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Doctor of Philosophy in Economics

Abstract

This dissertation consists of three chapters. Chapter 1 proposes a new method to solve
the many moment problem: in Generalized Method of Moments (GMM), when the num-
ber of moment conditions is comparable to or larger than the sample size, the traditional
methods lead to biased estimators. We propose a LASSO based selection procedure in
order to choose the informative moments and then, using the selected moments, conduct
optimal GMM. My method can significantly reduce the bias of the optimal GMM esti-
mator while retaining most of the information in the full set of moments. We establish
theoretical asymptotics of the LASSO and post-LASSO estimators. The formulation
of LASSO is a convex optimization problem and thus the computational cost is low
compared to all existing alternative moment selection procedures. We propose penalty
terms using data-driven methods, of which the calculation is carried out by a non-trivial
adaptive algorithm.

In Chapter 2, we consider partially identified models with many inequalities. Under
such circumstances, existing inference procedures may break down asymptotically and
are computationally difficult to conduct. We first propose a combinatorial method to
select the informative inequalities in the Core Determining Class problem, in which a
large set of linear inequalities are generated from a bipartite graph. Our method selects
the set of irredudant inequalities and outperforms all existing methods in shrinking the
number of inequalities and computational speed. We further consider a more general
problem with many linear inequalities. We propose an inequality selection method sim-
ilar to the Dantzig selector. We establish theoretical results of such a selection method
under our sparsity assumptions.

Chapter 3 proposes an innovative way of reporting results in empirical analysis of
economic data. Instead of reporting the Average Partial Effect, we propose to report
multiple effects sorted in increasing order, as an alternative and more complete summary
measure of the heterogeneity in the model. We established asymptotics and inference
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for such a procedure via functional delta method. Numerical examples and an empirical
application to female labor supply using data from the 1980 U.S. Census illustrate the
performance of our methods in finite samples.

Thesis Supervisor: Victor Chernozhukov
Title: Professor of Economics

Thesis Supervisor: Jerry Hausman
Title: Professor of Economics
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Chapter 1

Selecting Informative Moments via

LASSO

1.1 Introduction

The optimal two-step GMM estimator has been widely used in economic applications.

It is quite common to have an application with a large number of moment restrictions

that can be used for estimation and inference. For example, a conditional moment

restriction provides an infinite number of potential unconditional moments by allowing

the use of different functions of the conditioning variable as instruments. However,
applying an efficient GMM estimator to many moment conditions typically results in

biased estimators and poor accuracy of confidence sets. Hansen, Hausman, Newey (2006)

shows that the presence of many valid instrumental variables (IV later) may improve

efficiency, but the inference procedure becomes inaccurate due to second order bias. If

the number of moments exceeds the sample size, then an efficient GMM estimator does

not exist at all. The problem with many moments arises from the efficient GMM's need

for the optimal weighting matrix, which is an inverse of a large dimensional random

matrix. The ill-posedeness of the inversion problem leads to poor performance of the

optimal GMM estimator. However, simply throwing out over-identified moments is

undesirable due to efficiency losses.
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The main goal of this paper is to improve the GMM procedure by selecting informa-

tive moment conditions from a large set of available moments. The selection procedure

proposed in this paper utilizes the basic spirit of regression-LASSO, using the L1 penalty

to find a nearly optimal combination of moment conditions. The goal is to select mo-

ments without loss of asymptotic efficiency but that will guarantee the accurate coverage

property of post selection inferences.

The main assumption needed to ensure the validity of the suggested procedure is

approximate sparsity. The exact sparsity assumption means that all but a relatively

small (though increasing with the sample size) number of moments is absolutely unin-

formative about the parameter we are trying to estimate. Approximate sparsity weakens

this condition by allowing all moments to have some information about the parameter

of interest but, in fact, the majority of moments has so little informational content that

no loss of asymptotic efficiency occurs from not using those moments. The number and

identity of truly informative moments are unknown, but we need to impose bounds on

the growth rate of the number of informative moments requiring that it be much smaller

than the sample size.

The LASSO method proposed in this paper could be viewed as a complementary

method to the traditional methods for the many moments problem. We provide a de-

scription of the convergence rate properties of such a selection mechanism. As we prove,

under the approximate sparsity assumption together with other technical conditions,

the LASSO-based estimators are asymptotically efficient. Our estimators have much

less second order bias for valid inference when compared to the optimal GMM estimator

and different versions of bias-corrected estimators. Our method also has low compu-

tational cost and is easy to implement in practice as an optimization problem with a

globally convex function and L1 penalty.

One of main challenges we face in this paper is the selection of the appropriate

penalty terms that would guarantee the efficient performance of the LASSO-selection

procedure. We derive theoretical penalty terms that guarantee the asymptotic behavior

of post-LASSO estimators and develop a feasible version of those penalties. We adopt

a modest deviation theory of self-normalized vectors to construct data-driven penalty

terms which is based on the relatively novel results stated in De La Puna, Lai and Shao
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(2008) and Jing, Shao and Wang (2003). Our method also requires the use of an adaptive

penalty. Similar procedures are considered in Zou (2006), Huang, Ma and Zhang (2008)

and Buehlmann, Van der Geer and Zhou (2011). We propose computationally tractable

iterative algorithms that implement the LASSO method proposed in this paper.

In Monte-Carlo examples, we compare the performance of our method to that of the

traditional GMM and CUE when the number of moments is comparable to the sample

size. We also present the performance of our method when the number of moments

is larger than the sample size. We show that in both situations, the LASSO based

estimators are more efficient than both GMM and CUE and result in less bias as well.

The paper closest in flavor of this paper is Belloni, Chen, Chernozhukov and Hansen

(2012) (later BCCH), which considers a linear IV model with many instruments and

selects the informative instruments via a LASSO selection procedure applied in the first

stage regression. This paper relies heavily on an approximate sparsity assumption which

means that the large set of available instruments contains only a few truly informative

ones. The linear structure of the optimal instruments in the first step regression is

important in their analysis, while our method does not rely on it. This paper can be

considered a direct generalization of traditional regression-LASSO and the optimal IV

method proposed in BCCH.

The performance of our procedure is derived based on many results in the LASSO

literature and related fields. For the theoretical performance of LASSO, see, for exam-

ple, Bickel, Ritov and Tsybakov (2009), Belloni and Chernozhukov (2012), Tibshirani

(1996), Zhang and Huang (2008). For performance of post-LASSO, see also Belloni and

Chernozhukov (2012).

There are also alternative approaches to selecting informative moments. Donald,
Imbens and Newey (2008) considers choosing the optimal set of moments via minimizing

asymptotic mean-squared-error criteria. Their method is convenient to judge which of

two sets of moments is better in terms of smaller asymptotic MSE, however, it is not

computationally feasible for selecting the "best model" from a large set of potential sets of

moment conditions. Shi (2013) considers a novel "relaxed empirical likelihood" estimator

that the number of moments are allowed to increase with speed O(exp(n1)), where n is
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the sample size. Our method relaxes this constraint to O(exp(ni-)) when the number of

truly informative moments increases slowly enough along with other technical conditions.

The estimator proposed in Shi (2013) is also more difficult to compute compared to our

method.

As alternatives to the selection approaches in the work mentioned above, there are

many methods for correcting second order bias of two-stage GMM with many moments.

In the instrumental variables setting, it is well known that LIML and Fuller estimators

are robust to the many IV problem. Under GMM, LIML-like estimators, such as CUE

proposed in Hansen (1996) and GEL proposed in Imbens (2002), are also robust to the

many moments problem. However, the validity of these estimators holds only under

the assumption that the number of moment conditions grows at a fractional polynomial

rate of the sample size. In contrast to that, our approach allows the number of moment

conditions to exceed the sample size. Other studies such as Chao and Swanson (2005),

Han and Phillips (2006), Hansen, Hausman and Newey (2008), Chao, Swanson, Hansen,

Newey and Woutersen (2012) propose bias-correction methods for many IV problems in

different settings.

Another approach to the many moments problem is to acknowledge that the usual

variance of GMM estimators seems to be small and produces low coverage in practice.

Bekker (1994) proposes a standard deviation robust to the many IV case when the

distribution of the residual is normal. Newey and Windjimejer (2009) proposes a variance

robust to many moments for the GEL estimator. But again the working assumption of

these papers is that the number of moments is growing at most at a fractional polynomial

rate of the sample size.

We outline this paper as follows: Section 1.1 introduces the basic settings. Section 1.2

proposes a LASSO method for selecting the informative moments. Section 1.3 presents

high level assumptions and theoretical results of the LASSO and post-LASSO estimators.

Section 1.4 discusses the validity of preliminary high-level conditions as stated in Section

1.3. Section 1.5 includes Monte-Carlo examples to illustrate the performance of our

selection procedure. Section 1.6 concludes the paper.

In the paper we will use the following notations: Let 11 - 12 be the (Euclidean) L 2
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norm of any real vector with any length. Similarly, let I -I 1 and II -I I be the L 1 norm

and L, norm of a real vector. Let I -o be the Lo norm of a real vector, i.e., the number

of non-zero components of the vector.

1.2 Setting

Let us begin with a set of moment conditions

IE[g(Z, 3o)] = 0, j = 1,..,m (1.2.1)

that holds uniquely for the true d-dimensional parameter /30 which lies in the interior

of the compact parameter space D. In this paper we treat the dimension d as fixed.

Assume we have data Zi, i = 1, 2, ... , Ti consisting of independent observations. Let

g(Zf ) = (gi(Z, ) 92(Z, 1), gm(Z, #))'.

The main interest of this paper is to explore a situation that arises when the number

of moment conditions m is large or may even exceed the sample size n. We will allow the

number of moments m, to increase with n, but we drop the index in order to simplify

the notation. The setting with many moment conditions often arise in applications and

is very important in empirical practice. Below are the two such examples.

Example 1 (conditional moment restrictions) Suppose the model is described by

conditional moment restriction E [g(x, f#o) z] = 0, where /#o is the true parameter. Then

the following set of unconditional moments holds: E[g(x, /o)f(z)] = 0, where f(z) can

be any set of transformations of z such as polynomials, triangular series, splines and so

on. In principle, there are an infinitely many number of moment conditions that can be

formed. Newey (1989) discusses the optimal moment conditions under in this setting.

Example 2 (panel data) Suppose E[yi,tyi't 1 , ... , yi,O] = ai + foyj,t_, 1 i < n, 1 (

t < T. Denote Ayi,t = yi,t - yi,t-1. One can form the following moment conditions for
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any transformation f(.):

E[Ayit - o(Ayg._j)f(yi,,)] = 0, 1 s t I - 2,

E[(yi,T - #Oy,T_1)f(AYi,s - o0Ayi,s_1)] = 0, 1 < s ( T - 1.

Denote E., as the empirical average operator. Let CW be a in x m semi-positive

definite matrix. The GMM estimator is defined as:

f3GMA := argmin3En[g(Z, 0)]'WIEn[g(Z, /3)].

The two-step efficient GMM is the typical method used to obtain efficient estimates

within a GMM framework. In two-step efficient GMM, the critical step is to consistently

estimate the variance-covariance matrix of the residual Qo := E[g(Z, 13o)g(Z, f3o)']. We

can estimate the Qo by the following plugged in estimator1 :

n : = En [g (Z, ) g(Z, )'],.

where / is a preliminary consistent estimator of 130. If Q is a consistent positive definite

estimator of Qo, then the two-step GMM estimator, OTGAIAI, can be defined as:

TGIIAA := argmi'n0E,[g(Z, 0)]'Q-11En[g(Z, /)].

In general the preliminary estimator 13 must be consistent but does not need to be V/n

consistent. We can obtain the preliminary estimator using the first d moment conditions

by setting E,[gj(Z, 3)] 0, 1 s j ( d. Or similarly, one is free to select a set of moment

conditions (containing at least d moments) which the researcher thinks is important.

Throughout the paper, the following general assumption on a preliminary estimator /
will be made:

Assumption C.1 (Convergence of 3) There exists an priori estimator / of/3o and

'In this paper I consider i.i.d. data. For serially correlated data, the f can be estimated by the
Newey-West estimator, which is semi-positive definite. The logic presented in this paper can be carried
over to serially correlated data with more careful attention to detail. I leave the case of serially correlated
data as a topic for future research.
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a constant 1 ; p > 0, such that

IIW - 00112 = Op (n-P) . (1.2.2)

The traditional two-step efficient GMM typically has large bias when the number of

moments m is large compared to the sample size n. Newey, Donald and Imbens (2008)

provides a decomposition of the asymptotic second order bias, which can grow with

the number of moments. The main source of such bias arises from poor accuracy of

the estimation of Q when the size of this matrix grows. If m grows fast enough, then

estimator Q may even be inconsistent. The high level of uncertainty in the estimation of

Qo causes the instability of the inverse matrix, 2-1, due to the "ill-posedness" problem,
as the smallest eigenvalue of Q can be very close to 0. If one has more moment conditions

than available observations (m > n), the two-step efficient GMM is not well defined since

Q is not invertible. Thus the main challenge to the behavior of the efficient two-step

GMM comes from the estimation of the optimal weighting matrix Q.

This paper examines at the problem from a different perspective. Rather than esti-

mating and inverting Q, we are searching for an optimal linear combination of moments

that would be the most informative about the parameter 3, or equivalently, the optimal

combination matrix suggested in Hansen (1982). Hansen (1982) shows that if m is fixed,
the m x d optimal combination matrix %o 1 Go (o) can generate an efficient estimator of

/o by estimating the just identified system of equations:

Go(0o)'Qo-1En[g(Z, 3c)I = 0, (1.2.3)

where Go(3) := E[& ] is the gradient matrix of E[g(Z. 3)]. Since the above equation

is asymptotically equivalent to the first order condition of the two-step efficient GMM

for fixed m and growing n, the estimator /c is efficient and first order equivalent to

the optimal two-step GMM estimator NTGMM- One way to interpret this result is that

the two-step efficient GMM procedure tries to find the optimal combination of moment

conditions.

In general, estimating the m x d optimal combination matrix Qo 'Go(o) is easier and
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more accurate than estimating the optimal weighting matrix Q0-, especially when m is

large. The number of elements in the optimal combination matrix remains very large to

allow for effective estimation. In this paper we make an assumption on the approximate

sparsity of such a matrix, which means that a small number of moment conditions (with

unknown indices) contains most of the information about the unknown parameter 3

contained in the full set of moments. The number of very informative moments, so, is

unknown and may increase with the sample size but much more slowly than the total

number of moments. The sparsity assumption is stated and discussed in detail in Section

1.3.

Given the sparsity assumption on the optimal combination matrix, the main task

solved by the paper consists of selecting the informative moments. This task is best

performed by employing a special form of the LASSO estimation for the optimal com-

bination matrix that has been adapted to the presence of a poorly invertible covariance

matrix. Previously, the LASSO method has been applied to the selection of informa-

tive instruments in instrumental variable regression with many potential instruments

by BCCH. This paper generalizes this selection idea to a non-linear GMM setting with

many moment conditions.

The assumption below allows us to linearize the set of moment conditions even when

the number of moments is large. The linear approximation of generally non-linear mo-

ments is an important preliminary step in our analysis.

Assumption C.2 [Regularity conditions on g and G] Suppose the domain of 13 is a

compact set E C Rd and the true parameter 0o lies in the interior of e. There exist an

absolute constant K and constants Km,,, KG,, and KB,, depending on n only, such that

with probability converging to 1 the following statements hold:

(1) There exists a positive measurable function KM(Z) which does not depend on n

such that for any 0 and 13' in 0, maxl.jx.|g3(Z, /) - g1(Z, 3')| KM(Z)||/ - /'f|2.

E[Km(Z)] < K and max1 xigj KM(Z2 ) K ;

(2) There exists a positive measurable function KM(Z) which does not depend on n

such that for any / and /3' in 0, max1,| < (Z,/3V - ( Z. /')||2 < KG (Z||/ - /'|2.

E[KG(Z)] < K and max1,-i. KG(Z) < KG,n;
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(3) maxisjsmEn[Igj(Z, 3o) 2 ] < K, maxitm E[Igj(Z,3o)] K.

W4) max1 j ,nm, 1i I agj (Zi, #0)| I< KB,n-

(5) Go(/o)'Q0 1E[g(Z, /)] 0 holds uniquely for / = 3o in E. For any { > 0, there

exists r|> 0 which does not depend on n and m such that for any 3 with 113 -30112> ,

I|IGo (0o)'Q0 'E [g (Z, #)|2 > .

Assumption C.2 puts restrictions on the smoothness of the moment conditions. Con-

stants KG,n, KM,, and KB,n typically increase with n as the number of moment con-

ditions is growing. The constraints on the speed with which they increase is stated in

the Section 1.5. Under the conditions described in the Section 5, statement (3) of As-

sumption C.2 is implied by statement (4) if KB,n grows slowly enough. Statement (5)

guarantees identification and consistency of the GMM estimator.

In addition, we assume here that the information in the full set of moment conditions

is limited and in particular the super-consistent estimators of / are ruled out. This

assumption below also rules out the weak identification problem. This assumption is

generally true for conditional moment restriction settings.

Assumption C.3 (Limited Information) Assume the maximal and minimum eigen-

values of

Go(o)'Qo 'Go (3o) are bounded away from below and above by absolute constants.

1.3 LASSO and Sparsity

1.3.1 Formulation of LASSO estimation

The main task of this paper is to estimate the optimal combination matrix %1 Go 0 (o).

Let Id be the identity matrix of dimension d x d and let el be the 1th column of Id, 1 1 (

d. To estimate the m x d optimal combination matrix Q& 1GO (0o), it suffices to estimate
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Q0 Go(3o)ei for all 1 < 1 < d. Let us fix the vector v and estimate A*(v) := QO&Go(3o)v,

or we simply write A* for notational convenience when there is no confusion.

Let us define the estimator for A* as the solution to the following minimization

problem P:
1 m

P : min A'QA - A'GO)v + 3-JAj-y, (1.3.1)
x2=n

where C(#3) E,[2(Z,#)], '> > 0 is the moment-specific penalty loading for the jth

moment condition, 1 < j < m, and t > 0 is the uniform penalty loading. 2

The problem P consists of two components: the objective function Q(A) := !A'nA -2

G()v and the penalty Z _l 'LAj-' 3I. If Q is invertible, the minimizer of the objective

function Q(A) alone is Q- 1 G(4)v, which can serve as a good estimator of A* when the

number of moments is fixed. The penalty terms t and 'Yj, 1 j m. should be chosen

in such a way that small coefficients in A* shrink to 0, and large coefficients remain

non-zero. Thus, the solution to the minimization problem with the appropriate penalty,

A, has non-zero coefficients only for the moments which contain significant information

on the unknown parameter 0. Hence, P can be interpreted as a moment selection

mechanism.

The minimization problem P also has a computational advantage compared to other

methods such as the moment selection mechanism proposed in Donald, Imbens and

Newey (2008). The objective function Q(A) is convex, and the penalty function E', JIAj' ,I
is strictly convex. Thus, the solution to the problem P is unique. The minimization

2 Economists may have primitive information (which could come from either economic models or
intuition) that a subset of moments should always be included in a GMM model. In practice we can
assume that there are two sets of moment conditions. The first set, the baseline group, contains moment
conditions with indices 1, 2, ... , B. The second set, the additional group, contains moment conditions
with indices B+1,..., m. The baseline group is assumed to be economically important, and therefore, this
group of moment conditions always needs to be considered. To avoid excluding any moment conditions
in the baseline group, the selection mechanism P can be modified as follows:

1 M t
P1 : min -A'f2A-A'Ov+ -1fyjI.

j=B+1

In this paper, we focus on the analysis of P. All results for P can be carried over to P1 under exactly

the same conditions.
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procedure can be performed with any convex minimization algorithms like the Shoot-

ing algorithm, for example. These algorithms typically converge in O(m log(m)) time,

compared to O(2"1) as proposed in Donald, Imbens and Newey (2008).

The selection procedure P described in equation (1.3.1) is a generalization of the

first stage IV selection procedure proposed in BCCH for homoskedastic models.

Example 3 (Many IV) Assume we observe data from a linear IV model:

Y = X/3 +Wy U,

X=Zn+V,

with d-dimensional regressor X, m-dimensional instruments Z, and homoskedastic error

term U. BCCH (2012) considers the following LASSO approach applied to the first stage

regression:

min En[(XI - Zn1 ) 2 ] +1 Ijyi'|. (1.3.2)
HI j=1

In the above equation, t is the uniform penalty and ~1qj is the moment specific penalty for

the endogenous variable X1, 1 < 1 < d.

If we rewrite this within the GMM framework, the moment conditions are E[Z'(Y -

X13)] = 0. Consequently, G(j3) = EZ'X, Go(o) := E[Z'X], and Qo = E[Z'UU'Z] =

a7E[Z'Z]. Let Q := &2 E[Z'Z], where &2 > 0 is an estimator of o-2. Then, the selection

mechanism P for A*(ei) can be written as:

1 & T t
min &A'En[Z'Z]A - A'En[Z'Xl] +E -Ay 3 '1. (1.3.3)

A 2~ u n=1

If ~y= 1 'yj then optimization problems (1.3.2) and (1.3.3) are equivalent, in particular,

Hi= A.

Furthermore, the formulation of P also includes the OLS regression with LASSO

penalties:
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Example 4 (Regression LASSO) Suppose we have the OLS equation Y = X + c.

The regression LASSO is:

22t
min En[(Y - X)2] + t-01. (1.3.4)

p n

If -j = 1 for all j, problem P is identical to the regression LASSO in equation (1.3.4),

since = En[X'X] and G(3)v := En[XY].

In this paper we investigate the performance of two estimators, the LASSO estimator

/3 and the post-LASSO estimator 3PL, which are defined below. Let A(l) be the solution

of the optimization problem P for A* (el), iT be the set of indices of non-zero components

of A(l), T = UjL1 T1 and gt(Z, /) be the vector containing only moments with indices in

T. Define

#L = argminoeD 13 (A(l)'En[g(Z, 0)])2

PL = argmin,,,DEngp(Z, T]'1 E,,[gj (Z, #)]

where i = En [g(Z, /3)gjp(Z, 3)'].

When the informative moment conditions are rare among a full set of moments, the

LASSO estimator /L and the post-LASSO estimator /PL are expected to perform well

under the sparsity assumptions proposed in the next subsection. These two estimators

are less biased compared to two-step efficient GMM simply because much significantly

fewer moments are used in the second step of the estimation procedure, and these es-

timators are nearly efficient since the most informative moments are preserved by the

selection mechanism.

1.3.2 Sparsity Assumption

The LASSO approach performs extremely well under certain sparsity assumptions on the

high-dimensional parameter, as shown in Belloni and Chernozhukov (2011a), (2011b),

Belloni, Chernozhukov and Hansen (2012), BCCH (2012) and Bickel et al. (2008). Sim-
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ilarly, we propose the following approximate sparsity assumption which adapts specif-

ically to the analysis under a GMM framework. We begin with an exact sparsity as-

sumption which rarely holds in practice but provides additional theoretical properties

to the selection procedure. Then we show how this assumption may be weakened. Let

us now fix v c Rd, IHvI|2 = 1, and consider the combination vector A* := 1 Go(3o)v.

Assumption C.4 (Sparse Combination Matrix) Denote s, := IA*o to be the num-

ber of non-zero components of A*.

(1) Sn = 0(n);

(2) there exists a generic constant Ki such that I A*|| 1 < K 1 .

The exact sparsity assumption imposes the restriction that most of the elements of

A* must be zero, though their indices are unknown. The number of non-zero coefficients,

sn, is also assumed to be unknown to the researcher. Our results will typically impose

rate restrictions on sn allowing it to increase, but not too quickly. If the exact sparsity

condition holds, then by choosing the correct penalties t and -y, the selection procedure P

will possess the oracle property, i.e., the identity of non-zero coefficients in A is recovered

with probability going to 1. Such an oracle property has been discussed previously in

the LASSO literature under exact sparsity conditions, for example, Bunea et al. (2007)

Zou (2006). We discuss the oracle property of P in Section 1.4.

Typically, the exact sparsity assumption is too strong to be relevant to most applica-

tions, so a much weaker assumption is used to achieve the main results about the good

performance of LASSO and post-LASSO estimators.

Assumption C.5 (Approximate Sparse Combination Matrix) Suppose there ex-

ist absolute positive constants K', K' and Kr and a non-stochastic m x 1 vector I such

that:

(1) |AIlo = s,, = o(n).

(2) KA < ||Il1 < Ki.

(3) I - A* I1 = o log(mvn)
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Assumption C.5 applied d times to V = ei, e2 , ... , ed implies that the optimal com-

bination matrix QU1 Go (30o) can be approximated by a matrix with only a few non-zero

components. In statement (3), the quality of the approximation is measured by a bound

on L1 distance between A* and . The true vector \* may not even have zero coefficients

at all, but its elements should shrink quickly enough, as we described in the example

below.

Example 5 Let At') be the Jth largest (in absolute value) component of . Assume

that the absolute values of all components of A* are different, and |AU | ( 1 -q) where

q > i. Assume also that max,<jrm E[I (Zi,3)12] K0 , with K being an absolute

constant. Then A* is approximately sparse with s, = [n 2]. The approximating vector

A can be chosen as

Aj = A fA* _>_)}*

The approximate sparsity assumption C.5 implies no super consistency of the as-

sumption C.3 under mild regularity conditions.

Lemma 1 Suppose the assumption C.5 holds for v = el for I = 1, ... , d. Assume there

exists an absolute constant Ko such that maxl<jm .E[| (Zi, 0)1|2] < K0. Then if m

grows at rate mr = O(exp(n)), the full set of moments does not have superconsistency,

i.e., the maximal eigenvalue of G0 (/30 )'Q 1 G0 ( 0 o) is bounded from above.

1.4 Main Results

In this section, we establish our main results by employing three high level assumptions

that are often used in LASSO analysis. In the next section we discuss what primitive

assumptions imply the validity of these high level conditions.

The inversion of matrix Q may be an undesirable estimator (if it exists) of Qo',

however, the inversion of diagonal submatrices with size s x s of ( can be stable when

s is small compared to n. Recall that for any 6 E R", 11611o is the number of non-zero
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components of 6. For a semi-positive definite matrix M, we define , and # as lower and

upper bounds of eigenvalues of all diagonal submatrices of size, at most, s x s:

Definition 1.4.1 For any positive real number s ; 1 and a m x m semi-positive definite

matrix M, define K(s, M) and 0(s, M) as:

K(s, M) := min (14.1)
6ER m ,JJ6I0o| s,6: 116112

6'M6(14)

#(s, M) max 1161. (1.4.2)

Assumption C.6 (Eigenvalues of sub-matrices) There exist constants 0 s K

K2 such that with probability increasing to one as the sample size grows we have

r,1i (I og (n) s,, ) #(og (n) s,, Q) < K2.

The high level assumption C.6 allows us to robustly invert any diagonal, square,
sub-matrix of Q of size at most O(sn) that grows more slowly than n. This will be

the key assumption that will guarantee the good asymptotic behavior of LASSO and

post-LASSO estimators. The validity of Assumption C.6 essentially depends on the

growing speed of sequence KB,n as defined in Assumption C.2 and on the accuracy of

the preliminary estimator 3. Section 1.5.1 discusses the primitive conditions necessary

for Assumption C.6 to hold.

Recall that the moment selection problem P as stated in (3.1.3.1) consists of two

components: the objective function !A'(2A-A'G(3)v and the penalty term E'l | - .

Let us define the score function S(A) as the derivative of the objective function, i.e.,

S(A) = QA - G(/)v.

The second high-level assumption needed to analyze the performance of LASSO is

that the score function evaluated at \ is dominated by the vector of the penalties.
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Assumption C.7 (Dominance of Penalty) For a given sequence of positive num-

bers an converging to zero we have

P (max 1 - an, (1.4.3)
1(jsm 7j n

where S(A)j is the I t h entry of S(A).

Assumption C.7 guarantees that the penalty is harsh enough and thus a relatively

small number of moments will be chosen by the LASSO selection procedure. The validity

of Assumption C.7 is guaranteed by the proper choice of penalties t and 7j. The choice

of these penalties is discussed in Sections 1.5.2 and 1.5.3, where a feasible procedure for

choosing penalties is put forward. Let e be an absolute positive constant all throughout

the remainder of this paper. 3 For a given vector v, the traditional choice of t is t =

(1 + c) n1b-1(1 - {"). When t = (1 + c) n I-'(1 _ 2 nd), the dominance condition

stated in Assumption C.7 can hold uniformly for 7' = CI, .. , ed with probability at least

1 - an, which means that we can put an additional supremum over 1 = 1, ... , d inside the

probability in equation (1.4.3).

Assumption C.8 (Bounded Penalty) There exist absolute, positive constants a and

b such that a < minlj;m j - maxlx, m y3 G b with probability increasing to one.

With the three high level assumptions C.6-C.8 stated above, we are now able to derive

the main results on the performance of the LASSO estimator /L and the post-LASSO

estimator 3PL. For any 6 (E R", define the semi-norm 116112,n := 6'A6.

Theorem 1 (LASSO estimator of 3) Consider optimization problems P for v

e, = 1,.., d. Let A(l) be the solution to the problem of estimating A(l), which is a

sparse approximation of A*(l) = %0iGo(o)ei. Suppose Assumptions C.1-C.3 and C.5-

C.8 holdfor all v = e1 ,..,ed with t = (1+c) 21(1 d - ), an -+0 and man -+ oc.

Additionally we require that Assumption C.7 holds uniformly for v = e1 , e2. ..., Cd.

