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Abstract

We extend various fundamental combinatorial theorems and techniques from the
dense setting to the sparse setting.

First, we consider Szemer6di's regularity lemma, a fundamental tool in extremal
combinatorics. The regularity method, in its original form, is effective only for dense
graphs. It has been a long standing problem to extend the regularity method to sparse
graphs. We solve this problem by proving a so-called "counting lemma," thereby
allowing us to apply the regularity method to relatively dense subgraphs of sparse
pseudorandom graphs.

Next, by extending these ideas to hypergraphs, we obtain a simplification and
extension of the key technical ingredient in the proof of the celebrated Green-Tao
theorem, which states that there are arbitrarily long arithmetic progressions in the
primes. The key step, known as a relative Szemer6di theorem, says that any positive
proportion subset of a pseudorandom set of integers contains long arithmetic progres-
sions. We give a simple proof of a strengthening of the relative Szemeredi theorem,
showing that a much weaker pseudorandomness condition is sufficient.

Finally, we give a short simple proof of a multidimensional Szemer6di theorem in
the primes, which states that any positive proportion subset of Pd (where P denotes
the primes) contains constellations of any given shape. This has been conjectured by
Tao and recently proved by Cook, Magyar, and Titichetrakun and independently by
Tao and Ziegler.

Thesis Supervisor: Jacob Fox
Title: Professor
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Chapter 1

Introduction

This thesis contains a collection of related results on the theme of extending classical

combinatorial theorems from the dense setting to the sparse setting. We develop

methods for transferring combinatorial theorems about dense sets to the sparse set-

ting, so that these theorems can be applied as a black-box to relatively dense subsets

of sparse pseudorandom sets. We consider applications both in graph theory (pri-

marily Turin, Ramsey, and removal-type results) as well as in additive combinatorics

(Szemeredi's theorem).

Chapter 2 is based on the paper

[31] D. Conlon, J. Fox, and Y. Zhao, Extremal results in sparse pseudorandom

graphs, Adv. Math. 256 (2014), 206-290.

It extends the graph regularity method from the dense setting to the sparse setting.

Szemer6di's regularity lemma [121] is a fundamental tool in extremal combina-

torics. However, the original version is effective only for dense graphs. In the 1990s,

Kohayakawa [751 and Rddl (unpublished) proved an analogue of Szemer6di's regular-

ity lemma for sparse graphs as part of a general program toward extending extremal

results to sparse graphs. Many of the key applications of Szemer6di's regularity

lemma use an associated counting lemma. In order to prove extensions of these re-

sults which also apply to sparse graphs, it remained a well-known open problem to

prove a counting lemma in sparse graphs.
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The main advance of Chapter 2 lies in a new counting lemma, which complements

the sparse regularity lemma of Kohayakawa and Rddl, allowing us to count small

graphs in regular subgraphs of a sufficiently pseudorandom graph. We use this to

prove sparse extensions of several well-known combinatorial theorems, including the

removal lemmas for graphs and groups, the Erd6s-Stone-Simonovits theorem and

Ramsey's theorem. These results extend and improve upon a substantial body of

previous work.

Chapter 3, the most significant part of this thesis, is based on the paper

[30] D. Conlon, J. Fox, and Y. Zhao, A relative Szemerddi theorem., Geom. Funct.

Anal., to appear.

It simplifies and strengthens the key technical result in the proof of the Green-Tao

theorem [691 by extending some ideas used in Chapter 2 to hypergraphs.

The celebrated Green-Tao theorem states that there are arbitrarily long arithmetic

progressions in the primes. A key input to the proof of the Green-Tao theorem is

Szemer6di's theorem [1201, which says that every subset of integers with positive

upper density contains arbitrarily long arithmetic progressions. Szemer6di's theorem

is a deep and important result and it has had a huge impact on the subsequent

development of combinatorics and, in particular, was responsible for the introduction

of the regularity method.

The primes have zero density in the integers, so the Green-Tao theorem does not

follow directly from Szemer6di's theorem. Instead, the key idea of Green and Tao is

to embed the primes as a relatively dense subset of "almost primes," which is a sparse

pseudorandom set of integers. They established a transference principle, allowing

them to apply Szemer6di's theorem to the sparse setting.

The proof of the Green-Tao theorem has two key steps. The first step, which Green

and Tao refer to as the "main new ingredient" of their proof, is to establish a relative

Szemerddi theorem. Informally speaking, such a result says that if S is a (sparse)

set of integers satisfying certain pseudorandomness conditions and A is a subset of

S with positive relative density, then A contains long arithmetic progressions. The
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second step is to construct an appropriate superset of the primes and verify that it

has the desired pseudorandomness properties.

In the work of Green and Tao, the pseudorandomness conditions on the ground

set are known as the linear forms condition and the correlation condition. Roughly

speaking, both conditions say that, in terms of the number of solutions to certain

linear systems of equations, the set behaves like a random set of the same density.

Of the two conditions, the correlation condition is more technical and seems less

relevant to arithmetic progressions. A natural question is whether a relative Szemeredi

theorem holds under weaker pseudorandomness hypotheses. In Chapter 3, we answer

this question in the affirmative, showing that a weak linear forms condition is sufficient

for the relative Szemeredi theorem to hold, thereby completely removing the need for

a correlation condition.

Our strengthened version can be applied to give the first relative Szemer6di the-

orem for k-term arithmetic progressions in pseudorandom subsets of ZN of density

N-ck.

The key component in our proof is an extension of the regularity method to sparse

pseudorandom hypergraphs, which is interesting in its own right. From this we derive

a relative extension of the hypergraph removal lemma. This is a strengthening of an

earlier theorem used by Tao [1231 in his proof that the Gaussian primes contain

arbitrarily shaped constellations and, by standard arguments, allows us to deduce

the relative Szemer6di theorem.

Although the techniques in Chapter 3 were inspired by the work that had been

completed earlier and presented in Chapter 2, these two chapters are logically inde-

pendent of each other. The approach presented in Chapter 3 is more streamlined in

comparison.

Chapter 4 is based on

[1341 Y. Zhao, An arithmetic transference proof of a relative Szemeridi theorem,

Math. Proc. Cambridge Philos. Soc. 156 (2014), 255-261.

This chapter contains an alternate roadmap for proving the relative Szemeredi theo-

11



rem in Chapter 3. Instead of applying the hypergraph removal lemma, we show that

one can in fact more directly apply Szemer6di's theorem as a black box. This ap-

proach provides a somewhat more direct route to establishing the relative Szemer6di

theorem, and it gives better quantitative bounds.

Chapter 5 is based on

[501 J. Fox and Y. Zhao, A short proof of the multidimensional Szemeridi theorem

in the primes, Amer. J. Math., to appear.

It gives a short proof of the following theorem: every subset of 'Pd (where P denotes

the set of primes) of positive relative density contains constellations of any given

shape. This had been conjectured by Tao [123], and it was very recently proved by

Cook, Magyar, and Titichetrakun [35] and independently by Tao and Ziegler [125].

Here we give a simple proof using the Green-Tao theorem on linear equations in

primes and the Furstenberg-Katznelson multidimensional Szemer6di theorem.
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Chapter 2

Sparse reguarity

Szemer6di's regularity lemma is one of the most powerful tools in extremal combina-

torics. Roughly speaking, it says that the vertex set of every graph can be partitioned

into a bounded number of parts so that the induced bipartite graph between almost all

pairs of parts is pseudorandom. Many important results in graph theory, such as the

graph removal lemma and the Erd6s-Stone-Simonovits theorem on Turin numbers,

have straightforward proofs using the regularity lemma.

Crucial to most applications of the regularity lemma is the use of a counting

lemma. A counting lemma, roughly speaking, is a result that says that the number

of embeddings of a fixed graph H into a pseudorandom graph G can be estimated

by pretending that G were a genuine random graph. The combined application of

the regularity lemma and a counting lemma is known as the regularity method, and

has important applications in graph theory, combinatorial geometry, additive combi-

natorics and theoretical computer science. For surveys on the regularity method and

its applications, see [78, 83, 1051.

One of the limitations of Szemer6di's regularity lemma is that it is only meaningful

for dense graphs. While an analogue of the regularity lemma for sparse graphs has

been proven by Kohayakawa [75] and by Rbdl (see also [57, 112]), the problem of prov-

ing an associated counting lemma for sparse graphs has turned out to be much more

difficult. In random graphs, proving such an embedding lemma is a famous prob-

lem, known as the KLR conjecture [761, which has only been resolved very recently
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[10, 33, 1101.

Establishing an analogous result for pseudorandom graphs has been a central

problem in this area. Certain partial results are known in this case 180, 821, but it

has remained an open problem to prove a counting lemma for embedding a general

fixed subgraph. We resolve this difficulty, proving a counting lemma for embedding

any fixed small graph into subgraphs of sparse pseudorandom graphs.

As applications, we prove sparse extensions of several well-known combinatorial

theorems, including the removal lemmas for graphs and groups, the Erd6s-Stone-

Simonovits theorem, and Ramsey's theorem. Proving such sparse analogues for clas-

sical combinatorial results has been an important trend in modern combinatorics

research. For example, a sparse analogue of Szemer6di's theorem was an integral

part of Green and Tao's proof 1691 that the primes contain arbitrarily long arithmetic

progressions.

Organization. We will begin in the next section by giving an overview of the

background and our results. In Section 2.2, we give a high level overview of the proof of

our counting lemmas. In Section 2.3, we prove some useful statements about counting

in the pseudorandom graph 1. Then, in Section 2.4, we prove the sparse counting

lemma, Theorem 2.1.12. The short proof of Proposition 2.1.13 and some related

propositions about inheritance are given in Section 2.5. The proof of the one-sided

counting lemma, which uses inheritance, is then given in Section 2.6. In Section 2.7,

we take a closer look at one-sided counting in cycles. The sparse counting lemma has

a large number of applications extending many classical results to the sparse setting.

In Section 2.8, we discuss a number of them in detail, including sparse extensions of

the Erd6s-Stone-Simonovits theorem, Ramsey's theorem, the graph removal lemma

and the removal lemma for groups. In Section 2.9 we briefly discuss a number of other

applications, such as relative quasirandomness, induced Ramsey numbers, algorithmic

applications and multiplicity results.
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2.1 Background and results

2.1.1 Pseudorandom graphs

The binomial random graph G,, is formed by taking an empty graph on n vertices

and choosing to add each edge independently with probability p. These graphs tend

to be very well-behaved. For example, it is not hard to show that with high prob-

ability all large vertex subsets X, Y have density approximately p between them.

Motivated by the question of determining when a graph behaves in a random-like

manner, Thomason [127, 128] began the first systematic study of this property. Us-

ing a slight variant of Thomason's notion, we say that a graph on vertex set V is

(p, ,3) -jumbled if, for all vertex subsets X, Y C V,

|e(X,Y) - pIXIIYII 0 I\XIIYI.

The random graph G,, is, with high probability, (p, )-jumbled with 0 = O(fil).

It is not hard to show [41, 431 that this is optimal and that a graph on n vertices with

p < 1/2 cannot be (p,#3)-jumbled with 0 = o(,IJ'Wi). Nevertheless, there are many

explicit examples which are optimally jumbled in that 0 = O(nii). The Paley graph

with vertex set Z,, where p = 1(mod 4) is prime, and edge set given by connecting

x and y if their difference is a quadratic residue is such a graph with p = 1 and

10 = O(v/is). Many more examples are given in the excellent survey [861.

A fundamental result of Chung, Graham and Wilson 1231 states that for graphs of

density p, where p is a fixed positive constant, the property of being (p, o(n))-jumbled

is equivalent to a number of other properties that one would typically expect in a

random graph. The following theorem details some of these many equivalences.

Theorem. For any fixed 0 < p < 1 and any sequence of graphs (]Pn)nEN with

IV (Fn) I = n the following properties are equivalent.

P1 : Fn is (p, o(n))-jumbled, that is, for all subsets X,Y C V(Fn), e(X,Y) =

pIXIIY| + o(n2 );

15



P2 : e(En) p(") + o(n2 ), Al(Fr) pn + o(n) and IA2 (Fn)= o(n), where A((r7 ) is

the ith largest eigenvalue, in absolute value, of the adjacency matrix of Fn;

P3 : for all graphs H, the number of labeled induced copies of H in rn is pe(H)(

p) (")~-e (H)+ o(n), where f = V(H);

P4: e(Fn) p() + o(n2) and the number of labeled cycles of length 4 in ,, is at

most p4n4 + o(nr 4 ).

Any graph sequence which satisfies any (and hence all) of these properties is said

to be p-quasirandom. The most surprising aspect of this theorem, already hinted

at in Thomason's work, is that if the number of cycles of length 4 is as one would

expect in a binomial random graph then this is enough to imply that the edges are

very well-spread. This theorem has been quite influential. It has led to the study

of quasirandomness in other structures such as hypergraphs [20, 62], groups [641,

tournaments, permutations and sequences (see [22] and it references), and progress

on problems in different areas (see, e.g., [26, 63, 64]). It is also closely related to

Szemer6di's regularity lemma and its recent hypergraph generalization [63, 96, 106,

124] and all proofs of Szemer6di's theorem [120] on long arithmetic progressions in

dense subsets of the integers use some notion of quasirandomness.

For sparser graphs, the equivalences between the natural generalizations of these

properties are not so clear cut (see [21, 77, 82] for discussions). In this case, it

is natural to generalize the jumbledness condition for dense graphs by considering

graphs which are (p, o(pn))-jumbled. Otherwise, we would not even have control over

the density in the whole set. However, it is no longer the case that being (p, o(pn))-

jumbled implies that the number of copies of any subgraph H agrees approximately

with the expected count. For H = K3,3 and p = n-1/3, it is easy to see this by taking

the random graph Gn,, and changing three vertices u, v and w so that they are each

connected to everything else. This does not affect the property of being (p, o(pn))-

jumbled but it does affect the K3 ,3 count, since as well as the roughly p9 n6 = n3

copies of K3,3 that one expects in a random graph, one gets a further Q(n3 ) copies of

K3,3 containing all of u, v and w.

16



However, for any given graph H one can find a function 8H := OR(p, n) such

that if r is a (p, OH)-jumbled graph on n vertices then F contains a copy of H.

Our chief concern in this paper will be to determine jumbledness conditions which

are sufficient to imply other properties. In particular, we will be concerned with

determining conditions under which certain combinatorial theorems continue to hold

within jumbled graphs.

One particularly well-known class of (p,/3)-jumbled graphs is the collection of

(n, d, A)-graphs. These are graphs on n vertices which are d-regular and such that all

eigenvalues of the adjacency matrix, save the largest, are smaller in absolute value

than A. The famous expander mixing lemma tells us that these graphs are (p, /)-

jumbled with p = d/n and 8 = A. Bilu and Linial [141 proved a converse of this

fact, showing that every (p, 3)-jumbled d-regular graph is an (n, d, A)-graph with

A = 0(3log(d/#)). This shows that the jumbledness parameter / and the second

largest in absolute value eigenvalue A of a regular graph are within a logarithmic

factor of each other.

Pseudorandom graphs have many surprising properties and applications and have

recently attracted a lot of attention both in combinatorics and theoretical computer

science (see, e.g., [861). Here we will focus on their behavior with respect to extremal

properties. We discuss these properties in the next section.

2.1.2 Extremal results in pseudorandom graphs

In this paper, we study the extent to which several well-known combinatorial state-

ments continue to hold relative to pseudorandom graphs or, rather, (p, /)-jumbled

graphs and (n, d, A)-graphs.

One of the most important applications of the regularity method is the graph

removal lemma [3, 108]. In the following statement and throughout the paper, v(H)

and e(H) will denote the number of vertices and edges in the graph H, respectively.

The graph removal lemma states that for every fixed graph H and every E > 0 there

exists J > 0 such that if G contains at most Snv(H) copies of H then G may be made H-

free by removing at most En2 edges. This innocent looking result, which follows easily
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from Szemer6di's regularity lemma and the graph counting lemma, has surprising

applications in diverse areas, amongst others a simple proof of Roth's theorem on

3-term arithmetic progressions in dense subsets of the integers. It is also much more

difficult to prove than one might expect, the best known bound [46] on 6 being a

tower function of height on the order of log e-.

An analogue of this result for random graphs (and hypergraphs) was proven in

[321. For pseudorandom graphs, the following analogue of the triangle removal lemma

was recently proven by Kohayakawa, Rdi, Schacht and Skokan [801.

Theorem. For every e > 0, there exist 6 > 0 and c > 0 such that if 3 < cp3 n then

any (p, 0)-jumbled graph F on n vertices has the following property. Any subgraph of

r containing at most Jp3 n3 triangles may be made triangle-free by removing at most

epn2 edges.

Here we extend this result to all H. The degeneracy d(H) of a graph H is the

smallest nonnegative integer d for which there exists an ordering of the vertices of H

such that each vertex has at most d neighbors which appear earlier in the ordering.

Equivalently, it may be defined as d(H) = max{6(H') : H' C H}, where 8(H) is the

minimum degree of H. Throughout the paper, we will also use the standard notation

A(H) for the maximum degree of H.

The parameter we will use in our theorems, which we refer to as the 2-degeneracy

d2 (H), is related to both of these natural parameters. Given an ordering vi, ... , om

of the vertices of H and i < j, let Ni 1 (j) be the number of neighbors vh of vj

with h < i - 1. We then define d2 (H) to be the minimum d for which there is an

ordering of the edges as v 1 ,... ,vm such that for any edge vivj with i < j the sum

Ni_ 1 (i) + Nj- 1 (j) < 2d. Note that d2 (H) may be a half-integer. For comparison with

degeneracy, note that d(1) < d2 (H) d(H) - 1 and both sides can be sharp.
2 - 2

Theorem 2.1.1. For every graph H and every e > 0, there exist 6 > 0 and c > 0

such that if / cpd2(H)+3n then any (p,/)-jumbled graph r on n vertices has the

following property. Any subgraph of F containing at most 6pe(H)n(H) copies of H

may be made H-free by removing at most epn2 edges.

18



We remark that for many graphs H, the constant 3 in the exponent of this theorem

may be improved, and this applies equally to all of the theorems stated below. While

we will not dwell on this comment, we will call attention to it on occasion throughout

the paper, pointing out where the above result may be improved. Note that the above

theorem generalizes the graph removal lemma by considering the case F = K., which

is (p, #)-jumbled with p = 1 and / = 1. For the same reason, the other results we

establish extend the original versions.

Green [681 developed an arithmetic regularity lemma and used it to deduce an

arithmetic removal lemma in abelian groups which extends Roth's theorem. Green's

proof of the arithmetic regularity lemma relies on Fourier analytic techniques. Kril,

Serra and Vena [841 found a new proof of the arithmetic removal lemma using the

removal lemma for directed cycles which extends to all groups. They proved that for

each e > 0 and integer m > 3 there is 6 > 0 such that if G is a group of order n

and A1 ,.. ., Am are subsets of G such that there are at most Jnm-1 solutions to the

equation x 1x 2 - - = 1 with xi E Ai for all i, then it is possible to remove at most

en elements from each set Ai so as to obtain sets A' for which there are no solutions

to XlX2 - -X-m = 1 with xi E A' for all i.

By improving the bound in Theorem 2.1.1 for cycles, we obtain the following sparse

extension of the removal lemma for groups. The Cayley graph G(S) of a subset S of

a group G has vertex set G and (x, y) is an edge of G if x-ly E S. We say that a

subset S of a group G is (p, /)-jumbled if the Cayley graph G(S) is (p,/3)-jumbled.

When G is abelian, if Ixes X(x) I < 3 for all nontrivial characters x: G - C, then

S is (f , #)-jumbled (see [80, Lemma 161). Let k3 = 3, k4 = 2, km = 1+ U if m > 5

is odd, and km = 1+ m- 4 if m > 6 is even. Note that km tends to 1 as m -+ oo.

Theorem 2.1.2. For each E > 0 and integer m > 3, there are c, 6> 0 such that the

following holds. Suppose B1 , ... ,Bm are subsets of a group G of order n such that

each Bi is (p, /)-jumbled with / cpkmn. If subsets A C Bi for i = 1,...,m are

such that there are at most 6|BI ... IBm /n solutions to the equation X1X2 --- Xm = 1

with xi E Ai for all i, then it is possible to remove at most eBiI elements from each

set Ai so as to obtain sets A' for which there are no solutions to x 1x 2 ... X, = 1 with

19



xi E A' for all i.

This result easily implies a Roth-type theorem in quite sparse pseudorandom

subsets of a group. We say that a subset B of a group G is (e, m) -Roth if for all integers

a 1, .. ., am which satisfy a, + + am = 0 and gcd(ai, GJ) = 1 for 1 < i < m, every

subset A C B which has no nontrivial solution to X,, X --- .. - 1 has JAl < EIBI.

Corollary 2.1.3. For each E > 0 and integer m > 3, there is c > 0 such that the

following holds. If G is a group of order n and B is a (p, )-jumbled subset of G with

5 cp'-n, then B is (c,m)-Roth.

Note that Roth's theorem on 3-term arithmetic progressions in dense sets of in-

tegers, follows from the special case of this result with B = G = Zn, m = 3, and

a, = a2 = 1, a3 = -2. The rather weak pseudorandomness condition in Corol-

lary 2.1.3 shows that even quite sparse pseudorandom subsets of a group have the

Roth property. For example, if B is optimally jumbled, in that / = O(Vpn) and

p > Cn-2km-1, then B is (E, m)-Roth. This somewhat resembles a key part of the

proof of the Green-Tao theorem that the primes contain arbitrarily long arithmetic

progressions, where they show that pseudorandom sets of integers have the Szemer6di

property. As Corollary 2.1.3 applies to quite sparse pseudorandom subsets, it may

lead to new applications in number theory.

Our methods are quite general and also imply similar results for other well-known

combinatorial theorems. We say that a graph P is (H, e)-Turdn if any subgraph of F

with at least

1 -+ E e(r)
X(H) - I

edges contains a copy of H. Turdn's theorem itself 1132], or rather a generalization

known as the Erd6s-Stone-Simonovits theorem [44], says that Kn is (H, f)-Turin

provided that n is large enough.

To find other graphs which are (H, E)-Turdn, it is natural to try the random

graph G.,P. A recent result of Conlon and Gowers [32], also proved independently by

Schacht [1111, states that for every t > 3 and e > 0 there exists a constant C such

that if p ;> Cn-2 /(t+) the graph G,, is with high probability (Kt, e)-Turdn. This
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confirms a conjecture of Haxell, Kohayakawa, Luczak and R6dl [74, 761 and, up to

the constant C, is best possible. Similar results also hold for more general graphs H

and hypergraphs.

For pseudorandom graphs and, in particular, (n, d, A)-graphs, Sudakov, Szab6 and

Vu [1191 showed the following. A similar result, but in a slightly more general context,

was proved by Chung [19].

Theorem. For every e > 0 and every positive integer t > 3, there exists c > 0 such

that if A < cd 1/nt-2 then any (n, d, A)-graph is (Kt, e)-Turdn.

For t = 3, an example of Alon [2] shows that this is best possible. His example

gives something even stronger, a triangle-free (n, d, A)-graph for which A < cv/d and

d > n2/13 . Therefore, no combinatorial statement about the existence of triangles

as subgraphs can surpass the threshold A < cd2 /n. It has also been conjectured

[47, 86, 1191 that A < cdt-1/nt- 2 is a natural boundary for finding Kt as a subgraph

in a pseudorandom graph, but no examples of such graphs exist for t > 4. Finding

such graphs remains an important open problem on pseudorandom graphs.

For triangle-free graphs H, Kohayakawa, Rbdl, Schacht, Sissokho and Skokan [79]

proved the following result which gives a jumbledness condition that implies that a

graph is (H, E)-Turdn.

Theorem. For any fixed triangle-free graph H and any e > 0, there exists c > 0 such

that if 8 cpv(H)n then any (p, f3)-jumbled graph on n vertices is (H,,E)-Turdn. Here

1(H) = 1(d(H) + D(H) + 1), where D(H) = min{2d(H), A(H)}.

More recently, the case where H is an odd cycle was studied by Aigner-Horev,

Hin and Schacht [1], who proved the following result, optimal up to the logarithmic

factors [4].

Theorem. For every odd integer f > 3 and any e > 0, there exists c > 0 such that if

/3 logf-3 n < cp1+1/(t-2)n then any (p, 3)-jumbled graph on n vertices is (Ce,E)-Turdn.

In this paper, we prove that a similar result holds, but for general graphs H and,

in most cases, with a better bound on /3.
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Theorem 2.1.4. For every graph H and every e > 0, there exists c > 0 such that if

/3 cpd2(H)+3n then any (p, /)-jumbled graph on n vertices is (H, E)-Turdn.

We may also prove a structural version of this theorem, known as a stability result.

In the dense case, this result, due to Erd6s and Simonovits [115], states that if an

H-free graph contains almost (i - 1) (") edges, then it must be very close to

being (X(H) - 1)-partite.

Theorem 2.1.5. For every graph H and every e > 0, there exist 6 > 0 and c > 0 such

that if 3 < cpd2(H)+ 3n then any (p, /)-jumbled graph F on n vertices has the following

property. Any H-free subgraph of F with at least (i - _ - 6) p(") edges may be

made (X(H) - 1)-partite by removing at most epn2 edges.

The final main result that we will prove concerns Ramsey's theorem [98]. This

states that for any graph H and positive integer r, if n is sufficiently large, any

r-coloring of the edges of K contains a monochromatic copy of H.

To consider the analogue of this result in sparse graphs, let us say that a graph

r is (H, r)-Ramsey if, in any r-coloring of the edges of F, there is guaranteed to be a

monochromatic copy of H. For G.,, a result of R6dl and Rucinski [104] determines

the threshold down to which the random graph is (H, r)-Ramsey with high probability.

For most graphs, including the complete graph Kt, this threshold is the same as for

the Turin property. These results were only extended to hypergraphs comparatively

recently, by Conlon and Gowers [32] and by Friedgut, Rddl and Schacht [52].

Very little seems to be known about the (H, r)-Ramsey property relative to pseu-

dorandom graphs. In the triangle case, results of this kind are implicit in some recent

papers [37, 91] on Folkman numbers, but no general theorem seems to be known. We

prove the following.

Theorem 2.1.6. For every graph H and every positive integer r > 2, there exists

c > 0 such that if 3 < Cpd2(H)+3n then any (p, /)-jumbled graph on n vertices is

(H, r)-Ramsey.

One common element to all these results is the requirement that / < cpd2(H)+3n.

It is not hard to see that this condition is almost sharp. Consider the binomial random
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graph on n vertices where each edge is chosen with probability p = cn- 2 /d(H) , where

c < 1. By the definition of degeneracy, there exists some subgraph H' of H such

that d(H) is the minimum degree of H'. Therefore, e(H') > v(H')d(H)/2 and the

expected number of copies of H' is at most

pe(H')nv(H') < (Pd(H)/2 )v(H')

We conclude that with positive probability Gs, does not contain a copy of H' or,

consequently, of H. On the other hand, with high probability, it is (p, /)-jumbled

with

03 (p) - 0(p(d(H)+2)/4n)

Since d2 (H) differs from d(H) by at most a constant factor, we therefore see that, up

to a multiplicative constant in the exponent of p, our results are best possible.

If H = Kt, it is sufficient, for the various combinatorial theorems above to hold,

that the graph IF be (p, cptn)-jumbled. For triangles, the example of Alon shows that

there are (p, cp2n)-jumbled graphs which do not contain any triangles and, for t > 4,

it is conjectured [47, 86, 119] that there are (p, cpt-n)-jumbled graphs which do not

contain a copy of Kt. If true, this would imply that in the case of cliques all of

our results are sharp up to an additive constant of one in the exponent. A further

discussion relating to the optimal exponent of p for general graphs is in the concluding

remarks.

2.1.3 Regularity and counting lemmas

One of the key tools in extremal graph theory is Szemer6di's regularity lemma [121].

Roughly speaking, this says that any graph may be partitioned into a collection of

vertex subsets so that the bipartite graph between most pairs of vertex subsets is

random-like. To be more precise, we introduce some notation. It will be to our

advantage to be quite general from the outset.

A weighted graph on a set of vertices V is a symmetric function G: V x V - [0, 1].
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Here symmetric means that G(x, y) = G(y, x). A weighted graph is bipartite (or

multipartite) if it is supported on the edge set of a bipartite (or multipartite graph).

A graph can be viewed as a weighted graph by taking G to be the characteristic

function of the edges.

Note that here and throughout the remainder of the paper, we will use integral

notation for summing over vertices in a graph. For example, if G is a bipartite graph

with vertex sets X and Y, and f is any function X x Y -+ R, then we write

f(x, y) dxdy :=i1i)yi :f(X1Y)
yEY 1I1 XEXyEY

The measure dx will always denote the uniform probability distribution on X. The

advantage of the integral notation is that we do not need to keep track of the number

of vertices in G. All our formulas are, in some sense, scale-free with respect to the

order of G. Consequently, our results also have natural extensions to graph limits {89j,
although we do not explore this direction here.

Definition 2.1.7 (DISC). A weighted bipartite graph G: X x Y -+ [0, 1] is said to

satisfy the discrepancy condition DISC(q, E) if

j (G(x, y) - q)u(x)v(y) dxdy < C (2.1)
yEY

for all functions u: X -+ [0, 1] and v: Y -+ [0, 1]. In any weighted graph G, if X and

Y are subsets of vertices of G, we say that the pair (X, Y)G satisfies DISC(q, e) if the

induced weighted graph on X x Y satisfies DISC(q, e).

The usual definition for discrepancy of an (unweighted) bipartite graph G is that

for all X' CX, Y' C Y, we have le(X', Y') - q IX'I IY'll < E |XI IYI. It is not hard to

see that the two notions of discrepancy are equivalent (with the same e).

A partition V(G) = V u ... u V is said to be equitable if all pieces in the partition

are of comparable size, that is, if IIVi - V < 1 for all i and j. Szemer6di's regularity

lemma now says the following.
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Theorem (Szemer6di's regularity lemma). For every e > 0 and every positive integer

MO, there exists a positive integer M such that any weighted graph G has an equitable

partition into k pieces with mo < & < M such that all but at most ek 2 pairs of vertex

subsets (V, V) satisfy DISC(qij, c) for some qij.

On its own, the regularity lemma would be an interesting result. But what really

makes it so powerful is the fact that the discrepancy condition allows us to count

small subgraphs. In particular, we have the following result, known as a counting

lemma.

Proposition 2.1.8 (Counting lemma in dense graphs). Let G be a weighted m-partite

graph with vertex subsets X1 , X 2 , . . , Xm. Let H be a graph with vertex set {1, ... , m}

and with e(H) edges. For each edge (i, j) in H, assume that the induced bipartite graph

G(Xi, Xj) satisfies DISC(qij, e). Define

G(H) := ( G(xi, x) dx1 - - dxm
JX 1 . X',m"E9" (i,j)EE(H)

and

q(H) := J qij.
(i,j)EE(H)

Then

|G(H) - q(H)| e(H)E.

The above result, for an unweighted graph, is usually stated in the following equiv-

alent way: the number of embeddings of H into G, where the vertex i E V(H) lands

in Xj, differs from 1X 1 IX 2 1 ... I XmI l (i,j)EE(H) qij by at most e(H)e lX, 1IX21 ... XmI-

Our notation G(H) can be viewed as the probability that a random embedding of

vertices of H into their corresponding parts in G gives rise to a valid embedding as a

subgraph.

Proposition 2.1.8 may be proven by telescoping (see, e.g., Theorem 2.7 in [161).

Consider, for example, the case where H is a triangle. Then

G(xi, x2)G(xi, x 3)G(x 2 , x3) - q12q13q23
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may be rewritten as

(G(xi, x2 ) - q12 )G(x1 , X 3 )G(x 2 , X3 ) + q 2(G(x1, x3) - q13)G(x 2 , X3 )

+ q12 q13 (G(x2 , X 3 ) - q23). (2.2)

Applying the discrepancy condition (2.1), we see that, after integrating the above

expression over all xi E X 1, x 2 E X 2,X 3 E X3, each term in (2.2) is at most 6 in

absolute value. The result follows for triangles. The general case follows similarly.

In order to prove extremal results in sparse graphs, we would like to transfer some

of this machinery to the sparse setting. Because the number of copies of a subgraph

in a sparse graph G is small, the error between the expected count and the actual

count must also be small for a counting lemma to be meaningful. Another way to

put this is that we aim to achieve a small multiplicative error in our count.

Since we require smaller errors when counting in sparse graphs, we need stronger

discrepancy hypotheses. In the following definition, we should view p as the order of

magnitude density of the graph, so that the error terms should be bounded in the

same order of magnitude. In a dense graph, p = 1. We assume that q p. It may be

helpful to think of q/p as bounded below by some positive constant, although this is

not strictly required.

Definition 2.1.9 (DISC). A weighted bipartite graph G: X x Y --+ [0, 1] is said to

satisfy DISC(q, p, E) if

J (G(x, y) - q)u(x)v(y) dxdy < Ep
yEY

for all functions u: X -+ [0, 1] and v: Y -+ [0, 1].

Unfortunately, discrepancy alone is not strong enough for counting in sparse

graphs. Consider the following example. Let G be a tripartite graph with vertex

sets X 1, X2 , X3, such that (XI, X2)G and (X2 , X 3)G satisfy DISC(q, p, 2). Let X2 be

a subset of X2 with size ip 1X21. Let G' be modified from G by adding the complete

bipartite graph between X1 and X(, as well as the complete bipartite graph between
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X2 and X3. The resulting pairs (X1, X2 )G, and (X2 , X 3)G' satisfy DISC(q, p, f). Con-

sider the number of paths in G and G' with one vertex from each of X 1, X 2 , X 3 in

turn. Given the densities, we expect there to be approximately q 2 IX1I IX21 IX3I such

paths, and we would like the error to be p2 1X11 IX2 1IX31 for some small 6 that goes

to zero as e goes to zero. However, the number of paths in G' from X1 to X2 to X3

is 1p X1 I IX21 X3, which is already too large when p is small.

For our counting lemma to work, G needs to be a relatively dense subgraph of a

much more pseudorandom host graph F. In the dense case, F can be the complete

graph. In the sparse world, we require 17 to satisfy the jumbledness condition. In

practice, we will use the following equivalent definition. The equivalence follows by

considering random subsets of X and Y, where x and y are chosen with probabilities

u(x) and v(y), respectively.

