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Abstract

Light pulse atom interferometry (LPAI) is a powerful technique for precision measure-
ments of inertial forces and time. Laboratory LPAI systems currently achieve state-of-
the-art acceleration sensitivity and establish the international atomic time standard.
However, the realization of practical LPAI in dynamic environments (e.g., rapidly
accelerating or rotating platforms) has been limited in part by atom optics-the ana-
logues to optical beamsplitters and mirrors. Atom optics in traditional LPAIs are
composed of resonant laser pulses that are susceptible to variations in optical detun-
ing and intensity expected in sensors designed for dynamic environments. This thesis
investigates atom optics that use frequency- and intensity-modulated laser pulses to
suppress sensitivity to these inhomogeneities.

For atomic timekeeping applications, a Ramsey LPAI sequence based on stimu-
lated Raman transitions and frequency-swept adiabatic rapid passage (ARP) was de-
veloped. Raman ARP drives coherent transfer in an effective two-level atomic system
by sweeping the Raman detuning through the two-photon resonance. In experiments
with "3 Cs atoms, Raman ARP reduced the sensitivity of Ramsey sequences to differ-
ential AC Stark shifts by about two orders of magnitude, relative to standard Raman
transitions. Raman ARP also preserved fringe contrast despite substantial intensity
inhomogeneity. The fractional frequency uncertainty of the ARP Ramsey sequence
was limited by second-order Zeeman shifts to ~3.5 x 10-1" after about 2500 s of
averaging. For accelerometry applications, Raman ARP provided efficient, large mo-
mentum transfer (LMT) atom optics in an acceleration-sensitive LPAI. These atom
optics produced momentum splittings of up to 30 photon recoil momenta between
interfering wavepackets-the largest to date for Raman atom optics. This splitting,
in principle, enables up to a factor-of-15 improvement in sensitivity over the nominal
interferometer. By forgoing cooling methods that reduce atom number, this LMT
method reduces the measurement uncertainty due to atom shot-noise and enables
large area atom interferometry at higher data-rates. These features could prove use-
ful for fielded inertial sensors based on atom interferometry.
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Chapter 1

Introduction

Self-contained sensors of motion and time are vital to many technological and scien-

tific applications, including navigation, communication, and network synchronization.

Detailed information about these physical quantities can be encoded in the quantum

wave-like nature of matter. To extract this information, matter-waves must be inter-

fered in a manner analogous to the interference of light. Laboratory demonstrations

of matter-wave interferometry have already produced precise measurements of ac-

celeration, rotation rate, and gravity gradients, as well as stable timing references.

With an eye toward practical applications, this work develops atom interferometry

techniques for inertial sensing and timekeeping.

1.1 Inertial sensing

Inertial navigators use onboard accelerometers and gyroscopes to respectively measure

linear acceleration and either rotation rate or angle. The measurements are integrated

to determine position, velocity, and orientation. Inertial navigation is desirable when

external references, such as the Global Positioning System (GPS) or star-sightings, are

either unavailable or unreliable. Applications include air and spacecraft navigation,

underwater and indoor navigation, and satellite pointing.

Like all forms of dead reckoning, inertial navigation is susceptible to accumulated

measurement errors. Consider an accelerometer with a fixed bias of Aa = 0.01 m/s 2

25



After t = 1 hr of operation, the resulting position offset is Ax = Aat 2/2 = 65 km. If

the offset is replaced by a white noise process, a sensor that averages the noise down to

Aa = 0.01 m/s2 in 1 s would produce a position uncertainty of Ax = Aat3 /2 /3 = 1.2

km after t = 1 hr of operation. Navigation applications with stringent stability and

accuracy requirements typically rely on inertial sensors that heavily suppress these

measurement errors. Accelerometers that currently satisfy these requirements, such as

the Pendulous Integrating Gyroscopic Accelerometer (PIGA), are electromechanical

in nature. PIGAs measure acceleration using a sensing element based on a spinning

rotor attached to a pendulum. With the rotor spinning about the x axis, and the pen-

dulum free to swing about the y axis, an input acceleration along the z axis-which

would cause an ordinary plum bob to swing-induces precession of the spinning rotor

in the x-y plane. Acceleration is determined by measuring the angular rate of preces-

sion (velocity is determined by the total angle). Refinements to this physical concept

spanned multiple decades, ultimately resulting in perhaps the most stable and ac-

curate accelerometer ever made: the Specific Force Integrating Receiver (SFIR) [1].

PIGA-like accelerometers achieve bias stabilities of -1 pg [2], significantly outper-

forming other presently available accelerometer technologies, as shown in Table 1.1

(see Appendix A for background on the Allan variance, sensitivity, and bias stability).

Electromechanical instruments, however, require expensive and specialized materials,

as well as highly-skilled labor for assembly. A single SFIR accelerometer, for instance,

requires six months for the assembly of its 19,000 components [1]. As a result, inertial

sensor development has moved toward technologies based on microelectromechanical

systems (MEMS), optical interference, and frequency metrology with atoms.

Technology Bias stability (pg) Applications

Electromechanical [2] 1 Missile & submarine guidance
MEMS [3] 10 Aircraft navigation

Consumer MEMS [4] >10,000 Electronics
Atomic [51 <1 Inertial-only navigation

Table 1.1: Applications and the best demonstrated bias stabilities for various ac-
celerometer technologies.
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MEMS-based inertial sensors achieve miniaturization and economy in bulk man-

ufactured devices that are ideal for consumer electronics [4]. At present, PIGAs

continue to outperform the best MEMS accelerometers, which often suffer from in-

trinsically poor long-term stability (though suitable MEMS options for aircraft navi-

gation are available [3]). Inertial sensors based on optical interference have primarily

impacted rotation sensing. The ring laser gyroscope (RLG), for example, measures

rotations using the interference of two laser beams that counter-propagate in a ring.

The fiber-optic gyroscope (FOG) senses rotation by interfering laser beams that have

counter-propagated through compact coils of kilometer-long optical fiber. Compared

to RLGs, FOGs achieve significant volume reduction through the use of coiled fibers.

As a result, FOGs are poised to replace electromechanical instruments used for bal-

listic missile guidance [6]. Optical accelerometers also measure inertial forces through

interference. In one such device, deflections of a flexured mass are detected using in-

terference in a Michelson interferometer 16]. Another approach involves passing light

through an optical fiber with an embedded Bragg grating (i.e., modulated index of

refraction). A proof mass is attached to one end of the fiber so that accelerations

along the fiber axis alter the periodicity of the grating. Since the grating period-

icity affects the wavelength of the transmitted light, accelerations create shifts in

optical frequency that are detected interferometrically [7]. These devices offer high

bandwidth and serve as excellent vibration sensors.

Advances in electro-optics and vacuum cell fabrication have also kindled interest

in atom-based sensors. In particular, the potential for high precision inertial sensing

with atom interferometry was evident from initial demonstrations in the early 1990s

[8]. Atom interferometers have since produced measurements of local gravity, grav-

ity gradients, and rotation rate that are competitive with state-of-the-art methods.

Atomic sensors generally exhibit excellent long-term stability, because their measure-

ments are referenced to quantum energy-level structures that are inherently stable

and well-characterized. Atom interferometers, in particular, benefit from solid-state

designs (no moving parts) that are capable of sensing rotation, acceleration, gravity

gradients, and time using the same measurement paradigm. These features could
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drive substantial reductions in maintenance and manufacturing costs. The demon-

strated performance of atom interferometers also could enable inertial-only navigation

with meter-scale position accuracy over tens of minutes. Such a navigator would ob-

viate the need for GPS in missions of <1-hour duration.

One example of the remarkable performance offered by atom interferometric in-

ertial sensors is a gravimeter that achieved a sensitivity of ~4 ng after 1 s of aver-

aging [5]. By comparison, the short-term stability of the best commercially-available

gravimeter an optical Michelson interferometer with a free-falling corner cube reflector-

is roughly 3 times worse [9]. Atomic gravimeters have also provided evidence for

detailed tidal effects [10]. Operating two such interferometers at different positions

in a gravitational field results in a highly sensitive gravity gradiometer [111. A sensor

in this configuration was used to measure the Newtonian gravitational constant G by

monitoring changes in the gravity gradient due to motion of a large proximate mass

[12]. The result agreed with the accepted value of G to within 1.5 standard deviations

and required a short-term sensitivity to differential acceleration of 3 ng / Hz, as well

as an accuracy of 5 x 10-" g [13]. However, a more traditional measurement of G,

based on deflections of a torsion balance, still achieves a fractional uncertainty that

is a factor of 11 smaller than that of the atomic measurement [14].

The first high-precision gyroscope based on atom interferometry achieved a sensi-

tivity of 2 pdeg/Vhr using an atomic beam that propagated over a 2-m baseline 1151.

This technique was improved upon in another atomic beam gyroscope, which through

tracking of temperature-driven fluctuations in laser beam parameters, achieved a long-

term stability of 68 [deg/hr at 104 s [16]. Mature optical gyroscope technologies,

however, still outperform their atomic counterparts: a large 16-m2 RLG achieved

a short-term stability of 1.3 nano-deg/ hr, as well as long-term stability that en-

abled detection of Earth's Chandler wobble at 26.6 nHz [17]. More compact, high-

performance FOGs provide short-term stability of 80 ydeg/hr and bias stability of

300 ydeg/hr [181.

The state-of-the-art atom interferometry demonstrations described above required

large vacuum chambers, floated optical tables, and high-power electro-optical systems
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to establish a suitable environment. To address a wide range of applications, signifi-

cant reductions in the size, weight, and power of these instruments will be necessary.

Equally important will be the development of robust interferometry techniques that

maintain sensitivity in dynamic environments.

