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Abstract

The maintenance and operation of commercial turbofan engines relies upon an understanding of the

factors which contribute to engine degradation from the operational mission, environment and

maintenance procedures. A multiple information source system is developed using the Pratt & Whitney

engine to combine predictive engineering simulations with socio-technical effects and environmental

factors for an improved predictive system for engine time on-wing. The system establishes an airport

severity factor for all operating airports based upon mission parameters and environmental parameters.

The final system involves three hierarchical layers: a 1-D engineering simulation; a parametric survival

study; and a logistic regression study. Each of these layers is combined so that the output of the prior

becomes the input of the next model. The combined system demonstrates an improvement in current

practices at a fleet level from an R2 of 0.526 to 0.7966 and provides an indication of the relationship

suspended particulate matter and engine degradation. The potential effects on the airline industry from

city based severity in maintenance contracts are explored. Application of multiple information sources

requires both knowledge of the system, and access to the data. The organizational structure of a data

analytics organization is described; an architecture for integration of this team within an existing

corporate environment is proposed.
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Glossary of Terms
Al, A2, A3, A6, A8, A14, A19, A21 - Aerosol volume column loading parameters defined in Table 2

ACARS - Aircraft Communication Addressing and Reporting System

AIC - Akaike information criterion

ASF - Airport Severity Factor

BIC - Bayesian information criterion

Business unit - team within a company division responsible for specific goals

CALF - Configuration adjusted life factor

Derate -The setting below maximum available thrust, measured as a percentage where 0 equals max

thrust and 100 equals zero thrust

DTamb - Difference between the ambient temperature and the elevation adjusted temperature at

International Standard Atmosphere

EGT - Exhaust Gas Temperature

EPR - Engine Pressure Ratio

ES - Engine Services, a business unit within P&W aftermarket division

FHA - Flight Hour Agreement

GE - General Electric Corporation

GW - Gross Weight at takeoff

HPT - High Pressure Turbine
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HPT Grids - Data set provided by Hot Section Engineering (HSE) that describes the relationship between

expected Time on Wing (TOW) of the High Pressure Turbine (HPT) and operational parameters of the
mission point

HSE - Hot Section Engineering, a business unit within the P&W Engineering division

IAT - Interval Analysis Tool

IAE - International Aero Engines

Interval - Time between hot section refurbishments (HSR) measured in either flight hours or flight cycles

ISA - International Standard Atmosphere

IT - Information Technology, in reference to an organization within a company

JMP - A statistical software from SAS Corporation

LF - Life Factor

LLP - Life limited part, parts that require replacement after fixed cycles or hours regardless of condition

MISR - Multi-angle Imaging SpectroRadiometer

Mission point - a characteristic mission of an engine described by all pertinent characteristics of a flight

route between two typical airports

MODIS - Moderate-Resolution Imaging Spectroradiometer

MRO - Maintenance and Repair Organization

MSE - Mean square error

OAG - Official Airline Guide

OEM - Original Equipment Manufacturer

P&L - A segment of a company measured against for profit and loss metrics for all activities

PM - Particle Mass, measured in column loading at or above a specified particle size

P&W - Pratt & Whitney, a UTC company

RH - Relative humidity

Severity - A factor describing the difference between expected life and actual life as a function of

unknown parameters. Larger numbers correspond to longer life.

SPSS - Statistical Package for the Social Science, a software system from IBM Corporation

SQL - Structured query language

TOW - Time on wing, typically measured in flight hours

TR - Thrust Reverser

UTC - United Technologies Corporation
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1.0 Introduction

As the growth of data systems has made Big Data a buzz word in industry, organizations struggle to

develop methods capable of managing large data systems and harvesting financial value from them.

Two problems are specifically addressed in this work: the problem of properly maintaining and

propagating big data through a company, and the problem of developing successful models for multi-

factored socio-technical scenarios. The description of state of the art model applications within the

aerospace and insurance industry provides context for the current work. The specific area of research is

the advancement of engine time on wing (TOW) prediction, subject to variability from basic engine

physics, maintenance and inspection policy, and airport specific environmental effects. This chapter

introduces the current state and objectives of engine TOW prediction at Pratt & Whitney, and outlines

the methods by which a new model is proposed.

1.1 Background

1.1.1 Applications of Models Across Industries

Analytical models throughout multiple industries demonstrate similarities in the way they merge diverse

data sources to generate complex structure simulations. Both the aerospace maintenance and health

insurance industries insure the risk of expensive rare events and take advantage of similar cost modeling

methods. Health insurance decision models have been developed using Monte Carlo simulation[1],

Markov Chain analysis[2], data clustering[3], spatial geographic[4], mixed financial steady state models'

and neural networks[5]. The varied application of data modeling tools indicates that these industries

hold sufficient data to answer questions in several ways.

Often the model selection and the type of question being asked of the data are decided together. Many

of these models in healthcare take advantage of mixed data sources and mixed model methods when

questions require it. For example, a first order model found in health care is the Proportional Disease

Magnitude (PDM), which is an intermediate factor that represents the financial cost of a disease in the

place of actual costs. This PDM is first developed for an area of interest, and then used as a factor in

simulations[6],[7]. The abstraction of this information provides greater information for portfolio level

risk analysis than the unadjusted cost data would have done since the underlying factors of cost can be

separated from the noise incurred by billing errors.

1.1.2 Engine Support Policies and Predictive Models

Airplane engine maintenance represents 41% of the cost of ongoing maintenance for worldwide

passenger airline operators [8]. For both airlines and engine manufacturers, the decisions regarding
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maintenance costs management are a critical aspect of the original purchase decision. Engine

maintenance contracts are awarded competitively by the airplane owner to one of three options:

Independent Maintenance Repair & Overhaul (MRO) companies, Airline Operated MRO's, and the

engine's primary original equipment manufacturer (OEM). From the airline operators' perspective, these

contracts serve to mitigate risk by either setting repair rates or directly covering certain repairs. Since

1962, with Rolls Royce's Power By-the-HourTM plans, many operators pay fixed amounts per flight hour

to the OEM for the privilege of zero cost, or decreased cost shop visits[9]. Referred to as Flight Hour

Agreements (FHA), these fixed rate contracts are billed either monthly or at shop visit. The coverage of

such plans is typically limited to a fleet cumulative term, per engine term, or a fixed number of shop

visits. Implications of each of these combinations of billing and coverage methods complicate the pricing

decisions for both the operator and the OEM. The actual cost of operating the fleet is subject to a high

degree of uncertainty with high costs incurred infrequently. The worldwide average maintenance

expense in 2011 was just over $200 per flight hour, and engines perform on the order of 10,000 flight

hours across a time horizon of several years before overhaul costs are first incurred[8]. The industry

standard method of modeling this time on-wing risk is to use Weibull distribution analysis based upon

existing data, or engineering prediction[10]. Simulation and risk based customer pricing are developed

by considering a number of factors including operating thrust, environmental conditions, flight length,

and engine configuration[11]. Accurate understanding of the expected time on-wing (TOW) under a set

of operating conditions is central to developing a cost structure for FHAs. Understanding the expected

distribution profile for TOW enables accurate simulation of the differences between term limited plans

and shop visit based plans and optimization of fleet management strategies.

The day to day operating conditions of an engine are collectively referred to as the mission. Mission

parameters include such values as the thrust, hours per cycle, and local operating conditions. In addition

to mission parameters, other engine lifelong or fleet level factors affect TOW including maintenance

policy, thrust reverser usage, fuel quality, and others. While FHA pricing takes into consideration all of

these factors, it is difficult to accurately predict the expected life of a new engine program across all

possible missions. First principles simulation of the engine gas path is performed by the engineering

team for a variety of inputs and design modifications are tested against prior versions to mitigate

against key failure modes identified in TOW predictions. Taking into consideration all possible

combinations of local operating conditions increases simulation cost and any complete model of all

interactions would require re-certification on each engine program. As a result, the industry commonly

takes advantage of TOW adjustment tables that are treated as independent or sometimes covariate
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effects. To generate a predicted TOW, the baseline prediction from engineering design is obtained and

multiplied by a set of severity factors from these tables. A severity factor of 1.0 is used as the base point

for calibration of the first principles models and the real world experiences on prior engines. By

convention high severity indicates proportionally poor performance. For example, thrust derate is

measured as the percent below maximum rated thrust. It is selected by the pilot at takeoff. Raising

thrust from a derate of 10% to a derate of 0% may change the severity factor from 1.0 to 1.1 yielding a

10% shorter expected TOW[11]. These tables are developed by the manufacturer and provided to

prospective airlines when planning their mission profiles and maintenance costs. Many mission

parameters are directly related to one another as will be described. In these cases, a table or set of

tables showing the interacting terms is constructed, while for independent effects a collection of tables

can be applied sequentially. The use of severity factors as a process for predicting engine TOW enables

the manufacturer to solve some problems independently and enables the transfer of information

forward to future models.

1.1.3 The Objective - City Level Severity

Geographic dispersion of the airline industry is itself a recent trend. In 1995 the regions of North

America, Europe, Pacific Islands or Seaboard garnered 84% of all passenger traffic. Dusty regions, such

as North Africa, the Middle East, South Central Asia and inland China did not reach 10% of global traffic

until the year 2001. Between 2005 and 2010 the air demand in these latter regions doubled to a half

billion passengers per year [12]. Several years later, the first engines began returning for repairs in high

enough numbers for statistical analysis. The impacts of dusty environments on fleet level TOW had

therefore not been widely studied until 2010. Recent work by multiple manufacturers focuses on the

development of new severity factors to account for regional effects. The relationships between particle

type and size and the associated engine degradation modes are being explored. As a result of these

studies, one manufacturer has stated that the "TOW ... is a function of percent of routes in harsh

environments" [13].

The severity factor of an airport environment could be estimated by first principles simulation through a

full characterization of the types of particles in the operating space. This analysis could culminate in

proper understanding of the material science and generate useful results for the development of new

engines and simulation of existing fleet performance. The results would not be readily absorbed by the

industry or fleet operator and would be expensive to generate and to run. By contrast, the development
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of a severity factor that accounts for the operational environment by regression to globally available

values could be easily adopted by the manufacturer and the operator for fleet planning.

It is the objective of this study to generate an airport severity factor (ASF) for use in calculating a fleet

level severity factor. By combining ASF with other effects of the mission including flight length, it will

then be possible to produce city pair level estimates. City pair estimates are the target of the industry

according to Jim Pennito, "We're trying to understand whether a certain city pair is more abusive to the

engines than another city pair[14]." To be applicable in sequence with the existing set of severity

factors, the properties of the ASF must exhibit substantial independence from existing severity factors

and engine lifetime predictors. The correlation between the driving factors of the ASF and existing

severity factor variables will be explored.

1.2 Methods

The application of multiple information sources method is capable of providing near term benefit that

cannot be achieved by complete single method models in the context of an actively used organizational

process. Multiple information source methods take advantage of a variety of analytical modeling and

decision making processes in a hierarchical order[15],[16],[17]. The objective of these methods is to

abstract key information about the behavior of a complex system which will tend not to behave in

closed form manner. Multiple information source systems mimic the way people and organizations

make decisions. Certain stages of the decision process involve parameters that are excluded from other

stages. Such decision making systems can be applied to any existing model structure to improve

information captured by the organization in an incremental way by building upon current processes and

data.

The development of a multiple information source system requires a full understanding of the data

pertinent to the decision or set of decisions which is to be made. The context of the decision and

maintenance of the system are critical aspects of organizational intelligence that contribute to the value,

flexibility, and relatability of the final product. The target variable of interest to this study is engine time

on-wing (TOW). The decision being made is a service contract pricing decision. This study starts with a

system dynamics approach to capture the behavior of both the pricing decision and the engine TOW.

Physics effects that require special treatment are identified. These effects inform the selection of cross

terms applied at individual layers of the model and the development of derived variables for model

augmentation. Collinear terms are considered prior to model development to prevent improper training

of the model. The data sources are identified using the system dynamics model along with the level of
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data validation and re-formatting. Reformatting improves the value for particular applications and may

lead to information loss in others. Finally, data aggregation is performed to improve response specificity

and correct for sampling biases incurred by missing data. The treatment of the data depends upon the

question being asked. Figure 1 shows the proposed system of a three layer model which isolates

predictable physics effects from engine removal conditions and airport severity.

Figure 1: Proposed Multiple Information Source Model for TOW prediction

This study applies system dynamics modeling as a first step toward defining interaction terms for use.

This system dynamics model also informs the process in model development of obtaining data in cases

where not all factors can be obtained easily. Next the known interactions of operating parameters

within the engine are obtained. Physics is used in three ways to analyze the problem structure before

performing data gathering and effect screening: 1) units and distribution effects, 2) isolation of factors,

3) data augmentation by new variables.

The two primary data sources of the model are Aircraft Communication Addressing and Reporting

System (ACARS) and NASA MISR. A data rationalization policy is established for each variable that
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converts the variable into proper unit basis as determined by the physics analysis, and null records are

either filled with reasonable estimates or left blank.

Aggregation of data prior to or concurrent with modeling is performed at several layers. Aggregation of

rows in datasets improves the model specificity and can be used to improve signal-to-noise, both of

which improve model training accuracy. In each aggregation layer two important factors are considered:

Sampling effects of aggregation basis; Information loss on non-linear effects.

Four software suites are used to develop and deploy the final solution: SAS JMP 11.0, Matlab 2014a,

Teradata 14; SPSS Modeler 16; and Microsoft Excel 2010. These software systems are used for data pre-

processing, enterprise data integration, model development and model execution respectively. The

software decision was made based upon tool capability, organizational availability and existing

organizational familiarity.

1.3 Sunmnary of Chapters

The objective of this study is to develop and deploy an improved method of handling airport level

differences in engine performance in such a way that the effect on TOW can be more accurately

predicted. The proceeding chapters lay out the work performed in this study to develop the particular

solution above. The second chapter reviews the state of the art in multi-model integration. The

literature review gives attention to both the technical aspects of model development across the variety

of fields involved in this particular problem and the management aspects of data maintenance - a key

aspect of model value proposition. A series of case studies provided explore the causes of success or

failure for recent models deployed at Pratt & Whitney giving special attention to the three criteria for a

successful model: value, flexibility, and relatability.

Chapter three details the work performed in establishing the entire solution. A study of the system

dynamics involved informs the selection of initial factors for the decision structure. Next we calculate

the physics interactions of higher order effects predicted by the system dynamics model. An explanation

of the proficiency and predictive nature of a variety of modeling methods validates the selection of the

models used in the final system. Finally the results of each layer of the final system are displayed and the

sensitivity of these models to underlying data assumptions and methods is examined.

Chapter four performs validation of the final airport severity factors against internal benchmarks to

Pratt & Whitney through comparison with existing data models for regional severity and by examining

the sensitivity of the factors to variance in source parameters. The organization supporting and
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implementing this system requires analysis to ensure proper deployment is sustainable and that value,

flexibility, and relatability are communicated to the company.

Chapter five reviews the impact that the airport severity factors will have upon the existing organization,

both internally to Pratt & Whitney and to its customers. The relatability of the ASFs makes possible the

expansion of them into future market contracts across the industry and the potential effects of this shift

are discussed. Chapter five also covers the logical extensions of this work both in the near term range

for other applications of multiple information source methods and for evaluation of new IT and data

management policies.

2.0 State of the Art

Extensive literature on the topic of engine physics and large data systems provides a background for the

current research. The combination of four areas of literature is integral to establishing a functional

model that is sufficiently complex to handle the effects present in the lifetime of an engine. Not only

does this system of models require an understanding of engine physics and data modeling approaches,

but the organizational methods of a company require careful examination to ensure support exists for

the data system. This chapter reviews the research in system dynamics, engine physics, multiple

information source systems, and organizational structures for the support of such systems. Two case

studies from Pratt & Whitney are discussed which highlight shortcomings of two data models and

suggest how these models could have been improved by management changes during their

development and deployment. Finally, the current state of TOW modeling is described within the

context of the P&W data systems.