Definition 2.1.10 (Jumbledness). Let r = (X U Y, Er) be a bipartite graph. We

say that F is (p,-y/IX IY1)-jumbled if

J (P(x, y) - p)u(x)v(y) dxdy -Y u(x) dx v(y) dy (2.3)
XEX xcx YcY

for all functions u: X -+ [0, 1] and v: Y -+ [0, 1].

With the discrepancy condition defined as in Definition 2.1.9, we may now state

a regularity lemma for sparse graphs. Such a lemma was originally proved indepen-

dently by Kohayakawa [75] and by Rddl (see also [57, 112]). The following result,

tailored specifically to jumbled graphs, follows easily from the main result in [751.

Theorem 2.1.11 (Regularity lemma in jumbled graphs). For every c > 0 and every

positive integer mo, there exists y > 0 and a positive integer M such that if r is a

(p, rpn) -jumbled graph on n vertices any weighted subgraph G of P has an equitable

partition into k pieces with mo < k < M such that all but at most ek 2 pairs of vertex

subsets (Vi, V) satisfy DISC(qij, p,c) for some qi3 .

The main result of this paper is a counting lemma which complements this reg-

ularity lemma. Proving such an embedding lemma has remained an important open
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problem ever since Kohayakawa and R6dl first proved the sparse regularity lemma.

Most of the work has focused on applying the sparse regularity lemma in the context

of random graphs. The key conjecture in this case, known as the KLR conjecture,

concerns the probability threshold down to which a random graph is, with high prob-

ability, such that any regular subgraph contains a copy of a particular subgraph

H. This conjecture has only been resolved very recently [10, 33, 110]. For pseudo-

random graphs, it has been a wide open problem to prove a counting lemma which

complements the sparse regularity lemma. The first progress on proving such a count-

ing lemma was made recently in [801, where Kohayakawa, R6dl, Schacht and Skokan

proved a counting lemma for triangles. Here, we prove a counting lemma which works

for any graph H. Even for triangles, our counting lemma gives an improvement over

the results in [801, since our results have polynomial-type dependence on the discrep-

ancy parameters, whereas the results in [80] require exponential dependence since a

weak regularity lemma was used as an intermediate step during their proof of the

triangle counting lemma.

Our results are also related to the work of Green and Tao [69] on arithmetic pro-

gressions in the primes. What they really prove is the stronger result that Szemer6di's

theorem on arithmetic progressions holds in subsets of the primes. In order to do this,

they first show that the primes, or rather the almost primes, are a pseudorandom sub-

set of the integers and then that Szemer6di's theorem continues to hold relative to

such pseudorandom sets. In the language of their paper, our counting lemma is a

generalized von Neumann theorem.

Here is the statement of our first counting lemma. Note that, given a graph H,

the line graph L(H) is the graph whose vertices are the edges of H and where two

vertices are adjacent if their corresponding edges in H share an endpoint. Recall that

d(.) is the degeneracy and A(.) is the maximum degree.

Theorem 2.1.12. Let H be a graph with vertex set {1,... , m} and with e(H) edges.

For every 6 > 0, there exist c, e > 0 of size at least polynomial in 6 so that the

following holds.

Let p > 0 and let IF be a graph with vertex subsets X 1, ... , X, and suppose that
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Table 2.1: Sufficient conditions on k in the jumbledness hypothesis (p, cpk X IX)
for the counting lemmas of various graphs. Two-sided counting refers to results of
the form IG(H) - q(H) 1 5 pe(H) while one-sided counting refers to result of the form
G(H) q(H) - 6pe(H).

Two-sided counting One-sided counting

H k> k>

Kt t t t > 3

Ce 2 2 F = 4

2 1+ / > 52L(I-3)/21

K2,t t+ 5 t > 32 2

K,, 3+t+1 s 3 3 < s< t2 2_

Tree A(H)+1 No jumbledness needed See Prop. 2.4.9 and 2.7.7

K1 ,2,2  4 4

the bipartite graph (Xi,X3 )r is (p,cpk /|Xi||XA|)-jumbled for every i < j, where

k > min { +A(L())4 , + }. Let G be a subgraph of IF, with the vertex i of H

assigned to the vertex subset Xi of G. For each edge ij in H, assume that (Xi, XJ)G

satisfies DISC(qi, p, E). Define

G(H) := f f G(i,x) dxi ... dm
X1 . Xm',E'"1" (i,j)EE(H)

and

q(H) := J qij.

(i,j)EE(H)

Then

IG(H) - q(H)|I < pe(H)

For some graphs H, our methods allow us to achieve slightly better values of k

in Theorem 2.1.12. However, the value given in the theorem is the cleanest general

statement. See Table 2.1 for some example of hypotheses on k for various graphs

H. To see that the value of k is never far from best possible, we first note that

A(H) - 1 < d(L(H)) A(H) + d(H) - 2.

Let H have maximum degree A. By considering the random graph G,, with
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p = n-1/A, we can find a (p, cpA/ 2 n)-jumbled graph F containing approximately

pe(H)nv(H) labeled copies of H. We modify F to form F' by fixing one vertex v and

connecting it to everything else. It is easy to check that the resulting graph F' is

(p, c'p/ 2n)-jumbled. However, the number of copies of H disagrees with the expected

count, since there are approximately pe(H)nv(H) labeled copies from the original graph

F and a further approximately pe(H)-Anv(H)-1 - pe(H)nv(H) labeled copies containing

v. We conclude that for k < A/2 we cannot hope to have such a counting lemma

and, therefore, the value of k in Theorem 2.1.12 is close to optimal.

Since we are dealing with sparse graphs, the discrepancy condition 2.1.9 appears,

at first sight, to be rather weak. Suppose, for instance, that we have a sparse graph

satisfying DISC(q, p, E) between each pair of sets from V1, V2 and V3 and we wish to

embed a triangle between the three sets. Then, a typical vertex v in V will have

neighborhoods of size roughly qIV2 1 and qIV3 1 in V2 and V3 , respectively. But now the

condition DISC(q, p, E) tells us nothing about the density of edges between the two

neighborhoods. They are simply too small.

To get around this, Gerke, Kohayakawa, R6dl and Steger [55] showed that if (X, Y)

is a pair satisfying DISC(q, p, E) then, with overwhelmingly high probability, a small

randomly chosen pair of subsets X' C X and Y' C Y will satisfy DISC(q, p, E'), where

E' tends to zero with E. We say that the pair inherits regularity. This may be applied

effectively to prove embedding lemmas in random graphs (see, for example, [56, 81]).

For pseudorandom graphs, the beginnings of such an approach may be found in [80].

Our approach in this paper works in the opposite direction. Rather than using

the inheritance property to aid us in proving counting lemmas, we first show how one

may prove the counting lemma and then use it to prove a strong form of inheritance

in jumbled graphs. For example, we have the following theorem.

Proposition 2.1.13. For any a > 0, > 0 and E' > 0, there exists c > 0 and e > 0

of size at least polynomial in a, , E' such that the following holds.

Let p E (0, 1] and qxy, qxZ, qyZ E [ap, p]. Let F be a tripartite graph with vertex

sets X, Y and Z and G be a subgraph of F. Suppose that
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* (X,Y)r is (p,cp4 V|Xi IYI)-jumbled and (X,Y)G satisfies DISC(qxy, p,C); and

* (X, Z)r is (p, cp2 lXII Z1)-jumbled and (X, Z)G satisfies DISC(qxz, p, e); and

" (Y, Z)r is (p, cp 3 V/1Y IZ1)-jumbled and (Y, Z)G satisfies DISC(qyz, p,E).

Then at least (1-i) IZI vertices z E Z have the property that INx(z)I > (1- )qxz lX1,

INy (z)| > (1 - ' )qyz IY1, and (Nx (z), Ny(z))G satisfies DISC(qxy, p, 6').

The question now arises as to why one would prove that the inheritance property

holds if we already know its intended consequence. Surprisingly, there is another

counting lemma, giving only a lower bound on G(H), which is sufficient to establish

the various extremal results but typically requires a much weaker jumbledness as-

sumption. The proof of this statement relies on the inheritance property in a critical

way. The notations G(H) and q(H) were defined in Theorem 2.1.12.

Theorem 2.1.14. For every fixed graph H on vertex set {1, 2,... , m} and every

a, 0 > 0, there exist constants c > 0 and e > 0 such that the following holds.

Let p > 0 and let r be a graph with vertex subsets X1, ... , X, and suppose that

the bipartite graph (Xi, Xj)r is (p, cpd2(H)+3 V/Xi |IX 1)-jumbled for every i < j with

ij E E(H). Let G be a subgraph of F, with the vertex i of H assigned to the vertex

subset Xi of G. For each edge ij of H, assume that (Xi, Xj)G satisfies DISC(qij,p, 6),

where ap qij < p. Then

G(H) > (1- O)q(H).

We refer to Theorem 2.1.14 as a one-sided counting lemma, as we get a lower bound

for G(H) but no upper bound. However, in order to prove the theorems of Section

2.1.2, we only need a lower bound. The proof of Theorem 2.1.14 is a sparse version of

a classical embedding strategy in regular graphs (see, for example, [24, 49, 661). Note

that, as in the theorems of Section 2.1.2, the exponent d2(H) + 3 can be improved

for certain graphs H. We will say more about this later. Moreover, one cannot hope

to do better than / = O(p(d(H)+2)/4n), so that the condition on # is sharp up to a

multiplicative constant in the exponent of p. We suspect that the exponent may even

be sharp up to an additive constant.
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2.2 Counting strategy

In this section, we give a general overview of our approach to counting. There are

two types of counting results: two-sided counting and one-sided counting. Two-

sided counting refers to results of the form IG(H) - q(H) < ope(H) while one-sided

counting refers to results of the form G(H) > q(H) -- pe(H). One-sided counting

is always implied by two-sided counting, although sometimes we are able to obtain

one-sided counting results under weaker hypotheses.

2.2.1 Two-sided counting

There are two main ingredients to the proof: doubling and densification. These two

procedures reduce the problem of counting embeddings of H to the same problem for

some other graphs H'.

If a E V(H), the graph H with a doubled, denoted Hax 2 , is the graph created from

V(H) by adding a new vertex a' whose neighbors are precisely the neighbors of a. In

the assignment of vertices of Hax2 to vertex subsets of F, the new vertex a' is assigned

to the same vertex subset of F. For example, the following figure shows a triangle

with a vertex doubled.

A typical reduction using doubling is summarized in Figure 2-1. Each graph repre-

sents the claim that the number of embeddings of the graph drawn, where the straight

edges must land in G and the wavy edges must land in F, is approximately what one

would expect from multiplying together the appropriate edge densities between the

vertex subsets of G and F.

The top arrow in Figure 2-1 is the doubling step. This allows us to reduce the

problem of counting H to that of counting a number of other graphs, each of which

may have some edges which embed into G and some which embed into F. For example,

if we let Ha be the graph that we get by omitting every edge which is connected to

a particular vertex a, we are interested in the number of copies of H__ in both G and
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F. We are also interested in the original graph H, but now on the understanding that

the edges incident with a embed into G while those that do not touch a embed into

F. Finally, we are interested in the graph Hax 2 formed by doubling the vertex a, but

again the edges which do not touch a or its copy a' only have to embed into F. This

reduction, which is justified by an application of the Cauchy-Schwarz inequality, will

be detailed in Section 2.4.1.

The bottom two arrows in Figure 2-1 are representative of another reduction,

where we can reduce the problem of counting a particular graph, with edges that

map to both G and F, into one where we only care about the edges that embed into

G. We can make such a reduction because counting embeddings into F is much easier

due to its jumbledness. We will discuss this reduction, amongst other properties of

jumbled graphs F, in Section 2.3.

G(H)

G(H-a) g(Hx 2 ) g(H) F(Ha)

G(Ha,ax2 ) G(Ha)

Figure 2-1: The doubling reduction. Each graph represents some counting lemma.
The straight edges must embed into G while wavy edges must embed into the jumbled
graph F. The labels have not yet been defined, but they appear in Lemma 2.4.3.

For triangles, a similar reduction is shown in Figure 2-2. In the end, we have
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changed the task of counting triangles to the task of counting the number of cycles of

length 4. It would be natural now to apply doublng to the 4-cycle but, unfortunately,

this process is circular. Instead, we introduce an alternative reduction process which

we refer to as densification.

Figure 2-2: The doubling reduction for counting triangles.

In the above reduction from triangles to 4-cycles, two of the vertices of the 4-cycle

are embedded into the same part Xi of G. We actually consider the more general

setting where the vertices of the 4-cycle lie in different parts, X1 , X 2 , X 3 , X4 , of G.

Assume without loss of generality that there is no edge between X, and X3 in

G. Let us add a weighted graph between X1 and X3 , where the weight on the edge

x 1 x3 is proportional to the number of paths x1 x4x 3 for x 4 E X4 . Since (X1 , X4)G and

(X3 , X4)G satisfy discrepancy, the number of paths will be on the order of q14q 3 4 IX 4 1

for most pairs (x 1 , x3 ). After discarding a negligible set of pairs (x 1 , X3 ) that give

too many paths, and then appropriately rescaling the weights of the other edges

x1 x 3 , we create a weighted bipartite graph between X1 and X3 that behaves like

a dense weighted graph satisfying discrepancy. Furthermore, counting 4-cycles in

X1 , X2 , X3 , X4 is equivalent to counting triangles in X1, X2 , X3 due to the choice of

weights. We call this process densification. It is illustrated below. In the figure, a

thick edge signifies that the bipartite graph that it embeds into is dense.
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More generally, if b is a vertex of H of degree 2, with neighbors {a, c}, such that a

and c are not adjacent, then densification allows us to transform H by removing the

edges ab and bc and adding a dense edge ac, as illustrated below. For more on this

process, we refer the reader to Section 2.4.2.

b
a C a c

We needed to count 4-cycles in order to count triangles, so it seems at first as

if our reduction from 4-cycles to triangles is circular. However, instead of counting

triangles in a sparse graph, we now have a dense bipartite graph between one of the

pairs of vertex subsets. Since it is easier to count in dense graphs than in sparse

graphs, we have made progress. The next step is to do doubling again. This is shown

in Figure 2-3. The bottommost arrow is another application of densification.

We have therefore reduced the problem of counting triangles in a sparse graph to

that of counting triangles in a dense weighted graph, which we already know how to

do. This completes the counting lemma for triangles.

In Figure 2-1, doubling reduces counting in a general H to counting H with one

vertex deleted (which we handle by induction) as well as graphs of the form K1 ,t and

K2 ,t. Trees like K1 ,t are not too hard to count. It therefore remains to count K2,t. As

with counting C4 (the case t = 2), we first perform a densification.

The graph on the right can be counted using doubling and induction, as shown in

Figure 2-4. Note that the C4 count is required as an input to this step. This then

completes the proof of the counting lemma.
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Figure 2-3: The doubling reduction for triangles with one dense edge.

N
lAp

induction

Figure 2-4: The doubling reduction for counting K2 ,t-
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2.2.2 One-sided counting

For one-sided counting, we embed the vertices of H into those of G one at a time.

By making a choice for where a vertex a of H lands in G, we shrink the set of

possible targets for each neighbor of a. These target sets shrink by a factor roughly

corresponding to the edge densities of G, as most vertices of G have close to the

expected number of neighbors due to discrepancy. This allows us to obtain a lower

bound on the number of embeddings of H into G.

The above argument is missing one important ingredient. When we shrink the set

of possible targets of vertices in H, we do not know if G restricted to these smaller

vertex subsets still satisfies the discrepancy condition, which is needed for embedding

later vertices. When G is dense, this is not an issue, since the restricted vertex subsets

have size at least a constant factor of the original vertex subsets, and thus discrepancy

is inherited. When G is sparse, the restricted vertex subsets can become much smaller

than the original vertex subsets, so discrepancy is not automatically inherited.

To address this issue, we observe that discrepancy between two vertex sets follows

from some variant of the K2 ,2 count (and the counting lemma shows that they are

in fact equivalent). By our counting lemma, we also know that the graph below has

roughly the expected count. This in turn implies that discrepancy is inherited in the

neighborhoods of G since, roughly speaking, it implies that almost every vertex has

roughly the expected number of 4-cycles in its neighborhood. The one-sided counting

approach sketched above then carries through. For further details on inheritance of

discrepancy, see Section 2.5. The proof of the one-sided counting lemma may be

found in Section 2.6.

We also prove a one-sided counting lemma for large cycles using much weaker

jumbledness hypotheses. The idea is to extend densification to more than two edges

at a time. We will show how to transform a multiply subdivided edge into a single
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dense edge, as illustrated below.

Starting with a long cycle, we can perform two such densifications, as shown below.

The resulting triangle is easy to count, since a typical embedding of the top vertex

gives a linear-sized neighborhood. The full details may be found in Section 2.7.

2.3 Counting in I'

In this section, we develop some tools for counting in F. Here is the setup for this

section.

Setup 2.3.1. Let F be a graph with vertex subsets X1,..., X". We have quantities

p, c E (0, 1] and k > 1. Let H be a graph with vertex set {1, ... , m}, with vertex a

assigned to Xa. For every edge ab in H, assume that one of the following two holds:

" (Xa, Xb)r is (p, cpk Xal IXb)-jumbled, in which case we set Pab = p and say

that ab is a sparse edge, or

* (Xa, Xb)r is a complete bipartite graph, in which case we set Pab 1 and say

that ab is a dense edge.

Let HSP denote the subgraph of H consisting of sparse edges.

2.3.1 Example: counting triangles in F

We start by showing, as an example, how to prove the counting lemma in F for

triangles. Most of the ideas found in the rest of this section can already be found in
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this special case.

Proposition 2.3.2. Assume Setup 2.3.1. Let H be a triangle with vertices {1, 2, 3}.

Assume that k > 2. Then IF( H ) - p3 | < 5cp3 .

Proof. In the following integrals, we assume that x, y and z vary uniformly over X1, X2

and X3 , respectively. We have the telescoping sum

F(H) - p3= j ((x, y) - p)1(x, z)P(y, z) dxdydz

+ p(F(x, z) - p)F(y, z) dxdydz + p2 (J(y, z) - p) dxdydz. (2.4)

The third integral on the right-hand side of (2.4) is bounded in absolute value by cp 3

by the jumbledness of r. In particular, this implies that f, I(y, z) dydz < (1 + c)p.

Similarly we have f I(x, z) dxdz < (1 + c)p. Using the jumbledness condition (2.3)

followed by the Cauchy-Schwarz inequality, the second integral above is bounded in

absolute value by

/p3 jf(y, z) dz dy cp3 /F(y, z) dydz cp3 (1+c)p.

Finally, the first integral on the right-hand side of (2.4) is bounded in absolute value

by, using (2.3) and the Cauchy-Schwarz inequality,

/CP2 jF(x, z) dx jF(y, z) dy dz
z x Jy

cp 2  F(x, z) dxdz fJ(y, z) dydz c(1 + c)p3 . (2.5)

Therefore, (2.4) is bounded in absolute value by 5cp3 . U

Remark. (1) In the more general proof, the step corresponding to (2.5) will be slightly

different but is similar in its application of the Cauchy-Schwarz inequality.

(2) The proof shows that we do not need the full strength of the jumbledness everywhere-

we only need (p, cp3 /2 |XIIZ|)-jumbledness for (X, Z)r and (p, cpV/ YJ|ZI)-jumbledness
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for (Y, Z)r. In Section 2.6, it will be useful to have a counting lemma with such non-

balanced jumbledness assumptions in order to optimize our result. To keep things

simple and clear, we will assume balanced jumbledness conditions here and remark

later on the changes needed when we wish to have optimal non-balanced ones.

2.3.2 Notation

In the proof of the counting lemmas we frequently encounter expressions such as

G(xi, x2 )G(x1, X 3 )G(x 2 , X 3 ) and their integrals. We introduce some compact notation

for such products and integrals. Note that if we are counting copies of H, we will

usually assign each vertex a of H to some vertex subset Xa and we will only be

interested in counting those embeddings where each vertex of H is mapped into the

vertex subset assigned to it. If U C V(H), a map U -+ V(G) or U -+ V(I) is called

compatible if each vertex of U gets mapped into the vertex set assigned to it. We can

usually assume without loss of generality that the vertex subsets Xa are disjoint for

different vertices of H, as we can always create a new multipartite graph with disjoint

vertex subsets Xa with the same H-embedding counts as the original graph.

If f is a symmetric function on pairs of vertices of G (actually we only care about

its values on Xa x Xb for ab C E(H)) and x: V(H) -+ V(G) is any compatible map

(we write x(a)= Xa), then we define

f(HIx):= 1 f(Xa,Xb).
abEE(H)

By taking the expectation as x varies uniformly over all compatible maps V(H) -+

V(G), we can define the value of a function on a graph.

f(H) := Ex [f (H I x)] = f (H I x) dx.

We shall always assume that the measure dx is the uniform probability measure on

compatible maps.

Following the above notation, the quantities that arise most frequently in our work
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are

F(H), p(H), G(H), q(H).

For unweighted graphs, we use G and F to denote the characteristic function of

the edge set of the graph, so that G(H) is the probability that a uniformly random

compatible map V(H) -+ V(G) is a graph homomorphism from H to G. For weighted

graphs, the value on the edges are the edge weights. For p(H) and q(H), we view

p(-, -) and q(-, -) as constant functions on each Xa x Xb, taking values Pab and qab, SO

that p(H) = labEE(H) Pab and q(H) = HabEE(H) qab. Since Pab only takes value p or

1 depending on whether ab is a sparse edge or a dense edge we have p(H) = pe(H")

where recall that HSP is the subgraph of H consisting of the sparse edges. For counting

lemmas, we are interested in comparing G(H) with q(H).

It will be useful to have some notation for the conditional sum of a function f
given that some vertices have been fixed. If U C V(H) and y: U -+ V(G) is any

compatible map, then

f (H I y):= Ex[f (H I x)Ix = y]= f f(H I y,z) dz,

where, in the integral, z varies uniformly over all compatible maps V(H) \ U -+

V(G), and the notation y, z denotes the compatible map V(H) -+ V(G) built from

combining y and z. Note that when U = 0, f (H I y) = f(H). When U = V(H), the

two definitions of f (H I y) agree. When U = {ai, ... , at}, we sometimes write y as

a1 - y1 , ... , at -+ y, so we can write f (H a, -+ y1 ,.. ., at -+ y).

Since we work with approximations frequently, it will be convenient if we introduce

some shorthand. If A, B, P are three quantities, we write

P
AB

CE

to mean that for every 0 > 0, we can find c, c > 0 of size at least polynomial in 0

(i.e., c, C= Q(O) as 0 -+ 0 for some r > 0) so that IA - BI < OP. Sometimes one of

c or c is omitted from the notation if 0 does not depend on the parameter. Note
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that the dependencies do not depend on the parameters p and q, but may depend

on the graphs to be embedded, e.g., H. For instance, the main counting lemma

(Theorem 2.1.12) can be phrased as

pe(H)
G(H) ~ q(H).

C'6

2.3.3 Counting graphs in F

We begin by giving a counting lemma in F, which is significantly easier than counting

in G. We remark that a similar counting lemma for F an (n, d, A) regular graph was

proven by Alon (see [86, Thm. 4.101).

Proposition 2.3.3. Assume Setup 2.3.1. If k > d(L(H"P))+2 then

jF(H) - p(H)I < ((1 + C)e(HsP) - 1) p(H).

The exact coefficient of p(H) in the bound is not important. Any bound of the

form cQ(1)p(H) suffices.

Dense edges play no role, so it suffices to consider the case when all edges of H are

sparse. We prove Proposition 2.3.3 by iteratively applying the following inequality.

Lemma 2.3.4. Let H be a graph with vertex set {1, ... , m}. Let P be a graph with

vertex subsets X1,... , X,. Let ab c E(H). Let H-ab denote H with the edge ab

removed. Let H-a,-b denote H with all edges incident to a or b removed. Assume that

F(Xa, Xb) is (p, y /IXal|Xb I)-jumbled. Let f: V(F) x V(F) -+ [0, 1] be any symmetric

function. Then

XEXa((X, Y) - p)f (Hab I a - x, b -+ y) dxdy ; 7y f(H-ab)f (H-a,b).

Proof. Let Ha,_ab denote the edges of H-ab incident to a, and let Hb,_ab be the edges

of H-ab incident to b. Since H-ab = Ha,-b W Ha,_a6 1 Hb,-ab, as a disjoint union of
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edges, for any compatible map x: V(H) -+ V(F) we have

f (H-a. I x) = f (H_.,_b I x) f (H,_ab I x) f (Hb,-ab I x) . (2.6)

In the following calculation, z varies uniformly over compatible maps V(H) \ {a, b} -+

V(F), x varies uniformly over Xa, and y varies uniformly over Xb. The first equal-

ity follows from (2.6) while the three inequalities follow, in order, from the triangle

inequality, the jumbledness condition, and the Cauchy-Schwarz inequality.

j (F(x, y) - p)f (Hab I a -+ x, b -+ y) dxdy

= f (Ha,_ z) j (F(x, y) - p)f (H.,a ab a -+ x, z) f (Hb,_ab I b -+ y, z) dxdydz

f (H-a,_b z) j (F(X, y) - p)f (Ha,_ab a -+ X, z) f (Hb,-ab b -+ y, z) dxdy dz

f (Ha,a z) T/f(Ha,_ab I a -+ x, z) dx\/f (Hb,_ab I b -+ y, z) dydz

= y f (Ha,-b I z) f (Haab I z) f (Hb,-a I z)dz

j f (Ha,_z) dz f (H-a,b I z) f (Ha,_ab z) f (Hb,_ab I z)dz

= 7 f(H_.,_b)f(H-ab).

Proof of Proposition 2.3.3. As remarked after the statement of the proposition, it

suffices to prove the result in the case when all edges of H are sparse. We induct on

the number of edges of H. If H has no edges, then F(H) = p(H) = 1. So assume

that H has at least one edge. Since k > j(d(L(H)) + 2), we can find an edge ab of

H such that degH(a) + degH(b) 5 d(L(H)) + 2 < 2k. Let Hab and Ha,_ be as in

Lemma 2.3.4. Since L(H) is (2k - 2)-degenerate, the line graph of any subgraph of
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H is also (2k - 2)-degenerate. By the induction hypothesis, we have

lF(H-ab) - P(H-ab)I ((1 + c)e(H)1 - 1)P(H-ab) and

IF(H-a,_b) - p(Ha,-b)I < ((1 1 C)e(H)-l - 1)p(Ha,_b).

The following identity allows us to "split off" the edge ab. It may be helpful to compare

this calculation with the telescoping identity in (2.4) (there we split off all the edges

of the triangle, one edge at a time, whereas here we only split off one edge). We have

F(H) - p(H) j F(x, y)F (H-ab I a -* x, b -+ y) dxdy - p -p(H-ab)

(r(x, y) - p)F (H-ab I a -+ x, b -+ y) dxdy

+ p - ( F(-H _ab) - P(H-ab))-

The second term on the right is bounded in absolute value by ((1 + C)e(H)-1 -1)p(H).

For the first term, by Lemma 2.3.4 and the induction hypothesis, we have

j (F(X, y) - P)F (H-ab I a - x, b -4 y) dxdy

< cpk VF(H-ab)F(H-a,-b) (27)

cpk(1 + c)e(H)-1 P(H-ab)P(H _a,-b)

< c(1 + C)e(H)-1p(H).

The last inequality is where we used 2k > degH(a) + degH(b). Combining the two

estimates gives the desired result. N

2.3.4 Counting partial embeddings into F

As outlined in Section 2.2, we need to count embeddings of H where some edges are

embedded into G (the straight edges in the figures) and some edges are embedded

into F (the wavy edges). We prove counting estimates for these embeddings here.

The main result of this section is summarized in the figure after Lemma 2.3.6. The
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proofs are almost identical to that of Proposition 2.3.3. We just need to be a little

more careful with the exponents on the jumbledness parameter.

First we consider the case where exactly one edge needs to be embedded into

F and the other edges are embedded into some subgraph of F. To state the result

requires a little notation. Suppose that H = H' U H" is an edge disjoint partition

of the graph H into two subgraphs H' and H". We define d(L(H', H")) to be the

smallest d such there is an ordering of the edges of H with the edges of H' occurring

before the edges of H" such that every edge e has at most d neighbors, that is, edges

containing either of the endpoints of e, which appear earlier in the ordering.

Lemma 2.3.5. Assume Setup 2.3.1. Let ab G E(H) and H-ab be the graph H with

d(L(H-P ab-P))+2
edge ab removed. Assume k > -'b, Let G be any weighted subgraph of2

F (i.e., 0 < G < F as functions). Let g denote the function that agrees with F on

Xa x Xb and with G everywhere else. Then

|g(H) - PabG(H-ab) I c(1 + c)e(HS)- 1p(H).

The lemma follows from essentially the same calculation as (2.7), except that we

take ab as our first edge to remove (this is why there is a stronger requirement on k)

and then use G < F.

Iterating the lemma, we obtain the following result where multiple edges need to

be embedded into F. It can be proved by iterating Lemma 2.3.5 or mimicking the

proof of Proposition 2.3.3. We include a figure illustrating the lemma.

Lemma 2.3.6. Assume Setup 2.3.1. Let H' be a subgraph of H. Assume k >

d(L(H'"P,(H\H')-P))+2. Let G be a weighted subgraph of F. Let g be a function that agrees2

with F on Xa x Xb when ab E E(H \ H') and with G otherwise. Then

|g(H) - p(H \ H')G(H')| ((1 + C)e(HSP) - 1) p(H).
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G(H')

2.3.5 Exceptional sets

This section contains a couple of lemmas about F that we will need later on. The

reader may choose to skip this section until the results are needed.

We begin with a standard estimate for the number of vertices in a jumbled graph

whose degrees deviate from the expected value. The proof follows immediately from

the definition of jumbledness.

Lemma 2.3.7. Let F be a (p,-y lXi IY)-jumbled graph between vertex subsets X

and Y. Let v: Y -+ [0, 1] and let > 0. If

UC {XEX

UC GX

or

j IF(x, y)v(y) dy > (1+ )pEv

J F(x, y)v(y) dy ; (1 - )pEv

then

IUI < 2

lXI - 2p2 Ev'

The next lemma says that restrictions of the count F(H) to small sets of vertices

or pairs of vertices yield small counts. This will be used in Section 2.4.2 to bound

the contributions from exceptional sets.

Lemma 2.3.8. Assume Setup 2.3.1 with k > d(L(HSP9)+2. Let x: V(H) -+ V(F) vary_2

uniformly over compatible maps. Let u: V(P) -+ [0, 1] be any function and write

u(x) = HGaV(H) U(Xa). Let E' be a weighted graph with the same vertices as 1 whose

edge set is supported on Xa x Xb for ab HP. Let H' be any graph with the same
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vertices as H. Then

JF (H I x) u(x)E'(H' I x) dx < ((1 + C)e(HP) _ 1 + ju(x)E' (H' I x) dx p(H).

Lemma 2.3.8 follows by showing that

J (F (H I x) - p(H)) u(x)E' (H' I x) dx 5 ((1 + C)e(H"P) - 1) p(H).

The proof is similar to that of Proposition 2.3.3. In the step analogous to (2.7), after

applying the jumbledness condition as our first inequality, we bound u and E' by 1

and then continue exactly the same way.

2.4 Counting in G

In this section we develop the counting lemma for subgraphs G of F, as outlined

in Section 2.2. The two key ingredients are doubling and densification, which are

discussed in Sections 2.4.1 and 2.4.2, respectively. Here is the common setup for this

section.

Setup 2.4.1. Assume Setup 2.3.1. We have some quantity e > 0. Let G be a

weighted subgraph of F. For every edge ab E E(H), assume that (Xa, Xb)G satisfies

DISC(qab, pab, E), where 0 < qab < Pab.

Unlike in Section 2.3, we do not make an effort to keep track of the unimportant

coefficients of p(H) in the error bounds, as it would be cumbersome to do so. Instead,

we use the r notation introduced in Section 2.3.2.

The goal of this section is to prove the following counting lemma. This is slightly

more general than Theorem 2.1.12 in that it allows H to have both sparse and dense

edges.

Theorem 2.4.2. Assume Setup 2.4.1 with k > min { (L(-P))+4 d(L(HP))+6. Then

p(H)
G(H ) ~ q(H).

c'E
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The requirement on k stated in Theorem 2.4.2 is not necessarily best possible.

The proof of the counting lemma will be by induction on the vertices of H, removing

one vertex at a time. A better bound on k can sometimes be obtained by tracking

the requirements on k at each step of the procedure, as explained in a tutorial in

Section 2.4.5.

2.4.1 Doubling

Doubling is a technique used to reduce the problem of counting embeddings of H in

G to the problem of counting embeddings of H with one vertex deleted.

If a E V(H), Hx 2 is the graph H with vertex a doubled. In the assignment of

vertices of Hax2 to vertex subsets of F, the new vertex a' is assigned to the same vertex

subset as a. Let Ha be the subgraph of H consisting of edges with a as an endpoint,

and let Ha,ax2 be Ha with a doubled. Let Ha be the subgraph of H consisting of

edges not having a as an endpoint. We refer to Figure 2-1 for an illustration.

Lemma 2.4.3. Assume Setup 2.4.1. Fix a vertex a C V(G). Let g be a function

that agrees with G on Xi x Xj whenever a E {i, j} and with F on Xi x Xj whenever

a {i, j}. Then

IG(H) - q(H)| < q(Ha) |G(H-a) - q(H-a)|

+ G(Ha)11 2 (g(Hax2 ) - 2q(Ha)g(H) + q(Ha)2(Ha))1/ 2 . (2.8)

Proof. Let y vary uniformly over compatible maps V(H) \{a} -+ V(G) where y(b) E

Xb for each b E V(H) \ {a}. We have

G(H) - q(H) = q( Ha)(G(Ha) - q(H-a)) + j (G (Ha I y) - q(Ha)) G (H a I y) dy.

It remains to bound the integral, which we can do using the Cauchy-Schwarz inequal-
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ity.

(J (G (Ha l y) - q(Ha)) G (H_. I y) dy)

< ( G (Ha I Y) dy) (J (G (Ha I y) - q(Ha))2 G (H-a I Y) dY

=G(H-a) J(G (Ha y) - q(Ha))2 G (H-a| y) dy

< G(Ha) j (G (Ha y) - q(Ha)) 2 F (Ha y) dy

- G(H-a) (g(Hax2 ) - 2q(Ha)g(H) + q(Ha) 2 F(H-a))-

U

Note that we did not need to assume the full strength of Setup 2.4.1 in the above

lemma, since we did not use anything about the jumbledness of F or the discrepancy

in G in its proof. But these assumptions are useful in what comes next.

