1 Lecture 4

1.1 Overview

- cross-sectional and cohort data:
 - show serious flaws in the simples life-cycle model...
 - ...not necessarily in a richer version (uncertainty, borrowing constraints, high-discounting, demographics, labor supply, etc...)
 - much debate over relative roles of these extensions
- precautionary savings
 - 2 periods: role of u''' > 0
 - exponential utility example
 - quantify aggregate effects
- income-fluctuations problem:
 - sequence representation:Euler equation
 - recursive representation:
 Euler equation
 policy functions

2 Precautionary Savings

• two period savings problem:

$$\max u(c_0) + \beta EU(\tilde{c}_1)$$

$$c_1 = \tilde{y}_1 + (1+r)k_1$$

$$k_1 + c_0 = (1+r)k_0 + y_0$$

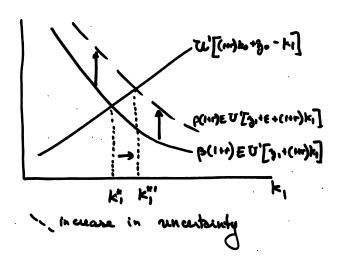
• subsituting:

$$\max_{k_1} u ((1+r) k_0 + y_0 - k_1) + \beta EU (y_1 + (1+r) k_1)$$

f.o.c. is the Euler equation

$$u'((1+r)k_0 + y_0 - k_1) = (1+r)\beta EU'(y_1 + A_1)$$

• graph LHS and RHS as functions of k_1 , optimum is at the unique intersection k_1^* in the figure



- mean preserving spread i.e. replace the random variable y_1 with $y'_1 = y_1 + \varepsilon$ with $E(\varepsilon|y) = 0$. \Rightarrow three possibilities:
 - $-U'(\cdot)$ is linear: no effect
 - $-U'(\cdot)$ is convex: RHS rises $\Rightarrow k_1^*$ increases
 - $U'\left(\cdot\right)$ is concave: RHS falls $\Rightarrow k_{1}^{*}$ decreases
- introspection: 2nd case most relevant standard parameterization implies u' is convex if u'(c) is positive and $c \geq 0$ then u' is convex near 0 and ∞
- precautionary savings with more than 2 periods later

3 Income Fluctuation Problem

3.1 Sequence Formulation

$$\max E_0 \sum_{t=0}^{\infty} \beta^t u\left(c_t\right)$$

$$A_{t+1} = (1+r)(A_t + y_t - c_t)$$

or equivalently:

$$c_t + k_{t+1} = (1+r) k_t + y_t$$

where $k_t \equiv A_t/(1+r)$; or,

$$x_{t+1} = (1+r)(x_t - c_t) + y_{t+1}$$

where $x_t \equiv A_t + y_t$.

- explicit about uncertainty:
 - let $s_t \in S$ be the state at time t (assume S is finite)
 - determines output $y_t = y(s_t)$ (one example: $s_t = y_t$)
 - history: $s^t = (s_0, s_1, ..., s_t) \in S^t \subset \mathbb{R}^{t+1}$
 - probability of history s^t having occurred at time t is denoted $\Pr(s^t)$ this is very general example: s_t is i.i.d. $\Pr(s^t) = p(s_0) p(s_1) \cdots p(s_t)$
 - information: at time t, s^t is known
 - miorination. at time t, s is known
- finite life income fluctuation problem:

$$\max_{\left\{c_{t}\left(s^{t}\right), A_{t+1}\left(s^{t}\right)\right\}_{t=0}^{\infty}} \sum_{t=0}^{T-1} \sum_{s^{t} \in S^{t}} \beta^{t} \operatorname{Pr}\left(s^{t}\right) u\left(c_{t}\left(s^{t}\right)\right)$$

subject to,

$$A_{t+1}(s^{t}) = (1+r)(A_{t}(s^{t-1}) + y(s_{t}) - c_{t}(s^{t})),$$

for all t and $s^t \in S^t$ and

$$A_T\left(s^T\right) \ge 0$$

for all s^T .

• Lagrangian: multiplier on budget constraint $\beta^{t} \Pr(s^{t}) \lambda(s^{t})$

$$L \equiv \sum_{t=0}^{T-1} \sum_{s^t \in S^t} \beta^t \Pr\left(s^t\right) \left\{ u\left(c_t\left(s^t\right)\right) + \lambda\left(s^t\right) \left[R\left(A_t\left(s^{t-1}\right) + y\left(s_t\right) - c_t\left(s^t\right)\right) - A_{t+1}\left(s^t\right) \right] \right\}$$

• first order conditions:

$$u'\left(c_{t}\left(s^{t}\right)\right) = \lambda\left(s^{t}\right)$$

$$\beta^{t} \operatorname{Pr}\left(s^{t}\right) \lambda\left(s^{t}\right) = \beta^{t+1} \left(1+r\right) \sum_{s_{t+1}} \operatorname{Pr}\left(s^{t+1}\right) \lambda\left(s^{t}, s_{t+1}\right)$$

rearranging:

$$\lambda\left(s^{t}\right) = \beta^{t}\left(1+r\right) \sum_{s_{t+1}} \Pr\left(s_{t+1}|s^{t}\right) \lambda\left(s^{t}, s_{t+1}\right)$$

• combining (Euler):

$$u'(c_t(s^t)) = \beta(1+r) \sum_{s_{t+1}} u'(c_{t+1}(s^t, s_{t+1})) \Pr(s_{t+1}|s^t)$$

or simply,

$$u'(c_t) = \beta (1+r) E_t [u'(c_{t+1})].$$

3.2 Recursive Formulation

- sequence problem is not natural
- recursive formulation of finite period

$$v_t(x) = \max_{c} \{u(c) + \beta E v_{t+1} ((1+r)(x-c) + y)\}$$

and $v_{T-1}(x_{T-1}) = u(x_{T-1})$.

• infinite period problem:

$$v\left(x\right) = \max_{c} \left\{u\left(c\right) + \beta E v\left(\left(1+r\right)\left(x-c\right) + y\right)\right\}$$

• (interior) first order condition:

$$u'(c) = \beta (1+r) Ev'((1+r) (x-c) + y) = \beta (1+r) Ev'(x')$$

$$\Rightarrow \text{defines } c(x)$$

• envelope condition:

$$v'\left(x\right)=u'\left(c\left(x\right)\right)$$
 thus $v'\left(x'\right)=u'\left(c\left(x'\right)\right)$ or informally $v'\left(x\right)=u'\left(c'\right)$

• foc+envelope \Rightarrow Euler equation

$$u'(c) = \beta (1+r) Eu'(c')$$

• consumption function is back

4 Precuationary Savings: T > 2

• first order condition

$$u'(c_t) = \beta (1+r) E v'_{t+1} ((1+r) (x-c) + y)$$

- if $v_{t+1}''' > 0$ then there are precautionary savings during period t but do we know anything about v'''?
- \bullet fortunately, if u'''>0 then v'''>0 [Sibley (1975)]
- example: $u\left(c\right)=-\frac{1}{\gamma}\exp\left(-\gamma c\right)$ guess and verify that $v\left(x\right)=-A\frac{1}{\gamma}\exp\left(-\gamma\frac{r}{1+r}x\right)$
- consumption function

$$c\left(x\right) = \frac{r}{1+r} \left[x + \frac{1}{r} y^* \right]$$

where,

$$y^* \equiv \frac{1+r}{-\gamma r} \log E \exp\left(\frac{-\gamma r}{1+r}y\right)$$

a kind of certainty equivalent

• aggregation example from problem set (after seeing Aiyagari's model)