1.2 Precision timekeeping

Stable and precise clocks are essential to a broad range of technologies, including GPS,

distributed networks, communication systems, and laboratory instruments. Modern

clocks tell time by counting the cycles of a repeatable oscillation, such as those of

a swinging pendulum. If each swing occurs over the same period dt, the number of

swings M indicates that a time t = Mdt has passed. Of course, the period of any real

mechanism changes slightly from one oscillation to the next, leading to errors that

grow with time. To minimize these timing errors-and thereby improve accuracy-

clockmakers generally use the most stable oscillatory mechanism available. Over

the past four centuries, the search for a better mechanism has led from swinging

pendulums to atomic oscillators, and timing accuracy has consequently improved by

about 10 orders of magnitude.

Today, the most stringent timing applications require atomic clocks based on atom

interferometry. The international time standard, for example, is currently realized by

an ensemble of atomic clocks, the best of which achieves a fractional frequency un-

certainty of 3 x 10-16 [19]. At this performance level, time can be tracked at the

~10-ps level for 24 hours. The technological benefits of such accurate timekeeping

are manifest in everyday life: cellular networks, electrical power grids, and GPS nav-

igation all rely on microsecond-level timing at a fundamental level [201. But how

is this timing information globally distributed? The atomic clocks that set interna-

tional time require room-sized devices, with demands on environmental control that

preclude operation in a dynamic environment. Commercially available atomic clocks

with good long-term stability are considerably smaller, but still occupy -30-L pack-

ages, weigh ~30 kg, and only operate stably in controlled environments [21]. Since
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high-performance atomic clocks cannot yet be widely distributed, accurate time is

disseminated internationally through the GPS constellation [22]. Each GPS satel-

lite uses multiple onboard atom clocks, along with corrections from the master clock

of the U.S. Naval Observatory, to distribute timing information that is accurate to

within 1-10 ns. When GPS becomes unavailable, oven-controlled crystal oscillators

(OCXOs) typically substitute as primary references (see Table 1.2 for a performance

comparison). These clocks, however, are only accurate to within a microsecond for

several hours. Applications that require sub-microsecond accuracy over longer periods

of time stand to benefit from onboard or locally available atomic references [20].

Portable atomic clocks recently achieved an important developmental milestone

with the advent of chip-scale atomic clocks (CSACs). CSACs are non-interferometric

clocks that probe resonance frequencies derived from alkali-metal atoms in high-

pressure vapor cells. In a 17 mL package, and with power consumption of just 120

mW, CSACs provide a fractional stability of 2.5 x 10 10 /,/T [23, 24, 25]. Their

long-term stability, however, is limited to ~10- at 1000 s by pressure-dependent

frequency shifts [26, 27]. As a result, CSACs serve as secondary references, which

require periodic external corrections. Between CSACs and laboratory-scale clocks,

there remains a vast, unpenetrated performance-space for primary frequency refer-

ences that operate in a small volume and beyond the laboratory environment.

Technology Short-term stability Long-term stability

OCXO [28] 1 x10-1 2  1 x10- 1 2 at 101 s
CSAC [23] 2.5 x10-1 0  1 x10-' at 103 s

Rb vapor cell [281 1 x10-1 1  1 x10- 2 at 104 s
Cs beam [21] 5 x 10-- 2  <1 x10-14 at 106 S

NIST-F2 [19] 2 x10- 13  <4 x10- 16 at >3 x 104 s

Optical 129] 3 x 10- 16  <6 x10 18 at >104 s

Table 1.2: Performance specifications for several clock technologies. For atom-based
devices, the short-term stability generally averages down with a slope of T-1/ 2 from 1
to 100 s or longer. The atomic fountain clock, NIST-F2, provides the US contribution
to international atomic time. "Optical" refers to clocks that probe atomic transitions
at optical frequencies. They offer unsurpassed stability and accuracy, but are cur-
rently limited to laboratory environments. The reported long-term stability limits of
these last two clocks are due not to flicker noise, but to limits of total operation time.
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Compact and robust clocks based on atom interferometry may fill this void in the

near future. In the early 1990s, a demonstration of a compact atom interferometric

clock achieved a fractional frequency stability (6.5 x 10-12//T [30]) that was compet-

itive with the best commercially-available atomic clocks. A more recent reincarnation

of this approach reduced the volume required for atom collection, preparation, and

measurement to ~15 mL [31, 321. Both these demonstrations relied on microwave

radiation to perform atom interferometry. Microwave interrogations often require

cavities or waveguides that fundamentally limit size-reduction and add complexity.

An alternative method, which is explored in this thesis, uses laser pulses to drive

atomic transitions between energy levels spaced by microwave frequencies. Atom

interferometric clocks based on laser pulses have achieved fractional frequency un-

certainties of 2 x 10-12 at 1000 s [331. Another promising technique, which provides

excellent long-term stability, relies on non-interferometric spectroscopy of trapped

ions. A compact Ytterbium ion clock, for example, maintained stable operation over

many days, resulting in a fractional uncertainty of ~10-14 [341. The development

of compact ion clocks is presently limited by reliance on expensive ultraviolet laser

sources.

1.3 Light pulse atom interferometry

1.3.1 Basic principles

The first four unique realizations of neutral atom interferometers were reported over

a six-week period in 1991. One of these demonstrations used microfabricated slits to

produce the atomic analog of Young's double-slit experiment [351. Measurements of

the spatially-varying atomic interference pattern are shown in Fig. 1-1. Another ap-

proach used diffraction gratings to create an atomic Mach-Zehnder interferometer [36].

The final two demonstrations used light pulse atom interferometry (LPAI), in which

single-photon [37] and two-photon laser pulses [38] diffracted the atom wavepackets.

LPAI has historically been the most successful method for inertial sensing and is an
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area of continued interest for atomic timekeeping. Nevertheless, these early inter-

ferometry demonstrations paved the road for precise measurements of fundamental

constants, atomic and molecular properties, and inertial forces. In a remarkable ex-

ample of the progress to date, one recent demonstration of matter-wave interferometry

produced interference in complex organic molecules composed of up to 430 atoms 139].
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Figure 1-1: Experimental results from the first atomic anologue of Young's double-slit
experiment. A collimated beam of helium atoms impinged on a screen containing a
microfabricated slit. The transmitted atoms traveled farther downstream toward a
second screen with two closely-spaced slits. Behind the second screen, a spatially-
varying atomic interference pattern was detected with an atom counter. Troughs
(peaks) in the measurements represent detector locations where the probability of
seeing an atom was minimized (maximized). Reprinted with permission from [35].

At a basic level, atom interferometry can be understood through analogies with

optical interferometers. Consider the optical Mach-Zehnder interferometer, shown in

Fig. 1-2a. Light entering the first beam splitter is coherently divided into two paths,

reflected by mirrors, and superposed by the final beam splitter. If we assume the

beams are perfectly overlapped after the final beam splitter, the intensity measured

at the optical detector is proportional to cos[kAx +A], where k is the optical wave
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number, Ax is the difference in path lengths between the interferometer arms, and

AO is the difference in phase offsets. Path length changes clearly shift the relative

phase, which perturbs the optical powers at the output ports of the second beam

splitter. Measurements of the optical power are thus sensitive to path lengths shifts

at the nanometer-scale. In a general sense, the same holds true for an atom traversing

the analogous interferometer in Fig. 1-2b. The matter wave in this case represents a

probability amplitude of atom location, and "atom optics" are fashioned from laser

pulses or material gratings.

Unlike photons, atoms are massive particles that interact strongly with external

potentials and have complex internal structure. These features make the phase of the

atomic matter wave a sensitive tool for precision measurements. As a simple example,

consider a Mach-Zehnder interferometer in which the upper arm experiences a locally

different potential energy U, due to gravity. Time evolution of the quantum state'

in this arm induces a phase shift of A# = mU0T/h relative to the state in the lower

arm, where m is the atomic mass and T is the time spent in U0 . As AO varies from 0

to 7 rad, the probability that the detector in Fig. 1-2b senses the atom will vary from

0 to 1. Importantly, the sensitivity to U, scales with T, the measurement interval.

In the 1970s, this scenario was realized experimentally in a neutron Mach-Zehnder

interferometer [40, 411. The plane of this interferometer was vertically oriented so

that each arm experienced a different gravitational potential.

A theoretical comparison of atomic and optical Mach-Zehnder interferometers il-

lustrates the remarkable sensitivity afforded by the use of atoms. In a phenomenon

known as the Sagnac effect, waves passing through a Mach-Zehnder interferometer

experience path length shifts induced by rotation rates. In Fig. 1-2, both interferom-

eters are sensitive to rotation about the axis normal to the page. The Sagnac phase

is proportional to A/(Av), where A is the area enclosed by the interferometer, A is

the de Broglie or optical wavelength, and v is the wave propagation speed. The ratio

'The unitary time evolution adds a phase factor eiHT/h to the quantum state, where H is the
time-independent Hamiltonian.
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Figure 1-2: Mach-Zehnder interferometers for atoms and light. a) A laser beam

incident from the left is divided by a beam splitter, reflected, and recombined by a

second beam splitter. A photodetector monitors the optical power after the second

beam splitter, providing a sensitive measure of shifts in the optical phase difference

between the interferometer arms. b) In the analogous atom interferometer, an atom

incident from the left is coherently divided, deflected, and recombined by atom optics,

which act as beam splitters and mirrors. The atom optics are either laser pulses or

mechanical gratings and slits. The probability of an atom exiting the interferometer

through a particular output port is affected by shifts in the relative phase between

wavepackets in each interferometer arm perturb.

of Sagnac phase shifts arising from matter versus electromagnetic waves is

#at _ cAem Aat _ mcAem Aat - Aat

Oem VAat Aem h Aem Aem

For typical atomic and optical interferometers, Aat/Aem = 10-7 [421.

(1.1)

Therefore,

atom interferometers enhance the Sagnac phase shift by roughly three orders of

magnitude-an attractive prospect for precision rotation sensing.

1.3.2 Measurement overview

In our apparatus, an LPAI produces a stream of discrete atomic phase measurements.