Using Proposition 2.3.3 and Lemma 2.3.6, we know that under appropriate hy-

potheses, we have

p(Hax 2 )
g(Hx2 ) ^ p(Ha)G(Ha,ax2 ),

p(H)

g(H) ~~ p(H-a)G(Ha) (2.9)
C

p(H-.)
and F(Ha) p(H-a).

C

If we can show that

p(Haax2)
G(Ha,ax2 ) ~ q(H.,ax2)

C,E

p(H0 )
and G(Ha) ~ q(Ha),

C,E

then the rightmost term in (2.8) is ~H,E') 0, which would reduce the problem to showing

that G(Ha) ~~(H-a) q(Ha). This reduction step is spelled out below. See Figure 2-5

for an illustration.
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G(H)

G(H-a) G(Haax2) G(Ha)

Figure 2-5: The doubling reduction; cf. Figure 2-1 and (2.9).

Lemma 2.4.4 (Doubling). Assume Setup 2.4.1. Let a E V(H). Suppose that k >
d(L(H,'PX 2,H?_,))+2

2 Suppose that

p(H-a) p(Ha) p(Haax2)
G(H-a) q(H-a), G(Ha) q(Ha) and G(Ha,ax2) q(Ha,ax2 ).C,E CE CE

Then
p(H)

G(H) q(H).
Ce

Remark. We do not always need the full strength of Setup 2.4.1 (although it is conve-

nient to state it as such). For example, when H is a triangle with vertices {1, 2, 3}, H 1

is a single edge, so we do not need discrepancy on (X2 , X3)G to obtain G(Ha) ~p q23 .

In particular, our approach gives the triangle counting lemma in the form stated in

Kohayakawa et al. [801, where discrepancy is assumed for only two of the three pairs

of vertex subsets of G.

2.4.2 Densification

Densification is the technique that allows us to transform a subdivided edge of H into

a single dense edge, as summarized in the figure below. This section also contains a

counting lemma for trees (Proposition 2.4.9).
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We introduce the following notation for the density analogues of degree and code-

gree. If G (and similarly IF) is a weighted graph with vertex subsets X, Y, Z, then for

x E X and z E Z, we write

G(x, Y) = J G(x, y) dy,

and G(x, Y, z) = J G(x, y)G(y, z) dy.

Now we state the goal of this section.

Lemma 2.4.5 (Densification). Assume Setup 2.4.1 with k > d(L(H))2 Let 1,23

be vertices in H such that 1 and 3 are the only neighbors of 2 in H, and 13 V E(H).

Let H' denote the graph obtained from H by deleting edges 12 and 23 and adding edge

13. Construct a weighted graph G' on the same set of vertices of G as follows.

o For each ab c E(H') \ {13}, set G'(Xa, Xb) = G(Xa, Xb) for all (Xa, Xb) E Xa X Xb.

& On X1 x X3, define G' by

1
G'(x,x3) = min {G(x1, X2 , X3 ), 2 P12P23} . (2.10)

2 P12P23

Also, set q - qab for all ab E E(H') \ {13}, and set q' 3 = |pg . Then (X1, X 3 )G'

satisfies DISC(q' 3, 1, 2e + 18c) and

IG(H) - 2P12P23G'(H')| < ((1 + c)e(H"P) - I + 26c2)p(H).

Note that q(H) = 2P12P23 q'(H'). So we obtain the following reduction step as a

corollary (here p(H') is defined to be p(H- 2 ), where H-2 denotes H with edges 12

and 23 deleted).
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Corollary 2.4.6. Continuing with Lemma 2.4.5. If

p( H') H)G'( H') ~, q'H'
C,6

then
p(H)

G(H) ~ q(H).
CE

Note that if in place of (2.10), we had instead defined

G"(x1, x 2 ) = (2p 12P23) 1G(xi, X 2 , x3),

then G(H) = 2P12P23G"(H') (to see this, when evaluating the integral for G(H),

integrate out the variable x 2 first). Since G" > G' everywhere, we have

2p12P23G'(H') < G(H). (2.11)

Lemma 2.4.5 claims that the gap in (2.11) is small. The reason for introducing the

cutoff in (2.10) is so that G' < 1 on X1 x X3 , so that 13 becomes a dense edge for G'.

The proof of Lemma 2.4.5 consists of the following steps:

1. Show that the weighted graph on X1 x X3 with weights G(x1, X 2 , x 3) satisfies

discrepancy.

2. Show that the capping of weights has negligible effect on discrepancy.

3. Show that the capping of weights has negligible effect on the H-count.

Steps 2 and 3 are done by bounding the contribution from pairs of vertices in

X 1 x X3 which have too high co-degree with X2 in F.

We shall focus on the more difficult case when both edges 12 and 23 are sparse.

The case when at least one of the two edges is dense is analogous and much easier.

Let us start with a warm-up by showing how to do step 1 for the latter dense case.

We shall omit the rest of the details in this case.
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Lemma 2.4.7. Let 0 < q1  pi 1, 0 < q2 < 1, 6 > 0. Let G be a weighted graph

with vertex subsets X, Y, Z, such that (X, Y)G satisfies DISC(q1,p1, E) and (Y, Z)G

satisfies DISC(q 2 , 1, E). Then the graph G' on (X, Z) defined by G'(x, z) = G(x, Y, z)

satisfies DISC(qiq 2 ,p1 , 2).

Proof. Let u: X -* [0,1] and w: Z -* [0, 1] be arbitrary functions. In the following

integrals, let x, y and z vary uniformly over X, Y and Z, respectively. We have

J u(x)(G(x,Y, z) - q1 q2 )w(z) dxdz

= u(x)(G(x, y)G(y, z) - qiq2 )w(z) dxdydz

= u(x)(G(x, y) - qi)G(y, z)w(z) dxdydz

+ qi j u(x)(G(y, z) - q2)w(z) dxdydz. (2.12)

Each of the two integrals in the last sum is bounded by cp1 in absolute value by the

discrepancy hypotheses. Therefore (X, Z)G' satisfies DISC(qq 2 , pi, 2c). M

The next lemma is step 1 for the sparse case.

Lemma 2.4.8. Let c,p,e E (0,1] and q1 ,q 2 E [0,p]. Let F be a graph with vertex

subsets X, Y, Z and G a weighted subgraph of F. Suppose that

* (X, Y)r is (p, cp3 / 2 /Xi IYI)-jumbled and (X, Y)G satisfies DISC(q 1 , p, e); and

* (Y, Z)r is (p, cp/ 2 /YI ZI)-jumbled and (Y, Z)G satisfies DISC(q 2 ,p, e).

Then the graph G' on (X, Z) defined by G'(x, z) = G(x, Y, z) satisfies DISC(q1 q2 , p2 , 3E+

6c).

Remark. By unraveling the proof of Lemma 2.3.8, we see that the exponent of p in

the jumbledness of (X, Y)r can be relaxed from to 1.2

Proof. We begin the proof the same way as Lemma 2.4.7. In (2.12), the second term

is bounded in absolute value by q1ep ep 2 . We need to do more work to bound the

first integral.
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Define v: Y -+ [0, 1] by

v(y) = G(y, z)w(z) dz.

So the first integral in (2.12), the quantity we need to bound, equals

j u(x)(G(x, y) - qi)v(y) dxdy. (2.13)

If we apply discrepancy immediately, we get a bound of Ep, which is not small enough,

as we need a bound on the order of o(p2 ). The key observation is that v(y) is bounded

above by 2p on most of Y. Indeed, let

Y' ={y E Y |F(y,Z) > 2p}.

By Lemma 2.3.7 we have IY' c2p Y. Since vly\y, is bounded above by 2p, we

can apply discrepancy on (X, Y)G with the functions u and 1 ly\y, to obtain

j'u(x)(G(x, y) - ql)v(y)ly\y, dxdy < 2Ep2

In the following calculation, the first inequality follows from the triangle inequality

and the second inequality follows from expanding v(y) and using C < F and u, w < 1.

j u(x)(G(x, y) - q)v(y)1y,(y) ddy

<1 u(x)G(x,y)v(y)1y,(y) dxdy + qj u(x)v(y)1y,(y) dxdy

F(x, y)1y,(y)F(y, z) dxdydz + qi ly,(y)F(y, z) dydz (2.14)

Now we apply Lemma 2.3.8 (with the u in the lemma being ly, on Y and 1 on X

and Z, and the H' in the lemma being the empty graph so that E'(H' I x) = 1 for

54



all x). We get

F(x,y)P(y, z)ly,(y) dxdydz < (1 + c) 2 - 1 + 11ZI p 2 < 4cp2

and

,f F(y, z)ly,(y) dydz<i (1 +c) - +1 + p < 2cp.

It follows that (2.14) is bounded by 4cp2 + 2cpq1  6cp2 . Therefore, (2.13) is at most

(2c + 6c)p2 in absolute value. Recall that the second integral in (2.12) was bounded

by Ep2 . The result follows from combining these two estimates. U

The technique used in Lemma 2.4.8 also allows us to count trees in G.

Proposition 2.4.9. Assume Setup 2.4.1 with H a tree and k > A(H5 P)+1. Then

p(H)
G(H )f~ q(H).

Cf

In fact, it can be shown that the error has the form

IG(H) -q(H)| I MH(c+e)p(H)

for some real number MH > 0 depending on H.

To prove Proposition 2.4.9, we formulate a weighted version and induct on the

number of edges. The weighted version is stated below.

Lemma 2.4.10. Assume the same setup as in Proposition 2.4.9. Let u: V(G) -+

[0, 1] be any function. Let x vary uniformly over all compatible maps V (H) -* V(G).

Write u(x) = faEV(H) U(Xa). Then,

f p(H)dx

G(H I x) u(x) dx % q (H) u (x) dx.
'Jx J' x

To prove Lemma 2.4.10, we remove one leaf of H at a time and use the technique in

the proof of Lemma 2.4.8 to transfer the weight of the leaf to its unique neighboring
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vertex and use Lemma 2.3.8 to bound the contributions of the vertices with large

degrees in F. We omit the details.

Continuing with the proof of densification, the following estimate is needed for

steps 2 and 3.

Lemma 2.4.11. Let r be a graph with vertex subsets X, Y, Z, such that (X, Y)p is

(p,cp /1X| Y|)-jumbled and (Y, Z)r is (p,cp3/ 2 |Y|| IZ|)-jumbled. Let

E' {(x, z) c X x Z I F (x, Y, z) > 2p2}

Then IE'| 26c2 IX| |Z.

Proof. Let

X'= {x E X l(x, Y) -p > }.

Then, by Lemma 2.3.7, JX'J < 8W 2XI. For every x E X, let

Z' = {z C Z F(XY,z) > 2p2 }.

For x E X \ X', we have, again by Lemma 2.3.7, that IZ'I < 18c2 IZ. The result

follows by noting that E' C (X' x Z) U {(x, z) I X E X \ X', z E Z'} U

The following lemma is step 2 in the program.

Lemma 2.4.12. Let c,e,p G (0,1] and q1 ,q 2 E [0,p]. Let F be a graph with vertex

subsets X, Y, Z, and G a weighted subgraph of F. Suppose that

* (X,Y)r is (p,cp /|X| IYI)-jumbled and (X,Y)G satisfies DISC(q1,p, E); and

* (Y, Z)r is (p, cp3/2 /Y|I I|Z)-jumbled and (Y, Z)G satisfies DISC(q 2,p, e).

Then the graph G' on (X, Z) defined by G'(x, z) = min {G(x, Y, z), 2p2} satisfies

DISC(qq2, p
2, 3e + 35c).
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Proof. Let u: X -+ [0, 1] and w: Z -+ [0, 1] be any functions. In the following

integrals, x, y and z vary uniformly over X, Y and Z, respectively. We have

j (G'(x, z) - qlq2 )u(x)w(z) dxdz

= f (G(x, Y, z) - qlq2 )u(x)w(z) dxdz - (G(x, Y, z) - G'(x, z))u(x)w(z) dxdz.

The first integral on the right-hand side can be bounded in absolute value by (3c+6c)p 2

by Lemma 2.4.8. For the second integral, let E' = {(x, z) E X x Z I F(x, Y, z) > 2p2

We have

0 < j (G(x, Y, z) - G'(x, z))u(x)w(z) dxdz

J~,x,Yz)E~~)dd
I G ,(x, Y)(, z) dxdz

X''2

( (1 +,c)2 - + px A)2

29cp2

by Lemmas 2.3.8 and 2.4.11. The result follows by combining the estimates. N

Finally we prove step 3 in the program, thereby completing the proof of densifi-

cation.

Proof of Lemma 2.4.5. We prove the result when both edges 12 and 23 are sparse.

When at least one of 12 and 23 is dense, the proof is analogous and easier.

Lemma 2.4.12 implies that (X1,X3 )G' satisfies DISC(q1 3 , 2, 3e + 35c), and hence

it must also satisfy DISC(q13 , 1, 2c + 18c). Let

E' = {(x1, x3) I F(x1 , X2 , x 3 ) > 2p12P23j}

57



We have IE'l < 26c2 X11 1X31 by Lemma 2.4.11. Let

E" = {(x 1 , x 3) I G(xi, X2 , X 3) > 2 P12P23}

So E" is the set of all (x 1 , X 3 ) for which we applied the cap in (2.10) when constructing

G'. Since G IF, we have E" C E', so IE"I < IE' 26c 2 X1| 1X31.

Recall the observation (2.11) that G(H) > 2p1 2P23 G'(H'). The gap in the inequal-

ity comes from the cutoffs (2.10) of weights on edges (X 1 , x 3 ) E E". Let H-2 denote

H with edges 12 and 23 deleted. Let x- 2 : V(H) \ {2} -+ V(f), x: V(H) -+ V(F)

vary uniformly over all compatible maps. We have

0 < G(H) - 2P12P23G'(H')

= I G (H-2 I x- 2 ) (G(xi, X2 , X 3 ) - 2P12P23)1E" (X1, X 3 ) dX-2
x-2

< F (H- 2 I X- 2 ) r(xi, X2, X 3 )1E"(X1, X 3 ) dx-2
x-2

j (H I X) 1E"(X1, X3) dx

< ((1 + C)e(H"P) - 1 " IX ) p(H)

((1 + c)e(HsP) - 1 + 26c 2 ) p(H)

where the third inequality is by Lemma 2.3.8. N

2.4.3 Counting C4

With the tools of doubling and densification, we are now ready to count embeddings

in G. We start by showing how to count C4, as it is an important yet tricky step.

Proposition 2.4.13. Assume Setup 2.4.1 with H = C4 and k > 2. Then

IG(C4) - q(C4)| 100(c + E) p (C4).

The constant 100 is unimportant. It can be obtained by unraveling the calcula-
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tions. We omit the details.

Figure 2-6: The proof that G(C4)~r-.0 q(C4). The vertical arrows correspond to den-
sification, doubling the top vertex and densification, respectively.

Proposition 2.4.13 follows from repeated applications of doubling (Lemma 2.4.4)

and densification (Corollary 2.4.6). The chain of implications is summarized in Fig-

ure -2-6 in the case when all four edges of C4 are sparse (the other cases are easier).

III'H

In the figure, each graph represents a claim of the form G(H)~fCEH) q(H). The sparse

and dense edges are distinguished by thickness. The claim for the dense triangle fol-

lows from the counting lemma for dense graphs (Proposition 2.1.8) and the claim for

the rightmost graph follows from Lemma 2.4.7.

2.4.4 Finishing the proof of the counting lemma

Given a graph H, we can use the doubling lemma, Lemma 2.4.4, to reduce the problem

of counting H in G to the problem of counting H_,, in G, where H_, is H with some

vertex a deleted, provided we can also count H,, and H,,x,2. Suppose a has degree t

in H and degree t' in H(. The graph Hv is isomorphic to some Kr. Since K is
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a tree, we can count copies using Proposition 2.4.9, provided that the exponent of p

in the jumbledness of 1' satisfies k > 9' . The following lemma shows that we can

count embeddings of Ha,ax 2 as well.

Lemma 2.4.14. Assume Setup 2.4.1 where H = K2 ,t with vertices {ai, a2 ; b1 , ... bt}.

Assume that the edges aibj are sparse for 1 < j < t' and dense for j > t'. If k> t'+2,

then
p(H)

G(H) P q(H).
C,E

Proof. When t' = 0, all edges of H are dense, so the result follows from the dense

counting lemma. So assume t' > 1. First we apply densification as follows:

When t' = 1, we get a dense graph so we are done. Otherwise, the result follows by

induction using doubling as shown below, where we use Propositions 2.4.13 and 2.4.9

to count C4 and K1 ,2 , respectively.

Once we can count Ha and Ha,ax2, we obtain the following reduction result via

doubling.

Lemma 2.4.15. Assume Setup 2.4.1. Let a be a vertex of H. If k d 2LH ,H ))+2
2

then
p(H)

G(H) ~ q(Ha)G(H-a)-
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The proof of the counting lemma follows once we keep track of the requirements

on k.

Proof of Theorem 2.4.2. When H has no sparse edges, the result follows from the

dense counting lemma (Proposition 2.1.8). Otherwise, using Lemma 2.4.15, it remains

to show that if k > min { A(L(P))+4 d(L(H-P))+6 }, then there exists some vertex a of H
d(L(HSPax2 HSP)) 2

satisfying k > a 2 Actually, the hypothesis on k is strong enough that

any a will do. Indeed, we have A(L(HSP)) + 2 > A(L(H"Px 2)) d(L(H'Pax2, Hz))

since doubling a increases the degree of every vertex by at most 1. We also have

d(L(HSP)) d(L(HaPax2, HP)) - 4 since every edge in HsP shares an endpoint with

at most 4 edges in Haax2.

2.4.5 Tutorial: determining jumbledness requirements

The jumbledness requirements stated in our counting lemmas are often not the best

that come out of our proofs. We had to make a tradeoff between strength and

simplicity while formulating the results. In this section, we give a short tutorial on

finding the jumbledness requirements needed for our counting lemma to work for

any particular graph H. These fine-tuned bounds can be extracted from a careful

examination of our proofs, with no new ideas introduced in this section.

We work in a more general setting where we allow non-balanced jumbledness

conditions between vertex subsets of F. This will arise naturallly in Section 2.6 when

we prove a one-sided counting lemma.

Setup 2.4.16. Let F be a graph with vertex subsets X1,... , Xm. Let p, c E (0, 11.

Let H be a graph with vertex set {1, ... , m}, with vertex a assigned to Xa. For every

edge ab in H, one of the following two holds:

* (Xa, Xb)p is (p, cpka IXal IXb)-jumbled for some kab > 1, in which case we set

Pab = p and say that ab is a sparse edge, or

o (Xa, Xb)r is a complete bipartite graph, in which case we set Pab = 1 and say

that ab is a dense edge.
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Let HSP denote the subgraph of H consisting of sparse edges.

Let e > 0. Let G be a weighted subgraph of F. For every edge ab E E(H), assume

that (Xa, Xb)G satisfies DISC(qab, pab, c), where 0 < qab 5 Pab.

In the figures in this section, we label the edges by the lower bounds on kab that

are sufficient for the two-sided counting lemma to hold. For instance, the figure below

shows the jumbledness conditions that are sufficient for the triangle counting lemma1 ,

namely kab > 3, kbe 2, kac > .

c

- 2

3 b

Although we are primarily interested in embeddings of H into G, we need to consider

partial embeddings where some of the edges of H are allowed to embed into F. So we

encounter three types of edges of H, summarized in Table 2.2. (Note that for dense

edges ab, (Xa, Xb)r is a complete bipartite graph, so such embeddings are trivial and

ab can be ignored.)

Table 2.2: Types of edges in H.

Figure Name Description

-'- Jumbled edge An edge to be embedded in (Xa, Xb)r
with Pab = p and kab > K.

Dense edge An edge to be embedded in (Xa, Xb)G
with Pab = 1.

Sparse edge An edge to be embedded in (Xa, Xb)G

with Pab =p and kab > K-

Our counting lemma is proved through a number of reduction procedures. At each

step, we transform H into one or more other graphs H'. At the end of the reduction

procedure, we should arrive at a graph which only has dense edges. To determine the

'As mentioned in the remark after Lemma 2.4.4, we do not actually need DISC on (Xa, Xb)G,
since edge density is enough. We do not dwell on this point in this section and instead focus on
jumbledness requirements.
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jumbledness conditions required to count some H, we perform these reduction steps

and keep track of the requirements at each step. We explain how to do this for each

reduction procedure.

Removing a jumbled edge. To remove a jumbled edge ab from H, we need kab to

be at least the average of the sparse degrees (i.e., counting both sparse and jumbled

edges) at the endpoints of ab, i.e., kab > 1(degH-P(a) + degSP (b)). See Lemma 2.3.5.

For example, kab is sufficient to remove the edge ab in the graph below.

22

a b

By removing jumbled edges one at a time, we can find conditions that are sufficient

for counting embeddings into F (Proposition 2.3.3). The following figure shows how

this is done for a 4-cycle.

1 -3/2 q 3/2 F 3 / 2 -

1 3/2 < 1 3/2

Doubling The figure below illustrates doubling. If the jumbledness hypotheses are

sufficient to count the two graphs on the right, then they are sufficient to count the

original graph. The first graph is produced by deleting all edges with a as an endpoint,

and the second graph is produced by doubling a and then, for all edges not adjacent

to a, deleting the dense edges and converting sparse edges to jumbled ones.

\av .J
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Densification To determine the jumbledness needed to perform densification, delete

all dense edges, transform all sparse edges into jumbled edges, and use the earlier

method to determine the jumbledness required to count embeddings into F. For ex-

ample, the jumbledness on the left figure below shows the requirements on C4 needed

to perform the densification step. It may be the case that even stronger hypotheses

are needed to count the new graph (although for this example this is not the case).

T3/2-

1 3/2 <(---

Trees To determine the jumbledness needed to count some tree H, delete all dense

edges in H, transform all sparse edges into jumbled edges and use the earlier method,

removing one leaf at a time to determine the jumbledness required to count embed-

dings into F (Proposition 2.4.9).

Example 2.4.17 (C4). Let us check that the labeling of C4 in the densification

paragraph gives sufficient jumbledness to count C4. It remains to check that the

jumbledness hypotheses are sufficient to count the triangle with a single edge. We

can double the top vertex so that it remains to check the first graph below (the other

graph produced from doubling is a single edge, which is trivial to count). We can

remove the jumbled edge, and then perform densification to get a dense triangle,

which we know how to count.

22

Example 2.4.18 (K3 ). The following diagram illustrates the process of checking

sufficient jumbledness hypotheses to count triangles (again, the first graph resulting

from doubling is a single edge and is thus omitted from the figure). The sufficiency
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for C4 follows from the previous example.

3A

2 2

3

3M
J 3,

Example 2.4.19 (K2,t). The following diagram shows sufficient jumbledness to count

K2 ,4 . The same pattern holds for K2 ,t. The reduction procedure was given in the proof

of Lemma 2.4.14. First we perform densification to the two leftmost edges, and then

apply doubling to the remaining middle vertices in order from left to right.

2 3

>0

2 2-

1A3 -

2 223

\ 2
2
3

2 2

2-2-2

Example 2.4.20 (K1 ,2 ,2 ). The following diagram shows sufficient jumbledness to

count K1 ,2 ,2 . The edge labels for the graphs on the right are inherited from the graph

on the left and are omitted from the figure to avoid clutter. This example will be
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used in the next section on inheriting regularity.

3

- 4 7 3

2.5 Inheriting regularity

Regularity is inherited on large subsets, in the sense that if (X, Y)G satisfies DISC(q, 1, E),

then for any U C X and V C Y, the induced pair (U, V)G satisfies DISC(q, 1, E') with

' = 1-vc. This is a trivial consequence of the definition of discrepancy, and the

change in c comes from rescaling the measures dx and dy after restricting the uniform

distribution to a subset. The loss in E is a constant factor as long as ILTI and iVi are

bounded from below. So if G is a dense tripartite graph with vertex subsets X, Y, Z,

with each pair being dense and regular, then we expect that for most vertices z E Z,

its neighborhoods Nx(z) and Ny(z) are large, and hence they induce regular pairs

with only a constant factor loss in the discrepancy parameter E.

The above argument does not hold in sparse pseudorandom graphs. It is still true

that if (X, Y)G satisfies DISC(q, p, E) then for any U C X and V C Y the induced pair

(U, V)G satisfies DISC(q, p, E') with E' = e. However, in the tripartite setup from

the previous paragraph, we expect most Nx(z) to have size on the order of p lX1.

So the naive approach shows that most z E Z induce a bipartite graph satisfying

DISC(q,p, c') where c' is on the order of :. This is undesirable, as we do not want 6

to depend on p.

It turns out that for most z E Z, the bipartite graph induced by the neighborhoods

satisfies DISC(q, p, E') for some E' depending on c but not p. In this section we prove

66



this fact using the counting lemma developed earlier in the paper. We recall the

statement from the introduction.

Proposition 2.1.13 For any a > 0, { > 0 and e' > 0, there exists c > 0 and f > 0

of size at least polynomial in a, , e' such that the following holds.

Let p E (0, 1] and qxy, qxz, qyz E [ap,p]. Let F be a tripartite graph with vertex

subsets X, Y and Z and G be a subgraph of IF. Suppose that

* (X, Y)r is (p, cp4  lX |IYI)-jumbled and (X, Y)G satisfies DISC(qxy, p, c); and

* (X, Z)r is (p,cp2 I/|X|IZ|)-jumbled and (X, Z)G satisfies DISC(qxz,p, e); and

* (Y Z)r is (p, cp3 /IYIIZI)-jumbled and (Y, Z)G satisfies DISC(qyz,p, E).

Then at least (1-i) IZI vertices z G Z have the property that |Nx(z)l > (1- )qxz lX,

|Ny(z)| > (1 - )qyz JYj, and (Nx(z), Ny(z))G satisfies DISC(qxy,p,e').

The idea of the proof is to first show that a bound on the K2,2 count implies DISC

and then to use the K,2,2 count to bound the K2 ,2 count between neighborhoods.

We also state a version where only one side gets smaller. While the previous

proposition is sufficient for embedding cliques, this second version will be needed for

embedding general graphs H.

Proposition 2.5.1. For any a > 0, { > 0 and e' > 0, there exists c > 0 and E > 0

of size at least polynomial in a, , E' such that the following holds.

Let p E (0, 1] and qxy, qxz G [ap, p]. Let F be a tripartite graph with vertex subsets

X, Y and Z and G be a subgraph of F. Suppose that

* (X, Y)r is (p, cp5/ 2 l|Xi |YI)-jumbled and (X, Y)G satisfies DISC(qxy,p,,e); and

* (X, Z)r is (p, cp3 / 2 lXi IZ|)-jumbled and (X, Z)G satisfies DISC(qxz, p, E).

Then at least (1 - ) IZI vertices z C Z have the property that |Nx(z)i ;> (1 -- )qxz IX|

and (Nx(z), Y)G satisfies DISC(qxy, p, e').
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2.5.1 C4 implies DISC

From our counting lemma we already know that if G is a subgraph of a sufficiently

jumbled graph with vertex subsets X and Y such that (X, Y)G satisfies DISC(q, p, e),

then the number of K 2 ,2 in G across X and Y is roughly q4 IX1 2 1y12 . In this section,

we show that the converse is true, that the K 2 ,2 count implies discrepancy, even

without any jumbledness hypotheses.

In what follows, for any function f: X x Y -+ R, we write

S t

f(Ks,t) = J ff f(xi, yj) dxi ... dxdy 1 ... dyt.
y1,...,ytEY i=1 j=1

The following lemma shows that a bound on the "de-meaned" C4 -count implies

discrepancy.

Lemma 2.5.2. Let G be a bipartite graph between vertex sets X and Y. Let 0 < q <

p < 1 and e > 0. Define f : X x Y -+ R by f(x, y) = G(x, y) - q. If f(K2,2 ) E4p4

then (X, Y)G satisfies DISC(q, p, e).

Proof. Let u: X -+ [0, 1] and v: Y -+ [0, 1] be any functions. Applying the Cauchy-

Schwarz inequality twice, we have

(L- JYY f(x, y)u(x)v(y) dydx)

(JEX (f f (x, y)u(x)v(y) dy) dx
JxX \zyEY

(I~ u(x)2 (j f(x, y)v(y) dy) dx

< ( JX EX f (x,y)v(y) dy) dx)

-(Jx~c j f(x, y)f(x, y')v(y)v(y') dydy'dx

<j ~ (J f (x,y)f(x, y')v(y)v(y') dx dydy'
fy, y'EY (JVEX )

68



= j,y'EY
V(Y) 2 V~

jy,y'EY (XEX

Syy'EY JXx'EX

f (K2,2 )

<_ e4s4.

Thus

JXEX .YEY

Hence (X, Y)G satisfies DISC(

2

yI)2 (LX f(x, y)f(x, y') dx) dydy'

f(x, y)f(x, y') dx) dydy'

f(x, y)f(x, y')f (x', y)f(x', y') dxdx'dydy'

(G(x, y) - q)u(x)v(y) dydx ep.

U

Lemma 2.5.3. Let G be a bipartite graph between vertex sets X and Y. Let 0 <

q <p 1 ande >0. LetUCX andV CY. Letp= 11anduv = . Define

f : X x Y -+ R by f(x, y) = (G(x, y) - q)1U(x)1 V(y). If f(K 2,2) E4p4j 2 V 2, then

(U, V)G satisfies DISC(q, p, E).

Proof. This lemma is equivalent to Lemma 2.5.2 after appropriate rescaling of the

measures dx and dy. U

The above lemmas are sufficient for proving inheritance of regularity, so that the

reader may now skip to the next subsection. The rest of this subsection contains a

proof that an upper bound on the actual C4 count implies discrepancy, a result of

independent interest which is discussed further in Section 2.9.2 on relative quasiran-

domness.

Proposition 2.5.4. Let G be a bipartite graph between vertex sets X and Y. Let

0 < q < 1 and e > 0. Suppose G(K1,1 ) ;> (1 - e)q and G(K2,2 ) (1 + E) 4 q4 , then

(X, Y)G satisfies DISC(q, q, 4c1/36).

The hypotheses in Proposition 2.5.4 actually imply two-sided bounds on G(K1,1),

G(K, 2 ), G(K2,1), and G(K2,2 ), by the following lemma.
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Lemma 2.5.5. Let G be a bipartite graph between vertex sets X and Y and f : X x

Y -+ R be any function. Then f(K, 1 )4 < f(K, 2 ) 2 < f(K2 ,2 ).

Proof. The result follows from two applications of the Cauchy-Schwarz inequality.

f (K2,2 ) =
jy'EY (J X'EX

(yEYa j(x

f(x, Y)f(x, y')f(x', y)f(x', y') dxdx'dydy'

f(x, y)f(x, Y') dx) dydy'

)2

f (X, yOf(X, y') dx dydy')

= f (KI,2 )2

x YEYf (X, Y) dy) dx)

(JxeX JyEY

= f(K1,1 )4.

f(x,y) dy dx)

A bound on K1 ,2 is a second moment bound on the degree distribution, so we can

bound the number of vertices of low degree using Chebyshev's inequality, as done in

the next lemma. Recall the notation G(x, S) f G(x, y)is(y) dy for S C Y as

the normalized degree.

Lemma 2.5.6. Let

q 1 and E > 0.

X' ={x E X | G(x,

G be a bipartite graph between vertex sets X and Y. Let 0 <

Suppose G(K1, 1 ) > (1 - e)q and G(K1 ,2) < (1 + E) 2q 2 . Let

Y) < (1 - 2c1/3)q}. Then IX'| < 2E'/'| Xi.
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Proof. We have

'XI'
'xI (2e1/3 q) 2 < (G(x, Y) - q) 2 dx

= G(K1 ,2) - 2qG(KIj) + q2

S(1+ e) 2q 2 - 2(1 - e)q2 + q2

< 5eq2

Thus IX'I %1/3 XI.

We write

G(x, y)G(x', y)G(x', y') dxdx'dydy'.
yVy EY

The next lemma proves a lower bound on G (s:) by discarding vertices of low degree.

Lemma 2.5.7. Let G be a bipartite graph between vertex sets X and Y. Let 0 < q < 1

and e > 0. Suppose G(KI, 1 ) > (1-e)q, G(K1 ,2 ) (1+e) 2q 2 and G(K2,1) 2 (1 e) 22 .

Then G (~ ) (1 - 1401/9)q3

Proof. Let

X' = {x E X I G(x, Y) < (1 - 2E1/3

Let G' denote the subgraph of G where we remove all edges with an endpoint in X'.

Then G'(K2,1) G(K2,1) (1q+ ) 2q2 and, by Lemma 2.5.6

G'(K1 ,1) > 1\I (1 - 2e 1/3)q (1 - 2e 1/ 3) 2q (1 - 4E1/ 3 )q.

Let

U

Y' = {y c Y I G(X \ X', y) < (1 - 4e 1/9)q}.

So |Y'| < 4c1/9 by applying Lemma 2.5.6 again. Restricting to paths with vertices in
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X\X',Y \Y', X \ X', Y, we find that

G ('2*) min IG(X \ X',I y) minl G(x,Y )

> (1 - 4e/9)3(1 - 2e 1/3 )q 3

(1 - 14 1/9)q 3

Proof of Proposition 2.5.4. Using Lemma 2.5.5, we have

G(K, 2 ) < (1 + e) 2q 2, G(K2 ,1) (1 + e)2 q2 , and G(K1,1) 5 (1 + e)q.

Let f(x, y) = G(x, y) - q. Applying Lemma 2.5.7, we have

f(K2,2 ) = G(K2,2 ) - 4qG ('Z) + 2q2 G(K1,1) 2 + 4q2 G(K1,2) - 4q3 G(K1 ,1 ) + q

(1 + e) 4 q4 - 4(1 - 14'1/9)q 4 + 2(1 + E)2 q4 + 4(1 + )2q4 - 4(1 - c)q4 + q4

< 100El/ 9q4 .

Thus, by Lemma 2.5.2, (X, Y)G satisfies DISC(q, q, 4c1/36 N

The arguments here can be modified to show that a bound on K1 ,2 implies one-

sided counting for trees. We state the generalization and omit the proof.

Proposition 2.5.8. Let H be a tree on vertices {1, 2,... , m}. For every 6 > 0 there

exists e > 0 of size polynomial in 0 so that the following holds.

Let G be a weighted graph with vertex subsets X 1,... , X.. For every edge ab of

H, assume there is some qab G [0, 1] so that the bipartite graph (Xa, Xb)G satisfies

G(K1 ,1) (1 - e)qab, G(Ki,2 ) (1 ,E)2q 2 and G(K2,1) (1 + E)2q b. Then G(H)

(1 - 6)q(H).

