del>1</del>	•02 <del>1</del>	<b>₀</b> 03ິ	•03 <del>}</del>
40%	.06 <del>5</del>	•06 <del>1</del>	•06 <del>]</del>	•06 <del>1</del>
60%	•10	.10	.10	.10

#### TABLE 109

#### STAGGER = 0.

(1) Average of Got. 367 and U.S.A. 27. (2) Average from curve (Plate 14).

G/C	Got. 387	U.S.A.27	(1)	(2)
0.50	<b></b>	•063	•06 <del>]</del>	•06 <del>1</del>
0.75	•03 <del>1</del>	•05 <del>1</del>	041	.04
1.00	•02	003	004	02
1.33	.02	03	025	.01
1.67		.02	.01	.001
2.00	-	021	023	.00

#### Appendix D.

#### <u>OURVES</u>

- Plate 5. L, and D_c vs.  $\propto$  for 6 <u>U.S.A.</u> 27 biplanes, stagger = 0; G/C = 0.50 to 0.75
- Plate 6. L and D_c vs.  $\propto$  for 16 <u>U.S.A.</u> 27 biplanes, stagger = 40% to 60%, G/C = 0.50 to 1.00.
- Plate 7. L_c and D_c vs.  $\propto$  for 8 <u>U.S.A.</u> 27 biplanes, stagger = -40% to 60%, G/C = 1.67 and 2.00.
- Plate 8. L/D vs.  $\propto$ , M and C.P. v. L, for & <u>U.S.A. 27</u> biplanes. Stagger = 0, G/C = 0.50 to 2.00.
- Plate 9. L/D vs.  $\alpha$ , M and C.P. vs. L, for 6 U.S.A. 27 biplanes. G/C = 1.00. Stagger = -40% to 60%.
- Plate 10. L and D vs.  $\infty$  for 6 Got. 387 biplanes. G/C = 1.00. Stagger = -40% to 60%.
- Plate 11. L/D vs.  $\propto$ , M and C.P. vs. L, for 6 Got. 387 biplanes. G/C = 1.00. Stagger = -40% to 60%.
- Plate 12. (L, D, L/D) vs.  $\infty$ , (M, C.P.) vs. L, for 3 Got. 387 biplanes. Stagger = 0, G/C = 0.75 to 1.33.

.0036

1.00 PLATE 5 USA 27 CURVES OF L. AND D. FOR G BIPLANES, STAG.=0 .96 G/C .92 .0032 001.1.2 .88 MONOPLANE MODEL 18" × 3" .84 VELOCITY 40 M.P.H. MIT 1923 0028 .80 .76 .72 .0024 .68 .64 5/0 .60 .0020 .58 COEF. (LBS./SQ.FT./M.P.H. MONOPLAN .52 A CONTRACTOR 0016 .44 FACTOR

.000.7 .000.7 .000.6 .000.5 .000.5 .000.5 .000.7

30

2.00












HG COEF. (LBS. /SQ. F.I./M.L.H.)





