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2.1

Lecture 9: overview

discussion: monitoring
deterministic vs. random

moral hazard: optimal Ul

lack of commitment:

— one sided / partial equilibrium
— two sided / GE (2 agent/2 shock case)

optimal Ul

Utility:
U=EY p'u(c) - a)
t=0
a = effort

p(a) = prob of finding a job
¢; = w if employed ¢; = 7; otherwise

"planner" is risk neutral and evaluates cost
C=E) '
t=0

Pareto Problem: frontier between C and U:
minC st. U>V B
ormaxV s.t. C < (C

First Best: Effort observable

sequence: tedious notation but possible



2.2

recursive:

C(V)=min{c+8(1—-p(a))C(V")}

V=u(e)=a+ B0 =p(a)V"+pp(a)V*

focs:

1-60=0

BL=pa)C (V') =081 —p(a) =0
—Bp" (a) C' (V") +08p (a) V" = 08p' (a) VE + 6 =0

simplifying ,

e

c'(vY)y =4

w\ __ u e 1
cy)=|Vvr=V @) 0

result: V" is constant = ¢} is constant

Second Best: Effort Unobservable

sequence problem is not very tractable (Shavell and Weiss perform a
variational argument for their results)

recursive formulation
C(V)=min{c+3(1—-p(a))C(V")}

V=u()—a+pB(1—pla)V*+8pa) Ve
Bp' (a) Ve = V"] =1

focs
1—0u (c) =

B(A—p(a)C (V") =061 —p(a))+n8p (a) =

B0 (@) C (V") + 050 (a) V" = 0) (a) V + 0+ 0By’ (a) [V = V] =

~
=0 from agent’s foc
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e simplifying:

oW = g

envelope condition implies

e results:
V¥ is decreasing
= (using envelope and f.o.c. w.r.t. ¢) ¢} decreasing

Remarks:
e relaxing ¢¢ = w (Hopenhayn and Nicolini, 1997)
e agents save/borrow

e welfare gains of optimal program

3 Lack of commitment: One Sided / Partial
Equilibrium

Source: LS Chapter 15 section 401-409

P(w) = minzﬂs [cs — ys + BP (w;)]

sES

u(c(s)) + Bws > u(ys) + BVaur
> wefule(s) + Bwy] > w

w e [Vautvvmax]

& [Cmim Cmax]



foc

(As + pums) v’ (¢5) = s
As +ums = —m P (wy)

combing;:

, B —1
) = )

since P is decreasing and concave then cs is increasing in ws.
e ws = w if constraint not binding p =0

e otherwise ws > w

e dynamics:

eventually converge to a high enough w so that participation constraint
is not binding (this result is more general: see Debraj Ray’s Economet-
rica paper)

4 Two Sided / GE

Sources:

e LS Chapter 15 section 413-418: good treatment of Kocherlakota (iid
shocks) but no formal analysis of long-run distribution

e we follow: simplified version of Alvarez-Jermann (2000) “Quantitative
Asset Pricing Implications of Endogenous Solvency Constraints”. only
section 4 and sub-section 5.1 (section 3 introduces the notation).

This version has individual persistence of income (not necessarily iid),
only 2 shocks, no aggregate shocks (in our version). We are able to
study the whole dynamics.

4.1 Dynamics

e cnvironment:

— symmetric, two agents ¢ = 1, 2; equal population



— yt > 9% v =y + 9% = e (no aggregate uncertainty)

— aggregate state s = 1,2 denotes realization of income for type 1
(equivalently: s denotes who gets high shock)

— p is probability of transition from s =1 to s = 2 and from s = 2
tos =1

e Problem (recursive version)

V(w,s) = max u(cl)+ﬁZ7r[s'|s]V(w'(s’),s')

che?2w'(v)

