1 Lecture 9: overview

- discussion: monitoring deterministic vs. random
- moral hazard: optimal UI
- lack of commitment:
 - one sided / partial equilibrium
 - two sided / GE (2 agent/2 shock case)

2 optimal UI

• Utility:

$$U = E \sum_{t=0}^{\infty} \beta^{t} \left[u \left(c_{t} \right) - a_{t} \right]$$

- a = effort
- p(a) = prob of finding a job
- $c_t = w$ if employed $c_t = \tau_t$ otherwise
- "planner" is risk neutral and evaluates cost

$$C \equiv E \sum_{t=0}^{\infty} \beta^t \tau_t$$

• Pareto Problem: frontier between C and U: min C s.t. $U \ge V$ or max V s.t. $C \le \bar{C}$

2.1 First Best: Effort observable

 $\bullet\,$ sequence: tedious notation but possible

• recursive:

$$C(V) = \min \{c + \beta (1 - p(a)) C(V^{u})\}$$

$$V = u(c) - a + \beta (1 - p(a)) V^{u} + \beta p(a) V^{e}$$

• focs:

$$1 - \theta = 0$$

$$\beta (1 - p(a)) C'(V^u) - \theta \beta (1 - p(a)) = 0$$

$$-\beta p'(a) C(V^u) + \theta \beta p'(a) V^u - \theta \beta p'(a) V^e + \theta = 0$$

• simplifying

$$\theta = \frac{1}{u'(c)}$$

$$C'(V^{u}) = \theta$$

$$C(V^{u}) = \left[V^{u} - V^{e} + \frac{1}{\beta p'(a)}\right]\theta$$

• result: V_t^u is constant $\Rightarrow c_t^u$ is constant

2.2 Second Best: Effort Unobservable

- sequence problem is not very tractable (Shavell and Weiss perform a variational argument for their results)
- recursive formulation

$$C(V) = \min \{c + \beta (1 - p(a)) C(V^{u})\}$$

$$V = u(c) - a + \beta (1 - p(a)) V^{u} + \beta p(a) V^{e}$$

$$\beta p'(a) [V^{e} - V^{u}] = 1$$

• focs

$$1 - \theta u'(c) = 0$$

$$\beta (1 - p(a)) C'(V^u) - \theta \beta (1 - p(a)) + \eta \beta p'(a) = 0$$

$$-\beta p'(a) C(V^{u}) + \underbrace{\theta \beta p'(a) V^{u} - \theta \beta p'(a) V^{e} + \theta}_{=0 \text{ from agent's foc}} + \eta \beta p''(a) [V^{e} - V^{u}] = 0$$

• simplifying:

$$\theta = \frac{1}{u'(c)}$$

$$C'(V^u) = \theta - \eta \frac{p'(a)}{1 - p'(a)}$$

envelope condition implies

$$C'(V) = \theta$$

• results:

 V_t^u is decreasing

 \Rightarrow (using envelope and f.o.c. w.r.t. c) c^u_t decreasing

Remarks:

- relaxing $c_t^e = w$ (Hopenhayn and Nicolini, 1997)
- agents save/borrow
- welfare gains of optimal program

3 Lack of commitment: One Sided / Partial Equilibrium

Source: LS Chapter 15 section 401-409

$$P(w) = \min \sum_{s \in S} \pi_s \left[c_s - y_s + \beta P(w'_s) \right]$$

$$u(c(s)) + \beta w_s \ge u(y_s) + \beta V_{aut}$$

$$\sum \pi_s \left[u(c(s)) + \beta w_s \right] \ge w$$

$$w \in \left[V_{aut}, V_{\text{max}} \right]$$

$$c\left[c_{\text{min}}, c_{\text{max}} \right]$$

foc

$$(\lambda_s + \mu \pi_s) u'(c_s) = \pi_s$$
$$\lambda_s + \mu \pi_s = -\pi_s P'(w_s)$$

combing:

$$u'\left(c_{s}\right) = \frac{-1}{P'\left(w_{s}\right)}$$

since P is decreasing and concave then cs is increasing in ws.