During each measurement cycle, alkali-metal atoms in ultrahigh vacuum (<10-8 Torr)

are cooled to extremely low temperatures and then interfered. Cooling the atoms to

microkelvin temperatures (-I-cm/s velocities) enables dramatic reductions in sensor

size, since the atom sample remains inside a small volume throughout the measure-

ment. To achieve microkelvin temperatures in ~1-100 ms, we employ laser cooling, in
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which three orthogonal pairs of counter-propagating laser beams are overlapped and

red-detuned with respect to an atomic transition, as depicted in Fig. 1-3a. This config-

uration produces optical forces that damp out atom motion in the overlap region. The

addition of a magnetic quadrupole field in this region produces a position-dependent

optical force that, together with the damping force, creates a stable trap [431. This

magneto-optical trap (MOT) was first demonstrated with sodium atoms in 1987 [44]

and has since become a ubiquitous tool in atomic physics. Atomic beams serve as

viable alternatives to the MOT [42]. However, over a fixed measurement time, a

beam requires larger volumes to generate, contain, and interrogate atoms moving

at -100-m/s velocities. In a fixed volume, atomic beams also shorten the available

interrogation times, which can degrade sensitivity.2

a) b) A - ---

0 )HFS {e)
Ig)

Figure 1-3: Atom trapping and atom optics. a) Three pairs of counter-propagating

lasers are orthogonally oriented, overlapped, and red-detuned from an atomic transi-

tion frequency. Atoms in the overlap region (dotted green box) experience a velocity-

damping force. To produce a position-dependent restoring force, anti-Helmholtz coils

supply a quadrupole magnetic field that appropriately shifts the atomic resonance

via the Zeeman effect. b) A stimulated Raman transition, in which two photons with

frequencies wi and w 2 transfer atoms between the hyperfine ground states Ig) and le)

when w1 - W WHFS. Each Raman frequency is detuned by A from the intermediate

excited state ji) to suppress single-photon transitions.

2 The higher atom flux of a beam balances this loss of sensitivity in some interferometers.
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We begin LPAI once the trapped atoms have been sufficiently cooled and prepared

in the correct internal energy state. At that point, a millimeter-scale cloud of ~106

atoms, which is free of any mechanical contacts, falls under the influence of gravity

and other environmental potentials. A sequence of atom optics are applied to the

cloud to create the LPAI during this time. The atom optics are short laser pulses

that drive two-photon, stimulated Raman transitions (depicted in Fig. 1-3b). To co-

herently separate and recombine the atom wavefunction, the Raman process requires

a frequency difference between the two photons, w1 - W2, that matches the atomic

resonance frequency WHFS between hyperfine ground states 1g) and le) [38]. Raman

transitions will be discussed further in Sec. 2.1. The frequency spacings between levels

1g) and le) in alkali-metal atoms are GHz-scale. Stability requirements on the Raman

difference frequency are thus easily achieved with standard RF electronics. Raman

transitions are also readily driven by commercially-available diode lasers. Depend-

ing on the sequence of atom optics, an LPAI based on Raman transitions measures

inertial forces and external potentials, or provides a stable reference frequency.

It is emphasized that atoms in the LPAI do not interfere with each other. Interfer-

ence results from the division and recombinantion of an individual atom wavefunction.

During the interferometer, shifts in the relative phase of the wavepackets alter the

probability that an atom will exit the interferometer in a particular hyperfine state.

To access this probabilistic information-and thus the relative phase-we build up

counting statistics by interfering many identical, non-interacting atoms simultane-

ously. 3 The probability is then determined by the fraction of atoms in each hyperfine

state, which we measure using laser-induced fluorescence. Following this readout pro-

cess, the measurement cycle is restarted with the trapping of a new cloud of cold

atoms.

3A similar situation arises when assessing the probability of landing heads or tails with a weighted
coin. Individual tosses result in either heads or tails. But if q identical coins are tossed, the
probability of landing heads can be determined with an uncertainty of 1/yf.
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1.4 Progress toward atom interferometry in dynamic

environments

In this section, we describe research efforts aimed toward demonstrating sensitive

atom interferometry in dynamic environments. The discussion focuses on size-reduction,

robust atom optics, and large area atom interferometry.

1.4.1 Mobility and size

Work towards reducing the size of atom interferometers is underway. A compact

gravimeter was demonstrated at Draper Laboratory [45, 461, with interferometry and

atom trapping occurring inside a small octagonal glass cell (2.75" in diameter, 1.5"

thick, 80 mL). The apparatus used short interrogation times of 2 to 10 ms to help

achieve data-rates ranging from 2-10 Hz. High data-rates are necessary for iner-

tial sensors to maintain bandwidth and detect time-varying inputs in dynamic envi-

ronments. Because of the short interrogation, atoms remained inside a 1-cc volume

throughout the measurement. This system achieved sensitive interferometry while re-

taining key features for size-reduction (e.g., short interrogations, small cell, no atomic

fountain or 2D MOT). A similar subsequent effort achieved data-rates ranging from

50-330 Hz using a quartz vacuum cell of dimensions 14 x 16 x 80 mm3 [47]. The

substantial increase in data-rate was due to the recapturing of cold atoms. Since the

atom cloud after the interferometer was colder and denser than the background vapor,

the atom trapping time was substantially reduced. In addition to high data-rates,

this apparatus achieved acceleration sensitivities ranging from 0.57 to 36.7 pg/v/Hz.

Follow-up efforts have produced simultaneous measurements of acceleration and rota-

tion rate with similar sensitivities (64 prad/ hr) at 60-Hz data-rates [48]. A compact

atomic gyroscope has also been demonstrated with cold atoms that were guided [49].
Atoms trapped in a straight magnetic guide were split and recombined using standing

wave laser pulses, and the guide was translated laterally with respect to the beam.

This motion allowed the wavepacket trajectories to enclose a spatial area and thereby
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sense rotation. Since the wavepackets traversed the loop multiple times during an

interferometer, this method may provide a path toward compact atomic gyroscopes

with large effective areas.

Recent developments in mobile atom interferometry have proceeded in dramatic

fashion. LPAI has already been demonstrated aboard a plane in 1 g and 0 g envi-

ronments 150, 51]. In these efforts, large accelerations were coarsely measured with

mechanical sensors and then finely resolved with the atom interferometer. This hy-

brid approach exploited the wide dynamic range of mechanical instruments and the

extreme sensitivity of atomic sensors. The same concept is being employed in the

Chip-Scale Combinatorial Atomic Navigator [52], which aims to provide inertial nav-

igation in GPS-denied environments. One of the earliest portable atomic inertial

sensors was a gradiometer that achieved a differential acceleration sensitivity of 4.2

ng/ /Hz in a laboratory environment [53]. The apparatus included two atom inter-

ferometers connected over a 70 cm baseline. Each sensor was packaged in a 30-cm

cube containing the vacuum chamber, readout system, and optics. A box truck trans-

ported the sensor to survey the local gravity gradient with an accuracy of 7 x 10-

s-2 [54]. The vacuum components and electro-optic systems were also employed in

the parallel development of a portable gyroscope [55] that achieved a rotation rate

sensitivity of 295 tudeg/vhr [56].

1.4.2 Robust atom optics

In dynamic environments, Raman laser beam intensity and frequency errors will be

challenging to control, due to atom cloud motion in a Gaussian spatial intensity distri-

bution and light-induced perturbations of the atomic resonance frequency. Intensity

gradients in the Gaussian beam limit the fidelity of atom optics acting on a spatially

distributed atom cloud, and strongly degrade fringe visibility (i.e., signal-to-noise

ratio) if the cloud accelerates transverse to the beam axis, into regions with large

gradients. For example, a transverse acceleration of 5g during a 10-ms interferometer

places the atom cloud at the lo- intensity radius of a Gaussian beam with 1-cm di-

ameter (typical beam width), where the intensity gradient is nearly maximized. Also
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problematic are light shifts of the atomic resonance frequency, induced by interactions

between the atom electric dipole moment and oscillating electric fields in the Raman

laser pulses. These so-called AC Stark shifts perturb the clock interferometer phase

and, in turn, could limit the frequency stability.

Atomic sensors in dynamic environments will benefit from atom optics that sup-

press systematic effects associated with detuning and intensity variation. Promising

candidates for robust atom optics are stimulated Raman transitions that incorporate

adiabatic rapid passage (ARP) or composite pulses-both of which were originally

developed to mitigate analogous problems in the physics of nuclear magnetic reso-

nance (NMR) [57, 58]. In ARP, efficient atom population transfer results from slowly

sweeping the Raman difference frequency through the atomic resonance and modulat-

ing the optical intensity [59, 60]. Composite pulses, on the other hand, typically use

resonant pulses with fixed intensity, but add discrete phase shifts between contiguous

"subpulses" of varying duration. These NMR techniques translate well to Raman

transitions given the isomorphism between NMR and Raman processes (discussed in

Sec. 2.1.1). Raman ARP was proposed in the context of molecular spectroscopy [61]

and has been discussed theoretically [62, 63]. Raman composite pulses have also been

proposed as efficient atom optics for interferometry [11, 64].

The traditional approach to adiabatic rapid passage involves linearly sweeping

the field detuning. Linear sweeps generally require excessively long pulses or limit

the magnitude of initial and final detunings. Several frequency sweeps have been

proposed that significantly shorten the pulse duration without sacrificing population

transfer efficiency [60, 651. Theoretical motivations for the various sweep functions

will be discussed in Sec. 2.3. NMR physicists have more recently formalized methods

for numerically designing fast, broadband adiabatic sweeps [66, 67, 68]. A review

of these techniques can be found in [69]. Composite pulse techniques have been

similarly developed [70] to compensate field inhomogeneities and detuning offsets in

NMR applications. A recent experimental study of composite pulses with stimulated

Raman transitions identified several pulses that could prove useful for LPAI [64].