2.1 External Literature Review

2.1.1 System Dynamics

System dynamics in its core describes a method of capturing interactions present in a complex system

with or without given mathematical relationships. System dynamic modeling in reliability engineering

tends to be done in two high level categories: Markovian decomposition, and multi-parameter feedback

analysis. Markovian decomposition of the system enables a variety of modeling methods for both error

classification techniques [18], [19] and system level reliability [20], [21]. In each of these cited examples,

the system dynamics diagram informs the hierarchy of the ensuring model by capturing the expected

behavior and interactions prior to mathematical screening. Chung et al develop a comprehensive
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dynamics model of module-to-module interactions within turbofan gas paths which enables the

construction of a complex system level model using simple linear interactions between each pair of

nodes[22]. System dynamics is applied to analytical methods outside aerospace to effectively model

socio-technical characteristics alongside empirical mathematical methods, most recently in the

healthcare and insurance industry [23], [5]. One example of hybrid modeling including regulatory policy

evaluation and stochastic mathematic modeling of flood risk developed for European drainage

simulations relies upon system dynamics to organize influential factors [24].

2.12 Engine Physics

Estimation of internal engine temperatures and pressures is a central aspect of the design phase for

both production and market placement. The basic methods and trade-offs are published by both

manufacturers and independent parties [25], [26], [27], [28], [29]. While OEMs use proprietary modeling

methods for design and evaluation, academic versions of models such as Hermes and Turbomatch

developed at Cranfield University for airframe and engine performance modeling respectively provide

sensitivity analysis of engine durability to standard factors. Modeling of the internal temperatures and

pressures requires assumed values for external atmospheric values throughout the flight, and a full

thermodynamic model of the engine in question. The majority of modern methods approved within

industry for performing the gas path simulation involve recursive linear quadratic estimation known as a

Kalman filter[30],[31], [32]. This method, based on an underlying Bayesian inference structure with

Gaussian assumptions, is capable of developing a stable solution to internal temperatures and pressures

given limited known constraints and physics with significant noise. Innovative methods have been

presented to more closely simulate engine health performance using non-linear and non-Gaussian

methods with Monte Carlo sampling methods to constrain solutions on an extended non-linear Kalman

filter with non-Gaussian inputs[33]. This work has shown a high degree of sensitivity to methods of

sampling. While these methods may eventually be adopted for future systems, the commonly deployed

models in industry remain linear and Gaussian in nature.

Sensitivity analysis between these mission parameters and engine life expectancy is based upon

simulation of low cycle metal fatigue, material oxidization, and high cycle creep through time at

temperature estimations. Hanumanthan provides a thorough review of the methods for combining

damage estimators to predict engine failure [34]. The results of these models enable declarable trade-

offs specific to the engine model such as "A takeoff derate that averages 5% will add 400-500 [engine

flight cycles] to on-wing life, a 10% derate will add 800-900, and a 15% derate will add about 1100[35]."
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The basic physics of engine propulsion begins with the equation of net thrust:

Equation 1 F = Vi - Va) + A1 (P; - Pam)9

where Wa is the air mass flowrate, g acceleration of gravity, V the exhaust average velocity after mixing

in the exhaust cone, Va the incoming air velocity on the axis of motion, A1 the aera of the nozzle, P the

static pressure at the discharge and Pam the static pressure of ambient air[28]. In the above formulation,

momentum of spent fuel (Wf) is disregarded. From this formula and basic atmospheric relationships, the

impact of temperature, pressure, and wind speed on the gross thrust are readily established. Turbines

follow a Brayton cycle, shown in Figure 2, capturing energy on the expansion path to power the

compressor, the aircraft electronics and the thrust.

Figure 2: Gas Turbine Work Cycle

Gas Turbine Work Cycle

Combustor

2
3

Turbine

a) 4

Compressor Nozzle

Inlet Ambient Air

Volume

Since fixed nozzle designs are commonly used for high by-pass systems used on standard commercial

aircraft applications, the expansion curve does not change to adjust for flight conditions. Until the

introduction of the Pratt & Whitney Geared Turbo Fan, the relationship between compressor and

expansion curves was fixed by the common spindle[36]. With fixed engine geometry, any change in

thrust caused by atmospheric properties may only be countered by increasing combustor fuel flow and

consequently internal gas path temperatures. With atmospheric values as constants, the engine thrust

can be rewritten as F = Catm + Aj * EPR where Catm collects terms fixed by geometry, airspeed and
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ambient pressure and EPR is the engine pressure ratio defined as the pressure at the nozzle divided by

the pressure at the compressor: point 4 over point 2 in Figure 2. This formulation of Equation 1 informs

a number of severity assessments in that the EPR, thrust and fuel flow are shown to be linearly related

at any given operational point.

Atmospheric and mission parameters are highly covariate both through standard atmospheric equations

and through operational constraints. For example, Mishra and Beura demonstrated that the relationship

between runway length for maximum load aircraft and thrust requires linearly higher thrust for shorter

runways and explored the effect of this and other factors on the engine life consumption[37].

2.1.3 Multiple Information Source Learning Methods

Multiple layer models have been developed to perform remaining life estimates on engines where single

performance parameters such as Exhaust Gas Temperature may be used as suitable evaluations of

health[18]. The method developed by Ramasso and Gouriveau first performs a prediction of the failure

mode which will occur using an evolving neuro-fuzzy system, next the engine is classified into a time-risk

based mode using a parametric Markovian classifier. The model performs automatic clustering enabling

the second layer to build time series categories without prior knowledge except a basic belief

assignment which establishes the underlying expected variance leading to a failure. While the later

aspect of this approach is studied independently [19], the combined model improves both the accuracy

and flexibility of the system.

The Climate Risk Insurance Model (CRIM) represents an advanced use of multiple information source

modeling[4]. The CRIM could not be developed using a single equation or modeling method and

requires the use of nested model layers. In each layer, the modeling method is selected based upon the

information type. Climate Change scenarios provide inputs to a region specific flood probability in

Netherlands dikes. These models are combined with land use scenarios based upon socio-economic

development models to generate a damage function per geography, flood depth, and time. While

economic development scenarios may be modeled with regression techniques, the risk models of the

combined data are suited to Monte Carlo simulation. The model performs simulation on the combined

cost model for 100 years of future climate and development inputs. The output probabilities are

converted to a risk premium against a number of insurance policy structures to evaluate both the

insurance pricing and insurance liabilities. Finally, these results generate price sensitivities for the

Netherlands in regards to the development and maintenance of new dikes.
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2.1.4 Organizational Structures for Data Integration

Data storage and curation decisions impact the owning company's ability to make productive use of the

data for decades after the decisions are made. Decisions about data management fall into three main

categories: Storage medium, Database architecture, Data curation[38]. Storage medium describes the

physical storage location and includes decisions about physical security, backup reliability, geographic

emergency preparedness, and power systems. Database architecture refers to the software deployed on

the storage medium. These decisions involve trade-offs between storage volume, speed and

accessibility. The database architecture decision cannot be made without an understanding of the

nature of the data to be stored. After establishing these two underpinnings of infrastructure, data

curation refers to all activities of data management from acquisition to delivery including verification of

usability, applicability and advertising of the data[39].

While many models exist for data management, there is only one Internationally approved standard

which provides a strong baseline for discussion: the Open Archival Information System (OAIS)[40] [41].

The OAIS, shown in Figure 3, describes data curation in six areas. Main data flows are connected by solid

arrows with the data format of the transfer being called out in the nearby ovals. Functional oversight is

connected by dashed lines. Descriptive Info refers to the metadata and schema definitions required to

define the data contents and storage types. SIP, AIP and DIP refer to Submission, Archival, and

Dissemination Information Packages respectively and have defined standards for metadata included in

each package. Ingest describes those processes controlling the collection of new data into the data

system. Following Ingest, data rationalization and storage to the servers is governed by the Archival

Storage function. In parallel Data Management functions perform documentation and integration of the

data to the overall system architecture. The final inflow function of Access works with consumers to

identify the existence, description, location, and availability of data. Over the daily processing of data

the Preservation Planning function maintains hardware and software general operations, working with

consumers and producers to develop and maintain availability requirements and update plans. Finally,

the Administrative function provides integration of all areas of the archive system and is responsible for

those decisions affecting multiple functions.

Figure 3: OAIS Data Curation Model
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Data Integration within a corporate environment is challenged to provide both large data storage and

simultaneously well exposed data. Challenges are posed by mixed data formats between both digital

data and traditional document based analogue data such as receipts or maintenance notes. Activity

based pricing has shown that Preservation Planning, Administration, and Archive Storage are the most

expensive activities of a data system[42, p. -]. This cost centering generates risk of a myopic view of data

curation. Studies performed on the World Data System proposed the value of a formally defined pre-

ingest function and the development of mirrored processes for dealing with analogue and digital data in

a holistic manner through the Data Management function[43]. A survey performed on 26 members of

the WDS established a scoring method to determine the effectiveness of each function. This survey

revealed that Ingest and Data Management are generally the strongest parts of a data system with

results by group shown in Table 1. Access is the weakest on average with a number of very low scoring

systems.

Table 1: Survey Scores for WDS functions, adapted from [44]

Ingest Archive Data Admin Preserve Access

Average Score 76% 66% 79% 65% 63% 54%

1 Sigma Range 53%-98% 49%-85% 61%-95% 48%-81% 40%-86% 27%-81%

2.2 Internal Case Studies

We propose that effective models in a business context require three principal components: value,

flexibility, and relatability. Value refers collectively to the strength of the model, the validity of the

business need it fills and the cost of running it. Flexibility encompasses the range of unpredictable inputs
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the model must allow for while assisting in the business process. Relatability requires that the customers

and operators of the model have a proper understanding of how the system works, which enables them

to make full use of the information provided. This section presents two unique cases observed in which

a model or system of models fell short of attaining one of these three elements. The following cases do

not represent failed projects. They provided value and contributed to company success. Rather they

represent projects which fell short of their potential. Each case study concludes with recommendations

for ongoing improvement.

2.2.1 Event Prediction Models

2.2.1.1 Objective Description

Teams of engineers review performance data of engines daily through a proprietary on-wing and off-

wing data management system, monitoring fleets for any indication of reliability concerns and

responding quickly to operational events. Engine deterioration drives scheduling of inspections and

engine overhauls with the majority of engines never having any events in their on-wing lifetimes. In this

setting, the company pursued the development of a predictive model that could identify even minor

events before they occur.

2.2.1.2 Model Development

The development team reviewed the current process for event detection and developed a list of

potentially interesting sources of data. Over several weeks a variety of data was acquired from multiple

information sources and rationalized together. It was observed that process monitoring relied upon

trends in the engine performance metrics. Data augmentation was performed on all continuous

variables to provide trend information to the statistical models. These trend values included measures

such as average, slope, deviation, and any shift in these over time. The time period of consideration

ranged from prior flight to three years of flights with a number of binning selections in-between.

A variety of model prediction methods and compounded methods were attempted. Data boosting

applied for all records related to an event increased the model sensitivity. Data boosting refers to the

replication of rare data points to improve the sensitivity of a classification algorithm. Boosting is subject

to extreme limitation when data accuracy is in question, and therefore its use was limited to well-known

events[45]. The limited number of events on which to train the model required the team to consider

many methods of treating the response variable. A variety of decision trees and classification algorithms
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were attempted to predict probability of failure within a future time period. Alternate approaches used

linear, logistic and generalized linear regression to predict days until an event would occur.

Due to the structure of the source data, with very few events available to predict, model specificity or

true negative rate was above 0.95 in all testing datasets. As a business objective the model was trained

to have a high recall rate, which is the fraction of actual events that are correctly identified as events in a

classification model. This value could be controlled to a range of 0.5 to 0.8 in all testing datasets.

2.2.1.3 Model Outcome

The model implementation is ongoing at the time of this thesis. The engines identified as high risk for an

event are output by the model with a list of decisions from the tree based model that drove the high

propensity rating. This list is reviewed by the engineering and fleet management teams internally before

decisions to intervene. This review procedure presents a major transition from reactionary root cause

investigation into pro-active maintenance planning. A process for continuous updates is in place that

provides new data sources to the model from ongoing event detection in the field.

The false discovery rate on testing data ranging from 0.4 to 0.8 indicates that for every event

successfully averted between 1 and 4 investigations were of no direct value. When translated to specific

engines, the actual risk can be evaluated by human investigators after relatively minor expended effort.

Current estimates for this labor are one full time equivalent (FTE) employee per year for false

discoveries, and one FTE for discoveries which result in contacting the operator. Two of the three event

prediction models that were funded were discontinued after completion due to poor recall rates on

testing data.

2.2.1.4 Failure Analysis

Although the models provided value, they failed to hold up to their promised value. It was possible to

foresee, and in some aspects prevent, this problem through better definition of the business value

throughout the model development.

Improved data in the form of derived engine health indicators is actively maintained by the company.

These data were available at any time throughout the development of the model and were among the

sources used for its development, though some data was overlooked due to the difficulty of engaging all

parts of teams of the company simultaneously.
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During a critical check point on the process funding and model planning, decisions were informed by the

use of the model accuracy. As defined, the accuracy of a classification algorithm is equal to true positives

plus true negatives divided by total observations. Unfortunately, in rare event detection systems

accuracy is not representative of total model performance. For example if only one in one hundred

cases is an event, then a pure guessing algorithm that predicts one event incorrectly would have 0

correct events, 98 correct non-events, and 2 incorrect predictions with a total accuracy of 98%. Accuracy

was used as a decision making value by default since the business value associated with the false

positives and false negatives had not yet been determined. Without that understanding, the balance

between precision and sensitivity could not be outlined as a requirement. Better measures of

performance before establishing this business value are Informedness and Markedness[46].

Informedness is the true positives divided by total positives, plus true negatives divided by total

negatives, minus one. Markedness is the true positives or all positive predictions, plus true negatives

over all negative predictions, minus one. While recall in these models had been tuned to 80%,

Informedness and Markedness of the original models ranged from 10% to 15%. When this was

observed, two of the three models were suspended.

2.2.1.5 Recommendations

Value definition throughout the model development would have reduced costs and improved the

outcome of this project. The development of a Data Analytics organization with central responsibility for

advertising of data and collection of methods within the company will improve future model

performance. An improved integration between engineering staff and data analysis teams would have

enabled this type of work to succeed. "You can't do just data mining, it won't make [you] smarter about

future situations[47]."

2.2.2 TOW Study

2.2.2.1 Objective Description

The company pursued a Bayes Net regression model for identifying the primary drivers for engine time

on-wing (TOW). Bayes Net models enable hierarchical regression where certain factors are given

primacy as priors due to system knowledge. The study focused on a fleet of several hundred engines

with a mature lifecycle. The objective of the study was to inform future work on TOW studies and

expand the knowledge acquired from one mature fleet into a future engine program.
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2.2.2.2 Model Development

The development team met on a recurring basis with both engineering and fleet support staff to ensure

that all possible data sources were considered and every element of business value from the models

was well understood. A large investment was made early in the project in data source identification and

rationalization. The team then developed an algorithm capable of forecasting forward the degradation

rate of an engine using a Bayes Net. The model derived a prediction variable of the rate of degradation

for a key engine health metric. The point at which this metric crossed zero was identified as the

expected end of TOW. The model demonstrated an improvement over existing linear models for that

engine in two demonstrated test sub-fleets. Existing linear models over-predicted the TOW by as much

as 40% and it was for this reason that fleet level linear methods were not in use by the company. The

new method of slope prediction corrected for this error and the coefficient of variation from the existing

model reduced from 36.8% to 34.5% in one case and 29.5% to 26.2% in the second.

2.2.2.3 Model Outcome

The model was not adopted because the organization could not identify a way to use the model given

existing data and processes. Factors known and proven by engineering teams to affect engine health

had not appeared as primary variables in the final model. The isolation of variables to those readily

measured by the business has not been performed. The airport level severity factors were not applicable

to any engines except those on which the model had been trained. As a result, the model relied heavily

on the prior knowledge about a fleet performance and lessons from an existing fleet could in no way be

translated to a new engine design. The TOW study failed to deliver the necessary flexibility needed to

bring value to the business.

2.2.2.4 Failure Analysis

Model flexibility in this instance required that the model isolate the new effects from the existing effects

proven by first principles physics. Only in doing this could the model be validated, applied to current

predictions, and abstracted to future fleets.

First principles models from Pratt & Whitney hot section durability engineering accurately predict

degradation of key engine components as caused by factors such as thrust, flight length and air

temperatures. While the basis of the TOW study was to identify new factors, the inclusion of proven

first principles should not have been overlooked. If any mission parameter is found to be insignificant in

a model it should not be due to omission, but rather due to the identification of a new effect of opposite

weight to the physics proven effect. This form of model architecture makes room for the inclusion of
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new physics to play the role of assumed priors, and builds upon the existing data structure natural to the

organization. It is possible that a correlated effect related to airport geometry completely counters the

effects of physics on engine damage in some regard. For this new knowledge to provide value to the

organization it must be documented with respect to the current baseline so that contracts and pricing

changes may be made using a new environmental adjustment. Without this information, the models do

not allow for incremental learning and therefore cannot be implemented into an existing business

process.