2.5.2 K1,2,2 implies inheritance

We now prove Propositions 2.1.13 and 2.5.1 using Lemma 2.5.3.
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Proof of Proposition 2.1.13. First we show that only a small fraction of vertices in

Z have very few neighbors in X and Y. Let Z1 be the set of all vertices in Z with

fewer than (1 - )qxz IXI neighbors in X. Applying discrepancy to (X, Z1 ) yields

$qxz Jzi Ep IZI. If we assume that E < !ce 2 , we have ZiI 'P IZI I IZI.

Similarly let Z2 be the set of all vertices in Z with fewer than (1 - )qyz |Y| neighbors

in Y, so that IZ 2 1 I Z| as well.

Define f : V(G) x V(G) -+ R to be a function which agrees with G on pairs (X, Z)

and (Y, Z), and agrees with G - qxy on (X, Y). Let us assign each vertex of K2 ,2 ,1

to one of {X, Y, Z} as follows (two vertices are assigned to each of X and Y).

X Y

z

The stated jumbledness hypotheses suffice for counting K1 ,2 ,2 and its subgraphs; we

refer to the tutorial in Section 2.4.5 for an explanation.

By expanding all the (G(x, y) - qxy) factors and using our counting lemma, we

get

f G -4qxyG + 2q (yG

+ 4q2yG 4qiyG +(yG

q Aqxyq +2qyq

+ 4q,'yq Aqx'yq + q,4y q

=0.

Therefore, by choosing c and c to be sufficiently small (but polynomial in , ', '), we

can guarantee that

Let K2 ,2 denote the subgraph of the above K1,2 ,2 that gets mapped between X and Y.
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For each z E Z, let fz: X x Y -+ R be defined by (G(x, y) - qxy)1Nx(Z)(X)1N,(z)(Y)-

We have

f = z (K2 ,2 ) dz.

By Lemma 2.5.5, fz(K 2 ,2 ) > 0 for all z E Z. Let Z3 be the set of vertices z in Z such

that fz(K 2,2 ) > e'"(i - )4a4p5 . Then IZ31 < J ZJ.

Let Z' = Z \ (Z1 U Z 2 U Z 3 ). So IZ' ;> (1 - ) IZ. Furthermore, for any z E Z1,

f4(K2 ,2 ) e'4(1 - )4ap8 < e'4(1 - )4 p4q2zqz < E4p4 ()2 )

It follows by Lemma 2.5.3 that (Nx(z), Ny(z))G satisfies DISC(qxy,p, e'). U

Proof of Proposition 2.5.1. The proof is essentially the same as the proof of Proposi-

tion 2.1.13 with the difference being that we now use the following graph. We omit

the details.

X Y

z

2.6 One-sided counting

We are now in a position to prove Theorem 2.1.14, which we now recall.

Theorem 2.1.14 For every fixed graph H on vertex set {1, 2, ... , m} and every

a, 0 > 0, there exist constants c > 0 and e > 0 such that the following holds.

Let F be a graph with vertex subsets X1 ,. .. , X, and suppose that the bipartite

graph (Xi, Xj)r is (p, cpd2(H)+3 | XI|X)-jumbled for every i < j with ij E E(H).

Let G be a subgraph of F, with the vertex i of H assigned to the vertex subset Xi

of G. For each edge ij of H, assume that (Xi, Xj)G satisfies DISC(qi, p, e), where

ap < qij < p. Then G(H) > (1 - 0)q(H).
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The idea is to embed vertices of H one at a time. At each step, the set of potential

targets for each unembedded vertex shrinks, but we can choose our embedding so that

it doesn't shrink too much and discrepancy is inherited.

Proof. Suppose that v 1 , v2 , .. . , Vm is an ordering of the vertices of H which yields

the 2-degeneracy d2 (H) and that the vertex vi is to be embedded in Xi. Let L(j) =

{v1 , v2 , ... , vj}. For i > j, let N(i,j) = N(vi) n L(j) be the set of neighbors vh of vi

with h < j. Let q(j) = f7 qab, where the product is taken over all edges VaVb of H

with 1 < a < b < j and q(i, j) = HlVEN(ij) qhi. Note that q(j) = q(j, j - 1)q(j - 1).

We need to define several constants. To begin, we let 0rn, 6 and em = 1. Given

6O and e, we define j = b and 6j-1 = 2. We apply Propositions 2.1.13 and 2.5.1

with a, and ej to find constants cj 1 and e*_1 such that the conclusions of the two
mi 0C1, C =lad2(H)CO n o

propositions hold. We let ECj1 = min(E c = and = C.

We will find many embeddings f : V(H) -+ V(G) by embedding the vertices of

H one by one in increasing order. We will prove by induction on j that there are

(1 - 6)q(j)IX1IX 21 ... 1X31 choices for f(vi), f(v 2 ), .. , f(vj) such that the following

conditions hold. Here, for each i > j, we let T(i, j) be the set of vertices in Xi which

are adjacent to f(vh) for every Vh E N(i, j). That is, it is the set of possible vertices

into which, having embedded v1 , v 2 ,..., v, we may embed vi.

9 For 1 < a < b < j, (f(va), f(Vb)) is an edge of G if (Va, Vb) is an edge of H;

* IT(i j)I (1 - -)q(i, j)XiI for every i > j;

* For each i1,i 2 > j with vilvi2 an edge of H, the graph (T(iiJ),T(i2 ,j))G

satisfies the discrepancy condition DISC(qab, , E).

The base case j = 0 clearly holds by letting T(i, 0) = Xi. We may therefore

assume that there are (1 - Oj_1)q(3 - 1)1X11IX21 ... Xj_ 1I embeddings of vi,..., j_1

satisfying the conditions above. Let us fix such an embedding f. Our aim is to find

a set W(j) 9 T(jj - 1) with |W(i)I > (1 - -)q(jj - 1)1Xj| such that for every

w E W(j) the following three conditions hold.
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1. For each i > j with vi G N(v), there are at least (1 - O-)q(ij)XiJ vertices in

T(i, j - 1) which are adjacent to w;

2. For each i 1 , i 2 > j with vi1 vi2 , vilvj and vi2 vj edges of H, the induced subgraph

of G between N(w) n T(ii, j) and N(w) n T(i2 ,j) satisfies the discrepancy

condition DISC(qab,p, E);

3. For each i1 , i2 > j with Vi Vi2 and vivjv edges of H and vi2 vj not an edge of H,

the induced subgraph of G between N(w) n T(ii, j) and T(i 2 , j -1) satisfies the

discrepancy condition DISC(qab, P, 6j).

Note that once we have found such a set, we may take f(vj) = w for any w E W(j).

By using the induction hypothesis to count the number of embeddings of the first j -1

vertices, we see that there are at least

( - q(j, j - 1)|XI(1 - O-_)q(j - 1)1X1IIX 21 .. .Xj_ 1I

>(1 - Oj)q(j J|X1|| X21|. ..|JXiI

ways of embedding v 1 , v 2 ,. . . ,vj satisfying the necessary conditions. Here we used that

q(j) q(j, j - 1)q(j - 1) and %-1 = J. The induction therefore follows by letting

T(ij) = N(w) n T(i,j - 1) for all i > j with vi c N(vg) and T(i, j) = T(i, j - 1)

otherwise.

It remains to show that there is a large subset W(j) of T(j, j - 1) satisfying the

required conditions. For each i > j, let Ai(j) be the set of vertices in T(j, j - 1) for

which IN(w) n T(i, j - 1)1 < (1 - O')qij T(i, j - 1)1. Then, since the graph between

T(i, j - 1) and T(j, j-1) satisfies DISC(qji, p, Ec_ 1 ), we have that Ec_ 1pIT(j,j - 1) >

Oqij Ai(i)I. Hence, since qij > ap,

IAi(j)j I 12e T(j,j - 1)1.
aQ;
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Note that for any w E T(j, j - 1) \ Ai(j),

IN(w) n T(ij - 1)|1 - qij|T(ij - 1)j > 1

For each i1 , i2 > j with vilvi2 , vj1vy and vi 2 vj edges of H, let Bei, 2(j) be the set

of vertices w in T(j, j - 1) for which the graph between N(w) n T(ii,j - 1) and

N(w) n T(i2 ,j - 1) does not satisfy DISC(qili 2 , p, ej). Note that

JT(iiJ - 1)1IT(i2 ,i - 1)1 > (1- )q(i, j - 1)q(i2 ,j - 1)IX 1lIIXi2I

(2d2(HH))-2 2(I -I

- 2

where we get 2d2 (H) -2 because j is a neighbor of both i1 and i2 with j < i, i2 . Simi-

larly, IT(ii,j-1)IIT(j,j-1) and IT(i 2 , -1)1IT(j, j-1)1 are at least a
2
d2(H) 2d 2 (H) lxiii 1Xi

and a2d2 (H) 2d2 (H) X IX3 , respectively.nd 2 P tX2

Since

cpd2(H)+3 IXIIX, 2 I | d2(H)Cop4 p2d2(H2)-2|XIXi

< cop4 v'T(iiij - 1)IIT(i 2 ,j - 1)1,

the induced subgraph of 1F between T(ii,j - 1) and T(i2 ,j - 1) is

(p, cop4 V|T(iij - 1)IIT(i2, j - 1)|)-jumbled.

Similarly, the induced subgraph of F between the sets T(j, j - 1) and T(ii, j - 1) is

(p, cop 3 VIIT(jj - 1)IIT(ii,j - 1)j)-jumbled

and the induced subgraph between T(j, j - 1) and T(i2 , j - 1) is

(p, cop 3 VIJT(jj - 1)J|T(i2,j - 1)1)-jumbled.
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By our choice of ej-, we may therefore apply Proposition 2.1.13 to show that

jBi 1h (A) <! jjT(j, - 1)1.

For each ii,i2 > j with Vo 1vi2 and viltij edges of H and vi, vj not an edge of

H, let Cil,i 2(j) be the set of vertices w in T(j,j - 1) for which the graph between

N(w)n T(ii, j-1) and T(i 2 , j-1) does not satisfy DISC(qi2, p, ej). As with Bil 2 (j),
we may apply Proposition 2.5.1 to conclude that |Clh(j)l < jT(,j -- 1)1.

Counting over all possible bad events and using that IT(j, j-1) > (1- o--)q(j, j-

1)1Xj 1, we see that the set W(j) of good vertices has size at least (1- -)q(j, j -1) 1XI,

where

<Oj1 1 2 mj_1 2 (m < < + -< 0 0-
- 6 afJj 2 -12 6 6 - 2'

as required. Here we used 5j_ and 3 = 6. This completes the
3 2 1 - 72'rn 6m2

proof. U

Note that for the clique Kt, we have d2 (Kt) + 3 = t + 1. In this case, it is better

to use the bound coming from two-sided counting, which gives the exponent t.

Another case of interest is when the graph H is triangle-free. Here it is suffi-

cient to always apply the simpler inheritance theorem, Proposition 2.5.1, to maintain

discrepancy. Then, since

pd 2 (H)+2 xX 2  - pl p2d2(H)1 Xi1

we see that an exponent of d2 (H) + 2 is sufficient in this case. In particular, for

H = K,,, with s < t, we get an exponent of d2 (K,,t) + 2 = s- + 2 = _+3, as quoted

in Table 2.1.

It is also worth noting that a one-sided counting lemma for IF holds under the

slightly weaker assumption that 3 < cpd2(H)+ln. We omit the details since the proof

is a simpler version of the previous one, without the necessity for tracking inheritance

of discrepancy.

Proposition 2.6.1. For every fixed graph H on vertex set {1, 2, ... , m} and every

o > 0 there exists a constant c > 0 such that the following holds.
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Let P be a graph with vertex subsets X1,... , X, where vertex i of H is as-

signed to the vertex subset Xi of F and suppose that the bipartite graph (Xi, Xj)r

is (p, cpd2(H)+1 vlXii Xj)-jumbled for every i < j with ij - E(H). Then 1(H) >

(1 - 6)p(H).

2.7 Counting cycles

Using the tools of doubling and densification, we already know how to count all cycles.

For cycles of length 4 or greater, (p, cp2n)-jumbledness suffices.

Proposition 2.7.1. Assume Setup 2.4.1 with H = Ce and k > 3 if = 3 or k > 2 if

> 4. Then G(C) C("e) q(Ce).

Proof. When f = 4, see Proposition 2.4.13. When f = 3, see Section 2.2 for the

doubling procedure. For f > 5, we can perform densification to reduce the problem

to counting Ce-1 with at least one dense edge, so we proceed by induction. N

The goal of this section is to prove a one-sided counting lemma for cycles that

requires much weaker jumbledness.

Proposition 2.7.2. Assume Setup 2.4.1 with H = C, where f > 5, and all edges

sparse. Letk > 1+ -3 if f is odd and 1+ if f is even. Then G(C) > q(Ce)-Op(Cf)

with 0 < 100(Ei/(2) + EC2/3).

The strategy is via subdivision densification, as outlined in Section 2.2.

2.7.1 Subdivision densification

In Section 2.4.2 we showed how to reduce a counting problem by transforming a singly

subdivided edge of H into a dense edge. In this section, we show how to transform

a multiply subdivided edge of H into a dense edge, using much weaker hypotheses
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on jumbledness, at least for one-sided counting. The idea is that a long subdivision

allows more room for mixing, and thus requires less jumbledness at each step.

We introduce a weaker variant of discrepancy for one-sided counting.

Definition 2.7.3. Let G be a graph with vertex subsets X and Y. We say that

(X, Y)G satisfies DISC> (q, p, e) if

j (G(x, y) - q)u(x)v(y) dxdy > -ep (2.15)
yEY

for all functions u: X -+ [0, 1] and all v: Y -+ [0, 1].

In a graph H, we say that aoaia 2 ... am is a subdivided edge if the neighborhood

of ai in H is {ai_ 1, aj 1 } for 1 K i K m - 1. Say that it is sparse if every edge aiai+1,

0 K i K m - 1, is sparse.

For a graph F or G with vertex subsets Xo, X1,... , Xm, xo C Xo, xm E X.. and

Xj C Xj, we write

G(xo,X(, X;, .... , X71n)

= G(xO, x1)1x,(x1 ) - G(xm-1, xm)1x(xm) dxidx 2 ... dxm,
Xrn EXm

and

G(xo, X', X2, . .. ,Xm)

JG(xo,x1)1x,(x1 ) - G(xm-,x m) dxidx 2 -.. dxm-1.

Xm-1EXm-1

These quantities can be interpreted probabilistically. The first expression is the prob-

ability that a randomly chosen sequence of vertices with one endpoint fixed is a path
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in G with the vertices landing in the chosen subsets. For the second expression, both

endpoints are fixed.

Lemma 2.7.4 (Subdivision densification). Assume Setup 2.4.1. Let F > 2 and let

aoa1 ... at be a sparse subdivided edge and assume that aoaf is not an edge of H.

Assume k > 1+ 1L. Replace the induced bipartite graph (Xao, Xa,) by the weighted

bipartite graph given by

G(xo, xt) = min {G(xo,X1, X2 ,. .. , Xe, x e), 4p}

for (xo, xt) c Xo x Xt. Let H' be H with the path a0 a1 ... at deleted and the edge aoae

added. Let Paoa, = 1 and qaoa, = 4pqaoa1 qa1 a2 - qa, 1a,. Then G(H)> 4PeG(H') and

(Xo, Xe)G satisfies DISC>(qaoa,, 1, 18(,l/(2t) + Ec2/ 3))

Remark. If there is at least one dense edge in the subdivision, then using arguments

similar to the ones in Section 2.4.2, modified for one-sided counting, we can show that

k > 1 suffices for subdivision densification.

The idea of the proof is very similar to densification in Section 2.4.2. The claim

G(H) 4peG(H') follows easily from the new edge weights. It remains to show that

(Xo, Xe)G satisfies DISC>. So Lemma 2.7.4 follows from the next result.

Lemma 2.7.5. Let m > 2, c, e,p (0, 1], and q1, q2, . . ,qm E [0, p]. Let IF be any

weighted graph with vertex subsets X0 , X1,..., Xm and let G be a subgraph of P.

Suppose that, for each i = 1,..., m, (Xi- 1, Xi)r is (p, cp1 +n-- /Xi_1|JXi 1)-jumbled

and (Xi_ 1 , Xi)G satisfies DISC>(qi,p,,E). Then the weighted graph G' on (Xo, X)

defined by

G'(xo, xn) = min {G(xo, X 1 , X2 , . . , Xm-1, Xm), 4pm

satisfies DISC;>(qiq2 ... qm, pm , 72(e1/(2m) + mc 2/ 3 )).

Here are the steps for the proof of Lemma 2.7.5.

1. Show that the graph on Xo x Xm with weights G(xo, Xi, X2,... , Xm-1, Xm)

satisfies DISC>.

81



2. Under the assumption that every vertex Xi has roughly the same number of

neighbors in Xj i for every i, show that capping of the edge weights has negli-

gible effect on discrepancy.

3. Show that we can delete a small subset from each vertex subset Xi so that the

assumption in step 2 is satisfied.

Step 2 is the most difficult. Since we are only proving lower bound discrepancy, it is

okay to delete vertices in step 3. This is also the reason why this proof, without signif-

icant modification, cannot prove two-sided discrepancy (which may require stronger

hypotheses), as we may have deleted too many edges in the process. Also, unlike the

densification in Section 2.4.2, we do not have to worry about the effect of the edge

weight capping on the overall H-count, as we are content with a lower bound.

The next two lemmas form step 1 of the program.

Lemma 2.7.6. Let G be a weighted graph with vertex subsets X, Y, Z. Let P1,P2, E

(0,1] and qi c [0,pi], q2 E [0,p2]. If (XY)G satisfies DISC>(q,p 1 ,e) and (Y, Z)G

satisfies DISC>(q 2 , p 2 , E), then the induced weighted bipartite graph G' on (X, Z) whose

weight is given by

G'(x, z) = G(x, Y, z)

satisfies DISC>(qiq2 ,p1 p 2 ,6Vfi).

Note that no jumbledness hypothesis is needed for the lemma.

Proof. Let u: X -+ [0, 1] and w: Z -+ [0,1] be arbitrary functions. Let

Y = y E Y I EX(G(x, y) - q1)u(x) dx < - V/p1 .

Then applying (2.15) to u and ly, yields IY'I < 'YE IYI Similarly, let

Y1 = y Y z(G(y,z) - q2)w(z) dx < - FP2 .
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Then IY" YI as well. So

XEX G'(x, z)u(x)w(z) dxdz
ZEZ

SEX u(x)G(x, y)G(y, z)w(z) dxdydz
zEZ

(I G(x, y)u(x) dx G(y, z)w(z) dz dy
I yEY\(Y'UY") \xEX /)\ zIZ

> JIY\(Y " (qiEu - 4p1 )(q2Ew - VFP2) dy
Sy EY\(Y'Uy")

> (1 - 2ifE)(qEu - 4pi ) (q2 EW - V'/P2)

> qlq2lEuEw - 6v/Ep1P2.

The above proof can be extended to prove a one-sided counting lemma for trees

without any jumbledness hypotheses. We omit the details.

Proposition 2.7.7. Let H be a tree on vertices {1, 2, ... , m}. For every 0 > 0, there

exists e > 0 of size at least polynomial in 0 such that the following holds.

Let G be a weighted graph with vertex subsets X 1,... , Xm. For each edge ab of H,

suppose that (Xa, Xb) G satisfies DISC>(qab, pab, ) for some 0 < qab Pab 1- Then

G(H) q(H) - Op(H).

By Lemma 2.7.6 and induction, we obtain the following lemma about counting

paths in G.

Lemma 2.7.8. Let G be a weighted graph with vertex subsets X0 , X 1 ,... , X. Let

0 < E < 1. Suppose that for each i = 1, 2,. .. , m, (Xi- 1 , Xi)G satisfies DISC> (qi,pi, E)

for some numbers 0 < qi pi < 1. Then the induced weighted bipartite graph G' on

X0 x Xm whose edge weights are given by

G'(x, xD(m) = G(mo, X1, X2, X. , 1, xm)

satisfies DISC>(qiq2 -. - m, PIP2 - --pm, 364E1/(2m)).
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Proof. Applying Lemma 2.7.6, we see that the auxiliary weighted graphs on (X0 , X2 ),

(X2, X 4 ), . . .satisfy DISC> (qiq2 , pip2 , 36 1/ 2 ), etc. Next we apply Lemma 2.7.6 again,

and we deduce that the auxiliary weighted graph on (Xo, X4 ), (X4 , Xs) must satisfy

DISC>(qiq2q3q4 ,pip2pp4 , 36f1/4), etc. Continuing, we find that (XO, Xm)G' satisfies

DISC>(qiq 2 -.. q.,pip 2 . p., E') with c' = 36E2m+1 = 36E1/(2m)

For step 2 of the proof, we need to assume some degree-regularity between the

parts. We note that the order of X and Y is important in the following definition.

Definition 2.7.9. Let F be a weighted graph with vertex subsets X and Y. We say

that (X, Y)r is (p, ,q) -bounded if IF(x, Y) - p < p for all x E X and F(x, y) r7

for all x E X and y E Y.

Here is the idea of the proof. Fix a vertex x0 E X0 , and consider its successive

neighborhoods in X1, X2,.... Let us keep track of the number of paths from x0 to

each endpoint. We expect the number of paths to be somewhat evenly distributed

among vertices in the successive neighborhoods and, therefore, we do not expect many

vertices in Xi to have disproportionately many paths to x0 . In particular, capping

the weights of F(xo, X1, ... , Xm-1, xm) has a negligible effect.

Here is a back-of-the-envelope calculation. Suppose every pair (Xi, Xi+1 )r is

(p,yV/X l|Xi+11)-jumbled. First we remove a small fraction of vertices from each

vertex subset Xi so that in the remaining graph F is bounded, i.e., every vertex has

roughly the expected number of neighbors in the next vertex subset. Let S C X,

and let N(S) be its neighborhood in Xi+1. Then the number of edges e(S, N(S))

between S and N(S) is roughly p SI IX%+1I by the degree assumptions on Xi. On the

other hand, byjumbledness, e(SNi+1(S)) y/ Xil X 1j|S IN(S)I pSj IN(S)l.

When S is small, the first term dominates, and by comparing the two estimates we

get that IN(S)I is at least roughly p2'y-~ I 1 . Now fix a vertex X 0 E Xo. It has aboutIxi+1 I -i

p JX1I neighbors in X1. At each step, the fraction of Xi occupied by the successive

neighborhood of x0 expands by a factor of about p2 -2, until the successive neigh-

borhood saturates some Xi. Note that for -y = cp1+ -r-r2, we have p(p2 -2)m1 >y J,
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so the successive neighborhood of x0 in Xm is essentially all of Xm. So we can expect

the resulting weighted graph to be dense.

We will use induction. We show that from a fixed x0 E Xo, if we can bound the

number of paths to each vertex in Xj, then we can do so for Xj+1 as well.

The next result is the key technical lemma. It is an induction step for the lemma

that follows. One should think of X, Y and Z as X0 , Xi and Xi+,, respectively.

Lemma 2.7.10. Let P1, P2, 1, 2, 3 E (0, 1], and ni, 7 2 > 0. Let r be a weighted graph

with vertex subsets X, Y, Z. Assume that (X, Y)r is (p1, 6I1, ri)-bounded and (Y, Z)r is

(p2 , 2 ,1)-bounded and (P2,72 |Y| ZI)-jumbled. Let q' = max {40!p-1 $,p 1 P,4p12}

and j' 1+ 2 + 263. Then the weighted graph F' on (X, Z) given by

F'(x, z) = min {IF(x, Y, z),ri'}

is (P1P2, ', ')-bounded.

Proof. We have F'(x, z) r' for all x E X, z E Z. Also, by the boundedness assump-

tions, we have J'(x, Z) I J(x, Y, Z) (1 + 1)(1 + 2)Pp2 <_ (1 + ')Pip2. It only

remains to prove that F'(x, Z) ;> (1 - 'Pp2 for all x E X.

Fix any x E X. Let

Z' = {z E Z I F(x, Y, z) > i'}.

Note that F'(x, Z) > F(x, Y, Z) - F(x, Y, Z'), so we would like to find an upper bound

for IF(x, Y, Z').

Apply the jumbledness criterion (2.3) to (Y, Z)r with the functions u(y) = F(x, y),q-

and v(z) = lz,. Note that 0 < u < 1 due to boundedness. We have

jy EF(X, y)i-1 (1(y, z) - P2)1Zxr(Z) dydz
Z,(

72___I V( 1plIZXI1
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The integral equals q-1 (F(x, Y, Z') - P2F(x, Y)I I, so we have

r(x, Y, Z') - P2 F(x, Y)Iz' <
'ZI '

On the other hand, we have

r(XY,Z' -P2F(x ,Y) r' A

Combining (2.17) with (2.16), we get

IZ'I < 4y (1 + 1)piryi

Stt - w h 2

Substituting (2.18) back into (2.16), we have

(x, Y, Z') K- (1 + 1)PlP2 +Iz7
4-y2 (1 + 6)2 PTP277 1  2722(1 + 1)pjir

r7'2 + 7/

4 2(1 + 1)2p p2T1

(4' 227p 1 1m)(4p1P2)

2-y2(1 + i1)pirh1
4+y2~ % 1

1 1I (1 + 1)2 3 P1P2 + 1 (1 + W1)b3P1P24 2

26P12 .

Therefore,

r'(X, Z) F (x, Y, Z) - F(x, Y, Z') (1) (1 - 2)P1P2 - 2 3P1P2 (1 - ')P1 P2 -

This completes the proof that 17' is (P1 P2 , ', M')-bounded. Ui

By repeated applications of Lemma 2.7.10, we obtain the following lemma for

embedding paths in F.

Lemma 2.7.11. Let 0 < 4c 2 < < - and 0 < p < 1. Let F be a graph with
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vertex subsets X0,X1,. .. ,Xm. Suppose that, for each i = 1,... ,m, (Xi_1, Xi)r is

(p, , 1)-bounded and (p, cp1+2m2 IXi_ 1 | IXi)-jumbled. Then the weighted bipartite

graph ' on (XO, Xr) defined by

F'(XO, Xn) = min {f(Xo, X1, X 2 ,.. .,Xm1, xm), 4pm}

is (pm , 4mt, 4p"n)-bounded.

Proof. Since F'(xo, Xm) F(xo, XI, X2 ,... , Xm) (1 + c) mpm < e"mp" (1 +

4m )pm for all xO E Xo, it remains to show that F'(xo, Xm) > (1 - 4m )pm for all

Xo C X0.

For every i = 1,... , m, define a weighted graph (i) on vertex sets Xo, Xj, X 11

(with p(m) only defined on X0 and Xm) as follows. Set (Xi, Xi+1)r(i) = (Xi, Xi+i)r

for each 1 K i K m - 1. Set (Xo, X1)r) = (Xo, X1)r and

F(i'+)(xo, xi+1) = min {Pt)(xo, X, xi+1 ), i+1 }

for each 1 K i K m - 1, where

7i = max {(4c2 -1)i-1p(i1) (1+ ) 4 pi

for every i. So ()(xo, xi) F(xo,X,. . .Xi1, i) for every i and every xo C Xo, xi E

Xi. Let y = Cp 1+2n-2. Note that qi+1 = max {472 p 1 -1  4pi+1} for every i. So

it follows by Lemma 2.7.10 and induction that (Xo, Xi)r(i) is (pi, 4i, ,ij)-bounded for

every i. Since 7m = 4pm , P'(xo, Xm) "(m)(xO, Xm) > (1 - 4m()p"m, as desired. M

To complete step 2 of the proof, we show that the boundedness assumptions imply

that the edge weight capping has negligible effect on discrepancy.

Lemma 2.7.12. Let 0 < 4c2 < and 0 < p 1. Let F be a graph with vertex subsets

X0, X1,..., Xm and let G be a subgraph of F. Suppose that, for each i = 1,... ,m

(Xi_ 1, Xi)r is (p,) , 1)-bounded and (p, cp1+2- IX_ 1 \ JXi\)-jumbled and (Xi_1,Xi)G
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satisfies DISC> (qi, pi,,E). Then the weighted graph G' on (Xo, Xm) defined by

G'(xo, x,) = min {G(xo, X1, X2 ,. .. , Xm-1, xm), 4pm

satisfies DISC>(qiq 2 ... qm, pm , 36cl/( 2m) + 8m().

Proof. We may assume that < - since otherwise the claim is trivial as every graph

satisfies DISC>(q, p, E) when e > 1. Let r' be constructed as in Lemma 2.7.11. To

simplify notation, let us write

G(xo, xm) = G(xo, X1, - ,Xm-, xm)

and F(xo, xm) = F(xo, X1 , , Xm-1, Xm)

for X0 E X0 , xm E Xrm. We have

G(xo, xm) - G'(xo, xm) = max {0, G(xo, xm) - 4prn}

< max {0, F(xo, xm) - 4pm} = F(xo, xm) - F'(xo, xm).

Let q = qiq2 -.- qm. For any functions u: X -+ [0, 1] and v: Y -+ [0, 1], we have

( (G'(x, xm) - q)ut(xo)v(x.) dxodxfl
XmE~

G(xo, x,) - q)u(xo)v(xm) dxodxm

- Jx. 0YO (F(xo, xm) - F'(xo, xm))u(xo)v(xm) dxodxn.

The first term is at least -36e1/( 2m)Pm by Lemma 2.7.8. For the second term, we use
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the boundedness of F and F' to get

xoE (F(xo, xm) - F'(xo, xm))u(xo)v(xm) dxOdxm
Xm. EXm.

< X (F(x,, xm) - F'(xo, xm)) dxodxm
XmnEXM

< (1 + O)"pm - (1 - 4 ,m)pm

K8(mpm .

It follows that G' satisfies DISC>(q, pm , 36,l/(2m) + 8m ). U

This completes step 2 of the program. Finally, we need to show that we have a

large subgraph of F satisfying boundedness, so that we can apply Lemma 2.7.12 and

then transfer the results back to the original graph.

Lemma 2.7.13. Let 0 < 6,-y,, p < 1 satisfy 2-y 2 < J
2p2 . Let F be a graph with

vertex subsets X0 , X1,..., Xm and suppose that, for each i = 1, ... , m, (Xi_ 1, Xi)r is

(p, (1 - 6 )7y IXi_1I |Xi|)-jumbled. Then we can find ki C Xi with I (1 -6) IXiI
for every i such that, for every 0 < i < m - 1, the induced bipartite graph (Xe, Xi+1)r

is (p, , 1)-bounded and (p, y i Xi+1 )-jumbled.

Proof. The jumbledness condition follows directly from the size of IXi 1, so it suffices to

make the bipartite graphs bounded. Let Xm = Xm. For each i = m - 1, m - 2, ... , 0,

in this order, set Xi to be the vertices in Xi with (1 )p Xi+ 1 neighbors in Xi+1.

So (Xi, Xi+1 ) is (p, , 1)-bounded. Lemma 2.3.7 gives us X, \ Xi 5 2 - JX

6|X I.

Lemma 2.7.14. Let 0 < q p < 1 and e,6,6' > 0. Let G be a weighted bipartite

graph with vertex sets X and Y. Let X C X and Y C Y satisfy X (1 - 6) |XI

and Y > (1 - 6) Y. Let d be a weighted bipartite graph on (X,Y) such that

G(x, y) (1 - 6')G(x, y) for all x E X, y E Y. If (X, Y)d satisfies DISC>(q, p, e),

then (X, Y) G satisfies DISC> (q, p, e + 26 + 6').

Proof. For this proof we use sums instead of integrals since the integrals corresponding

to (X, Y)G and (X, Y)G have different normalizations and can be somewhat confusing.
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Let u: X -+ [0, 1] and v: Y --+ [0, 1]. We have

E E3 G(x, y)u(x)v(y)
xEX yEY

> (1 - 6') E 6(, y)u(x)v(y)
XE.k yY

> q(1 - Y') E U(X) V(y) -epZ

q(1 - 6') ( u(x) - 6 iXI v(Y) - 6|Y| - EP lXi Y
\XxX / \yY/

> qu(X)v(Y) - (E + 26 + 6 )p IXI YI.

U

Proof of Lemma 2.7.5. We apply Lemma 2.7.13 to find large subsets of vertices for

which the induced subgraph of I' is bounded and then apply Lemma 2.7.12 to show

that G restricted to this subgraph satisfies DISC>. Finally, we use Lemma 2.7.14 to

pass the result back to the original graph.

Here are the details. Let ( 8c2/ 3 and 6 = jc2 /3 , so that the hypotheses of

Lemma 2.7.13 are satisfied with 2y = p1-2. Therefore, we can find Xi G

Xi with Xk I (1 - 6)Xj for each i so that (Xi,Xi+ 1 )r is (p, , 1)-bounded and

(p, Xp1+, i+ 1 )-jumbled for every 0 < i < m - 1. Let d denote the

graph G restricted to XO, ... , Y,. Note that the normalizations of G and G are

different. For instance, for any S C X 1 and any xo E ko and x2 E X 2 , we write

G(xo,S, x 2 ) = I G(xo, x1)G(x,x 2)
X, CS

while

G(xo,S, x 2)= I G(xo, x1)G(x,x 2 ).

So (Xi_ 1 , Xi) satisfies DISC>(qi,p, E') with E' < < 2e. Let G' denote the
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weighted bipartite graph on (X0 , rm) given by

G'(xo, xm) = min {(xo, J 1 ,..., m-1, Xm), 4 prn}

Since 4(1_,) 2 < 8c2 < , we can apply Lemma 2.7.12 to G to find that (X0 , Xm)d,

satisfies DISC>(q1 ... qm, pm , 72el/( 2m) +8mg). To pass the result back to G', we note

that

G'(xo, xm) = min {G(xo, X1,... , Xm-1, xm), 4pm}

> min {G(xo,Xi,. ... ,Xm-1, Xm), 4p"

Z1iI I-k- I - -
= min { X I G(xo, X1 , ... Xm-1, xm), 4p"

(1 - 6)m-l'G(xo, xm)

> (1 - (M - 1)6)d'(xO, xm).

It follows by Lemma 2.7.14 that (XO, Xm)G' satisfies DISC>(qi ... qm , P', e') with

C' < 72E1/(2m) + 8m + 26 + (m - 1)J < 72(El/( 2m) + mc 2/ 3).

2.7.2 One-sided cycle counting

If we can perform densification to reduce H to a triangle with two dense edges, then

we have a counting lemma for H, as shown by the following lemma. Note that we do

not even need any jumbledness assumptions on the remaining sparse edge.