Adiabatic transfer has already been demonstrated outside the realm of NMR.
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The first demonstration of optical ARP, used the energy level-spacing between two

rotational states in ammonia. The level-spacing was slowly changed via application

of an external electric field, such that the molecular resonance passed through the

optical frequency of an incident laser 171]. Optical adiabatic passages are also possi-

ble in multilevel systems. Coherent transfer across nine Zeeman sub-levels has been

demonstrated in cesium by adiabatically raising and lowering the intensities of two

temporally-delayed laser pulses 172]. This scheme delivered 8hk worth of momentum

to the atoms, but functioned only as a deflector. A related technique, known as stimu-

lated Raman adiabatic passage (STIRAP), uses temporally-delayed laser pulses with

Raman transitions to coherently split and reflect atom wavepackets. This approach

fundamentally differs from ARP, as STIRAP requires unique intensity modulations

of each Raman laser field, which furthermore carry fixed and (typically) resonant

frequencies [73, 74]. STIRAP was used to demonstrate the first atom interferometer

with atom optics based on adiabatic passage [75]. Later, a measurement of the pho-

ton recoil frequency with these atom topics was interpreted as a precise measurement

of the fine structure constant 176].

1.4.3 Enhancement of inertial sensitivity

Atom interferometric inertial sensors in dynamic environments must operate at rel-

atively high data-rates (~100 Hz) to maintain suitable bandwidth, as discussed in

Sec. 1.4.1. A natural consequence of fast data-rate is shortened measurement times,

which significantly reduce interferometer sensitivity. The accelerometer sensitivity,

for example, depends quadratically on measurement time. Laboratory gravimeters

often use measurement durations of 100 ms, whereas a dynamic environment sensor

would likely shorten this time to 5 ms. The phase shift for a given acceleration would

correspondingly shrink by a factor of 400.

Sensitivity can be enhanced, without sacrificing data-rate, by increasing the effec-

tive area enclosed by the interferometer. In a fixed interrogation time, area enlarge-

ment requires atom optics that increase momentum transfer beyond 2hk (the nominal

case). One method for achieving large momentum transfer (LMT) involves applying
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additional light pulses that separate the atom wavepackets farther apart. A proof-of-

principle demonstration of this technique used Raman transitions to produce 6hk of

momentum transfer and a threefold increase in phase shift per unit acceleration [77].

Other promising methods for LMT include using beam splitters based on Bragg tran-

sitions and optical standing waves (i.e., optical lattices). Interferometry with Bragg

transitions and ultracold atoms (~100 nK) has already resulted in coherent beam-

splitters that transfer -1-m/s velocities (102hk worth of momentum) to the diffracted

wavepacket. This interferometer took an important step toward realizing large spatial

separation between atom wavepackets [78]. An alternative method for LMT involves

separating the wavepackets with a Bragg transition and then further accelerating them

with optical lattices. An experimental demonstration of atom interferometry with this

technique achieved 24hk momentum separation between diffracting wavepackets [79].

Both these approaches were limited by the purity of optical phase fronts, though

this problem could be mitigated with higher-quality optics. Optical lattices have

also been proposed as atom waveguides that could transfer -10 3hk of momentum to

the interferometer arms. This approach may lead to order-of-magnitude increases in

interferometer sensitivity [80].

Most of these demonstrations, however, relied on cooling methods (e.g., evapo-

rative cooling and velocity selection) that typically discard the vast majority of the

laser cooled atom sample. Discarding atoms degrades the atom shot-noise-limited

measurement uncertainty and also lowers data-rate, since cold atoms can no longer

be recaptured by the MOT. In this work, we use broadband ARP and composite pulse

atom optics to efficiently create LMT with the entire laser cooled sample. Use of the

entire sample implies that our approach is compatible with high data-rate operation,

and thus useful for dynamic sensing applications.

1.5 Thesis contributions

The contributions in this thesis fall into two broad categories: timekeeping and ac-

celerometry.
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1. With regard to the former, we present a method for robust timekeeping in

which alkali atoms are interrogated in a Ramsey sequence based on stimulated

Raman transitions. To suppress systematic effects introduced by differential

AC Stark shifts and optical intensity gradients, we employ atom optics derived

from frequency-swept Raman ARP. Our experimental implementation of Ra-

man ARP reduced the phase sensitivity of Ramsey sequences to Stark shifts in

.3 3 Cs atoms by about two orders of magnitude, relative to fixed-frequency Ra-

man transitions. This technique also preserved Ramsey fringe contrast for cloud

displacements reaching the 1/e 2 intensity radius of the laser beam. In a magnet-

ically unshielded apparatus, second-order Zeeman shifts limited the fractional

frequency uncertainty to ~3.5 x 10" after about 2500 s of averaging.

2. With regard to accelerometry, we demonstrate large momentum transfer atom

optics in an LPAI using atom optics based on frequency-swept Raman ARP.

These atom optics produced high contrast and maintained coherence for mo-

mentum splittings of up to 30 photon recoil momenta in an acceleration-sensitive

interferometer. We experimentally verified the enhancement of phase shift per

unit acceleration and used Monte Carlo simulations to study loss of interfer-

ometer contrast. By forgoing evaporative cooling or velocity selection, both

of which substantially reduce atom number, our method improved the atom

shot-noise limit and enabled large area atom interferometry at high data-rates.

These features should prove useful for inertial sensing with atom interferometry.

Now that we have introduced precision sensing with LPAI and discussed challenges

associated with making these sensors practical, we turn our attention in Chapter 2 to

the theoretical background that underpins this work. In Chapter 3, we review the ap-

paratus and methods used to carry out the demonstrations described above. Chapter

4 covers robust atomic timekeeping with Raman ARP (the first thesis contribution)

and Chapter 5 details our demonstration of LMT atom interferometry with Raman

ARP (the second thesis contribution). In Chapter 6, we offer conclusions and suggest

future directions for this work.
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Chapter 2

Theory and background

In this chapter, we present the theory of stimulated Raman transitions in the con-

text of interferometry with alkali-metal atoms. Three approaches to interferometer

analysis are discussed, and analytic expressions for Ramsey and Mach-Zehnder inter-

ferometers are derived. The dynamics of the Raman transition are extended to the

time-dependent case of ARP, and a brief qualitative description of laser-cooling and

trapping concludes the chapter.

2.1 Stimulated Raman transitions

Atom optics divide, deflect, and mix matter waves to create atomic interference.

In this work, atom optics are based on laser pulses that drive stimulated Raman

transitions. A Raman process occurs when two photons irradiate a three-level quan-

tum system, and the photon frequency difference matches the quantum resonance

frequency. Figure 2-1 depicts a Raman transition between cesium hyperfine ground

states Ig) and le). The ground states are coupled to an excited state i) by two optical

photons with frequencies w1 and W2 . The Raman transition occurs if W 1 - WHFS,

where WHFS is the hyperfine splitting frequency between Ig) and le). An offset from

this two-photon resonance condition is called a Raman detuning 6. To suppress spon-

taneous emission (i.e., single-photon excitations), the optical frequencies are detuned

from all intermediate F') states by a frequency ~A that is orders of magnitude larger
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than the transition linewidth IF (5.2 MHz in 133Cs). Typical magnitudes of frequency

parameters that define the Raman transition are given in Fig. 2-1 (not to scale).

F'=5

62P3/2 "F'=4

F'= 3 ...
F'= 2

852.35 nm

351.73 THz

F=4

-600 MHz

. A = -2 to -4 GHz

woz, k w1, k2

e)
F=3

Figure 2-1: Energy level diagram for a stimulated Raman transition on the 133Cs D2

line. The hyperfine ground states 1g) and le) are coupled to an intermediate state ji)

by two optical photons with frequencies w, and W 2. The optical photons are detuned

from the single-photon resonance by A. A Raman transition between 1g) and le)

occurs when w1 - W2 ~ WHFS-

Atom optics also exist for single-photon transitions at optical frequencies, though

they demand state-of-the-art, narrow-linewidth laser sources. Conversely, Raman

transitions require only relative stability between the optical frequencies. For Raman

transitions between hyperfine ground states in alkali-metal atoms, the optical fre-

quencies must differ at the GHz-scale. In this case, stable Raman frequencies can be

produced using low-noise RF signals that phase-modulate a single optical frequency

or provide a reference for phase-locking two lasers. We use the former approach in

our experimental work (see Sec. 3.5.1). Suitable RF signal sources include relatively

inexpensive, oven-controlled crystal oscillators that achieve short-term fractional fre-

quency stability at the part-per-trillion level [281.

The Raman frequency components can be spatially oriented to deliver either neg-
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ligible or macroscopic' momentum transfer to the atoms. As we will soon discuss,

timekeeping (accelerometry) applications require negligible (macroscopic) momentum

kicks. Fig. 2-2(a) shows the incident Raman frequencies in a co-propagating orien-

tation, which produces essentially no momentum transfer. Absorption of a photon

with wave vector k, and stimulated emission of a photon with wave vector k2 changes

the internal atomic state while giving the atom a miniscule velocity of 90 nm/s. An

alternative orientation with counter-propagating Raman frequencies, shown in Fig.

2-2(b), also uses absorption and stimulated emission to change the internal atomic

state. This approach, however, results in an atomic recoil velocity of 7 mm/s due

to the addition of two photon recoil momenta. For both Raman frequency orienta-

tions, the probability of an atom being detected in a particular ground state oscillates

sinusoidally with increasing pulse duration. This behavior, known as Rabi cycling,

is shown in Fig. 2-2(c). A quarter-cycle serves as an atom beamsplitter, while a

half-cycle results in an atom mirror.