- ws = w if constraint not binding $\mu = 0$
- otherwise ws > w
- dynamics:

eventually converge to a high enough w so that participation constraint is not binding (this result is more general: see Debraj Ray's Econometrica paper)

4 Two Sided / GE

Sources:

- LS Chapter 15 section 413-418: good treatment of Kocherlakota (iid shocks) but no formal analysis of long-run distribution
- we follow: simplified version of Alvarez-Jermann (2000) "Quantitative Asset Pricing Implications of Endogenous Solvency Constraints". only section 4 and sub-section 5.1 (section 3 introduces the notation). This version has individual persistence of income (not necessarily iid), only 2 shocks, no aggregate shocks (in our version). We are able to study the whole dynamics.

4.1 Dynamics

- environment:
 - symmetric, two agents i = 1, 2; equal population

- $-y^1 > y^2$, $y_t = y^1 + y^2 \equiv e$ (no aggregate uncertainty)
- aggregate state s = 1, 2 denotes realization of income for type 1 (equivalently: s denotes who gets high shock)
- p is probability of transition from s=1 to s=2 and from s=2 to s'=1
- Problem (recursive version)

$$V\left(w,s\right) = \max_{c^{1},c^{2},w'\left(\cdot\right)}\left[u\left(c^{1}\right) + \beta\sum_{s'}\pi\left[s'|s\right]V\left(w'\left(s'\right),s'\right)\right]$$

$$c^{1} + c^{2} = e$$

$$u(c^{2}) + \beta \sum_{s} \pi(s'|s) w'(s') \geq w$$

$$w'(s') \geq U_{aut}^{2}(s')$$

$$V(w'(s'), s') \geq U_{aut}^{1}(s')$$

• last two constraints equivalent to

$$w'(s') \in [L(s'), H(s')]$$

for some L(s') and H(s')

- we take as given that we have V, L and H
 properties: V is decreasing, differentiable and concave in w
 we then derive some properties of the allocation
- graphical analysis: two shock case
- first order conditions:

$$u'(c^{1}) = \lambda$$

$$\theta u'(c^{2}) = \lambda$$

$$V_{1}(w'(s'), s') \leq -\theta$$

with equality if $w'(s') \in (L(s'), H(s'))$, with \leq if w'(s') = L(s') and \geq if w'(s') = H(s')

• Envelope condition:

$$V_1(w,s) = -\theta$$

• result 1: $c^2(w, s)$ is increasing in w since V is concave V_1 is decreasing thus $-V_1$ is increasing in w:

$$\frac{u'(e-c^2)}{u'(c^2)} = \theta = -V_1(w,s)$$

which requires c^2 to increase with w

• result 2: if s = s' then w(s') = w. FOC:

$$V_1\left(w'\left(s'\right), s'\right) \leq -\theta = V_1\left(w, s\right)$$

is satisfied with equality if $(w'\left(s'\right),s')=(w,s)$. This satisfies the constraint since $w\in\left[L\left(s\right),H\left(s\right)\right]$ by assumption.

• result 3: in the 2 shock case if $s \neq s'$

$$V_1\left(w'\left(s'\right),s'\right) \leq V_1\left(w,s\right)$$

- collecting results:
 - $-c^{2}(w,s)$ is increasing in w
 - if $s' = s \rightarrow w'(s') = w$ (constraint not binding)
 - if $s \neq s'$ if binding then go to closest value possible
 - show graph of policy
 - convergence (main result): stationary distribution is history independent and symmetric (we turn to studying this in more detail next)

4.2 Stationary Distributions

Given our previous result we now look for stationary symmetric distributions:

• given (c^1, c^2) let $V^1(c^1, c^2)$ and $V^2(c^1, c^2)$ be the unique solutions to:

$$V^{1} = u(c^{1}) + \beta [pV^{1} + (1-p)V^{2}]$$

$$V^{2} = u(c^{2}) + \beta [pV^{2} + (1-p)V^{1}]$$

clearly: $V^{2}(y, x) = V^{1}(x, y)$

• grinding out:

$$V^{1}(c^{1}, c^{2}) = \frac{1}{1-\beta} \left\{ \omega u(c^{1}) + (1-\omega) u(c^{2}) \right\}$$
where $\omega = \frac{1-\beta p}{1+\beta-2p\beta} > \frac{1}{2}$

• stationary symmetric feasible allocations satisfies:

$$c^1 + c^2 = e \tag{1}$$

$$V^{1}(c^{1}, c^{2}) \geq V^{1}(y^{1}, y^{2}) \equiv V_{aut}^{1}$$

$$V^{2}(c^{1}, c^{2}) \geq V^{2}(y^{1}, y^{2}) \equiv V_{aut}^{2}$$
(2)
(3)

$$V^{2}(c^{1}, c^{2}) \geq V^{2}(y^{1}, y^{2}) \equiv V_{aut}^{2}$$
 (3)

i.e. resource constraint and participation constraints.