Lemma 2.7.15. Let K3 denote the triangle with vertex set {1, 2, 3}. Let G be a

weighted graph with vertex subsets X1, X2 , X3 such that, for all i $ j, (Xi, Xj)G

satisfies DISC>(qij, pi, F), where P13 = P23 = 1, 0 P12 1, and 0 < qi 5 pij. Then

G(K3) q12 q13q 2 3 - 3ep 1 2 .
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Proof. We have

G(K 3 ) -ql2q3q23

- (G(x, x 2) - q12 )G(x1 , x3)G(x 2 , X 3 ) dxidx 2 dx 3

+ q12 j (G(x1, x 3) - q13)G(x 2 , X 3 ) dxidx2 dx 3

+ q12q 13 j (G(x 2 , X3 ) - q13) dxidx 2 dx 3.

The first integral can be bounded below by -EP12 and the latter two integrals by

-Eq 12. This gives the desired bound. U

The one-sided counting lemma can be proved by performing subdivision densifi-

cation as shown below.

Proof of Proposition 2.7.2. Let the vertices of Ce be {1, 2,. . ., e} in that order. Apply

subdivision densification (Lemma 2.7.4) to the subdivided edge (1, 2,..., [/21), as

well as to the subdivided edge ([/21 , [f/2]+1,... , f). Conclude with Lemma 2.7.15.

U

2.8 Applications

It is now relatively straightforward to prove our sparse pseudorandom analogues of

Turdn's theorem, Ramsey's theorem and the graph removal lemma. All of the proofs

have essentially the same flavour. We begin by applying the sparse regularity lemma

for jumbled graphs, Theorem 2.1.11. We then apply the dense version of the theorem

we are considering to the reduced graph to find a copy of our graph H. The counting

lemma then implies that our original sparse graph must also contain many copies of

H.

92



In order to apply the counting lemma, we will always need to clean up our regular

partition, removing all edges which are not contained in a dense regular pair. The

following lemma is sufficient for our purposes.

Lemma 2.8.1. For every c, a > 0 and positive integer m, there exists c > 0 and a

positive integer M such that if 1 is a (p, cpn)-jumbled graph on n vertices then any

subgraph G of 1 is such that there is a subgraph G' of G with e(G') > e(G) - 4ae(J')

and an equitable partition of the vertex set into k pieces V1 , V2, ... , V with m < k < M

such that the following conditions hold.

1. There are no edges of G' within Vi for any 1 K i K k.

2. Every non-empty subgraph (Vi, Vj)G' has dG'(Vi, j) = qij > ap and satisfies

DISC(qij, p, E).

Proof. Let mo = max(32a- 1 , m) and 0 = -. An application of Theorem 2.1.11, the

sparse regularity lemma for jumbled graphs, using min {9, ,} as the parameter e in

the regularity lemma, tells us that there exists an r7 > 0 and a positive integer M

such that if F is (p, rqpn)-jumbled then there is an equitable partition of the vertices

of G into k pieces with mo < k < M such that all but Ok 2 pairs of vertex subsets

(K, V)G satisfy DISC(qij, p, e). Let c = min(rj, -).

Since F is (p, /)-jumbled with / < cpn, c < 1 and n < 2MIVil for all i, the

number of edges between Vi and V satisfies

1
|e(V,Vi) -pVi|V|| cpn2  _IpIVIIY~I

2

and thus lies between jpIViJVj and 3pViJJVJ. Note that this also holds for i =j,

allowing for the fact that we will count all edges twice.

Therefore, if we remove all edges contained entirely within any V, we remove at

most 2pk (2)2 = < pn2 edges. Here we used that IV| 5 5 !" for all i.

If we remove all edges contained within pairs which do not satisfy the discrepancy

condition, the number of edges we are removing is at most 2p~k2 (3)2 = 8pn2

apn2 . Finally, if we remove all edges contained within pairs whose density is smaller
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than ap, we remove at most -p _ ipn2 edges. Overall, we have removed at most

apn2 < 4ae(F) edges. We are left with a graph G' with e(G') > e(G) - 4ae(F) edges,

as required. N

2.8.1 Erdos-Stone-Simonovits theorem

We are now ready to prove the Erd6s-Stone-Simonovits theorem in jumbled graphs.

We first recall the statement. Recall that a graph F is (H, E)-Turdn if any subgraph

of F with at least (i - + E) e(F) edges contains a copy of H.

Theorem 2.1.4 For every graph H and every e > 0, there exists c > 0 such that if

< cpd2(H)+ 3n then any (p, /)-jumbled graph on n vertices is (H, e)-Turdn.

Proof. Suppose that H has vertex set {1, 2,... ,m}, F is a (p,/)-jumbled graph on

n vertices, where 3 cpd2(H)+ 3n, and G is a subgraph of F containing at least

1 - I(H)- + E) e(F) edges.

We will need to apply the one-sided counting lemma, Lemma 2.1.14, with a = 8

and 6. We get constants co and co > 0 such that if F is (p, copd2(H)+3 Xi X -

jumbled and G satisfies DISC(qij,p, co), where ap < qji < p, between sets Xi and Xj

for every 1 < i < j m with ij E E(H), then G(H) (1 - O)q(H).

Apply Lemma 2.8.1 with a = e/8 and CO. This yields constants ci and M such

that if F is (p, cipn)-jumbled then there is a subgraph G' of G with

e(G') ( H) + e - 4a e(F) > 1 - + - e(F),
X(H) - I /V(H) - 1 2

where we used that a = 1. Moreover, there is an equitable partition of the vertex

set into k < M pieces V,..., V1 such that every non-empty subgraph (Vi, V)G' has

d(V, V) = qij > ap and satisfies DISC(qij, p, co).

We now consider the reduced graph R, considering each piece Vi of the partition

as a vertex vi and placing an edge between vi and vo if and only if the graph between

Vi and V is non-empty. Since F is (p, cpn)-jumbled and n < 2M Vil, the number

of edges between any two pieces differs from pIViJVj by at most cpn2 - 20 j
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provided that c < 8 2. Note, moreover, that IV|I 5 [l (1 + 6 ) provided that

n> 20M. Therefore, the number of edges in the reduced graph R is at least

e(G') (1 - ( )-1 + L)e(F) 1 
_) _k_ e(R) >! > X > 1- +

(I+ E)p[21 2  (1 + )3p(g) 2  X(H) - 1 4 2

where the final step follows from e(F) (1 - )p(n).

Applying the Erd6s-Stone-Simonovits theorem to the reduced graph implies that it

contains a copy of H. But if this is the case then we have a collection of vertex subsets

X1,..., Xn such that, for every edge ij E E(H), the induced subgraph (Xi, Xj) 0 '

has d(Xi, Xj) = qij > ap and satisfies DISC(qi2 , p, Eo). By the counting lemma,

provided c < ', we have G(H) > G'(H) (1 - O)(ap)e(H)(2M)-v(H). Therefore,

for c = min( , ci, 8M2), we see that G contains a copy of H. U

The proof of the stability theorem, Theorem 2.1.5, is similar to the proof of The-

orem 2.1.4, so we confine ourselves to a sketch. Suppose that F is a (p, 3)-jumbled

graph on n vertices, where 3 < cpd2(H)+3n, and G is a subgraph of F containing

i _1 - 1 ) e(F) edges. An application of Lemma 2.8.1 as in the proof above

allows us to show that there is a subgraph G' of G formed by removing at most pn2

edges and a regular partition of G' into k pieces such that the reduced graph has at

least (1 - _1 -26) (k) edges. This graph can contain no copies of H - otherwise

the original graph would have many copies of H as in the last paragraph above. From

the dense version of the stability theorem [115] it follows that if J is sufficiently small

then we may make R into a (X(H) - l)-partite graph by removing at most -Lk2 edges.

We imitate this removal process in the graph G'. That is, if we remove edges between

vi and vj in R then we remove all of the edges between V4 and V in G'. Since the

number of edges between Vi and V is at most 2pjV|Vjj, we will remove at most

6_k2 2p [1 pn2
16 k 2

edges in total from G'. Since we have already removed all edges which are contained

within any Vi the resulting graph is clearly (X(H) - 1)-partite. Moreover, the total
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number of edges removed is at most pn2 + pn2 < Epn2 , as required.

2.8.2 Ramsey's theorem

In order to prove that the Ramsey property also holds in sparse jumbled graphs, we

need the following lemma which says that we may remove a small proportion of edges

from any sufficiently large clique and still maintain the Ramsey property.

Lemma 2.8.2. For any graph H and any positive integer r > 2, there exist a, i > 0

such that if n is sufficiently large and G is any subgraph of Kn of density at least

1 - r, any r-coloring of the edges of G will contain at least anv(H) monochromatic

copies of H.

Proof. Suppose first that the edges of K, have been r-colored. Ramsey's theorem

together with a standard averaging argument tells us that for n sufficiently large

there exists ao such that there are at least aon(H) monochromatic copies of H. Since

G is formed from K, by removing at most yn2 edges, this deletion process will force

us to delete at most rlnv(H) copies of H. Therefore, provided that q < 2, the result

follows with a = .

We also need a slight variant of the sparse regularity lemma, Theorem 2.1.11,

which allows us to take a regular partition which works for more than one graph.

Lemma 2.8.3. For every e > 0 and integers e, m0 > 1, there exist ij> 0 and a positive

integer M such that if IF is a (p, rpn)-jumbled graph on n vertices and G1 , G2 ,... Ge

is a collection of weighted subgraphs of 1 then there is an equitable partition into

m o < k < M pieces such that for each Gi, 1 < i < f, all but at most eks pairs of

bG C(q~~~pi) for some qab*vertex subsets (Va, V)Gi satisfy DISCg ab s e q

There is also an appropriate analogue of Lemma 2.8.1 to go with this regularity

lemma.

Lemma 2.8.4. For every E, a > 0 and positive integer m, there exist c > 0 and a

positive integer M such that if F is a (p, cpn)-jumbled graph on n vertices then any
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collection of subgraphs G 1 , G 2 ,... ,Ge of F will be such that there are subgraphs G' of

G with e(G') > e(Gj) - 4ae(F) and an equitable partition of the vertex set into k

pieces V1 , V2 , ... , k with m < k < M such that the following conditions hold.

1. There are no edges of G' within Va for any 1 < i < f and any 1 < a < k.

2. Every subgraph (Va, Vb)G containing any edges from G' has dG (Va, Vb) = qab-

ap and satisfies DISC(q9, p, e).

The proof of the sparse analogue of Ramsey's theorem now follows along the lines

of the proof of Theorem 2.1.4 above.

Theorem 2.1.6 For every graph H and every positive integer r > 2, there exists

c > 0 such that if /3 cpd2(H)+ 3n then any (p,/3)-jumbled graph on n vertices is

(H, r)-Ramsey.

Proof. Suppose that H has vertex set {1, 2, ... ,m}, P is a (p, /)-jumbled graph on

n vertices, where/3 5 cpd2(H)+ 3n, and G 1 , G 2 , ... , G,. are subgraphs of r where Gi is

the subgraph whose edges have been colored in color i.

Let a, 7 be the constants given by Lemma 2.8.2. That is, for n > no, any subgraph

of Kn of density at least 1 - 77 is such that any r-coloring of its edges contains at least

an(H) monochromatic copies of H. We will need to apply the one-sided counting

lemma, Theorem 2.1.14, with a = n and 0. We get constants co and Eo > 0 such8r

that if F is (p, copd2(H)+3 liXil lX)-jumbled and G satisfies DISC(qij,p, 6o), where

ap < qij 5 p, between sets X and Xj for every I < i < j < m with ij E E(H), then

G(H) > (1 - 9)q(H).

We apply Lemma 2.8.4 to the collection Gi with a = , eo and m = no. This

yields ci > 0 and a positive integer M such that if F is (p, c1pn)-jumbled then there is a

collection of graphs G' such that e(G') > e(Gj) -4ae(F) and every subgraph (Va, Vb)G'

containing any edges from G' has dG' (V, Vb) = q(6 > ap and satisfies DISC(q(', p, 60).

Adding over all r graphs, we will have removed at most 4rae(F) = 2e(F) edges. Let

G' be the union of the G'. This graph has density at least 1 - - in F.

We now consider the colored reduced (multi)graph R, considering each piece Va

of the partition as a vertex va and placing an edge of color i between va and vb
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if the graph between V, and V contains an edge of color i. Since F is (p, cpn)-

jumbled and n < 2M1V4, the number of edges between any two pieces differs from

pViIYiI by at most cpn2 < (pVIIVyjI provided that c < " . Note, moreover, that

11W < F1 < (1 + j) provided that n > 20M. Therefore, the number of edges in the

reduced graph R is at least

e(G') (1 - 2)e(F) k
- (1 + 2)p[21 2 - (1+ I)3p(2) 2 -2

where the final step follows from e(F) > (1 - ()p .

We now apply Lemma 2.8.2 to the reduced graph. Since k > m = no, there

exists a monochromatic copy of H in the reduced graph, in color i, say. But if this is

the case then we have a collection of vertex subsets X 1 ,. . . , X,, such that, for every

edge ab E E(H), the induced subgraph (Xa, Xb)G; has dG'(Xa, Xb) = q > ap and

satisfies DISC(q , p, Eo). By the counting lemma, provided c < c, we have G(H) >

G' (H) > (1 - 0)(ap)e(H) (2M)-v(H). Therefore, for c = min(CO, c1 , n- 1, 8O~,I2), we see

that G contains a copy of H.

2.8.3 Graph removal lemma

We prove that the graph removal lemma also holds in sparse jumbled graphs. The

proof is much the same as the proof for Turdn's theorem, though we include it for

completeness.

Theorem 2.1.1 For every graph H and every E > 0, there exist 6 > 0 and c > 0 such

that if / < cpd2(H)+3n then any (p,3) -jumbled graph F on n vertices has the following

property. Any subgraph of F containing at most 6pe(H)nv(H) copies of H may be made

H-free by removing at most epn 2 edges.

Proof. Suppose that H has vertex set {1, 2,... , m}, F is a (p, /3)-jumbled graph on

n vertices, where 0 < cpd2(H)+3n, and G is a subgraph of F containing at most

6pe(H)nv(H) copies of H.

We will need to apply the one-sided counting lemma, Lemma 2.1.14, with a=
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and 0 = . We get constants co and eO > 0 such that if F is (p, COpd2(H)+3 lXiI lxiD-
jumbled and G satisfies DISC(qij, p, cO), where ap qij p, between sets Xi and Xj

for every 1 < i <j < m with ij E E(H), then G(H) > lq(H).

Apply Lemma 2.8.1 with a = e/16 and Eo. This yields constants ci and M such

that if F is (p, c1pn)-jumbled then there is a subgraph G' of G with

e(G') e(G) - 4ae(F) > e(G) - E e(F) > e(G) - epn2
4

where we used that a = n. Moreover, there is an equitable partition into k < M

pieces V1 , ... , V such that every non-empty subgraph (Vi, V)G' has d(V, V) = qij >

ap and satisfies DISC(qij, p, Eo).

Suppose now that there is a copy of H left in G'. If this is the case then

we have a collection of vertex subsets Xl, .. ., Xm such that, for every edge ij E

E(H), the induced subgraph (Xi, XJ)G' has dG'(Xi, Xj) = qij > ap and satisfies

DISC(qij, p, co). By the counting lemma, provided c < ', we have G(H) > G'(H) >

1(ap)e(H) (2M)-v(H). Therefore, for c = min( , c1) and 6 = 1ae(H) (2M)-v(H), we

see that G contains at least 6pe(H)nv(H) copies of H, contradicting our assumption

about G.

2.8.4 Removal lemma for groups

We recall the following removal lemma for groups. Its proof is a straightforward

adaption of the proof of the dense version given by Kril, Serra and Vena f84].

For the rest of this section, let k3 = 3, k4 = 2, km = 1+ m3 if m > 5 is odd, and

km = 1 + m if m > 6 is even.

Theorem 2.1.2 For each e > 0 and positive integer m, there are c, 6 > 0 such that

the following holds. Suppose B 1,..., Bm are subsets of a group G of order n such that

each Bi is (p, )-jumbled with 0 < cpk-n. If subsets Ai ; Bi for i = 1,... , m are

such that there are at most 61B1| - |BmI/n solutions to the equation x 1 x2  Xm = 1

with xi E Ai for all i, then it is possible to remove at most c|Bi| elements from each

set Ai so as to obtain sets A' for which there are no solutions to x 1 x 2 - - -x = 1 with
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xi E A' for all i.

We saw above that the one-sided counting lemma gives the graph removal lemma.

For cycles, the removal lemma follows from Proposition 2.7.2. The version we need

is stated below.

Proposition 2.8.5. For everym ;> 3 and c > 0, there exist 6 > 0 and c > 0 so that

any graph F with vertex subsets X1,..., Xn, each of size n, satisfying (Xi, Xi+1 )r

being (p,/3)-jumbled with 3 < cpl+k-n for each i = 1,...,m (index taken mod m)

has the following property. Any subgraph of F containing at most Jpm n' copies of

Cm may be made Cm-free by removing at most epn2 edges, where we only consider

embeddings of Cm into F where the i-th vertex of Cm embeds into Xi.

Proof of Theorem 2.1.2. Let F denote the graph with vertex set G x {1,.. . , m}, the

second coordinate taken modulo m, and with vertex (g, i) colored i. Form an edge

from (y, i) to (z, i + 1) in F if and only if z = yxi for some xi C Bi, and let Go be a

subgraph of F consisting of those edges with xi E Ai. Observe that colored m-cycles

in the graph Go correspond exactly to (m + 1)-tuples (y, x 1 , x2 ,. . . , xM) with y E G

and xi E Ai for each i satisfying X1 x2 .. . xm = 1. The hypothesis implies that there

are at most 6 1 B1 I I -BmJ < 62mpmnm colored m-cycles in the graph Go, where we

assumed that c < } so that }pn < JBij < 2pn by jumbledness. Then by the cycle

removal lemma (Proposition 2.8.5) we can choose c and 6 so that Go can be made

Cm-free by removing at most 'pn 2 edges.

In Ai, remove the element xi if at least ' edges of the form (y, i)(yxi, i + 1)

have been removed. Since we removed at most 'pn 2 edges, we remove at most

Epn e Bi elements from each Ai. Let A' denote the remaining elements of Ai.

For any solution to xix2 ... xm 1 for xi C Ai, consider the n edge-disjoint m-cycles

(g, 1)(gxi, 2)(gx1 X 2 , 3) ... (gxi - xm, m) in the graph Go for g c G. We must have

removed at least one edge from each of the n cycles, and so we must have removed

at least a edges of the form (y, i)(yxj, i + 1) for some i, which implies that xi A/.

It follows that there is no solution to xiX2 -. xm = 1 with xi C A' for all i. M

In [841, the authors also proved removal lemmas for systems of equations which
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are graph representable. For instance, the system

x1x2 xj x 1 = 1

x1x2 x1  = 1

can be represented by the graph below, in the sense that solutions to the above

system correspond to embeddings of this graph into some larger graph with vertex set

G x {1, ... , 4}, similar to how solutions to x1 x2 ... = 1 correspond to cycles in the

proof of Theorem 2.1.2. We refer to the paper [841 for the precise statements. These

results can be adapted to the sparse setting in a manner similar to Proposition 2.8.5.

2.9 Concluding remarks

We conclude with discussions on the sharpness of our results, a sparse extension

of quasirandom graphs, induced extensions of the various counting and extremal

results, other sparse regularity lemmas, algorithmic applications and sparse Ramsey

and Turdn-type multiplicity results.

2.9.1 Sharpness of results

We have already noted in the introduction that for every H there are (p, /)-jumbled

graphs F on n vertices, with 8 = 0(pd(H)+2)/4n), such that F does not contain a copy

of H. On the other hand, the results of Section 2.6 tell us that we can always find

copies of H in F provided that # _ cpd2(H)+1n and in G provided that / <; cpd2(H)+3n.

So, since d2 (H) and d(H) differ by at most a constant factor, our results are sharp

up to a multiplicative constant in the exponent for all H. However, we believe that

our results are likely to be sharp up to an additive constant on the exponent of p in

the jumbledness parameter, with some caveats.
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An old conjecture of Erd6s [40] asserts that if H is a d-degenerate bipartite graph

then there exists C > 0 such that every graph G on n vertices with at least Cn2-

edges contains a copy of H. This conjecture is known to hold for some bipartite

graphs such as Ktt but remains open in general. The best result to date, due to

Alon, Krivelevich and Sudakov 151, states that if G has Cn2 -4 edges then it contains

a copy of H.

If Erd6s' conjecture is true then this would mean that copies of bipartite H begin

to appear already when the density is around n- 1 /d(H) , without any need for a jum-

bledness condition. If d2 (H) = d(H) - - then, even for optimally jumbled graphs,

our results only apply down to densities of about n-/(2 d(H)+l).

However, we considered embeddings of H into F such that each vertex {1, 2,. . , m}

of H is to be embedded into a separate vertex subset Xi. We believe that in this

setting our results are indeed sharp up to an additive constant, even in the case H is

bipartite. Without this caveat of embedding each vertex of H into a separate vertex

subset in F, we still believe that our results should be sharp for many classes of graphs.

In particular, we believe the conjecture [47, 86, 119] that there is a (p, cpt-n)-jumbled

graph which does not contain a copy of K.

One thing which we have left undecided is whether the jumbledness condition

for appearance of copies of H in regular subgraphs G of F should be the same as

that for the appearance of copies of H in F alone. For this question, it is natural to

consider the case of triangles where we know that there are (p, cp2 rn)-jumbled graphs

on n vertices which do not contain any triangles. That is, we know the embedding

result for F is best possible. The result of Sudakov, Szab6 and Vu [1191 mentioned

in the introduction also gives us a sharp result for the (K3 , E)-Turdn property. In

Section 2.9.6, we will obtain a similar sharp bound for the (K3, 2)-Ramsey property.

While these Turdn and Ramsey-type results are suggestive, we believe that the

jumbledness condition for counting in G should be stronger than that for counting in

F. The fact that the results mentioned above are sharp is because there are alternative

proofs of Turdn's theorem for cliques and Ramsey's theorem for the triangle which

only need counting results in F rather than within some regular subgraph G. Such
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a workaround seems unlikely to work for the triangle removal lemma. Kohayakawa,

Rddl, Schacht and Skokan [801 conjecture that the jumbledness condition in the sparse

triangle removal lemma, Theorem 2.1.2, can be improved from '3 = o(p3 n) to 3 =

o(p2 n). We conjecture that the contrary holds.

2.9.2 Relative quasirandomness

The study of quasirandom graphs began in the pioneering work of Thomason [127,

1281 and Chung, Graham, and Wilson [231. As briefly discussed in Section 2.1.1,

they showed that a large number of interesting graph properties satisfied by random

graphs are all equivalent. Perhaps the most surprising aspect of this work is that

if the number of cycles of length 4 in a graph is as one would expect in a binomial

random graph of the same density, then this is enough to imply that the edges are

very well-spread and the number of copies of any fixed graph is as one would expect

in a binomial random graph of the same density.

While there has been a considerable amount of research aimed at extending quasir-

andomness to sparse graphs (see [21, 22, 77, 821), these efforts have been only par-

tially successful. In particular, the key property of counting small subgraphs was

absent from previous results in this area. The following theorem bridges this gap

and extends these fundamental results to subgraphs of (possibly sparse) pseudoran-

dom graphs. The case where p = 1 and I' is the complete graph corresponds to the

original setting. The proof of some of the implications extend easily from the dense

case. However, to imply the notable counting properties, we use the counting lemma,

Theorem 2.1.12, which acts as a transference principle from the sparse setting to the

dense setting.

Such quasirandomness of a structure within a sparse but pseudorandom structure

is known as relative quasirandomness. This concept has been instrumental in the de-

velopment of the hypergraph regularity and counting lemma [63, 96, 106, 1241. In the

3-uniform case, for example, one repeatedly has to deal with 3-uniform hypergraphs

which are subsets of the triangles of a very pseudorandom graph.

To keep the theorem statement simple, we first describe some notation. The co-
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degree dG (v, v') of two vertices v, v' in a graph G is the number of vertices which are

adjacent to both v and v'. For a graph H, we let s(H) = min A(L(H))+4 d(L(H))+6

For a graph H and another graph G, let NH(G) denote the number of labeled copies

of H (as a subgraph) in G.

Theorem 2.9.1. Let k > 2 be a positive integer. For n > 1, let F = F, be a (p,/)-

jumbled graph on n vertices with p = p(F) and3 = O3(F) = o(pkn), and G = Gn be a

spanning subgraph of Fn. The following are equivalent.

P1 : For all vertex subsets S and T,

IeG(S, T) - qISIITII o(pn2).

P2 : For all vertex subsets S,

eG(S) - q2 o(pn2)

P3 : For all vertex subsets S with |St= [],

eG(S) - q o(pn2)

P4 : For each graph H with k > s(H),

NH (G) = qe(H) nv(H) + o(pe(H) nv(H)

P5 : e(G) > q! + o(pn2 ) and

Nc4 (G) < q4n4 + o(p4 n 4 ).

P6: e(G) > (1 + o(1))q, A, = (1 + o(1))qn, and A 2 = o(pn), where Ai is the ith

largest eigenvalue, in absolute value, of the adjacency matrix of G.
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P7 :

Z dG(v, v') - q'nI =( ~2 n3).
v,v'EV(G)

We briefly describe how to prove the equivalences between the various properties

in Theorem 2.9.1, with a flow chart shown below.

P4

P3 - P 2 - P 1 < P5 4 P7

P6

The equivalence between the discrepancy properties P1 , P2 , P3 is fairly straightforward

and similar to the dense case. Theorem 2.1.12 shows that P implies P4 . As P is

a special case of P4 , we have that P4 implies P5 . Proposition 2.5.4 shows that P5

implies P1 . The fact P5 implies P6 follows easily from the identity that the trace of

the fourth power of the adjacency matrix of G is both the number of closed walks in

G of length 4, and the sum of the fourth powers of the eigenvalues of the adjacency

matrix of G. The fact that P6 implies P is the standard proof of the expander mixing

lemma. The fact P5 implies P7 follows easily from the identity

Nc4 (G) = 4 dG(vv') (2.19)
v,v' EV(G)

where the sum is over all (') pairs of distinct vertices, as well as the identity

S dG(v, v') dV)
V'/ V

and two applications of the Cauchy-Schwarz inequality. Finally, we have P7 implies

Ps for the following reason. From (2.19), we have that P5 is equivalent to

dG(V V') 2 
_ 4 4 o(p4 n 4 ). (2.20)

v,v,

To verify (2.20), we split up the sum on the left into three sums. The first sum is

over pairs v, v' with |dG(v, V') - q2nj = o(p2n), the second sum is over pairs v, v' with
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dG(V, v) > 2p2n, and the third sum is over the remaining pairs v, v'. From P7, almost

all pairs v, v' of vertices satisfy IdG(V, V') - q2  
= o(p 2n), and so the first sum is

q4 n + o(p'n'). The second sum satisfies

dG (v,v') 2 < d(v, ) 2  4 4

v,v':dG(v,v')>2p2 n V,v':dr(v,v')>2p2n

where the first inequality follows from G is a subgraph of F, and the second inequality

follows from pseudorandomness in F. Finally, as P7 implies there are o(n 2 ) pairs v, v'

not satisfying IdG(V, V') - q2  o(p2n), and the terms in the third sum are at most

2p2n, the third sum is o(p4n4 ). This completes the proof sketch of the equivalences

between the various properties in Theorem 2.9.1.

2.9.3 Induced extensions of counting lemmas and extremal re-

sults

With not much extra effort, we can establish induced versions of the various counting

lemmas and extremal results for graphs. We assume that we are in Setup 2.4.1 with

the additional condition that, in Setup 2.3.1, the graph F satisfies the jumbledness

condition for all pairs ab of vertices and not just the sparse edges of H. Define a

strongly induced copy of H in G to be a copy of H in G such that the nonedges of the

copy of H are nonedges of F. Since G is a subgraph of F, a strongly induced copy of

H is an induced copy of H. Define

G*(H) := J G(xi, xj) J (1 - F(i, xj)) dx1 -.. dm
fXiCX1,...,xmexm. (ij)E=E(H) (ij) E(H)

and

q*(H) := ] qij JJ (1 - pij).
(ij)EE(H) (ij)OE(H)

Note that G*(H) is the probability that a random compatible map forms a strongly

induced copy of H and q*(H) is the idealized version. Also note that if F is (p, #)-

jumbled, then its complement P is (1 - p, 0)-jumbled. Hence, for p small, we expect
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that most copies of H guaranteed by Theorem 2.1.14 are strongly induced. This is

formalized in the following theorem, which is an induced analogue of the one-sided

counting lemma, Theorem 2.1.14.

Theorem 2.9.2. For every fixed graph H on vertex set {1, 2,... ,m} and every 0 > 0,

there exist constants c > 0 and e > 0 such that the following holds.

Let F be a graph with vertex sets X1, . .. , X, and suppose that p < - and the

bipartite graph (Xi, Xj)r is (p, cpd(H ) |lXii I|XI)-jumbled for every i < j. Let G be

a subgraph of F, with the vertex i of H assigned to the vertex set Xi of G. For each

edge ij in H, assume that (Xi, Xj)G satisfies DISC(qi, p, e). Then

G* (H) > (1 - 0)q*(H) .

We next discuss how the proof of Theorem 2.9.2 is a minor modification of the

proof of Theorem 2.1.14. As in the proof of Theorem 2.1.14, after j - 1 steps in

the embedding, we have picked f(vi), ... , f(vj_ 1 ) and have subsets T(i, j - 1) C Xi

for j i < m which consist of the possible vertices for f(vi) given the choice of

the first j - 1 embedded vertices. We are left with the task of picking a good set

W(j) C T(j, j - 1) of possible vertices w = f(vj) to continue the embedding with

the desired properties. We will guarantee, in addition to the three properties stated

there (which may be maintained since d2 (H) + 3 < d(H) + (), that

4. INr(w) n T(ij - 1)1 > (1 - p - V)lT(ij - 1)1 for each i > j which is not

adjacent to j.

As for each such i, if w is chosen for f(vj), T(i, j) = Np (w) n T(ij - 1), this will

guarantee that IT(i, Ij) ;> (1 -p- V)IT(i, j -1)1. As for each such i, the set T(i, j) is

only slightly smaller than T(i, j - 1), this will affect the discrepancy between each pair

of sets by at most a factor (1 -p-V) 2 . This additional fourth property makes the set

W(j) only slightly smaller. Indeed, to guarantee this property, we need that for each

of the nonneighbors i > j of j, the vertices w with fewer than (1 - p - V/) IT(i, j - 1)|

nonneighbors in T(i, j-1) in graph P are not in W(j), and there are at most cIT(i~J-1)i
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such vertices for each i by Lemma 2.3.7. As there are at most m choices of i, and

IT(i, j - 1)1 ; - o) q(i,j - 1)IXjI, we get that satisfying this additional fourth

property requires that the number of additional vertices deleted to obtain W(j) is at

most

M 2 < MCp2d( H)+5 jIm <IX;
cIT(', J - 1)1 - )qij-1

SMCP 2 d(H)+ 5 T(j,j - 1),
(1- q(i, j - 1)q(j, j - 1)

which is neglible since both q(i, j - 1) and q(j, j - 1) are at most pd(H). We therefore

see that, after changing the various parameters in the proof of Theorem 2.1.14 slightly,

the simple modification of the proof sketched above completes the proof of Theorem

2.9.2. We remark that the assumption p < ' can be replaced by p is bounded away

from 1, which is needed as we must guarantee that the nonedges of the induced copy

of H must be nonedges of P. We also note that in order to guarantee that nonedges of

H map to nonedges of F, it is necessary to take the exponent of p in the jumbledness

assumption in Theorem 2.9.2 to be d(H) + and not d2 (H) + 3.

The induced graph removal lemma was proved by Alon, Fischer, Krivelevich, and

Szegedy [8]. It states that for each graph H and e > 0 there is 6 > 0 such that every

graph on n vertices with at most 6nv(H) induced copies of H can be made induced

H-free by adding or deleting at most en2 edges. This clearly extends the original

graph removal lemma. To prove the induced graph removal lemma, they developed

the strong regularity lemma, whose proof involves iterating Szemer6di's regularity

lemma many times. A new proof of the induced graph removal lemma which gives

an improved quantitative estimate was recently obtained in [27].

The first application of Theorem 2.9.2 we discuss is an induced extension of the

sparse graph removal, Theorem 2.1.1. It does not imply the induced graph removal

lemma above.

Theorem 2.9.3. For every graph H and every e > 0, there exist 6 > 0 and c > 0 such
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that if /3 cpd(H )+2n then any (p, P)-jumbled graph P on n vertices with p ( has

the following property. Any subgraph of P containing at most 6pe(H)nv(H) (strongly)

induced copies of H may be made H-free by removing at most epn2 edges.

The proof of Theorem 2.9.3 is the same as the proof of Theorem 2.1.1, except

we replace the one-sided counting lemma, Theorem 2.1.14, with its induced variant,

Theorem 2.9.2. Note that unlike the standard induced graph removal lemma, here it

suffices only to delete edges. Furthermore, all copies of H, not just induced copies,

are removed by the deletion of few edges.

The induced Ramsey number rind(H; r) is the smallest natural number N for

which there is a graph G on N vertices such that in every r-coloring of the edges of G

there is an induced monochromatic copy of H. The existence of these numbers was

independently proven in the early 1970s by Deuber [36], Erd6s, Hajnal and Posa [421,

and R6dl [1031. The bounds that these original proofs give on rind(H, r) are enormous.

However, Trotter conjectured that the induced Ramsey number of bounded degree

graphs is at most polynomial in the number of vertices. That is, for each A there is

c(A) such that rind(H; 2) < nc(A). This was proved by Luczak and R6dl [92], who gave

an enormous upper bound on c(A), namely, a tower of twos of height O(A 2 ). More

recently, Fox and Sudakov [481 proved an upper bound on c(A) which is O(A log A).

These proofs giving a polynomial bound on the induced Ramsey number of graphs of

bounded degree do not appear to extend to more than two colors.

A graph G is induced Ramsey (A, n, r) -universal if, for every r-edge-coloring of

G, there is a color for which there is a monochromatic induced copy in that color

of every graph on n vertices with maximum degree A. Clearly, if G is induced

Ramsey (A, n, r)-universal, then rind(H; r) IGI for every graph H on n vertices

with maximum degree A.

Theorem 2.9.4. For each A and r there is C = C(A, r) such that for every n there

is an induced Ramsey (A, n, r)-universal graph on at most Cn2s+ vertices.