We formalize these ideas by studying the atom-light interactions during a Raman

transition. This analysis follows the approach taken in [81] and takes place in a refer-

ence frame co-moving with the lower ground state 1g). Other treatments can be found

in [82, 8, 83]. The two Raman frequency components are modeled as electromagnetic

plane waves:

El = E1,o(t) cos[qj1(t) + #1] (2.1)

E2 = E2 ,0(t) cos[b2 (t) + # 2]. (2.2)

Here, E1,0 (t) is slowly-varying compared to 4i,2 (t). Also, #1 and 02 represent arbitrary

phase offsets, and the phase terms j1(t) and q 2 (t) include time-dependent frequencies

1The term "macroscopic" refers to a level of momentum transfer that produces large atom dis-
placements relative to the atom wavepacket coherence length.
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Figure 2-2: Raman pulse momentum transfer and Rabi oscillations. (a) When the

Raman laser wave vectors k, and k2 co-propagate, the atom receives a momentum

kick hlkeff I = h(jkj| - |k2 1) ~ 0. (b) With counter-propagation, the atom receives a

momentum kick hlkeff I= h(IkI + k2 j) ~ 2hlkij, resulting in a deflection of 7 mm/s

for cesium. (c) Application of a resonant Raman pulse produces Rabi oscillations in

the probability of an atom to transition from jg) to le).
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and spatial phases. More specifically,

01 = Jf[wi(t') - ki - z(t')]dt' (2.3)

- t  hkeff
q 2 (t) I[w 2(t') - -(t')]dt' - k2 t. (2.4)

The integrand is associated with the usual temporal and spatial phase components

of a plane wave. Optical frequencies wi and w 2 are varied in experiments to satisfy

the two-photon resonance condition for a freely-falling atom, whose Doppler detuning

grows linearly in time. Wave vectors are treated as constants, since their magnitudes

change at the part-per-billion level in response to typical variations in w, and w 2 . The

z-proportional term captures the Doppler shift induced by motion of an atom in state

1g). In the expression for 52 (t), the term outside the integrand arises from the recoil

velocity hkeff/m of an atom in state Ie), where keff = k - k2 . This discrepant phase

term reflects the assumption that laser fields E1 and E2 exclusively and respectively

couple the ground states 1g) and le) to the intermediate state ji).

The Raman transition is described by the Schrodinger equation ihail/&t = [o +

V]. Ho is the Hamiltonian operator governing the rest frame internal energies of the

atom, and tI is the atomic state. In the electric dipole approximation, the potential

energy V is dominated by the dipole interactions qr-E 1,2 (t). The Schrodinger equation

comprises a system of three, first-order differential equations that correspond to the

three coupled atomic energy levels. In matrix form, the equation becomes

FFe w Q2 (t)ei( 2(t)+2) 0 1
[-1 [ Q(t)e-i(02(t)+02) 2wi Q*(t)e--41(t)++1) Vi (2.5)

T9_ 0 1(e41++)2wg XPU

where ,,, are complex amplitudes that determine the superposition of internal

atomic states. Diagonal matrix elements come from H0 , off-diagonal elements come

from f, and we define the complex, resonant, single-photon Rabi rates to be Q 1 (t)

(iqrlg) - Ei,o(t)/h and Q2 (t) = (i qrle) - E2,o(t)/h.

47



To transform Eq. (2.5) into a more tractable form, we first subtract h(we + wg)/2

from the diagonal matrix elements, which resets the energy origin and has no mea-

surable effect. Second, the laser phase offsets #1,2 are absorbed into the complex Rabi

rates. Third, we define the unitary transformation

0

0((t)+ 2(M)

0

0 be

0 bi

e I( ( -- 2(t) b

(2.6)

and substitute this definition into Eq. (2.5). It

equation in this frame takes the form

be -6(t)

b9= 0Q(t)

[bg [o

Q 2(t)

-2A

Q 1(t)

can be shown that the Schrodinger

0 be

Q*(t) b2 ,

3(t) bJ

where the Raman detuning is

W(t) wi(t) - w2 (t) - WHFS + hke + keff

with WHFS = We - wg, and the single-photon detuning is

2A = w1 (t) + W 2 (t) - [2wi - (We +W g) - 2m + (ki + k 2 )

Note that O(k1 2) terms have been dropped from the definitions of 6(t) and A.

In the limit where 2A 2 > IQ2 (t)Q*(t) Ithe time-derivative of the intermediate

state amplitude bi is negligible. Letting bi = 0 eliminates bi from the system of

equations and results in an effective two-level system

be AC (t ) - 6(t

b9J 2 [Qeff(t)|ek (2.10)| e[A(t) 6(t)J be

-[6A c(t )- 6(tt)] b 9

We arrive at this form by defining the two-photon Rabi rate Qeff(t), the differential
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AC Stark shift 6 AC, and the Raman laser phase 'P as follows:

Qef 1 Q(t)Q*(t) | G1(t)||G2(t)l 2.1
2A 2A

01 = -#2 (2.12)

3 AC Mt I Q2|(t) 2 - |Q1(t)2 (2.13)
4A

Additionally, the generalized Rabi rate is

Qgen = e+ ( 6 AC-). (2.14)

For a typical Raman transition, in which laser fields have fixed detunings and ampli-

tudes, the dynamics matrix in Eq. (2.10) is constant and allows for simple integration.

An analytic solution is given by the equation b(t) = etb(0), where ft is the dynamics

matrix with constant parameters. Writing out the matrix exponential, we find

be(t) C* -iS* be(0) (2.15)

b(t) -iS CJ bg (0)

where

C = Cos 2 + Z gen sin 2 (2.16)

S = "ef sin R"tei* (2.17)
gen 2/

From Eqs. (2.15), (2.16), and (2.17), we see that a Raman pulse with 6AC - = - 0,

acting on an atom prepared in Ig) or |e), produces sinusoidal (i.e., Rabi) oscillations

in the ground state probabilities. A resonant -F/2 Raman pulse, with duration t,/2 =

(7F/2)/Qgen, serves an atom beamsplitter, because the resultant state has an equal

probability of being in Ig) or |e). To produce a 7 Raman pulse, which inverts the

internal state, the pulse duration is increased to t, = -r/Qgen. We note that this

analysis neglects spontaneous emission, which is reasonable since A ~ 500I' in the

experiments presented in this thesis. We account for spontaneous emission empirically
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in many-pulse sequences when it becomes significant.

2.1.1 Raman transitions on the Bloch sphere

The time-dependent dynamics for a two-level system (see Eq. (2.10)) are conveniently

visualized on a three-dimensional space called the Bloch sphere. This spatial represen-

tation will prove useful in subsequent discussions of ARP, Raman atom interferometry,

and systematic error mechanisms.

We arrive at the Bloch sphere picture by first forming the density matrix for the

atomic state

p = b(t) - bT (t) [Pee peg. (2.18)
[Pge PggJ

Diagonal terms in the density matrix represent population in le) and 1g), whereas

off-diagonal terms characterize superpositions of these states. This matrix is time-

evolved using the equation ihp = [H, p], where H/(ih) is the dynamics matrix from

Eq. (2.10). Linear combinations of the density matrix elements define the quantum

state on the Bloch sphere via the Bloch vector

PXt W 2Re ( pg,)

Note that population difference appears in the pz(t) component, while the px(t) and

p,(t) components capture the relative phase between Ig) and le). An atom prepared

purely in Ig) (je)) is thus aligned with the negative (positive) z axis of the Bloch

sphere, while an equal superposition state has no z component at all. The time

derivative of P(t) is obtained from the equation of motion for p and takes a simple

form. For convenience, we define a polar angle 0 as

cos 0 = 6AC - sin0 I Qeff (2.20)
Qgen Qgen
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Furthermore, the Raman laser, or "drive field," is characterized by the vector

[Qgen,x sin 0 cos 0

Qgen = Igen,y = Qgen sin 0 sin p0 (2.21)

Lgen,z Cos 0

With these definitions, the equation of motion for P(t) on the Bloch sphere becomes

dt - en X 0 (t), (2.22)

which describes precession of P(t) about Qgen. Equation (2.22) is identical in form

to the equation of motion for NMR, in which a nuclear spin is manipulated by a

magnetic drive field. This isomorphism indicates that NMR techniques for robust

spin control-such as ARP and composite pulses-could serve as useful atom optics

for interferometry.

As a prelude to subsequent discussion on interferometry and ARP, we visualize

simple examples of precession on the Bloch sphere. Figure 2-3(a) shows the action of

a resonant Raman -F/2 pulse on an atom initially prepared in state le). Resonance

implies that the drive field is parallel to the x-y plane. 2 Precession induced by the

drive field rotates 0(t) from the z axis to the x axis during a r/2 pulse. A w pulse

lasts twice as long and continues the precession of P(t) until it reaches the -z axis.

For a detuned Raman pulse, the drive field tilts out of the x-y plane (0 # wr/2 rad)

and induces precession that no longer traces a great circle, as shown in Fig. 2-3(b).

The shift seen in the azimuthal angle of 0(t4 2) can alter the interferometer phase,

meaning detuning variations affect the measurement stability.

2.2 Raman atom interferometry

A Raman LPAI can be viewed as a sequence of temporally-separated Raman tran-

sitions that serve as atom beamsplitters and mirrors. In Sec. 2.2.1, we describe a

2 We have chosen p = 7r/2 so that fgen aligns with the y axis.

51



(a) Resonant (b) Detuned
z z

AA
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Figure 2-3: Raman transitions visualized on the Bloch sphere. (a) A resonant pulse

produces a drive field fOgen in the equatorial plane, and precession of the Bloch vector

follows a great circle. (b) A detuned pulse tilts fOgen out of the equatorial plane, and

precession of ] results in systematic phase shifts for a 7r/2 pulse.

two-pulse Ramsey sequence on the Bloch sphere. Section 2.2.2 provides a method

from [81] for the calculation of interferometer output states for timekeeping and ac-

celeration sensing. Later, in Sec. 2.2.3, we discuss an intuitive picture from [841 of

the origins of various phase shifts in Mach-Zehnder interferometers.