2.2.2.5 Recommendations

Future studies performed must account for known physics factors as forced effects. In this way learning

will be made complementary to the existing body of knowledge and not confused with it. Any

parameter that is currently a part of the established business process should be regarded as included in

the null hypothesis. By construction of a model in this way, the future use of the model leaves room for

improved physical understanding of the source data, while providing a clear method for incremental

improvement in data acquisition.

2.3 Current Interval Methods

In the current process, TOW estimations are supplemented by active engine health monitoring that

continuously reviews the fleet status and identifies risks for early maintenance. This section focuses on

the initial prediction made at the point of sale, and fleet level periodic assessments made on existing

fleets prior to the renewal of maintenance contracts. The initial estimate uses a combination of

engineering and regression models to predict TOW for new engine business (NEB). These models

demonstrate reasonable accuracy at a fleet level. To adjust for fleet unique operating conditions that

are not fully captured by predictive models, mature fleets with sufficient data are individually fit to a

Weibull distribution to supersede the initial prediction. This section explains the current processes in

greater detail from the source of the engineering model through to application in both NEB and mature

fleets.

2.3.1 Physics Models

For each new engine program, hot section engineering (HSE) performs life prediction analysis using first

principles of physics. HSE builds finite element analysis models similar to those described in section

2.1.2. The model uses a set of key variables that define engine operating conditions as inputs: ambient

air temperature, flight length, cruise altitude, thrust, airframe, takeoff derate, and climb schedule. Each

combination of these variables is referred to as a 'mission point'. The model output for each mission
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point is a predicted q, and 1 of a Weibull distribution corresponding to mean failure for the module

being analyzed. From a combination of these models for different sections and mission points a lookup

table is generated for predicting TOW for an engine model. Throughout the lifecycle of an engine, HSE

will continue to monitor and update these lookup tables by adding further physics based failure modes

to the source models.

HSE classifies the effect of ambient air temperature independently from the rest of the mission point

factors. Air temperature has a slight effect on the inside air temperature of the engine. Commercial jet

engines are flat rated to perform equally under a wide range of air temperatures, up to a cut-off point.

This means that the engine is capable of higher thrust than is provided in order to compensate

automatically for high temperatures, which decrease effective thrust. Above the flat rated point, the

engine effective max thrust decreases, thereby reducing the climb speed and extending the time the

engine spends performing max thrust climb. The effect that ambient temperature has on elevating

internal metal temperatures is relatively low. However, the effect on climb time extension is specific and

predictable. Longer climb at max thrust is equivalent to running the same mission point simply for a

longer period each flight. For these reasons, temperature effects are handled independently of the rest

of the models and a temperature based life factor is generated independent of the other factors in the

mission point.

2.3.2 Table Application and Severity

Engine Services (ES) receives the new tables from engineering for each engine model and performs

model verification and severity calculation prior to applying the new tables. ES gathers fleet operating

data for the existing engines when possible. This information is grouped by sub-fleets binned by both

operator and airframe and reviewed for shifts in trends over several years. If sufficient data is available

for a sub-fleet, ES computes an average thrust, flight length, temperature and cruise altitude for the

fleet based on historical data. These average values are checked against the HSE tables to identify the

expected TOW for the fleet and this expected value is compared with historical observations. Historical

observations for time on-wing are categorized by removal reason to identify data censoring and

truncation. Next a Weibull distribution fit provides the method of calculating fleet level average interval.

It is generally observed that the engines are either removed near engineering prediction or significantly

early due to unexpected causes; the result is an average overestimation of life expectancy and the ratio

of actual life over expected life is referred to as the 'severity'. A senior technical fellow in the
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engineering department states that "Every field problem, every removal is due to variability[47]." ES

documents the residual error between the tables and historical observations.

For the purpose of this thesis, the data are categorized into regions defined as continental or sub-

continental areas and airlines are grouped by nation of origin. This enables the maintenance policies and

general climate effects of an area to be loosely accounted for. A regional correction table generated

from these data points forms the basis of new models used for all engine TOW assessments. For each

region one adjustment factor is determined which minimizes the average error within the region. The

development of the regional severity factors corrects for a number of missing variables in the physics

based analysis in a way that is operator independent, while adjusting broadly for political and

environmental drivers of performance. Typical results for a selected group of fleets shown in Figure 4

demonstrate an improvement in total forecast accuracy achieved by implementing the regional

adjustment. The regional correction effects are shown in Figure 5.

Figure 4: Regional severity adjustment to standard engineering model with 95% CI of Weibull mean
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Figure 5: Effective B50 life factor of regions within comparable engine models
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The use of average fleet level values in deriving the severity factor constitutes a loss of information, and

a misuse of the HSE tables. The HSE tables exhibit clear non-linearity in their outcomes as a function of

each mission point variable. For example, flight lengths of 1 hour, 2 hours and 3 hours may result in a

predicted TOW of 5,000, 10,000 and 12,000 hours respectively. Flying a mission in which 50% of the

flights occur at 1 hr length, and 50% at 3 hour length would yield a final interval of 8,500 hrs if treated

independently, or 10,000 hrs if the flight lengths were first averaged and then applied to the HSE tables.

Despite this, the combined model exhibits better overall data fitting due to its ability to over-fit the

regional severity in a way that corrects for its statistical impurity.

2.3.3 Weibull methods for existing fleets

The application of the engineering tables and severity adjustments forms the basis of understanding

engine life prediction prior to the first shop visit for any new fleet. A periodic review of fleet

performance against this expectation ensures that company is able to properly schedule maintenance

work, update regional severity correction factors, and deploy corrective action for damage that arises

faster than expected. When full intervals have been observed for at least three engines of similar model

and thrust, a Weibull analysis is performed on the set of all engines in the sub-fleet of engines with the

same operator, configuration and thrust rating. A review of the shop visit notes ensures that the

removals are driven by engine deterioration identified during inspection rather than "events" such as

foreign objects, bird strike or service bulletin incorporation, collectively classified as censored

observations in Weibull analysis. Removals due to life limited part replacement schedules represent

truncation in observable time length and are also classified as censored records. The Weibull mean and
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95% confidence interval (CI) are compared to the engineering prediction. When the Weibull mean Cl is

outside the value predicted by regional severity and engineering tables the fleet forecast is updated to

reflect the new Weibull mean rather than the predicted value. This analysis for a single fleet can be done

in under an hour after the data are collected.

When insufficient observations of non-censored engine refurbishments have occurred, Weibayes

methods provide validation or challenge to the baseline fleet prediction. Weibayes is a statistical

method involving data where only censored values are available. Either the shape or scale parameter of

the Weibull distribution is assumed. Next Bayesian inference is used to identify the lowest possible

value of the unconstrained parameter that permits a 95% probability of all known events simultaneously

not occurring. ES performs Weibayes using the same off the shelf software that performs the Weibull

analysis. To provide a conservative estimate of life a Weibull beta typical of tightly grouped failures is

assumed for the Weibayes model and the 95% confident lower bound of the mean is compared to the

original expected fleet performance. The Weibayes derived fleet level lower bound mean is generally

trusted when it exceeds the originally predicted value. When the total fleet has a very low number of

flight hours, typically less than half of the predicted flight hours, the Weibayes analysis generally

provides a mean confidence interval too broad and a lower end too low for general acceptance.

Personal judgment by the ES analysis group in collaboration with the Pratt & Whitney customer fleet

manager results in a decision to either use the Weibayes value or continue to base forecasts on the

engineering tables and regional severity.

The combination of engineering tables and severity factors provides value to the company in estimating

cost structure for both new contracts while the adjustments using Weibull and Weibayes analysis

prevent or minimize the financial effect of initial forecast error. At the same time the analysis incurs

minimal cost for either data collection or analysis as the data is already recorded and analysis can be

performed within only a few hours per contract. The model is fully flexible to the needs of the company

because it does not rely upon special knowledge. The engineering tables and severity grids are applied

multiplicatively as independent effects. The Weibull analysis within off the shelf software can be done in

a repeatable and easily validated way after minimal training or statistical knowledge and is used as the

basis of estimate for all fleets in place of the grid prediction once sufficient data has been observed. The

application of the Weibull analysis and tables are flexible to unique aspects of the fleet management

strategy or rapid changes in business knowledge. Overall the model system provides strong value and
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any improvement in model accuracy must be accomplished with similar ease of use in order to be

accepted by the company.

3.0 Model Development

A three layer model is developed to describe the effects of (1) engine physics, (2) inspection and

maintenance policies, and (3) environmental effects. The model pre-development process relies heavily

upon engineering informed system dynamics. This review ensures that the data systems used in the

model are complete and sufficient for describing the problem and identifies early concerns in the data

structure that inform later modeling decisions. The physics of underlying systems, combined with input

from the system dynamics view, contribute to the development of new variables from the source data

and the selection of proper units for comparison between data points. Censoring and truncation present

in the problem are described and multiple approaches for analyzing data within this context are

proposed. The individual performance of each model layer is analyzed. The final model is abstracted to

the airport level to develop a visualization of the aggregated effects on a global scale. Finally, the

sensitivity of the system to certain statistical methods is reviewed. The model is found to significantly

out-perform current methods. Changes to the treatment of leverage points are found to be significant in

enabling model convergence.

3.1 Overview of approach
Engines experience a wide range of operating conditions due to effects of seasons, operator policy,

airport topography, and many other sources. Such broad datasets present a challenge to model

development. Many conditions cause different types of overall degradation to the engine. As a general

rule, degradation by abrasion, fowling, misalignment, or bleed valve deterioration cause an increase in

energy loss along the direction of thrust. The engine computer compensates for this energy loss by

increasing fuel flow to achieve the target engine pressure ratio. Increased fuel flow results in higher

operating temperatures, resulting in higher degradation to hot section components. For example

turbine blade creep can be effectively modeled using time at temperature[86]. Therefore, increased

temperature during operations reduces the overall time to creep failure. Oxidation, sulfidation, and

metal fatigue all increase temperature, and lead to further reduced gas path efficiency. For this reason,

the airline industry commonly uses exhaust gas temperature (EGT) as a bellwether for the overall engine

health[11].
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Although not all engines are removed due to an EGT degradation, the majority of degradation modes

lead to increases in EGT during normal operation. Therefore a system dynamics model built around the

EGT provides insight to the sources of damage. System dynamics is applied in three layers. First, every

potential effect on the engine is added to the diagram to determine the breadth of the problem

statement. Second, a process flow of available data is developed and the implications of these data

origins are discussed. Finally the process flow is used to inform pruning of the first model and highlight

areas for future data generation. The resulting model represents an important aspect of data

rationalization that is critical to developing causal chains and preventing over fitting in the final model.

3.2 System Dynamics Model
The following system dynamics models were developed through a series of interviews with engineers

regarding failure drivers in the engines. A number of effects that appear in the model are not directly

quantifiable. Once all factors have been identified, we rationalize the results through an iterative

process of confirmatory tests. These tests support the model in each area where data can be examined

to validate directionality. In certain areas aggregation of factors reduces complexity while retaining

causal information. This is prevalent where driving factors are overlapping and underlying causes are

well understood.

To develop the system dynamics chart shown in Figure 6 performance characteristics from all modules

of the engine were used combined with environmental factors throughout a flight. Flight phases

considered for effects were taxi, takeoff, climb, cruise, landing, and storage. The model is constructed

around the EGT as a proxy for overall damage to the engine. Environmental factors fall into two groups:

parameters associated with the air intake; parameters from flight mission. Human factors are applied to

the model based upon interviews with the Pratt & Whitney maintenance cost group. The model

considers the effects of a single flight through all phases. The objective of the model is to inform the

factor selection in predicting the time between shop visits. Therefore maintenance policies of the airline

are also included. Although they do not contribute to damage, they do affect the detection of this

damage. In certain cases airline policy may lead to over inspection and identify minor damage before it

has led to significant degradation. If continuous and targeted maintenance action is taken, it will reduce

overall damage aggregation and may affect the time between overhauls.

Figure 6: System Dynamics view of engine effects during takeoff
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Pratt & Whitney acquires engine performance data through multiple paths, and data conditioning is

applied at different steps depending upon the origins of the data. ACARS messages transmit engine

performance data to ground stations in a fixed code four characters per measurement. ACARS messages

send data from multiple flight phases when stable flight conditions exist for that phase. In some cases

where stable conditions cannot be achieved, data points may be skipped or the report will send limited

information. Messages are addressed to multiple parties which may include the engine manufacturer

depending upon the contract. When the data is addressed to Pratt & Whitney, the company collects the

data to a central database directly from the ground stations immediately. When the data is not

addressed to Pratt & Whitney, the airline collects the data and performs internal curation. This curation

may involve data compression, unit conversions, or similar changes to the data which retain the overall

information in the data. For example, certain values transmitted by the engine are considered

redundant when operating properly. Therefore the airline may choose to store only one of these values

after confirming normal operations. On pre-agreed intervals, these airlines transfer all collected data to

Pratt & Whitney which uploads the data into the same central location as the data from airlines that

addressed Pratt & Whitney directly. While data within a single airline is consistent in formatting and

update frequency, data between airlines may be inconsistent until corrections are applied for different

units and data compression applied by the airline. Both the availability and cross fleet consistency of

data informed the down selection of variables for the final screening model.

As a final consideration in developing the model architecture, we consider the variables that can be

known before the flight and avoid the use of in-flight variables such as vibration levels. For the purpose

of the severity study of interest to Pratt & Whitney, these parameters need to be known years prior to
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the flight. These include airport parameters, hours to cycle ratio, planned cruise altitude, operator

maintenance policy, engine configuration and thrust selection which are roughly designated by the

maintenance contract. The system dynamics flow demonstrates that in each flight phase these values,

which are highlighted with boxes, are well positioned as input drivers to the entire model. Although

other variables may improve the understanding of engine damage, these values cannot be well known

at the time of contract sale. Future models are discussed in later chapters which may include these

variables.

Figure 7: System Dynamic view with primary knowable factors highlighted.
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3.3 Physics interactions and Data Augmentation Applied

The down selection of variables performed in prior section loses a great deal of information regarding

the internal physical interactions of the engine. First principles models that describe the internal

workings of the engine based upon these key inputs restore this information to the model. The Pratt &

Whitney Hot Section Durability team performs a variety of 1-D and 3-D simulations that identify the

relationship between hot section damage and the typical operating characteristics of the engine. Failure

is defined as the exceedance of the engineering defined limit in any of these degradation modes. This

engineering defined limit is used as the guide for development of maintenance manuals and the

simulation model informs the development of the inspection plan for each engine module.

As inputs, the model uses environmental factors and operating parameters together referred to as

mission parameters. A single set of mission parameters is one "mission point". For each mission point

expected to be observed in operation, the simulation is run and the mean failure point is recorded. The
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resulting table provides a relationship between common mission points and the expected engine time

on-wing collectively called "HPT Grids". The simulation does not provide a continuous dataset due to the

computational time required for each mission point. The model put forward in this paper takes these

HPT Grids and performs multi-dimensional linear interpolation to produce a time on-wing estimate for

every possible mission point contained within the limits explored by the HPT Grids. In addition, the HPT

Grids are extrapolated linearly along a single axis for the cases where one parameter of a mission point

observed in the fleet exceeds the range simulated in the HPT Grids and the other parameters of the

mission point are within the simulated range. In approximately 5% of missions observed, more than one

parameter was outside the simulated range and the mission is disregarded.

Through this method every observed flight is related to the HPT Grids which provide an expected

number of flight hours until failure at that mission point. The ratio of the number of flight hours in the

flight to the expected flight hours to failure from the HPT Grids yields an approximate percentage of life

used by the flight which may be added cumulatively through an engine's life. Where flight data is

missing due to filtering or data loss, the average life consumed per flight by that engine in all observed

flights is used instead. The cumulative life used by the engine as defined by this method is referred to as

the Life Factor for that engine and is reset to zero when the engine undergoes an engine level overhaul.

In considering methods of grouping data for TOW analysis, the prediction variable and sampling bias are

taken into account. The analysis of engine damage drivers indicates that the majority of failures are

caused by cycle driven damage rather than flight hours driven damage. For this reason the prediction

variable designated for the majority of models is the cycle count at failure. One aggregation method is to

consider all values having transpired over a single interval as a single event. This model is useful in

considering how the total history of the fleet has behaved in a comparative interval to interval way.