The exponent of n in the above result is best possible up to a multiplicative factor.

This is because even for the much weaker condition that G contains an induced copy
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of all graphs on n vertices with maximum degree A, the number of vertices of G has

to be Q(nA/ 2 ) (see, e.g., [181).

We have the following immediate corollary of Theorem 2.9.4, improving the bound

for induced Ramsey numbers of bounded degree graphs. It is also the first polynomial

upper bound which works for more than two colors.

Corollary 2.9.5. For each A and r there is C = C(A, r) such that ri d(H; r) <

Cn2A+8 for every n-vertex graph H of maximum degree A.

We next sketch the proof of Theorem 2.9.4. The proof builds on ideas used in the

proof of Chvatal, R6dl, Szemer6di, and Trotter [241 that Ramsey numbers of bounded

degree graphs grow linearly in the number of vertices. We claim that any graph G

on N - Cn2A+8 vertices which is (p, 3)-jumbled with p = 1 and #3= O(V/pN) isn

the desired induced Ramsey (A, n, r)-universal graph. Such a graph exists as almost

surely G(N,p) has this jumbledness property. Note that # = cpd(H)+2 N with c =

O(p 2). We consider an r-coloring of the edges of G and apply the multicolor sparse

regularity lemma so that each color satisfies a discrepancy condition between almost

all pairs of parts. Using Turin's theorem and Ramsey's theorem in the reduced

graph, we find A + 1 parts X 1, ... , XA+1 , each pair of which has density at least

-- in the same color, say red, and satisfies a discrepancy condition. Let H be a2r

graph on n vertices with maximum degree A, so H has chromatic number at most

A + 1. Assign each vertex a of H to some part so that the vertices assigned to

each part form an independent set in H. We then use the induced counting lemma,

Theorem 2.9.2, to get an induced monochromatic red copy of H. We make a couple

of observations which are vital for this proof to work, and one must look closely

into the proof of the induced counting lemma to verify these claims. First, we can

choose the constants in the regularity lemma and the counting lemma so that they

only depend on the maximum degree A and the number of colors r and not on the

number n of vertices. Indeed, in addition to the at most 2A times that we apply

inheritance of regularity, the discrepancy-parameter increases by a factor of at most

(1 - p - V/C)-2n (1 _ Q(p))-2n= (1 _ (_I))-2" = 0(1) due to the restrictions
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imposed by the nonedges of H. So we lose a total of at most a constant factor in

the discrepancy, which does not affect the outcome. Second, as we assigned some

vertices of H to the same part, they may get embedded to the same vertex. However,

one easily checks that almost all the embeddings of H in the proof of the induced

counting lemma are one-to-one, and hence there is a monochromatic induced copy of

H. Indeed, as there are less than n vertices which are previously embedded at each

step of the proof of the induced counting lemma, and W(j) >> n, then there is always

a vertex w E W(j) to pick for f(vj) to continue the embedding. This completes the

proof sketch.

In the proof sketched above, the use of the sparse regularity lemma forces an

enormous upper bound on C(A, r), of tower-type. However, all we needed was A + 1

parts such that the graph between each pair of parts has density at least P in the2r

same color and satisfies a discrepancy condition. To guarantee this, one does not

need the full strength of the regularity lemma, and the sparse version of the Duke-

Lefmann-Rbdl weak regularity lemma discussed in Subsection 2.9.4 is sufficient. This

gives a better bound on C(A, r), which is an exponential tower of constant height.

The last application we mention is an induced extension of the sparse Erd6s-Stone-

Simonovits theorem, Theorem 2.1.4. We say that a graph F is induced (H, e)- Turdn if

any subgraph of 1 with at least (1- 1 + e)e(F) edges contains a strongly induced

copy of H.

Theorem 2.9.6. For every graph H and every e > 0, there exists c > 0 such that if

/ cpd(H)+2n then any (p, )-jumbled graph on n vertices with p 1 is induced

(H, E)- Turdn.

The proof of Theorem 2.9.6 is the same as the proof of Theorem 2.1.4, except

we replace the one-sided counting lemma, Theorem 2.1.14, with its induced variant,

Theorem 2.9.2.
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2.9.4 Other sparse regularity lemmas

The sparse regularity lemma, in the form due to Scott [112], states that for every

c > 0 and positive integer m, there exists a positive integer M such that every graph

G has an equitable partition into k pieces V1, V2 ,... , V1 with m < k < M such that all

but ek 2 pairs (Vi, V)G satisfy DISC(pij, pij, E) for some pij. The additional condition

of jumbledness which we imposed in our regularity lemma, Theorem 2.1.11, was there

so as to force all of the pij to be p. If this were not the case, it could easily be that all

of the edges of the graph bunch up within a particular bad pair, so the result would

tell us nothing.

In our results, we made repeated use of sparse regularity. While convenient, this

does have its limitations. In particular, the bounds which the regularity lemma gives

on the number of pieces M in the regular partition is (and is necessarily [27, 601) of

tower-type in E. This means that the constants c- 1 which this method produces for

Theorems 2.1.1, 2.1.4, 2.1.5, and 2.1.6 are also of tower-type.

In the dense setting, there are other sparse regularity lemmas which prove sufficient

for many of our applications. One such example is the cylinder regularity lemma of

Duke, Lefmann and R6dl [381. This lemma says that for a k-partite graph, between

sets V1 , V2 , . . . , V, there is an E-regular partition of the cylinder V x ... x Vk into a

relatively small number of cylinders K = W1 x ... x Wk, with Wi C Vi for 1 <i < k.

The definition of an c-regular partition here is that all but an E-fraction of the k-tuples

(v1 , ... , vk) E V x ... x k are in E-regular cylinders, where a cylinder W1 x ... x Wk

is c-regular if all (k) pairs (Wi, Wj), 1 < i < j < k, are c-regular in the usual sense.

For sparse graphs, a similar theorem may be proven by appropriately adapting

the proof of Duke, Lefmann and R6dl using the ideas of Scott. Consider a k-partite

graph, between sets 1, V2,..., Vk. We will say that a cylinder K = W1 x ... x Wk,

with Wi C Vi for 1 < i < k, satisfies DISC(qK, PK, c) with qK = (qij)1 i<jsk and

PK = (pij)1 i<j:k if all (k) pairs (Wi, Wj), 1 < i < j < k, satisfy DISC(qij, pij, e).

The sparse version of the cylinder regularity lemma is now as follows.

Proposition 2.9.7. For every E > 0 and positive integer k, there exists y > 0 such
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that if G = (V, E) is a k-partite graph with k-partition V = V U ... U V then there

exists a partition K of V1 x ... x V into at most -y-I cylinders such that all but an

E-fraction of the k-tuples in V1 x --- x V are contained in cylinders K satisfying

DISC(qK,PK,E) and, for each K E K with K = W x -x Wk and 1 < i < k,

IN ;> -ylVil.

The constant -y is at most exponential in a power of kE- 1 . Moreover, this theorem

is sufficient for our applications to Turin's theorem and Ramsey's theorem. This

results in constants c- 1 which are at most double exponential in the parameters HI,

e and r for Theorems 2.1.4 and 2.1.6.

For the graph removal lemma, we may also make some improvement, but it is of

a less dramatic nature. As in the dense case [46], it shows that in Theorem 2.1.1 we

may take 6- and c-1 to be a tower of twos of height logarithmic in C-1. The proof

essentially transfers to the sparse case using the sparse counting lemma, Theorem

2.1.14.

2.9.5 Algorithmic applications

The algorithmic versions of Szemer6di's regularity lemma and its variants have ap-

plications to fundamental algorithmic problems such as max-cut, max-k-sat, and

property testing (see [9] and its references). The result of Alon and Naor [61 approx-

imating the cut-norm of a graph via Grothendieck's inequality allows one to obtain

algorithmic versions of Szemeredi's regularity lemma [7], the Frieze-Kannan weak

regularity lemma [25], and the Duke-Lefmann-Rddl weak regularity lemma. Many of

these algorithmic applications can be transferred to the sparse setting using algorith-

mic versions of the sparse regularity lemmas, allowing one to substantially improve

the error approximation in this setting. Our new counting lemmas allows for further

sparse extensions. We describe one such extension below.

Suppose we are given a graph H on h vertices, and we want to compute the num-

ber of copies of H in a graph G on n vertices. The brute force approach considers all

possible h-tuples of vertices and computes the desired number in time O(nh). The
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Duke-Lefmann-R6dl regularity lemma was originally introduced in order to obtain

a much faster algorithm, which runs in polynomial time with an absolute constant

exponent, at the expense of some error. More precisely, for each c > 0, they found an

algorithm which, given a graph on n vertices, runs in polynomial time and approxi-

mates the number of copies of H as a subgraph to within enh. The running time is

of the form C(h, e)nc, where c is an absolute constant and C(h, e) is exponential in a

power of he-1 . We have the following extension of this result to the sparse setting.

The proof transfers from the dense setting using the algorithmic version of the sparse

Duke-Lefmann-R6dl regularity lemma, Proposition 2.9.7, and the sparse counting

lemma, Theorem 2.1.12. For a graph H, we let s(H) = min A(L(H))+4 d(L(H))+6

Proposition 2.9.8. Let H be a graph on h vertices with s(H) < k and e > 0. There is

an absolute constant c and another constant C = C(e, h) depending only exponentially

on h-1 such that the following holds. Given a graph G on n vertices which is known

to be a spanning subgraph of a (p, /)-pseudorandom graph with / < C-lpkn, the

number of copies of H in G can be computed up to an error epe(H)nv(H) in running

time Cnc.

2.9.6 Multiplicity results

There are many problems and results in graph Ramsey theory and extremal graph

theory on the multiplicity of subgraphs. These results can be naturally extended

to sparse pseudorandom graphs using the tools developed in this paper. Indeed, by

applying the sparse regularity lemma and the new counting lemmas, we get extensions

of these results to sparse graphs. In this subsection, we discuss a few of these results.

Recall that Ramsey's theorem states that every 2-edge-coloring of a sufficiently

large complete graph K contains at least one monochromatic copy of a given graph

H. Let cH,, denote the fraction of copies of H in K that must be monochromatic in

any 2-edge-coloring of G. By an averaging argument, cH,n is a bounded, monotone

increasing function in n, and therefore has a positive limit cH as n -+ oo. The constant

cH is known as the Ramsey multiplicity constant for the graph H. It is simple to show

114



that cH 2 1m for a graph H with m = e(H) edges, where this bound comes from

considering a random 2-edge-coloring of K, with each coloring equally likely.

Erd6s [391 and, in a more general form, Burr and Rosta [171 suggested that the

Ramsey multiplicity constant is achieved by a random coloring. These conjectures

are false, as was demonstrated by Thomason [1291 even for H being any complete

graph Kt with t > 4. Moreover, as shown in [45], there are graphs H with m edges

and cH m-m/2+o(m) , which demonstrates that the random coloring is far from being

optimal for some graphs.

For bipartite graphs the situation seems to be very different. The edge density of

a graph is the fraction of pairs of vertices that are edges. The conjectures of Erd6s-

Simonovits [1161 and Sidorenko [1141 suggest that for any bipartite H the number of

copies of H in any graph G on n vertices with edge density p bounded away from 0 is

asymptotically at least the same as in the n-vertex random graph with edge density

p. This conjecture implies that cH = 21-rm if H is bipartite with m edges. The most

general results on this problem were obtained in [281 and [881, where it is shown that

every bipartite graph H which has a vertex in one part complete to the other part

satisfies the conjecture.

More generally, let cH,r denote the fraction of copies of H in F that must be

monochromatic in any 2-edge-coloring of F. For a graph F with n vertices, by aver-

aging over all copies of F in K2, we have CH,r < CH,n 5 cH. It is natural to try to find

conditions on F which imply that CH,r is close to cH. The next theorem shows that

if F is sufficiently jumbled, then CH,F is close to cH. The proof follows by noting that

the proportion of monochromatic copies of H in the weighted reduced graph R is at

least cH,IRI. This count then transfers back to F using the one-sided counting lemma.

We omit the details.

Theorem 2.9.9. For each e > 0 and graph H, there is c > 0 such that if F is a

(p, /)-jumbled graph on n vertices with 3 cpd2(H)+3n then every 2-edge-coloring of

F contains at least (cH - e)pe(H)nv(H) labeled monochromatic copies of H.

Maybe the earliest result on Ramsey multiplicity is Goodman's theorem [59],
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which determines cK3, and, in particular, implies CK3 = . The next theorem shows4.

an extension of Goodman's theorem to pseudorandom graphs, giving an optimal

jumbledness condition to imply cH,U = I - o(1).

Theorem 2.9.10. If F is a (p, )-jumbled graph on n vertices with )3 ; 'p 2 n, then

every 2-edge-coloring of F contains at least (p3 - 10p2)2 monochromatic triangles.

The proof of this theorem follows by first noting that T = A + 2M, where A

denotes the number of triangles in F, M the number of monochromatic triangles in

F, and T the number of ordered triples (a, b, c) of vertices of F which form a triangle

such that (a, b) and (a, c) are the same color. We then give an upper bound for A

and a lower bound for T using the jumbledness conditions and standard inequalities.

We omit the precise details.

The previous theorem has the following immediate corollary, giving an optimal

jumbledness condition to imply that a graph is (K3, 2)-Ramsey.

Corollary 2.9.11. If F is a (p, )-jumbled graph on n vertices with 3 < In, then F

is (K3, 2)-Ramsey.

Define the Turin multiplicity PH,d,n to be the minimum, over all graphs G on n

vertices with edge density at least d, of the fraction of copies of H in K which are

also in G. Let PH,d be the limit of PH,d,n as n -+ oo. This limit exists by an averaging

argument. The conjectures of Erd6s-Simonovits [1161 and Sidorenko [1141 mentioned

earlier can be stated as PH,d = de(H) for bipartite H. Recently, Reiher [1001, extending

work of Razborov [991 and Nikiforov [97] for t = 3 and 4, determined PK,d for all

t > 3.

We can similarly extend these results to the sparse setting. Let PH,d,r be the

minimum, over all subgraphs G of F with at least de(F) edges, of the fraction of

copies of H in F which are also in G. We have the following result, which gives

jumbledness conditions on F which imply that PH,d,r is close to PH,d-

Theorem 2.9.12. For each e > 0 and graph H, there is c > 0 such that if F is a

(p, 0)-jumbled graph on n vertices with / < cpd2(H) 3 n then every subgraph of F with

at least de(F) edges contains at least (pH,d - E)pe(H) n(H) labeled copies of H.
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Chapter 3

A relative Szemeredi theorem

The Green-Tao theorem 169] states that the primes contain arbitrarily long arithmetic

progressions. This result, along with their subsequent work 1711 on determining the

asymptotics for the number of prime k-tuples in arithmetic progression, constitutes

one of the great breakthroughs in 21st century mathematics.

The proof of the Green-Tao theorem has two key steps. The first step, which

Green and Tao refer to as the "main new ingredient" of their proof, is to establish a

relative Szemeredi theorem. Szemer6di's theorem [1201 states that any dense subset

of the integers contains arbitrarily long arithmetic progressions. More formally, we

have the following theorem, which is stated for ZN := Z/NZ but easily implies an

equivalent statement in the set [NJ := {1, 2,... , N}.

Theorem 3.0.1 (Szemer6di's theorem). For every natural number k > 3 and every

6 > 0, as long as N is sufficiently large, any subset of ZN of density at least 6 contains

an arithmetic progression of length k.

A relative Szemer6di theorem is a similar statement where the ground set is no

longer the set ZN but rather a sparse pseudorandom subset of ZN-

The second step in their proof is to show that the primes are a dense subset of

a pseudorandom set of "almost primes", sufficiently pseudorandom that the relative

Szemeredi theorem holds. Then, since the primes are a dense subset of this pseudo-

random set, an application of the relative Szemer6di theorem implies that the primes
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contain arbitrarily long arithmetic progressions. This part of the proof uses some

ideas from the work of Goldston and Yildirim [58] (and was subsequently simplified

in [1221).

In the work of Green and Tao, the pseudorandomness conditions on the ground

set are known as the linear forms condition and the correlation condition. Roughly

speaking, both of these conditions say that, in terms of the number of solutions to

certain linear systems of equations, the set behaves like a random set of the same

density. A natural question is whether these pseudorandomness conditions can be

weakened. We address this question by giving a simple proof for a strengthening

of the relative Szemer6di theorem, showing that a weak linear forms condition is

sufficient for the theorem to hold.

This improvement has two aspects. We remove the correlation condition entirely

but we also reduce the set of linear forms for which the correct count is needed. In

particular, we remove those corresponding to the dual function condition, a pointwise

boundedness condition stated explicitly by Tao [1231 in his work on constellations in

the Gaussian primes but also used implicitly in [69].

To state the main theorem, we will assume the definition of the k-linear forms

condition. The formal definition, which may be found in Section 3.1 below, is stated

for measures rather than sets but we will ignore this relatively minor distinction here,

reserving a more complete discussion of our terminology for there.

Theorem 3.0.2 (Relative Szemer6di theorem). For every natural number k > 3 and

every 6 > 0, if S C ZN satisfies the k-linear forms condition and N is sufficiently

large, then any subset of S of relative density at least 6 contains an arithmetic pro-

gression of length k.

One of the immediate advantages of this theorem is that it simplifies the proof of

the Green-Tao theorem. In addition to giving a simple proof of the relative Szemer6di

theorem, it removes the need for the number-theoretic estimates involved in estab-

lishing the correlation condition for the almost primes. A further advantage is that,

by removing the correlation condition, the relative Szemer6di theorem now applies to
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pseudorandom subsets of ZN of density N-ck. With the correlation condition, one

could only hope for such a theorem down to densities of the form N-0).

While the relative Szemer6di theorem is the main result of this chapter, the main

advance is an approach to regularity in sparse pseudorandom hypergraphs. This

allows us to prove analogues of several well-known combinatorial theorems relative

to sparse pseudorandom hypergraphs. In particular, we prove a sparse analogue of

the hypergraph removal lemma. It is from this that we derive our relative Szemer6di

theorem. As always, applying the regularity method has two steps, a regularity lemma

and a counting lemma. We provide novel approaches to both.

A counting lemma for subgraphs of sparse pseudorandom graphs was already

proved in Chapter 2. In this chapter, we simplify and streamline the approach taken

there in order to prove a counting lemma for subgraphs of sparse pseudorandom

hypergraphs. This result is the key technical step in our proof and, perhaps, the main

contribution of this chapter. Apart from the obvious difficulties in passing from graphs

to hypergraphs, the crucial difference between this chapter and Chapter 2 is in the

type of pseudorandomness considered. For graphs, we have a long-established notion

of pseudorandomness known as jumbledness. The greater part of Chapter 2 is then

concerned with optimizing the jumbledness condition which is necessary for counting a

particular graph H. For hypergraphs, we use an analogue of the linear forms condition

first considered by Tao [1231. It says that our hypergraph is pseudorandom enough

for counting H within subgraphs if it contains asymptotically the correct count for

the 2-blow-up of H and all its subgraphs.

We also use an alternative approach to regularity in sparse hypergraphs. While

it would be natural to use a sparse hypergraph regularity lemma (and, following our

approach in Chapter 2, this was how we initially proceeded), it suffices to use a weak

sparse hypergraph regularity lemma which is an extension of the weak regularity

lemma of Frieze and Kannan [531. This is also closely related to the transference

theorem used by Green and Tao (see, for example, [651 or [102, 1311, where it is also

referred to as the dense model theorem).

With both a regularity lemma and a counting lemma in place, it is then a straight-
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forward matter to prove a relative extension of the famous hypergraph removal lemma

[63, 96, 106, 107, 1241. Such a theorem was first derived by Tao [123] in his work

on constellations in the Gaussian primes but, like the Green-Tao relative Szemer6di

theorem, needs both a correlation condition and a dual function condition.1 Our ap-

proach removes these conditions. The final step in the proof of the relative Szemer6di

theorem is then a standard reduction used to derive Szemer6di's theorem from the

hypergraph removal lemma. The details of this reduction already appear in [123] but

we include them here for completeness. In fact, the chapter is self-contained apart

from assuming the hypergraph removal lemma.

In Section 3.1, we state our results, including the relative Szemer6di theorem

and the removal, regularity, and counting lemmas. In Section 3.2, we deduce the

relative multidimensional Szemer6di theorem from our relative hypergraph removal

lemma. In Section 3.3, we prove the removal lemma from the regularity and counting

lemmas. We prove our weak sparse hypergraph regularity lemma in Section 3.4 and

the associated counting lemma in Section 3.5. We conclude, in Section 3.6, with some

remarks.

3.1 Definitions and results

Notation. Dependence on N. We consider functions v = v(N), where N (usually

suppressed) is assumed to be some large integer. We write o(1) for a quantity that

tends to zero as N -+ oo along some subset of Z. If the rate at which the quan-

tity tends to zero depends on some other parameters (e.g., k, 3), then we put these

parameters in the subscript (e.g., ok,s(1)).

Expectation. We write E[f(Xi, x2 , .. .)IP] for the expectation of f(Xi, x 2 ,...) when

the variables are chosen uniformly out of all possibilities satisfying P. We write

E[fi(x, x 2 , . - - )IXi E A 1, x 2 E A 2 , . .. for the expectation of f(X 1 , x2 ,...) when each

xi is chosen uniformly and independently at random from A.

'The problem of relative hypergraph removal was also recently considered by Towsner 11301.
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3.1.1 A relative Szemeredi theorem

Here is an equivalent weighted version of Szemer6di's theorem as formulated, for

example, in [69, Prop. 2.31.

Theorem 3.1.1 (Szemer6di's theorem, weighted version). For every k > 3 and 6 > 0,

there exists c > 0 such that for N sufficiently large and any nonnegative function

f: ZN -+ [0, 1] satisfying E[f] > 6,

E[f(x)f(x + d)f(x + 2d) ... f(x + (k - 1)d)Ix, d E ZN] c. (3.1)

A relative Szemer6di theorem would instead ask for the nonnegative function f
to be bounded above by a measure v instead of the constant function f. For us, a

measure will be any nonnegative function on ZN- We do not explicitly assume the

additional condition that

E[v(X)Ix E ZN] = 1 + 0(1),

but this property follows from the linear forms condition that we will now assume.

Such measures are more general than subsets, as any subset S C ZN (e-g-, in The-

orem 3.0.2) can be thought of as a measure on ZN taking value N/SI on S and 0

elsewhere. The dense case, as in Theorem 3.1.1, corresponds to taking v = 1. Our

notion of pseudorandomness for measures V on ZN is now as follows.

Definition 3.1.2 (Linear forms condition). A nonnegative function v = V(N) ZN ~~

R>o is said to obey the k-linear forms condition if one has

E[17 11 v(z(ij) w ))njw (0 1 0 (1) EZ ] 1 o1
kX k(32

E a c e of (n - XkO , E ZN =1+(1) (3.2)
j=1 WCE{0,1} [A:\fIl j=1

for any choices of exponents nj,, E (o, 1}.
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Example 3.1.3. For k = 3, condition (3.2) says that

E[v(y + 2z)v(y'+ 2z)v(y + 2z')v(y'+ 2z')v(-x + z)v(-x'+ z)v(-x + z')v(-x'+ z')

v(-2x - y)v(-2x' - y)v(-2x - y')v(-2x' - y')Ix, x', y, y', z, z' E ZN = 1 + o(1)

and similar conditions hold if one or more of the twelve v factors in the expectation

are erased.

Our linear forms condition is much weaker than that used in Green and Tao [69].

In particular, Green and Tao need to assume that pointwise estimates such as

E[v(a + x)v(a + y)v(a + x + y)x, y E ZN = 1 + o(1)

hold uniformly over all a E ZN. Such linear forms do not arise in our proof. More-

over, to prove their relative Szemer6di theorem, Green and Tao need to assume a

further pseudorandomness condition, which they call the correlation condition. This

condition also does not arise in our proofs. Indeed, we prove that a relative Szemer6di

theorem holds given only the linear forms condition defined above.

Theorem 3.1.4 (Relative Szemer6di theorem). For every k > 3 and 6 > 0, there

exists c > 0 such that if v: ZN -+ R> 0 satisfies the k-linear forms condition, N is

sufficiently large, and f: ZN -* R1>0 satisfies 0 < f(x) v(x) for all x C ZN and

E[f] > 6, then

E[f(x)f(x + d)f(x + 2d) - f(x + (k - 1)d) x, d E ZN > C. (3.3)

We note that both here and in Theorem 3.0.2, the phrase "N is sufficiently large"

indicates not only a dependency on 6 and k as in the usual version of Szemer6di's

theorem but also a dependency on the o(1) term in the linear forms condition. We

will make a similar assumption in many of the theorems stated below.

We prove Theorem 3.1.4 using a new relative hypergraph removal lemma.2 In the

2 Green and Tao 1691 prove a transference result that allows them to apply the dense version of
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next subsection we set up the notation for hypergraphs and state the corresponding

pseudorandomness hypothesis.

3.1.2 Hypergraphs

We borrow most of our notation and definitions from Tao [123, 1241.

Definition 3.1.5 (Hypergraphs). Let J be a finite set and r > 0. Define (J) =

{e C J : |el = r} to be the set of all r-element subsets of J. An r-uniform hypergraph

on J is defined to be any subset H C ().

Definition 3.1.6 (Hypergraph system). A hypergraph system is a quadruple V =

(J, (V)jcj, r, H), where J is a finite set, (V)jEj is a collection of finite non-empty

sets indexed by J, r > 1 is a positive integer, and H C (J) is an r-uniform hypergraph.

For any e C J, we set Ve := Hee V. For any x= (x.)iEJ E Vj and any subset J'C J,

we write xi, = (Xj)jEy E Vy, to mean the natural projection of x onto the coordinates

J'. Finally, for any e C J, we wriite ae for the set {f C e : If = IeI - 1}, the skeleton

of e.

Definition 3.1.7 (Weighted hypergraphs). Let V = (J, (V)Ej, r, H) be a hyper-

graph system. A weighted hypergraph on V is a collection 9 = (ge)eEH of functions

ge: Ve -+ R>O indexed by H. We write 0 and 1 to denote the constant-valued weighted

hypergraphs of uniform weight 0 and 1, respectively. Given two weighted hypergraphs

g and v on the same hypergraph system, we write g < v to mean that ge 5 v, for all

e, which in turn means that ge(xe) 5 ve(xe) for all xe E Ve.

The weighted hypergraph v plays an analogous role to the v in Theorem 3.1.4,

with v = 1 again corresponding to the dense case. We have an analogous linear forms

condition for v as a weighted hypergraph. We use the following indexing notation.

For a finite set e and w c {0, 1}e, we write xew' to mean the tuple (X'w3)jEe. We also

write xe := (X )jee and similarly with xe

Szemer6di's theorem as a black box. This allows them to show that the optimal c in (3.3) can be
taken to be the same as the optimal c in (3.1). The proof in this chapter goes through the hypergraph
removal lemma and thus does not obtain the same c. Nevertheless, one can obtain our result with
the same c by modifying the argument to an arithmetic setting, as done in Chapter 4.
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V H-linear forms V V
H: condition: & subgraphs, e.g.,

V2  V3  V2  V3 V2 ' V3

(a) (b) (c)
Figure 3-1: Linear forms conditions for H = K3 . See Example 3.1.9.

Definition 3.1.8 (Linear forms condition). A weighted hypergraph v = v() on the

hypergraph system V = V(N) - (J (V_(N))j, r, H) is said to obey the H-linear forms

condition (or simply the linear forms condition if there is no confusion) if one has

E[J7 J 1 /e(x( ))"-,fle , Ix(1) c Vj = 1 + o(1) (3.4)
eEH wC{0,1}e

for any choices of exponents ne,w C {O, 1}.

Example 3.1.9. Let H be the set of all pairs in J = {1, 2, 3}. The linear forms

condition says that

E vij(xi, xj)vij (x', x)vij(xi, x )vij (x', )

ij=12,13,23

x1, ' E V, x2 , X2 E V2 , X3 ,' E V3 = + o(1)

and similarly if one or more of the twelve v factors are deleted. This expression

represents the weighted homomorphism density of K2 ,2 ,2 in the weighted tripartite

graph given by v, as illustrated in Figure 3-1(b) (the vertices of K2 ,2 ,2 must map into

the corresponding parts). Deleting some v factors corresponds to considering various

subgraphs of K2 ,2 ,2 , e.g., Figure 3-1(c).

In general, the H-linear forms condition says that v has roughly the expected

density for the 2-blow-up3 of H as well as any subgraph of the 2-blow-up. Our linear

3By the 2-blow-up of H we mean the hypergraph consisting of vertices j(0), j() for each j E J,
and edges e(') := {j(Wi) : j E e} for any e e H and w E {o, 1}'. We actually do not need the
full strength of this assumption. It suffices to assume that v has roughly the expected density for
any subgraph of a weak 2-blow-up of H, where by a weak 2-blow-up we mean the following. Fix
some edge el E H (we will need to assume the condition for all ei). The weak 2-blow-up of H with
respect to el is the subgraph of the usual 2-blow-up consisting of all edges e(w) where wi = wj for
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forms condition for hypergraphs coincides with the one used by Tao [123, Def. 2.8],

although in [123] one assumes additional pseudorandomness hypotheses on v known

as the dual function condition and the correlation condition.

3.1.3 Hypergraph removal lemma

The hypergraph removal lemma was first proved by Gowers [63] and by Nagle, Rdl,

Schacht, and Skokan [96, 106, 107]. It states that for every r-uniform hypergraph H

on h vertices, every r-uniform hypergraph on n vertices with o(nh) copies of H can

be made H-free by removing o(nr) edges. As first explicitly stated and proved by Tao

[1241, the proof of the hypergraph removal lemma further gives that the edges can

be removed in a low complexity way (this idea will soon be made formal). We will

use a slightly stronger version, where edges are given weights in the interval [0, 1].

This readily follows from the usual version by a simple rounding argument, as done

in [123, Thm. 3.7]. We state this result as Theorem 3.1.11 below.

Definition 3.1.10. For any set e of size r and any Ee Ve = f1[,e V, we define

the complexity of Ee to be the minimum integer T such that there is a partition of

Ee into T sets Ee,, ... , Ee,, so that each Ee,, is the set of r-cliques of some (r - 1)-

uniform hypergraph, meaning that there exists some Bf,j 9 Vf for each f E Oe so

that 1
Ee (e) = HffEqe 1B, (xf) for all Xe E Ve.

Theorem 3.1.11 (Weighted hypergraph removal lemma). For every E > 0 and

finite set J, there exists 6 > 0 and T > 0 such that the following holds. Let

V = (J, (Vj)jEj, r, H) be a hypergraph system. Let g be a weighted hypergraph on

V satisfying 0 < g 1 and

E [ ge(xe) x e V] <6.
eEH

Then for each e E H there exists a set Ee C Ve for which Ve \ E' has complexity at

any i, j E e \ el. This weaker version of the H-linear forms condition is all we shall use for the proof,
although everything to follow will be stated as in Definition 3.1.8 for clarity.
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most T and such that

H IE' (xe) = 0 for all x E Vj
eEH

and for all e E H one has

E [ge(xe)1V\E (xe)Ixe E Ve] < E

We prove a relativized extension of the hypergraph removal lemma. A relative

hypergraph removal lemma was already established by Tao in [123], where he assumed

the majorizing measure satisfies three conditions: the linear forms condition, the

correlation condition, and the dual function condition. We again show that a linear

forms condition is sufficient.

Theorem 3.1.12 (Relative hypergraph removal lemma). For every e > 0 and fi-

nite set J, there exists J > 0 and T > 0 such that the following holds. Let V

(J, (V)j j, r, H) be a hypergraph system. Let v and g be weighted hypergraphs on V.

Suppose 0 < g < v, v satisfies the H-linear forms condition, and N is sufficiently

large. If

E [1 ge(xe) x Vj] 6,
eEH

then for each e c H there exists a set E' C Ve for which Ve \ E' has complexity at

most T and such that

H 1E,(x,) = 0 for all x E Vj
eEH

and for all e C H one has

E[ge(xe)1V \E1(xe) xe C Ve E

In Section 3.3 we will deduce Theorem 3.1.12 from Theorem 3.1.11 by applying

the weak regularity lemma and the counting lemma which are stated in the next two

subsections.
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3.1.4 Weak hypergraph regularity

The Frieze-Kannan weak regularity lemma [531 allows one to approximate in cut-

norm a matrix (or graph) with entries in the interval [0, 1] by another matrix of low

complexity. A major advantage over simply applying Szemer6di's regularity lemma

is that the complexity has only an exponential dependence on the approximation

parameter, as opposed to the tower-type bound that is incurred by Szemer6di's reg-

ularity lemma. Unfortunately, these regularity lemmas are not meaningful for sparse

graphs as the error term is too large in this setting. Following sparse extensions of

Szemer6di's regularity lemma by Kohayakawa [75] and R6dl, a sparse extension of

the weak regularity lemma was proved by BollobAs and Riordan [151 and by Coja-

Oghlan, Cooper, and Frieze 1251. In [25], they further generalize this to r-dimensional

tensors (or r-uniform hypergraphs), but it only gives an approximation which is close

in density on all hypergraphs induced by large vertex subsets. In order to prove a

relative hypergraph removal lemma, we will need a stronger approximation, which

is close in density on all dense r-uniform hypergraphs formed by the clique set of

some (r - 1)-uniform hypergraph. In Section 3.4, we will prove a more general sparse

regularity lemma. For now, we state the result in the form that we need.

The weak regularity lemma approximates a weighted hypergraph g on V by an-

other weighted hypergraph of bounded complexity which satisfies 0 < < 1. One

can think of j as a dense approximation of g. The following definition makes precise

in what sense j approximates g.

Definition 3.1.13 (Discrepancy pair). Let e be a finite set and ge, e: ]Hjcee VW -+ R>o

be two nonnegative functions. We say that (ge, je) is an E-discrepancy pair if for all

subsets Bf 9 V1, f E 0e, one has

F [(ge(xe) - ge(je)) 1 1Bf,(Xf) Xe El Ve] <E. (3.5)
fEOe

For two weighted hypergraphs g and j on (J, (VEJ, r, H), we say that (g, j) is an

E-discrepancy pair if (ge, e) is an c-discrepancy pair for all e E H.
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One needs an additional hypothesis on g in order to prove a weak regularity lemma.

The condition roughly says that g contains "no dense spots."