3The traditional recommendation (e.g. BCCH (2012)) of the value E is 0.1.
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Then there exists an absolute constant KA and a sequence c, -+ 0 such that with

probability at least 1 - a - (-,, the following statements are true:

su og (da)
maxIIA(l) - A(l)112,. KA s "o , (1.4.4)
I I gd Ti

and

max IA(l) - A(l)I snlog( a n (1.4.5)
1<l<d n

If, in addition, we have s (KAI,n v KB,n) 2log(m) o(n), where KM,n and KB,,, are

constants as defined in Assumption C.2, then the LASSO estimator )L has the following

rate

11 1L - 00 12 = Op VIn s no~m (1.4.6)

Furthermore, if s2 log(m) 2 = o(r'), the estimator L is asymptotically normal:

(L - !3o) -+d N(0, (Go(/3o)'Q0-Go(/3o))- 1). (1.4.7)

Theorem 1 considers the case of approximate sparsity, that is, when only several (sn)

moment conditions are truly informative, while at the same time many coefficients in

the optimal combination matrix may be non-zero. The LASSO selection procedure tries

to estimate approximate combination vectors A(l) for 1 = 1, ... , d rather than optimal

combinations A*(l). Equations (1.4.4) and (1.4.5) state the accuracy with which this

estimation occurs in L1 metric and the semi-norm 11 - 1|2,n correspondingly. Since the

dimensionality of vectors, m, is increasing to infinity, these metrics are different. The

two terms on the right hand side of statement (1.4.6) provide rates for the LASSO

estimator. The first of them corresponds to the variance, while the second relates to

the bias. The bias of the LASSO estimator arises from the inversion of matrices of size

O(sn) and correlation between A(l) and the residual En[g(Zi, p3o)]. Statement (1.4.7) is
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obtained if the bias term is stochastically dominated by the uncertainty of the LASSO

estimator. It is important to notice that according to statement (1.4.7) the LASSO

estimator is asymptotically efficient, even though we have effectively eliminated nearly

uninformative moments.

Set T = UfL1 T serves as a moment selector, where t, is the set of indices of non-zero

components of A(l). Denote To,, as the set of indices of non-zero components of A(l)
and To U=_ 1To,,. The post-LASSO estimator simply deletes moment conditions with

indices outside I and performs the two-step efficient GMM on selected moments only.

Lemma 2 below shows that I is a suitable estimator of the set To under similar regularity

conditions as stated in Theorem 1. In particular T has Op(sn) elements and, if all the

non-zero elements of A are large enough, then we are able to uncover all those elements

asymptotically.

Lemma 2 (Selector I) Suppose Assumptions C.1-C.3 and C.5- C.8 hold for all v

e1 , ... ,ed with t = (1 + E) n1b- 1(1 - 2d), an -+ 0 and macn - oc. Additionally we

require that Assumption C.7 holds uniformly for v = e1 , e2,..., ed. If 8 log(M) 0, then

there exists a sequence E, -+ 0 such that with probility at least 1 - an - En,

(1) |I = O(sn).

(2) m,1ogm -+ oc, then To c.

Theorem 2 (post-LASSO estimator of 3) Suppose Assumptions C.1-C.3 and C.5-

C.8 hold for all v = e1,.., ed with t = (1+ E) n4- 1 (1 -2d), an, 0 and mcan - oo.

Additionally we require that Assumption C.7 holds uniformly for v = e1 , e2 , ... , ed. If

1; 2log(n) (KG,,VKM,n )
2 -+ 0, then there exists a sequence En-+ 0 such that with probability

at least 1 - a - En,
1sn log(m)

|1/3PL - 30112 = (1 Vs. n

Furthermore, if s2 log(m) 2 (Ky V KB,n )
2 = o(n), the estimator fPL is asymptotically

normal:

v'ii(PL - 00) d N(0, (G'QG)- 1).
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The rates and asymptotic properties of the post-LASSO estimator stated in Theorem

2 are identical to those of the LASSO estimator stated in Theorem 1. However, it is

reasonable to expect that the post-LASSO estimator has better finite sample perfor-

mance. If the exact sparsity assumption C.4 is true, then we obtain a stronger result

often referred as the Oracle Property, which means that the post-LASSO estimator

obeys asymptotics as if the true model were being used for estimation. Therefore, the

post-LASSO estimator may achieve asymptotic normality under weaker restrictions on

the rate of s,.

Corollary 1 (Oracle Property under Exact Sparsity) Suppose Assumptions C.1-

C.4 and C.6-C.8 hold for all v = e1 ,..., e with t = (1 + c)rnD-1(1 - 2md), a, --+ 0

and man - o. We additionally require that Assumption C. 7 holds uniformly for v =

ee2, ... , e. If A T -+ o and s. log(m)(Km,n V KB,n 2

post Selection estimator I3 PL is asymptotically normal:

v/ii(PL - 0) -d N(0, (G'% G)-1).

1.5 Primitive Conditions for Assumptions C.6-C.8

1.5.1 Primitive Conditions for Assumption C.6

Assumption C.6 places restrictions on eigenvalues of any diagonal submatrices of Q2

En [g(Zi, )g(Zi, 13)'] of size at most sn log(n). The validity of this assumption hinges

heavily on two statements. First, we need a similar property to hold for the empirical

covariance matrix no = En [g(Zi, /o)g(Zj, /3o)'] evaluated at the true /o rather than the

preliminary estimated 3. Second, we need the difference between ( and Ao to be small

enough.

Assumption C.9 (Eigenvalues of submatrices of Qo) There exist positive constants

K1,0 < K2 ,0 such that with probability increasing to one, 1,o < '(sn log(n), Qo) <

q(sn log(n), Qo) , K2,o.
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Assumptions similar to Assumption 9 are common in the LASSO literature. For example,

in an OLS-LASSO with model Y = X3+u, Qo = En[X'X]. Tibshirani (1990) makes the

assumption that eigenvalues of diagonal sub-matrices of E, [X'X] has rate similar to that

stated in Assumption C.9. In IV-LASSO with model Y = X0 + u and X = ZI + v,

Qo = E4[Z'Z]. BCCH makes the assumption that E,[Z'Z] satisfies Assumption C.9.

Belloni and Chernozhukov (2011) constructs preliminary conditions for Assumption C.9

under a Gaussian assumption on g(Zi, Oo). BCCH proves Assumption C.9 by imposing

conditions on the speed of growth of KB,,, a constant defined in Assumption C.2. We

combine the facts stated in the above two papers into Lemma 3:

Lemma 3 (Sufficient condition for Assumption C.9) Suppose there exist positive

absolute constants a1 and a2 such that

a, < tI(su log(n), Qo) < 0(s, log(n), Qo) < a2 .

(1) If KB,sn log2 n log 2 (s' log n) log(m V n) = op(n), then Assumption C.9 holds.

(2) Suppose that g(Z. o) are i.i.d. Gaussian random vectors with mean 0, 1 ( i < n.

Then if sn log(n) log(m) = o(n), Assumption C.9 holds.

Lemma 4 (Primitive conditions for Assumption C.6) Suppose conditions C.1 and

C.2 hold. If 82 1ogn)K -÷' 0 as n goes to infinity, then, $(sn log(n), Q - Qo) -+p 0. If in

addition to that Assumption C.9 holds, then Assumption C.6 holds as well.

1.5.2 Bounds on Score Function

In this subsection we discuss about primitive conditions to satisfy Assumptions C.7 and

C.8. Assumption C.7 requires that the penalty terms -yj, j = 1, 2. ... , m be large enough.

Assumption C.10 (Bounds on Higher Order Moments) Assume there exist ab-

solute constants C1 and C2 such that
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(1) maxisj.m E [gj (Z,, 30)6] < 1

(2) E a Zi, #3) < C2.-

For a given fixed v E Rd, we establish bounds on the score function 5(A). Lemma 5

below suggest one potential choice of penalties which, however, is not feasible in practice.

Lemma 5 (Ideal choice of penalty levels) Suppose Assumptions C.1, C.2, C.5 and

C.10 hold. Let to = n 1(1 - lm-). Assume that a, -4 0 and mca, -+ oc. Assume

that log(m) - 0. Let

: (1 + c)(K,,, + 2KM,,n O1i) < - 1(1.5.1)
4m

2 - 2 -2

+ En Egk(Z,00gi, - [En (Egk(Z00)gj(Zi,#O)k
\k=1 / k=1

+ E 2 9 2 +0 (Q -(A*))

+ n E0 (ibo)V) -En0  (Z1, 3O)v <-1 (1 -f.)

where 1 > c > 0 is an arbitrarily small absolute constant.

Then there exists a sequence En -- 0 such that

P (V/o- max - ()< -to a a (1.5.2)

The penalty y suggested in Lemma 5 is not feasible in practice since we do not have

any knowledge about /o or A or about any bounding constants. These penalty terms

are also complicated to compute. In many situations we can choose seemingly simpler

penalties than the ones suggested in equation (1.5.1).

Corollary 2 (Asymptotic penalty) Assume that all conditions of Lemma 5 hold and,

in addition, ( V 2 -+ 0. Define the following two sets of penalties:in addtionin 2
p-

1
log(M)
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(1) Refined asymptotic penalty -yf, 1 < j < m:

RI7712 - 2 -2

{En 9 (Zi, 13)gg(Zi, 00)Ik - [E g(Zi, 0o)gj (Zio)I)]}
\ k=1 / . \k=1 /.

(1.5.3)
( 21

+ E ( (Zi, 0 )V) - En (Zi,1)V

(2) Coarse asymptotic penalty 'yf, 1 < j <:

i = |11 max (Engk(Zi, 0)4 - [Eng(Zi, 3o)2]2) (1.5.4)

+ En (g (Zi, 10))v - En 4 (Zi 00)V] .

If both -y and Yc satisfy Assumption C.8, then there exists a sequence C ,, 0 such

that statement (1.5.2) holds with =y or -y = <j for all 1 j < m.

The vector of refined penalties yR is sharper than the vector of coarse penalties

yC, that is, for all realizations we have -y < yj. In simulations we find that the

refined penalties result in estimators with smaller mean squared errors in finite samples,

however, in practice, the refined penalties are more difficult to construct than the coarse

penalties. Both 7R and YC depend on the target of estimation, A. These penalties are

still infeasible but can be estimated once we have a consistent estimator A such that

A - Alli -+ 0. We discuss how to construct feasible penalties in Section 1.5.3.

Theorems 1 and 2 require that Assumption C.7 be satisfied uniformly for the set of

vectors e 1 , ..., 6d. The statement below shows how this can be achieved by adjusting the

common penalty term t.

Lemma 6 (Uniform Dominance of Penalty) Suppose YJ,i is the penalty term for

v = el and moment j, 1 < I < d and 1 j m. Suppose Assumption C.7 holds
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for each 1 E {1, 2,..., d} with t = to and the set of penalties {2'jj}1. Then by setting

t = n'-l(1 - 4), Assumption C.7 holds uniformly for v = e 1 , ... ,e.

Assumption C.8 is a general assumption which can only be examined

choices of penalties. In what follows, we consider the necessary conditions

ac to satisfy C.8.

Assumption C.11 (Bounds on Empirical Higher Order Moments)

absolute positive constants K", Kb and K such that:

for specific

for -R and

There exist

(1)
max E.[qj(Zi, #o)4 ] < K';

1<,j<m

(2)

K' < min En [(O(ZO, o)v)2] _[E 03(Z,0o)v]2
1<i<m 090 19 1

< max En[( 0'(Zi, /)v) 2] - [F&g-j(Z3i, )v]2!> ( K .
1 j03m 00 03

In BCCH (2012), the authors impose a condition that is stronger than (1), in particular,

they assume that E,[gj(Zi, fo)8] is bounded, which is not required here.

Lemma 7 If Assumptions C.5 and C.11 hold, then Assumption C.8 holds for -R and
Cy .

1.5.3 Feasible Penalties

We are tempted to use the suggested -/R or y'C penalties, however, they are not feasible.

There are two obstacles to their use. The first is that we need to know the true theoretical

parameter Oo, the other is that I is unknown. We can and will substitute the unknown

/30 with the preliminary estimator /. Finding a substitute for A is a more delicate task.
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Assume we have a preliminary guess of I, which we denote A. If IA - All1 - 0, we can

construct a feasible version of penalty terms and -/.

Definition 1.5.1 (Empirical Penalty) (1) Refined empirical penalty I 1 < j m

is defined as:

{l En( E gk(Zi, /)gj(Zi, /)Ak)
2 - [En E gk(Zi, )gj(Zi, T)Ak)]2 (1.5.5)

+ { En(G(Zi. )v)2 - [IEn(G(Zi,/3)v)j]2 2

(2) Coarse empirical penalty ,1 j < m, is defined as:

rIc = 11Ai ax (Engk(Zi., )4 - [Efk(Zi, )2]2 (1.5.6)

+ {En(G(Z, 3)v)j12 - [En(G(Zi, f)v)j]2 2

The empirical penalties $R and fc should be close and work similarly to the asymp-

totic penalties -y' and 7 c. The features needed for the empirical penalties to perform

well are summarized in the Lemma below.

Lemma 8 (Consistency of empirical penalties) Suppose Assumptions C.1, C.2, C.5

hold. Assume Assumption C.8 hold for theoretical penalty -yR (or fc) as defined in equa-

tion (1. 5.5) or (1.5.6) correspondingly. If a preliminary guess is such that I A - Al |1 -+p 0

and (KM,n V KGnn -*p 0, then the empirical penalty terms kj (or p4'), 1 < j < M,

satisfy the following condition. There are two non-random sequences un and In converg-

ing to one such that with probability increasing to one

In <11 Un for all I < j < m.

A result similar to that of Theorems 1 and 2 can be derived for empirical penalties

jR (or 'C).
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Theorem 3 Suppose Assumptions C.1-C.3, C.5 and C.9-C.11 hold for all v = e1 , ... ,e

with t = (1 + c) nfl-1(1 - 2d), a,, - 0 and ma, -+ oo. Let the penalty terms be

(or 5), which are based on preliminary guess A. Suppose the following growing

conditions hold with probability increasing to one:

(1) m 0, s2 log(m)(KB,VKM, )2 -
n n n

(2) Sn log(n)KM - Gm) 0.

(3) ||Z - All, -+ 0.

Then, there exists a sequence c,, 0 such that with probability at least 1 - a -

113L - 30H12 0 1 V s log(m)) , (1.5.7)

I|PL - 00112 =0 v Sr o~(M). (1.5.8)

Furthermore, if s2 log(m) 2 = o(n), the estimator A3 and !3PL are asymptotically normal:

,,/n-3L - /3o) d N (0, (G'Q0 G)-) (1.5.9)

V/i(/3PL - 0) nd N(0, (G'0 1G)- 1). (1.5.10)

To come up with an accurate guess A of A one could employ an adaptive procedure

that uses estimators of I obtained as a result of LASSO selection. Given any A, define a

function H that maps A E R' to the solution of problem P with empirical penalties 'f

(or <) which have been constructed based on A. For the true unknown value A, we know

that by Theorem 1, under certain regularity conditions, (I) - I = ( _ o(m)

So A is "nearly" a fixed point of L1 when . log(m) 0. Vice versa, when rl only has

one unique fixed point, this fixed point should lie very close to A. Thus, to implement

moment selection procedure P, we can iteratively update the empirical penalty terms

'f (or jif), 1 j m. Consider a sequence of m x 1 vectors A(P), and p = 0,1. A(P)

will be the solution of P with penalties computed based on AM, P), ... ,A(P-1). First, we
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need to discuss an algorithm that converges globally for coarse penalty 'f.

Algorithm 1 (Binomial Search) For coarse penalty C, let A(') = 0 and A') - for

all j = 1, 2,...,m, where is a positive number. Denote x0 =||A(0 11 and x -A(|1

Let q be a small number representing the precision level of our algorithm.4

Notice that < only depends on |A|l|. We can consider a mapping -I1 which maps a

non-negative real number w to an m x 1 vector 'yc by plugging I|AllI = w into equation

(1.5.6).

Start of Algorithm 1:

While (|xo - x1I > 77)

Let x 2 = '+x";

If |I1l(x2 )|11 > x 2 , then xo = X2;

else x1 = x 2 -

end

Termination of Algorithm 1.

Lemma 9 (Convergence of Algorithm 1) For penalty terms '0, if the value ( is

large enough, x1 and x 2 in Algorithm 1 converge to a non-negative fixed point x c Rt.

The fixed point xc is unique.'

Lemma 10 (Property of Fix Point using Ac) Suppose we apply coarse empirical

penalties and Algorithm 1 to perform LASSO in problem P. Define AC as the solu-

tion of problem P, given the penalty set as 111(x'). Suppose Assumptions C.1-C.3, C.5

and C.9-C.11 hold for all v =e1 ... , e with t = (1 + ) nID-1(1 _ 2md) a,, -+ 0 and
an

ml( -+ o+ . Suppose the following growth conditions hold with probability increasing to

one:

'We recommend the use of AM0 ) = 0 and ri = 0.0001.
' If we use a shooting algorithm to compute the minimization problem ', the operational time of

Algorithm 1 is 0(1 log(- )m log(m)I).

40



(1) og(M) 3  0 s2 og(m)(KB,n VKM, )
2

/ n n -0

1s6) Inog(n)KM>n (KG nVKM,)
-+ 0, nP __+m 40

Then the LASSO estimator k3 L and the post-LASSO estimator !PL based on Ac satisfy

statements (1.5.7) and (1.5.8). Furthermore, if sn log(m)2 =o v), fL and /PL satisfy

(1.5.9) and (1.5.10).

For penalty R, we propose the application of Algorithm 2 to iteratively estimate 5i

and A. This algorithm is usually required to perform with a latency > 2, since a naive

iterative algorithm often diverges in practice. This algorithm can serve for a general

adaptive penalization procedure when penalties are computed based on the target of

estimation. The fixed point of Algorithm 2, AR, has superior finite sample performance

compared to Ac, since penalties -y' are sharper than penalties -yc. We illustrate this

point with Monte-Carlo examples in Section 1.6.

Algorithm 2 (Adaptive Algorithm with Latency) Let w ) 1 be the length of the

latency. Let B > w be the length of the incubational period. Let A(P) be the initial value

of A. Let r; be the tolerance level.

Start of Algorithm 2:

While(p 0)

If (p < B) (incubational period)

(1a) Compute penalty 'R using AM.

(2a) Compute the optimization problem P with the penalty term y.

(3a) A) is set to be the optimizer of the problem P using penalty -y obtained

in (1a).

(4a) p =p 1.

else (converging period)

(1b) Update penalty term jR using A = >P), where X
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(2b) Compute the optimization problem P with the penalty term , R and obtain

optimizer AW.

(3b) If Q _1 A(PQ+1) _ +" fli < r: Terminate.

(4b) p = p +1.

end

end

Termination of Algorithm 2.

Lemma 11 (Property of Fixed Point using AR) Suppose we make use of refined

empirical penalties and Algorithm 2 to perform LASSO in problem P. Suppose the

initial value AM0" satisfies IIA(0 ) - \I1 -- 0. Assume that the sequence AM, V), ... con-

verges to a fixed point AR. 6 Suppose Assumptions C.1-C.3, C.5 and C.9-C.11 hold for

all v = e1 ,...,ed with t = (1 + c) n- 1 (1 - 2nd) a, - 0 and ma - o. Further,

suppose the following growth conditions hold with probability increasing to one:

(1) log(M) 3 S lo2(m)(KB,nvKAf) 2

(2)sa os~)K.,n o(KG,n VKAI,n)(2) s n2  p n 2p -I log(m) 0

Then the LASSO /
3 and post-LASSO 3PL estimators based on AR satisfy (1.5.7) and

(1.5.8). Furthermore, if s1og(m)2 =o(y ), )
3

L and /PL satisfy (1.5.9) and (1.5.10).

1.6 Simulation

Han and Phillips (2006) introduces several interesting economic examples with many

moment conditions that are non-linear in the parameter of interest. Similar to Shi (2013),

we consider a Monte-Carlo experiment based on time-varying individual heterogeneity

models (example 17 as described in Han and Phillips (2006)).

6Ac can serve as an initial value for Algorithm 2 when we use the refined penalties to perform LASSO.
Although it is still unknown whether or not Algorithm 1 converges in all cases, in our simulations the
convergence criterion of Algorithm 2 is always satisfied within less than 100 iterations when k is set to
3.
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Assume that we observe i.i.d. data (xi, yi), i = 1, 2, ... , n, where xi is an (m + 1) x dx

matrix and y, is an m x 1 vector. Suppose that for any 1 < j ( m and 1 < i n, we

model yzj as:

yi,j = fj(01)ai + xi,,32 + Ei,,

where f3 (.) are a known function that depends on j, ac are some unknown individual

heterogeneity, and iEj are random i.i.d. errors with mean 0. The key parameter of

interest, 01, is a scalar while 02 is a d x 1 vector E Rd. The variation of f(01) captures

how does the effect of individual heterogeneity change across period j, 0 < j ( m. Thus,

in this model, it is important to estimate i3 1 well. For any 1 < j < m, we can consider

the following moment conditions based on first difference strategy:

E[yi,j fj-(#3 1)-yi,j-ifj (/ 1)-(f,1(-1)xi, -fj(#1)xi,j_1)#2] = E[fy 1(13i)cjj-fj(01),, _1] = 0.

(1.6.1)

Equation (1.6.1) holds for every j = 1, 2, ... , m - 1, that is to say we can form a moment

condition for each 1 j m - 1. In addition, we consider to add a moment condition

based on long-difference:

E[yi,mfo(O1) - yj,ofm1(/3) - (fo(13)xj, - fm(/31)xi,o)32] = E[fo(/3)Ei,m - fmn(3),E,o] = 0.

(1.6.2)

Thus, there are m moment conditions in total. Let 3 = (31, 32) be a vector in Rd and

t0 be the true parameter of /3. The moment conditions implied by equation (1.6.1) can

be written as follows:

g7 (yi, 3) := yi,j f- 1(1) - yi,j - i fj (31) - (fj _1(31)xi,j - fj (01)Xij 1),32. (1.6.3)

And we have:

3(yi, ) =(f (/1) - (yij - XiJ02) - (/1) - (Yi-1 - xi,j-1,32), (1.6.4)

a/3 a31 0
--(fSl(w)x - fc m ( )Xio-1)).

Similarly, we can write down empirical moment conditions for equation (1.6.2). Given
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a consistent estimator 3 of 13o, it is easy to build the basic constructing blocks in moment

selection procedure 'P:

= EnF[gi(yi, 3)g(yi,/3)'],

0(3) =, E[ ) (yi, [3)?)],

where v = el, 1 = 1, 2, ... ,d. 7

Shi (2013) considers a design that the covariates xij only consists of a constant.

Also in Shi (2013), the "strength" of the moment conditions, i.e., IIE[- (yi, /30)]l12 de-

cays exponentially (after being sorted in a decreasing order) due to the formulation of

fj(.), 1 j m. Similar to Shi (2013), we perform our procedure on a design with a

covariate being the constant term. However, we only place a restriction that the quanti-

ties I E[ (yi, 0o)] 112 decay in polynomial speed (after being sorted in decreasing order.)

Unlike example 2 in Shi (2013), in our design the optimal GMM estimator is severely

biased, while the LASSO and post-LASSO estimators are much less biased.

Example 6 (Approximate Sparse Design 1) Assume that for 0 < j ( m - 1,

.fj(f31) = 1 a, where a = 1. So fj(f31) decays with polynomial speed. For j m, let

fm(131) = 13 such that mth moment is informative about the true parameter Oo. When m

is large, the last moment is computationally difficult to be detected and thereby being used

in the estimation. Let ai ~ N(1, 1) be i.i.d across individual i. In addition, let the con-

stant be the only covariate in (1.6.1) and the true parameter 30 := (/310, /20) = (0.6, -2).

Assume that the domain of the parameter / is [0.1,1] x [-1,5]. Let / be the efficient

GMM estimator estimated from the first five moment conditions.

Therefore, for any 1 < j < m - 1, gj(zi,Oo) = f-1((1o) C, - f 3 (01o)ci. So for any

1 1 j m - 1, Var(g(zi, /o)) =(i1a) 2 + ( 1;1a . Hence, we divide

the moment condition gj by j-a in order to normalize these moment conditions, i.e., for
3 = 0, 1,.., - 1,

j (zi, 3)= g/ (zi, 0) .ja.

We don't normalize the m'h moment condition because it has variance bounded away

from 0 and from above. So em(zi, /) = gm(zi, /).
7 In practice, certain normalization may be needed. We discuss this in the specific examples below.
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The partial derivative of (z,3) can be written as follows: )(zi,)

= ja. ( i(01)- (y,,j -- Xi,j32) - (31) - (yij-1 - Xrj-102), -(fj-1(1)xi,j - fj(0 1)xij-1)

And the expected gradient of the jt" moment is:

G03 (/30 ) = [ (zi, 3o)] fj - (03 o)fj(0jo) - (31o)fji(3o), fj(#1) - fj_(/31))

for 0 j < m- 1. It is easy to see that when a = 1,

(1) ja{DQ-1 (10)fj(310) - O(f1i)fjj-1(1)} = (1+ja,1)0(+ -01)0,1i) 2,

(2) ja(fj(131 0) - fj_1(010)) = (1+jafio)(1+(j-1)010)

So IC0 3 1|2 is decaying with polynomial speed Q(j-a). We perform the selection proce-

dure P with . The initial value of GMM estimation procedures is all set at (0.5, -1.5).

We demonstrate the performance of our selection procedure about the key parameter 13,

in Tables 1.1, 1.2 and Figures 1.1-1.3. In Table 1.1, it is clear that /L and 3 PL are more

efficient compared to efficient GMM and equally weighted GMM (EW-GMM later). In

addition, the bias of LASSO and the post-LASSO estimators are much smaller. CUE

has small bias when n = 400 but it is more dispersed because of its heavy tails, as such

phenomenon is discussed in Hausman et al. (2007). In Table 1.2, we can see that the

average number of moments selected when n = 400 is larger than that when n = 200.

When sample size is smaller, the penalties are larger and thus less moments are selected

via LASSO. In our example, Algorithm 2 runs iteratively for less than 15 times on av-

erage before it hits the stopping criteria, as described in the second row of Table 1.28.

Figure 1 illustrates the frequencies of moment conditions selected by the T as described

in Lemma 2. As we can observe in Figure 1.1, the moments picked by the selector T

includes the first a few ones and the last one, which is expected to be a strongly infor-

mative moment condition and can be hardly picked by traditional methods such as AIC

and BIC procedures proposed in Andrews (1999). In addition, our procedure does not

rely on perfect selection: the 4 th moment condition is only used in 65% of the time when

n = 200 and 25% of the time when n = 400. Figure 2-3 confirm asymptotic normality

8For GMM, when m = 240 > n = 200, the traditional GMM estimator is not well defined. Instead
of using n-1, I use (Q + -
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m=240 n=400 n=200

Bias niSE MSE Rej. Rate Bias V/nfSE MSE Rej. Rate

LASSO 0.0039 0.904 0.0023 0.042 0.0078 0.923 0.0043 0.062
post-LASSO 0.0065 0.875 0.0020 0.048 0.0045 0.922 0.0043 0.068
GMM 0.149 1.164 0.0255 0.770 0.175 1.332 0.0396 0.538
EW-GMM 0.350 6.051 0.2145 1.000 0.402 1.265 0.170 1.000
CUE 0.0067 2.206 0.110 0.830 NA NA NA NA
Eff. Bound NA 0.756 NA NA NA 0.756 NA NA

Table 1.1: Comparison of L and /PL on the key parameter 31.

m=240 n=400 n=200

LASSO CUE LASSO CUE

Average number of moments selected 5.76 NA 4.79 NA
Average number of iteration 14.2 NA 12.3 NA
Average running time per instance 15.56sec 162.12 sec 13.52sec 116.75sec

Table 1.2: More details on performance of LASSO and post-LASSO.

of /L and /PL-
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Figure 1-1: Frequencies of Moments Selected: Top: n = 200; Bottom: n = 400
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Figure 1-2: Distribution of OIL and /3 2L. Top: n = 200; Bottom: n = 400.
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Figure 1-3: Distribution of /IPL and 3 2PL. Top: n = 200; Bottom: n = 400.

The next Monte-Carlo experiment is based on example 3 of Hausman, Lewis, Menzel

and Newey (2007). This example considers a Generalized-IV model when the "second

stage regression" contains non-linear functions of the parameter 3.

Example 7 (Approximate Sparse Design 2) Consider the following setting:

y = exp(x3o) + E,

x = zH + V.

We slightly modify the assumptions in Hausman, Lewis, Menzel and Newey (2007):

First, x is two dimensional, not one; Second, the number of instruments, m, is larger

than the sample size, n. The true beta 3o = (0, 0). Let m = 500 and n = 200. v

N(0, 1), zi, ... , z. ~ N(0, 1) and they are independent, F(1, j) 1/ja + 1/(m + 1 - j),
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Figure 1-4: Frequencies of Moments Selected: Approximate Sparse Design 2

H-(2, j) = 1/(m/2 + 1/2 - j)a, and c = pwi + 1 - p2 {1w2. ( -1 zj /j)+ 1 -

where a = 1 and w 1, w 2, w 3 are independent standard normal random variables. The

preliminary estimate is set as the equally weighted GMM (EWGMM) estimator.

In this setting, traditional GMM and CUE estimators do not exist. We compare

our estimator with the performance of EWGMM estimator in Table 1.3. In Table 1.3,

though EWGMM estimator seems to be quite close to the true parameter, but its bias to

too large and lead to incorrect inference. Such bias will lead to even worse rejection rate

when n increases. Also in Table 1.3, our LASSO and post-LASSO estimators are nearly

efficient compared to the efficiency bound (G0 (/3 0 Go(0))- 1 , although on average

10.3 out of 500 moments are selected. The empirical variance of EW. The asymptotic

test of LASSO and post-LASSO estimators have the size which are slightly larger than

0.05. This is perhaps due to the randomness of the moment selector T. In Table 1.1, we

also see the similar phenomenon in LASSO and post-LASSO estimators when n = 200.

Again, similar to the previous Monte-Carlo example, post-LASSO is slightly better than

LASSO in MSE. Figure 4 presents the frequencies of moments which are picked by the

LASSO selector. According to our design, we should expect three groups clustered around

1, 250, and 500. We can observe exactly the same phenomenon in Figure 1.4.
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Bias VfiVar

LASSO (0.0123, -0.0005) 0.011 0.01
0.524 0.006

post-LASSO (0.0166, 0.0034) 0.006 0.145
0.392 0.16

EW-GMM (0.0559, 0.0174) 0.3016 0.016

0.477 -0.060
Eff. Bound NA -0.060 0.123

MSE Rej. Rate
LASSO (3.11, 0.75) x 10-3 0.060
post-LASSO (2.92, 0.73) x 10-3 0.060
EW-GMM (5.09, 0.98) x 10-3 0.248
Eff. Bound NA NA

Average # of Moments Chosen 10.3

Table 1.3: m = 500, n = 200, Comparison of /L and /PL with other GMM estimators.
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1.7 Conclusion

This paper applies the LASSO method to solve the many moments problem. Instead of

implementing traditional optimal GMM with the full set of moments, we consider select-

ing the informative moments before conducting the traditional optimal GMM procedure.