However, this method averages values across an uneven basis. Engines with more flight experience

before removal have a greater number of points aggregated. This decreases the effect that a leverage

point within that flight history could have in any aggregation method. This limitation is countered by the

use of cycle weighted standard error, and is discussed further when considering sensitivity of the model.

The chosen method of data aggregation depends upon the type of data being analyzed. Aggregation of

the average value across a set of flights may eliminate valuable information about the spread of such

values. Simple expansion to the aggregation of higher moments is not sufficient for some applications.

When the expected response between the parameter and the target variable is linear, average value

may be safely assumed. When the responses are non-linear, averages may only be taken after the non-
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linear transformation has occurred. Higher order terms are created only when the physics of the

behavior measured suggests that the product will have physical meaning. Otherwise the decision of how

to aggregate each field is made after effect screening has occurred. The individual factor residual plot is

analyzed to determine if the response appears linear or non-linear. Before non-linearity can be assumed

the correlation matrix for the factor of interest is examined due to the complexity of the system being

modeled. If two variables exhibit non-linear residuals, cross terms of those variables are tested.

3.3.1 Shop Visit Data

Shop visits are recorded by Pratt & Whitney on the engine using work scopes from 0 to 3 indicating the

amount of work performed on each module of an engine where 0 indicates no work, 2 indicates major

repair or replacement, and 3 indicates a full overhaul of the module. For the purpose of this study an

engine level overhaul is defined by a work scope of 3.0 on any key module or work scopes greater than

or equal to 2 on to all four key modules where the four key modules are the Combustor, High Pressure

Turbine, 1s Nozzle Guide Vane, and Low Pressure Turbine. This definition is borrowed from internal

convention at Pratt & Whitney. Each period of flights separated by an overhaul is referred to as one

"Interval" for which the time on-wing is defined in either flight hours or flight cycles.

3.3.2 NASA Data

Data is acquired from the NASA TERRA satellite and converted into monthly average volume mass

loading over each airport in the world each of eight aerosol types shown in Table 2. Details regarding

the data acquisition and conversion are provided in the Appendix. Since the overpass of the satellite is

performed at approximately solar noon in each airport, there is no ability to correlate the data to the

exact flight takeoff time. The data is used to analyze seasonal changes in regional aerosols over the

takeoff locations. The final dataset by airport and orbit number is maintained in a Teradata 14 database

with all TERRA records from February 2000 through June 2014.

Table 2: Aerosol types modeled by NASA MISR

Aerosol Code Type Size (pm) Expected Composition
1 nonabsorbing 0.06 sulfate/organic
2 nonabsorbing 0.12 sulfate/organic
3 nonabsorbing 0.26 sulfate/organic
6 nonabsorbing 2.8 salt/organic

8 absorbing 0.12 sulfate/organic (ssagreen.9)
14 absorbing 0.12 sulfate/organic (ssagreen.8)
19 grains 0.75 model dust
21 spheroidal 2.4 mode2 dust
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3.3.3 Exhaust Gas Temperature

The EGT may have a hard limit beyond which the internal metal temperatures are considered unsafe.

Engines which reach this limit will be removed for overhaul. In order to ensure that this number is never

reached, the engine computer calculates a realistic worst case (RWC) EGT that could occur under the

flight conditions present during takeoff. This RWCEGT is adjusted in units to standard day and

atmosphere. In practice, individual values for RWCEGT may exceed the engineering defined limit. When

several such takeoffs occur, the engine is removed for maintenance. In some engine families the EGT

limit is the primary reason for maintenance intervention, while in other engine families the EGT limit is

not reached before other parts fail inspection. In both cases EGT increases are monitored as one

indicator of health. The difference between the RWCEGT and the EGT limit is plotted in degrees Celsius

as a positive value approaching zero as the engine degrades.

3.3.4 Air Temperature

Ambient air temperature is corrected to International Standard Atmosphere (ISA) by the following

equation in order to account for the effects of temperature and pressure jointly:

Equation 2 ALTamb - Tstatic(C) - (15 - 0. 0019812 * Alt(ft))

where the result ATamb is referred to as the delta between ambient temperature and ISA (DTamb), and

enables a conversion from any temperature and pressure to the pressure equivalent temperature at sea

level.

3.3.5 Data Aggregation

The volume mass loading of particles over each airport is observed to follow a log normal distribution.

To support generalized regression studies, each parameter in the atmospheric dataset was converted

from absolute units of pm into lognormal quantiles. Where the value observed was zero, a quantile of -3

was assigned as filler. The aerosol data was further binned into 5 equal width groups on the pm where

the high end of the bin was the intercept of +3 quantile to the pim scale. Industry established prediction

equations for the lifetime of an engine are based upon flight length, takeoff thrust, and ambient

temperature at takeoff. In addition to these, the cruise profile affects the temperature and thrust

assumptions during climb which are required for damage simulation. Simulations by Pratt & Whitney

engineering are performed on a single mission basis. The mean time to failure is predicted by assuming a

fixed set of parameters for flight length, takeoff thrust, temperature and cruise profile. Common
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physical failure modes of the combustor and high pressure turbine are included in the model. To apply

these predictions to engine performance data, the predicted interval is established for each takeoff and

the average of predictions is identified for each full maintenance interval. A full maintenance interval is

defined by shop work scope performed as either a complete replacement of the combustor, or a major

overhaul of all hot section engine modules including the high pressure compressor, combustor, nozzle

guide vanes, and high pressure turbine. All other attributes recorded by flight are aggregated over the

engine interval and collected into average, standard deviation, average quantile, and percent of flights

in each of 5 equal width bins.

3.3.6 Airport Severity Factor

The thesis objective is to develop an airport severity factor (ASF) to work in complement with

engineering prediction values. In this way the ASF will be most transferrable to new engine programs

and contract language. For each engine interval observed, a life factor is computed by dividing the actual

observed flight hours by the physics derived mean time to failure. The resulting unitless value ranges

from 0 to 1.4 shown in Figure 8. The engineering predictions generally establish an upper limit to engine

lifetime. With respect to the engineering predictions, engines can be seen in four categories: those that

deteriorate early; those that have not yet deteriorated; those that are removed without deterioration;

those that deteriorate due to modelled causes. The fourth category imposes an upper limit on life

factor, while the other three groups tend to occur before the engineering predicted limit. Engines that

have not failed are coded as right censored observations along with engines that are removed with life

factors below 1.0 that have not deteriorated. Engines that are removed prior to deterioration with life

factor above 1.0 are considered data truncation, generally occurring due to life limited part replacement

schedules.

Figure 8: Life Factor distribution of all deterioration caused hot section refurbishments
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3.4 Primary Effects and Screening Methods

Configuration of the engine provides the largest single effect on engine lifetime with variance between

configurations in excess of 50%. Four differentiating characteristics are identified for the engine. Three

of these configuration differences in the fleet arise through maintenance intervention throughout the

lifecycle as new technologies are implemented to the fleet, while the fourth differentiating

characteristic is the engine age. These upgrades are placed on new fleets, during overhaul, or as needed

to accommodate for harsh environments. Data observation sizes are shown for each configuration

combination in Table 3. The engine age since new, after controlling for configuration can be measured in

multiple ways: cycles, hours, shop visit number, or mature run vs. first run. All tests for effect are done

by both considering the effect on cycles between shop visit and the effect on life factor after mission

adjustment. Since the life factor mission adjustments are developed from first principles physical

models, adjusting for them before other analysis gives primacy to a known interaction and is not

considered to be a loss or confusion of information.

Table 3: Fleet Configuration Counts in Available Data

Configuration Full Observation Censored or Truncated

First-FFF 17.6% 3.5%

First-FTF 5.6% 10.0%

First-FTT 0.0% 0.2%

First-TFF 0.0% 0.4%

First-TTF 0.4% 19.3%

First-TTT 0.0% 9.1%

Mature-FFF 8.4% 14.9%

Mature-FFT 0.0% 0.1%

Mature-FTF 1.5% 20.0%

Mature-FTT 0.0% 0.7%

Mature-TFF 0.0% 0.1%

Mature-TTF 0.0% 5.3%

Configurations with insufficient observations are removed from study. For the purpose of fleet

simulation, individual studies of these configurations are performed at the time of technology

deployment. These studies yield a predicted life extension effect, and are used to apply all models from

this study to those fleets outside the technology range studied. A survivability analysis is performed on

each of the remaining configurations both before and after adjusting for engineering predicted life.
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Three distribution types were tested for application to the engine survival modeling: Lognormal,

Loglogistic, and Weibull. Each of these models is formed from a different assumption about the

underlying failure mode. Lognormal distributions arise from the convolution of the exponential

distribution with the normal distribution. Problems fit well by lognormal distributions are systems with

an underlying exponential component, essentially random arrival in a time based process, with a normal

distribution on quantity or duration or vis-a-versa. For example, aerosol mass loading as a function of

particle size is lognormally distributed since the time duration of an aerosol can be described with an

exponential decay and the elevation of these particles into the atmosphere is caused by an essentially

normal random process in steady state[48]. Loglogistic distributions are used to define survival models

with an accelerating mortality rate before the peak and a declining mortality rate after the peak[49]. The

behavior is similar to the lognormal distribution except that the underlying logistic distribution has

heavier tail contribution than the normal distribution. The loglogistic distribution will fit better than

lognormal in conditions where extreme values are being reinforced away from the mean. The Weibull

distribution is commonly used in engineering survival analysis because it describes the sum of minima's

of a distributed event[50]. This condition applies to survival analysis where the underlying failure mode

is assumed to be normal, and since the nature of the failure ends the experiment, the resulting

distribution of repeated trials is the sum of minimum occurrences.

The life distributions based upon Lognormal, Loglogistic, and Weibull are parameterized across the

configuration factor to assign a value to the configuration effect. For the time to event, the analysis is

repeated using both the number of flight cycles between overhaul, and life factor. Life factor refers to

the ratio of cycles to expected cycles based upon engineering prediction for that interval. The B50, or

median failure point, of each configuration is plotted in Figure 9 and the ratio of these values is shown in

Table 4. Table 2 displays the values from the Loglogistic survival analysis which was the method of best

fit with AIC 618 compared to Weibull and lognormal with AIC 738 and 795 respectively. The effect of the

configuration upgrades is seen to depend upon the way flight mission is handled. For example, the First-

FTF configuration flies more cycles than First-FFF, and experiences longer life factors. This reflects an

underlying relationship between configuration types and variance in flight mission and therefore life

factor is a preferred method of analyzing configuration differences. It is not obvious that the mature run

on FTF should be longer than the first run of FTF while mature FFF run is shorter than first run FFF. If the

effects of mature run are believed to be the result of non-critical part degradation, and the difference

between FTF and FFF affects only critical hot section parts, then the effects of mature run would be

expected to be similar for both configurations.
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Figure 9: B50 Life with 95% confidence for each configuration as calculated by three distribution

methods
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Table 4: Ratio of B50 life between configurations for both cycle based and life factor based derivations

First-FFF 1.00 0.67 1.14 0.65

Cyles, First-FTF 1.50 1.00 1.71 0.98

Logl gtic Mature-FFF 0.88 0.59 1.00 0.57
B5O Ratio

Mature-FTF 1.54 1.02 1.75 1.00

First-FFF 1.00 0.74 1.16 0.67
Life First-FTF 1.36 1.00 1.57 0.91

Factor, Mature-FFF 0.86 0.64 1.00 0.58
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Loglogistic 1.49 1.10 1.72 1.00
B50 Ratio Mature-FTF

The effect of engine life on future interval can be carefully deconstructed by plotting a parametric

survival analysis on several definitions of engine life. After plotting survival analysis to lognormal,

loglogistic, and Weibull distributions parameterized by interval number, a ChiSquare test of regression

indicates a probability <0.001 of a distinction between single variable regression in the location

parameter and separate location for each value of interval number. The higher interval numbers have

intervals exceeding that predicted by regression requiring each interval to be treated independently for

best fit. This occurs in lognomal, loglogistic, and Weibull survival distribution fitting. The engine age at

which the interval length increases for FTF configuration is at interval number 3, while FFF does not

increase until interval number 4. One possible reason for this difference is that the mean interval of FTF

is longer than FFF, and when the engine age used for comparison is cycles or hours, there is no statistical

difference between the age where FFF and FTF exhibit increasing interval. Combined with an

understanding of the nature of physical differences between FFF and FTF this indicates that the

observed behavior is unrelated to the configuration distinction and is an age related behavior alone.

Engines contain parts with pre-determined cycle limits before they must be replaced which are

collectively called life limited parts (LLPs). When the engine overhaul is performed near the end of LLP

life, the LLPs are proactively replaced to prevent them from causing another overhaul too early. For

example, if the engine is inducted to the shop for its first shop visit with 2,000 cycles remaining on the

LLPs and the engine is expected to fly for at least 12,000 cycles then the LLPs will be replaced early.

When the LLPs are replaced, the engine undergoes a more thorough overhaul than when LLPs are left in

place. The difference in interval can be seen by plotting the mean achieved interval as a function of LLP

life used at the beginning of that interval. Generally LLPs are scheduled for removal every other

overhaul. When the percent of LLP life used at overhaul is greater than 50% then the LLPs are more

likely to be replaced, while if the LLP life used is less than 50% the LLPs will not be replaced. Figure 10

shows that the relationship between LLP life used and mean achieved interval is generally linearly

increasing after passing through a minimum at 25%. We consider overhauls as major if LLPs are replaced

and minor when LLPs are not replaced. Table 5 shows that this consideration of major and minor

overhaul shifts succeeds in decoupling the effect of engine age from engine configuration. Both a major-

FTF and minor-FTF have 41%-42% greater interval than the respective FFF build and major overhaul

within the same configuration exhibits a 19%-20% improvement over minor overhaul regardless of
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configuration. This decoupled relationship is not only easier to understand and use for predictive work,

it is also more likely to be an accurate representation of the real world. Despite the fact that both this

relationship and the system portrayed in Table 4 are of equal statistical strength, the figures in Table 5

are a more compelling explanation of the data and are used for configuration adjustments in the

remainder of this paper. Figure 11 demonstrates the relationship between the four categories

established and the engineering predicted limits. This chart includes only those engines that were

removed due to deterioration, and does not account for censoring or truncation, so it may only be used

to demonstrate that the engineering prediction behaves as a proper upper limit to all four categories.

The comparison between Figure 10 and Figure 11 highlights the importance of including the censored

and truncated records in the analysis in that simple regression methods looking only at the failures

would indicate a similar behavior of MajorFTF and MajorFFF while survival analysis accounting for

censoring yields a significant distinction between the two configurations in Figure 10.

One additional factor contributing to the overall life similar to configuration and build plan is the

maintenance work occurring between overhauls. We compare the B50 point of fleet life factor by

amount of total work performed. This analysis can also be applied to the work performed by section

within the engine for further insight to the module level effects on overall performance. However,

general application of this information is limited by the high collinearity between maintenance

performed in nearby modules. The resulting data in Figure 12 provides value in both understanding

biases in the data before further analysis and in establishing the return on investment for maintenance

actions.

Figure 10: Achieved interval duration compared to engine age at the start of the interval.
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Table 5: Ratio of B50 life between configurations with major or minor overhaul

Major-FFF Major-FTF Minor-FFF Minor-FTF

Major-FFF 1.00 0.70 1.19 0.84
Life Major-FTF 1.42 1.00 1.70 1.20

Factor,. Minor-FFF 0.84 0.59 1.00 0.71
loglogistic Minor-FTF 1.18 0.83 1.41 1.00

Figure 11: Engine interval vs. engineering model prediction by starting conditions and configuration
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Figure 12: Relationship between B50 Life Factor achieved and level of maintenance work
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The model hierarchy must first compare data on an equal basis in as much as the basis of engine

performance can be known a priori. This allows for a study of atmospheric effects to provide

transferrable knowledge to future engines, and to provide insight with regard to the original basis

conjectures. The life factor of each engine is adjusted using the factors in Table 5 which enables testing

of further data on the collected dataset. In doing so we rely upon the product knowledge of Pratt &

Whitney engineering that these four configurations described should not respond to environmental

factors in any materially different way. This assumption underpins the collective use of the adjusted

data. Figure 13 shows the data on a loglogistic survival plot both before and after the location

adjustment. Before adjustment, distinct lines are present, while after adjustment the distributions are

visually similar and loglogistic fits without parameters have lower BIC (550) than parameterized versions

with either location alone (570) or location and scale (566). This provides limited affirmation of the

assumption that the four configurations after adjustment may be treated as a common configuration.