2.2.1 Interferometry on the Bloch sphere

Section 2.1.1 described the action of an individual Raman pulse in the Bloch sphere

picture. Visualizing an interferometer on the Bloch sphere requires an understanding

of Bloch vector evolution during a dwell time. Since the Raman fields are off during

this time, Qeff = 0 and the drive field becomes Qgen = [0, 0, 6). The differential AC

Stark shift during this time is 6Ac = 0, because the light is off. In experiments,

spurious detunings due to magnetic field variation and AC Stark shift from scattered

light can systematically affect 6. The alignment of fOgen with the z axis implies that

the Bloch vector rotates about that axis during the dwell time. Solving Eq. (2.22)

for this simple case, where p,(t) = 0, shows that the rotation rate is 6.

The simplest interferometer to consider is a Ramsey sequence, in which two 7r/2
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pulses are separated by time T. If Qeff > (6 Ac - 6) during a pulse, the first r/2 pulse

rotates the Bloch vector nearly into the x-y plane, as shown in Fig. 2-4. Evolution

First 7r/2 pulse Dwell time Second nT/2 pulse

Z Z Z

<5> flf |9 =80>> 5

---- -------------... ..... .... ---------

YP-Ramsey Y ae

Figure 2-4: Raman Ramsey sequence on the Bloch sphere. Two 7r/2 pulses are

separated by a time T and carry detunings 6 that are small compared to eff . The

drive field is non-zero and vertically oriented during the dwell time because of 6.

Rotation about the z axis by an angle DRamsey is then measured as a shift in population

difference after application of the second 7r/2 pulse.

during the dwell time changes the azimuthal angle 4
)Ramsey between the Bloch vector

and the x axis by 6T. The second pulse then torques p(t) such that 'Ramsey is

mapped into population difference pz. Standard state readout methods, such as laser

induced fluorescence, measure the population difference after the interferometer and

thereby detect 6. When the dwell time is constant, shifts in detuning alter the angle of

precession during T, thereby creating a sinusoidal variation in transition probability-

an interferogram-shown in Fig. 2-5. Near resonance, the transition probability P is

related to (Ramsey by the equation

1 A

P = - + - cos (hamsey + B, (2.23)
2 2

where A is the peak-to-trough amplitude, or contrast, and B is the background. Sen-

sitive detuning measurements can be made by operating the Ramsey interferometer

near the middle of a sinusoidal fringe, where the change in population due to detuning

is largest.
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Figure 2-5: Interferogram for a Raman atom interferometer. Phase shifts modulate

the population sinusoidally. Contrast is a measure of the peak-to-trough amplitude

of an interference fringe. Sensitive phase measurements are made by operating the

interferometer near the middle of a fringe, where the slope is steepest.

In a clock, Ramsey measurements of 6 serves as an error signal for a feedback loop

that corrects the crystal oscillator sourcing the Raman RF difference frequency. The

frequency from the disciplined crystal then provides a timing reference with excellent

long-term stability. Alternatively, a Ramsey sequence can be configured to sense

changes in environmental magnetic fields due to the Zeeman effect.

2.2.2 Scattering amplitude model

In Sec. 2.1, we found an analytic expression for the action of a Raman beamsplitter

or mirror (i.e., w/2 or w pulses) with constant frequency and intensity parameters.

That expression (see Eq. (2.15)) can be rewritten in a more suggestive form:

b(t) f C*(t) e) - iS(t) g), for b(0) = Ie) (2.24)
-iS*(t)Je) + C(t)lg), for b(O) = 1g)

The explicit time dependence indicated in the scattering amplitude captures the dif-

ference between a Raman w/2 and 7r pulse. The scattering diagram in Fig. 2-6 repre-

sents Eq. (2.24) pictorially. Horizontal arrows represent 1g) trajectories while tilted
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lines represent le) trajectories. The vertical line marks when a Raman transition

occurs, and the node represents the point where scattering (S) and continuing (C)

wavepackets diffract. A subsequent Raman pulse would spawn two new pairs of S

and C wavepackets, with each pair emanating, for example, from the S* and C1

wavepackets seen on the left side of Fig. 2-6.

* is

Il 1

t t, t i

I Z = i

Figure 2-6: Scattering diagram for a Raman pulse (Credit: [811). Scattered (deflected)
wavepackets carry an amplitude S, while continuing (undeflected) wavepackets have
an amplitude C.

As detailed in [81], these amplitudes must be related to the atomic state * in the

non-rotating frame using the unitary transformation in Eq. (2.6). More specifically,

a model of T undergoing a Raman transition during time tP to tp + Tp would first

transform xF(tp) into state b(tp) in the rotating frame, then apply the appropriate

scattering amplitudes, and finally transform back to the state XF(tp + rFp) in the non-

rotating frame.

The scattering diagram for an interferometer must also account for the effects of

a dwell time T. Since the laser fields are off during this time, the off-diagonal terms

in Eq. (2.5) are zero and only the internal energies of the atom remain. Solving

this uncoupled system of equations shows that during the dwell time, the amplitude

for state le) acquires a phase factor ei"HFSTII, while the amplitude for state 1g) ac-

quires the complex conjugate of this phase factor. In an interferometer model, these

dwell-dependent phase factors are applied after a transformation out of the rotat-

ing frame (from the previous Raman pulse) and before a transformation into the

rotating frame (for the next Raman pulse). Combining the transformation and dwell-

dependent phase factors reveals that the phase evolution between the Ih and j+1th
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interferometer pulses is e'*Dj-+1 for le) and e- j+1 for 1g), where

41J j--j+ +1 - ft +Tj 6j(t)dt. (2.25)

Examples of scattering diagrams for two-pulse Ramsey sequences and three-pulse

Mach-Zehnder sequences are shown in Fig. 2-7. The column of amplitudes immedi-

ately following t = t 2 corresponds to the Ramsey sequence output; the final column

corresponds to the Mach-Zehnder sequence. The output populations of an interfer-

ometer are determined by calculating the squared norm of the sum of amplitudes

associated with le) and then repeating this calculation for amplitudes associated with

1g). For the Ramsey sequence, the output populations are

'Pe,Ramsey 2 2 S2 2 2 S1 2 C212 + 2Re (C*S

I|qg,Ramsey 2 1 2 12 2 2 21 2 S212 - 2Re (C*SC*S 2ei ) , -+2

whereas for the Mach-Zehnder interferometer we have

I| e,MZ 2 2 S2 2 + I C2 2 S212 03 2+2 S 12 2
3 2

+ IC1 C2 2 I312- [CIS(S2*) 2C*S3 eiin + c.c.]

+ C*S*(C2* )2C*Sse + c.c.

+I- C1S1C 2* (| C3 | _ 2) e int-*oSS) + c.c.

+ C2*S*C*S3 (|C112 _ S2) C-( int+Ios) + cc.

pg,MZ12 =C1 2S2 2 1312 S112 S2 
21C32 -F S1 121 2|C2 2

+ C1 | 2|C2 |2 |C32 + C1S1(iS2*) 2C* S3 eii*t + c.c.

- [C*S*(C*2C* Sei*' , + c.c.]

- [c1 s1C2s2 (C31 2 - |S312) ei(in-Ilos) + c.c.

- [C2*S*C*S 3 ( CJ12 _ S12) ei(Iint+ios) c.c.1

with 4int -(D2-+3 - 4)1-.2 and 'I 1Ioss -- 2-3 + 41)1-*2.
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Figure 2-7: Scattering diagram for Raman atom interferometers 1811. Boxed ampli-

tudes are produced by single pulse (green), Ramsey (red), and Mach-Zehnder (blue)

sequences. In each case, the amplitudes of a particular internal state are coher-

ently summed and then normed to determine the population difference of the out-

put. The diagram assumes either co- or counter-propagating Raman frequencies were

used for a particular sequence. Wavepacket deflections in a Ramsey sequence with

co-propagating Raman frequencies are significantly smaller than the deflections pro-

duced by counter-propagating frequencies in a typical Mach-Zehnder interferometer.
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To further evaluate these general results, we note that each measurement is ac-

quired from an ensemble of atoms with an associated velocity distribution. The

Doppler shift keff - (t) clearly incorporates this distribution and affects interferom-

eter phase factors like 4ioss, which depend on the Doppler shift. Depending on the

magnitude of keff and the average velocity of the atoms, these phase factors can be

suppressed to zero after averaging over the velocity distribution. Co-propagating Ra-

man frequencies result in keff, Co = 1.93 x 102 rad/m, whereas counter-propagation

produces keff, Count = 1.47 x 107 rad/m. Furthermore, a typical ensemble of laser-

cooled 133Cs atoms has an RMS velocity of -1 cm/s. The resulting uncertainty in

interferometer phase over a 10-ms dwell time is then keff [L] x 1 [ ] X 10 [ms],

which is >1000 rad for keff, count and about 10 mrad for keff, Co. Therefore, when us-

ing counter-propagating (i.e., Doppler sensitive) Raman frequencies, all phase factors

other than ei*int average to zero. The survival of (int results from a spin echo: a can-

cellation of the fixed Doppler shift of each atom when differencing I)2,3 and 1D 2- 3

Co-propagating (i.e., Doppler insensitive) frequencies, on the other hand, allow for

contributions from all phase terms.

A Ramsey sequence with Doppler insensitive frequencies can detect the detuning

information found in (D-2. If the sequence uses two -r/2 pulses with the same field

intensity and small detuning 6, the Ramsey phase sensitivity is

4Ramsey = 1-62= 6T, (2.30)

where we have neglected higher order terms. In a Mach-Zehnder interferometer,

Doppler sensitive Raman transitions eliminate (ioss terms in Eqs. (2.28) and (2.29).

The phase response to acceleration, neglecting higher order terms, is given by

'DMZ = (int = -keff - aT2 (2.31)

Since the phase response to acceleration is proportional to keff, the interferometer

3 This spin echo is only useful when the two dwell times of the Mach-Zehnder interferometer are
matched to within a few microseconds.
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sensitivity is ~105 larger with keff, Count as compared to keff, Co.