Since the optimal GMM estimator can be obtained via the optimal combination matrix

G0(0)'Q 1, we formulate a quadrative objective function with LASSO type penalties

to estimate the rows in the optimal combination matrix (d rows in total). This method

has several advantages compare to the traditional optimal GMM or GEL when the num-

ber of moments is comparable to the sample size or even much larger than the sample

size. When approximate sparisty holds, first of all, our method can substantially reduce

any second order bias simply because most of the informative moments are dropped

by the selection procedure; second, our method is computationally tractable compared

to other moment selection procedures such as those proposed in Donald, Imbens and

Newey (2008).

Theoretically, we establish the asymptotic bounds of the LASSO estimator of the

optimal combination matrix under L1 distance and semi-norm 11 . 12. Based on these

bounds, we are able to prove consistency and establish bounds for the LASSO based

GMM estimator 4L and post-LASSO based GMM-estimator /PL. Furthermore, when

the number of truly informative moments, s. (as defined in the approximate sparsity

assumption), grows with speed _n g(m)_ - 0, we can prove that together with a set of

high-level conditions, both /L and !
3
PL are asymptotically normal and nearly efficient.

These high-level assumptions are common in the LASSO literature. We establish primi-

tive conditions for the high-level assumptions such that the validity of these assumptions

mainly relies on a set of growth conditions for the parameters KG,n, KAIn, KBn (which

characterizes the behavior of the tail of the residuals and the smoothness of the moment

conditions) and p (which characterizes the accuracy of the preliminary estimator). All

these results are novel in dealing with non-linearity when the LASSO method is applied.

In addition to these theoretical results, we propose a set of feasible and valid penalties

to implement the LASSO procedure. Due to the complexity of our problem, our penalty

terms depend on the target of estimation, which is one of the main challenges we en-
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counter. Such a challenge does not arise when traditional LASSO is applied to OLS and

2SLS. We propose adaptive algorithms to solve this difficulty that are computationally

tractable. Our algorithm 1 converges globally, which guarantees the performance of the

algorithm with fast speed. Our algorithm 2 is more general and works well in Monte-

Carlo experiments, though the theoretical convergence speed is not yet known. We prove

that the convergence points in our algorithms satisfy the same properties as if we were

using the penalties constructed from the true parameter. The excellent performance of

these adaptive algorithms is demonstrated in Monte-Carlo experiments.
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Chapter 2

Core Determining Class: Construction,

Approximation, and Inference

In this modern era of "Big Data", it is important to draw information and create values

from the fast expanding datasets. We call the observable data as outcomes, and the

unobservable sources which lead to the outcomes as events. In many situations the

relations between events and outcomes are indeterministic, i.e., a single event may lead

to different outcomes. Such relations can be characterized by a bipartite graph G =

(U, Y, y), where U is a set of unobservable events, Y is a set of observed outcomes,

and p is a correspondence mapping from U to Y such that y(u) c Y is the set of

all possible outcomes that could be led by event u E U. In this paper, we consider

estimating the probability measure on U given observations on Y. One application is to

infer individual player's private information given the observations of players' strategies

when there exist multiple equilibria; another application is to infer demand/customer

characteristics given the purchase histories and sales data.

The feasible set of probability measure on U is defined by a set of linear inequality

constraints. In general, the number of inequality constraints could grow exponentially

with |U|. Such many inequalities may lead to two problems for performing inference

on the measure on U: (1) traditional inference procedures such as those described in

Chernozhukov, Hong and Tamer (2007) (later CHT) may fail; (2) traditional inference
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procedures are computationally intractable when |UI is large.

If we can dramatically reduce the number of inequalities defining the feasible set

of probability measure on U, we are able to perform valid inference with much less

computational cost. Notice that there may exist many redundant or nearly redundant

inequalities, we aim to select the informative ones from the full set of inequalities:

(1) We propose a method to construct the set of irredundant inequalities for the

bipartite graph when data noise is not taken into consideration. Such set is referred as

Core Determining Class described in Galichon and Henry (2011). We prove that the

inequalities selected are independent from the probability measure observed on Y under

certain mild conditions.

(2) For a general problem of linear inequalities selection under noise, we propose a

selection procedure similar to the Dantzig-selector described in Candes and Tao (2007).

We prove that the selection procedure has good statistical properties under some sparse

assumptions.

(3) We apply the selection procedure to construct the set of irredundant inequalities

for the bipartite graph with data noise. We prove that the selection procedure has

better statistical properties compared to that applied to the general problem due to the

structure of the graph.

(4) We demonstrate the good performance of our selection procedure through several

sets of Monte-Carlo experiments: first, the inference based on the selection procedure has

desired size; second, it has strong power against local alternatives; third, it is relatively

computationally efficient.

The closest researches to our topic are Galichon and Henry (2006, 2011) and Chesher

and Rosen (2012). Galichon and Henry (2011) proposes the Core Determining Class

problem, i.e., finding the minimum set of inequalities to describe the feasible region of

probability measure on U. Chesher and Rosen (2012) provides an inequality selection

algorithm, but may still contain some redundant inequalities in the selected set. Andrews

and Soares(2013) proposes moment inequality selection procedure using criterions such

as BIC.
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There are many studies on performing inference of sets. CHT (2007) proposes general

inference procedure with moment inequality constraints. Romano and Shaikh (2010)

provides improvements for CHT (2007). Beresteanu, Molchanov and Molinari (2011)

uses random set theory to perform inference with convex inequality restrictions. Andrews

and Shi (2013) construct inference based on conditional moment inequalities. For related

empirical studies, see Tamer and Manski (2002), Bajari, Benkard and Levin (2004),

Bajari, Hong and Ryan (2010) and etc..

There is also a wide literature on detection and elimination of redundant constraints

when data noise is not taken into consideration. For example, Telgen (1983) devel-

ops two methods to identify redundant constraints and implicit equalities. Caron, Mc-

Donald and Ponic (1989) presents a degenerate extreme point strategy which classifies

linear constraints as either redundant or necessary. Paulraj, Chellappan and Natesan

(2010) proposes a heuristic approach using an intercept matrix to identify redundant

constraints.

We organize the paper as follows: Section 2.1 introduces the model and basic as-

sumptions through out the entire paper. Section 2.2 studies the Core Determining Class

from the structure of the bipartite graph and provides a method to construct the ex-

act Core Determining Class when data noise is not taken into consideration. Section

2.3 proposes a general linear inequalities selection procedure under noisy data with the

definition of sparse assumptions. Section 2.4 discusses the additional technical assump-

tions and proves main theorems of the statistical properties of the selection procedure,

with application to the Core Determining Class. Section 2.5 implements our selection

procedure in a large bipartite graph through Monte-Carlo experiments and illustrates

its performance. Section 2.6 concludes the paper.

2.1 Core Determining Class

Given a bipartite graph G = (U, Y, c), suppose U is a set vertices representing events,

and Y is a set of vertices representing outcomes. Suppose an event u E U leads to

a set of possible outcomes p(u) C Y, where p(u) is a set of vertices in Y. For any
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set A c U, (A) := UUEAP(U). Therefore, c : 21 - 22 is a correspondence mapping

between U and Y. The inverse of V, denoted as V-' is defined as -- : 2- - 2",

P'(B) = {u E Ujp(u) n B j 0}, VB C Y.

Let v be the probability measure on U. Let pn,o be the true measure on Y which could

change with the model. Let /4 be the measure observed in a sample set of outcomes

Y. Denote di = VUI and d2  Y I 1. For a graph G = (U, y, p), say G is connected if

VA1 , A 2 c G and A 1 U A 2 = G, it holds that o(Ai) n p(A 2 ) # 0.

Assumption C.12 (Non-Degeneracy of G, pj,o and ft) (1) Assume G is connected.

We say G is non-degenerate if G is connected.

(2) For the probability measure p = ptO or pn, assume that for any y C Y, pt(y) > 0.

We say that it is non-degenerate if p(y) > 0 for any y E Y.

We assume that Assumption C.12 holds through out the paper.

The parameter of interest in this paper is the d, x 1 vector v, which is the probability

measure which generates the events u E U. In general we are unable to obtain a

point estimation of v unless additional information is provided. Instead, we can obtain

inequality bounds on v given the bipartite graph G = (U, Y, o) and the measure p on Y.

More specifically, for any set of events A C U, the outcome should fall into the set P(A).

Thus, for any A C U, we can obtain the inequality v(A) := EZuA v(u) p (p(A))

Eyep(A) j(Y)-

The Artstein's theorem stated in Artstein (1983) presents that all information of

v in the biparte graph model G = (U, Y, V) is characterized by the set of constraints

described below:

Lemma 12 (Artstein's Theorem) The following set of inequalities/equalities con-

tains sharp information on v:

1. For any A c U,

v (A) := v A(u) (A))
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where p( p(A)) := W(A p( y);

2. E.,u v (u)=-1.

Our model, denoted as PG;, is presented below:

Definition 2.1.1 (Model PG) Find the set of all feasible probability measure v on U

such that:

(1) For any A c U, v( A) );

(2) ZUEU v(u) = 1.

Comment 2.1.1 The non-degeneracy assumption prevents the problem PG from decom-

position, i.e., we can not decompose graph G into G1 and G 2 and proceed with problem

PG1 and PG2. Otherwise the problem can be simplified by looking at G1 and G2 separately.

In general, the set of inequality constraints stated in Definition 2.1.1 contains redun-

dant inequalities. Define the minimum model To of PG as the set of linear constraints

stated in (1) such that To together with the equality (2) has the minimum number of

constraints which generate the same set of feasible measure as PG. In other words, To

consists of all irredundant constraints in PG. If the number of irredundant constraints

in To is much less than 2d1 - 1 stated in Definition 2.1.1, then it is more accurate and

computational efficient to conduct inference on the Core Determining Class using To.

Galichon and Henry (2011) proposes the concept "Core Determining Class" as follows

Definition 2.1.2 (Core Determining Class problem) The Core Determining Class

problem is the problem of finding all binding constraints in model PG. The Core Deter-

mining Class is any collection of subsets of U that contains the sharp information, i.e.,
the corresponding inequalities includes all binding inequalities. The exact Core Deter-

mining Class is defined as the set of subsets of U which corresponds to the irredundant

inequalities in model To. 1:

'The definition of Core-Determining Class in Galichon and Henry (2006) is slightly different from
ours. Galichon and Henry (2006) defines Core-Determining Class as any set that contains all the binding
inequalities. In this paper, we refer "exact Core-Determining Class" as the set of binding inequalities,
i.e., the smallest set (in cardinality) which characterizes the identified set of parameter of interest.

63



Comment 2.1.2 In many cases there may exist a parametric model for v, denoted as

vi = FiO). The function F can be non-linear. The inference on 0 can be generally

difficult if the number of inequalities about v is large. Therefore, we can find the truly

binding inequalities about v, we would perform estimation and inference on 0 much

faster.

We provide an example on the model PG.

Example 8 (Two players entry game) Suppose there are two firms in a market.

The cost for firm 1 and firm 2 is c + r1 and c + r2 respectively, where c is a constant, r1

and r2 are random shocks which are observable only by the corresponding firm.

The two firms face a total demand D = a1 - a2p. If they are both in the market, they

will play a Cournot Nash equilibrium. If there is only one player, then this player will

reach a monopolist's equilibrium. If the costs are too large for both players that even a

monopolist is unprofitable, then there will be no player in the market. Therefore, there

are 4 possible equilibria: (0, 0), (1, 0), (0, 1), and (1, 1):

(1) if - - c > 2/3r1 - 1/3r2 and - c > 2/3r2 - 1/3r1 , then the equilibrium is

(1, 1);

(2) if ! - c < 2/3r1 - 1/3r 2 and - - c > 2/3r2 - 1/3r1 , then the equilibrium isa2 a2

(0, 1);

(3) if - c > 2/3r1 - 1/372 and a - c < 2/3r 2 -1/3r 1 , then the equilibrium is(3 af2--- ~ a

(1, 0);

else if ! - c < 2/3ri - 1/3r2 and g -c < 2/3r 2 - 1/3r,:

(4) if c + ri <, and c + r2 < g, then there are two equilibria:(1, 0) and (0, 1);

(5) ifc +r1 and c+r2 > , then the equilibrium is: (1,0);

(6) if c + r1 > g and c + r2 > 2-1, then the equilibrium is: (0,1);

(7) if c + r1 > a' and c +r 2 > ', then the equilibrium is: (0,0).

Let U = {u1,u 2 .u 3 ,u 4 ,u 7 }, where ui is the event representing case (i), with the

exceptions that u 2 represents (2) and (6), and u3 represents (3) and (5). Let Y :=
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{Yi, Y2, Y3, y4}, where yi = (1, 1), Y2 = (0, 1), Y3 = (1, 0), and Y4 = (0, 0). So di = UI =

5 and d2 = |Y| = 4. The correspondence mapping p between U and Y is:

p(ui) = {Yi}, O(u 2) = {Y2}, p(u3 ) = {y3}, (u4 ) = {Y2, Y3}, and ,O(u 7 ) = {y4}.

The correspondence mapping for Example 8 is illustrated in Figure 2-1.

V2

U 2 (01) y0
3 ( 3 1)

V4
4 p

V5 * -4: (0.0)

Figure 2-1: Correspondence Mapping for Example 8

Given the probability measure p on Y, the bounds of the probability measure v on U

is given by the inequalities stated in the Artstein's theorem. According to the Artstein's

theorem statement (1), there are 2' - 2 = 30 inequalities. In fact, it is obvious that the

Core-Determining Class in this example consist of only 5 sets (inequalities): {u1}, {u 2},

{U3}, {'2, u3 , u4} and {u5}.

In reality, the true probability measure 1 1
n,o on the outcome set Y is unobservable.

Instead, given the data, we could observe the empirical measure p, on Y. Due to

uncertainty of the data, we would like to solve a relaxed problem Pc, whose solution

set covers the solution set of the true model PG with probability approaching 1 as the

data sample size n approaching infinity. This relaxed problem PG provides conservative

inference for model PG.

Definition 2.1.3 (Model PG) For a small A, find the set of all feasible probability

measure v on U such that:

(1) For any A c U, v(A) := v(u) < /t(p(A)) + A;

(2) EZEU v(u) = 1.
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Ideally A should converge to 0 when n -* oc. The dimensionality of the problem, JUJ,

and the number of inequalities in PG, should affect the tuning parameter A. In fact, A

should be chosen properly such that: (1) the feasible set of v found in model PG covers

the feasible set of v found in model PG with probability approaching 1, so P' provides

inference on PG; and (2) A is not be too large to exaggerate the feasible set of v found

in model PG. We will discuss the choice of A in Section 2.3.

According to the Artstein's theorem, model PG contains 2 d, - 2 inequalities. It is

a very large number when d, is large and even grows with n in some contexts. The

numerous inequalities lead to both computational difficulties and undesirable statistical

properties. In fact, some or even most of the inequalities stated in the Artstein's theorem

may be redundant. Galichon and Henry (2011) analyzes the monotonic structure of

the graph G and claims that there are at most 2d1 - 2 sets in the Core Determining

Class under a special structure. Chesher and Rosen (2012) provides an algorithm which

could get rid of some, but not necessarily all redundant inequalities. In Section 2.2,

we fully characterize the Core Determining Class by the exploring the combinatorial

structure of the bipartite graph G. We prove that the Core Determining Class only rely

on the structure of G under the non-degeneracy assumption of P. The results are novel

compared to existing studies. We also propose a fast algorithm in Section 2.2 to compute

the exact Core Determining Class when data noise is not taken into consideration.

In addition, besides those redundant inequalities, many of the binding inequalities

could be "nearly" redundant, meaning that although they are informative in Model

Pg with empirical p, they could be "implied" by other inequalities in Model Pc with a

small relaxation A. Therefore, it may be possible to use a smaller number of inequalities,

i.e., a "small" model, to approximate the full one. Such a small model will enjoy better

statistical properties compared to the full model, i.e., it will be less sensitive to modeling

errors. We propose an general inequality selection procedure similar to the Dantzig

Selector in Section 2.2.
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2.2 Exact Core Determining Class

In this section, we present our discovery of the combinatorial structure of the Core

Determining Class, along with a fast algorithm to generate the Core Determining Class.

In Galichon and Henry (2011), whether an inequality v(A) p(p(A)) is in the Core

Determining Class is examined by numerical computation using the probability measure

P.

In fact, given the correspondence mapping p of the bipartite graph G = (U, Y, o),
we can identify the redundant inequalities without any observations of the outcomes in

Y. For example, for A 1 E U and A 2 E U, if A, nA 2 = 0 and p(A1) n o(A 2) = 0, then the

two inequalities, v(A1) < pi(p(A1)) and v(A 2) / t(tQ (A 2 )) can generate the inequality

v(A1UA 2)= v(A1)+v(A 2) < p( o(A1))+p(p(A2))= p( (A1)Uo(A 2)) =p(O(A1UA2)),
which is exactly the inequality corresponding to A = A1 U A 2 . In another word, the

inequality v(A) ( M(A) is redundant given v(Ai) ( p(c(A1)) and v(A 2) y [(o(A 2 )).

Also, if u A satisfies V({u}) c o(A), then the inequality v({u} U A) < PAp({u} U A))

will imply a redundant inequality v(A) < p(V(A)).

In this section, we propose a combinatorial method to generate the exact Core Deter-

mining Class. We prove that, in theory, if the probability measure A is non-degenerate,
our method excludes all redundant inequalities in the model PG regardless the values

of /t. That is to say, the Core Determining Class can be exactly constructed with the

method and the Core Determining Class is independent from p.

Definition 2.2.1 (Set Su) S C 2" is the collection of all non-empty subsets A c U

and A # U, such that

VM (A) > 1 (y'(A)),

where v"(A) := max{v(A)Iv(A') < pt( (A')), VA' c U, A' $ A}.

Set S, is defined with probability measure p. The inequality generated by any A E S"

is informative: it is irredundant given other inequalities described in statement (1) of

the Artstein's theorem. Essentially, Su identifies the irreducible inequalities for Model

PG when the critical equality Eueu v(u) = 1 is not taken into consideration.
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Definition 2.2.2 (Set S') S' c 2' is the collection of all non-empty subsets A c U

and A z U, such that:

(1)A is self-connected, i.e., VA 1 , A 2 C A such that A 1 , A 2 $ 0 and A 1 U A 2 = A, it

holds that o(A1 ) n o(A 2 ) $ 0;

(2) There exists no u E U, such that u A and p(u) c o(A).

Lemma 13 If 1- is non-degenerate, the collection of subsets defined in Definition 2.2.1

and Definition 2.2.2 are identical. S, = S',.

S, and S' describe the irreducible inequalities in PG if the equality EUEU v(u) = 1

is not taken into consideration. Theorem 5 of Chesher and Rosen (2012) proposes a

subset of inequalities with property (1) stated in Definition 2.2.2. This subset contains

the set of all binding inequalities, which is Core Determining. Lemma 13 shows that

with an additional property (2) in Definition 2.2.2, we can find all binding inequalities

without considering the equality: EUEU v(u) = 1. In fact, adding this equality can

further substantially reduce the number of inequalities and it is impossible to find the

minimum set of inequalities in PG without the key equation EUEU v(u) = 1. To find

the minimum binding set of inequalities, i.e., the exact Core-Determining Class, we look

at the problem PG from the opposite direction: consider the inequalities from Y to U.

For any non-degenerate probability measure F on U, we define S. and S', which are

collection of subsets of Y and similar to S,, and S'.

Definition 2.2.3 (Set Sy) Given a non-degenerate probability measure T on U, Sy c

2Y is the collection of all subsets B C Y and B $ Y, such that

pT"(B) > iJp1 (B)),

where g"(B) := max{7i(B)fi,(B') <; i(p-1 (B')),VB' c Y,B' $ B}, where 7 is a

probability measure on Y.

Definition 2.2.4 (Set S') S' C 2Y is the collection of all subsets B C Y and B : 2Y,

such that:
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(1) B is self-connected, i.e., VB1 , B2 c B, such that B1, B2 $ 0 and B1 U B2 = B, it

holds that V-'1 (B1 ) n p-1 (B2 ) # 0;

(2) There exists no y e Y, such that y 0 B and y- 1 (y) C p-1 (B).

The Lemma below presents result similar to Lemma 13.

Lemma 14 Sy = S'.

Definition 2.2.5 (Set SY- 1) Set S- 1 is the collection of A c U and A $ U such that

there exists B c S' that A = -'(B) .

Below we give a numerical definition of the exact Core Determining Class using linear

programming:

Definition 2.2.6 (Set S*) The Core Determining Class S* is the collection of all sub-

sets A c U and A $ U, such that

vM*(A) > M*(p(A)),

where vM*(A) := max{v(A)Iv(A') ; p(p(A')),VA' c U, A' $ A; v(U) = 1}.

In the definition above, the equality v(U) = 1 is considered. S* are subsets in U cor-

responding to irreducible inequalities under v(U) = 1. The theorem below characterizes

the Core Determining Class S*:

Theorem 4 The Core Determining Class is characterized by the following equation:

CS* = SU ny S,1

Notice that both S, and S-' are defined via combinatorial rules, the Core Determin-

ing Class is independent from p if p is non-degenerate.

In Example 9, we show that considering only Su may not able to substantially reduce

the number of inequalities, where Su n S-1 can be a very small set in cardinality.
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Example 9 Consider set U = {ui, ..., tUd1 } and set Y {y1, Ydi +1}. is the corre-

spondence mapping between U and Y such that:

(Uj) = {yj, Ydi1}

for all 1 < j < d1 .

1 1

2 2

U 3  3

4 4

5 5

6

y

Figure 2-2: Correspondence Mapping of Example 9

Considering only Su would obtain S = 2" - {0,U}, which consists of 2d 1 - 2 sub-

sets and essentially make no selection of inequalities. The Core Determining Class S*

constructed in our approach is {U - ug|1 j I d1}. It is obvious that this is the mini-

mum number of subsets carrying full information for model PG. The Core Determining

Class S* contains d1 inequalities, which is much less than 2d 1 - 2 inequalities selected by

Theorem 5 of Chesher and Rosen (2012).

We utilize the combinatorial structure revealed in Definition 2.2.2 and Definition 2.2.4

to construct S' and S': algorithm 1 computes S' and a similar algorithm computes S'

and S; 1 . Then we obtain the Core Determining Class S* = S, n S;1 .

The complexity of the algorithm is o( 2 max(dudy) - d2 - d2), where

du is defined as

du := max AI
A

s.t.A c u
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(p(A/u) C Y,Vu E A

dy is defined as

dy := max IBI
B

s.t.B c Y

V-1(B) = U

P-1 (B/y) ; U,Vy E B

Under the assumption of non-degenerate G and p, in a bipartite graph with practical

application, du and dy is much smaller than d, and d2 respectively, so the algorithm is

fast in practice.

Algorithm 3 Input: Bipartite Graph G = (U, Y, p)

Output: Set S'

Initiation: S' = {0}

for i = 0 to JUj - 1 do

Identify additional A' E S,, as union of u E U with Al = i

for each A E S' with Al =i do

for each u $ A that V(u) n V(A) $ 0 do

A' = A u {u}

if V(A') < 1 then

for each u' $ A' do

if p(u') c V(A') then A' = A' U '

end

end

end
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end

Termination: S' = S' - {0}

2.3 A general selection procedure and sparse assump-

tion

Essentially, the objective of model PG is to obtain a feasible set of v given observation

A, i.e., to obtain Q := {vlv(A) < f4 ((p(A)),VA c U; EZuev(u) = 1}. In Section

3 we explore the structure of the bipartite graph G to obtain the set of irreducible

inequalities to define Q. In this section, we propose a procedure for a general problem

of linear inequalities selection under data noise. This procedure chooses the set of linear

inequalities with sharp information as n -+ oc. It can identify the inequalities which are

binding but "close" to redundant, so to further reduce the number of inequalities in Q.
The procedure can be applied to general linear inequality selection problems, including

Core Determining Class problem allowing mixed strategy as defined in Galichon and

Henry (2011).

2.3.1 General Selection Procedure

Problem P can be interpreted as computing the feasible region of a collection of linear

inequality constraints. It could be generalized as computing the feasible region of

Q := {vJMv < b,v ; 0},

where M is a m x d, matrix, v is d, x 1 vector, and b is a m x 1 vector.

In many situations the number of inequalities, m, is too large to effectively conduct

any known estimation and inference procedure such as CHT inference. For example,

there are m = 2d 1 inequalities in the Core Determining Class problem without any
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inequalities selection procedures. 2 There are two reasons that we do not use the entire

set of inequalities: first, there could be many redundant inequalities which are not

informative at all; second, when m and d, are growing, there could be many inequalities

which are nearly redundant, compared to the size of noise in the data.

Notice that the random noise of b, which comes from P, - An,O, is ignored in Section 3

when data noise is not taken into consideration. In this section, we develop a procedure

to select informative inequalities in a general Q considering the random noise on b.

For any subset I of {1, 2, ... , m}, denote M1 as the matrix comprised of the rows

indexed by I in matrix M. Similarly, denote b, as the subvector of b indexed by I.

By the Farkas Lemma, for a general matrix M and a vector b, if the set of constraints

indexed by I can imply all other constraints, i.e., the set Q_ := {vIMv < bl, v > 0}

equals Q, then there must exist a non-negative m x m matrix H such that:

(1) HM > M,

(2) fib < b,

(3) 14, = 0,

for any 1 < I T rm and j I.

For any j E {1, 2, ..., m}, denote Mj as the j'" row of M, denote H, as the jth row of

H and 1 1 k as the kth column of 11.

The coefficient matrix H described above can serve as a signal of the importance of

each inequality. If all the coefficients of the kth inequality, Hjk, are zero or close to 0,

then this inequality is not very informative to v. Inspired by the Farkas Lemma, we

propose the following selection procedure which slightly relaxes the constraints on H:

Problem 7?:

min 1: g(flk)
k=1

2We could view v(U) = 1 as two inequalities: v(U) <; 1 and v(U) > 1.
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subject to:

(1)HM M, H > 0,

(2)FN b+ An,

where observed b is a i x 1 vector which converges to b as the data sample size ri goes

to o, and An,m (An,m, An,m. ... , An,m)' in which An,m is a relaxing parameter measuring

the maximum error allowed for each inequality.3

We choose the objective function g(.) such that it measures the importance of the

constraints. One choice is g(Hk) = sigrn(E Ji<TmjJkml). With this function g(.), the

selection procedure 1? is essentially a binary integer programming to select the minimum

number of inequalities. We call such a procedure the "L' selector".

The L0 selector is extremely difficult to implement when m is large. However, many

studies on LASSO and the Dantzig Selector show that some Ll objective functions could

enjoy nice statistical properties in model selection and low computational costs. Below

we propose a feasible Ll objective function g(-):

g(Hk) - max fljk, (2.3.1)

where Hkj is the (j, k)t" entry of H.

With the above choice of g(-), the formulation of the problem R. is rewritten as:

Problem 7?:

min E Max jk
k=1

subject to:

(1) H m M,, H A 0,

(2) 1 (IH - 6)+l 1, A.-

3 The Vector An,m can also be chosen to be specific to each inequality. For the inequality which we
believe to be too important to be ruled out, we could set the corresponding An,m in An,m to 0.

4 The formulation of the problem 1? is similar to the Dantzig Selector described in Candes and
Tao (2005). The main difference is that the Dantzig Selector has two-sided constraints, which shrink
the feasible solution to a point, while our problem has one-sided constraints, which consign the feasible
solution to a convex set. The benefit of this formulation is that it turns an integer programming problem
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2.3.2 Sparse Assumption of the Problem R

Sparse assumptions play the essential role in the analysis of some L1 penalization pro-

cedures, such as LASSO and the Dantzig Selector. In this subsection, we define a sparse

assumption for the Problem 7N.

For any 1 m j i., define separation of inequality j as:

cj := max Mv - b3,
VEQj

where

Qj := {vjMiv < bi, Vi #i; v > 01

cj measure the maximal separation of the Jth inequality for all points in Qj. If c1 > 0,

the J'h inequality is irredundant, otherwise the jth inequality is redundant. Let To be

the set of indices j with cj > 0 to denote the set of irredundant inequalities. Since cj

characterizes the information carried by the j'h inequality, we define a sparse assumption

using cj.

Definition 2.3.1 (Exact Sparse) Recall that To is the subset of {1, 2, ... , m} denoting

all irredundant inequalities. Let [1* be the solution of the following problem:

Problem Ri:

min E g(UHk)
kETo

subject to:

(a)HM > M, H > 0,

(b)Hb < b,

(c)flk = 0 if k 0 To.

For any m x m matrix H, denote g(H) := (g(I'), ... , g(7'm))', which is a m x 1 vector.

(minimize L0 norm) into a linear programming problem (minimize L' norm).
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The exact sparse assumption of P is defined below:

There exists absolute positive constants Ku, r and K, and an absolute constant c9,?
which may depend on n, such that:

(1) so := ITo| = o(n A m), which may increase at slow rate as m and n increases;

(2) The sum of coefficients needed to construct each inequality is bounded from the

above:

max144j4m||,I I || < K drl; 5

(3) maxi<j<m g(fI*i) < K";

(4) minJETo c 3 >-cg,n;

Exact sparse assumption assumes that the binding constraints are informative. There-

fore, we are able to distinguish these constraints when the noise is small enough. Denote

set I* as the set of non-zero components in g(fI*). In general set I* is not necessarily

the same as the minimum set of constraints, To. However, in the special case of Core

Determining Class problem with bipartite graph, we show that 1* = To. That is to say,

the L1 selector recovers the Core Determining Class when A is set to be 0. We expect the

set 1* should not be too large compared to To. We show that in the next section, similar

to Candes and Tao (2005), the number of non-zero components has a order O(so) with

probability approaching 1 by employing a cutoff 0 < q < 1 to g(Ho). For a q dimensional

vector b and scalar A, define b + A (b + A, ... , bg + A). Through out the paper, assume

that M is a fixed matrix. Define # : { 1 (b)|I 1 (b) = {vIMjv <;; b 1},b E R m and I C

{1, 2, ... , m}} as a collection of sets which takes the formulation {v1Mv < b} for some

E R m and I C {1, 2, ... , m}. Define the operation @ which maps a set Q1 (b) E 9 and

a real number A into another set Q1 (b) @ A := Q1 (b+ A) = {vIMxv < b1 + A}. In the

rest of the paper, let Q, E A be the abbreviation of Q1 (b) B A if there is no confusion.