Figure 13: Loglogistic survival plot of engine life factor by configuration and starting condition before

(left) and after (right) adjustment for starting factor based upon loglogistic B50 of each population.
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We use the life factor to test the overall performance of the engineering model separately for each

configuration group. The model is constructed using thrust, flight length, and ambient temperature.

Although climb profiles are included in the model, the optimal profile is assumed. The loglogistic B50 by

life factor is measured across each of the three parameters used in the engineering analysis

independently on all four configuration sub-groups. The null hypothesis states that the engineering

provided life estimates are correct. The null hypothesis is rejected if the B50 of the adjusted life factor is

substantially different as a function of the parameters individually or as a whole. When the B50 is

greater than average for that sub-group the engineering model is underestimating the life, and when

the B50 is smaller, the model is overestimating the life. Figure 14 shows the results of the tests

performed. The results across flight length for MinorFFF appear to be a linear trend in which life

expectations are underestimated at low flight hours and overestimated at high flight hours. However,

this trend is not repeated in the other configurations and it is possible to draw a slope zero line through

all 5 confidence intervals. The slope on majorFTF is more convincing, albeit opposing the slope on both

FFF configurations. The 3 hour flight length test point for majorFTF contradicts the trend and indicates

that the observed slope may be caused by other factors. The thrust percent derate is based upon the

average percent below maximum thrust at takeoff. This is calculated on a fleet level using a maximum

thrust for the engine model. The models support engineering predictions regarding thrust percent

derate in that these factors not survive null hypothesis testing of the stepwise regression. The
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temperature effect on engine life demonstrates a trend throughout all four models of elevated values at

10 and 15 degrees above ISA. Temperature effects are covariate with a number of engine damage

drivers identified in the system dynamics model in Figure 6. A correlation matrix of primary variables

used in the analysis is included in the appendix. Temperature is directly related to humidity and aerosol

density. These are collinear to airport elevation insofar as high elevation airports tend to be hot. This is

shown in Figure 15. The relationship between temperature and elevation is not universally true of all

airports, but is true within the sample set of airports covered by engines in the period of study. Airport

elevation in turn causes higher takeoff thrust due to thinner air, and has lower climb time which may be

associated to engine damage. The directionality of the effect of elevation alone is difficult to estimate

since the decrease in climb damage may be counteracted by an increase in takeoff damage. A

parametric loglogistic fit of life factor to average takeoff elevation demonstrates a statistically significant

rise in expected life as a function of elevation shown by Figure 16. This may be due to an error in the

temperature model, the true effect of decreased climb time, or other effects as yet unknown. First

principle simulation of engine parameters was performed to create the temperature response curves

will be required in order to isolate the variable effects further. After considering effects that may impair

our ability to judge the temperature aspect of the engineering model, there is not sufficient evidence to

reject the engineering based predictions from the data.

Figure 14: Test results of engineering first principles models by configuration type
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The data does not disprove the engineering model, and it is generated from direct first principles

simulation by the Pratt & Whitney engineering team. Therefore the results of the engineering

predictions are considered trustworthy as a first order approximation of the effect of ambient

temperature, flight length, and takeoff thrust on the engine expected TOW. After correcting for the

configuration variance by using the factors in Table 5, we perform a single variable analysis of slope and

scale dependency between configuration adjusted life factor (CALF) with results displayed in Figure 16.

Analysis is limited to those factors that can be known about the flight prior to scheduling the takeoff.

Operating parameters during the flight are not included. The analysis of Figure 16 cannot be done

without consideration of variable correlations listed in the appendix. The data is assumed to be fully

corrected for temperature, flight length and takeoff thrust. For example, we cannot conclude that 100%

thrust reverser usage is good for engine life without considering that thrust reversers are used more

actively on short runways, which are correlated to humid airports with low presence of fine grain

organic particles. It is possible at this layer that the effect is caused either by the absence of fine grain

organic particles or by the humidity difference. Similarly, the cruise altitude effect on engine life is likely

correlative rather than causative. Although higher cruise altitude is generally more efficient, short flights

require low cruise altitude due to climb time, and long distance flights have lower initial cruise altitude

while burning off fuel to achieve higher altitudes. In any case, this work is understood to be correlative

in nature and direct action to ensure maintainability of a fleet could not be taken using these data. The

data at this stage only provides insight to the potential for higher order effects in each term. Relative

humidity demonstrates a possibly quadratic effect which is believable. Humid air reaches a lower exit

temperature and requires higher fuel to achieve the same thrust thereby generally increasing engine

damage, while at a humidity of 100% rainout will cleanse the air of contaminants. For this reason cross

terms including humidity and aerosol density will be included in model construction.

Figure 16: B50 life factor of all engine configurations vs average airport elevation
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A model is developed to predict time on-wing from parametric survival analysis alone. We consider the

effects seen during effect screening to determine which parameters are used in the analysis as linear

and which are quadratic. The fit to a loglogistic equation is performed with the following equation:

1
Equation 3 P = l+eP* Ig(CALF)+ e+ aj*xg)

where P is the cumulative failure probability at time given by CALF and a; * xi represent all fit

parameters and fl, e are fit parameters of scale and offset. The resulting model of best fit contains the

parameters and directionality given in Table 6 with Akaike information criterion (AIC) 1320, and

Bayesian information criterion (BIC) 1405 compared to a non-parametric fit with AICc 1712 and BIC

1723. The model fits to the training data using a fleet level aggregation. Each airline operator and thrust

category represents a single fleet. The predicted distributions of each engine in the fleet are convolved

to yield an expected interval for the fleet level. These fleet level averages are compared to historical

average interval achieved for that fleet with an R2 = 0.22. A similar model developed using the engine

age in cycles at removal instead of CALF and including flight length, temperature, and takeoff thrust

disregards the assumptions of the engineering model. This later model yields an improved overall fit

with R2 = 0.36. Neither of these models exceeds the existing baseline approach of regional adjustment

factors shown in Figure 4. A more complex model for isolation of environmental effects is required that

will enable each factor to contribute to the compound model in the way appropriate to that effect. "We

just need to be smart enough to ask Mother Nature the right question[47]."
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Table 6: Factor contribution to loglogistic model

Factor Prob>ChiSq Effect

Cruise Altitude 0.0349* -

GW Takeoff Weight 0.0019* -

Airport Elevation <.0001* +

Runway Length <.0001* -

RH Relative Humidity <.0001* +

Al Fine Organic 0.0004* -

A8 Total Organic <.0001* -

A19 Spherical Dust 0.0057* -

Thrust Reverser Use 0.0015* +

Elevation*Elevation 0.1065 -

Al2  0.0001* +

GW2  <.0001* +

RH2 <.0001* +

3.5 Multi-model Method

A combination of modeling approaches enables the application of well-informed priors to the model

before the application of a general regression study. The problem established requires different model

architectures for each layer of information revealed. The proposed Multiple Information Source system

identifies three information layers: first, known mission effects, second, censoring and truncation

effects, and third, environmental severity. Known mission effects present in the engineering tables

convert from the interval duration to the ratio of achieved interval to predictive interval or life factor.

Engine configuration laid out in the prior section accounts for major differences in engine life as a result

of technology changes or build standard changes at the beginning of the observation period. Censoring

and truncation is a condition imposed on the life of the engines by maintenance management policy.

Policies for inspection of engines are designated by the OEM with oversight from local aviation

authorities. In all operations, the OEM designated policies are followed. However, additional inspections

are performed by some airlines due to either company decisions or local aviation authority

requirements. When these inspections identify non-conforming conditions the engines are removed for

either continuous maintenance work which is targeted to a specific area, or full overhaul. Engines are

designed for continuous operation of full interval without targeted maintenance and 70% of engines

reach full overhaul without off-wing targeted maintenance actions. The identification of many

conditions for targeted work is in many cases subjective, or when objective, the thresholds for tolerance
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are based upon a planned inspection policy. The acceptable size of grooves in surface coatings on blades

is created by engineering assuming that areas will not be inspected again for a known number of flights

and is therefore designated conservatively. If the planned inspection policy is accelerated without

changing the non-conformance tolerance, then at the next inspection the blade will require removal

even though, had it not been inspected, it could have safely remained in operation. For this reason

geographic operational area cannot be decoupled from continuous maintenance and the two contribute

information at the same level of the model hierarchy. Finally, the condition of the life limited parts and

the timing of technology upgrades on the engine and fleet inform the fleet manager in decisions about

early removal so that the Major vs. Minor and FTF vs. FFF classifications previously established have

significant influence on censoring and truncation.

Fitting engine life factor to a common loglogistic survival plot accounts for the censoring and truncation

effects. The decision to include a factor in this level of the model hierarchy is based upon business level

knowledge of the daily decision making process regarding engine removal. The second layer of model

takes the following mathematical form:

1
Equation 4 P = LF

#(+og ~'S1L )+a*CM+CFi+Rj+,E)

where LF is the life factor, # is the loglogistic shape parameter, CM is the amount of continuous

maintenance work performed with coefficient a, CFi and Rj are discrete factors for configuration group

and region respectively, E is the offset of the scale parameter and P is the cumulative distribution

probability on which the engine is removed due to deterioration. The standard formulation of the

loglogistic scale parameter a can be recovered by the following form:

Equation 5 a = ea*CM+CFi+R;+e

The environmental severity is the least understood model with highly covariate effects. Rather than

apply this as a parametric effect in the loglogistic model, we isolate it from the censoring by applying it

to the p-value of the complete observations.

The distribution range of P requires that future predicted values be on the range of zero to one

indicating an advantage to the logistic regression method. P transformed by the logistic equation

provides a continuous target for linear regression. Stepwise linear regression is applied using all

environmental and mission describing parameters that can be known before the flight. In-flight data
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may be used to improve model accuracy when monitoring by engine existing fleets, and reduces the

flexibility of the model for application to new fleets. Stepwise linear regression will provide a

relationship between environmental and mission factors and the expected p-value of the engine when

compared to other engines in the total operating fleet. The effect of this third layer of the model is to

describe the actual damage severity met by the engine through its operating mission. Reversing this

predicted p-value through the parametric loglogistic model applies the behavioral effects of the engine

management policy to the underlying damage. This method enables a decoupled treatment of policy

effects and severity effects. For example, policy effects of certain airlines in harsh environments are

known to result in higher inspection frequency which causes removal earlier than necessary. By

categorizing airline policy effects before environmental effects, this bias that policy effects could

otherwise incur on geographic environmental effects can be muted.

The hierarchical model structure enables predictions of a fleet expected interval given known mission

parameters and environmental values. Several aspects of an airline's operations are well known at the

time a contract cost is estimated. The contracts team establishes the airplane mission length, frequency,

typical operating temperature, and takeoff thrust within a well-defined range before beginning any

contract and during each contract review. While the exact routes the engine will fly cannot be known

before contract signature, and frequently change day to day, the list of all airports served by a city with

frequency and airframe type enables an estimation of the environmental values that will be seen by the

fleet overall. This data is available from the Official Airline Guide(OAG)[51]. An SQL code written in

Teradata 14 aggregates a typical environmental experience of a fleet using thrust ratings for airframe

configurations, and the city pair service frequency from the OAG. These values are combined with the

airlines' known mission plan provide all the information required to perform the estimates in this three

layer model.

3.6 Censoring and Truncation

The second layer of the model resolves the censoring and truncation effects. Consider the example of

mice in a drug experiment. Censoring refers to individuals in an observation group that have not

completed the full observation period and have not yet died. Censoring also refers to those mice that

die of causes unrelated to the test. Truncation refers to individuals in the study group that are

terminated by the experiment operator after a given length of time. In the engine data example both

conditions exist. Engines are either removed for refurbishment due to engine degradation (death), still

in operation (censoring), removed for refurbishment due to non-engine causes such as bird strike or
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scheduling (censoring), or removed due to regulated time limits (truncation). Within the parametric

study, censoring and truncation are treated the same mathematically and will be referred to collectively

as censored records unless specifically referring to the time limited truncation for unique data

applicaitons. The Kaplan-Meier estimator counts these censored observations in the total population

(ni) for all events (i) of deterioration driven removal. The plots used in this analysis are generated using

the left continuous formula for the survival estimator S(LF):

Equation 6 S(LF) = H1LFi<LF n-di [521
ni

In practice di is nearly always 1 and LF is typically unique to each removal. SAS JMP Pro 11 performs

the fit to the parametric loglogistic distribution using maximum likelihood. New construction or full

refurbishment of the hot section defines the start of each interval. All observation periods ending in

removal are only those removals that incurred a full overhaul of the engine hot section. Early removals

for non-engine related reasons include engines removed for service bulletin incorporation, non-engine

caused damage such as bird strike or runway debris, and elective early servicing caused by scheduling

constraints or customer request.

The third layer of the model aims to identify the reasons that engines fail early as related to the

environmental and mission specific factors. When the refurbishment is caused by life limited parts, or

when the engine remains on-wing longer than engineering estimation, then the engine has surpassed

the planned life and is considered to have completed the observation period. This is comparable to

patients of a drug study who surpass the targeting remission time, but are subsequently lost to follow-

up. Although the data cannot be used effectively to inform the survival estimator, the fact that it

outlived the targeted life provides useful information to the severity model. Furthermore, these engines

are strong leverage points. Omitting those engines tips the model results toward only the engines that

do deteriorate early without the counter points to the regression model. Model convergence improves

on both testing and validation sets when they are included. A significant fraction of the engines used in

the regression model are LLP removal instances or engines exceeding 1.0 life factor. Since these items

do not have a directly obtainable Kaplan-Meier value, an estimated value is assigned using the

loglogistic survival equation of best fit from the second model layer.

3.7 Individual Model Performance

The first model layer applied is a translation from hours or flight cycles into life factor using the ratio of

actual length to predicted length using only the engineering provided tables. The accuracy of this first
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layer can be seen in Figure 4. The previous section detailed the construction of the second and third

model layers. This section reviews the performance of these models, insights from plotting effects

globally and how the whole system is applied within Pratt & Whitney.

3.7.1 Second Layer - Parametric Survival

The second model layer performs a parametric loglogistic model with a target of life factor, and

censoring of non-deterioration related refurbishments. Study of the industry-wide behavioral effects

that influence the censoring and truncation yields three factors of primary influence which are used in

the model: total off-wing targeted repairs referred to as continuous maintenance (CM), region of

operation split by governing authority types and continental area (R), and configuration including both

technology level in the engine and build plan of the life limited parts (CF). Categorical parameters enjoy

one degree of freedom per category. Equation 4 is fit using SAS JMP Pro 11 using equal weighted error

and chi-square tests for coefficient values. Of the engine intervals used in the model approximately 40%

were uncensored values and 60% were right censored values. The model is built three ways to validate

the assertion that the three factors selected contain the majority of information encoding possible at

this layer. A non-parametric model provides the worst case AIC and BIC while a parametric model using

all known environmental and operational factors provides the AIC and BIC for an overfit condition. The

latter model is similar to the model performed presented in Table 6 except that all factors are included

rather than a limited set and the Life Factor is used as the target rather than the CALF. The performance

of AIC and BIC for the three models shown in Table 7 demonstrates that while adding factors beyond the

first three improves the direct fit of the model reflected in a decreasing AIC, BIC which is adjusted for

degrees of freedom does not move significantly.

Table 7: Parametric Survival Model compared to extreme case under fit and over fit methods

Zero Factors Three Factors All Factors
AIC 875 332 188
BIC 886 401 355
DF 0 10 27

The three factor model passes a chi squared whole model fit test with probability <0.0001 and all three

factors individually pass with probability <0.0001. The coefficient directionality matches those expected

from Table 5 and Figure 12 and the regional effects are shown in Figure 17. The resulting model is

applied to all engines to convert from life factor into p-value which represents the survival positioning of

the engine relative to all others after adjusting for the three factors used in the model.
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Figure 17: Regional effects on interval life factor B50
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with regression factors which characterize the environment and mission conditions of the engine

throughout the interval. Average values and binned ranges used for each environmental variable allow

for both linear and non-linear effects without the use of higher order terms. The binned ranges are split

to three regions in each parameter of high, medium and low where the value recorded is the percentage

of flights in each category. One third of the data is withheld by random assignment for validation of the

model.