Definition 3.1.14 (Upper regular). Let e be a finite set, ge: je, IV -- R>0 a

nonnegative function, and q > 0. We say that g, is upper 7-regular if for all subsets

Bf C Vf, f c De, one has

E[(ge(xe) - 1) H 1B,(Xf) xe E Ve] <. (3.6)
fE&e

A hypergraph g on on (J, (V)jE, r, H) is upper 71-regular if ge is upper 7-regular for

all e E H.

Note that unlike (3.5), there is no absolute value on the left-hand side of (3.6). The

upper regularity hypothesis is needed for establishing the sparse regularity lemma.

Fortunately, this mild hypothesis is automatically satisfied in our setting. We will

say more about this in Section 3.5.2.

Lemma 3.1.15. Let V = (J, (V)j, r, H) be a hypergraph system. Let V and g be

weighted hypergraphs on V. Suppose 0 < g < v and v satisfies the H-linear forms

condition. Then g is upper o(l)-regular.

Define the complexity of a function g: Ve -+ [0, 1] to be the minimum T such

that there is a partition of V into T subgraphs S1,.. . ST, each of which is the set of

r-cliques of some (r - 1)-uniform hypergraph (see Definition 3.1.10), and such that g

is constant on each Si. We state the regularity lemma below with a complexity bound

on j, although the complexity bound will not actually be needed for our application.

Theorem 3.1.16 (Sparse weak regularity lemma). For any e > 0 and function

g: V X ... x Vr -+ R>0 which is upper y-regular with T1 2-4/2, there exists

j: V1 x ... x Vr -+ [0, 1] with complexity at most 220r/2 such that (g, j) is an e-

discrepancy pair.

The special case r = 2 is the sparse extension of the Frieze-Kannan weak regularity

lemma.
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3.1.5 Counting lemma

Informally, the counting lemma says that if (g, j) is an E-discrepancy pair, with the

additional assumption that g 5 v and j < 1, then the density of H in 4 is close to the

density of H in g. This sparse counting lemma is perhaps the most novel ingredient

in this thesis.

Theorem 3.1.17 (Counting lemma). For every -y > 0 and finite set J, there exists

an e > 0 so that the following holds. Let V = (J, (V)jej, r, H) be a hypergraph system

and v, g, 4 be weighted hypergraphs on V. Suppose that v satisfies the H-linear forms

condition and N is sufficiently large. Suppose also that 0 < g v, 0 < 4 1, and

(g, j) is an c-discrepancy pair. Then

E [JJge(Xe) I E VJ - E[fl 4e(Xe) x E V] I <-. (3.7)
eEH eEH

As a corollary, Theorem 3.1.17 also holds if the hypothesis 0 < 4 1 is replaced

by 0 < j < v. Indeed, we can use the weak regularity lemma, Theorem 3.1.16, to

find a common 1-bounded approximation to g and 4. The result then follows from

Theorem 3.1.17 and the triangle inequality.

To summarize, to get a counting lemma for a fixed hypergraph H in a subgraph

of a pseudorandom host hypergraph, it suffices to know that the host hypergraph

has approximately the expected count for a somewhat larger family of hypergraphs

(namely, subgraphs of the 2-blow-up of H).

3.2 The relative Szemeredi theorem

In this section, we deduce the relative Szemer6di theorem, Theorem 3.1.4, from the

relative hypergraph removal lemma, Theorem 3.1.12. We use the relative hypergraph

removal lemma to prove a relative arithmetic removal lemma, Theorem 3.2.3. This

result then easily implies a relative version of the multidimensional Szemer6di theorem

of Furstenberg and Katznelson [541. This is Theorem 3.2.1 below. The relative

Szemer6di theorem, Theorem 3.1.4, follows as a special case of Theorem 3.2.1 by
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setting Z = Z' = ZN and Oj(d) = (j - 1)d. One may easily check that the linear

forms condition for the resulting hypergraph is satisfied if v: ZN -* IR> 0 satisfies the

k-linear forms condition.

The statement and proof of Theorem 3.2.1 closely follows the write-up in Tao

[123, Thm 2.181, adapted in a straightforward way to our new pseudorandomness

conditions as well as to the slightly more general setting of functions instead of subsets.

Earlier versions of this type of argument for deducing Szemer6di-type results (in the

dense setting) from graph and hypergraph removal lemmas were given by Ruzsa and

Szemer6di [108], Frankl and Rbdl [51], and Solymosi [118, 1171.

Theorem 3.2.1 (Relative multidimensional Szemer6di theorem). For a finite set J

and 6 > 0, there exists c > 0 so that the following holds. Let Z, Z' be two finite additive

groups and let (0bj)jEj be a finite collection of group homomorphisms Oj : Z -+ Z' from

Z to Z'. Assume that the elements {0i(d) - kj(d) : i,j c J,d E Z} generate Z' as

an abelian group. Let v : Z' -+ R>0 be a nonnegative function with the property

that in the hypergraph system V = (J, (VI)jej, r, H), with V := Z, r := | J - 1, and

H := ), the weighted hypergraph (Ve)eEH defined by

vjitfj((i);sax\Iy) := V ( E(#,(xi) - oj(xi)))
iEJ\{j}

satisfies the H-linear forms condition. Assume that N is sufficiently large. Then, for

any f : Z' -+ R> 0 satisfying 0 < f(x) <; v(x) for all x E Z' and E[f] > 6,

E[l f(a + Ob(d)) a E Z', d c Z > c. (3.8)
jEJ

Example 3.2.2. Let S C ZN X ZN. Suppose the associated measure v = -1s

satisfies

IE[v(x, y)v(x', y)v(x, y')v(x' y')v(x, z - x)v(x', z - x')v(x, z' - x)v(x' z' - x')

v(z - y, y)v(z - y', y')v(z' - y, y)v(z' - y', y')Ix, x' y, y', z, E ZN] = 1 + o(1)
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and similar conditions hold if any subset of the twelve v factors in the expectation

are erased. Then any corner-free subset of S has size o(ISI). Here a corner in ZN

is a set of the form {(x, y), (x + d, y), (x, y + d)} for some d # 0. This claim follows

from Theorem 3.2.1 by setting Z = ZN, Z 2 Z2, Oq(d) = (0,0), 1(d) = (d, 0),

0 2 (d) = (0, d).

As in [123, Remark 2.191, we note that the hypothesis that {i (d) - # 3 (d) : i, j E

J, d E Z} generate Z' can be dropped by foliating Z' into cosets. However, this results

in a change to the linear forms hypothesis on v, namely, that it must be assumed on

every coset.

We shall prove Theorem 3.2.1 by proving a somewhat more general removal-type

result for arithmetic patterns.

Theorem 3.2.3 (Relative arithmetic removal lemma). For every finite set J and

E > 0, there exists c > 0 so that the following holds. Let Z, Z', (#4)jEJ, V be the same

as in Theorem 3.2.1. For any collection of functions {fj: Z' -+ ]R>O}EJ satisfying

0 < fj(x) < v(x) for all x E Z' and j E J, and such that

E [rJf(a + 5(d)) a E Z', d E Z < c (3.9)
aEJ

one can find Aj C Z' for each j E J so that

JJ 1Aj(a+4j(d))=0 forallaEZ',dEZ (3.10)
jEJ

and

E[f(x)Iz'\A, (x)|x E Z'] < E for all j C J. (3.11)

Theorem 3.2.1 follows from Theorem 3.2.3 by setting f3 = f for all j E J and

C < /(r + 1). Indeed, if the conclusion (3.8) fails, then Theorem 3.2.3 implies that

there exists A3 g Z' for each j E J satisfying (3.10) and (3.11). The Aj's cannot have

a common intersection, or else (3.10) fails for d = 0. It follows that {Z' \ A3 j E J}

covers Z', and hence (3.11) implies that E[f] < 'j3 E[fjlz'\A.] < (r + 1)c < 6, which

contradicts the hypothesis E[f] > 6.
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Proof of Theorem 3.2.3. Let V = (J, (V), r, H) be as in the statement of Theo-

rem 3.2.1. Write ej := J \ {j} E H. Define the weighted hypergraph g on V by

setting

ge,(Xej) :=fj(j(Xej)) for all j E J

where 'j: Ve, -+ Z' is defined by

'/(Xe,) = (0i(xi) - qj (xi)) = a + q5j(d) (3.12)
iEej

where

a= #oi(xi) and d= -jZi. (3.13)
iEJ iEJ

Then, for all x E V and a, d defined in (3.13), we have

H ge(Xej) = Q fj (a + #j(d)). (3.14)
jEJ jEJ

The homomorphism x H-+ (a, d): V -+ Z' x Z given by (3.13) is surjective: the image

contains {(0i (d) - #j(d), 0) : i, j E J, d E Z} and hence all of Z' x {0}. Moreover, the

image also contains {(-#i(d), d) : i E J, d E Z}. Together, these sets generate all of

Z' x Z. It follows that (a, d) varies uniformly over Z' x Z as x varies uniformly over

Vj, and so (3.14) implies that

E [Jge(Xej) xc Vj = EL ffj(a+,(d)) a c Z',d c Z C.
jEJ jEJ

By the relative hypergraph removal lemma, for c small enough (depending on J and

E), we can find a subset E' C Ve for each j E J such that

fJ 1E (Xe) 0 for all x E Vi (3.15)
jEJ

and

E[gej(xe)1Ve,\E(Xej)jXe E Vej] K c/(r + 1) for all j E J.
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For each j E J, define Aj C Z' by

A3 := {z' E Z': *- 1 (z') n Ejl > (3.16)

In other words, A3 contains z' E Z' if the hypergraph removal lemma removes less

than a 1/(r + 1) fraction of the edges in Ve, representing z' via 'bj.

For any z' EZ'\ Aj, on the fiber 0-1(z') the function ge, takes the common value

f3 (z'). Furthermore, by (3.16), on this fiber, the expectation of 1 Ve,\E'. is at least

1/(r + 1). Hence

E[fj(x)lz'\Aj(x)Ix E Z'] (r + 1)E[gej(xej)1Ve,\E xej)Ixj E V < E.

This proves (3.11). To prove (3.10), suppose for some a E Z', d E Z we have a +

#j(d) C A, for all j E J. Let VJ'd c Vi consist of all x E V satisfying (3.13). Then

OP(Xej) = a + kj(d) for all x c V' by (3.12), and in fact 0.71(a + #(d)) is the
Va,d 'fato fti rjciniprojection of V' onto Ve,. By (3.16), more than an -fraction of this projection is

in Ej. It follows by the pigeonhole principle (or a union bound on the complement)

that there exists some xE VE ' such that xe3 E Efor every j J. But this

contradicts (3.15). Thus (3.10) holds.

3.3 The relative hypergraph removal lemma

Proof of Theorem 3.1.12. By Lemma 3.1.15, v is upper o(1)-regular, so we can apply

the weak sparse hypergraph regularity lemma (Theorem 3.1.16) to find functions

j, : Ve -+ [0, 1] for every e E H so that (g, ) is an o(1)-discrepancy pair. By the

counting lemma (Theorem 3.1.17), we have

E [1 e(Xe)[ XE V] = E [ ge(Xe) X E V] + o(1) < J+ (1).
eEH eEH

The dense weighted hypergraph removal lemma (Theorem 3.1.11) tells us that for

each e E H we can choose E' c Ve for which V \ E' has complexity 05(1) (i.e., at
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most some constant depending on 6) and such that

S1E (x) = 0 for all x E Vj
eEH

and, as long as 6 is small enough and N is large enough, we have

E[4e(Xe)1Ve,\E(Xe)fXe E Vei E/2 for all e E H. (3.17)

As V \ E' has complexity 06(1), there is a partition of V \ E' into 06(1) hypergraphs

Fei each of which is the set of r-cliques of some (r - 1)-uniform hypergraph. We have

IE[C(e - ge)(xe )1e\E Xe) IXe G Vel I |lE [(je - ge)(xe)lFej(xe)Ie E Veil

Lo() = 06(1)o(1) E/2 for all e E H.

(3.18)

We used that (ge, je) is an o(1)-discrepancy pair on each of the terms of the sum, and

the final inequality is true as long as N is large enough. Combining (3.17) and (3.18)

we obtain

E[ge(Xe)1Ve\E'(X)lXe E Ve < 6 for all e E H.

This proves the claim.

3.4 The weak regularity lemma

Let X be a finite set and g : X -+ R>O. Let F be a family of subsets of X which

is closed under intersection, X E F, all subsets of X of size one are in F, and such

that, for every S E F, there is a partition of X which contains S and consists of

members of F. For t > 2, the family F is t-splittable if for every S E F there is a

partition P of X into members of F such that S E P and JP t. The complexity

p = p(f) of a function f : X -l R;>o is the minimum p for which there is a partition

X = Si U ... U Sp into p subsets each in F such that f is constant on each Si. We
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call (g, #) an e-discrepancy pair if for all A E F,

E[(g - j)1AI I e.

All expectations are done with the uniform measure on X. For P a partition of X,

let gp be the function on X given by gp(x) = E[YlA] when x E A E P. That is, gp(x)

is the conditional expectation of g(x) given the partition P and is constant on any

part A of the partition.

The function g we call upper r-regular if for every A c Y, we have

E[g1A] E[1A] + ?I.

If g is upper q-regular, A, B E F, and F is t-splittable, then

E[glB\AJ E[1B\A] + (t - 1)77. (3.19)

Indeed, in this case B \ A can be partitioned into t - 1 sets in F (we first split with

respect to A and then consider the intersections of the parts of the partition with B).

Applying the upper q-regularity condition to each of these sets and summing up the

inequalities, we arrive at (3.19).

Following Scott 11121, let # : R>o -+ R>O be the convex function given by

) U 2 if u < 2,

4u - 4 otherwise.

For a partition P of X, let O(P) = E[# (gp)], which is the mean #-density of g with

respect to the partition P. As # takes only nonnegative values and #(u) 4u, we

have

0 < O(P) _< 4E[gp] = 4E[g].

Also, by the convexity of 4, it follows that if P' is a refinement of P, then #(P') >

O(P).
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Lemma 3.4.1. Let X and _F as above be such that F is t-splittable. Let 0 < e, 7 < 1

and T = t20/E
2

. For any g : X -4 R>0 which is upper 71-regular with 7 < f, there is

X -+ [0, 1] with complexity at most T such that (g, j) is an c-discrepancy pair.

,2

Proof. Let a = 4. We first find a partition P of X into members of F with IPI <

t5 /, - T such that for any refinement P' of P into members of F with IP' < tIP ,

we have #(P') - O(P) < a. In order to construct P, we first recursively construct a

sequence P0 , P1,... of finer partitions of X into members of F so that IPj I t and

O(Pj) > ja. We begin by considering the trivial partition Po = {X}, which satisfies

#(Po) > 0. At the beginning of step j + 1, we have a partition Pj of X into members

of F with |Pjj < tK and #(P) ja. If there exists a refinement P+1 of X into

members of F with IPj+1 I tIP I and #(P+ 1 ) q(P) + a, then we continue to step

j + 2. Otherwise, we may pick P = P to be the desired partition. Note that this

process must stop after at most 5/a steps since 5 > 4(1 + 71) > 4E[g] #(Pj) > ja,

where the second inequality follows from g being upper q-regular. We therefore arrive

at the desired partition P.

Let P: X = S1 U -.. U Sp. Let :X - [0, 1], where= gp A 1 is the minimum of

gp and the constant function 1. We will show that (gp, j) is an i-discrepancy pair and

(gp, g) is a !-discrepancy pair, which implies by the triangle inequality that (g, g) is

an e-discrepancy pair. As j has complexity at most JP < T, this will complete the

proof.

We first show (gp, j) is an -discrepancy pair. Note that gp - j is nonnegative

and constant on each part of P. If Si E P and gp - g > 0 on Si, then also gp > 1

and j = 1 on Si. As g is upper i7-regular, we have E[gls,] K E[1sj + rj and hence

E[(g - j)1s] 77. Therefore, by summing over all parts in the partition P, we see

that if A c F,

0 < E[(gp - j)1A] E[(gp - 1)] < 7P T < -,
47

and (gp, j) is an i-discrepancy pair.

We next show that (gp, g) is a 3-discrepancy pair, which completes the proof.
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Suppose for contradiction that there is A E F such that

JE[(gp - g)1A]I > -.

Let B be the union of all Si n A, where Si E P, for which both E[lsinA] > tri and

E[1S.\A] > t77.

We claim that for each Si E P, we have

E [(gp - g)(lAns1 - lBnS)]I < 2t?7. (3.20)

Indeed, if BnSj = An Si, then the left hand side of (3.20) is 0. Otherwise, E[lAns] 5

t7 or E[1s1\AI < tq. In the first case, when E[lAnsi] t77, we have lBnsi is identically

0, as well as

E[glAns] < E[Ans. +R 5 (t + 1)77

and

E[gplAnsl] =
E[gls,] [
E[1s,] fs

(E[1s,] + q)E[ l <E[lnsj
E[1s,]

+q 7 (t + 1)n,

from which (3.20) follows. In the second case, when E[1s1 \A ti, we again have

lBns, is identically 0, so that

E[(g - gP)(lAnsi - lBnsi)] = E[(g - gP)1Alnsi = E[(g - gp)(1s, - 1Sj\A)]

= E[(g - gp)1s,] - E[(g - gP)1s\A] = -E[(g - gP)1sj\A],

and similar to the first case, using (3.19) to estimate E[g 1sj\A] and E[gpls2 \A], we get

(3.20).

Notice that

IE[(gP - g)1A] - E[(gp - g)1B]I = |E[(gp - g)(1A - 1B)]I 5 IP2t < ,
r 4'

where the first inequality follows by using (3.20) for each part Si and the triangle
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inequality. Hence,

3E E e
|E[(g - g)1BII > jE[(gp - g)1A]I - JE[(gp - g)1A] - E[(gP - g)1B] - -

4 4 2

Let P be the refinement of P where Si is also in P if BnSj = 0 and otherwise SinB

and Si \ B are parts of P, and let P' be a refinement of P into at most tIPI members

of F. The refinement P' exists as F is t-splittable and is closed under intersections,

P consists of members of F, A E F, and Si n B = S,, n A E if S, n B E P. As P'

is a refinement of P which is a refinement of P, we have O(P') > O(P) O(P). Let

R E {S, S, n B, Si \ B}, where Si is a part of P that is refined into two parts in P,

so that E[1R] > tr/. Letting u = E[1 we see, since g is upper /-regular and using

(3.19), that u < 1 + trj(tr/) = 2 and hence #(u) = U2 . It follows, by considering the

functions pointwise, that O(gp) - O(gp) = g2 - g2. Hence,

#(P') - O(P) O(P) - $(P)= E[g2] E[g _ g2] = I[(gp - gp)2 ]

> E[(gp - gp)1B 2 
= - 9P)1B > - = a.

4

The third equality above is the Pythagorean identity, which uses that P is a refinement

of P, and the second inequality is an application of the Cauchy-Schwarz inequality.

However, since ' is a refinement of P consisting of members of F with JP'j <

t|Pj, this contradicts O(P') - O(P) < a from the definition of P and completes the

proof. E

To establish the weak hypergraph regularity lemma, Theorem 3.1.16, we use

Lemma 3.4.1 with X = V x ... x V, and F being the family of subsets of X which

form the r-cliques of some r-partite (r - 1)-uniform hypergraph with parts V1, . . . , V,.

Noting that F is 2'-splittable in this case, we obtain Theorem 3.1.16.

138



3.5 The counting lemma

The three main ingredients in our proof of the counting lemma (Theorem 3.1.17) are

as follows.

1. A standard telescoping argument [161 in the dense case, i.e., when v = 1.

2. Repeated applications of the Cauchy-Schwarz inequality. This is a standard

technique in this area, e.g., [61, 63, 69, 123].

3. Densification. This is the main new ingredient in our proof. At each step, we

reduce the problem of counting H in a particular weighted hypergraph to that

of counting H in a modified weighted hypergraph. For an edge e E H, we

replace the triple (ve, g6 , e) by a new triple (1, g', ') with 0 < g', ' < 1 and

such that (g', ') is an c'-discrepancy pair for some E' = o,,Eo(1). By repeatedly

applying this reduction to all e E H (we use induction), we reduce the counting

lemma to the dense case.

We developed the densification technique in Chapter 2, where we proved a sparse

counting lemma in graphs. The proof here significantly simplifies a number of techni-

cal steps from Chapter 2 in order to extend the densification technique to hypergraphs.

3.5.1 Telescoping argument

The following argument allows us to prove the counting lemma in the dense case, i.e.,

when 0 < g < 1.

Lemma 3.5.1 (Telescoping argument for dense hypergraphs). Theorem 3.1.17 holds

if we assume that there is some e1 c H so that ve = 1 for all e E H \ {e1 }. In fact,

in this case,

E[f ge(xe) x E VJ- E[FLe(Xe) x V I5|HIe. (3.21)
eEH eEH

Lemma 3.5.1 uses only the assumption that (ge, je) is an E-discrepancy pair for

every e E H and nothing about the linear forms condition on v. Recall that for each
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fixed e E H, the condition that (ge, je) is an E-discrepancy pair means that for all

subsets Bf 9 Vf, f E &e, we have

E [(ge(xe) - je(xe)) Ji B (Xf Xe E Ve] < E. (3.22)

This is equivalent to the condition that for all functions uf: Vf - [0, 1], f E De, we

have

E (ge(Xe) - je(Xe)) [J Uf(Xf) Xe E Ve] C . (3.23)
fEde

Indeed, the expectation is linear in each uf and hence the extrema occur when the

uj's are {0, 1}-valued, thereby reducing to (3.22).

Proof. Let h = IH and order the edges of H \ {el} arbitrarily as e 2 , .. , eh. We can

write the left-hand side of (3.21), without the absolute values, as a telescoping sum

h t-1 h

E ER[(fl e,(Xe))(get(Xet) - et(Xet))( 17 ge,(Xe,)) x E Vj]. (3.24)
t=1 s=1 s=t+1

For the t-th term in the sum, when we fix the value of xJ\, E VJ\et, the expectation

has the form

E [(get(xet) - jet (Xet)) 11 uf (xf ) Xet Vet (3.25)

f EDet

for some functions uf : Vf -÷ [0, 1] (here we used the key fact that ge, 1 for all

s > 1 and e., < 1 for all s). Since (get, ne,) is an E-discrepancy pair, (3.23) implies

that (3.25) is bounded in absolute value by E. The same bound holds after we vary

XJ\et c VJ\et. So every term in (3.24) is bounded by E in absolute value, and hence

(3.24) is at most hE in absolute value. U

3.5.2 Strong linear forms

The main result of this subsection tells us that v can be replaced by the constant

function 1 in counting expressions. Though somewhat technical in detail, the main

idea of the proof is quite simple and may be summarized as follows: we use the

140



Cauchy-Schwarz inequality to double each vertex j of a certain edge in turn, at each

step majorizing those edges which do not contain j. This method is quite standard

in the field. In the work of Green and Tao, it is used to prove generalized von

Neumann theorems 69, Prop. 5.3], [123, Thm. 3.81, although the statement of our

lemma is perhaps more similar to the uniform distribution property [69, Prop. 6.21,

[123, Prop. 5.11.

We begin by using a similar method to prove a somewhat easier result. It shows

that if v satisfies the H-linear forms condition then (v, 1) is an o(1)-discrepancy pair,

which implies Lemma 3.1.15.

Lemma 3.5.2. Let e be a finite set, V1 a finite set for each j E e, and V = Hae Vi.

Then, for any function v: Ve -+ R and any collection of Bf G Vf for f E e,

E [(ve(xe) - 1) ]1 1Bf(Xf) Xe E Ve] E J (ve(x(')) - 1) ~o)) x E Ve]2
f EDe wE{0,1}e

(3.26)

Lemma 3.5.2 follows from a direct application of the Gowers-Cauchy-Schwarz [611

inequality for hypergraphs (see [291). We include the proof here for completeness.

Proof. For 0 C d C e, let

Xd :- J (Ve(Xe\dXzW)) - 1), Yd 1Bf (Xf\d, X )),
W E{0,1}d f EGe wE{O,1}d

f:Dd

and
and(0 (1)V]

Qd := E[XdYdIXe\d G Ve\d, Xd ,Xd E VE ]

Then (3.26) can be written as |Q0| QV . By induction, it suffices to show that

Qd Qdu{j} whenever j E e \ d. Let Yd = YljY where Yp consists of all the

factors in Yd that contain xj in the argument, and YdI consists of all other factors.

By the Cauchy-Schwarz inequality, we have

Q2 = E[E[XdYI~xa E V/]Yfl] 2 E E [E [XdYfr xj 6 V 2]E [(yfi) 2 Qdu{j},
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since Qdu{j} = E[E[XdY IXj E V]2 ] and 0 K Y K 1, where the outer expectations

are taken over all free variables. This shows that Q' < QdU{jj. Hence, 1Q01 5 Qi/21el

as desired. 0

The next lemma is very similar, except that now we need to invoke the linear

forms condition.

Lemma 3.5.3 (Strong linear forms). Let V = (J, (Vj)jEj, r, H) be a hypergraph sys-

tem and let v be a weighted hypergraph on V satisfying the linear forms condition.

Let el E H. For each t c {0, 1} and e E H \ {el}, let ge : V, -+ R;>0 be a function so

that either g,() < 1 or g(') < ve holds. Then

E[ (ie )-Xe1) 1 ( H ge()(X())) X), X) E Vi; X( ) =- l) = 0(1).

tE{0,1} eEH\{e,}

(3.27)

In (3.27) the notation O= e= e means that x (0) (1) are taken to be

the same for all j E el. Recall that we write o(1) for a quantity that tends to zero as

N -+ oo.

Proof. For each t E {0, 1} and e E H \{e1}, let e() be either 1 or v, so that gL) <
holds. For 0 C d C ei, define

Xd :- 17 (Ve(Xel\d X ) - 1),
WE{0,1}d

(0 (X, ,M ee\)i

Yd : gL e I Xefei\d) if e D d

C{0,1} eEH\{e} IE{0,1}ed (nd I ene\d) if

and

Qd := E [XdYd d, Xj\ei)UF V(J\e1)Ud, Xe1\d E Ve1\d]-
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We observe that Q0 is equal to the left-hand side of (3.27) and

Qej = E J (v.1 (xj)) - 1) H11 H g") (x , x e)
w E{o,1}el E{0,1} eEH\{ei} wE{O,1}len1

X (O) 71E VJ =0o1

by the linear forms condition (3.4).4 Indeed, after we expand Hwe1o,i1ei (Vei(XelM) 1),

every term in Qe, has the form of (3.4) (since 4p' is 1 or ve). Thus Qe, is the sum

of 21ell terms, each of which is t(1 + o(1)) by the linear forms condition, and they

cancel accordingly to o(1).

We claim that if j E el \ d then

IQI _< (1 + o(1))Q1{(J, (3.28)

from which it would follow by induction that

ILHS of (3.27)1 = 1QO1 5 (1 + o(1))Q1 2 r = o(1).

Now we prove (3.28). Let Yd = Y 'Ydo where Yi consists of all the factors in Yd

that contain xj in the argument, and Yfj consists of all other factors. Using the

Cauchy-Schwarz inequality and Ylj < Y O one has

Q2= E [E [XdYd 3 Ixj < Y]2  E [E [XdYd3| 3 Xi V]2ygi] E[Yi]

E[E[XdY 3jlxj E Yd] E[ ] = Qdu{j} E[YdI1 (3.29)

where the outer expectations are taken over all free variables. The second factor in

(3.29) is 1 + o(1) by the linear forms condition (3.4) as Y'- consists only of v factors.

This proves (3.28). U

4 This is where the weak 2-blow-up of H arises, since the estimate Qe = o(1) only relies upon
knowing that v has roughly the expected density for certain subgraphs of the weak 2-blow-up.
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3.5.3 Counting lemma proof

As already mentioned, the main idea of the following proof is a process called densi-

fication, where we reduce the problem of counting H in a sparse hypergraph to that

of counting H in a dense hypergraph by replacing sparse edges with dense edges one

at a time. Several steps are needed to densify a given edge el. The first step is to

double all vertices outside of el and to majorize gel by ve,. We then use the strong

linear forms condition to remove the edge corresponding to el entirely. This leaves us

with the seemingly harder problem of counting the graph H' consisting of two copies

of H\{e1} joined along the vertices of el. However, an inductive hypothesis tells us

that we can count copies of H\{ei }. The core of the proof is in showing that this

allows us to replace one of the copies of H\{e1} in H' by a dense edge, thus reducing

our problem to that of counting H with one edge replaced by a dense edge.

Proof of Theorem 3.1.17. We use induction on I{e c H : ve 1}1. For the base case,

when I{e e H : ve # 1}= 0 or 1, the result follows from Lemma 3.5.1. Now take

el E H so that vei $ 1.

We assume that JI is a fixed constant. We write o(1) for a quantity that tends to

zero as N -+ oc and o,,o(1) for a quantity that tends to zero as N -+ 00 and c -+ 0.

We need to show that the following quantity is o,,o(1):

E [flge(xe) x Vj] - E [ e(xe) Ix V
eEH eEH

E [ge,(xe) (J ge(xe) - 7 e(xe)) x E V]
eEH\{el} eEH\{el}

+ E [(gel (xel) - el (Xel))( je (Xe)) x E Vi]. (3.30)
eEH\{el}

The second term in (3.30) is at most e in absolute value since (gel, j,,) is an c-

discrepancy pair and j < 1 (e.g., see proof of Lemma 3.5.1). It remains to show that

the first term in (3.30) is o,,o(1).
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Define functions v,' ,, g j' : Ve, -+ R>o by

Vel(Xel) :=E[ I Ve(Xe) Xj\ej E VJ\e], (3.31)
eEH\{el}

'(x,,) :=E [ ge(Xe) og\el E VJ\el , (3.32)
eEH\{el}

e' (Xel) :=E j e(Xe) I X\el E VJ\e . (3.33)
eEH\{el}

We have g' < v' and je, 5 1 (pointwise). In the rest of this proof, unless otherwise

specified, expectations are for functions on Ve, with arguments varying uniformly over

Vei. The linear forms condition (3.4) implies that E[v'4] = 1 + o(1) and E[(v' 1)2]

1 + o(1), so that5

E[(v' - 1)2] = o(1). (3.34)

The square of the first term in (3.30) equals

E[ge1(g' - P')] 2 < E[gel(g' 1 - ')2] E[gei] E[vel(g', - P') 2] E[vel]

(E{(g'- ' )2 ] + o(1))(1 + o(1)).

(3.35)

The first inequality above is due to the Cauchy-Schwarz inequality. In the final step,

both factors are estimated using Lemma 3.5.3 (for the first factor, expand the square

(g'1 - ' )2 and apply Lemma 3.5.3 term by term). Continuing (3.35) it suffices to

show that the following quantity is o,,o(1):

E[(g' - j' ) 2] = E[(g'1 - j')(g' - g'A 1)] + E[(g9, - P'1)(g'1 A 1 - ')] (3.36)

(here a A b := min{a, b}). That is, we are capping the weighted hypergraph g' by 1.

Since v' is very close to 1 by (3.34), this should not result in a large loss. Indeed,

5In fact, the only assumptions on v needed for the proof of Theorem 3.1.17 are (3.34) and the
strong linear forms condition, Lemma 3.5.3, as well as analogous conditions for other choices of
ei E H and allowing some subset of the functions ve to be replaced by 1.
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since 0 < g' < i' , we have

0 g' - g' A 1 =max{g', - 1, 0} max{v' - 1, 0} Iv' - 11. (3.37)

Using (3.37), g' < ve', and ' 1, we bound the magnitude of the first term on the

right-hand side of (3.36) by

E[(v' + 1) v' - 11] = - 1)Iv' - i] + 2E[Ive' - 1i]

SE[(v' - 1)2] + 2E[(v'l - 1)2]1/2 o(1)

by the triangle inequality, the Cauchy-Schwarz inequality, and (3.34). To estimate

the second term on the right-hand side of (3.36), we need the following claim.

Claim. (ge A 1, j'l) is an '-discrepancy pair with E' o,,o(1).

Proof of Claim. We need to show that, whenever BJ C Vf for all f E &ei, we have

E [(ge1(Xe) A 1 - Pe,(Xei)) J lBf,(xf )e E Ve o040(1).
fEoei

Define gl: Ve1 -+ R;> by g' (Xel) fe, 1Bf (xf). So the left-hand side of (3.38)

is equal to

E[(g' A l - ge1 )g1 ] + E[(g'1 - j' )g"]. (3.39)

Using 0 < g" 1, (3.37), the Cauchy-Schwarz inequality, and (3.34), we can bound

the magnitude of the first term in (3.39) by

E vecn - 1] t E[(vr'h - 1)2s1/2 qual t

The second term on the right-hand side of (3.39) is equal to

E (f ge(xe) - fi
eEH\{ej } eCH\{el}

ge(xe) 9"(xel) x

This is o,,o(1) by the induction hypothesis applied to new weighted hypergraphs
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where the old (vei, ge1 , je,) gets replaced by (1, g,'', g''), thereby decreasing I{e E H:

ve # 1}. Note that the linear forms condition continues to hold. Thus (3.38) holds,

so (g', A 1, j' ) is an '-discrepancy pair with F' = o,,O(1). L

We expand the second term of (3.36) as

E[(g'1 -')(g' Al-j' )] = E[g' (g', Al)]-E[g' 1 ' ] -E[j' (g, Al)]+E[(' ) 2 ]. (3.40)

We claim that each expectation on the right-hand side of (3.40) is E[(j' ) 2 ] + oE_+(l).

Indeed, by (3.32) and (3.33) we have

E[g' (g',A1)]-E[( ' )2 = E( (get (Xe)A1) JJ ge(Xe) - ji(Xel) 11 e(Xe)) I E Vi
eEH\{el} eEH\{el}

which is o,,0(1) by the induction hypothesis applied to new weighted hypergraphs

where the old (Vei, gel, jel) is replaced by (1, g' Al, '). This is allowed as (g' Al, '

is an E'-discrepancy pair with c' = o,,o(l), the new v still satisfies the linear forms

condition, and I{e E H : ve 74 I}I has decreased. The claims that the other terms on

the right-hand side of (3.40) are each IE[(' )2] + o,,o(1) are similar (in fact, easier).

It follows that (3.40) is o,,o(l), so (3.36) is o,,o(l) and we are done. U

3.6 Concluding remarks

Conditions for counting lemmas. In this chapter, we determined sufficient con-

ditions for establishing a relative Szemer6di theorem and, more generally, a counting

lemma for sparse hypergraphs. We have assumed that the hypergraph we want to

count within is a subgraph of a pseudorandom hypergraph. The main question then

is to determine a good notion of pseudorandomness which is suffficient to establish a

counting lemma.