By analogy with the exact sparse assumption, we propose a more feasible approxi-

mate sparse assumption:

51f IIMiIly is normalized to be 1, then in general r = . In the Core-Determining Class problem, we
prove that K = 1 and r = 1.
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Definition 2.3.2 (Approximate Sparse) Suppose we can order the separations ci,..., cm

into c(i) c(2) c ... c, and suppose there exists a positive integer s* such that:

(1) s* = o(n A m).

Let T* be the set of indices of the inequalities with the first s* largest separations.

Suppose K and r are absolute positive constants. Let o.2 := max1 <m Var(bij)2 . Let f*

be the solution of the following problem:

Problem R:

min E g(Hk)
kcT*

subject to:

(a) HM > M, H > 0,

(b)flb < b + Kd log(s*)1V n

(c) lk =0 if k T*.

Then, it holds that:

(2) QT c Q i Kdr log(s*)-

(3) There exists an absolute constant KU such that maxl,<j. g(fl*i) < Ku;

(4 )max1;<m \j\\I1 < Kdr.

In the approximate sparse assumption, we allow

worst case, g(Fl*J) > 0 for all j E {, 2, ... , m}.

assumes that there is a small set T* indicating a

size of T* is much smaller than m.

c, > 0 for all I j m. So in the

The approximate sparse assumption

feasible region similar to Q while the
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2.4 Properties of the Selection procedure R with Ap-

plication in the Core Determining Class Problem

2.4.1 General Properties

In this subsection, we analyze the property of the selection procedure 1N and the choice

of the relaxation parameter An,m. We impose high level assumptions on b and An,m and

then discuss a set of sufficient conditions for the assumption.

Assumption C.13 (Dominance of A) Suppose we have data B1, B 2 , ... , B, with di-

mension m x 1 such that b = E[Bj], 1 < i < n. Suppose in practice we use b := E[Bi]

to estimate b. Suppose that with probability at least 1 - a,

(1) max14<jm Ib, - bj An,m;

(2) An,m + 0.

In the Assumption C.13, we require that the choice of relaxation parameter An,m

should dominate the maximal discrepancy between bi and bj for all j E {1, 2, ..., rn}.

In additional, An,, should be converging to 0 as sample size increases to guarantee

consistency.

Given A, suppose that the solution to 7/ is H. Denote k :-- maxltj<k ntk, for

all 1 < k < m. Define Z {kIyk # 0} as the set selected by the procedure R. We

consider the post-selection estimator Qi:= {vIM v b } as the feasible set defined by

the inequalities with indices in Z.

Lemma 15 If Assumption C.13 holds, then with probability > 1 - a, Q satisfies:

(1) Q c M AM

(2) QO c Q e 2An,m.
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Lemma 15 shows that Q and Q are very close to each other. Therefore, An,m should

be at least as large as the (1 - a) quantile of the random variable

rn,m :=max lb - bj1.

Chernozhukov, Chetverikov and Kato (2013) (CCK later) shows that the distribution of

x/nrn,m can be well approximated by the distribution of the maxima of a Gaussian vector

under certain conditions under (lOg"") 7 -+ 0 along with other mild regularity conditions.

The calculation can be easily performed via Gaussian Multiplier bootstrap. A weaker

bound (but still relatively sharp in many cases) of the (1 - a) quantile of rn,m could be

obtained using modest deviation theory of self-normalized vectors described in De La

Puna (2009), which requires ("og"m)( 2 +) -+ 0 where 3 > 0.
n

Assumption C.14 (Regularity Conditions) (1) The data bi is i.i.d..6

(2) There exists an absolute constant C > 0 such that

max I bi| C.

(3) There exist absolute positive constants c1 such that

min E[b] ;> c1 .

The statement (2) in Assumption C.14 holds for the Core Determining Class problem

with the constant C = 1. Statement (3) may not be true in the Core Determining Class

problem when the dimension d, grows. However, the problem can be fixed by multiplying

v/di to bij when we make the assumption that < v(ui) < -- for some absolute positive

constants c and c'. We use Assumption C.14 to derive properties for general selection

procedure . In Section 2.5.2, we apply 1? to the Core Determining Class problem

without Assumption C.14.

6 The i.i.d. assumption can be extended to the i.n.i.d. assumption as Lemma 5 and Lemma 6 both
allow i.n.i.d data with small modifications in the statement.
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Under Assumption C.14, we are able to obtain the following two Lemmas on the

choice of relaxation parameter A. These two Lemmas are based on results stated in De

La Puna (2009).

Lemma 16 (Choosing A using Multiplier Bootstrap) Let rd := max 1 Ejm Zi Biej

where ei are independent standard normal random variables. Suppose Assumption C.14

holds and 1og(mVn) 7 -4 0, then the 1 - a quantile of V r G is a consistent estimator of

the 1 - a quantile of v\/-r,,d.

Lemma 17 (Choosing A using Modest Deviation Theory of Self-Normalized Vectors)

Denote &2 := max1j fmEn[B-] - [E.Bij]2 }. Let An,m := for some constant

C > 1. Suppose Assumption C.14 holds and ("ogm)"' -+ 0 for some 6 > 0, then asn

n -+ o, with probability at least 1 - a,

max |Ij - b | < An,m

Next we discuss the performance of the L' Selector 4 under the sparse assumptions.

Theorem 5 (Recovery of Informative Inequalities under ES Assumption) Suppose

Assumptions C.13, C.14 and the exact sparse assumption hold. Recall that c is the max-

imal separation of the Jt" inequality and cg,n < cj for all j E To. Let 0 < 7 < 1 be an

absolute constant. Assume that m, n, so, d1 and cg,n obeys key growing conditions:

(d T log(so)) V log(mr)14 0.
nc2ng,n

Consider the following two step procedure:

(a) Step 1: Set As (1+c)Kd> +=,( with c > 0 be an absolute constant.

Let .s be the solution of 1? with A = As. Let 1s = {j:Is, z 0}. Set Anm to be chosen

according to Lemma 16 or Lemma 17.

(b) Step 2: With probability > 1 - a, the set Zs,: {jIjs > q} has the following

properties:
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(1) There exists an absolute constant Cy, such that |ijo < cTSO,.
71

(2) Zo D To;

(3) Qi, C Q e An,m,

(4) Q c O, @ An,m.

In Theorem 5, we consider a two step procedure. First, we select the inequalities use

a larger relaxation parameter As. Such relaxation can significantly reduce the number

of inequalities. However, as soon as As converges to 0 fast enough, the informative

inequalities will be preserved. The cutoff strategy additionally throws away some nearly

redundant inequalities which were not detected in the first step selection. The set of

those inequalities survive the two step procedure has good properties: (1) it has the

same size compare to minimum set of inequalities, To, up to a constant multiplier; (2)

it contains To with probability increasing to one; (3) Qr, is close to the true feasible

region, {vIMv < b} with error up to O(An,m).

Comment 2.4.1 The constant K can be computed via M. If ||MIIj 2 = 1 for all j and

Nij > 0 for all i, j, then K < 1 and r = 1. In practice so is unknown, so we recommend

to use n for so as starting value and then iterate a few times. We recommend to use

c = 0.1 in practice.

Theorem 6 (Recovery of Informative Inequalities under AS Assumption) Suppose

Assumptions C.13, C.14 and the approximate sparse assumption hold. Let 0 < ij < 1 be

an absolute constant. Assume that m, n, sO, d1 and cg,n obeys key growing condition:

(dir log(s*)) V log(m)

nc2 -- 0

Consider the following estimation procedure:

(a) Step 1: Set As := 2(1 + c)Kd& + A , with e > 0 be an absolute

constant. Let s be the solution of 7? with A = As. Let is := {iI~s,, $ 0}. Set An,m to

be chosen according to Lemma 16 or Lemma 17.
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(b) Step 2: With probability 1 - a, the set s,:= {j|s > 77} has the following

properties:

(1) There exists an absolute constant CT such that |ZiI|o < CT
T/

(2)~ ~~A Qt7CQ Im+AS

(3) Q c Q e An,m.

Again, in practice we can set s* = n as starting value and then iterate for a few times.

If the approximate sparse assumption holds instead of the exact sparse assumption, the

estimation procedure suffers from additional estimation error with size As, which depends

on the unknown parameter s*.

2.4.2 Application in Estimating Measure v in Core Determining

Class problem

To find the Core Determining Class given a bipartite graph G = (U, Y, p), we can use the

method proposed in Section 3 to eliminate all the redundant inequalities and find exact

solution when data noise is not taken into consideration. We can also use the L1 selector

proposed in Section 2.3.1 to find an approximate solution to the Core Determining Class

problem. In addition, we can consider a hybrid method: first, we find the exact solution

according to the method described in Section 2.1, and then apply the selection procedure

presented in Section 2.3.1 using the inequalities selected from the previous step. The

hybrid method may speed up the selection procedure significantly. In this subsection, we

discuss the general selection procedure first, and then briefly discuss the hybrid method.

In the Core Determining Class problem, the equality v(U) = 1 is never redundant.

Therefore, we let the (m - 1)th and m'h inequalities be v(U) ; 1 and v(U) 1 among

the total m inequalities. Since there is no reason to drop the last two inequalities, we

define problems 'c and JZc:
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Problem RC
m-2

min I: max rjk,
FI k=1 1(j~m- 2

subject to:

(1)HM > M, > 0,

(2)Hb < b,

and Problem JC.
m-2

min Z max jk,
n k=1 1<j<m

subject to:

(1)HM > M, F > 0,

(2)ib < b + A,

where A := (An,,,m, An,m, 0, 0) with An,m left to be chosen.

Let Ho be the solution to RC and n be the solution to 1&'. First, we prove an

important result specific to the Core Determining Class.

Lemma 18 (Perfect Recovery of the Minimum Model To) If il,, is non-degenerate

and An,m = 0, then:

(1) The L0 norm of i, I|||o, satisfies I|||o = so;

(2) MaX1j<m-2 1iJI di;

(3) Max1<j<.-2 y(ft) < I;

(4) The set of indices with non-zero entries of satisfies:

i:= { kIk -# 0} =TO.

As a special case, I* = To.

Lemma 18 indicates that under the exact sparse assumption, the recovery of model To
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could be done simply by looking at the non-zero entries of the solution of the problem

JZ. Due to the special property presented in Lemma 18, we show that the relaxation

parameter As in Theorem 6 can be much tighter. Therefore, the selection procedure

would require much less number of observations in order to achieve good performance.

Definition 2.4.1 (Approximate Sparse On Core Determining Class) Suppose we

can sort the separations c1 , ... , cm as c(l) > C(2 ) > ... c(m) and there exists a positive

integer s*, such that:

(1) s* = o(n A m).

Let T* be the set of indices of the inequalities with the first s* largest separations.

Suppose K and r are absolute positive constants. Let .2  max1<, Var(Bi)2 . Let H*

be the solution of the following problem:

Problem R:

mm n g(Ulk)
kcT*

subject to:

(a)HM > 1, H > 0,

(b)11b b~u log(s*)(b)UHb <_ b+ a
Vn

(c)Hk = 0 if k T*.

(2) QT* c Q e Kdr log(s*)

(3) There exists an absolute constant Ku such that max1.j., g(UJ*j) < Ku.

Define 52 :=maxi<jmEn[Bi] -[EnBi

Lemma 19 (Recovery of Informative Inequalities under Core Determining Class)

Suppose Assumptions C.13, C. 14 and the exact sparse assumption hold. Suppose G

and fpn are non-degenerate. Recall that cj is the maximal separation of the Jth in-

equality and cgn < c, for all j c T*. Let 0 < r7 < 1 be an absolute constant. Set
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AC := (1 + )& , where e > 0 is a constant. Assume that s* and cg,n satisfy the

key growing condition:
log(s*) +0.
nc2

Assume that with probability going to 1, the empirical measure An obeys:

1 | 2 fi(l) - p4l)j |max 1 1 1 -+ 0.
1l ,d2 P(O)

Let bt be the solution of RC with Am,n = Ac. Let gsk max1 .

Then, with probability > 1 - a, the set Zs,, := {iJI.s,k > rj} has the following proper-

ties:

(1) There exists an absolute constant CT such that IlnI|o < CTS*;

(2) QO, C Q E 2Ac;

(3) Q c Q , D A .

The value s* can be obtained iteratively, by setting s* = n as the initial value.

The key assumption max1 Isd2 I - 0 mainly relies on the growing rate of d2 .
jj()-41)_+0 od . e m

When [u(l) = 0(!) and - -+ 0, the assumption max I<d2  -* 0 holds. Lemma

19 obtains stronger results compare to Theorem 6 due to the structure of the bipartite

graph.

It is natural to consider a hybrid estimation strategy combining the combinatorial

method in Section 2.1 and the selection procedure in Section 2.3. There are a few points

that we would like to make about the hybrid method:

(1) When so is small, the hybrid method performs similarly to the combinatorial

method only.

(2) When so is large, there may be significant gains from the hybrid method in

terms of computational speed compared to the selection procedure only, and significant

inequality reduction compared to the combinatorial method only.
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We illustrate these points in the Monte-Carlo experiments in the next section.

2.5 Monte-Carlo Experiments

Consider a simple setting in which many marginal firms are facing a volatile market. Let

u be a random variable representing the cost of a firm. Let 9 E {H, L} be the private

information of the firm which we do not observe. Let y be the action of the firm based

on the information 9 and cost u. Assuming the objective of firm is to maximize profit

r(y, a, 0), they might adopt different actions when facing 9 = H or 0 = L.

Suppose action y is the price set by the firm. We consider a simple case of decision

making problem by the firms. Given observations of a sequence of decisions, we are

interested in learning the distribution of the costs of these firms.

Assume that the profit function is

7(y,, H) = (y - a)(C - y),

7r(y. u, L) = (y - u)(C/2 - y),

where C is a constant.

If the firm consider any price y* E {yi7(y, u, 9) > maxy 7r(y, u. 9) - w, a, < y < a2l,

where w is a constant for robust price control and a,, a2 are bounds on y, then p(u)

{yi(y, u,9) > maxy 7r(y, u, 9) - w, E {H, L}, ai y < a2 } is the correspondence

mapping from the set of cost (event) U to the set of price (outcome) Y.

We can only observe Q, the empirical measures on price Y. The objective is to find

an approximate feasible set of probability measure on cost U. Assume that u is i.i.d.

across observations.

Example 10 (Monte-Carlo Experiment 1) Set U, Y, C and w as follows:

C = 4, U = [0, 3], Y = [1, 3.5], w = 0.01.

So p(u) = [(1.9 + u/2), (2.1 + u/2) A 3.5] U [(0.9 + u/2 V 1), (1.1 + u/2)].
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To estimate the probability measure on cost U, we discretize the continuous set of

cost (event) U and price (outcome) Y. Let d1 = 15 and d2 = 25 be the number of

discretized segments of cost and price, respectively. Then ui, ((i - 1)/5, i/5) and

yj = ((j - 1)/10+ 1,j/10+ 1) fori = 1, 2, ... ,dl and j = 1, 2, ... , d2. The correspondence

mapping Pd from the discretized set Ud = {uili = 1, 2, ..., 15} to the discretized set

Yd = {yjIj = 1, 2, ... , 25} is generated by:

Od (?Ii)= {yjlyj n g(ui) $, 0}

Therefore, p(u1) = {y1,y2,ylo,yly12}, p(u 15 ) = {y14,y1.y16,y24,y25}. For any 2

i < 14, p(ui) = {yi-1, yj, yi, yi+9, Yi+1O, y i+i}. Figure 2-5 illustrates the correspon-

dence mapping for Example 10.

Suppose [t, the true probability measure on Y, follows the formula [t(j) Oc max(1, Ij -
13 1.5) for 1 < j < 25. Suppose the sample size n (the number of observed y) is 2000 and

500 and the sample y is randomly drawn according to measure [. Let 4, be the empirical

measure (observed frequency) of y. Let &2 = max1ij 3 25 /(j) - A(3) 2 and a = 0.05.

According to Lemma 17, the penalty term A.,m = 1.05 min{& 1og(m/) 1 log(m/a) },whereL n '2 n

m is the number of inequalities selected in the algorithm describe in Section 2.1.

Problem 1? is implemented to further select the inequalities. The results of a set

of Monte-Carlo experiments with 100 repetitions are presented in Table 2.1. For each

instance, we apply a cut-off value q to the optimal L1 coefficient g(Ili): select an inequal-

ity if the corresponding g(Hi) ; q and discard it otherwise. We present the average,
maximum and minimum number of selected inequalities with cut-off value q = 0, 0.1

and 0.2.

A critical concept concerning the selection performance is "coverage": in one instance,

the feasible set (of the probability measure) on U corresponding to the true P is subset

of the feasible set (of the probability measure) on U defined by the selected inequalities

with empirical measure A,. We present the "frequency of coverage" corresponding to

different cut-off value q. As q increases, the procedure selects fewer inequalities, so the

approximate feasible set will become larger, which is more likely to "cover" the true

feasible set and produce a larger "frequency of coverage". In the numerical experiments,
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Figure 2-3: Correspondence Mapping for Example 10

the "frequency of coverage" is greater than 95% when the cut-off value r7 = 0 (essentially
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Number of experiments (M) 100
Number of events x number of outcomes (d, x d2 ) 15 x 25
Number of inequalities in true model 471
Conservative bound of acceptance rate (1 - a) 0.95

Sample size (n) 500 2000
Average A 0.0710 0.0355

Frequency of Coverage (r = 0) 97% 99%
Avg. number of inequalities selected (q = 0) 184.66 187.42
Max. number of inequalities selected (q = 0) 241 234

Min. number of inequalities selected (q = 0) 145 92

Frequency of Coverage (q = 0.1) 99% 100%

Avg. number of inequalities selected (77 0.1) 32.59 86.02
Max. number of inequalities selected (7 = 0.1) 43 145
Min. number of inequalities selected (q = 0.1) 27 27

Frequency of Coverage (1 = 0.2) 99% 100%

Avg. number of inequalities selected (q = 0.2) 26.73 56.69
Max. number of inequalities selected (r = 0.2) 28 108
Min. number of inequalities selected (q = 0.2) 24 27
Running time (sec/instance) 87 146

Table 2.1: Results of Monte-Carlo Experiments on Example 10

the case of no cut-off). It agrees with the parameter selection a = 0.05 (type 1 error) in

the formula of the penalty term A described in Lemma 17.

We compare the inequalities selection of the integer programming L0 procedure with

the linear programming L1 procedure. Figure 2.4 illustrates the comparisons with respect

to the magnitude of the L1 selector coefficient g(I2) in the optimal solution of problem 7?.

Figure 2.5 illustrates the comparisons with respect to the separation of each inequality,

which is

c(A) := max{v(A) - p (o(A))Iv(A') (;pQo (A')),VA' c S*, A' # A}

Table 2.2 presents the detailed selection results. It can be seen that the L0 selector (the

model to select minimum number of inequalities) is recovered by the L1 selector to a large

extent, while the L1 selector enjoys extremely high computational advantage. Generally,

inequalities selected by the L0 selector have comparatively large L1 coefficients g(fIi),

89



Number of inequalities selected in LO 79
Number of inequalities selected in L' 211

Number of inequalities that LO model selected in L1 , T1 0 79
Number of inequalities that LO model selected in L', 7 = 0.05 78
Number of inequalities that L' model selected in L1, q = 0.10 78

Number of inequalities that L' model selected in L1 , r= 0.15 77
Number of inequalities that LO model selected in L1 , rl= 0.20 72
Running time of L' model (min) 2195
Running time of L1 model (min) 1.45

Table 2.2: Comparisons of LO and L'

which makes it easy to be selected by the L' selector under a reasonable cut-off value

rl. In addition, the L1 selector is able to successfully differentiate inequalities with close

separation values but opposite LO coefficients.

LO and Li selector

J \ ___ Ll-selectei

0 10 200 300

index

400

Figure 2-4: LO versus Ll: with respect to L' Coefficient

We project our L' estimator compared to L0 and the true feasible set onto v1., v2 , V3 , a

three-dimension subspace. Figure 2.6 compares the performance of L0 and L1 selectors:

the L1 selector with r7 = 0.1 is slightly more conservative than the L0 selector. Figure

2.7 shows that the L1 selector covers the true feasible set by a small margin.
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Figure 2-6: L0 versus Ll: Projection onto v1 , v 2 , v3 .

We also demonstrate through a smaller example the sharpness of the relaxing param-

eter A. If (1) the empirical measure t,, is largely mis-specified from the true measure

p, and (2) the true feasible set (of the probability measure) on U is still a subset of
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Figure 2-7: L' versus True Feasible Set: Projection onto vi, v 2 , v3.

the approximate feasible set (of the probability measure) on LI obtained in the selection

procedure, then a type 2 error occurs. The A implied by a limits the magnitude of the

type 1 error, and a sharp A will also limit the occurrences of type 2 errors at the same

time. In another set of Monte-Carlo experiments below, we examine the type 2 error in

the case that the empirical measure f^,, is locally mis-specified.

Example 11 (Monte-Carlo Experiment 2) Figure 2-8 is the correspondence map-

ping for an example with size of 7 x 7.

2 2

U 3 
3

4 4

5 5

6 6

7 7

Figure 2-8: Correspondence Mapping for Example 11

Assuming the true probability measure pt on Y is (0.1, 0.25, 0.2, 0.1, 0.1, 0.2, 0.05), we

perturb pn,o with y(a1, a2 , ... , a7)/V/n, where ai is randomly and uniformly drawn from
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M = 10000, n = 200 y = I y = 2  -y=3 y = 4 y = 5
Type 1 error, 7 = 0 3.64% 3.73% 3.84% 3.85% 4.21%

Type 1 error, ' = 0.1 3.56% 3.55% 3.71% 3.77% 4.07%
Type 2 error, r1 = 0 29.65% 11.18% 6.98% 5.86% 4.58%

Type 2 error, 7 = 0.1 29.88% 11.35% 7.08% 6.04% 4.73%

Table 2.3: Type 1 and Type 2 Errors

{-1, 1}, 1 ( i < 7. So the empirical measure p^ oc p + y(a,. a2 , ... , a7)//n in the case of

mis-specified perturbation.

We run 10000 instances for each setting of perturbation -y and cut-off value 77. Table

2.3 presents the type 1 and type 2 error for each setting. The results show that, while

the type 1 error is less than 0.05 as designed, the type 2 error is also relatively small,

which means the approximate feasible set of probability measure on U does not over

exaggerate the true feasible set. A is sharp and the model has strong power against local

alternatives.

2.6 Conclusion

In this paper we consider estimating the probability measure on the unobservable events

given observations on the outcomes. We try to select the set of minimum number of

inequalities, which is called the Core Determining Class, to describe the feasible set

of target probability measure. We propose a procedure to construct the exact Core

Determining Class when data noise are not taken into consideration. We prove that, if

there is no degeneracy, the Core Determining Class only depends on the structure of the

bipartite Graph, not the probability measure p on the outcomes.

For a general problem of linear inequalities selection under noise, we propose a selec-

tion procedure similar to the Dantzig selector. A formulation is proposed to identify the

importance of each inequality in a feasible set defined by many inequalities constraints.

We describe the exact sparse assumptions and approximate sparse assumptions, which

are are similar to the traditional sparse assumptions in a linear regression environment.
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We prove that the selection procedure has good statistical properties under the sparse

assumptions.

We apply the selection procedure to the Core Determining Class problem and develop

a hybrid selection method combined with a combinatorial algorithm. We prove that the

hybrid selection procedure has better statistical properties due to the structure of the

graph.

We demonstrate the good performance of our selection procedure through several

set of Monte-Carlo experiments. First, the inference based on the selection procedure

has desired size; second, it has power against local alternatives; third, it is relatively

computationally efficient.
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Chapter 3

Summarizing Partial Effects beyond

Averages

In nonlinear models the effects of interest are often functions of the parameters and

data. For example, the conditional choice probabilities and the marginal or partial

effects derived from them in the probit model P(Y = 11X) = <D(X'3) depend on the

probit coefficient 3 and covariates X, where 4 is the standard normal distribution. A

common empirical practice is to report the average effect as a single summary measure

of the heterogeneity in the effects (e.g., Wooldridge (2010, Chap 2)). In this paper we

propose to complement this measure by reporting multiple effects sorted in increasing

order and indexed by a ranking index with respect to the distribution of the covariates in

the part of the population of interest. These sorted effects correspond to quantiles of the

effects and provide a more complete representation of the heterogeneity of the model.

In the probit model, for example, the values of <b(X'/3) sorted in increasing order with

respect to the distribution of X correspond to the quantiles of the conditional choice

probabilities over the entire population. We name these effects as sorted predictive

effects (SPE). We use predictive effects (PE) instead of treatment, partial or marginal

effects because we do not take a stand on whether the source model is descriptive or

structural.

Let X denote a covariate vector, A(X) denote the PE of interest, which might be
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parametrically or nonparametrically specified, p(X) denote the probability measure of

X in the part of the population of interest, and X denote the support of p. The SPE

are obtained by sorting the multivariate function x '-+ A(x) in increasing order with

respect to p. We show in this paper that this multivariate sorting operator is Hadamard

differentiable with respect to the PE function A and the probability measure P at the

regular values of x - A(x) on X. This result allows us to derive the large sample

properties of the empirical SPE, which replace A and 1t by sample analogs, using the

delta method. In particular, we derive a functional central limit theorem and a bootstrap

functional central limit theorem for the empirical SPE. The main requirement of these

theorems is that the empirical A and p also satisfy functional central limit theorems,

which hold for most estimators used in empirical economics under general sampling

conditions. We use the properties of the empirical SPE to construct confidence sets for

the SPE that hold uniformly over quantile indexes.

We illustrate the results of the paper with numerical simulations, and an empirical

application to the effect of fertility on female labor supply following Angrist and Evans

(1998) and Angrist (2001). The numerical simulations show that the large sample prop-

erties provide a good approximation to the behavior of the empirical SPE for sample

sizes that are relevant for practice. The empirical application uses U.S 1980 Census

data to show that there is substantial heterogeneity in the effect of fertility on both the

extensive and the intensive margins of the labor supply of married women. Thus, among

women with at least two children, the negative effect of having a third child on the prob-

ability of labor force participation ranges between 10% and 17%, and the negative effect

on the number of weeks worked ranges between 0 and 19 weeks for working women. We

also found important heterogeneity within subpopulations defined by the fertility third

child indicator, education and husband's income.

Related literature: We extend the analysis of Chernozhukov, Fernandez-Val and

Galichon (2010) for the univariate rearrangement (sorting) operator to the multivariate

case. The multivariate case requires different techniques than the univariate case because

the topological structure of the set of regular values of the PE function x '-+ A(x)

becomes more complex with the dimension of x. In particular, we show that under some
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regularity conditions this set is a (d. - 1)-manifold in R d, where d. is the dimension

of X. The manifold of dimension 0 when d.= 1 is a finite number of points. Sasaki

(2014) used a similar topological analysis to characterize the properties of derivatives of

conditional quantiles in nonseparable models.

Organization of the paper: In section 3.1 we discuss the quantities of interest in

nonlinear models with examples, and introduce the SPE. In section 3.2 we characterize

the analytical properties of the multivariate sorting operator. In section 3.3 we derive the

properties of the empirical SPE in large samples and show how to use these properties

to make inference on the SPE uniformly over quantile indexes. In section 3.4 we discuss

how to incorporate discrete covariates in the PE. In section 3.5 we provide numerical

simulation and empirical results. We give a summary of the main results and conclude

in Section 3.6. We gather the proofs of the main results in the Appendix.

Notation: For a random variable X, X denotes the part of the support of X of

interest, A(x) denotes the probability measure of X over X, and p(x) denotes the em-

pirical probability of X over X. We denote the expectation with respect to the mea-

sure Ft by Ei. We denote the PE as A(x) and the empirical PE as A(x). We denote

VA(x) := DA(x)/&x, the gradient of x '-4 A(x). We also use a A b to denote the mini-

mum of a and b. For a vector v = (v1,..., Vd) E R , I|vHJ denotes the Euclidian norm

of v, that is I|vJ= v'v, where the superscript ' denotes transpose. For a non-negative

integer r and an open set K, the class Cr on K includes the set of r times continuously

differentiable real valued functions on K. The symbol --- + denotes weak convergence

(convergence in distribution), and -+p denotes convergence in probability.

3.1 Sorted Effects in Nonlinear Models

We discuss the objects of interest in nonlinear models and introduce the sorted effects.
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3.1.1 Effects of Interest in Nonlinear Models

We consider a general nonlinear model characterized by a predictive function g(X),
where X is a dr-vector of covariates that can be discrete or continuous, and g can be

parametrically or nonparametrically specified. The vector X might include unobserv-

able components such as unobserved individual heterogeneity or control variables. The

function g usually arises from a model for a response variable Y, which can be discrete

or continuous. We call the function g predictive because the underlying model can be ei-

ther descriptive or structural. For example, in a mean regression model, g(X) = E[YIX]

corresponds to the expectation function of Y conditional on X; in a binary choice model,

g(X) = P[Y = 11X] corresponds to the choice probability of Y = 1 conditional on X; in

a quantile regression model, g(X) = Qy[71X] corresponds to the T-quantile function of

Y conditional on X; and in a structural model, Y = g(X) + E where E[EIZ] = 0 and Z

is a vector of instrumental variables, g corresponds to a structural mean function of Y

conditional on X. In the conditional quantile model the function g should be indexed

by the quantile index T, but we omit this dependence to lighten the notation.

Let X = (T, W), where T is the covariate or treatment of interest, and W is a vector

of control variables. We are interested in the effects of changes in the variable T on the

function g. These effects are usually called partial effects, marginal effects, or treatment

effects. We name them as predictive effects (PE) instead to emphasize that the function

g might or might not have a structural or causal interpretation. If T is discrete, the PE

is

A(X) = A(t, w) = g(ti, W) - g(to, w) (3.1.1)

where t1 and to are two values of T that might depend on t (e.g., to = t and t1 = t + 1).