The logistic linear regression treats each engine interval as a single point in model training. Engines with

higher numbers of flights represent more information about the effect of the environmental factors

than engines with very few. The regression model error calculation is therefore weighted by cycle

number so that high leverage data points with thousands of flights are given proportionally more sway

over the parameter estimates than the engines that were removed quickly. There exists the possibility

of misclassification in the data. The parametric survival estimation methods are not sensitive to a small

number of misclassifications. The early removals represent strong leverage points in a logistic regression

model and the use of cycle weighted error calculation minimizes the risk of this effect. The impact of this

decision will be explored later in the chapter.

The following three parameter pairs exhibit high correlation of estimates and the former term in each

pair is suppressed from the stepwise regression model: Average Gross Weight to Average Takeoff Thrust
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Derate; RH*A14 High to A8 High; Average A19 to Average A2. The final model includes parameters in

multiple ways. Aerosol effects with cross terms of humidity pose a challenge to simple interpretation of

the results. Table 8 shows the standard beta which is a normalized version of the factor coefficient and

enables more effective comparison of terms to understand the underlying effects. Here negative

directionality results in lower p-values and therefore lower life factors. The directionality of Thrust

Reverser usage rate aligns with the expectation that using high thrust during landing should have some

detrimental effect on engine lifetime. The idea that cleaning actions are negatively correlated with life

can be understood when considering that most airlines perform the cleaning only in harsh environments

resulting in a direct sampling bias error which is caught by the introduction of cleaning action as a factor.

Unfortunately this incurs a bias that makes it difficult to understand the true effect of the environment.

If cleaning action policies remain largely unchanged then the model will continue to represent reality.

However, the model cannot be used to allocate a shadow price to such cleaning. The appearance of

Flight Length and DTamb in the final model indicates that the first principles simulation by engineering

either does not fully account for the effect of these parameters or that there are other effects not being

sufficiently included by the factors selected. The effects of aerosols and humidity will be analyzed in the

next section.

Table 8: Logistic regression factors of primary model

Factor t Prob>|t| Std VIF
Ratio Beta

Intercept 0.36 0.7219 0

TR Usage Rate -1.26 0.2081 -5.8 2.67

Cleaning Action -3.58 0.0004* -13.3 1.70

Flight Length 4.12 <.0001* 18.1 2.38

Cruise Altitude -2.24 0.0255* -11.9 3.48
DTamb 3.25 0.0012* 16.3 3.13

A14 Mid 3.60 0.0003* 14.2 1.93

A21 Mid -4.58 <.0001* -22.4 2.98

RHxA3 Mid -2.33 0.0203* -14.0 4.51

Al Low -3.25 0.0012* -19.5 4.47

A8 Low 1.26 0.2071 6.1 2.90

Elevation Low -4.03 <.0001* -21.8 3.63

Elevation High -7.36 <.0001* -43.3 4.28

RHxA1 Low 2.38 0.0174* 11.9 3.10
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Factor t Prob>JtJ Std VIF
Ratio Beta

RHxA2 High -2.57 0.0103* -20.4 7.80

RHxA8 Low -2.81 0.0051* -19.0 5.67

RHxA14 Low 1.96 0.0498* 11.9 4.56

RHxA21 Low - -2.20 0.0284* -13.7 4.81

Dust

A19 - Dust 1.95 0.0517 13.7 6.10

The logistic model exhibits a relatively low adjusted R 2 of 0.312, but does pass lack of fit tests with an F

Ratio of 43.4 or probability 0.0047. With the high number of variables and expected degree of variance

within the data neither of these figures is necessarily compelling. A comparison of the adjusted R2 to the

R2 of the validation data of 0.266 reveals that the model is at least detecting features that exist across

the population.

When the final model is completed and all three layers combined, the results at a fleet level compare

favorably with the baseline model presented in Figure 4. The final R 2 of fleet level predictions is 0.7966,

and 80% of fleets fall within the predicted range for average interval when at least three engines in the

fleet have uncensored removals. This compares to the regional method R2 of 0.526 with 66% of fleets

falling within the predicted range. The mean square error of the regional method is 13 million in flight

hours, while the complete three layer model results in an MSE of 6 million. Furthermore, when the

regression is repeated including module level performance data such as internal temperatures, fuel flow

and vibration levels, the adjusted R2 declines and MSE rises. More pertinent to the application of the

model, though, are the insights provided by the derived effects discussed in greater detail in the

following chapter. We argue that these observations may be applied to further fleets outside the test

and training data used in this analysis. Despite the usefulness of the model, it is important to limit

assumptions about the nature of these relationships as we recall the assertion by Box and Draper,

"Essentially, all models are wrong, but some are useful[53]."

Figure 18:Total model fit to fleet level Weibull derived mean intervals
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3.7.2 City Categorization

Data visualization on a map overlay enables quick validation of the system. We aggregate all airport data

to a single row by averaging environmental values over a two year period. Assuming a standard length

mission at 35,000 feet with a typical aircraft for the studied fleet provides the necessary information to

fill all necessary factors of the predictive model for a single city. The resulting model provides a single

severity score for each city. The formula for adjusting air temperature to ISA involves elevation, which is

one of the parameters in the severity model. Therefore when visualizing the effects of the city and

region based severity, the temperature aspect of the first layer model needs to be applied as well. In

order to estimate temperatures properly, the list of airports used includes only those airports with

flights of engines where a temperature reading from the engine could be used instead of airport

weather data. This adjusts for the fact that some operators avoid flights in the hottest parts of the day.

The final severity for each city plotted onto a world map from NASA Terra provides a method of

confirming that regional effects are well behaved. Figure 19 displays the life factor for each city using

the method described with 2012 and 2013 environmental data. This data presentation is largely isolated

from the effects of flight length and takeoff thrust and represents the effects on severity caused by

atmospheric and airport specific factors only. Two primary effects are displayed by the map. First, the

effects of temperature tend to dominate throughout the map in that equatorial regions tend to be more
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severe than polar regions. However, the effect of local atmospheric factors is sufficiently strong that any

two adjacent airports are likely to be significantly different in severity. This is confirmation that the sub-

continental regions used in the second model layer do not dominate the system. There is no apparent

border visible between regions.

Figure 19: Global Severity Map

3.7.3 Total model sensitivity to methods
The use of cycle weighting for the environmental logistic regression model enables the model to

successfully pick up on meaningful information in the data. As described previously, the model has an

adjusted R2 of 0.312 on training data, and an R2 of 0.266 on the testing data when one-third of engines

are withheld. When the same model factors are selected and coefficients are scored with equal

weighting per engine, the adjusted R2 on training data and R2 of testing data drop to 0.135 and 0.037

respectively. If the forward stepwise regression is executed again and collinear terms are pared down as

done for the primary model, the adjusted R2 on training data rises to 0.283 and the R2 on validation data

is 0.122. When the model is trained on equal weight engine intervals it is being dominated by leverage

points which had low exposure time to the actual environmental factors. Flight cycle weighting

represents an important insight critical for creating a functional model that depends upon a clear

understanding of the underlying structure being described by the model.

3.8 Application to Current Business Methods
The system of models developed here provides three direct benefits. First, as the system's principal

goal, it provides an estimate for fleet level average time on-wing. Second, the system provides a shadow
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price for a number of decisions including maintenance actions and fleet management decision. Third,

engine level predictions are developed for the active fleet enabling better planning decisions.

The system is easily operated and relies upon a well-integrated data layer. SQL code contains the

business intelligence of combining multiple source systems and aggregating engine data into a standard

input format for analysis. Daily or weekly execution of these codes is capable of maintaining the

infrastructure. SQL code applies the conversion of the first model layer of interval length into life factor

by referencing interpolated engineering tables maintained by ES. A data stream in SPSS Modeler 16

retrains the second and third model layers quarterly, or when new environmental data is acquired for

model improvement. OAG data on Teradata with planned flight frequency by airline and airport

combined with environmental data provides a table of fleets with best expected environmental values in

the same format as the training data. The SPSS data stream pulls the reformatted OAG data, runs it

through the second and third layers of the model and provides a table of fleet level predicted life factors

back to the Teradata server. This table may be updated frequently, but in practice updates are only

necessary when the fleet operations for an airline change significantly, or to reflect new environmental

data downloaded from NASA Terra.

An Excel based interface consumes only the model output for standard use. In this way, fleet predictions

may be simplified to the same level that they were previously when applied by the business with

minimal retraining required and enabling full flexibility of staff using the models. The predicted time on-

wing (TOW) obeys the following equation laid out in this hierarchical model:

Equation 7 TOW = Hrs(FL, PDR, CA) * TF * LF * CF

Where FL, PDR, CA are flight length in hours, percent derate, and cruise altitude respectively, and TF, LF,

CF are temperature factor from the associated engineering table, predicted life factor from the fleet

severity models, and configuration factor. Configuration factor is added here to enable the use of the

model for fleets that do not have sufficient data for the configuration to be included in the model

directly. When technology upgrades are made, an informed declaration about the time on-wing effect

years before sufficient operational data may be used to validate the claim using lab testing and similar

engines as was demonstrated as early as 1980 by Pratt & Whitney's expansion of use of single crystal

blades[54]. Adding this feature to the model enables the business to perform these flexible adjustments

to the prediction based upon non-modeled knowledge.
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4.0 Validation and Implementation

4.1 Benchmarks

The proposed system is challenged by review alongside two important reference points. First the airport

level effects are compared to published effects observed by a competitor in the aerospace industry.

Although the models are developed from a different basis, the general trends between them provide

insight as to the stability and value of the proposed model. Second, the model is compared to global

trends in temperature and aerosol levels. The potential causality of these statistical effects is considered

along with a discussion of related effects that may be leading to confusion of terms. The observed

effects are seen in directionality and geographic location to previously published work, although new

effects in Caribbean airports are subject to some uncertainty.

4.1.1 External Benchmarks to Competitor Publications

Work presented by General Electric (GE) in 2011 on the topic of regional severity provides a meaningful

comparison for the current results. A side by side comparison is presented in Figure 20[13]. The current

model exhibits a high degree of variability city to city which is described in greater detail in the following

section. In addition, the current model shows the severity calculation only for those cities where engine

takeoffs have provided sufficient real flight temperature data for a schedule adjusted severity. On

contrast, the smooth transitions of the GE model appear constructed from global average temperatures

and are similar to Figure 21. On the whole, the GE analysis tends to cluster the same cities into similar

categories as does the current model. This is likely due to the overriding effect of temperature in the

tropic cities. The dust impact categorization varies between the two models. It is not clear what source

was used for the dust study of the GE model, nor can any numeric severity be acquired for quantitative

analysis between the models. The regions of greatest discrepancy appear to be Middle East and possibly

Europe, although the GE chart is obscured in that area. Within these regions to fleets have sufficient

data in the testing set to conduct a Weibull based average interval analysis for comparison to the

current model. Although both of these fleets are within the 95% confidence band of the current model's

prediction, they observed average intervals of 95.5% and 88.5% of the models' expected average. This is

a possible indication of a geographic error in this region by an order of 5-10% which could be caused by

insufficient interval data in the region.

Figure 20: Comparison of city environmental categorization by General Electric to the current model
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4.1.2 Comparison to overall Environmental Behavior

The results of the model may be compared visually to the global distributions of its key geographic

drivers: Temperature and Particulate Matter concentrations. The observed temperature severity

compared to the global temperature distributions shown in Figure 21 shows a strong overlap with two

notable exceptions. First, high elevation airports along the Andes and Himalayas are both penalized by

the model beyond the degree that the ambient temperature would predict. Secondly, mid-continental

hub airports, notably in the United States, display both high severity and high variance. Within the data

this is observed to be an artifact of the flight schedules. Airlines servicing mid continental cities in the

United States make use of mid-day connecting banks, with traffic peaking in early afternoon[55],[56].

This results in a flight sampled temperature significantly above the average experienced by the airport.

For example, although typical airports within 500 km of Denver (KDEN) have an annual average ISA

adjusted temperature of 2 degrees C, the ISA adjusted temperature at Denver is 8 degrees C. This effect

is also seen in adjacent airports serving different traffic types. Los Angeles has an average annual ISA

adjusted temperature of 3 degrees C. The international airport (KLAX) which serves longer stage length

flights morning and evening experiences an average takeoff temperature of 2 degrees C while the

temperature at neighboring KLGB servicing shorter stage length traffic during business hours is 4

degrees C. This causes a net 4% decrease in time on-wing at KLGB vs KLAX based solely upon flight

schedule.

Figure 21: Global Temperature Distribution with Airport Temperature/Elevation Severity Overlay[57]
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Just as the elevation and temperature parameters cannot be considered independently due to their

natural interdependence, the effects of aerosol and humidity must be jointly analyzed. Where high

humidity is observed, aerosol levels will naturally be suppressed by rain-out and atmospheric models

tend to show high correlation between suspended aerosols and cloud formation[58]. The model

parameters shown in Table 8 show a clear correlation of terms. When the cross terms between relative

humidity and aerosol levels are removed, the model cannot converge above an adjusted R2 of 0.15.

Figure 22 shows maps of water column[59], and PM2.5 concentration[60] alongside the aerosol effects

and demonstrates a negative correlation between humidity and PM2.5.

Figure 22: Comparison of Global water column and PM2.5 concentrations to combined severity effects

Total Water column

PM2.5 Combined effectof Dust Absorbing Sulfates&OrgancAerosols at0.12

Lugo-Leyete et. al. have shown that the turbine inlet temperature will decrease with rising relative

humidity for the same air volume due to increased thermal mass of the air[61]. Aerosols are suspected

to have general corrosive and abrasive effects which contribute to engine damage, and therefore a

negative correlation between humidity and aerosol complicates the intuitive understanding of the
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model. The aerosol factors picked up by the model conclude that large particle size pollutants, such as

coal dust, which is characteristically 2.0 pm, are less significant than smaller absorbing particles. These

particles include organics such as pollens, fine soot and fine sands. If ocean salt aerosols were

detrimental, we would expect a non-absorbing factor to have negative correlation to engine life, but this

is not observed. Of interest geographically is the fact that northern China, although high on the PM2.5

map, is low on aerosol severity, while the Caribbean region has the opposite effect. This is led by the

model training on A14, absorbing particles at 0.12 pm radius. These particles are too small to be

included in PM2.5 and have longer duration than PM2.5 particles. Larger dust particles included in the

PM2.5 value will not tend to reach the Caribbean from Africa, although MISR data does indicate

elevated values of total spheroidal dust (A21) in this region. Figure 23 displays these two particle

concentrations showing that although particle size of A21 may have decreased, the overall quantities

reaching Caribbean airports remains fairly high. At the same time, the dust reaching South American

airports from Africa is elevated only along the coast, while inland regions are benefited by rain-out.

While the data source for the current study and the PM2.5 readings is the same satellite source, the

current study has focused only on readings within 30km of an airport with engine service resulting in

significant local data dispersion. This dispersion is expected to cause the elevation of A14, too small to

appear on PM2.5 ratings, and generally sourced by local environmental effects such as burning biomass,

pollens and certain types of city pollution.

Figure 23: MISR average readings for 2012/2013 A14 and A21 within 30km of selected airports

A14 - 0.12pm absorbing organics & sulfate A2W - spheroidal dust

4.2 Organizational Analysis

Even a perfect model must be applied to a business solution by an organization which incurs its own

effects and constraints. An organization's structure, politics, and culture each have a significant effect on

the performance of the business. Alignment between these three aspects and the business goals is a

required underpinning of any project's successful implementation. The following section describes the

current state of the Pratt & Whitney aftermarket and IT organizations and the interaction of sub-teams
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in the company referred to as 'business units'. The data acquisition process and model development

process are reviewed in detail as to the interplay between organizational structure and organizational

performance. Finally, recommendations are made regarding the optimal data management structure

between both the IT core team, the individual business units, and the proposed Data Analytics

organization.

4.21 Overview of Orgaiizatioiia] Effects

Pratt & Whitney aftermarket is aligned as an independent Profit & Loss center (P&L) with a number of

core functions such as IT aggregated to the Pratt & Whitney corporate level. The incentives and P&L

splitting within Pratt & Whitney have changed over the recent decades with a concerted effort of P&W

to aggregate P&Ls to leverage synergy[621. The recent acquisition of International Aero Engines (IAE),

which contributed the majority of the engine install-base to the aftermarket support, enabled the

company to consolidate its relationships with narrow-body customers[63].