• substituting

$$\omega u \left(c^{1}\right)+\left(1-\omega\right) u \left(c^{2}\right) \geq \omega u \left(y^{1}\right)+\left(1-\omega\right) u \left(y^{2}\right)$$

$$\omega u \left(c^{2}\right)+\left(1-\omega\right) u \left(c^{1}\right) \geq \omega u \left(y^{2}\right)+\left(1-\omega\right) u \left(y^{1}\right)$$

rearranging

$$\omega \left[u\left(c^{1}\right) - u\left(y^{1}\right) \right] + (1 - \omega) \left[u\left(c^{2}\right) - u\left(y^{2}\right) \right] \geq 0 \tag{4}$$

$$(1 - \omega) \left[u(c^1) - u(y^1) \right] + \omega \left[u(c^2) - u(y^2) \right] \ge 0 \tag{5}$$

if $c^1 \leq y^1$ then (4) implies (5) \Rightarrow participation constraint for type 2 never binds

• full risk sharing is attainable iff

$$u(e/2) \ge \omega^1 u(y^1) + (1 - \omega^1) u(y^2)$$

• otherwise, look for allocations with:

$$c^1 + c^2 = e \tag{6}$$

$$\omega \left[u\left(c^{1}\right) -u\left(y^{1}\right) \right] +\left(1-\omega \right) \left[u\left(c^{2}\right) -u\left(y^{2}\right) \right] =0$$

and $y^2 \le c^2 \le c^1 \le y^1$ (i.e. with less variability than autarky).

• example: $u(c) = c^{1-\sigma}/(1-\sigma)$ then $\omega c^{1-\sigma} + (1-\omega)(e-c)^{1-\sigma} = \omega(y^1)^{1-\sigma} + (1-\omega)(y^2)^{1-\sigma}$

• gives us $c(\omega)$ is decreasing in ω :

$$c^{1-\sigma} - (y^1)^{1-\sigma} - \left[(e-c)^{1-\sigma} - (y^2)^{1-\sigma} \right] + \left[\omega c^{-\sigma} - (1-\omega) (e-c)^{-\sigma} \right] \frac{\partial c}{\partial \omega} = 0$$
 and we have $\omega(\beta, p)$ (increasing in β and p)

- implications risk sharing
 - decreasing in p
 - decreasing in β
 - increasing in risk aversion

5 Trash

5.1 Grinding $V^{i}\left(\cdot,\cdot\right)$ formula

From

$$V^{1} = \frac{u(c^{1})}{1 - \beta p} + \beta \frac{1 - p}{1 - \beta p} V^{2}$$

$$V^{2} = \frac{u(c^{2})}{1 - \beta p} + \beta \frac{1 - p}{1 - \beta p} V^{1} = \frac{u(c^{2})}{1 - \beta p} + \beta \frac{1 - p}{1 - \beta p} \left[\frac{u(c^{1})}{1 - \beta p} + \beta \frac{1 - p}{1 - \beta p} V^{2} \right]$$

we get that

$$V^{2} = \frac{u(c^{2})}{1 - \beta p} + \beta \frac{1 - p}{(1 - \beta p)^{2}} u(c^{1}) + \beta^{2} \frac{(1 - p)^{2}}{(1 - \beta p)^{2}} V^{2}$$

$$= \frac{1}{(1 - \beta p)^{2} - \beta^{2} (1 - p)^{2}} \left[(1 - \beta p) u(c^{2}) + \beta (1 - p) u(c^{1}) \right]$$

$$= \frac{1}{1 - \beta} \left\{ \frac{1 - \beta p}{1 + \beta - 2p\beta} u(c^{2}) + \frac{\beta (1 - p)}{1 + \beta - 2p\beta} u(c^{1}) \right\}$$

so $(1 - \beta) V^2$ is a weighted average of $u(c^1)$ and $u(c^2)$.