This PE measures the effect of changing T from to to ti holding W constant at w. If T

is continuous, the PE is

A (x) = A (t, w) = 0tg(t, w), (3.1.2)

where at denotes a/at, the partial derivative with respect to t. This PE measures the

effect of a marginal change of T from the level t holding W constant at w.

We consider the following examples in the empirical application of Section 3.5.
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Example 12 (Probit model) Let Y be a binary response variable such as a female

labor force participation indicator, and X be a vector of covariates related to Y. The

structural function of the probit model is

g(X) = P(Y = lIX) = D(P(X)'#),

where P(X) is a vector of known transformations of X, # is a parameter vector, and

iD is the distribution of the standard normal. If T is a binary variable such as a an

indicator for having 3 children and W is a vector of women characteristics, the PE

A(x) = (P(1, w)'O) - 4(P(O, w)'3)

measures the effect of having a third child on the probability of participation for a woman

with characteristics W = w, i.e. the effect on the extensive margin of the labor supply.

Example 13 (Tobit model) Let Y be a nonnegative response variable such as female

labor supply, and X a vector of covariates related to Y. The structural function of the

tobit type I model is

g(X) = E [Y|X, Y > 0] = P(X)'13 + o-A(P(X)'/ o-),

where P(X) is a vector of known transformations of X, (#, o-) is a parameter vector, D

is the distribution of the standard normal, and A(z) = Oza(z)/I(z) is the inverse Mills

ratio. If T is a binary variable such as a an indicator for having 3 children and W is a

vector of women characteristics, the PE

A(x) = [P(1, w)'O + u-A(P(1, w)'/3/o)] - [P(O, w)'3 + oA(P(0, w)'3/o-)]

measures the effect of having a third child on the labor supply for a woman with charac-

teristics W = w who is working, i.e. the effect on the intensive margin of labor supply.
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3.1.2 Sorted Effects

In Examples 1-2, the PE A(x) is a function of x and therefore can be different for each

women. To summarize this effect in a single measure, a common practice in empirical

economics is to average the PE

EP[A(X)]= A W P W),

where p is the distribution of X in the part of the population of interest. For example,

when y is the distribution on the entire population we obtain the average predictive

effect (APE); whereas if pi is the distribution on a group characterized by X taking

values in some specified set, we obtain a conditional average predictive effect (CAPE).

Averaging, however, masks most the heterogeneity in the PE allowed by a nonlinear

model.

We propose reporting multiple values of the PE sorted in increasing order and indexed

by a ranking index u c [0, 1] with respect to the population of interest. These sorted

effects provide a more complete representation of the heterogeneity in the PE than the

average effects.

Definition 3.1.1 (u-SPE) The u-sorted partial effect with respect to A is

A*(u) := inf {FA,,,(6) ;, u}, u E [0, 1],
6 E R

where FA,, denotes the distribution function of A(X) with respect to the probability

measure At for X.

The u-SPE is the uth-quantile of the PE A(X) when X is distributed according to /1.

As for the average effect, At can be chosen to select the part of the population of interest.

For example, if T is a treatment indicator and the PE is defined as in (3.1.2) with to 0

and t1 = 1, the u-SPE corresponds to the u-quantile of the PE distribution when A is

the distribution of X in the entire population, or to the u-quantile of the PE distribution

of the treated when p is the distribution of X conditional on T = 1.

By considering A*(u) at multiple indexes u, we obtain a one-dimensional represen-
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tation of the heterogeneity of the PE. Accordingly, our object of interest is the SPE-

function

{u'-+A*() :uEU}, Uc (0,1),

where U is the set of indexes of interest. For example, in the empirical application

of Section 3.5 we find substantial heterogeneity in the SPE-function of fertility on the

extensive and intensive margins of the female labor supply, which is missed by traditional

empirical analysis that only reports average effects.

3.2 Sorting Multivariate Functions: Analytical Prop-

erties

To analyze the analytical properties of the SPE-function, it is convenient to treat the

PE as a multivariate real-valued function A : X -+ R, where X C R dx. Let p be

a probability measure on X. The distribution of A with respect to p is the function

FAA : R -+ [0, 1] with

FA,t(6) = p(A < 6) = j 1{A(x) < 6}p(x). (3.2.1)

The SPE-function is

A* : U C [0, 1] - R,

defined at each point as the left-inverse function of FA,,,, i.e.,

A*() := F,1 (a) = inf{FA.,,(6) > u}. (3.2.2)

From this functional perspective, u '-4 A*(u) is the result of applying to x '-4 A(x)

an operator that sorts values in increasing order weighted by P. In this section we

characterize some analytical properties of the distribution function 6 '-+ FA,,(6) and the

sorted function u i-+ A*(u), and derive the functional derivatives of FA,,, and A* with

respect to A and /i.
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3.2.1 Background on Differential Geometry

We recall some definitions from differential geometry that are used in the analysis. For a

continuously differentiable function A : X -+ R defined on an open set X C Rdr, x E X

is a critical point of A, if

VA(x) = 0, (3.2.3)

where VA(x) is the gradient of A(x), otherwise x is a regular point of A. A value

6 is a critical value of A on X, if the set {x E X : A(x) = 6} contains one critical

point. Otherwise 6 is a regular value of A on X. In the multi-dimensional space,

dx > 1, a function A can have continuums of critical points. For example, the function

A(x1, x 2 ) = cos(i x2) has infinitely many critical points on the circle x1 xZ kir

for every non-negative integer k.

We recall now several core concepts related to manifolds from Spivak (1965) and

Munkres (1990).

Definition 3.2.1 (Manifold) Let dk, dx and r be positive integers such that dx1, ; dk.

Suppose that M is a subspace of Rd. that satisfies the following property: for each point

m E M, there is a set V containing m that is open in M, a set IC that is open in Rk,

and a continuous map a, : KC -+ V carrying KC onto V in a one-to-one fashion, such

that: (1) czm is of class Cr on IC, (2) a;1 : V -+ IC is continuous, (3) the Jacobian matrix

of am, Dam(k), has rank dk for each k E 1C. Then M is called a dk-manifold without

boundary in Rdx of class C'. The map an is called a coordinate patch on M about m.

A set of coordinate patches that covers M is called an atlas.

Definition 3.2.2 (Connected Branch) For any subset M of a topological space, if

any two points m1 and m 2 can not be connected via path in M, then we say that m1 and

m 2 are not connected. Otherwise, we say that m1 and m2 are connected. We say that

V c M is a connected branch of M if all points of V are connected to each other and

do not connect to any points in M - V.

Definition 3.2.3 (Volume) For a dx x dk matrix A = (x1, x2, ... , xdk) with xi E Rx,
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1 < i < dk < dx, we define Vol(A) = V/det(A'A), which is the volume of the paral-

lelepiped spanned by x 1 ,x 2 , ... ,Xdk.

The volume measures the amount of mass of a dk-dimensional parallelepiped in IRk.

This concept is essential for integration on the manifold, which we recall here.

Definition 3.2.4 (Integration on a parametrized manifold) Let IC be open in Rdk,

and let a : IC -+ Rdx be of class Cr on IC, r ;, 1. The set M = a(IC) together with the

map a constitute a parametrized dk-manifold without boundary in Rdx of class Cr. Let g

be a real-valued continuous function defined at each point of M. We define the integral

of g over M with respect to volume by

IM g(m)d Vol := j(g o a)(k) Vol(Da(k)), (3.2.4)

provided that the integral exists. Here Da(k) is the Jacobian matrix of the mapping

k - a(k), and Vol(Da(k)) is the volume of matrix Da(k) as defined in Definition

3.2.3.

The above definition coincides with the usual interpretation of integration. The

integral can be extended to manifolds that do not admit a global parametrization a

using the notion of partition of unity. This partition is a set of smooth local functions

defined in a neighborhood of the manifold. The following Lemma shows the existence

of the partition to unity and is proven in Theorem 3.11 in Munkres (1990).

Lemma 20 (Partition to Unity) Let M C Rdx and let d be an open cover of M.

Then, there is a collection P = {pi E Co i E I}, where pi is defined on an open set

containing M for all i e I, with the following properties: (1) For each m E M and

i E I, 0 < pi(m) < 1. (2) For each m E M there is an open set V containing m such

that all but fnitely many pi E P are 0 on V. (3) For each m E M, ZE pi(m) = 1.
(4) For each pi e P there is an open set U E 0, such that supp(pi) C U.

Now we are ready to recall the definition of integration on a manifold.
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Definition 3.2.5 (Integration on a manifold with partition of unity) Let z:

{f :j E J} be an open cover of a dk-manifold without boundary M in Rd of class Cr,

r ;) 1. Suppose there is an coordinate patch aj : V1 c Rdk -_ tj, one-to-one and of class

Cr on V3 for each j E J. Denote ,Cj = a 0(nzg ). Then for a differentiable function g

defined on an open set that contains M, we define the integral of g over M with respect

to volume by:

/ g(m)d Vol : Zj [(pig) o c*](k) Vol(Daj (k)), (3.2.5)

where {pi E C' i E I} is a partition to unity that satisfies the conditions of Lemma

1. Theorem 25.4 in Munkres (1990) shows that the integral is well defined and does not

depend on the choice of cover and partition to unity.

3.2.2 Basic Analytical Properties of Sorted Functions

Recall that the main functions in the analysis are the PE function A(x) and the proba-

bility measure p(x). We make the following technical assumptions about these functions:

S.1. The domain of A of interest, X, is open and its closure X is compact. There

exists an open set B(X) containing X such that x -+ A(x) is C1 on B(X) and x -+(x)

is C0 on B(X).

S.2. For any regular value S of A on X, MA(6) := {x E B(X) : A(x) = 6} has a

finite number of connected branches.

Comment 3.2.1 (Continuous X) S.1 assumes that p is continuous on an open set

that contains X. This restricts X to include only continuos components. We differ the

treatment of discrete components to Section 3.4.

Comment 3.2.2 (Properties of MA(6)) Lemma 28 in the Appendix shows that S.1

and S.2 imply that MA(6) is a (dx - 1)-manifold without boundary in Rdx of class C 1 ,

for any 6 that is a regular value of x '-+ A(x) on X.
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The following lemma establishes the properties of the distribution function 6 '-+

FA,,,(6) and the SPE-function u F-+ A* (u). Define D* as the set of regular values of

x '-+ A(x) on X.

Lemma 21 (Basic Properties of FA,, and A*) Under conditions S.1 and S.2:

1. For any 6 D*, the derivative of FAg(6) with respect to 6, denoted as fA,,(6),
can be expressed as:

fA,p (6) := 06FA,v(Y) = d Vol. (3.2.6)

This integral is well-defined because MA(6) n X is a compact set, and the gradient

x i-* VA(x) is finite and continuous, and bounded away from 0 on MA(j) n X.

2. For any u G {i : A* (a) G D*}, A*(u) has derivative with respect to u:

1
0" A* (u) =- . (3.2.7)

Comment 3.2.3 (Properties of M at the boundary of X) S.1 imposes that the prob-

ability measure x F- p(x) is continuous and vanishes at the boundary of X. To under-

stand the importance of this condition, we consider the following example with dimension

dX = 2:

A(x) = sin(xi x1)

on X = {(x1,x 2) :x + x < w/6}, and x '-+ p(x) is uniform on X. It is easy to see

that 6 = 1/2 is a regular value of A on X. However, FA,,(6) = fx 1{A(x) < 6}d is

not differentiable at 6 = 1/2. The right derivative lime0 + [FN,, (6 + ) - FA,p (6)]/Iq = 0,
whereas the left derivative lim,5, 0 - [FA, (6 + 77) - FA, 1 (6)]/7 = /27r 3 /3. Lemma 21 does

not apply because x -+ p(x) is not continuous on any open set B(X) D X. Technically,

we can replace the continuity of x F- p(x) at the boundary of X by the weaker condition

1{x C &X}p(x)dVol = 0, (3.2.8)
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where OX denotes the boundary of X.

Comment 3.2.4 (Case d. = 1) The derivatives of Lemma 21 coincide with the ex-

pressions for the derivatives of rerrangement-related functions in Proposition 1 of Cher-

nozhukov, Fernandez-Val, and Galichon (2010) when dx = 1. In this case, the manifold

MA(6) has dimension 0, i.e. it is a set of finite number of points.

Comment 3.2.5 (Derivatives over 3 E A(X)) Lemma 21 states that 6 '-+ FA,(6)

(u -+ z*(u)) is C1 on any compact set of D* (the A* pre-image of D* ). D* = A(X) :=

{A(x) : x E X} when the map x -+ A(x) does not have critical points on X. For

example, this holds when the PE A(x) is strictly monotonic in one of the components

of x, say the first component x1 when x = (xi, x 1). In this case, the derivative of

6 - FA,,(6) can be expressed as the Lebesgue integral

fA,/I(6) = fA(x)ix_I (6|x1 )p1-t (X_1),

where p1 is the probability measure of X_ 1, X_ 1 is the support of P_ 1, fA(x)x_ 1 (3|x _1) =

p1-\-1(A 1(6,x_1)jx_1), pi-I is the probability measure of X1 conditional on X_ 1, and

6 -+ A- 1(6, x-1) is the inverse function of x1  - A(xi, x-1). Chernozhukov, Fernandez-

Val, Hoderlein, Holzmann, and Newey (2014) use a similar condition to identify quantile

derivatives in nonseparable panel models.

3.2.3 Functional Derivatives of Sorting-Related Operators

We consider the properties of the distribution function and the SPE-function as func-

tional operators (A, y) - FA,, and (A, p) -+ A*. We show that these operators are

Hadamard differentiable with respect to (A, p). These results are crucial to derive the

limiting distribution of the empirical versions of FA,, and A* in Section 3.3.

We first recall the definition of Hadamard differentiability from van der Vaart and

Wellner (1996).

Definition 3.2.6 (Hadamard Derivative) Suppose the linear spaces F and G are
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equipped with the norms || - ||F and 11 - ||G. A map 0 : FO C F -+ G is called Hadamard-

differentiable at f E FO tangentially to F0 C F if there is a continuous linear map

O&f: F0 -* G such that

#(f + tnhn) - (f) [h], n ÷ o0, (3.2.9)
In

for all converging real sequences In -+ 0 and 11h, - hi --+ 0 such that f + tnh" E FO for

every n, and h E F0 .

Hadamard differentiability of FA,, and A* with respect to A

We first show differentiability with respect to the PE:

Lemma 22 (Hadamard differentiability of A F-a FA,, and A - A* ) Let F denote

the family of all continuously differentiable functions on B(X) equipped with sup-norm,

and F0 denote a set of uniformly bounded continuously differentiable functions on B(X)

equipped with sup-norm. Suppose that S.1-S.2 hold. Then:

(a) For any 6 E D*, the map FA,,(6) : F --+ R is Hadamard-differentiable at A

tangentially to Fo, with derivative defined by

G '-+ o FAp(6) [G] := - d Vol,

as a map from F0 to R.

(b) For any u E {i : A*(ii) E D*}, the map A*(u) : F --+ R is Hadamard-

differentiable at A tangentially to Fo, with derivative

GAFA,,(A* (u)) [G]

fAP(A* (u))

as a map from Fo to R.
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Hadamard differentiability of FA,, and A*, with respect to 1

To show differentiability with respect to the measure p, it is convenient to identify p

with an operator g -+ f, g(x)p(x) mapping Fm to R, where Fm is a subset of all L1-

integrable functions on B(X) uniformly bounded by 1 in terms of absolute value. Define

HO as the set of all bounded linear operators on Fm with the following norm L*":

IHfIL*- = sup IH(f)I.
fEFm,f :0

and define the corresponding distance between two operators H1 and H2 in Ho as 1jH1 -

H211-- = supfEFAff0 IH,(f) - H2(f) . In this setting, p E HO.

Lemma 23 (Hadamard Differentiability of p '-+ FA,,, and y -+ A*(u) ) Suppose that

S.1-S.2 hold. Then,

(a) For any 6 E D*, the map FA,,(6) : HO - R is Hadamard differentiable at p

tangentially to HO, with derivative defined by

OjjFA,,(6)[H] := H(1(A -< 6)), (3.2.10)

as a map from Ho to R.

(b) For any u {ii : A*(ii) E D*}, the map A*(u) : Ho - R is Hadamard differen-

tiable at p tangentially to Ho, with the derivative map defined by

.- H (I(A <- 6))H + 0,A*(u)[H] = A * ( (u)) (3.2.11)

as a map from Ho to R.

Hadamard differentiability of FA,,, and A* with respect to (A, p)

We combine the results of the previous two subsections using the following assumption:

S.3. Let FO denote the space of functions of Lemma 22. There exists a class of

functions F1 defined on B(X) such that:
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(1) Fo C F1 .

(2) For any 6 E D* and H E Ho, H is continuous on FM, (6 ) :{1(A ; 6) : A E F1 }.

Assuming Fm, (6) is p- Donsker.

Let D := F, x Ho and Do := Fo x Ho. The following Lemma gives the main result of

this Section.

Lemma 24 (Hadamard differentiability of (A, [) -+ FA,, and (A, [p) '-* A* ) Suppose

that S.1-S.3 hold.

(a) For any 6 C D*, the map FA,,(6) : D -+ R is Hadamard differentiable at (A, p)

tangentially to Do, with derivative defined by

(G, H) -4 &9,,FA,(6)[G, H] := - IMA
G(x)(x)d Vol+ H(1(A <; y)),
I VA(x)I

as a map from Do to R.

(b) For any u E {It : A*(ii) E Df*}, the map A* (u) : D -+ R is Hadamard differen-

tiable at (,A, ,) tangentially to Do, with derivative map defined by

(G, H) - a,,A*(u) [G, H] := -
oA,,IFA,/(A* (u))[G, H]

3.3 Asymptotic Theory for Empirical SPE

3.3.1 Empirical SPE

In practice, we replace the PE A and the probability measure /p by sample analogs to

construct plug-in estimators of the SPE. Let A(x) and '^(x) be estimators of A(x) and

AI(x) obtained from a sample of size n. The estimator of A* is

A*(u) := A! (u) = in{FA4 (6) ;}
6 .

where FA,',( 6) = E [1{A(X) <, 6}] = FA,,1(6).
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Example 1 (Probit model, cont.)

estimator of the PE is

A(x) = 4D (P(I1, )

Given {(Y, Xj) : 1 < i < n}, a sample of (Y, X), the

- 4D (P(,o w)') ,

where / is the maximum likelihood estimator (MLE) of /3,

E arg max [Y log 4)(P(Xi)'b) + (1 - Y) log 4<(- P(Xi)'b)],

for d= dim P(X). If p is the distribution of X in a part of the population defined

by X E X, for some set X with positive measure, we can estimate it by the empirical

distribution in X

/(x) = 1{X
i=1

Example 2 (Tobit model, cont.)

n

i E X}1{Xi < x}/ 1{Xi C X}.

Given {(Yi, Xi) : i < n}, a sample of (Y, X), the

estimator of the PE is

A(x) = [P(1, w)'/3 + A(P(1, w)'//)] - [P(o, w)'f + 5A(P(O, w)' /3/)]

where (3, 5) is the MLE of (0, o-),

n

(/,&) E arg max E[1{Y = 0} log <b(-P(Xj)'b/s)+1{jY > O}log{s-14D'((YM-P(Xj)'b)/s)}],

for dp = dim P(X). As in Example 1, we can estimate the measure [t using the corre-

sponding empirical distribution.

We use the Hadamard differentiability of the sorting-related operators and the delta

method to derive functional central limit theorems for 6 A F,(6) and u '-+ A*(u) over

regions that exclude the critical values of x '-+ A(x) on X. To describe this results, let

f'(V) denote the set of bounded and measurable functions g : V -+ R.

We consider 3 different cases depending on whether the PE and the probability
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measure are treated as known or unknown.

3.3.2 Case 1: A unknown, 1 known

We first discuss the properties of F,,, and A*, the estimators of FA,, and A* when p is

treated as known. We make the following assumptions about the estimator of the PE:

S.4. The estimator A of A obeys a functional central limit theorem, namely,

an(A - A) - G,, in fi(B(X)),

where a, is a sequence such that a, -+ oo as n -+ oc, and G,, is a tight process that

has uniformly continuous sample paths over B(X) a.s. [CAN WE REPLACE B(X) BY

X HERE?]

S.5. The gradient x i-+ VA(x) exists, is continuous at each x E B(X), and

sup
xEB(X)

VA(x) - VA(x)| -+P 0.

The following result is a corollary of Lemma 22:

Proposition 1 (FCLT for F and a*) Under S.1, S.2, S.4, and S.5, as n - oc:

(a) In f' (V), where V is any compact subset of D*,

afl(FA,(Q) - FA,,(6)) ~- DA FA,,( 6 )[IGo] = - I ()

as a stochastic process indexed by 6 E V.

(b) In tc (Uv), with 1v = {u E U : A* (u) C V},

an(A*(u) - A*(u)) 9tDA*(U)[Go]

(3.3.1)I(x)d Vol=: T(),

Too(A*(u))
= A, - A ,Y

(3.3.2)

as a stochastic process indexed by u E UV.
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Comment 3.3.1 Replacing the expressions of Tx(6) and fA,,(6) in the last limit,

) G. (x)(x) d Vol

O3A*(u)[Goo] -fAA*U)1VIl
M,(A* (W) IIVA,')T dIVol

The limit process is therefore the average of the process Goc(x) on MA A*(u)) with

respect to the density
uV(x) IIlVA(X)I| (3.3.3)

f It(X)d Vol

3.3.3 Case 2: A known, y unknown

We consider the properties of FAf, and A!, the estimators of FA,,, and A* when A is

treated as known. We make the following assumptions about f, the estimator of the

measure I:

S.6. The function x -+ f(x) is a measure over X obeying in f (V),

L 1{A(x) < 6}b.(A(x) - p(x)) Hoo(6), (3.3.4)

as an stochastic process indexed by 6 E V, where V is any compact subset of D*, and b,

is a sequence such that b, -+ oc as n -÷ o.

This assumption is satisfied by most of the estimators used in practice. For example,

when f is the empirical measure for the entire population from a random sample, b" =

V/fi and H(6) := B,(1{A < 6}), where B,, is a p-Brownian Bridge, i.e. a Gaussian

process with zero mean and covariance function (gi, g2) -+ f gig 2 dp - f gidu f g2 dy.

The following result is a corollary of Lemma 23:

Proposition 2 (FCLT for FAA and A!) Under S.1,S.2, S.3, and S.6, as n -a oc:

(a) In VO(V), where V is any compact subset of D*,

bn(FA,4 (6) - FA,p(6)) - OpFA,,(6)[Hoc] = Hoc()
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as a stochastic process indexed by 6 E V.

(b) In tV(Uv), with Uv = {u E U : A* (u) E V},

bn(A jU) - A* (U)) -- + 9,A*(u)[HOO] co(*u)

as a stochastic process indexed by u E Uv.

3.3.4 Case 3: A unknown, y unknown

We combine the results of Propositions 1 and 2 to deal with the most empirically relevant

case where both the PE and the probability measure are estimated. Let rn := an A bn,

the slowest of the rates of convergence of A and p^. Then, rS/aA - sA E [0, 1] and

rn/bn -+ s/, E [0,1], where sA = 0 when bn = o(an) and s, = 0 when an = o(bn).

The following result is a corollary of Lemma 24.

Theorem 7 (FCLT for FA,2 and 3*!) Suppose that S.1-S.6 hold, A E F1 with proba-

bility approaching 1, and FMy3) is p-Donsker for any 6 E T*. Then, as n -* 00,

(a) In t'(V), where V is any compact subset of D*,

( -Fa,,()) aIa,(FA,/(S)[saGOO, sH,] = sAT,,(6) + s,H,(S), (3.3.5)

as a stochastic process indexed by 6 E V, where T,,(6) is defined in Proposition 1.

(b) In t (Uv), with Uv {u E U : A* (u) E V},

sAT,,,(A*(u)) + s,H,,(A*(U))
rn( (u)-A* (u)) -4 a,, A*(u)[sAG sHo] = - s,,,,, =:(c) Z )

A ,Z(A*(())
(3.3.6)

as a stochastic process indexed by u E UV.

Comment 3.3.2 (Known A or known p) Proposition 1 can be seen a special case of

Theorem 7 with r, = an and s, = 0. Similarly, Proposition 2 can be seen a special case
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of Theorem 7 with r, = b, and sA = 0. Accordingly, we shall not distinguish between

these cases in the rest of paper.

Comment 3.3.3 (Critical Values of A) Theorem 7 applies to regular values 6 -

l*. If A* (u) is in a neighborhood of a critical value, the finite-sample distribution

of rn(A*(u) - A*(u)) can be very different from the asymptotic distribution Z,(u.). We

illustrate this point in Section 3.5 through numerical simulations. The limit distribu-

tion of rn(A*(u) - A*(u)) local to a critical value is an interesting problem for further

investigation.

Comment 3.3.4 (Distribution of Z,) The limit Z, is usually a Gaussian process

with zero mean and a covariance function that simplifies because T(6) and H"(J) are

independent. This is the case, for example, when A is some characteristic of the condi-

tional distribution of an outcome variable Y given X, which is estimated by MLE, OLS,

GMM or quantile regression methods on a random sample of (Y, X), and the measure p

is estimated by the empirical distribution of X on the random sample.

Comment 3.3.5 (Donsker condition) The assumption that FM,6) is p-Donsker holds

under standard conditions if the PE is parametrically estimated as in Examples 12 and

13. It also holds for many semiparametric and nonparametric estimators such as least

squares, GMM, quantile regression, local kernel regression, and global series regression

under appropriate conditions.

3.3.5 Inference on SPE

We can construct asymptotically valid confidence interval for the SPE using the func-

tional central limit theorems for A*. We consider pointwise intervals that cover the SPE

at a specified value of u, and uniform bands that cover the SPE-function simultaneously

over a region of values of u. The next two results are corollaries of Theorem 7.
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Corollary 3 (Pointwise Inference on SPE) Under the assumptions of Theorem 7,
for any u E {ii E U: A*(,a) C D*} and 0 < a < 1,

P A* (u) E A* (u) - ZO,1-a(u)/rn, A*u(U) + Zo,1-,(u)/rn -+ 1 - Z,

where Zx,,(u) is the a-quantile of IZ,(u)| for the random variable Z,(u) defined in

Theorem 7.

Corollary 4 (Uniform Inference on SPE-function) Let V be any compact set of

D* and Uv {u E U : A*(u) E V}. Under the assumptions of Theorem 7, for any

0 < < < 1,

P{A~u) M &u - Z3CiC(Uv)/r,A (u -Zci(Uv) /rn]:uCv-+1

where Zw,a(Uv) is the ce-quantile of Zx(Uv) := supueu, |Z,(u)| for the process U '

Zw(u) defined in Theorem 7.

Comment 3.3.6 Note that Corollary 3 is a special case of Corollary 4 when the set Uv

is a singleton, so we shall not consider separately pointwise inference in the rest of the

paper.

3.3.6 Bootstrap Inference

The critical value Z,, 1-(Uv) to construct the confidence band of Corollary 4 can be hard

to obtain in practice. In principle one can simulate the process Z (Uv), but it might

be difficult to numerically locate and parametrize the manifold MA(6), and to evaluate

integrals on MA(6). This creates a real challenge to implement our inference meth-

ods. To deal with this challenge we propose using exchangeable bootstrap to compute

critical values (Praestgaard and Wellner (1993) and van der Vaart and Wellner (1996)),
instead of simulation. We show that the bootstrap law is consistent to approximate the

distribution of the limit process Z, of Theorem 7.

We start describing the algorithm to obtain the bootstrap law of Zw(Uv). Let
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(wi, .. ., -Wn) denote the bootstrap weights, which are nonnegative random variables inde-

pendent from the data. For example, (wi, .. , Wn) is multinomial vector with dimension

n and probabilities (1/n,..., 1/n) in the empirical bootstrap.

Algorithm 4 (Bootstrap law of Zo(Uv)) 1. Draw a realization of the bootstrap

weights (Wi, .. n)

2. For each u E tv, compute A*(u) = A* (u), a bootstrap draw of A* (u) A (u),

where A and A are the bootstrap versions of 3 and f that use (W1,... ,wn) as

sampling weights in the computation of the estimators.

3. Repeat steps (1)-(2) B times, where B is a large number. For example B = 500.

4. Use the empirical distribution of supucu, rIA*t(u)- A* (u)I across the S repetitions

to approximate the bootstrap law of Z,(Uv) = supuI Z,(u)|.

To state the bootstrap validity result formally, we follow the notation and definitions

in van der Vaart and Wellner (1996). Let Dn denote the data vector and let B, =

(w1,... ,w) be the vector of bootstrap weights. Consider a random element Z =

Zn(D, Bs) in a normed space ID. We say that the bootstrap law of Z, consistently

estimates the law of some tight random element Z, and write Z ~_p ZO if

sup I EBj(n) - Eph(Zo)I -+p 0,
hEBL1 (D)

where BL1 (D) denotes the space of functions with Lipschitz norm at most 1; EBn denotes

the conditional expectation with respect to Bn given the data D,; Ep denotes the con-

ditional expectation with respect to P, the distribution of the data Dn; and -+p denotes

convergence in (outer) probability.

We assume that the bootstrap weights satisfy:

S.7. B, = (w1,... , wn) is an exchangeable, nonnegative random vector, which is

independent of the data D,,, such that for some c > 0,

n

sup EP 2+E < oc, n- ( E i - 0J)2 _PIW-P1
n
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where o = n-' i=1 .1

The next result is a consequence of the functional delta method for the exchangeable

bootstrap.

Theorem 8 (Bootstrap FCLT for A*) Let V be any compact set of D* and Uv =

{u E U A*(u) C V}. Suppose that the assumptions of Theorem 7 and S.7 hold,

an(A - A) -÷p G, in foo(B(X)), and fv 1{A(x) ( S}b,([t(x) - *(x)) -p H,(6) in

t(V). Then,

rn(A* - A*) -p Zo in f (Uv).