The structural alignment of the aftermarket division is the result of the collection of many independent

P&L's[64]. Pratt and Whitney has a made concerted effort on consolidation of overlapping business

services following this collection and the IAE acquisition[65]. IAE and P&W independently sold and

supported engines for over ten years prior to the integration. All fleet support mechanisms for structure,

systems, and customer relationships were independently formulated and integration of them to realize

synergy without disrupting the customer support requires careful attention and time. Data analytics at

Pratt & Whitney represents a central aspect of this integration effort[66]. The structural differences in

organization extend into the data for this team as well. After the IAE acquisition, some of the engine's

on-board data systems used to support the fleet are split between the Rolls Royce system OSYS[67], and

the Pratt & Whitney system ADEM[68].

Pratt & Whitney cultural effects in the engineering department are well documented by Bowen and

Purrington in 2006, and are observed to be consistent in 2014[69]. The airline industry is infused by an

overt priority on safety for the flying public[70]. This results in a prevalence of cautious planning, and a

sense that things cannot be rushed. Third party auditors are a familiar part of daily work and awareness

of regulations and authority pervade the working culture.

Bowen and Purrington observed that political power within Pratt & Whitney is held both along the

traditional hierarchical lines, and by senior engineers. Within the aerospace industry, a majority of

employees have more than 10 years' experience, and it is generally observed that experienced staff
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requires lower direct involvement of the management team. The resulting high number of managers in

the aftermarket division leads to a dilution of political power from the 1St level. Financial services and

insurance companies tend to have lower management ratios in the range of 8:1, while technical support

centers have been observed to be in the range of 5:1[71]. These figures would be fitting targets for

aerospace aftermarket organization whose functions are a mix of financial, insurance estimation, and

technical support. With lower management ratio, and higher average experience level, political power

will tend to be shared between senior engineers and the hierarchical management system. Senior

engineers with significant tenure in position, referred to as Discipline Chiefs by Bowen and Purrington,

are regarded as the owner of a given set of operational practices. This position is typical of the

aerospace industry and is symptomatic of an established labor force with low turnover. Indeed, the AIAA

estimates that 50% of US aerospace engineers are currently eligible to retire[72]. This makes

documentation and interchangeable labor a critical part of business sustainability in the near future

across the industry. Bowen and Purrington observed that the reliance upon discipline chiefs contributed

to the difficulty of implementing documented work practices. Decreased documentation tends to

increase the cost of rotations and training and decrease organizational repeatability. At the same time,

the role of discipline chief was observed to enable the promulgation of best practices to the engineers in

the discipline chief's field. In the early 2000's, Pratt & Whitney underwent a number of documentation

efforts to enable effective knowledge transfer by written word and ownership of updates to these

procedures was considered the most tenuous risk[69]. Discipline chiefs, many of whom were also

technical fellows, exercise greater influence on the organization than first level managers. The result of

this high degree of knowledge based power was a general aversion to rotations within the company.

Employee rotation was feared by many managers due to domain critical knowledge and a lack of proper

documentation for supporting transfers. To counter these effects Bowen and Purrington had

recommended new rotation initiatives. However, in the opinion of this research, this work did not go far

enough.

The importance of employee rotation programs is perhaps best displayed by the SOX-mandated 5 year

limit on auditors. A number of methods for mitigating knowledge loss are presented by Sanders,

Steward, and Bridges[73]. These methods are aimed at making the rotational planning a continuous

effort with improved and sustained documentation and could be adapted by large aerospace companies

to facilitate career mobility, improved knowledge documentation and new idea development.
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4.2.2 Data Acquisition & Data Maintenance

Pratt & Whitney data maintenance is a shared effort among customer facing business departments and

internally facing information technology (IT). Each business unit contributes and references data

continuously, and a naturally developed dispersion exists in the level of integration between an

individual business unit and IT. Within the archive, data and preserve functions, Pratt & Whitney IT relies

regularly upon 3 rd party IT partners through the use of stable long term contracts[74],[75]. Ingest,

Administrative and some Data functions are retained by Pratt & Whitney. Access functions are generally

left to the business units, with oversight and support from the Administrative and Data functions as

required.

The Pratt & Whitney data systems employed for this work compare generally well with World Data

Systems on as measured by the WDS survey proposed by Laughton[44], although for reasons of

confidentiality the survey results of the P&W data systems are not presented here. Table 9 shows that

the functional scores are at or above average in four of the six functions. Two functions stand out across

the industry as areas of opportunity for improvement - Preservation and Access. The key reason

observed for higher scores on Ingest in successful companies is a result of a pre-ingest function similar

to that proposed by Laughton and du Plessis[43]. These pre-ingest domains had generally developed

from necessity at the business unit side. Certain critical data is pre-filtered, audited and formatted for

upload by engineering staff prior to submission to the IT data systems.

Table 9: Average World Data System Scores by Segment

Ingest Archive Data Admin Preserve Access

WDS Avg 76% 66% 79% 65% 63% 54%

The consolidation of business and data function mentioned previously with regards to the IAE

acquisition may be expected to lead to improvement in the Preservation score. As the integration of

older data systems completes, any company will improve its ability to preserve data, although care must

be taken to monitor technology and formatting to ensure availability of future staffing. A majority of

data architecture decisions for the preservation and integration of data structures should generally be

led by the business unit engineering teams with data relational knowledge. Education of these

engineering teams regarding proper data curation methods is critical to the improvement of long range

data management. This may be done through close integration with local colleges and universities. In

the fall of 2014, Pratt & Whitney launched an initiative to provide accredited coursework for a master's
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degree in data analytics through a local college to all engineering staff. This type of action will reduce

the risk of data obsolescence and increase the probability of data use within the company. Some

members of the organization had already enrolled in similar programs due to job requirements for

technical master's degrees. Others who had met those requirements through different degrees felt that

the work to attain a degree was unnecessary and preferred taking targeted coursework or seminars[76].

The deployment of continued education may take the form of formal coursework, or developing a

relationship with academic professionals who study with the company engineers. The former will supply

expert knowledge to certain team members, while the latter will provide a source of ongoing research.

This is distinct from hiring a Ph.D. level work force that integrates with the existing staff. The unique

vantage provided by active professors is their outsider perspective.

Studies have shown that high grade level engineers are the least likely to attend courses, even when

courses are freely available and encouraged by their employer[77]. Continuing education is of the most

importance for these engineering leaders due to their influence in technology decisions. Pratt &

Whitney leadership is encouraged to attempt both methods of continuing education concurrently. It can

be expected that continued education regarding data management among the IT and Business unit

engineering teams combined with initiatives currently underway to centralize data storage will improve

the Preservation score of Pratt & Whitney.

One senior engineer working in aftermarket commented toward the end of this research project "Where

did you find all of this? It's amazing[78]." The data used in the project was generally available to any

Pratt & Whitney employee; however, access to it and understanding of it was granted individually by

business unit domain owners. The IT data function consists largely of maintenance of data schemas and

maps of relational tables. For an understanding of which data types were equivalent between

databases, interviews with business units experts are required. In the absence of company-wide

advertising of available data systems, finding these experts requires personal requests. As a result, when

data is required across systems between two groups, it is tempting to replicate the data in full on each

side. This enables each system owner to maintain full knowledge of their product, without dependency

upon other groups for system maintenance. The resulting downside of this solution is a risk that some

teams will not know the origin and context of the data and may act on it without full understanding.

The delegation of the Access function to the business units is not entirely out of place. Maintenance of

complex queries that supply a business intelligence layer over the underlying data architecture relies

upon both firm knowledge of the server language and knowledge of the business process being served.
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Furthermore, advertisement of the available data and cross-functional integration both require

integration with the business units to identify data needs. The advantages of centralization which gave

rise to the development of a central IT role in most organizations remain relevant and unmet in the

current state. The development of a centralized business unit responsible for data curation oversight

from a business perspective may serve to fill this gap when it is done in concert with the existing IT

central structure.

4.2.3 Model Development & Deployment

For a model to be successful it must present value, flexibility and relatability to the organization. Proper

development of predictive models requires both access to and knowledge of all pertinent data. Thus a

data analytics organization would ideally contain members from all parts of the organization. This

provides the group with not only a clear insight to critical business needs, but meaningful experience in

determining the value of a project to the company. The ability of a model to be relatable is a ready

concept to the engineers on the maintenance cost group who have spent years working with existing

data and converting the pure analytical results into a format that can be documented into a sales

contract. The constant changes in these contracts and customer requests drives the flexibility of the

organization to ensure responsiveness.

The greatest benefit to the data analytics team, its functional excellence, is also its largest risk. As the

team develops in experience, the tendency to assign a discipline chief will rise, and the organization may

become its own new silo. This might enable new modeling methods to be deployed, but is more likely to

result in an aversion to job rotation as previously discussed. This will eventually lead to a stagnation of

the extensive cross-functional experience within the company that the team currently has. For this

reason, relying upon external contractors to provide data modeling insight may be a prudent decision

for many groups. IBM and other data analytics partners provide P&W with on demand staff highly skilled

in analytical methods[66]. While data analytics talent should be developed internally to a limited

degree, there exists a risk that professional opportunities for rotation and advancement could be limited

within any engineering or manufacturing company. This could lead to stagnation, or turn-over. It is

critical that the engagement between the data analytics team and any external partners occur at the

lowest possible level and work through individual data decisions as outlined in the system dynamics

section of this research. The partnership had originally aimed for the following simple boundaries:

company provides data, partner provides model, company uses model.
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Figure 24 displays a more balanced approach that better captures the internal knowledge of the

company regarding the underlying structure of the problem being modeled. The proposed framework is

understood as a continuous improvement cycle with continuous review at a detail level. One complaint

regarding prior work with analytics partners was present throughout the company, "How are we going

to do this? These meetings are high level[79]." Under the proposed framework, when a new

improvement in data presentation or modeling is conceived by the business user with the data analytics

team, an exploratory analysis is first performed in conjunction with engineering experts on the topic.

The key output of this phase is a system dynamics view of the problem being described which should

contain both social and technical factors influencing the model. As is shown in the current research,

systems level analysis is important to enable the proper identification of data sources and prioritization

of that work. With a broad system definition of scope to the project, funding can be supplied to gather

data sources and explore applicable modeling techniques. At the early systems model phase, both the IT

partner and Data methods partners are engaged by the analytics team which is also responsible for the

development and deployment of the draft model. Once any new model is deployed a pilot phase is

required prior to full implementation to validate the assumptions and ensure that existing business

processes were not overlooked. The continuous monitoring of the model focuses on areas where the

model or system is incorrect. These errors do not cause suspension of the model, but rather inspire a

new pass through the development cycle to continuously improve the model.

Figure 24: Proposed Model Development Framework with Overlay of the Deming cycle
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4.2.4 Recommendations for Governance and Structure

Quantitative research on organizational structures has shown that dynamic businesses with a high

degree of variability between customers benefit from structural alignment by customer. At the same

time, further improvement has been seen in organizations able to provide asymmetric support where

larger customers received higher staffing flexibility[80]. This is possible in organizations that categorize

staff with deference to process dependencies allowing pooled resources for asymmetric support. Based

upon these findings, the first hierarchical split of the data analytics team is designated functionally to

maintain functional disciplines and also align with existing corporate culture. The second organizational

alignment proposed is a customer alignment through each function of the organization. This lower level

split in the teams enables specialization within the function addressing the types of questions commonly

received. Figure 25 demonstrates the proposed organizational structure.

The Data Curation team is included within the business unit with functional overlap to the existing IT

structure in the three areas of Ingest, Data Management and Access. From this positioning in the

business units directly supporting model development, the Data curation team will be capable of

developing and successfully advertising the company data from a vantage point generally not available

to IT organizations. This team requires close integration with IT, and is intended to be collocated with IT

staff in the parallel functions, although the functional alignment remains within the Data analytics team.

It is important that this group rotate frequently through positions in the business side of the company to
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both remain fully effective as advocates of the business. Rotation will also ensure that they continue

developing their engineering skills throughout the aftermarket support division, decreasing the risk of

becoming an extension of IT in both function and skill base.

The Model Development team performs major oversight and guidance of new model development. The

expertise required by this team is not specifically mathematical rigor, but system dynamics. Familiarity

with modeling techniques is a key aspect of the function, but the strength to the company is in

combining those techniques with the engineering domain knowledge unique to the OEM. The Model

Development team is therefore aligned by internal knowledge source: engineering, finance, and shop

management. Supply chain cost modeling, engine performance, and economic scenarios are proposed

categorizations that reflect three distinct types of problems which are related to different internal

divisions of the company. The Model Development team will be given a problem by the Business and is

capable of providing directly integrated engineering knowledge to develop a systems level view of the

problem before scoping the work for an external data science partner.

The Application Support team supports both internal and external customers of Pratt & Whitney and is

aligned by sub-team according to the type of customer, rather than the specific customer. This team is

responsible for training, documentation, auditing and support of all data reports and models provided to

the company and external customers. The Application Support team is aligned by customer group in

order to train the team members toward the needs of that business sector. They may approach

different segments of the model development team based upon the type of model required to address a

business need. The Application Support team represents the direct monitoring of the models with the

customer, and reports systematic errors back to the Model Development team for future development

work.

Figure 25: Proposed Organizational Structure for Data Analytics
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Centralization of work allows for economies of scale in the form of improvement of standard practice,

and a reduction in duplicated data. The key benefits of this centralized team are found in the application

of a standard method for problem solving, a central location for data warehousing and concerted effort

to promulgate new tools within the company. If the effort to centralize data analytics is taken beyond

these areas of synergy, it risks deterring creativity and development within the wider company. Data

modeling groups that are dedicated to individual business units have unique insight to that business

area, coupled with domain knowledge of the engineering specific to those problems. Integration of

these teams to a central unit would be deleterious to that unique knowledge which provides their

advantage in the long run. Rather the data analytics team is developed to leverage those aspects of the

model development function that benefit from centralization and to provide these benefits to all other

modeling groups within the company. Figure 26 shows the functional relationships of such an

engagement where solid lines indicate direct communication or prime point of contact and dashed lines

demonstrate oversight or occasional secondary communication.

Figure 26: Data Analytics Supporting Role to Distributed Analytics Teams
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The process flow of each project would remain similar to that demonstrated in Figure 24, except that

the Data Analytics lane becomes shared by the centralized team and the distributed team which is

integrated to the business unit. Under this structure, the distributed analytics team relies upon the

central Data Analytics team to provide thorough data curation in pairing with IT for any new data

developed in the project. Advertising of the newly developed model and curated data to new customers

in other business units is also provided by Data Analytics. If engineering experts or 3rd party analytics

partners are needed with whom the distributed team is not familiar, the central Data Analytics team

may assist in making those connections and ensuring that standard work regarding model development

is applied. The distributed analytics team is itself responsible for all work with the primary model

customer, as well as development and deployment of the new model in collaboration with engineering

experts. The distributed analytics team provides documentation and training, and performs the

continuous monitoring of the new system in collaboration with the primary customer to identify new

requirements. With central support provided to each organization, new distributed teams will be easier

to develop and can be funded readily by the business unit in which they reside. The team would look

functionally like a single sub-team of the modeling branch of the Central Data Analytics team. The group

requires perhaps three to five employees with backgrounds in engineering or business and an interest in

data modeling methods. Since advanced data modeling and IT functions are performed by third parties,

these employees retain skills and career options within their business units while providing unique

domain knowledge to the model development process. It is important that the company become

capable of handling data in both a disciplined and distributed manner. The proposed framework strives

to balance these two objectives.
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5.0 Conclusions

5.1 Specific Recommendations

5.1.1 Implications to Contract and Customers

In certain cases within the data, the effect of atmospheric changes between these cities observable only

by satellite data and runway characteristics is equivalent to the interval effect of a 10 degree Celsius

difference despite the two airports being the same temperature. The significant effect of atmospheric

severity on airline operations requires a more advanced review of contract language and the customer

relationship. For many years customers have been familiar with temperature, thrust, and flight length as

factors for evaluating engine maintenance requirements[11]. The effects of humidity, thrust reversers,

dust and elevation are not commonly regarded as negotiable contract terms. Beyond these factors, a

number of others are likely to exist, and the distinction between chemical composition of aerosols is not

yet considered. The addition of all necessary factors to the contracts is likely to be untenable due to the

intractable nature of an N-dimensional problem. Combining these factors together in a model as shown

here is capable of producing reasonably stable effects at the city level without fully understanding the

damage drivers. Contract negotiations could form around lists of cities for which limited service is

permitted. In these harsh environment cities new prices could be established per flight with rates

updated periodically as both observed atmospheric conditions and model training evolve. Categorizing

cities within the range of an airline into groups with maintenance price per city captures all current and

future potential effects of the atmospheric models while enabling effective day to day decision making

at the airline operations and fleet planning teams without burdensome contract restrictions on

individual parameters. It is recommended that continued work be performed with contracts and legal

teams to pursue a city severity pricing method for future contracts as the effect is observed to be more

significant than temperature in determining airport to airport severity.