There is a marked difference between this chapter and the Chapter 2 on graphs in

terms of the type of pseudorandom condition assumed for the majorizing hypergraph.

In this chapter, we prove a counting lemma for a given hypergraph H by assuming
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that the underlying pseudorandom hypergraph contains approximately the correct

count for each hypergraph in a certain collection of hypergraphs R derived from H.

That is, for each H' E 71, we assume that our pseudorandom hypergraph contains (1+

o(l))pe(H')vg(H') labeled copies of H', where p is the edge density of the pseudorandom

hypergraph.

The approach used in Chapter 2 is equivalent, up to some polynomial loss in E, to

assuming that the number of labeled cycles of length 4 in our pseudorandom graph

is (1+ E)p4 n4 , where c is now a carefully controlled term and the question of whether

H can be embedded in our pseudorandom graph depends on whether E is sufficiently

small with respect to H and p. It is possible to adapt the methods of this chapter

so that the notion of pseudorandomness used for hypergraphs is more closely related

to this latter notion. However, for the purposes of applying the results to a relative

Szemer6di theorem, the current formulation seemed more appropriate.

Gowers uniformity norms. For a function f : ZN -+ R, the Gowers Ur-norm of f

is defined to be

11f 1, = E J f(XO + W - X)XO, X ... , Xr G ZN 1/2
we{O,1}r

where x = (x 1 ,... , X.). The following inequality, referred to as a generalized von

Neumann theorem, bounds the weighted count of (r + 1)-term arithmetic progressions

from functions fo, .. . , f. in terms of the Gowers uniformity norm:

E [fo(x)f(x+d)f2 (x +2d) ... f,(x+rd) xd C ZN] U IfjII0H ifiIK.
i56j

This fundamental fact is an important starting point for Gowers' celebrated proof [611

of Szemer6di's theorem as well as many later developments in additive combinatorics.

For a sparse set S C ZN of density p, this inequality implies the correct count of (r+ 1)-

term arithmetic progressions in S as long as 11' -- 11,= o(=p), where V = p- 1 1S (a

more careful analysis shows that it suffices to assume 1iv - I| j, = O(pr/2))
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Gowers [65]6 and Green [67] asked if liv - 11, = o(1) for some large s = s(r)

is sufficient for v to satisfy a relative Szemer6di theorem for (r + 1)-term arithmetic

progressions. Note that this is precisely a linear forms condition and we proved in this

chapter that a different linear forms condition is sufficient. However, we do not even

know if such a condition implies the existence of (r + 1)-term arithmetic progressions

in v. Clearly s(r) cannot be too small and indeed we know from the recent work of

Bennett and Bohman [121 on the random AP-free process that one can find a 3-AP-

free S C ZN such that v = (N/ISI)ls satisfies liv - 11JU2 = o(1). Therefore, if s(2)

exists, it must be greater than 2. More generally, they show that s(r) > 1 + log 2 r.

We can show (details can be found in [29]) that if a measure v satisfies the stronger

condition Iv - 1|1U, = o(pr), where p = llvz10. , then the relative Szemer6di theorem

holds with respect to v for (r + 1)-term arithmetic progressions. This strengthens the

consequence of the generalized von Neumann theorem discussed above.

Corners in products of pseudorandom sets. Example 3.2.2 illustrates the rel-

ative multidimensional Szemer6di theorem applied to a pseudorandom set S C Z2.

However, the situation is quite different for S x S C Z2 with some pseudorandom

set S C ZN- Indeed, S x S C Z' does not satisfy the linear forms condition in Ex-

ample 3.2.2. Intuitively, this is because the events (x, y) E S x S and (x, y') E S x S

are correlated as both involve x E S.

However, we may still deduce the following result using our relative triangle re-

moval lemma. Recall that a corner in Z2 is a set of the form { (x, y), (x + d, y), (x, y +

d)}, where d -$ 0.

Proposition 3.6.1. If S C ZN is such that v = 1s satisfies

E[v(x)v(x')v(z - x)v(z - x')v(z' - x)v(z' - x')

v(y)v(y')v(z - y)v(z - y')v(z' - y)v(z' - y')ix, X', y, y', Z, z' E ZN] = 1 + o(1)

(3.41)

and similar conditions hold if any subset of the v factors are erased, then any corner-

6 This question can be found in the penultimate paragraph in 4 of the arXiv version of 1651.
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free subset of S x S has size o(|S|2 ).

Proof (sketch). Let A be a corner-free subset of S x S. We build two tripartite graph

F and G on the same vertex set X U Y U Z with X = Y = S and Z = ZN (note that

unlike the proof of Theorem 3.2.1 we do not take X and Y to be the whole of ZN

here). In F, we place a complete bipartite graph between X and Y; between Y and

Z the edge (y, z) E Y x Z is present if and only if z - y C S; and between X and Z

the edge (x, z) E X x Z is present if and only if z - x E S. In G, between X and

Y the edge (x, y) E (X, Y) is present if and only if (x, y) E A; between Y and Z the

edge (y, z) E Y x Z is present if and only if (z - y, y) E A; and between X and Z the

edge (x, z) E X x Z is present if and only if (x, z - x) C A.

The vertices (x, y, z) C X x Y x Z form a triangle if and only if (x, y), (z -

y, y), (x, z - x) E A. These three points form a corner, which is degenerate only when

x +y = z. Since A is corner-free, every edge of G is contained in exactly one triangle

(namely the one that completes the equation x + y = z). In particular, G contains

exactly JAl triangles. After checking some hypotheses, we can apply our relative

triangle removal lemma (as a special case of Theorem 3.1.12) to conclude that it is

possible to remove all triangles from G by deleting o(IS12) edges. Since every edge of

G is contained in exactly one triangle, and 1G has 31Al edges, we have JAI = o(1S12),

as desired. U

One can easily generalize the above Proposition to S' C Z' (as before, S C ZN)-

Here a corner is a set of the form {x, x+del,.. . , x+den}, where x E ZN, 0 4 d E ZN,

and ej is the i-th coordinate vector. Then, for any fixed m, any corner-free subset of

Si must have size o(ISI m ), provided that v = 1 s satisfies the linear forms condition

E[,L (V(s4Q))nj~oV(X (1) ni1JJ (x(Wo) - xWi))njw)

wE{0,1}{O}ulm]\{i} jE[m]\{i}

(0) 7y(1) 1hies ..f x (),CZN ] - 1

for any choices of exponents nui,o ni,1, ni,. E f{0, 11.
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A more general result concerning the existence of arbitrarily shaped constellations

in Sm is known, provided that S satisfies certain stronger linear forms hypotheses. We

refer the readers to [35, 50, 125] for further details. In particular, the multidimensional

relative Szemer6di theorem holds in Pm, where P is the primes.

Sparse graph limits. The regularity method played a fundamental role in the devel-

opment of the theory of dense graph limits [16, 891. However, no satisfactory theory

of graph limits is known for graphs with edge density o(1). Bollobis and Riordan

[15] asked a number of questions and made explicit conjectures on suitable conditions

for sparse graph limits and counting lemmas. Our work gives some natural sufficient

conditions for obtaining a counting lemma in a sequence of sparse graphs GN. The

new counting lemma allows us to transfer the results of Lovdsz and Szegedy [89, 90]

on the existence of the limit graphon, as well as the results of Borgs, Chayes, Lovaisz,

S6s, and Vesztergombi 116] on the equivalence of left-convergence (i.e., convergence

in homomorphism densities) and convergence in cut distance. The famous quasiran-

domness results of Chung, Graham, and Wilson [23] also transfer, namely, that an

appropriate relationship between edge density and C4 -density (of homomorphisms)

determines the asymptotic F-density for every graph F.

Existing applications of the Green-Tao method. Though our discussion has

focused on the relative Szemer6di theorem, we have proved a relative version of the

stronger multidimensional Szemer6di theorem. Following Tao [123], this may be used

to prove that the Gaussian primes contain arbitrarily shaped constellations, though

without the need to verify either the correlation condition or the dual function con-

dition. It seems likely that our method could also be useful for simplifying several

other papers where the machinery of Green and Tao is used [34, 71, 87, 94, 95, 1261.

In some cases it should be possible to use our results verbatim but in others, such as

the paper of Tao and Ziegler [1261 proving that there are arbitrarily long polynomial

progressions in the primes, it will probably require substantial additional work.

Sparse hypergraph regularity. In proving a hypergraph removal lemma for sub-

graphs of pseudorandom hypergraphs, we have developed a general approach to reg-
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ularity and counting in sparse pseudorandom hypergraphs which has the potential

for much broader application. It is, for example, quite easy to use our results to

prove analogues of well-known combinatorial theorems such as Ramsey's theorem and

Turin's theorem relative to sparse pseudorandom hypergraphs of density N-CH. We

omit the details. In the graph case, a number of further applications were discussed in

Chapter 2. We expect that hypergraph versions of many of these applications should

be an easy corollary of our results.

Counting in random hypergraphs. There has been much recent work on count-

ing lemmas and relative versions of combinatorial theorems within random graphs

and hypergraphs [10, 32, 33, 110, 111]. Surprisingly, there are a number of disparate

approaches to these problems, each having its own strengths and weaknesses. We

believe that our results can be used to give an alternative framework for one of these

approaches, due to Conlon and Gowers [32].' Their proof relies heavily upon an ap-

plication of the Green-Tao transference theorem, which we believe can be replaced

with an application of the sparse Frieze-Kannan regularity lemma and our densifica-

tion technique. However, the key technical step in [32], which in our language is to

verify that the strong linear forms condition, Lemma 3.5.3, holds when v is a random

measure, would remain unchanged.

Sparse arithmetic removal. In Theorem 3.2.3, we proved an arithmetic removal

lemma for linear patterns such as arithmetic progressions. More generally, an arith-

metic removal lemma claims that if a system of linear equations Ma = b over the

integers has a small number of solutions a = (ai, a2,... , an) with ai E Ai for all

i = 1, 2,... , n then one may remove a small number of elements from each Ai to

find subsets A' such that there are no solutions a' = (a' , a',--- , a') to Ma' = b with

a' E A' for all i = 1, 2, ... ,n. Such a result was conjectured by Green [68] and proved

by KrAl', Serra, and Vena [851 and, independently, Shapira [113]. Both of these proofs

are based upon representing a system of linear equations by a hypergraph and deduc-

ing the arithmetic removal lemma from a hypergraph removal lemma. Such an idea

7This should at least be true for theorems regarding graphs and hypergraphs, though we feel that
a similar approach should also be possible for subsets of the integers.
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was first used by Kr6il', Serra, and Vena [841 with graphs (instead of hypergraphs).

In Chapter 2, we adapted the arguments of [841 to sparse pseudorandom subsets of

the integers using the removal lemma in sparse pseudorandom graphs. Likewise, our

results on hypergraph removal in this chapter may be used to prove a sparse pseu-

dorandom generalization of the arithmetic removal lemma [85, 113] for all systems of

linear equations.
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Chapter 4

Arithmetic transference

In Chapter 3, we obtained a relative extension of the hypergraph removal lemma from

which we deduced our relative Szemer6di theorem via standard arguments. In this

chapter, we give an alternative approach to proving the relative Szemer6di theorem.

Instead of going through the hypergraph removal lemma, we use Szemer6di's theorem

directly as a black box. To transfer Szemer6di's theorem to the sparse setting, we

apply the dense model theorem of Green-Tao [691 and Tao-Zieger [1261, which was

subsequently simplified by Gowers [651, and independently Reingold, Trevisan, Tul-

siani, and Vadhan [1021. This tool lets us model a subset of a sparse pseudorandom

set of integers by a dense subset. The dense model is a good approximation of the

original set with respect to a discrepancy-type norm (similar to the cut metric for

graphs). This contrasts previous proofs the Green-Tao theorem [69, 65, 1021 where

the dense model theorem is applied with respect to the Gowers uniformity norm,

which gives a stronger notion of approximation.

We make key use of the relative counting lemma, Theorem 3.1.17, which implies

that the dense model behaves similarly to the original set in the number of arithmetic

progressions.

The arithmetic transference approach presented here establishes the new relative

Szemer6di theorem in a more direct fashion compared to Chapter 3, and it also gives

better quantitative bounds. Indeed, instead of going through the hypergraph removal

lemma, which currently has an Ackermann-type dependence on the bounds (due to the
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application of the hypergraph regularity lemma), we can now use Szemer6di's theorem

as a black box and automatically transfer the best quantitative bounds available

(currently the state-of-art is [1091 for 3-term APs, [70] for 4-term APs, and [61] for

longer APs). The approach presented here, however, is less general compared to

Chapter 3, since it does not provide a relative hypergraph removal lemma, nor does

it give a more general sparse regularity approach to hypergraphs.

We shall use, as a black box, the following weighted version of Szemer6di's theorem

as formulated, for example, in [69, Prop. 2.3]. Compared to Theorem 3.1.1, we

emphasize the constant c(k, 6). It may be helpful to think of f as the indicator

function 1A of some set A C ZN. It will be easier for us to work in ZN := Z/NZ

as opposed to [N] := {1,..., N}, although these two settings are easily seen to be

equivalent.

Theorem 4.0.1 (Szemer6di's theorem, weighted version). Let k > 3 and 0 < 6 < 1

be fixed. Let f : ZN -+ [0, 1] be a function satisfying E[f] > 6. Then

E[f(x)f(x + d)f(x + 2d) ... f(x + (k - 1)d)Ix, d E ZN] > c(k, 6) - Ok,6(1)

for some constant c(k, 6) > 0 which does not depend on f or N.

Gowers' results [61] (along with a Varnavides-type [133] averaging argument) im-

ply that Theorem 4.0.1 holds with c(k, 6) = exp(- exp(6~ck)) with ck = 22-k9 (see

[109] and [70] for the current best bounds for k = 3 and 4 respectively).

The main result of this chapter is the following theorem. Recall the k-linear forms

condition from Definition 3.1.2.

Theorem 4.0.2 (Relative Szemer6di theorem). Let k > 3 and 0 < 6 < 1 be fixed.

Let v: ZN -+ R>O satisfy the k-linear forms condition. Assume that N is sufficiently

large and relatively prime to (k - 1)!. Let f : ZN -+ R>0 satisfy 0 < f(x) v(x) for

all x G ZN and E[f] > 6. Then

E[f(x)f(x + d)f (x + 2d) ... f(x + (k - 1)d)Ix, d E ZN > c(k, 6) - Ok,6 (1)
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where c(k, 6) is the same constant which appears in Theorem 4.0.1. The rate at

which the ok,s(1) term goes to zero depends not only on k and 6 but also the rate of

convergence in the k-linear forms condition for v.

This theorem was proved in Chapter 3 without the additional conclusion that

c(k, 6) can be taken to be the same as in Theorem 4.0.1. Indeed, the proof in Chap-

ter 3 uses the hypergraph removal lemma as a black box, so that the constants c(k, 6)

there are much worse, with an Ackermann-type dependence due to the use of hyper-

graph regularity. In [691, Green and Tao also transfered Szemer6di's theorem directly

to obtain the same constants c(k, 6) as in Theorem 4.0.1, but under stronger pseudo-

randomness hypotheses for v. So Theorem 4.0.2 combines the conclusions of the two

relative Szemer'di theorems in Chapter 3 and [691.

In Section 4.1, we apply a dense model theorem to find a dense approximation of

the original set. In Section 4.2, we apply a counting lemma to show that the dense

model has approximately the same number of k-term APs as the original set. Finally

in Section 4.3, we put everything together and apply Szemer6di's theorem as a black

box to conclude the proof.

4.1 Dense model theorem

In this section, we show that the f in Theorem 4.0.2 can be modeled by a function

f: ZN -+ [0, 1 - We state our results in terms of a finite abelian group G (written

additively), but there is no loss in thinking G= ZN. For x = (X 1, ... , x,.) c Gr, and

I C [r], we write x, =(Xi)iEI.

Definition 4.1.1. Let G be a finite abelian group, r be a positive integer, V): G' -+ G

be a surjective homomorphism, and f, f: G -> R;>O be two functions. We say that

(f, f) is an (r, E)-discrepancy pair with respect to 0 if

r

E [(f((x)) -- f((X))) Ui(X[r]\{i}) x E Gr < e (4.1)

for all collections of functions u1 , ... , : Gr-1 -+ [0, 1].
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Example 4.1.2. When r = 2 and V, (x, y) = x + y, (4.1) says

jE[(f(x + y) - f(X + Y))U1 (y)u2(X) is, y E G] I e.

In other words, this says that the two weighted graphs g, : G x G -+ R>O given by

g(x, y) = f(x + y) and (x, y) = f(x + y) satisfy IIg - .JjL <e, where 1-1|1 is the cut

norm for bipartite graphs.

When r = 3 and 4'(x, y,z) = + y + z, (4.1) says

IE[(f(x + y-+ z) - f(X +y+ z))U1(y,z)u 2(x,z)u 3(X,y)IX,y,z E G]I E.

The following key lemma says that any 0 f < v can be approximated by a

0 < f < 1 in the above sense.

Lemma 4.1.3. For every E > 0 there is an '= exp(-c-0 (1)) such that the following

holds:

Let G be a finite abelian group, r be a positive integer, and b: G' -+ G be a

surjective homomorphism. Let f, v: G -+ R>0 be such that 0 < f v, E[f] < 1,

and (v, 1) is an (r, e')-discrepancy pair with respect to 4'. Then there exists a function

f: G -+ [0,1] so that E[f] = E[f ] and (f, f) is an (r,,e)-discrepancy pair with respect

to 0.

The proof of Lemma 4.1.3 uses the dense model theorem of Green-Tao [69] and

Tao-Ziegler [126], which was later simplified in [65] and [102]. The expository note

[1011 has a nice and short write-up of the proof of the dense model theorem, and we

quote the statement from there.

Let X be a finite set. For any two functions f, g: X -+ R, we write (f, g) =

IE[f(x)g(x)jx E X]. For F a collection of functions p: X -+ [-1, 1], we write Fk to

mean the collections of all functions of the form J7j = pj, where pi E F and k' < k.

In particular, if F is closed under multiplication, then T' = T.

Lemma 4.1.4 (Green-Tao-Ziegler dense model theorem). For every e > 0, there is

a k = (1/c)0(1) and an c' = exp(-(1/E)0 (1)) such that the following holds:
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Suppose that F is a collection of functions p: X -+ [-1,1] on a finite set X,

V: X -+ R>0 satisfies

I(V - 1, o)| e' for all O E Fk,

and f : X -+ R>0 satisfies f < v and E[f] < 1. Then there is a function f: X -+ [0,11

such that E [fI = E [f], and

|(f - f, p) e for all W E F.

We shall use Lemma 4.1.4 with F closed under multiplication, so that k plays no

role. This is an important point in our simplification over previous approaches using

the dense model theorem.

Proof of Lemma 4.1.3. For any collection of functions u1 , . . . , ur: G'-1 -+ R, define

a generalized convolution (ui, ... , u,)* : G -4 R by

(ui,...,U,)*(x) = E ui(yl\p) y E G', 0(y) = x].

Then the left-hand side of (4.1) can be written as I (f - f, (ul,... , U)*,) . Let F be

the set of functions which can be obtained by convex combinations of functions of the

form (ui,. . . , u,)*,, varying over all combinations of functions u1 , ... , u: Gr-1 -+ [0, 11

(but / is fixed). Then (f, f) being an (r, c')-discrepancy pair with respect to V) is

equivalent to I(f - f, W) I e for all sO E F. The desired claim would then follow

from Lemma 4.1.4 and the triangle inequality provided we can show that F is closed

under multiplication. It suffices to show that for u1, ... , u, . . . , u',: Gr- 1 -+ [0,1],
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the product of (u1 ,.. .,u,) and (u', ... ')* still lies in F. Indeed, we have

=IE [ , )' y, y CG, b(y) = W'(y') = X]
r

= E Ui(Y[rj\i})U'(Y[-r\{i + Z[,r]\{i) y, z E G', V(y) x, (= Z 0

= E[(VI, 'V2, 2 }, . . ,pj2 )*,(x)z E G', O(z) = 0

where G -+ [0, 1] is defined by vi,Z[rI\{j (Y[r]\{i}) = Ui(Y[r]\{i)U'U(Y[r]\{i} +

z[r\{ii}). This shows that the product of two such generalized convolutions is a convex

combination of generalized convolutions, so that F is closed under multiplication. U

4.2 Counting lemma

Next we show that if (f, f) is a (k - 1, e)-discrepancy pair, with f < v and f 1,

then f and f have similar number of (weighted) k-term APs. This is a special case

of the counting lemma for sparse hypergraphs, Theorem 3.1.17.

Lemma 4.2.1 (k-AP counting lemma). For every k > 3 and -y > 0, there exists an

e > 0 so that the following holds.

Let v, f, f: ZN -+ i;>O be functions. Suppose that v satisfies the k-linear forms

condition and N is sufficiently large. Suppose also that 0 < f < v, 0 < f 1,

and (f, f) is a (k - 1, e)-discrepancy pair with respect to each of 01,...,. 4k, where

0j': Z N k ZN is defined by

V (X1, .... , j-xj_1 $+1 - - ,xk) := (i -j)xi.

iE[k]\{j}

Then
k-1 k-1

E[17 f(a +id) a, d EZN - E [ f(a + id) a, d EZN II (4.2)
i=n i=a

Let us explain why Lemma 4.2.1 is a special case of Theorem 3.1.17. We use the
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hypergraph notation from Chapter 3. Let V (J, (V)jEj, k - 1, H) be a hypergraph

system, where J = [k], Vi = ZN for every j E J, and H = (k 1) (corresponding to

a simplex). Let (Ve)eEH, (ge)eEH, and ( e)eEH be weighted hypergraphs on V defined

by

V[k]\{j}(X[k]\{j}) = v(4(X[k]\{j}))

g[k]\{j} (X[k]\{Ij}) = f O kl\{j}

g[k]\{j}(X[k]\{j}) [k]\j}

for j E [k] and X[k]\{j} E V[k]\{j} = Zk- 1. Then the weighted hypergraph (Ve)eEH

satisfies the H-linear forms condition, Definition 3.1.8 (which is equivalent to v: ZN --

R> 0 satisfying the k-linear forms condition). That (f, f) is a (k - 1, e)-discrepancy

pair with respect to V/j is equivalent to (grk]\{ 3}, g[kJ\{ 3 }) being an E-discrepancy pair

as weighted hypergraphs (Definition 3.1.13). Note that

k-1

E [fJf(a+id) x,d E ZN =E[1ge(xe)x V]
i=0 eEH

(to see this, let a = 01(X2,... , Xk) and d = -(X 1 + - + Xk)) and similarly with f

and j,. Then the relative hypergraph counting lemma, Theorem 3.1.17, reduces to

Lemma 4.2.1.

4.3 Proof of the relative Szemeredi theorem

Proof of Theorem 4.0.2. We begin with the following simple observation, that for any

9, ': ZN -+ R> 0, if (g, g') is a (k - 1,,E)-discrepancy pair with respect to one 'j from

Lemma 4.2.1, then it is so with respect to all 4j. This is simply because 1, 2, ... , k -1

all have multiplicative inverses in ZN, as N is coprime to (k - 1)!, and a scaling of

variables in (4.1) allows one to convert one linear form Oj to another -0,;.

The linear forms condition on v implies that (V, 1) is a (k - 1, o(1))-discrepancy
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pair with respect to 01 from Lemma 4.2.1. Indeed, we have the following inequality

r

E (v(4 1 (x)) - 1) H ui(X[]\{i}) x c Gr

SE[ H (v(4,1(x(w))) - 1) X(O), X(1) E Gr 1/2- (4.3)
wE{O,1}T

which is proved by a sequence of Cauchy-Schwarz inequalities, similar to Lemma 3.5.2.

The right-hand side of (4.3) is o(1) by the linear forms condition (expand the product

so that each term is 1 + o(1) by (3.2), and everything cancels accordingly).

Since (v, 1) is a (k - 1, o(1))-discrepancy pair with respect to '1, Lemma 4.1.3

implies that there exists f: G -+ [0, 1] so that E[f] = E[f] ; 6 (if E[f] > 1, then

replace f by Jf/E[f]) and (f, f) is a (k - 1, o(1))-discrepancy pair with respect to

'1, and hence with respect to all V/j, 1 < j k. So

E L f(x +id) x,dcG/N] E[flf(x+d)x, d ZN] - o(1)

> c(k, 6) - Ok,6(1)

where the first inequality is by Lemma 4.2.1 and the second inequality is by Theo-

rem 4.0.1. N
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Chapter 5

Multidimensional Szemer6di theorem

in the primes

Let PN denote the set of primes at most N, and let [N] := {1, 2,... , N}. Tao [1231

conjectured the following result as a natural extension of the Green-Tao theorem [69]

on arithmetic progressions in the primes and the Furstenberg-Katznelson [541 multi-

dimensional generalization of Szemer6di's theorem. Special cases of this conjecture

were proven in [341 and [93]. The conjecture was very recently resolved by Cook,

Magyar, and Titichetrakun [35] and independently by Tao and Ziegler [1251.

Theorem 5.0.1. Let d be a positive integer, v 1, . . . ,Vk E Zd, and 6 > 0. Then, if N

is sufficiently large, every subset A of pd of cardinality JAI ;> |PNId contains a set

of the form a + tv 1, ... , a + tVk, where a E Zd and t is a positive integer.

In this chapter we give a short alternative proof of the theorem, using the landmark

result of Green and Tao [711 (which is conditional on results later proved in [72] and

with Ziegler in [73]) on the asymptotics for the number of primes satisfying certain

systems of linear equations, as well as the following multidimensional generalization

of Szemersdi's theorem established by Furstenberg and Katznelson [541.

Theorem 5.0.2 (Multidimensional Szemeredi theorem [54]). Let d be a positive in-

teger, v1 ,... , Vk E Zd, and 5 > 0. If N is sufficiently large, then every subset A of
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[N]d of cardinality JAl ;> SN d contains a set of the form a + .. . , a + tVk, where

a E Zd and t is a positive integer.

To prove Theorem 5.0.1, we begin by fixing d, v,.. . , vk, 6. Using Theorem 5.0.2,

we can fix a large integer m > 2d/6 so that any subset of [m]d with at least Smd/2

elements contains a set of the form a + tv, ... , a+ tVk, where a c Zd and t is a positive

integer.

We next discuss a sketch of the proof idea. The Green-Tao theorem [69] tells

us that there are arbitrarily long arithmetic progressions in the primes. It follows

that for N large, PN contains homothetic copies of [mid. We use a Varnavides-type

argument [133] and consider a random homothetic copy of the grid [m]d inside PN. In

expectation, the set A should occupy at least a 6/2 fraction of the random homothetic

copy of [mn]d. This follows from a linearity of expectation argument. Indeed, the

Green-Tao-Ziegler result [71, 72, 73] and a second moment argument imply that most

points of PN appear in about the expected number of such copies of the grid [mid.

Once we find a homothetic copy of [m]d containing at least 6md/2 elements of A, we

obtain by Theorem 5.0.2 a subset of A of the form a + tv 1 ,. . . , a + tVk, as desired.

To make the above idea actually work, we first apply the W-trick as described

below. This is done to avoid certain biases in the primes. We also only consider

homothetic copies of [m]d with common difference r < N/M 2 in order to guarantee

that almost all elements of Pd are in about the same number of such homothetic

copies of [m]d.

Remarks. This argument also produces a relative multidimensional Szemer6di theo-

rem, where the complexity of the linear forms condition on the majorizing measure

depends on d, vi, ... , V and 6. It seems plausible that the dependence on 6 is un-

necessary; this was shown for the one-dimensional case in Chapters 3 and 4. Our

arguments share some features with those of Tao and Ziegler [125], who also use the

results in [71, 72, 731. However, the proof in [125] first establishes a relativized ver-

sion of the Furstenberg correspondence principle and then proceeds in the ergodic

theoretic setting, whereas we go directly to the multidimensional Szemer6di theorem.

Cook, Magyar, and Titichetrakun [35] take a different approach and develop a rel-

164



ative hypergraph removal lemma from scratch, and they also require a linear forms

condition whose complexity depend on 6.

Conditional on a certain polynomial extension of the Green-Tao-Ziegler result

(c.f. the Bateman-Horn conjecture [111), one can also combine this sampling argument

with the polynomial extension of Szemer6di's theorem by Bergelson and Leibman [131

to obtain a polynomial extension of Theorem 5.0.1.

The hypothesis that JAI > 6 L'PN d implies that

1A(l,... ,rnd)A'(ni) - A'(nd) (6 - o(1))N, (5.1)
ni....,. ndE[N]

where 1 A is the indicator function of A, and o(1) denotes some quantity that goes to

zero as N -+ oo, and A'(p) = log p for prime p and A'(n) = 0 for nonprime n.

Next we apply the W-trick [71, Sec. 51. Fix some slowly growing function w =

w(N); the choice w := log log log N will do. Define W := l,][ p to be the product

of all primes at most w. For each b E [W] with gcd(b, W) = 1, define

A I - 0(W)A
A, (n) := A'(Wn + b)

where O(W) = #{b E [W] : gcd(b, W) = 1} is the Euler totient function. Also define

1Ah 1 . bdW (ni,... , nd) := 1A(Wni + b1 , ... , Wnd + bd).

By (5.1) and the pigeonhole principle, we can choose b1, ... , bd E [W] all coprime to

W so that

1 .  W(n, .. .,fnd)Ab 1,w(nf)A 2 w(n) ... A'w(n)
1 ni,...,n1dN/W

S(6 -o(1)) ( N (5.2)
W
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We shall write

N := N/WJ, R:= [N/m2 ], i := 1
Ab d,.I:,bdW aW

(all depending on N). So (5.2) reads

SE (rh,.. -, nd)A(n1)A 2 (n2 ) ... d (nd) > (6 - o(1))Nd (5.3)
n ,...,n IElN]

The Green-Tao result [711 (along with [72, 731) says that A' ,, acts pseudoran-

domly with average value about 1 in terms of counts of linear forms. The statement

below is an easy corollary of [71, Thm. 5.1].

Theorem 5.0.3 (Pseudorandomness of the W-tricked primes). Fix a linear map

V= (1, . Z.. ,) :7Z 4 Zt (in particular T(O) = 0) where no two 0j, Oj are linearly

dependent. Let K ; [-N, N]d be any convex body. Then, for any b 1 ,... , bt G [W] all

coprime to W, we have

S A ,yw(Pj(n)) = #{n C K n Z": 'z(n)> OVj}+o(N")
nEKnZd jE[t]

where o(d) : o(1)N". Note that the error term does not depend on b1 ,...,bt

(although it does depend on ').

The next lemma shows that A in expectation contains a considerable fraction of

a random homothetic copy of [iM] d with common difference at most R = [N/m 2 ] in

the W-tricked subgrid of Pd*

Lemma 5.0.4. If A satisfies (5.3), then

Z(A(n1 + i1 r, ... , nd + 2dr) fj fJ Aj(nj + ir)

71, .... , fdE9[N] \ii... ,idE[n] / jE[d]iE[m]
re[R]

> (6 n-d - dMr- 1 - o(1))RNd. (5.4)
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Proof of Theorem 5.0.1 (assuming Lemma 5.0.4) . By Theorem 5.0.3 we have

SE U fl 3 (n + ir) = (I + o(1))RN,
ni,...,ndE[N] E[d] iE[rn]

rE[R]

So by (5.4), for sufficiently large N, there exists some choice of n1 , .. ., nd E [N] and

r E [R] so that
1 d

A(n1+ iir, ... , nd + idr)> 2 m.
.i4dEfrn]

This means that a certain dilation of the grid [M] d contains at least 6md/2 elements

of A, from which it follows by the choice of m that it must contain a set of the form

a + tvl,..., a+tk.

Lemma 5.0.4 follows from the next lemma by summing over all choices of i..... , idE

[n].

Lemma 5.0.5. Suppose A satisfies (5.3). Fix i1 ,.... ,id E [m]. Then we have

Z(n+iir, ... , nd+idr) J7 11 A(nj+ir) _
jE[d iE[m]

( - - o(1) RNd. (5.5)

Proof. By a change of variables n' = nj + ijr for each j, we write the LHS of (5.5) as

r E (R n',...,n'/ EZ

n-ijrE[N] Vj

Recall that R = [N/m2 J. Note that (5.6) is at least

5n1 n') J X3 (n + (i - ij)r).
rE[R N/m<nI, ... ,n'<9 jE[d] iEt[m]
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ni,...,ndE[N]

rG[R)

Z(n',. n') J J i (n + (i - i3 )r).

jE[d] iE[m]

(5.6)

(5.7)



By (5.3) and Theorem 5.0.3 we have

/
N/m<'nl...fd Ng

A(ni, ... , nd)I 1(n 1)A2 (n2) - - Id(nd) ; ( - - - 0(1) jd (5.8)
m

(the difference between the left-hand side sums of (5.3) and (5.8) consists of terms

with (ni,... , nd) in some box of the form [N]j- 1 x [N/m] x [N]d-j, which can be

upper bounded by using A < 1, applying Theorem 5.0.3, and then taking the union

bound over j E [d]). It remains to show that

(5.7) - R -(LHS of (5.8)) = o(Nd+1)

We have

(5.7) -- R - (LHS of (5.8))

N /m<n .,..., n'<9
1-d

rE[R]

/<n.,...,n'<F

( 7 171 (n + (i - ij)r) - 1 fI (n')
jE[d] ie[m] jE[d

(E i H X1 (n + (i - Zi)r)
rE[R] jE[d] iE[m]\{ij

By the Cauchy-Schwarz inequality and 0 < A <

bounded in absolute value by /5T, where

1, the above expression can be

Ag(n )
/mn<n ,...,n'< j E [d]

2

E (H Tkj (n') E 17 IH (n' + (i - i.Br) - 1
N/m<n.,...,n'<N ijE[d] rE[R] jE[d] iE[m]\{ij

=T1 - 2T2 + T3 ,
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and

- ii)r)A(n + (i - ij)
N/m<n , ... , n' <hE[d]

r,r'E[R

j (n') 1 X(n{ + (i
iE [wt\f{j}

T2- = 11 Ij(n.') 11 Aj(n + (i -ij) r),
N/m<n.,...,n'<je[d] iE[m\{i}

r,r'E[R]

T3- = fl I(n').
N/m<n. --.,n'jE al

r,r'E[R]

By Theorem 5.0.3 we have S = O(Nd), and T1, T2, T3 pairwise differ by o(Nd+ 2 ), So

Uthat T = o(Nd+ 2). Thus /ST = o(Nd+l), as desired.
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