3.4 Discrete variables

We consider the case where the covariate X includes discrete components. Without

lost of generality we assume that the first component of X is discrete and the rest are

continuous. Accordingly, we do the partition X = (D, C). Let XcId denote the support

of C conditional on D = d, Xd denote the support of D, Pcid the probability measure of

C conditional on D = d, and ud(d) = P(D = d). We continue denoting by dx = dim(X)

and by D* the set of regular values of A on X := Udexd{d} X XcI.

We adjust S.1-S.6 to hold conditionally at each value of the discrete covariate.

S.1'. For any d E Xd, the set Xcid is open and its closure XcId is compact. There

exists an open set B(Xid) containing Xcid such that c a A(d, c) is C1 on B(Xid) and

c F4 Ipcld(c) is C0 on B(Xeld).

S.2'. For any d E Xd and any regular value 3 of A on Xscd, MAIAd() := {c E B(XId):

A(d, c) = 6} is either a (dx - 2)- manifold without boundary on Rd.-- of class C1 with

finite number of connected branches or an empty set. MA(6) := UdexdMAIMG) is also

a (dx - 2)- manifold without boundary on Rdx-1 of class C1 or an empty set.

S.3'. Let 8(X) := UdEXd{d} x B(XId), Fo denote a set of uniformly bounded con-

'A sequence of random variables w1 W2,, is exchangeable if for any finite permutation a of the
indices 1, 2, ..., n the joint distribution of the permuted sequence Wa(1), W( 2 ), .. - (n) is the same as the
joint distribution of the original sequence.
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tinuously differentiable functions on B(X) equipped with sup-norm, and Fm denote the

set of all L-integrable functions on B(X) uniformly bounded by 1 in terms of absolute

value. Suppose there exists a class of functions F1 defined on B(X) such that:

(1) FO C F,.

(2) Given 6 D* , for any H E HO, H is continuous on Fm,() := {1(A < 6) : A E

F 1}, where HO is the set of all bounded linear operators on Fm equipped with the norm

L* : IHIL*oo = suPfEFmo j H(f).

S.4'. The estimator , of A obeys a functional central limit theorem, namely,

an(A - A) " G,, in ( (B(X)),

where an is a sequence such that an -+ oc as n -+ oc, and Gc is a tight process that

has uniformly continuous sample paths over B(X) a.s.

S.5'. For any d E XAd, the gradient with respect to c, c F-+ Vca(d, c), exists, is

continuous at each c E B(Xcid), and

sup lIVca(dc) - VcA(d, c)1 -+p 0.
(d,c)EB(X)

S.6'. The functions d -* A(d) and c '-+ kcld(c) are measures over Xd and XcId obeying

in x (V),

1{A(d, c) < 6}cjd(c) - [ A(d)
dEXd . C d

1{A(d, c) }PcId(c)1

as an stochastic process indexed by 3 E V, where V is any compact subset of D*, b" is

a sequence such that bn -+ oc as n -+ oc, and

Hco(6) = E3 Hd,O(d)
dEXd jX Id

1{A(d, c) < 6}Pcid(c) + p(d)Hcjd,.(1{A 6}),
dEXd

where Hd,,c and Heid,ac are random elements.
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Comment 3.4.1 (S.6') The estimator of the measure Y is P :Pd x IcId. For example,

when p^ is the empirical measure for the entire population from a random sample, b. =

.fri, Hdx is a multivariate normal distribution with zero mean and covariance matrix

with typical (i,j)-element equal to 1(i = j)Pd(i) - p(i)Pd(j), and Hlad,, is a Pejd-

Brownian Bridge.

The next lemma generalizes Lemmas 21 and 24 to the case where X include discrete

components.

Lemma 25 (Properties of FA,, and A* with discrete X) Suppose that S.1 'and S.2'

hold. Then, 6 -+ FA,,(6) is differentiable at any 6 E D*, with derivative function fA,,1(6 )

defined as:

fAF((6) := SFA,1(6) = z Pd(d) fcId(c) d Vol.
dEXd JM~jd(3 IVcA(d, c)I

Define D F1 x Ho and Do := Fo x Ho. Under S.1 '-S.3',

(1) For any 6 E D*, the map FA,,,(6) : D - R is Hadamard differentiable at (A, p)

tangentially to Do, with derivative defined by:

(G, H) F-+ OA,jFA, (6) [G, H] := - d(d) G(d, c)lcd(C) d Vol
dGXd JM~Id(6) IIVA(d, c) 11

+ Z H(d) J1{A(d, c) < 6}PcId(C)

+ Z pId(d)Hcd(1{A < 61,
dEXd

as a map from Do to R, where H (Hd, He d) is defined as a bounded functional operator

which maps g E L2 (X) to:

H(g) := E Hd(d) g(d, c)PcId(c) E Pd(d)H 1 d (g(d, c)),
dcXd Id dEXd

where d '-+ He(d) is a linear function and g '-+ Held(g) is a bounded linear operator.
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(2) For any u E {ii : *() E D*}, the map A*(u) : D -+ R is Hadamard differen-

tiable at (A, p) tangentially to Do, with derivative defined by:

OFA,,(A* (u))[G, H]
(G, H) - OA,,A*(u)[G, H] :,-

as a map from Do to R.

We are now ready to derive a functional central limit theorem for the estimator of the

SPE-function. As in Theorem 7, let r,: a, A be, the slowest of the rates of convergence

of A and ', where r,/a, - sA E [0, 1] and rn/bn -+ s,, E [0, 1].

Theorem 9 (FCLT for A*(u) with discrete X) Suppose that S.1'-S.6' hold, A E

F1 with probability approaching 1, and FMj6) is p-Donsker for any 6 E D*. In e (Uv),

with Uv = {u E U : A*,(u) E V},

r,,(A*(u) - A*(u)) - &aA*(u)[sAG., sH], (3.4.1)

as a stochastic process indexed by u E Uv.

Comment 3.4.2 (Bootstrap FCLT for A (u) with discrete X) The exchangeable

bootstrap law is consistent to approximate the distribution of the limit process in (3.4.1)

by the same argument as in Theorem 8, replacing S.1-S.6 by S.1'-S.6'. Accordingly, we

do not repeat the statement here.

3.5 Numerical Examples

3.5.1 Monte-Carlo Simulations

We evaluate the accuracy of the asymptotic approximations to the distribution of the

empirical SPE in small samples using numerical simulations. In particular, we compare

pointwise 95% confidence intervals for the SPE based on the asymptotic and exact dis-

tributions of the empirical SPE. The exact distribution is approximated numerically by
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simulation. The asymptotic distribution is obtained analytically from the CLT of The-

orem 7, and approximated by bootstrap using Theorem 8. We consider two simulation

designs where the limit process in Theorem 7 has a convenient closed-form analytical

expression. The designs differ on whether the PE-function x '-+ A(x) has critical points

or not. We hold fix the values of the covariate vector X in all the calculations, and

accordingly we treat the measure [t as known. For the bootstrap inference, we use em-

pirical bootstrap with B = 3, 000 repetitions. All the results are based on S = 3, 000

Monte Carlo simulations with a sample size n = 1, 000.

Example 14 (No critical points) We consider the PE-function

A(x) = x 1 + x 2 , x = (x 1 , x 2 ),

with covariate vector X uniformly distributed in X = (-1,1) x (-1, 1). The correspond-

ing SPE is

A* (u) = 2(V2 - 1)1(u <; 1/2) + 2(1 - V2(1 - u))1(u > 1/2),

where 1(-) denotes the indicator function, and we use that A(X) has a triangular distri-

bution with parameters (-2 0, 2). Figure 3-1 plots x '-+ A(x) on X, and u - A*(u) on

(0,1). Here we see that x -+ A(x) does not have critical values, and that u ' A* (u) is

a smooth function.

To obtain an analytical expression of the limit Z,(u) of Theorem 7, we make the

following assumption on the distribution of the estimator of the PE:

v6(a(x) - A(x)) ~ G.(x) = A(x)Z,

where Z is a standard normal random variable independent of (X 1, X2 ). This assumption

is analytically convenient because after some calculations we find that

so that *Au) ~1 N(A*(u), A*(u)2 /n), where ~ denotes asymptotic approximation to the
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A(x)

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3-1: PE-function and SPE-function in Design 1. Left: PE function x '-+ A(x).
Right: SPE function u -4 A*(u).
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Table 3.1: Monte-Carlo example 14, n = 1000, Monte-Carlo rounds = 3000,bootstrap
rounds=3000.

quantile u = 0.1 u = 0.2 u = 0.3 u = 0.4 u = 0.5

theoretical st.d 0.0444 0.0410 0.0383 0.0362 0.0350
monte-carlo st.d 0.0441 0.0408 0.0383 0.0359 0.0360
rej. rate(T) 0.050 0.057 0.050 0.051 0.062
rej. rate(B) 0.054 0.037 0.085 0.070 0.044

quantile u = 0.6 u = 0.7 u = 0.8 u = 0.9

theoretical st.d 0.0377 0.0411 0.0456 0.0529
monte-carlo st.d 0.0381 0.0417 0.0467 0.0536
rej. rate(T) 0.053 0.058 0.054 0.054
rej. rate(B) 0.049 0.046 0.062 0.050

exact distribution.

Table 3.1 compares the standard deviation of the empirical SPE in samples of size

n = 1,000 with the asymptotic standard deviation A*,(u)|/x/i at the quantile indexes

u - {0.1, 0.2, ... , 0.9}. The asymptotic approximation is very close to the exact standard

deviation. We also find that 95% confidence intervals constructed using the asymptotic

approximation, *(u) 1.96|A*(u)|/v P, have coverage probabilities close to the nominal

level at all quantiles. These asymptotic confidence intervals are not feasible in general,

because A* (u) is unknown or more generally it is not possible to characterize analytically

the distribution of Z,(u). In practice we propose to approximate this distribution by

bootstrap. The table also shows that the empirical coverages of bootstrap 95% confidence

intervals are close to their nominal levels at all quantiles. In this case, empirical bootstrap

is equivalent to redraw the realizations of the empirical PE A(x) with replacement. Figure

3-2 presents confidence bands of estimated sort-curve using theoretical, monte-carlo and

bootstrapped bands. These bands are close to each other with indistinguishable differences.

Example 15 (Critical points) We consider the PE-function

A(x) = x 3 - 3x,
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Figure 3-2: Confidence bands for SPE in Design 1. Left:
Simulation finite-sample Bounds. Right: Bootstrap bands.

Asymptotic bands. Center:

with covariate X uniformly distributed in X = (-3, 3). Figure 3-3 plots x F- A(x) on X,

and u ' A* (u) on (0,1).2 Here we see that x '-+ A(x) has two critical points at x = -1

and x = 1 with corresponding critical values at 6 = 2 and 6 = -2. The SPE-function

u F-+ A*(u) has two kinks at u = 1/6 and u = 5/6, the A* pre-images of the critical

values.

Fig. 3-3 suggests the convergence of the empirical SPE is going to be irregular at

the kinks, and might be slow in neighborhoods around the kinks. To show more evidence

about these convergence issues, we compare the exact and asymptotic distribution of the

empirical SPE. To obtain these distributions, we make a convenient assumption on the

distribution of the estimator of the PE:

l'n(a(x) -- A(x)) ~ G.(x) = (x/2)2 Z,

where Z is a standard normal random variable independent of X.

Table 3.2 compares the standard deviation of the empirical SPE in samples of size n =

1,000 with the asymptotic standard deviation at the quantile indexes u E {0.1, 0.2,.. . , 0.9}.

2We obtain u '-+ A*(u) analytically using the characterization of Chernozhukov, Fernandez-Val, and

Galichon (2010) for the univariate case.
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-3 -2 -1 0 1 2 3 0.0 0.2 0.4 0.6 0.8 1.0

Figure 3-3: PE-function and SPE-function in Design 2. Left: PE function x -+ A(x).

Right: SPE function u -+ A*(u).
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Table 3.2: Monte-Carlo example 15, n = 1000, Monte-Carlo rounds 3000,bootstrap
rounds=3000.

quantile u = 0.1 u = 0.2 u = 0.3 u = 0.4 u = 0.5

theoretical st.d 0.820 0.0268 0.0852 0.129 0.144
monte-carlo st.d 0.799 0.0336 0.0847 0.123 0.140
rej. rate(T) 0.0440 0.0677 0.0497 0.0393 0.0490
rej. rate(B) 0.036 0.081 0.068 0.043 0.068

quantile u = 0.6 u = 0.7 u = 0.8 u = 0.9

theoretical st.d 0.130 0.0860 0.0275 0.818
monte-carlo st.d 0.128 0.0872 0.0304 0.822
rej. rate(T) 0.0517 0.0587 0.0797 0.0577
rej. rate(B) 0.081 0.056 0.011 0.11

The asymptotic approximation is close to the exact standard deviation with the largest

differences occurring at u = 0.2 and u = 0.8, the quantiles that are closer to the kink

points at 1/6 and 5/6. We also find that pointwise 95% confidence intervals constructed

using the asymptotic distribution and empirical bootstrap have coverage probabilities close

to the nominal level, with the largest distortions occurring at the quantiles u = 0.2 and

u = 0.8. Interestingly, while the asymptotic approximation undercovers the SPE at the

quantiles close to the kink points, the bootstrap approximation is conservative.

3.5.2 Empirical Example: Women Labor Supply and the Num-

ber of Children

In this subsection, we follow Angrist and Evans (1998) and Angrist (2001) to examine

how women labor supply is affected by the number of children. We employ 1980 Census

Public Use Micro Samples (PUMS). Following the estimation strategies in the above two

papers, we consider apply sorting technique discussed in this paper. We provide graphs

on Sorted partial effects on number of children on women labor supply verse traditional

mean average partial effect. The basic model consists information about whether a
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Figure 3-4: Confidence bands for SPE in Design 2. Left:
Simulation finite-sample Bounds. Right: Bootstrap bands.

female is working, how

kids, age of first birth,
income, as well as a set

SI ,

2

00 0.2 0.4 06 0,8 1.0

quantile

Asymptotic bands. Center:

many weeks she work per year, whether she has three or more

gender of the first and the second child, family income, father

of demographic dummies.

Angrist (2001) considers different models estimating the partial effect of having more

than two children on women labor based on different variables. We replicate the results

and apply sorting to probit and tobit models. In addition, we also add interaction terms

to make the function form more flexible.

More specifically, consider the following model:

worlkedmj = 1(a1D + 31Xi + y1XjDj + (ii > 0),

weeksmi = a2 Dj + 0 2Xi + y2 XjD + 62i1workedmi > 0.

workedmi indicates for employment status, weeksmi indicates for the number of

working weeks per year, and Di indicates for having at least 3 kids.

We use probit model to estimate the effect of Di on E[Pr(workedmi = 1IDj, Xi)],

i.e., E[Pr(workedmi = 1Di = 1, X)] - E[Pr(workedmi = lDi = 0, Xe)]. We use tobit
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Figure 3-5: The probability of working changing from having less than 3 children to at

least 3 children (Pr(Ei workedmi = 1, Xj) - Pr(Ei workedmi = 0, Xi)): Black-APE,

Red-Sorted curve of partial effects, Blue-confidence bands for Rearranged curve. Top

graph: Basic probit model. Bottom graph: Probit model with interaction terms of Di

and Xi. Blue bands are 95% pointwise confidence bands.

model to estimate the effect of Di on E[weeksmilDi = 1. Xj], i.e., E[weeksmilDi =

1, Xj] - E[weeksmiIDi = 0, Xi]. The Xi vector includes other covariates. The results

are presented below in Figures 3-5 and 3-6.

We can observe that there exists heterogeneity of individual partial effects in both

probit and tobit models. In Figure 3-5, there exists 55% of the population with effects

higher than APE. The confidence bands shows that there exists 35% of the population

with partial effect significantly larger than APE. In the lower tail, there exists 10% of

the population much that are much more likely to drop the work force when the number

of children increases to be ;> 3. In Figure 3-6, similar patterns can be seen that the

lower tail of the population tended to reduce more work hours compared to the rest of

the population.
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quantile

Figure 3-6: The number of hours of working per week changing from having more than
2 children to less than or equal to 2 children (E[weeksmiIDi = 1, Xj - E[weeksmiDi =
0, Xi]):Black-APE, Red-Sorted curve of partial effects, Blue-confidence bands for Rear-
ranged curve. Left: Basic tobit model. Right: Tobit model with interaction terms of Di
and Xi. Blue bands are 95% pointwise confidence bands.
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Figure 3-7: The probability of working changing from having less than 3 children to at

least 3 children (Pr(workedmiIDi = 1, X ) - Pr(workedmiI Di = 0, Xi)): Probit model

with interaction terms. Left:Women's education less than high school. Middle: Women's

education equals to high school. Right: Women's education above high school. Blue

bands are 95% pointwise confidence bands.

The results in the above figures draw a similar, but more detailed picture as Angrist

and Evans (1998). In table 9 of Angrist and Evans (1998), they consider to evaluate

APEs of the subgroups based on woman's education level. Low education group consists

women with less than high school education, median education group consists women

with high school education, and high education group consists women with more than

high school education, e.g., college and above. Thus, we further apply our technique to

investigate these subgroups. We find an decreasing level of APE, similar to Angrist and

Evans (1998). However, we find more heterogeneity at quantiles of the partial effects by

comparing the three different groups. In Figures 3-7, thought extreme tails are similar,

the APE is pushed down primarily by the population in mid-quantiles. In Figures 3-8,

The drop of working hours in upper tails is primarily between low education and median

education groups, while the lower tail is primarily changed between median education

and high education groups.
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Figure 3-8: The number of hours of working per week changing from having more than
2 children to less than or equal to 2 children (E[weeksmiIDi = 1, X] - E[weeksmi Di =
0, Xi]), conditional on subgroups:Tobit model with interaction terms. Left:Women's
education less than high school. Middle: Women's education equals to high school.
Right: Women's education above high school. Blue bands are 95% pointwise confidence
bands.
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3.6 Conclusion

The sorting of partial effects is a new method to report empirical results as well as a new

equipment to analyze casual effect in each quantile in the entire population, compare

to the traditional mean-variance analysis. This paper develops the large sample asymp-

totic property of the general multi-dimensional rearrangment operator. We establishes

asymptotical property of the sorting operator via functional delta method. The validity

of the theorems relies only on a set of weak regularity assumptions on the behavior of

the estimated function A, the distribution of explanatory variables x, and the shape of

the boundary of the domain X. These assumptions are reasonable for most cases in

econometric analysis. Furthermore, we provide theorems for inference. Although the

numerical calculation of the confidence bands can be difficult, we prove and demon-

strate that bootstrap confidence bands work as well as the ideal confidence bands. We

provide simulation and empirical results to illustrate how our technique can be applied

in practice and why it may be better than the traditional way of reporting empirical

results.
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Appendix A

Proofs

A.1 Proofs in Chapter 1

A.1.1 Proofs in Section 1.4

Proof of Lemma 1

By assumption, for any v E Rd, |Iv1I 2 = 1, IIGo(#o)vIK) Ko. If m = O(exp(n)), by

statement (2) and (4) of C.5, 1IA*I 1 KK + o( lo"dl) ) is bounded from the above.

Thus, vGo(3o)'Q 1Go(#o)v = (A*)'Go(/o)v < IIA*Ij1IIGo(o)vIK < Ko llA*I1 is bounded

from the above. That is to say, the maximal eigenvalue of Go(Oo)'QoU 1 Go (o) is bounded

from the above.

Proof of Theorem 1

To prove Theorem 1, 1 follow the strategy in BCCH (2012). The proof of this theorem is

divided into three steps. The first step provides proof for (1.4.4) and (1.4.5). The second

step provides proof for consistency of 3 L. The third step proves (1.4.6) and (1.4.7).

Step 1: In this step, we establish bounds for A(l) - A(l), 1 < I m.
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For any vector x E R"', define norm | -in of x as jxf1,4 : 1= j IxjIYj 1, and

define semi-norm || - 1
2,n of x as x'Qx. For any c > 0 and set T c {1., 2, ..., n}, define

the following quantities:

S116112
K (T) := min 2, (A.1.1)

K2, (T) := min 2', (A.1.2)

where s = ITI.

Lemma 3 of Bickel, Ritov and Tsybakov (2009) proves that bounds on K(s, Q) imply a

lower bound for ,,c(T) and Kc,(T). More specifically, for any positive integer si, Bickel,

Ritov and Tsybakov (2009) shows that rc(T)2 , K'(S1, Q)(1 __ , n(s 1'2). For s sn

and si = s log(n), the Assumption C.6 implies that

Kc(T)2 K

which is bounded from below away from 0 as n approaches infinity. So Ke,,(T)2 ) Kc(T)

> ( -6 12)) which verifies that Ke,(T) 2 is bounded from below if s <

Sn.

Let 6 := A -A. For A, let T be the set of indices of non-zero components of A. Below

I establish non-asymptotic bounds for the solution to P.

Lemma 26 (Bounds for LASSO Selector A) Given v C Rd, suppose A is the sparse

vector to be estimated and A is the solution to the convex optimization problem P. Let

T be the set of indices of non-zero components in A. Assume that conditions C.1-C.3

and C.6-C.8 hold. Denote i Then, with probability at lease 1 - a,,,

116111,n < 0l o4|1,n, (A. 1.3)
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and
2to(2 +c)

116112,n -, VS . (A.1.4)

Proof of Lemma 26

By definition, A is the minimizer of the problem P. Therefore, n(I||TII1, 1-|TcII1,n) >
Q(A) - Q(A).

Meanwhile, Q(A) - Q(A) can be decomposed as:

Q(A) - Q(A) = - 6'QA +' - (') > l -S(A)I 1611. (A.1.5)
2 2A15

By Assumption C.7, P([ max, jm I) 1 - an.

By inequality (A.1.5), |LAIJ1,n- IIAI i,4 IQ(A)-()I 1 |SI1ooI6I11 - |6|1l,n.

By setting t = (1+)to, we know that (1+C)JISTI1,n -(1+) 6 T 11 -> -I 6T1|1,n- I T cII1,n.

Thus,

11|6T I|I1,n <- e]o 1I1,

Restarting with (A.1.5), again -L(ITlI1,n -6T cI I1,n) 1 1161 2 - tor1,n - K'TjII1,n.

Therefore, 2|I| 2 <on116T11n - .114c1 ,n to(2-I-T) 116 1 12,2 . Thus,

< 2to(2 + c)V's
nx.,n(T)

In the Lemma 26, I establish bounds for A - A given a vector v E Rd. To obtain

a just identified system of moment conditions, we can consider repeating the selection

procedure (1.4.4) for v = ei, e2 , ..., ed. Define 6(l) := A(1) - A(1), To,, = {j I(l)j = 0}

and To := U1s<gaTO,1.

For any 1 < 1 < d, by Lemma 26, 116(l)1I 2 ,1 1 2,. Also, t = 1(1 - 4md)
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log( 7 d ). Combining these inequalities, we immediately obtain (1.4.5):

I<l<,d

se log( 4 d)

n

w here K ' : = .(2_F
A (s)(TO)

For (1.4.4), by conclusions in Lemma 26, II6Tc(l)II1,n -<- C1I6T(l)111,n. Therefore

KA b KIaK )||1 A* ~ )|1n ( $ |~)|,.
The inequality (1.4.5) holds with constant

Step 2: In this step, we prove consistency of /k.

Let = ( (1), A(2), ... ,A(d)), X = (X(1), X(2), ... ,(d)) and A

By definition A A - A.

The GMM estimator &3 has the following property:

A'En[g(Zi,,3L)] = 0.

We prove that )L is consistent. Let

d

47/)= (()'En[g(Zi, /3)])2,
1=1

d

qn() (1~)'En [9(Zi, 0)])2,

qn,o(/3) = E ((l)'E-[g(Zi, 3)])2

1=1

d

qn(p) = (*()1IE[g(Zi, O3)])2
1=1

and
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Consider the following decomposition:

4,(n) - qri,o(3) = 4.(8) - q,,(0) + qg(0) - qn,o(0). (A.1.7)

For the first term 4(3) - q(o) of (A.1.7) can be bounded as follows:

(A.1.8)14n(0) - qn, (0) 1 I EZ [{ - A(I))'g(Zi, /1)}
2 ]1

21 $ _1 En [{(A() - A (l))'g(Zi, A()}{(l)g(Zi, 3)}]I.

In (A.1.8), the important component (A(l) - A(l))g(Zi,3) goes to 0 since |IA(l) -

A(l)11 1 --+ 0 fast enough. More specifically, I(A(l)-(1))'g(Zj, /)1 I (A(l)-(1))'g(Z, /3o)I+
By Holder's inequality, (A(l) - A(l))'g(Zi,0)j <

IIA(l) - ()l 11 maxlsj<m gj(Z<,!3o)I = n log(m)

1/3 - 30112 Km,nd(E), where d(E) is the diameter

KB,) . And Km,, l(A(1) - A (1))' 1

of E which is a finite constant. So

K ,nj|(A(1) - Al ))'l I I - 0112 = OP( nog(m)K )

Therefore, I(A(l) - A(l))'g(Zi, P) = OP ((KB,l V

Using the bounds obtained above for (A(l) -A(l))g(Z,/3)1, in (A.1.8), the fist com-

ponent can be bounded by:

d

I Z [(1) - (l))'g(Zi, /3)}2]1 = OP

The second component can be bounded by:

21 E[{(() - A(l))'g(Zi, /)}{(l)'g(Z, )}]

d

S21 ( maX I (1) - l))'g(Zi, 3)1En[ I(l)'g(Z , )111

where E.[ I(1)'g(Zi, /)1] En[iA(l)'g(Zi, 0) 1] + 1II(l) 11d(E)Km,n.
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By statement (4) of Assumption C.2,

z 1(l))jj.jEn[lgj(Zi, #30)j] < jl(l))jl jEP,[jgj(Zi, #0)j2] < K|IA(l) l1.
1,<jm 1<j,<m

Therefore,

d

21EI max |(A(/) - =(0))'g(Z,, /) E,[]AQ)'g(Zi, /)111 =

Combining the bounds obtained above,

Mn(O) - qn(O)

KMn slog(m)

Op(B V Km) s log(m))= 0 (K ,n n u,)

for any # E e.

For the second component q(3) - qn,o(/) in (A.1.7), we need to apply the ULLN

for arrays. The statement (1) of Assumption C.2 implies that for any / and 0' c e,
AI'g(Z, /) - A'g(Z, /')l - |IA|1K(Z)II# - /'112, where E[ IAI11K(Z)] < KKu < oo. So by

ULLN for arrays,

maX IE[Ag(Z, 3)] - E[Ag(Z. )]I -> 0

uniformly for any 6 E 8.

Thus, 14n(/)-qn,o(/()1 ->p 0 uniformly =for / E G. So by construction qn,o(/ 3 ) +p 0,

since 'n(/) = 0 and (KBJ, V KMn) s/ log(m) , 0. In addition, by Assumption C.5,

|I(l) - A*(1)|11 = o( "o, ), for all 1 1 j d. Hence,

jA(l)'E[g(Z, /3)] - A*(l)E[g(Z, /3)1 =(A(1) - A*())'{E[g(Z,)] - E[g(Z, 0)]}|

< I(1) - A*(1)jid(6)E[Km(Z)].

So by assumption that log(rn) 3 a 0, q*(/3) - q,,o(/3) -÷ 0 uniformly in /3 E e. Hence,

q*(L) -+, 0. It follows immediately that together with statement (5) of Assumption

C.2, jj/L - 301|2 ,p 0.
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Step 3: In this step, we prove asymptotic properties of /L.

By Assumption C.2, the local expansion can be expanded as:

-A'E [g(Zi, /3o)] A'{E.[g(Zi, 3L)] - En[g(Zi, 0o)} (A.1.9)

On the left hand side of (A.1.9),

A'E[g(Zi, 3o)] = A'E[g(Zi, /o)] + (A - A)'EI[g(Zi, /3o)]. (A.1.10)

By Assumption C.2 and C.4, the first component of (A.1.10) consists the mean of a

d x 1 random vector with bounded variance. So by the array Linderberg Feller Central

limit theorem,

V/-n5'En[g(Zi, #0)] -+ N(0, I'QoI),

where X'QoX = (Go(0o)'Q- 1Go(3o))- 1 + o( "g(M)) which is nearly efficient.

The second component of (A.1.10) consists the bias comming from the correlation

of the estimated optimal combination matrix A and En[g(Z, 3o)]. By (1.4.5), for all

1 < 1 < d, with probability increasing to one, IIA(l) - A(l)IKi K I s 1og(4m/a,)

To obtain an upper bound for max,(j<m Es[g(Zi, /3)], we need to use the moderate-

deviation theory of self-normalized vectors. For detailed theory and bounds, we refer to

Shao and Zhou (2003) and De La Pena et. al.(2009). If statement (3) of Assumption

C.2 holds, Lemma 5 of BCCH provides a useful result to bound maxl<jm E,[g(Z , #o)].

Lemma 27 Suppose that for each 1 < j m, Rj := Z<j<m , where Uij are inde-
Zl<j-m U?'

pendent random variables across i with mean 0. If E[|U jI3] - 1, then with ) 0,

there exists a sequence 1,, -* oc such that for any a small enough,

a A
P( max Rj< ( <D-1(1 - )) ;; 1 - a(1 + -), (A. 1.11)

1,<j<,m 2m in

where A is an absolute constant.
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Hence, apply Lemma 27 to our problem, with probability increasing to one,

max E, [g (Zi, /o)]1 - ? max E[jgj(Z,/3o)j 2] = O( log(m)

Therefore, the second component of (A.1.10) can be bounded by:

; C s2 lo:m .log(m) - C" g )
n V n n

with C being some generic constant.

On the right hand side of (A.1.9), we have the following decomposition:

A{En[g(Z, /3L)] - En[g(Z, o)]} = {En[Ag(Z, A3)] - E.[Ag(Z, 3o)]} (A.1.12)

+( - A){E,[g(Z, /3L)I - E7,[g(Z, 0)]}.

For the first component of (A.1.12), {E,[Ig(Z, /L)]--En[Xg(Z, 0o)]} = En[I a(Z, 3*)](L-

/3o) for some 3* = !3o + O(1 /L - 0112).

We consider apply ULLN to L(Z, 0*). Let F,:={g(Z, 2) - (Z, Oo)10 E e} be a

class of functions indicated by elements in 6. So I (Z, f3)- L (Z, 3o)I -;; KG(Z)d())K.