4+ = e

u () —i—BZW(s'\s) w' () > w
w'(s') = Ug ()
V(W' (s),s) = Uy ()

last two constraints equivalent to
w'(s') € [L(s'), H (s)]

for some L (s') and H (s')

we take as given that we have V, L and H
properties: V' is decreasing, differentiable and concave in w

we then derive some properties of the allocation

graphical analysis: two shock case

first order conditions:

o' ()
ou' ()
Vi(w' (), )
with equality if w' (s') € (L(s"), H (8')), with < if v’ (s') = L(s’) and
> ifw' (') = H (¢)



e Envelope condition:
‘/1 (w> 8) =—0
e result 1: ¢ (w, s) is increasing in w
since V' is concave V) is decreasing thus —V} is increasing in w:
v (e — c?)
u' (c?)

which requires ¢? to increase with w

:0:—‘/1(11178)

o result 2: if s = ¢ then w (s') = w. FOC:
Vi(w'(s),8) S =0 =Vi(w,s)

is satisfied with equality if (v’ (s"),s") = (w, s) . This satisfies the con-
straint since w € [L (s), H (s)] by assumption.

e result 3: in the 2 shock case if s # ¢
Vi (! (). ) S Va ()
e collecting results:
— ¢ (w, s) is increasing in w
—if ¢ =5 — w' (') = w (constraint not binding)
— if s # & if binding then go to closest value possible
— show graph of policy

— convergence (main result): stationary distribution is history
independent and symmetric (we turn to studying this in more
detail next)

4.2 Stationary Distributions
Given our previous result we now look for stationary symmetric distributions:
e given (c!,c?) let V! (c!,¢?) and V2 (c!, ¢?) be the unique solutions to:

Vi = wu(c)+8[pV +(1—-p)V?]
Vo= u(@)+ BV +(1-p) V]
clearly: V2 (y,z) = V! (z,y)



e grinding out:

& (cl,cg) = ﬁ {wu (cl) +(1—-w)u (02)}
 1-—-pp 1
Where W = m > 5

e stationary symmetric feasible allocations satisfies:

ct+ct=e (1)
Vl <01702> Z Vl <y1’y2) = ‘/:llut (2)
V() > VE(yhP) = Vi (3)

i.e. resource constraint and participation constraints.

e substituting

wu () + (1 =wu(ce’) = wuly')+1-w)u(y’)

wu () + (1 —wu(c) > wu(y?)+(1-w)u(y)
rearranging

wlu()—u(@y)]+1-w) [u(?®) —u(y?)] = 0 (4)

(I—w)[u(c) —u@)] +wlu(d®)—u(y?)] > 0 (5)

if ¢! < ¢! then (4) implies (5) = participation constraint for type 2
never binds

e full risk sharing is attainable iff
u(e/2) > whu(y') + (1 —w')u(y?)
e otherwise, look for allocations with:
c+P=e (6)
wlu(eh) —u(y)] + 1 =w) [u(e’) —u(y)] =0
and 32 < ¢ < ¢! <y' (i.e. with less variability than autarky).
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e example: u(¢) =7/ (1 — o) then
w4+ (1 —w) (e — c)l_a =w (yl)l_a + (1 —w) (yQ)l_U

e gives us ¢ (w) is decreasing in w :

1-o 1\1-0c l-o 2\1l—0c o . Oc
_ —(e — _ —(1— _ - _
c (v") [(e ¢) (v*) }+[wc (I-w)(e—c)"] 0 0
and we have w (3, p) (increasing in 5 and p)
e implications risk sharing
— decreasing in p
— decreasing in [
— increasing in risk aversion
5 Trash
5.1 Grinding V*(-,-) formula
From
u(ch) 1—p
vt = +p &
R
V2 _ u(c2) _’_51_1) Vl u(c2) _’_51_1) u(cl) 1_p V2

1—8p "1=8p ~1-0p "1-Bp|1-8p "1-pp

we get that

u(c?)

V2 — e 1—p2u(01)+62

(1 —p)2 2
1—-8p " (1-pp) (1—ﬁp)2v
1

T Ty ) )]

1 1—pp B(1-p)
- ol @ T )

so (1 — ) V? is a weighted average of u (c') and u (c¢?).
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