5.1.2 Corollary Information from Current Model

Continuous interval maintenance action and cleaning actions may be evaluated for impact on the engine

interval using the current model. Continuous interval maintenance is included in the second model layer

since it is related to the inspection policies of the airlines. Typical gains observed in interval per engine

removal are 10% per removal. Within the data this varies based upon both the relative age at removal

and the type of work performed. Using existing cost structures of the company, the average cost of such

a visit is well established and the fleet manager is partially responsible for the joint decision with the

airline about what level of work to perform on the engine when it is covered under maintenance
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contract. By comparing the expected revenues of a 10% life extension on the engine in question to the

repair price, the fleet manager is better able to inform their decisions. Although individual engine

performance varies, this information enables fleet level planning regarding the incentives placed in the

contract for increased engine inspections. It is recommended that this shadow price of 10% life per visit

be compared against internal processes for contract definition on the frequency and coverage of

continuous interval off-wing maintenance.

The data regarding cleaning actions included in this study is present for 40% total engine intervals and

uses standard practice assumptions for other airlines due to limited data availability. Although the

variance inflation factor of the cleaning action coefficient is the lowest of any factor (1.7) there exists

significant factor correlation with other model parameters within the data for which cleaning action was

well known. The relative value of the cleaning actions most strongly correlates with A21 mid-range dust

levels (0.46), Elevation Low (-.35) and Thrust Reverser usage (0.34) which have standard beta of -22.4, -

21.8 and -5.8 respectively. The directionality of the cleaning action coefficient remains robust to changes

in the data sampling and throughout the stepwise regression selections. Together we take this to

understand that cleaning action is not detrimental to the engine life, but is performed more frequently

upon engines in harsh environments. When cleaning action is removed from the regression model, the

coefficients of other aerosol factors are observed to increase indicating a restorative effect of cleaning

action may be masking the true effect of the aerosols. However, this shift in coefficients is not

statistically significant when comparing between engines with frequent cleaning and infrequent

cleaning. It is only observed between engines with cleaning when compared to engines with no cleaning

at all. It is recommended that additional work be done to monitor the health of fleets before and after

changes in cleaning policy within the same operating parameters. The results identified here do not

justify widespread changes to the fleet cleaning policies, but support the continuation of targeted

cleaning in harsh atmospheric environments.

5.1.3 The Value of Data on Future Engines

Commercial engines and airlines have an increasing number of sensors installed throughout them with

each technological generation. Each sensor incurs additional cost not only for production and

maintenance of the hardware but also for transmission and storage costs of data. This type of analysis

helps to demonstrate which data elements provide the most value to the company. With regard to

future data acquisition for engine maintenance, three areas of concern are highlighted by the proposed

model: Aerosols, Humidity and Thrust Reversers.
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Aerosol size, composition and density are indicated to have significant effects on engine life expectancy.

In the extreme conditions, the contributions of aerosol composition city to city are found to have a

difference in life by half, while within nearby cities the variance accounts for 20% difference. The aerosol

information used for this work relied upon average monthly levels as determined by a limited number of

satellite observations at solar noon. Acquiring improved aerosol readings for hub airports through

sponsoring of ground based research may enable improved predictive maintenance. The collection of

aerosol data could also be acquired by sampling the air filters from the cabin intake at each

replacement. The OEM could pay for the return of these air filters for closer analysis and development

of improved prediction models.

Mathematically relative humidity has been shown to have negative effects on the propulsion efficiency,

and is also correlated inversely to aerosol levels in each region. The exact relationship is subject to a high

degree of uncertainty. The measurement of relative humidity may be obtained in-flight by either the

airframe or the engine. However, the humidity level is also a typical condition parameter recorded by

the airport or local weather service on an hourly basis. The procurement and inclusion of these data at

the flight by flight time level would improve the capability of the regression model to properly isolate

the effects of humidity. Finally, a complete physics model of the engine at different levels of relative

humidity may enable the isolation of humidity's performance effect from its air-cleansing effect. This

model could be performed readily as existing engineering models contain a humidity parameter which

has not been fully explored.

Thrust reverser usage was identified as a driver of engine damage. It is suspected that this damage is

related to the type of aerosol and runway condition present during the landing. Improved data records

of the engine performance during thrust reverser deployment may enable a better application of cross

terms in the model. This data could be obtained by acquiring runway level contaminant samples through

field representatives. A dataset of relative runway cleanliness could then be combined with the thrust

reverser data to determine the nature of the damage. Either this is related to thrust reverser use on

contaminated runways, or it is simply damage driven from the amount of time at power.

5.1.4 Team Structural Alignment

The aftermarket organization relies heavily upon data and models for decision making which requires

effective development of new models and effective promulgation of data throughout the organization.

IT organizations are well structured for the administration and preservation of business critical data,

while individual business units are better aware of the applications of the data to create business value.
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Assigning business level oversight of the Access, Data Management, and Pre-ingest functions to a

centralized data analytics organization enables the advancement of data within the company while

ensuring that the business side staff remain career mobile and avoid a replication of IT skills. The data

analytics team outlined in Figure 25 employs the advantages of both functional alignment and customer

alignment. For those aspects of the work where domain specific knowledge such as programming or

advanced modeling methods are required, the data analytics team relies upon external vendors.

Meanwhile, the skills cultivated within the company's aftermarket business unit remain consistent with

the core engineering skills of the OEM and center on foundational knowledge of the product. The data

analytics team provides a centralized gateway from any business unit into an array of data analytics

resources both inside and outside the company. Individual teams throughout the aftermarket

organization will be empowered to continue developing queries, monitoring data, and creating and

using models.

5.2 General Implications to World

5.2.1 Application of Airport Severity to Airline Industry

Airline maintenance and overhaul costs for airframe and engine are typically observed at 10-12% of the

airline total cost structure[56]. Of these costs, the engines are nearly half, which places the cost of

engine maintenance and overhaul on an equivalent volume to the current profit margin of successful

airlines. This research has shown that beyond the industry established effects (temperature, thrust and

flight length), atmospheric effects, inspection policy and thrust reverser policies are responsible for

between 20% and 50% differences in similar fleet interval. If we assume that overhaul costs are

equivalent regardless of TOW, this indicates that the cost of these unknown factors is between 1-3% of

total airline cost structure. This is equivalent to the typical revenue fluctuation caused by international

currency management (1%), or shifts in the annual storm season (1.5%) in 2014 for Delta Airlines[81].

The fluctuation in revenues between flights on peak travel hours and off-peak travel hours significantly

outweighs the maintenance costs of taking off in higher temperatures[56]. However, when cost

structures for competing airports in a region are considered, it may be beneficial to include atmospheric

costs in the fleet planning decision. For example, when two airports in a popular Mexican tourist

destination separated by less than 20 miles are tested in the proposed model, one airport has half the

expected engine life of the other. On a typical mission this would incur a premium cost of approximately

$1000 per round trip or approximately $150 per block hour which would contribute to fleet optimization

decisions.
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5.2.2 Implications of Aerosol Effects and Incentives

Airports generate revenue from vendors and airlines. The airline revenue is acquired by typically by a

landing fee structure or per passenger fee or combination of the two, with average total cost per

enplanement in the US ranging from $2.80 at Charlotte Douglas to $24.20 at New York JFK. Studies have

observed that the prices are typically set by the open market as a function of airport size, regional

demand and competition[82]. We find that the cost of engine maintenance incurred by severity per

enplanement is similar in price and range to the range of costs in US airports. Figure 27 shows the

spread of maintenance costs per enplanement derived from the current model with an assumed a

single-isle aircraft for typical mission of 85% load factor. If this cost structure were committed to

contracts by the OEM or incurred directly by airlines which pay for their own maintenance expenses,

then the airport demand situation would shift. Those airports whose geography naturally incurs higher

costs on the airline would face additional negative pressure on their fee structure which responds to

market forcing particularly in secondary hubs and regional airports. The standard deviation in Figure 27

is 70C or 25% of the typical fee for Charlotte Douglas. Larger airports like JFK could be expected to

disregard this effect due to their strong market position. Smaller airports such as Charlotte Douglas may

face revenue erosion if their severity is found to be significant.

Figure 27: Engine Maintenance cost Per Enplanernent of Studied Cities in the Current Model

1 2 3 4 5 6 7

Maintenance Cost Per Enplanement (USD)

5.2.3 Applications of Multiple Information Source to Other Industries

A multiple information source system employs a variety of modeling techniques and decision gates in

order to enable effective representation of highly complex systems. While individual modeling

approaches risk oversimplification of the underlying interactions of data, multiple information source

applies the most applicable model to only that part of the data for which the model type applies. This

enables decomposition of complex socio-technical systems into an array of distinct solvable problems.

These methods have been widely adopted in long range economic and development forecasts and more
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recently through the insurance industry to health care deployment. This work has shown the application

of multiple information source to a unique engineering problem overlaid with both socio-political

factors and unstructured environmental effects. One key advantage of multiple information source

hierarchical models over complex single form models entails the ability of the model to be

communicated effectively to 3rd party customers or auditors. As data systems expand and modeling

complexity increases, multiple information source systems will enable the development of data systems

that are both complex and relatable. Individual layers of the system may be interchanged with newer

models without compromising the entire system, though individual layers may require re-training.

5.3 Future Work

5.3.1 Extension of Data To Other Business Problems

Three topics for future work take advantage of adjacency to the problem solved here. First, the total

cost of repair for any product could be related by this parametric method to its operating environment.

This relationship is likely to be complex and parametric in nature. Correlation studies between repair

costs and environmental effects may yield additional insights. This work is important to the application

of any survival time model as it is possible that effects which drive early failure in a pipe or appliance

may be causing targeted damage that is easier to repair, or that they may be causing greater systemic

damage that is more expensive to repair.

Second, the relationship between product origin and product lifetime could be explored. The

environmental damage effects of geographically diverse operations are often overlapping with

geographic disparity in manufacturing quality. This analysis may enable a better isolation of product

quality drivers based upon the environment that any product is expected to operate in. Although much

of this may already be optimized by tacit knowledge within a global company, financial value of off-

shore vs. on-shore production regularly depends upon accurate estimates of production costs and

production quality.

Third, this enables better risk management of any fleet. This could cover a trucking fleet, airline

operation or military applications with large numbers of similar products facing diverse environmental

hazards. Although the results of the current model are aggregated by fleet for analysis of fleet level risk,

the output of the system can be applied at an engine, or single entity, level to generate improved

maintenance forecasts by region in the coming months. This type of analysis could lead to improved visit

forecasts, and if linked to the cost analysis above, could enable proactive resource planning.
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5.3.2 Defining New Data Acquisition Targets

The ability exists within ACARS message architecture for additional data to be transmitted. The value of

new data and additional information about existing data streams is not always clear. This can lead to a

tendency to either hoard all data possible at great expense, or disregard data that does not pose direct

value to the organization. An appropriate middle ground between these can be obtained by structured

analysis of the system. In the instance of engine performance, the current model demonstrates the

value of certain data and points to the value of unknown data. For example, improved data granularity

with respect to climb profiles and performance may reduce the assumptions used in the model. At the

same time it does not appear necessary to track every flight parameter continuously in order to

determine engine health and life expectancy. This is shown by the fact that the current model does not

improve significantly when all performance characteristics such as vibration and module performance

ratios are included in the regression. As future event prediction models are developed, a system

dynamics view will help identify missing variables and inform the prioritization of changes to ACARS

data. These models should also be challenged once created to perform analysis using less data than is

currently available. In this way the model sensitivity to missing data can be established and the actual

value of data collection can be better known by the company.
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Appendix

NASA Satellite Data Acquisition

The NASA satellite TERRA (EOS AM-1) performs a polar circular low earth orbit with a sun-synchronous

repeating ground track with earth facing cameras measuring solar reflectance of the atmosphere and

surface. Two modules from TERRA provided data to this research: Moderate-Resolution Imaging

Spectroradiometer (MODIS) and Multi-angle Imaging SpectroRadiometer (MISR). Data from MODIS is

used during on board calculations in MISR, and off board calculations by NASA in preparation of MISR

datasets. MODIS is responsible for the identification of ground terrain types which are provided to MISR

as a baseline for calculated expected solar reflection. In addition, MISR relies upon atmospheric and

surface climatology (TASC) and Radiometric Camera-by-Camera CloudMask Thresholds (RCCT) to

determine baseline atmospheric values such as temperature, wind speed and the presence and height

of clouds. When clouds fully obscure the pixel and prevent observation of the low atmospheric aerosols,

MISR optical depth calculations are omitted. MISR uses four cameras and the time correlated datasets

to compute both the Aerosol Optical Depth (AOD) and water column present in each pixel. The pixel

level values are recorded in data level 3 products on the NASA server. MISR aggregates values across an

area approximately 1.1 km by 1.1 km to perform mixture analysis. The level 3 readings of AOD across 4

wavelengths observed for each pixel could be caused by a variety of aerosol compositions. The satellite

is programmed by NASA to check the AOD against models using Mie Theory equations for a set of

assumed aerosol composition models. The composition with best fit to the data across the 1.1 km

square region is provided to the level 2 dataset MIL2ASAE. For the determination of aerosol types in

each observation period, this research selected the file RegLowestResidMixture from the MIL2ASAE

product. Once the mixture has been selected, the AOD calculations at each of the four wavelengths

provided by MISR will exhibit a degree of error from one another.

For the purposes of data self-consistency, all atmospheric observations in this research were made using

the camera observations at wavelength 558 nm since it is closest to solar peak irradiance and therefore

subject to the least overall error and is given the highest weighting by NASA's calculations[83]. For each

aerosol in the mixture composition models, NASA's dataset provides the specific effective radius (reff)

and cross-sectional absorption coefficient (-). For this research, data from the MIL2ASAE dataset was

processed using Matlab 2014a The code translates readings into column average volume mass loading

of aerosols within a 30 nautical mile radius of each airport and was developed as a part of this study.

Aerosol optical depth is translated into column volume mass loading (VL) by the following equation:
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Equation 8 VLj = 4 r * re AOD3 * A f

where fi represents the volume based fraction for the individual aerosol in the composition model of

best fit, and VL is calculated for each aerosol present in the mixture. Although MISR has the functionality

for 21 aerosol definitions, a total of 8 aerosol definitions were in use by the NASA models at the time of

this research as given in Table 10. Volume Mass Loading may be extended to the more conventional

Mass Loading by the particle density. This conversion of units is an unnecessary step since the nature of

the current study is to assign a variable coefficient to each term and therefore further in regard to

aerosol effects is based on the use of Column Average Volume Mass Loading in units of ptm.

Table 10: Aerosol types modeled by NASA MISR

Aerosol Code Type Size (pm) Expected Composition
1 nonabsorbing 0.06 sulfate/organic
2 nonabsorbing 0.12 sulfate/organic
3 nonabsorbing 0.26 sulfate/organic
6 nonabsorbing 2.8 salt/organic
8 absorbing 0.12 sulfate/organic (ssagreen.9)
14 absorbing 0.12 sulfate/organic (ssagreen.8)
19 grains 0.75 model dust
21 spheroidal 2.4 mode2 dust

Relative humidity and dew point are also derived from the MIL2ASAE dataset using the atmospheric

reference data from TASC. All calculations are made at the 1.1 km square level provided by MIL2ASAE

dataset and then aggregated further to the airport level to a single set of values for each airport. The

central latitude and longitude of each airport is acquired and used to filter the MIL2ASAE dataset[84]. All

observations are grouped by orbit and airport to yield the average volume mass loading per aerosol type

within a 30 nm radius. Standard commercial aircraft approach airports through the top of the Class B

airspace which has a height of 10,000 feet and a maximum radius of 30 nm[85]. NASA MISR calculations

assume full extinction of measured aerosols above 10,000 feet for all categories; therefore a 30 nm

radius is established around each airport as the data collection region.

The ground track of TERRA repeats every 233 orbits or approximately 16 days, with an orbital period of

98.8 minutes. The ground track area is designed for minimal equatorial overlap, so that most equatorial

cities are observed in either a single track or two tracks providing atmospheric data for equatorial
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airports every 16 days or more frequently in some cases. Polar locations are observed by every track,

and cities above tropic zones are commonly observed in more than one of the orbital paths.

Correlation Matrix of Primary Factors
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