By statement (1) of Assumption C.2, E[KG(Z)] <; K, so the ULLN for arrays holds:

lim sup IEn[f(Z)] - E[f(Z)11 2 -÷ 0 almost surely.
n f Cn

Therefore, {En[X'g(Z, 3L)] - En[X'g(Z, o)]} = (X'Go(o) + op(1))(/L - #3)-

For the second component of (A.1.12), (A -X){Eg(Z, L)] -E,[g(Z. io)1} (; max1,1 d I 1A(l) -

A(l)II1KMl,n IL - 30112 = nV(KM, s"1o(m))

By assumption, KAI,n s2 log(m) _ 0, so the right hand side of (A.1.9) can be written
V n

as:

(A'Go(0o) + op(1))(3L - N).
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It is also easy to verify that by statement (3) of Assumption C.5, I'Go(0o) = Go(3o) 1Go(3o)+

o( log(m)

Combining the asymptotic approximation of two sides in (A.1.9), we get:

IIL - 0 112 = 0 ( V
I on (

solog(m)
n

In addition, if 08lg~) o(l), then s"tg(') = o( ).Therefore,n n Ti7

vrn( L - 3o) -d N(O, Vn), (A.1.13)

with V, - (Go(3o)'Qo 1Go(3o)) 1 -+ 0.

Proof of Lemma 2

Here we need a set of results similar to Lemma 7-Lemma 9 stated in BCCH. For any

1 = 1,2, ... , d, we define rin = Ti\T, where T is the set of indices of non-zero components

in A(l). We need to prove that rn = 0,(sn). In fact we only need to prove that

rin = Op(ITI|).

Notice that the first order condition gives:

S(A(l))j = stgn(A)yj-,sign() 3 'n-

for any j E i\Ti.
A Threor,
B B

Therefore,

to
(-

For simplicity, for two vectors A and B with same length, we let

2' ti\T
12 5(A())

2 | 112 + 11 112. (A.1.14)
2' t 1\T
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The first component of the above expression is bounded by:

S(A(l)) to
|| ||2 1

with probability at least 1 - an -e.

For the second term,

n(A(I ) - (2))1
1 1 1 2 < -|{ A(l) - (1)}j \ ||2.

Define UT1 = T U T.

For any j E T\T, f(A(1) -A(I)j := Zj ft, Qjk( (1)k -- (- k). Therefore, {f(A() -

(1))}i,\T= {= UT1((l)UT -A()uT)} ',, which only depends on the subset UT with

size at most fil + sn.

Next, we need a simple fact from Lemma 9 of BCCH. Namely, the function #(s, A/I)

is sub-additive, i.e., #(si, M) + #(s 2 , M) > #(si + s 2 , M), for si and S2 being positive

integers. This implies that for any real number q > 1 and positive integer s, O([sq, Al]) <,

[q]#q(s, M).

II{Q(A(l) - A(l))}t 1  11|2 < I{QuT1(A(l)uj'i - A(l)urI)1 2 = I I QT (A(l)UT, -- A()uTI) 2 ,n.

We know that 11{T 1 ( l u, - l)vT,12 = - KA) 2,- with

probability at least 1 - an - (n (in fact this result holds at the same events when

II S112 vFn, therefore we don't need to correct the size of the probability to

let both situation hold simultaneously). Therefore,

VSnKAt
I{jQ(A() - A(l))}ij,\,r,1|2 < |{jjQT 1(A()ri, - A(1)urj}}|| 2 < an #(sn + n f2).

Combining the bounds we obtained above, we get the following bounds as we review

146



(A.1.14):

nl an

Consequently, ri ( s,(KA +E )2 (sn + rh, Q). Denote Co := (KN )22- Let C* be

an absolute constant > 2Co. Let p* = C*sn. Therefore, r(p*1, Q) i2 as n -+ o,

as we assume that #(sn log(n), Q) < K2. Therefore, fnl Cosn#([p*], Q)[sj"7 l _

COsnK 2 (1 + sj2"7) _ COsnK2 + - Hence, rni < (2COK2 + i)sn.

Step (2) is derived based on results stated in (1.4.5). It is quite obvious that A(l)j is

non-zero if j E T when the assumption - 2 IM1IM I o- holds.

Proof of Theorem 2

Based on Lemma 2, we have that T| Csn for some absolute constant C with proba-

bility at least 1 - an - En. So At has eigenvalues bounded from above and away from

0.

Consider Ap(l) := A G()ej. Therefore Q(Ap) < Q(A(l)) by construction. Denote

6p(l) := At(l) - A(l). Therefore,

1 -6p(1)'S(Z(1)) = -6i(I)'S(Aj) - 6t(1)'Q(A(1) - A(1)).

By the fact that 116ipj lo Csn and Assumption C.7, for the first component -61;(l)'S(Aj),

we have
t bt Cs

| 1 -o ( ,) I < -|| 6t(1) 1||1,n <, - ||6tl )|12,n.-n ns1

For the second component, &((l)'n(A(l) -A(l)), we have

16p(1)'f2(A() - A(l))1 - 1 6I (l)112,n| II(l) - A(l)11 2,n < KA n 116P(l)112,n.

nnThe two bounds above implies that |I6j(l)I|2,fl ( K(l)tV, where k(l) := 2 (b/ + KA)

is an absolute constant. Therefore, it follows that |I| p(1) - A(1)II 2,n (K(l) +Ka .
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It follows that

|Ag(l) - A(l)1I 2 ,n (K(l) + K\) t .s,
aA(l) - ()112 ieult

K(mal + S,,, A) KI n

and by Cauchy-Schwarz inequality

|IIg (l) - A(l)Ii 6 r~NT + sn| IIj (l) - A(l)11 2

So we have established similar bounds for Aji(I)
Theorem 1.

((l ) + KA )v/C + t sn

Ki n

- I() as we did for A(1) - A(1) in

Since all the arguments in step 2 and step 3 in Theorem 1 can be carried over to

this theorem, based on Aj(1) - A(1) instead of A(l) - A(l), so the conclusion stated in

Theorem 2 holds due to similar argument illustrated in the proof of Theorem 1.

Proof of Corollary 1

This results is based on the fact that To c T and ITI = O(sn) with probability at least

1 - OZ - Cn. The derivation is similar to Step 2 and 3 in Theorem 1 except that we do

not pay additional log(m) is the bounds stated in (1.4.6). I abbreviate the proof here.

A.1.2 Proofs in Section 1.5

Proof of Lemma 4

Denote wi = g(Z,, /) - g(Z, 3 o). By Assumption C.2, maxgjy; ,lij I <_ KG,n -10- 012-

Consider the sparse eigenvalue of Q = E,[g(Zj, 3)g(Zj, 3)']. We compare ( with

o = E,[g(Zi, o)g(Zi, 3o)']. For any 116112 = 1 and 11 611o s, log(n),

6'A6 - 6'Qo6 = 2E,[(6'wj)(g(Z, 3o)'6)] + En[(3'wi)2 ]. (A.1.15)
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By Cauchy-Schwarz inequality,

E. [(6'W,) (g (Zi,.S)o] E.[(W6)2] 3 ,((i 0)'6)2] i ~ lgng)E[(W,6)2]i

By Holder-inequality with the conditions 11611o ( s, log(n) and sa log(n)K, =

op(n 2p),

En[(W,6)2] En[(l lWl lo)J|6JJ1)2]

En[K,|jj- 2o l1s. log(n)|16112] = K s-2log(n)op(-2) o P(1).

Therefore,

0(log(s)sn, 0 - 0 ) = max11o -12 =1, 116110 <Sn 109 (n)
l6'Q6 - 6'o3

Ks, Log(n) 0.
n2pp

If in addition Assumption C.9 holds that: i, K(Cs, Q0 ) < /(Cs, A0) , r2, for any 6

on the unit sphere and 116o1I I Cso,

6'Q3 = i'QoS+ (6'Q6 - 6'Q06) = d'Qo'o + (1).

Let c be a small absolute constant such that c < ,. So with probability going to one,2

0 < r11,o - c < K(sn log(n), Q) < O(se log(n), f) < K2,0 + C.

Proof of Lemma 5

The score of objective function Q at A can be expanded as: S(A) = (n - Qo)A- (G(3) -

Go(/3o)) +Qo(- A*). Let T be the set of indices of non-zero components of A. Therefore,

for each j E {1, 2, ... , M},

Sj = 1 k (En[gj (Zi, )gA(Zi, )] -E[g (Zi, 3o)gA(Zi, 3o)]) -(En [ [0(Zi,
kET

/)v] (A.1.16)
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-E[a s(Zi, /o)v])+ Z QO,jk(Ak - A*).

There are three components in the above equation A.1.16):

(1)YkCT -k(En[gi (Zi, )gA(Zi, E[gj (Zi, o)gk(Zi, 0)]);

(2) EFn [ Lg-(Zi, E)[] - E[ (Zi, #~]

(3) E1<km QO, 3k(k - A*)-

Step 1: Consider the upper bound of the first component in equation (A.1.16).

Obviously,

II(n - Qo)AHc0 <_ II(n - Qo)AIcjo + II(Ao - Qo)AIJOO. (A.1.17)

The first part of the decomposition (A.1.17) is Ii(n - Ao)AIlI,.

Similar to the calculation in Lemma 4, we could prove that:

|j(n - Ao)11 00 is bounded by:

I(n - Qo)A||ac A I|(Q - Qo)I|IAII I, (1 + E)2KM,7,1i/3 - fl0112iiA111,

where 1 > c > 0 be a small absolute constant and II(f2 -o)|I := maxijs<mj,1ksm IQlk

no~jk I

The second part of the decomposition (A.1.17) is II(no -Qo) o,. To obtain an upper

bound for this term, again we need to use the moderate-deviation theory from Lemma

13.

By assumption {(g(Zj, o)g(Z, #o)'-Qo)}j are independent random variables across

i with mean 0. It is easy to show that

1E[I{(g(Zi, /o)g(Zi, o)' - Qo)A}1 3] < max E[lgj(Zi,/30)j]jjAI3 Kg"(K) 3 < 0.

Thus, for n large enough, there exists a term qn := - 0 such that Pr({(Qo -1o)A} I <

E.[((g(Zi, 3o)g(Zi, 3o) - Qo)'A)']]B-1(1 - g), for alli ( j < m) ;; 1 - a(1 + qn).
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However, E.[({(g(Zi, /3o)g(Z, #o)' - Qo) }j)2] can not be used in practice to bound

I{(Qo - Qo)A} I because Q0 is unknown. Instead, we establish bounds using the empirical

variance E,[({(g(Zj, /o)g(Zj, Oo)' -- o)A} 3 ) 2 ]. Let U 3 be {(g(Zi., 3o)g(Z, /3o)' - Q0)A}.

Denote U = E,[U]. We apply a modified version of Lemma 13 to bound maxljcm U.
Let z3  U -~ 1 be the infeasible Z- statistic. Lemma 13 estab-

{E.[({(g(Zi,#3o)g(Zi,#o)'-QO)A}j)2]}II
lishes bounds for the Z- statistic.

Consider the t-statistic tj := V/i-, where suj := Se(Uj) := { ijm(Uj -
U)2} . Notice that there is a simple relationship between tj and zj:

in-z2

Thus, P(t)3 I)) P(z3  2 for any x. Let x =I<-1(1- '-), so by assumption

X'= O(log(m)3 ) o(n). Therefore, P(tj > x) = P(z3 - x(7j21)i) > (1 - rj)P(z3

<D-1(1 - ')) > 1 - - rl as n -+ oc for any small number 77 > 0.

Now replace Ujj with {(g(Zi, o)g(Z, ,3o)' - Q0)A},. So

n S 71s = E n[(E gk(Zi, 3o)g3 (Zi, 3o)Ak) 2] - [E n( Z gk(Zi, /3o)g, (Zi, 0o)Ak)1 2.
k=1 k=1

Therefore, Pr( )2] ]- 1 1(1 ),
{E-.[(r-mg 9kg(Zi,00)gj(Zi,00)Ak)2-E. [F_ 19k(Zi,,30)gj (Zi,00)Ak]) 47

for all 1 j m) > 1 - 2 + (1).

(2) The second component in (A.1.16) can be decomposed as:

En[0 (Zi, /3)v] - E[& 3 (Zi, /o)v] = (En[( 9' (Zi, )v)] - En[( 9g(Zi, #o)v)]) (A.1.18)
0/30,3 0/30/

+(En[( (Zi, 03)v)] - E[( 9 (Zi, 3o)v)]).

By Lemma 3, the first part of (A.1.18) is bounded by KG 11 - 00 12. The second part of

(A.1.18) can be bounded by En [I (Zi, No)|2]-En[g (Zi, 130)]2 using the same strategy as
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described in the previous component. Thus, Pr(yF l[(
{E.[(dg(Zj, o)v)2]-[E.( I(Zijo) v)]217

-1(1 - g-),for all 1 j m; m) > 1- + o(1).

(3) The third component Qo(I - A*) is non-stochastic constant. It equals to 0 if A*

obeys exact sparse assumption C.4.

The penalty - proposed in Lemma 5 is a combination of the upper bounds described

in steps (a), (b) and (c). Hence,

P( max ( <b (1 - .)) 1 - a, + o(1). (A.1.19)
1 ij<m 7j 4m.

Proof of Corollary 2

By Assumption C.5, we know that A - A*I1 = o,( ). Therefore, 11Qo(A - A*)| -+ 0.
If(KG,nVKMA,n)

2

nIf-1 log(M) -+ 0, the first term stated in 1.5.1 would also converge to 0. Hence, if

assumption C.8 holds, the penalties -J is uniformly converging to the infeasible penalties

'yj stated in Lemma 5, for all 1 ; j ; m.

Hence, there exists a sequence c' - 0 such that with probability at least 1 - an -

S,(A) to
max ;

1<j<m 'Yj n

Proof of Lemma 6

Lemma 13 allows us to bound the maxima of a vector with length m of empirical averages

of mean zero i.i.d data. For I = 1, 2, ... , d, let 'y(1) be the vector of penalties for v = el,

and S'(A) be the score function of !A'QA - A'G(/)el.

To bound the maxima of for all 1 <; j < m and 1 < I 1 d, we can simply

consider the 1 x md vector S* := (S1 (A)', S 2(A)'.. . ( S(A)'). So we can apply Lemma 13

to S* and the uniform upper bound for , will be wlb- 1 (1 - 4d), with probability

at least 1 - an - o(1).
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Proof of Lemma 7

The proof of this Lemma is quite straight forward. Statement (2) in Assumption C.11

guarantees that both '4 and -/7 are bounded from below by KG, 1 ( j ( m. Assumption

C.5 and statement (1) in Assumption C.11 guarantees that both ' and are bounded

from the above.

Proof of Lemma 8

(1) For the refined penalty -j, denote

q := {En[( gE~ (Zi, 3)g (Z, ) Ak) 2] - [E(
1(k<m

En [( 9 (Zi, 30)g9 (Zi,
k ETh

E gk(Zi,m)gj(Zi, j)I )]2
1<,km

03o)1k) 2] - [En (E g (Zi, 0o)g, (Zi, 80)Ak)] 2

kETo

and

([En (ZVi, )V] 2} -{En [&g (Zi, /o)v 2]

It is easy to rewrite wq and wf as:

Wu = {En[( E
1 k<m

- En[( gE k(Zi, 3o)g (Zi, 130)Xk) 2]1
kETO

-{[En( Y i ZO)gj(Zi, !o)Ak)] 2 - [En(E gk(Zi, o)g3(Zi,#3o)Ik)]21,
1 k<m kET

and

W= {Eg[( (Zi, /)v)2]-En[( (Zi, /o)v)2]}-{ [En (Zi, )V]2-[En (Z,
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First,

{EI[( > gk(Zi, 3)g (Zi, 3)Ak) 2 ] - E[(Z gk(Zi, 3O)gj(Z, #0)A)]}
1(k<m kCTo

= Er[{ gk(Zh, /)gj(Zh, /)Ak - g(Zi, o)g2(Z ,3o)k}]
1 (k<rm

gk (Zi, No)g(Zi, N3o)k'I]}-2En[{ E gk(Zi,m)gj(Z ) k-gk(Zi, 0)gj(Zi,00)1}2]{
1<,k<m 1<k'(,m

;E[{ >13 gk(Zi, 3)gj(Zi, 3 )Ak - gk(Zi, 3o)gj(Zi, 3o)Ak} 2]
1(k (m

+2E,[{ >3 gk(Zz,/3)gj(Zi/)Ak-g(Zi,30)gy(Zi,f30)k}
1(km

> kgk'(Zi, 3o)g3 (Zi, /3o)Ak'} 2 ]
1k'<m

The key component E 1< <m{gZk(Zi, /)j(Zi, j)A k-gk(Zi, fo)g.(Z , 13o)Ak} is bounded

by:

> l{gJk(Zi, g3)g(Zi. 3)Ak - gk(Zi, f3O) g(Zi, / 3o)Ak
1 km

+ > {g (Zi, 3)gJ (Zi,/)
1(k m

1 >13 g(Zi, /0)gj (Zi, 0)(Ak
1k m

- gk(Zi, #o)g (Zi, 301)}1k

<>1E
1 <k<m

gI(Zi, 0o)g (Zi, o)1 Ak - k I+ (2Km,nI-- 30112 + K 2I0- 1121 I112.

By assumption Km, IF3 -0112 -+, 0, so K2, 1[3--3o112 IAII 1 is smaller than Km,, 1113 -

/30112 as n -+ oc with probability going to one. So there exists a small 1 > c > 0 such

that 2K.riII/3 -0/0112+ K211,7L - /ol1I < (2 + c)Km,l / - #0112 with probability going

to one.

Therefore, E[{IEI?{ ,n g(Zi, /o)g 7 (Zi -o)Ak - gA(Zi, -o)g 2 (Zi /30)k} 2]

< E1kk<m En[IAk - AkI Ik' - kl IIA(Zi ,)g30(Zi, N)gj(Zi,-0)21]

SMax 1( <j r En [gi(Zi,#o4 1 -- k k , k- kg -- I x, k K --- 1l
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Similarly, Ell[(E1<,k'-Ir gk'(Zi, No)gj (Zi, No) k')2] -< Kg|| |I.I I

So by the fact that (x + y)2 < 2x 2 + 2y2 , we get: Enf[{E1<k<m gk(Zi, /)gj(Zi, )k -

k(Zi, 3o)g(Zi, o)Ak }2]

2 En[{ZIlk<mgk(Z , 0o)gj(Zi, /o)Zk - gk(Z , o)g3(Zi, 0o)Ak} 2]

+En{E<sk<m9k(Zi, /3)g,(Zi, 3) - gk(Zi, 130)g 3(Zi, 3o)}Ak} 21

( K||A- X 1 + 2(2 + C)2KM|| 2 #0||11

By assumption, Km,, 11,3 - 30112 -4 0, || - A1l1 ->, 0, |1||11 < Ku, therefore

Wq = En[( E gk(Zi., 3)gj(Zi, 3)Zk) 2] - En[(E gk(Zi,/3o)gj(Zi, N3o)Ak) 2] _, 0.
1 k<m kETo

Second,

W9 = { E,,[( E A VZi, )gj(Zi, ) k)2] - En [ ( g9kZi,00)g9i Zi, 00) k )2]
15k<m kETo

-{f[En ( gk(Z,/3O)yj(Zi,#O)Ak)]2 - [En(E gk(Zi,!O)gj(Zi,f30)Ak)]2,
1 k<m kETo

and

( 9J (Zi, 0o)v)2]}8/3 {[E (Zj),]2-[E (Zi, )7]21

Statement (1) of Assumption C.2 implies that maxij I(- (Zi, #o)v)1 K,,.. Therefore,

En[( (Zi, /3)' - En[ (Z, o)v)2] =En [(0 (Zi, /)V -09/39

+2En[{ (Zi, )v -8/3

8/3(Zi )

(Zi, 3o)v} (Zi, Oo)v].

KGl| -1o + 2En[KG(Z)]KMn - f 2.
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And similarly,

{[]ErnJ 9(Zi, )v]2 _ []En fJ.(Zi,3O)V]21 K<|21-1oj I +E[KG(Z)]Kln|I3--3oII 2 .

By the LLN for arrays, EL[KGp(Z) E [KG(Z)] < K. Therefore, by assumption

KG,n IF - 00112 -+p 0 and Km, f IF3 - t3012 -pO. Thus, w p 0.

Notice the upper bounds that we derived for wq and wq are uniform in j, therefore

W9 and w G converges to 0 w.p. - 1 uniformly. Hence -- j yjuniformly, i.e., there

exists a constant K,, -+ 0 such that maxsjm K -<I K,

By assumption C.7, -y j is bounded from above and below. Suppose a < yj ( b for

all 1 < j _ m. Therefore, 1-- 1+ . a -YRa

(2) The proof is similar to the argument presented in (1). I abbreviate the proof

here.

Proof of Theorem 3

In fact it is suffice to show that a similar version of Assumption C.7 holds, since the

Proof of Theorem 1 and Theorem 2 only relies on Assumption C.7 for the penalty terms

together with other technical conditions. The high level Assumptions C.6 are verified by

the Assumptions C.1-C.3, C.5, C.9-C.11 and the growing conditions (1) and (2)stated

in Theorem 3.
R

By Lemma 8, the R (or C) satisfies LL -+ 1 uniformly for j 1, 2, ... , n. From now

on, we only mention -y R since all logics for -yR can be carried over to yC. So Assumption

C.8 also holds as n approaches infinity.

Also by Lemma 8, there exists a sequence of positive numbers E' converging to 0

such that with probability at least ;; 1 - e', 1+' 1+ , where we know that c

is a small but fixed positive number. Therefore, since we know that with probability at

least 1 - an - (n, we have:

m S(A)j to
max R -

1 jsmn
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Then, with probability at least 1 - a, - En -C'

S(A) to
max+ "Rl$<i<,m flR n

Denote t' = t(1 + ). So for c < 0.2, we know that t > t'O(1 + '). Then all the

derivations in Theorem 1 and Theorem 2 follows with the constants constructed with ,

not e.

Proof of Lemma 9

Suppose there are A' and A 2 such that IIA'lli < 11A211 1. Let A1 = 11(Al) and A 2  11(A 2 )

to be the solutions of the problem P with penalties terms constructed by the parameters

A' and A2

Denote q = {maxijym(Engj(Zi, o)' - [Engj(Zi, 30)2]2)12. q is a positive real num-

ber bounded from the above. So <7(A) = qIIAI1+{EnI(G(Zi, /)v)1 2 - [En(G(Z , )v)j]2}

Consider the objective function O(A) = jA'AA - A'G(,3)v.

By definition, Q(A 1)+qI1AlI 1 | Al l1+fEn I(G(Zi, i)v); 2 [En(G(Z ,)V)]2 1

Q(A 2) + qIIA 11111A211 + {EnI(G(Zi, )V)j12 - [En(G(Z, 3)v)j]2}2 11 2I 1,

and Q(A2)+qIIA211 1112|11+{En I(G(Zi, i)'v) 12 - [En(G(Zi, f)v)j]2 2 11 211 1  )+

qIIA211 1
1 Ii + {EnI(G(Zi, )v)j 2 - [En(G(Zi, 3)v)j]2}2 1Ii.

Adding the above two inequalities together, we obtain the following inequality:

|A'11 11|1IA'L + 11A21 II 2I 11 A211 111A 111 1 + II + || 1| 211.

Since we assume 11A 1111 < 11A 2111, it is easy to see that iiA11i1 ;> IIA211. That is to say,

the function H2 : x '-+ IIII(x)Ili is a non-negative, decreasing function mapping from

[0, oc) to [0, oc). Therefore, 112 only has one unique fixed point e- [0, +oo), that is xc.

157



E' Z./3)V)j 12 _[E. (G(Z./3)V)j] 2 } 2

It is suffice to choose > max, EG , 2d ( q , since 0 would be

the solution to P under the penalty terms with fI|I1I = in (1.5.6). So the fixed point

must lies between 1 2(xo) and H 2(xi). The binomial search algorithm finds the fixed

point within logarithm time of .
77

A.1.3 Proof of Lemma 10 and Lemma 11

The proofs of Lemma 10 and Lemma 11 are based on Theorem 3. By the properties of

jC and R, it is easy to verify that AC(l) and AR(1) are consistent estimators of A(/) in

L1 norm, for all 1 I < d:

(1) For the empirical coarse penalty ZC, since we know that by Theorem 3, |1H(A) -
2l=O( Sog(")) is converging to 0, then 112 (11|11 1 ) - 1|11 1 - 0. By Lemma 9, we

know that H2 is a decreasing function.

The fixed point xC must satisfy that H 2 (1111 1) - XC I11 1I or 1:ll1 < x0 <

I1 2 (IlAlli). In both cases we have xc - lAlli -+ 0. Then it follows that 'j defined by

I A|II = XC are valid for all 1 < j < m, i.e., they satisfy the results stated in Lemma 8.

If follows that I Ac - -, 0.

(2) For the empirical refined penalty ,', since the initial value is consistent in L1

distance, we would have that for any p ;i 0, A(P) -All1 --+ 0, followed by the results

stated in Theorem 3. Therefore, IAR __ Al1 __ 0.

Therefore, the corresponding penalties using A' and A' are valid, i.e., the results

stated in Lemma 8 holds. Then the logic of Theorem 3 leads all results stated in Lemma

10 and Lemma 11.
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A.2 Proofs in Chapter 2

A.2.1 Proofs in Section 2.1

Proof of Lemma 13

For any A S , suppose (1) 3A 1 , A2 c A, A 1 , A 2 # 0, A 1 U A 2 = A, such that ,c(Ai) n

(p(A2) = 0; or (2)]u E U, such that u A, and ,o(u) c o(A).

If (1) is true, v" (A) = vm(A 1 U A 2 ) = v(Ai) + v(A 2) < p(o(A1)) + pI(p(A 2)) =

p(p(A1) U p(A 2))= p( c(A1 U A2 )) = p(p(A)), so A Su.

If (2) is true, v0(A) < v(A U {}) < pt(y'(A U {u})) = pt(p(A)), so A 0 Su.

Therefore, by definition 2.2.2, Su c Su.

VA S., assuming elements in S,, are denoted as Ai, 1 < i < ISul. For sim-

plicity of notations, we can consider Ai as a vector in {0, I}di. By definition, 17r >

0, s.t.(1) Er 1 riAi >, A, (2) E r[t( o(Aj)) p(o(A)), where r := jSul. Without loss

of generality, assume 7ri > 0, i = 1, 2, ... , r, otherwise we would simply omit the Ai which

corresponds to iri = 0 in the sum above. Such an assumption does not affect our analysis

below.

Since E 7riAi > A, so

Zi= 1 7ri1(Aj n -1 (y) $ 0) > 1(A n so- 1(y) = 0), for any y E Y.

By Galichon and Henry (2011), y is sub-modular. Therefore,

Z wrip(V(Aj)) = E ZYe ErI 7rj(y)1(Aj n V- 1(y) # 0) Z,,yp(y)1(A n V-1(y))
pi(V( A)).

But we know that E 7rjp(c(Aj)) < 1i(p(A)), by construction. Hence the inequality

above holds as an equality, i.e., for any y E Y, E' 7vil(A n p-1 (y) z) = 1(A n V 1 (y)).

But we know that 7 _i rAj > A. Therefore, for any y E Y, p1(y) n A c Ai or

,- 1(y) n A n Ai = 0 for all i.

We prove the above argument by contradiction. Assuming that there exists a y E Y
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and 1 < i < r such that o-1 (y)n ADAj $ , and r 1 (y)n A C Aj. Therefore, there exists

u $ u' such that u, a' EE y-, u c An A', u' E A but u' Aj. Thus,

r= 7rAj1(Aj n y- 1 (y) 7) i + Ej w3TrAj1(Aj n p-1 (y) > 7rw + EZirOl(u' E

Aj) =r + E= 7 1(u' E A1 ) > 7i + 1 > 1 = I(A n --1(y)), contradiction!

Thus, for any y E Y, p 1 (y) n A c Ai or p"(y) n A n Ai = 0 for all i.

The above statement immediately implies the following conclusion:

If A is self-connected, then for any Aj, either A n A = 0 or Ai n A A. By the

equality, for any Aj, there exists no y E yp(Aj) such that y 0 4(A). So p(A) = V(A).

Since A # Aj, so there exists u E U such that V(u) c ;(A), but a 0 A. So A 0 S'.

Otherwise A is not self-connected, so A 0 S'. Therefore, in both cases, A S'. This

means that Su D S'. Combining with the result that S' D S", Su = S,,.

Proof of Lemma 14 is similar to that of Lemma 13.

Proof of Theorem 4

S* is the minimum set of inequalities which contains all information if condition v(U) = 1
holds. Therefore, S* c Su, S* c S-1. So S* c S,, n S-1.

For any A c SunS- 1, suppose A S*. So there exists ri > 0 and Ai E S*, 1 < i r,

and ro > 0, such that:

(1)EZ i7rjAj - 7ro > A.

(2) 1 <1i 7rip(o(Aj)) - ro > p(p(A)).

By the similar argument of Lemma 13, all the inequalities in (2) must holds as an

equality. Again, for any y E Y, either p1 (y)nA is a subset of Aj, or it does not intersect

with Aj. Since A E S, is connected, so for any Aj, either Ai D A or Ai n A = 0.

Since there exists B such that p-1 (B) = Ac, then A-l( (A)e) Ac. Without

loss of generality, let B = p(A)c. Since the graph is connected, so it must be that

p(u) n ,c(A) $ 0, for some u E Ac. Since 7ro > 0, then there must exist a set Aj0 such
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that u E Aj0 . So Ai -D A, since (p(u) n p(A) $ 0. Also, for any y E B, it is also required

that p-1 (b) C Ai or mA,(b) nA= 0.

However, the set B is self-connected! Therefore for any Aj, B C Ai or B n Aj = 0.
Hence, Aio = U, which contradicts with the definition of S*.

Therefore, S* = Su n S.-1.