2.2.3 Path integral treatment for accelerometry

For an intuitive understanding of the inertial sensitivity of a Mach-Zehnder interfer-

ometer, consider a falling object. The acceleration -a of the object is measured by

tracking its position zj at three points in time and using the kinematic equation

zi- 2z2 + z3-a = z , -2(2.32)

where we have assumed the position measurements were temporally separated by time

T. To relate this equation to the interferometer, recall that the phase of the Raman

laser beam, @y = keffz + (WI - W 2)t + p, contains a spatial dependence proportional

to zj. Note that, unlike in Sec. 2.1, this laser phase is defined in the laboratory

frame. As shown in Fig. 2-8(a), the spatial laser phase can act like a finely-ticked

ruler for displacement measurements, since the effective Raman wavelength is 426

nm. Rewriting Eq. (2.32) in terms of go, we find

2a + S03 (2.33)
keffT2

where -2 2+ 3 is equivalent to <DMz from Eq. (2.31). Phase factors carrying laser

phases (y, defined with respect to the atom wavepacket center of mass, premultiply

the wavefunction when a Raman transition occurs. Interferometry is used to extract

this phase information. To create the interferometer shown in Fig. 2-8(b), a r/2

beamsplitter pulse divides the atom wavepacket in two, and the upper arm acquires

hkeff worth of momentum. Since the Raman frequencies are counter-propagating, the

wavepacket separation exceeds its spatial extent over the millisecond timescales of

the interferometer. A subsequent 7r pulse deflects the wavepackets back toward each

other, and a final r/2 pulse combines the wavepackets to create interference. The

imprinted Raman laser phases are indicated in Fig. 2-8(b). Note that laser phase

is imprinted with a state-dependent sign and only when an internal state transition
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Figure 2-8: Classical view of an atom interferometric accelerometer. (a) A falling

atom samples the phase of an incident laser beam at three locations. The position-

dependent phase acts like a finely-ticked ruler for displacement measurements. The

phase information must be retrieved through atom interferometry. (b) A Mach-

Zehnder atom interferometer, with (solid lines) and without (dotted lines) accel-

eration, senses differential phase shifts between the two interferometer arms. This

phase is proportional to acceleration and modulates the transition probability at the

interferometer output ports.
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occurs. Following these two rules, and assuming the Raman frequencies are constant,

we sum the laser phases along both interferometer arms and then difference the sums

to obtain the phase sensitivity shown in Eq. (2.31).

Calculation of interferometer phase shifts using classical wavepacket trajectories

is justified by the path integral formulation of quantum mechanics [841. In this for-

mulation, a quantum state originating at point XA evolves into a state at point XB

according to the equation

b dXaKab/a, (2.34)

where

Kab OC eSAct /h (2.35)

is the state propagator defined in terms of the action

Ct =1 L [x(t), (t)] dt (2.36)

over a path F, and with Lagrangian L [x(t), i(t)]. The definition of Kab implies that a

wavepacket is equally likely to traverse all possible paths connecting points XA and XB-

However, paths far away from the classical trajectory result in Sct >> h, which causes

the phase factor eisct/h to oscillate rapidly. Neighboring paths thereby destructively

interfere, and significant amplitudes only come from the classical trajectory [85].

The path integral formulation also reveals that phase shifts arise during free prop-

agation of the quantum state. The quadratic Lagrangian for a classical trajectory in

a gravitational field, L = mv 2/2 - mgx, can be shown to contribute path-dependent

phase factors eiSfAct/h to the upper and lower interferometer arms when the atoms

are modeled as plane wave states [84]. These phases cancel in a uniform gravitational

field. When gravity gradients break this equality, the path integral analysis offers

a useful method for calculation of expected phase shifts. In this work, the <600-

pm separations between interferometer arms result in negligible phase shifts due to

gravity gradients.

Finally, phase shifts also arise when the classical trajectories do not perfectly
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overlap for the final beamsplitter pulse. Rotations and gravity gradients are common

sources of non-overlap and are not a primary concern in this work. Nevertheless,

a separation of Zsep between the classical paths during the final pulse introduces a

shift in relative phase between atomic plane waves of 1 sep = kdB * Zsep, where kdB is

the wave vector corresponding to the de Broglie wavelength AdB. As in an optical

interferometer, 'sep is determined by the ratio of the path length difference to AdB.

2.3 Raman adiabatic rapid passage

Our discussion of atom optics and interferometry has focused on Raman transitions

with constant detuning, phase, and Rabi rate, such as - and 7/2 pulses. These atom

optics, however, are susceptible to detuning and field intensity errors. In Fig. 2-3,

for example, the detuned w/2 pulse adds a systematic shift to the azimuthal angle

between the Bloch vector and the x axis that ultimately affects the Ramsey phase.

Additionally, optical intensity variation causes r and -/2 Raman pulses to over or

undershoot the desired pulse area, which reduces contrast. Analogous problems in

NMR are mitigated using frequency-swept ARP, whose effect on a two-level system

can be visualized on the Bloch sphere in Fig. 2-9. When the drive field is applied, p

precesses about Qgen at the generalized Rabi frequency Qgen. If the drive field is then

rotated without violating the adiabatic condition

0(t) < Qgen(t), (2.37)

p encircles Qgen before 0 can change appreciably. In effect, rapid precession causes

p to adiabatically follow Qgen. The projection of p onto the drive field, which we

define as pil, can thus be dragged anywhere on the sphere. For an atom prepared

in 1g) or le), the Bloch vector and drive field are initially parallel in the limit of

infinite detuning. The transfer efficiency in the adiabatic limit is optimal in this

case. As shown in Fig. 2-10(a), finite detunings with 6 > Qeff create a small angle

Qeff/ 6 between the Bloch vector and drive field, indicating that a combination of large
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Figure 2-9: Bloch sphere depiction of Raman adiabatic rapid passage. The Bloch
vector p adiabatically follows Qgen when 0 < Qgen. Here, Qgen sets the rate of
precession of p about gen. The projection of p onto the drive field can be dragged
anywhere on the sphere.

detuning and small Rabi rate gives near ideal alignment. The initial detuning should

also significantly exceed the detuning inhomogeneity of the atom ensemble so that

the drive field is simultaneously aligned with the Bloch vectors representing the initial

states of each atom. In Fig. 2-10(a), an ARP 7r pulse begins with a large negative

detuning, sweeps through resonance, and ends with a large positive detuning. The

same sweep is stopped on resonance to achieve an ARP beamsplitter (7r/2) pulse.

When the ARP beamsplitter acts on a superposition state, as is the case during the

second pulse of a Ramsey sequence, the pulse begins on resonance and sweeps to a

large detuning, effectively carrying out the second half of a 7r sweep. The initial angle

between the Bloch vector and the drive field, namely the Ramsey phase, is fixed in the

adiabtic limit and converted into a detectable population difference. Experimentally,

we control 0 by sweeping 6 over a frequency range that is large with respect to 2 eff,

while also modulating the optical intensity.

ARP is generally advantageous when inversion is performed with a spatially inho-

mogeneous drive field [59, 60]. Since the Rabi rate in this case is position dependent,
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Figure 2-10: Raman adiabatic rapid passage 7r and 7r/2 pulses. (a) The far-detuned

drive is nearly parallel with the Bloch vector of an atom initially in le). In the

adiabatic limit, precession allows for the Bloch vector be dragged to the equatorial

plane for a beamsplitter pulse, or to the opposite pole for a mirror pulse. (b) When the

detuning inhomogeneity of the sample is -Qeff, yet small compared to the maximum

ARP detuning, the behavior at the beginning and end of the sweep is the same as in

(a). However, when t = T,/2 near the middle of the sweep, the drive fields for atoms

with different detunings have varying polar angles that reduce the transfer efficiency

of ARP beamsplitters.
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precise control of spin precession cannot be achieved for the entire ensemble of atoms.

With an ARP sweep, however, transfer efficiency in the adiabatic limit ultimately de-

pends on the projection of p onto 2 gen, namely pl, which is independent of precession.

As long as the adiabatic condition is satisfied over all regions of the drive field sampled

by the atoms, an ARP 7r pulse will invert population with high fidelity. Many ARP

sweeps also tolerate larger detuning offsets 60 than ordinary 7T pulses. The detuning

offset effectively shifts the center frequency of an ARP sweep away from resonance

and affects how well the adiabatic condition is satisfied at different times. If the ini-

tial ARP detuning is large with respect to the detuning offset, inversion for multiple

atoms in the adiabatic limit would behave as shown in Fig. 2-10(b) on the Bloch

sphere. The Bloch vectors are assumed to be parallel to the drive field for simplicity.

The drive field initially aligns with the z axis, because it is far detuned from all the

atomic resonances. At t = T,/ 2 , when the ARP sweep should be resonant, the dif-

ferent atomic detunings cause the drive field for a particular atom to tilt out of the

equatorial plane with a polar angle tan 0 = -Qeff/o. If adiabaticity is maintained,

an ARP w pulse continues to rotate the Bloch vector to the -z axis regardless of 6o.

However, the transfer efficiency of an ARP w/2 beamsplitter is sensitive to detuning

offsets, since the pulse ends when the Bloch vectors are spread about the y axis. Phase

shifts due to ARP atom optics are also important for interferometry applications and

will be discussed in Sec. 2.3.1.