A.2.2 Proofs in Section 2.3

Proof of Lemma 14

The selected set Z implies all relaxed inequalities Mjv < bj + A,,m. Therefore, Q c

Q D An,m. By assumption 2, max,<jsm|l - bl I An,m with probability 1 - a, so Q C
Q ( An,m and Q c Q e An'm with probability 1 - a. Hence, Q c Q E An,m and

Q c Q e An,m C Q E 2An,m with probability 1 - a.

Proof of Theorem 5

Consider H* defined in Definition 2.3.1. For every 1 ( j < m, 1F(b-b)l < III li-*i maxETb Ib-
bI Kd og() with probability at least 1 - a. Therefore, it is easy to see that Ho
is a feasible solution to the problem t with probability at least 1 - a. Now let's focus

on the event when Ho is a feasible solution of t.

Let 1 be the solution to the problem 1. So

Ifg(n)f|1 < | g(fl*)|| 1  soKu.

So is, < soKu.

For any j E To, let vj be the point such that the maximal separation is realized while
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other inequalities hold for v. Therefore, by construction

U(Mv - b) > Mv1 - b - As. (A.2.1)

We have Mv > b + cg,,, and Mvy - b < 0 for all j' f j. So the Jth inequality of (8.2)

indicates that

F1jj (Cg n- bj + bj) c -,n As - bj + bj.

Sof cgn-AS-(bj-b) > Cgn-AS-Am
cg,n -(bj-bj) cg,n -An,m

The growing condition "l - 0 guarantees that UI,, > r7 for any r/ < 1, as
n

n -+ oo. Thereforej E Iand j E I.. Thus, I 7 DTo .

Since we know that To c 4, so Q c cr0 c Q D An,m. By construction Q C

Q F Anm C Qt, E[ An,m.

Proof of Theorem 6

Consider M* defined in Definition 2.3.2. For every 1 j < m, Il;l(b-b)| < 11h11 maxjerT |b

b| < Kd'& 2S with probability at least 1 - a. Therefore, it is easy to see that ]J*n

is a feasible solution to the problem 7i with probability at least 1 - a. Now let's focus

on the event when V* is a feasible solution of 7?.

Let f be the solution to the problem . So

||g(UI)I|1 -< ||g(r*)jj1 _< s*Ku.

So is, 71 ._K"7

For any j E T*, let vj be the point such that the maximal separation is realized while

other inequalities hold for v. Therefore, by construction

U(Mgv - b) > Mvj - b - As. (A.2.2)

We have Mvj > b + c9 ,n, and Mvy - b < 0 for all j' $ j. So the J t inequality of (8.2)
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indicates that

Hjj(Cg,n -bj b) Cg,n - As -b+ j.

S cg,n -As-(bj -bj) Cg,n-AS-An,m

The growing condition d' log(so)vlog(m) - 0 guarantees that nj > 77 for any 7j < 1, as

n - oc. Therefore j E I and j E 1,. Thus, 1- D T*.

Since we know that T* c f, so QC c T* c Q e AS+An,m
QcQE~A~,C OT P- 2

By construction

Proof of Lemma 18

Let H be a feasible solution of the problem R:

mm
min max (jk),

Sk=1

subject to:

(1)HM > M, H > 0,

(2)flb <; b.

Yij = 0, if j V TO.

Any feasible solution of this above problem is that FiJ = 1, for all i E To, and rij = 0,

for all i y j. Hence, the optimal value of the objective function is so.

In our case, except for the pth row of M, every row satisfies: M, E {0, 1}d. Again,

for the problem R, any optimal solution must satisfy Hii = 1, for any i E To. Therefore

the value of the objective function is at least so.

Meanwhile, for any i To, by definition, there exists ac > 0, for any j z i, j E To

and ce 0 such that:

EiETo aMi - a' ) Mt,
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and EjTo ajbj - ap < bi.

Without loss of generality, we could assume that a, > a2 > ... > a, > 0 = aZ =

= ap_1. Next we prove that there must be a feasible vector of a, such that a, ( 1.

Then we could conclude that the minimum value of the objective function in problem

R is so, and the optimal solution exactly recovers the true model. Denote the set A

correspond to Mj, and Ai correspond to Mi. Without loss of generality, assume that

By Galichon and Henry (2011), t(o(A)) is a sub-modular.

b u = p((A)), therefore Zi<i<raibj - a, = E<j, ,aip(o(Ai)) - app(o(U)) >

<(E r aAi - ap)) >, p(A) = bj. Therefore the above equality holds as an equality.

If a, > 1, then ap > 0. So for any u Ai, there must be jC To such that u c AJ.

So for any y E o(A), either 0- 1 (y) n Ai n A 0 or (#- 1 (y) n A) C Ai. Similarly, for

any y p(A), 0- 1(y) n Ai = 0 or 0- 1 (y) c Ai.

(1) A is connected. Let A' be {ulV(u) c A}. So A' implies A. We only need to prove

that A' can be constructed via 11.i, aiAi - apU.

(2) A is connected and there is no u 0 A such that o(u) c V(A). Therefore A c Su.

Hence B := o(A)C is not connected. Let B1 ,..., B, as all the disconnected branches of

B. Let Ck = p(Bk), for any 1 < k < r. So U'=_Ck = A(, Ck, nCk, = 0, for any k1 # k 2 .

So each Ck is connected with A.

Denote Ck = {ulu E Ac, u Ck}.

So AUC 1 , AU C2 ,..., A U Cr are sets in S,. It is also sets in S- 1 since Ck = (AU Ck)c

is connected. Therefore, All these sets are in S*. And Let ai = 1, a, = r - 1, we could

reconstruct the inequality indicated by A. And since r > 2, so all the coefficients ak < 1.

(3) A is not connected. Let A 1, ... , A,, be the connected branches. Let B = V(Ac).

Without loss of generality, similar to step (1), we could assume that each Ai E Su,

1 i < w. Assume B1,..., Bk is the connected branches of B. Let C, = V4(Bi),

1 i k. Therefore, C,1 n C2 = 0, for any i1 # i2 . Ci n A f 0, for any i. Therefore C,

1 i k and Aj, 1 < j -- w form a bipartite-graph Go. For every Ai, let AC1, ... , AC,

to be the connect branches of Go - {Ai}. Since the entire graph is connected, so ACi
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is connected with Aj, 1 < i < i. Let AC' := {ulu 0 ACj}. So ACi is a set in

Su n sf = S*. Therefore, the set Ai could be constructed by EZ_, ACk - (Zr -- 1).

If for some set ACk appears in the different i, let AC be such as set such that it

appears in 1 < i < J, J > 2. Hence, A 1, A 2 , ... , Aj C AC. Without loss of generality,

suppose C1,..., Cq c AC, q > 1, andCq+1, ... , CknAC = 0. For any 1 i J, AC - Ai

is a connected branch in Go - Aj, which means that C1 ,..., Cq does not connected with

A - AC,and Cq+1, ..., Ck does not connect with AC - Aj. If J > 2, Cq+i, ..., Ck does not

connect with AC - A1 and AC - A 2. But AC-A 1U AC-A 2 = A. So Cq+1,...,Ck

does not connect with AC. And C1 , ..., Cq does not connect with AC. So AC and A are

not connected! Hence, each ACk can near appear twice in constructing Aj, 1 < i _ k.

Therefore there exists one way to construct A from S* such that all the coefficients

Trj < 1, for 1 j _ p - 2.

Hence, the optimal solution of the problem R is so. And 1* = To.

Proof of Lemma 19

The proof is similar to that in Theorem 6. However, this Lemma achieves better rates

because the structure of the Core Determining Class is special. For any H > 0 such

that HIM > Al, as we show in the proof of Lemma 18, the residual fb - b can be

rewritten as a sum 1I1d2 a11 (l) where a, > 0 for all 1 < 1 d2. Therefore, when

replacing [L with A, the residual ib - b and fib - b are very close. By the assumption

that maxl1< d2  -+ 0, Hb - b = Hb - b(1 + op(1)). Therefore with probability

> 1 - a, fi*b - 6 = (H*b - b)(1 + op(1)) < As. So H* is a feasible solution to 7? with

probability > 1 - a. The rest of the derivation follows the proof of Theorem 6.
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A.3 Proofs in Chapter 3

A.3.1 Proofs in Section 3.2.1-3.2.2

Lemma 28 If 6 is a regular value of A on X, then MA(S) is a d, - 1 manifold in R d.

of class C 1 .

Proof of Lemma 28

By implicit function theorem, for every regular point x E MA(S), there exists an open

neighborhood NA of x and an open set V c R dx such that there exists an one to one

and C1 mapping: g : Nx - V, g(xi, x 2 , ... , dx) - (X 1 , x 2 , ... , Xdx_1, y), where y :=

f--1(61x1, ... , dxd-1) is unique on Nx. Thus, by definition, MA(S) is a dx - 1 manifold in

Ra'z of class C 1.

Proof of Lemma 20.

We refer this proof to theorem 3.11 in (Spivak 1965).

A.3.2 Proofs in Section 3.2.3

We need the following Lemma in order to prove the results in Lemma 21.

Lemma 29 For a compact set Q in a metric space D, suppose there is an open cover

Oj, i E I of Q. Then exists a finite sub-cover of Q, and there exists a q1 > 0, such that

for every point in Q, the rI-ball around it is contained in the finite sub-cover.

Proof of Lemma 29

Since Q is a compact set in a metric space (with metric ), then any open cover Oj, i E I

of Q has a finite subset 0', i = 1, 2, ... , m which covers Q.
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Let e = Umn 1 0j.

We prove the statement of this Lemma by contradiction.

Suppose for any i > 0, there exists some point xi in the metric space D such that

d(xi, Q) := infeQ Ixi - vI < and xi . Then there exists vi E Q such that d(xi, Q)

d(xi, vi) < 1, by compactness of Q.

{vi, i ;' 1} must have a limit point, say vo. vo E Q by compactness of Q.

So d(xi, vo) -+ 0 as i -+ oc. But 0 is an open cover of V. Therefore, there must

be a open ball B(vo) around vo such that B(vo) C . This is a contradiction with
d(xi, vo) -> 0, since xi 0 H. Therefore, There must be an 7 such that the rj- ball around

Q is covered by .

Proof of Lemma 21

For statement (2) of this Lemma, it follows directly from the inverse function theorem.

The proof of (1) is divided into the following 3 steps.

Step 1 For any regular value 6 of the function A in B (X), by Lemma 28, the set MA(6)

is a (n - 1) manifold. For any set S C B(X), denote I(S) := A(S) as the image of

A on a set S. It is easy to see that the set of critical values of A is closed in I(S) for

any compact set S c B(X). And therefore the set of regular values of A on the domain

B(X) must be open in I(B(X)).

For any point x E Rdx, define BE(x) = {x'IIIx - x'1 2 <; c} as the c- ball around x.

By Assumption S.1, there is a bounded open set C(X) such that B(X) D int(C(X)) D

XE, where c > 0 is a fixed real number and X" = UxexBE(x). For any given regular value

6 of A in I(X), there must exist a neighborhood Un(6) = [y - 77, y + 77] c I(B(X)) of 6

such that U,,(6) contains no critical values of A on the domain B(X). Denote MA(S) as

the union of M(y') where y' E int(U(S)). So MA(S) is a bounded open set in B(X).

Denote MA(6) as the closure of MA(6) in B(X). So MA(6) is the union of MA(6')

where 6' E Un(6).

167



Since A(x) is a C1 function of B(X), for any closed subset D(X) of B(X) and

every x E AjA(6) n D(X), there exists a constant C > 0 such that ||VA(x)| > c and

maxjig,\ 11 1 < C. From now on, we use D(X) C(X) with C(X) described from
the above paragraph.

For any set S and e > 0, we define the notation Se as the union of all c open balls

centered at some point in S. By assumption S.3, there exists a closed set C(X) c B(X)

such that irnt(C(X)) D X and p(x) in continuous at C(X). Therefore there exists a

constant C > 0 and a closed set C1 (X) such that C(X) D C1(X),, and int(CI(X)) D 24.

Step 2 In this step, we establish a finite cover of MA(S).

By step 1, for each x E AlA(6) n D(X), since |IVA(x)| > , there exists 1 < i < n

such that | | > := c1 > 0. Since A is a C 1 function, there exists a open

box 9(x) = X 1 x X2 x ... x Xd, C C(X) with longest length < centered at point

x E C1 (X) with X3 to be an interval (aj, bj) such that for every x' E 0(x), | 2 (x')| > i

By continuity, the partial derivative .(x') should be greater than 2 or less than -2

for all x' E 0(x). WLOG, let's assume that i = k and 2(x') > % for all x' E 0(x).

Let C' = k > 0. Consider an open box 0(x)' = X' x X' x ... x X',_l x Xx C 0(x)

with X' centered at xi with interval length 2a for any 1 < i < dx - 1, and X' is centered

at x with length 2C'a. So for any given x C X X X X ... X X',1, the value set

{f (x') : x' X',} will contain the interval [6-aC, 6+aC]. For any 5' E [6--aC, 6+aC

and x' e X, x X, x ... x X, there is a unique x' such that f(x' ,xa) = / '.

Consider all such boxes 0(x)' for every x E C1 (X) n MA(6). So 0(x)' c C(X). Since

C1 (X) n A(6) is a compact set, there will be a finite open sub-cover 01, 02, ..., 0" that

covers C1(X)fnAI (6). So by lemma 5 there exists p > 0 such that {x' : Ix'-x < p, x E

MA(6) n C1(X)} c ugI 101. Since IIV |II is bounded below, so there exists 6o such that

for any 5' < 6o, M6 '(y) n X c un 10j. We can simply assume that 6 < 6o for simplicity,

otherwise we can re-pick a small 6' at the beginning instead.

For simplicity of notation, we say that MA(6) intersects 02 at Xk axis in the above

analysis. We know that for each Oj, MA(S) should intersect 0, at xj axis, for some

j (E f{1, 2, ...,I dx}I.
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Step 3 In this step, we apply partition of unity to the open cover we construct in the

last step.

By Lemma 1, for every finite open cover {0} 1 of a manifold MA(6)nB(X), we can

find a set of CO partition of unity pj(x), I j < J, such that: (1),<,<j p (x) = 1,

(2)supp(pj) c 0j, and

(3)p3 (x) E [0,1].

Our main goal is to compute the following quantity, of which the limit is the derivative

of FA,,1 (6) as 6 goes to zero:

p(x)dx =

J

p (x)Z p(x)dx =
j=1

E p (x)p(x)dx.
1'<i<m,1<'j(JAnmA(6)

(A .3. 1)

This equation holds because any x E MA(6) outside the UT101 has 0 probability

density on it.

In each 02, WLOG, suppose MA(6) intersects 0, = X1 x Xi2 x ... x Xid, at Xdx axis.

Since A is non-singular in 0j, we define the inverse function

g: Xi x Xi2 x ... x Xi(d,_1) x (6 - d, 6 + rI) - X., I (A.3.2)

such that f(xi, .Xd., -1, g(x 1 , ... , 1, ')) = 6' for all (x 1 , ... , Xd_1, 6') C Xil x Xi2 x

X Xi(n-1) X ( - p, n + ).

Define the one-to-one mapping 7 k as:

Ok: X1 X X2 x ... x Xdx1 x (o - 6, 60 + 6) - X1 x X2 x ... x X 1x Xdx,

V)(x1, X2, ..., i Xd-1,1 6) = (X 1, X2, ... , Xx -_1, (X 1, X2, ... , Xd - 1, 6)).

(A.3.3)

(A.3.4)

In the equation above, by continuity of bn, A and pj, for each contribution in the

sum:
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p(x)p(x)dx 
xX X 2 x ... X Xi,1 x [6-?,6+

71

/ 
IX x Xi2x ... XXd 51 [3+]

1
p, o p .p 1 P Od 1 d ydx-d_

a' 0bdx

P3 0 pd, - P, 0

Note that in the latest expression, the last component of /dx is fixed to be 60 without

being specified for simplicity. In the later of the proof, this notation will be sustained.

If we write the main part of the above equation as the integration on a manifold,

which is

J X i X x ... XXidx1

Pj p(x) 1 dvoi,
( VA 3

(A.3.5)

and sum up over i and j, we have the following equation:

p(xsdvol P(x) pj(x)dvol = 26j
Ma~s) j=1

p(x) I dvol+o(rT).
N()

The equation above is tricky: The mapping a : Xi x Xi2 X ... x Xiad-1 -- Xi1 x

Xi2 x ... x Xi1, 1 x Xid, such that a(x1,..., dxd1) = (x1,.dxd_1,g(x1,..., dx1)) has

Jacobian matrix

1 0 ... 0
0 1 ... 0

... ... I a0

The volume element is Vol(Da) = V/det(DatrDa) is difficult to compute directly.
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J0i nmA (6)i
Pjo Pd - P 0 VdxIdet(Dbd) Idydxd d,

p, 2q 4X-dx + o(0)
0aXd, 1

( A.3.6)

Da=r

ag

_ag
aX2

ad
Xd,-1

Xi X X2 X ... X Xid, - I

Pj 0 V|d., - P 0 lPdx 27] _x-d, =T: 27 T
|9Xdx, 0 V|>dx Bi nMA 0)



By Cauchy-Binet formula, Vol(Da) = - 2 1 V

So the left hand side of equation (A.3.6) is

P, 0 VdP 0y 0 ,q _ d-d x

IX1xX2x... XXdx1 OXdO

P, 0X .a. -1/_ Vol(Da).
X1 x X2 X ... Xx-I VA _1 Odx

(A.3.7)

Hence, by definition of integration on manifold in Definition 3.4, equation (A.3.6)

holds.

Then combine with the property that pgx) = 1, we have F -

Wepcan dvol + o().

We can consider the one-side derivatives and obtain the following similar results:

FA,(6 + ) -

F,()- FA,IL(6 - r)=

I(X) I dvol + o(1),

P(X) V dvol + o(1).

That said, from the above two equations, FA,,(6) is differentiable at regular value of

6 of A in I(X) with derivative

(A.3. 10)'(x) 1 dvol.11 VA 1

End of proof.

Proof of Lemma 22

Part (a):
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(A.3.9)
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For any h, E F -÷ h E Xo with L' norm, and ti, - 0 as n approaches infinity, we

consider the quantity below:

FA+ th,. (6) -FA,(5)

By assumption, the function h E Fm is bounded on C(X) and uniformly continuous.

So h, is uniformly bounded for n > N , since h, -* h under L norm. Let C =

SUpxCC(X),nflNhn(x).

For any 60 which is a regular value of A on the domain X, we consider a procedure

similar to theorem 1. Suppose we have a rectangle cover 0, C C(X) of M6(6o) and a

partition of unity pj(x) on the cover sets, 1 ( i ( m, 1 j < J. By lemma 9, there

exists y > 0 such that the set B,(MA(6o)) := {xldist(x, mA(6o) n X) < 7} C UiismOi.

Therefore, given a q small enough, there exist N large enough such that supEC(X),n Ntn

|hn - q7 < ?. For any fixed positive number (, the following fact holds for any

x E B,(M(6o)) n X, as n is large enough,

1{A(x) + tnkh(x) < ,o} 1{A(x) + tn(h(x) - ) 6o}. (A.3.11)

And outside the set BA(M(6o))nX, 1{A(x)+tnhn(x) 6 } agrees with 1{A(x) 6}.

Therefore,

fX 1{A(x) + tnhn(x) 6o} - 1{A(x) + tn(h(x) - () o6}i(x)dx
tn

L37M(o) 1{A(x) + tn(h(x) - ) ( Jo} - 1{A(x) 1 6o}p(x)dx

tn

B77I(60) 1{A(x) < 60 - t,,h(x) -0)} - 1{ x )W < 6o0p(X) dx.

Below, for simplicity, we use t for notation tn.
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And hence

IB M(6O)1{A(

=lim j
t-+O 10i

1{6 o < A(x) < 6o - t(h(x) -
t

= li
i~j / ;

1{6o A(x) < 6o - t(h(x)
pj (X) t

(A.3.12)

Note that the function 1{6o ( A(x) o - t(h(x) - ()} equals -1 for all x such that

60 > A (x) > 6o - t(h(x) - () (if ( < 0).

Suppose Oi = X, x X2 x ... x Xdx intersects B7M(6o) only at hyper-planes parallel

to Xdx = 0. And under parametrization

,: X1 x X2 x ... X Xdx_1 x [60 6, +

n(X, ... , iX_1, 6)= (Xix2, ..., -1, g(x1, x2, ..., x-1,6))

where g(x1, x 2 , ... , x- 1, 6) is the implicit function derived from equation A(x) = 6.

Therefore, by continuity of h(x),

10"
1{6o < A(x) < y - t(h(x) - 1)}pt(x)

t

- X1 xX2x ... XXd,_l 1[60-,60+7]
Pi 0 ''dx 1{ o A(x) 6o - t(h(x) - )}p 0 dx d6OdxdxtI 0 Odbdox

d 

XaO d
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0) - 1{A(x) 6o}1(x)dx
t

0}P(x)dx

x) <, 6o - t(h(x) -

- 1 )}p W dx.



IX1x 2 x...XXd x1

Pj 0 'Od., P 0 -I(h(x) - ')d6 "dXd: + 0(t)

x 

a 0 d x

= - JOnM(6O)
pj(x),(x) h(x)_-dvol + o(t)11 VA

Since the number m and J are fixed for any n > N and Ih(x) - 61 bounded by

constant C, >j pj(x) = 1 and p3(x) > 0, we can exchange the sum and limit in (9.37).

So (9.37) is equivalent to the following inequality:

.JB? M(60)

1{A(x) < 6o - t(h(x) - ()} - 1{A(x)
t

= iI 
(6)

p(x)(h(x) - )dvol + o(6)
VA(x) I

(A.3.13)

FAth_,,_J___A___ <~ f i(x)h (x) dvol.Let ( - 0, so lims, t,( MA(6) IVA(X) .

If we bound the above limit from the other direction use similar approaches as above,

we get:

lim FA+t-h,,p(6)-FAj() J(x)h(x)
limn- o tn' mAo) |VA(x)d

Combine the above two inequalities, we conclude that FA,,1(6) is Hadamard-differentiable

at A tangentially to FM.

Part b:

By the inverse mapping Lemma 3.9.20 in (Van der Vaart 2000), we know that A*(u)

has Hadamard derivative at A tangentially to FA. The derivative maps h E FM to

0FA,,(h; 6)
fA,,t(6)
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Proof of Lemma 23

Part a:

Let HO to be the set of bounded linear operator on the measurable functional space

Fm with L* norm. Suppose the operators H, -+ H E Ho, i.e.,

Hn -+ H M SUpfEYM,f#O|I(Hn - H)f I -- 0.

Suppose t,, -4 0, and let Q, = (/+tH,). So FA,Qn(6)- F,,(6) = (Qn

6} = tHn(1{A(x) < 6}) = tn(H(1{A(x) < 6}) + ts(Hn - H)(1{A(x) < 6})).

Therefore, by assumption that H -+ H under L*' norm, FAQH(6)-FA,,()

6}) o(1).

Hence FA,,(6) has Hadamard derivative 0,,FA,,(H; 6) = H(1{A(x) < J}) at p tan-

gentially to Ho.

Part b:

By the inverse mapping Lemma 3.9.20 in (Van der Vaart 2000) and the conclusion

of part (a), at any regular value 6 = A*(u) of A on domain X, A*(u) is Hadamard

differentiable at p tangentially to HO. The Hadamard derivative reads as the following:

u, I) = H(1(A(x) 6))
fa,(u)

Proof of Lemma 24

For statement (a), Consider (hn,,) - (h, H) E Do and tn - 0. For statement (b), it

follows by results in (a) and the inverse function theorem.

Let fn = f + th and 7in = /I + ntHn. FNTg(6) - FA,,(6) = (FAjg(6) - FA.,n (6)) +

(FAn,i(6) -FA,().

By Lemma 22, (FA,,( 6 ) - FA,,(6)) = MA(- f hIjI)dVol) + o(ti).
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Since IA, - AI, -+ 0 and X is compact, I1{An(x) < 6} - 1{A(x) 6}1 -+ 0.

Therefore, H(1{An(x) I } - 1{A(x) < 6}) - 0 since Hn, n ;; 1, are uniformly

continuous operators.

(FA.4.(6) - FAt(6) :t(H,(1{fn(x) }) - Hn(1{A(x) - y}) + H"(1{A(x) ,

6})) = o(tn) + tn(H(1{fn(x) 6 }) - H(1{A(x) 3})) + tnHn(1{A(x) y}))

o(tn) + tH,(1{A(x) _ 6}).

By Lemma 23, tnHn(1{A(x) , 6})) o(tn) + tnH(1{A(x) < 6})). Therefore,
FA, 7, (6)- FA,() M(() h(x)p(x) dvolol + H(1{A(x) < 6}).

A.3.3 Proofs in Section 3.3

Below we recall Theorem 3.9.4 of Var der Vaart (2000).

Lemma 30 Let F and g to be metrizable topological vector spaces. Let g :F C F g

be a Hadamard differentiable mapping at f E F. Let X, : Q, --+ Fg be maps with

rn(X, - Xo) -+ J for some r, -+ oc, where J is separable and takes value in F. Then

rn(g(Xn) - g(Xo)) gf (J), where gf is the Hadamard derivative of g with respect to A.

Proof of Proposition 1

By Lemma 22, we know that FA,,(6) and A*(u) are Hadamard differentiable with respect

to A at regular value 6 and u = Fa,,(8), tangentially to Fo. By assumption S.5, we

know that a,(a - A) - G(x). The following convergence laws are directly deduced

from Lemma 11, by setting Fg =.F, Xo = A, Xt A:

G(x)p-(x)
an(FA,(6) - FA,p(6)) d- dvol

and

f G(x),i(x) dvol
an(a3*(U) - A*(u)) - MA(6) ||Vf 11

A ,(A
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Proof of Proposition 2

(a) It follows by direct calculation that: v/i(FA,,,(Q)-FA,,(3)) f 1{A(x) < 61}Vx(d(f(x)-

p (x)) - H6 .

(b) The conclusion is followed by the inverse mapping Theorem 3.9.20 of Van der

Vaart (2000).

Proof of Theorem 7

If a E .F1 , and FM,(6) is /i- Donsker, then V~/-(pu - p) is uniformly bounded on Fm,(6)

with probability going to 1.

By Lemma 21, A(y; f.p) and A*(u) are Hadamard differentiable with respect to

(f, p) tangentially to D0 := .1 x Ho, where v(i(p,, - y) E HO with probability going to
1.

Denote bn = v1-

(a) If an = o(b,), then let X, = (a, [) and X = (f, p). So an(Xn

Therefore, by Lemma 21 and Propositions 1-2,

fu - ) dI )G(x)(x) dvolol
anMa(6)u -1A1 -*()a,(A(U) *(U) - d fA,(U)

- X) - (G(x), 0).

(b) If an = bn, then let X, = (a. A) and X = (f, p). So an(Xn - X) * (G(x), -H5).

Therefore, Lemma 21 and Propositions 1-2,

f G(x)(x)dol - H(1{A(x) y})
an(A!(u) - A*(u)) -d M(6) V

Sf fA (p)

(c) If bn = O(an), then let Xn A t and X = (f, p). So bn (Xn X ) (0, -H6 ).
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Therefore, by Lemma 21 and Propositions 1-2,

-H({A(x) -; y})
,A 1- A*(u)) - fA,(u)

The special case for f = [-t holds correspondingly.

The proofs of Corollary 3 and 4 follow directly from the results in Theorem 7.

Proof of Theorem 8

We prove Theorem 8 to validify inference by bootstrap. We recall Theorem 3.9.11 of

Van der Vaart (2000).

Lemma 31 (Delta-method for bootstrap in probability) Let 'N be the operator

space on F BL1 (Rk), where BL1 denotes the set of Lipshitz functions of order 1. Let

g : Do C D ' E to be a Hadamard-differentiable mapping at P tangentially to Do. Let

Pn be a random element such that V/ni(IP, - IP) - G. Let IP be in random elements in

ID such that fiin(, - IPn) (G. I.e.,

supheBL1(Rk)jEh(V/(Pn - Pn)) - Eh(G)I, and E[h(v'n(P - Pn))* - Elh(xfi(4Pn -

Pn))]* -+ 0.

Furthermore, if V/n(P, - IP) - G, then

suphBL1(Rk) fEh(xfi(g(P.)-g(P,)))-Eh(g4(G)) -- 0, and E[h(jj(g(Pn)-g(Pn)))]*-

E[h(Vh(g(Pn) - g(Pn)))]* - 0 hold in outer probability.

Proof of Theorem 8

For i.i.d data, the v/ni(/n - Pn) weakly converges to a p- Brownian Bridge. We also

know that, by construction, #(ask - 3) converges to G(x).

V/n((tPn, Aj) - (pn, a)) " (B, G(-)).
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Therefore, the condition in Lemma 11 is satisfied. By Lemma 7, we know that A* (u)

is Hardmard differentiable with respect to (P, f).

At regular value 6 of A(x) on domain X, by assumption, V\/((pi, a3 ) - (p, f))
(IB,G(-)) and (((pt,$) - (,w$)) (B, G(.)). Let PW = (A, p,), IP = (f,4), and
P = (f, /pz). Then by Lemma 12, the conclusion holds.

A.3.4 Proofs in Section 3.4

Proof of Lemma 25

(a) First of all, the result of Lemma 21 holds for every fixed value of d E D. Thus,

(= p(d)
deD zEZI1(f(d, x) 6)(d, x)dz,

and

fA,,(6) = E p(d)
dE F

1u(zld) dVol.
lxf(d, x)l|iA(6)d

(b) Similar to Lemma 6, the Hardmard derivative of FA,,(6) with respect to (f, p) can

be calculated for given D E D. Given D, the Hardmard derivative of FA,,1(6) evaluated

at (h, H) is:

p(D) ' (zID) dVol +
I I VA(d, x) II JXEXd

H2(xId)1(f(, d) < 6).

The Hardmard derivative of FA,, evaluated at (h, H) comprises one addition term of

H1, unconditional on d. This term equals:

E H,(d)t(1(f(d,-))
dcE)
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Hence, the conclusion in (b) follows.

(c) It follows directly from the inverse mapping Theorem 3.9.20 of Van der Vaart

(2000).

Proof of Theorem 5

Similar to the proof of Theorem 7, this theorem follows directly from Hardmard differ-

entiability of A* (u) stated in Lemma 21 with respect to (f, t) and Lemma 24.

180