In the standard approach to ARP, the Raman detuning is linearly chirped through

resonance. For a constant chirp rate r, constant Qeff, and detuning offset o, the

adiabatic condition from Eq. (2.37) takes the form (Qeff/) 2 [ / 2 / 3 - 1] < (t +

60/r)2, if we assume the frequency sweep is centered at t = 0. The condition is satisfied

for r < Qeff 100 kHz, which implies prohibitively long pulses since the sweep must

cover MHz-scale detunings. This wide sweep range is particularly important for

accelerometry applications, in which Doppler shifts in the atom ensemble create a

detuning inhomogeneity that spans over 100 kHz. For this work, we instead chose

nonlinear frequency sweeps that rapidly changed the polar angle 0 at the beginning

and end of the adiabatic passage, when the adiabatic condition was well-satisfied
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because of large 6. A short sweep helps minimize dephasing due to spontaneous

emission and quickly covers a broad frequency range. The primary frequency sweep

of interest in this work is described by the equation

6(t) = Qarp tan a - 1 , t E {, T4} (2.38)
.Tr

where T, sets the total sweep duration, Qarp changes the sweep rate without perturb-

ing its duration or range, and a = arctan(6 max/QarP), where 6 max is the maximum

detuning. This frequency sweep is coupled with an intensity modulation I(t) of the

form

I(t) = Io tanh (1 _ t_ 1 ,(2.39)

where Io is the maximum intensity, and the unitless parameter / (typically 7.5)

determines the extent to which the modulation deviates from a square shape. These

frequency and intensity modulations are plotted in Fig. 2-11. Since 1(0) = I(T,) = 0,

the drive field at the beginning and end of the sweep is essentially parallel with

the z-axis of the Bloch sphere. Variants of this so-called Tan/Tanh pulse have been

proposed and implemented in [65, 67, 861. To quantify the adiabaticity of a particular

6max - Q arp =0.250 ef -- -1

Qarp Qeff

0-)

0)0
-= 100

7.5

0 Time T,, 0 Time T,

Figure 2-11: Tan/Tanh ARP frequency sweep and intensity modulation. The rapid

frequency changes (left) near the beginning and end of the pulse satisfy the time-

dependent adiabatic condition and cover a wide frequency span in a short time. Short

pulse durations are important for minimizing spontaneous emission. Low optical

intensities (right) coincide with large detunings so that the drive field is nearly parallel

with the Bloch vector at the beginning of the pulse.

sweep, we define the unitless parameter Q(t) = Qgen/Ij. Near resonance, and when
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6 max > Qeff = Qarp, we find that Q = n when T, = nt, where t, is the duration of

a Raman 7r pulse. Our experimental demonstrations, along with previous work [65],
have shown that Q > 5 provides sufficient adiabaticity for robust population transfer.

The evolution of a two-level system during a Raman ARP sweep does not have a

general analytic solution, because the Hamiltonian in Eq. (2.10) is time-dependent.

Analogues to the resonant Raman scattering amplitudes C and S (see Eqs. (2.16

) and (2.17 )) must therefore be calculated numerically for ARP. Solutions can be

obtained using the Schrodinger formalism for an effective two-level system, as well as

the Bloch sphere equation of motion from Eq. (2.22).

2.3.1 Dressed state picture of Raman ARP

In the adiabatic limit, it is useful to consider the action of a Raman ARP pulse in

the dressed state picture, which is related to the "bare" state picture of Eq. (2.10) by

a unitary transformation. The dressed basis states are parallel and antiparallel with

respect to the drive field, while the "bare" basis states are le) and 1g). The bare state

b(t) is represented in the dressed basis as

d+ cos 0(t) sin 0(t) e- iF be
2 (2.40)

d-(t sin e* cos b

where 0 is given by Eq. 2.20. The equation of motion for the two-level system from

Eq. (2.10) then takes the form

d+ i [Qgen(t) i0(t) e( d+
(2.41)

d-_ 2 io(t jeip - gent d-_

In the adiabatic limit, 0(t) -+ 0 and the dressed state amplitudes evolve according to

d (t) = eTiYd (0), where y= fJ dt'Qgen(t')/2 is a dynamic phase [63]. To understand

an ARP inversion in this picture, recall that the drive field is parallel to the z axis at

the beginning and end of an inversion. Since le) and 1g) at these times are equivalent

to the dressed states, one simply notes that if the parallel dressed state is le) at the
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beginning of the ARP inversion, then it must be 6mg) at the end. Therefore, an

ARP drive field that is initially aligned with a bare state will invert population while

adding a dynamic phase factor.

Dynamic phases are an important source of dephasing for interferometers in which

the ARP drive field and Bloch vector are necessarily non-parallel [63]. In the dressed

state picture, the atomic state is now a superposition of parallel and antiparallel basis

states, which acquire differential phases t-y during the ARP pulse. Inspection of the

dressed state transformation in Eq. (2.40) reveals that, since 0(0) = 0 and 0(T,) =

r, the differential dynamic phases propagate with the bare states after the ARP

pulse. Subsequent interferometer pulses generally map these phases into detectable

population amplitudes. Since the dynamic phase depends on optical intensity, laser

beams with poor spatial quality can dephase the atom ensemble and reduce contrast.

Dynamic phase, however, cancels after application of two consecutive, identical ARP

inversion pulses in the adiabatic limit, as can be shown using Eqs. (2.40) and (2.41).

This cancellation is important for interferometers involving more than two Raman

ARP pulses, as will be shown in Chapter 5.

Interestingly, the two-pulse Ramsey sequence is insensitive to dynamic phase in

the adiabatic limit. During the first Ramsey ARP beamsplitter, the alignment of

the drive field with the Bloch vector results in an overall dynamic phase -Y1, which

is undetectable. The second ARP beamsplitter acts on a superposition of dressed

eigenstates (i.e., non-parallel Bloch vector and drive field), thus introducing a relative

dynamic phase 72 between the bare states. Importantly, the readout sequence is

insensitive to _Y2, since it has not been mapped into population. In reality though,

the dynamic phase cannot be completely suppressed, due to the finite adiabaticity of

any practical ARP implementation. Phase noise in ARP Ramsey sequences will be

discussed further in Secs. 4.4.3, 4.4.4, and 4.5.
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2.4 Laser cooling

As mentioned in Sec. 1.3.2, we produce cold atom ensembles in this work using a

magneto-optical trap (MOT). A MOT cools atoms using radiation pressure from three

orthogonal pairs of counter-propagating laser beams. Furthermore, the beams are

circularly polarized and overlapped in an ultrahigh vacuum environment containing

a vapor of alkali-metal atoms. Finally, the laser frequencies are red-detuned with

respect to an atomic transition. If an atom in the overlap region moves toward

a particular beam, the Doppler shift brings that beam closer to resonance. The

atom then preferentially absorbs photons from this beam and receives momentum

kicks that tend to counteract its velocity. Randomly-oriented spontaneous emissions

produce no net momentum transfer over many scattering events. As a result, the

laser beam generates a velocity-dependent damping force that slows the atom [43].

A stable trap requires position and velocity-dependent restoring forces. To produce

a position-dependent force, a quadrupole magnetic field can be added to the laser-

cooling beams. Through the Zeeman effect, this field introduces position-dependent

shifts in the atomic resonance that induce preferential scattering of photons toward

the zero of the magnetic field.

Laser-cooled atoms enable long interrogation times for improved sensitivity in

atom interferometers. For the longest interrogations, cold atoms are launched upward

in a fountain-like trajectory. Kasevich and Chu demonstrated the first atomic foun-

tain and used it to interferometrically resolve the ...Cs hyperfine splitting frequency

to within 2 Hz in a single measurement [87]. The atoms were launched by tuning the

MOT frequencies to provide cooling in a moving reference frame. Atomic fountains

have since been employed in high precision inertial and timekeeping measurements,

such as the NIST-F1 atomic time standard [88]. A laser-cooled cloud also serves

as a nearly ideal proof mass for accelerometry, given that the atoms are physically

isolated from external forces. Additionally, since the atoms are slow-moving, they

naturally occupy a small volume and afford compactness. Even colder atom tem-

peratures (< 100 nK) have been achieved through evaporative cooling, or "boiling
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off," of energetic atoms. The simultaneous increase in sample density results in Bose-

Einstein condensation (BEC) [89, 90], in which constituent particles are described by

a macroscopic wavefunction. At present, evaporative cooling places prohibitive limits

on data-rates [91] for dynamic sensing, while also reducing atom number by a factor

of -100. The loss of atoms reduces the atom shot-noise-limited signal-to-noise ratio

(SNR) by roughly a factor of 10.

A simplified MOT, diagrammed in 2-12, is based on one laser beam and a pyra-

midal or conical retroreflector [921, and has proven useful for generating laser-cooled

atom clouds in compact systems. Demonstration of a cold atom gravimeter with this

laser-cooling approach has already achieved a sensitivity of 170 ng / Hz [93j. A use-

ful simplification for traditional six-beam MOTs involves replacing collimated beams

with diverging beams emanating from an optical fiber tip. This approach eliminates

optics, yet still allows for cold atom recapture and atom launching [481. A striking

example of the progress to date is the demonstration of a MOT for diatomic molecules

[941, which extends the technique to a system with highly complex internal structure,

including a multitude of rotational and vibrational resonances.

Figure 2-12: Single-beam magneto-optical trap. Atoms are trapped at the center

of a conical or pyramidal retroreflector, which reflects one circularly-polarized laser

beam. The necessary optical polarizations are achieved through reflection off the

metal-coated reflector.
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Chapter 3

Apparatus and methods

This chapter describes the apparatus used for demonstrations of atom interferome-

try with Raman adiabatic rapid passage (ARP). Details pertaining to our compact,

ultra-high vacuum cell and methods for atom trapping, state preparation, and state

detection are presented. We also discuss how Raman frequencies are generated in

timekeeping and accelerometry experiments and conclude with an evaluation of the

inertial stability of the apparatus.

3.1 Vacuum chamber

Atom interferometers generally require coherence over ~1-1000 ms to achieve high

sensitivity. To reach such long coherence times, collisions with non-interfering back-

ground atoms must be suppressed by operating the atom interferometers in ultra-high

vacuum. In this work, ultra-high vacuum was established in an octagonal, 80-cm 3

glass cell (Precision Glassblowing) pictured in Fig. 3-1. The cell was based on a ma-

chined quartz frame, with 1" and 2.3"-diameter optical flats serving as windows. The

optical flats were fused to the frame at relatively low temperatures using quartz frits.

Because of these low temperatures, the optical flats were minimally distorted during

the bonding process (<A/10). The cell maintained a background vapor pressure of

3 x 10-9 Torr, which was achieved by evacuating it with a turbomolecular pump and

baking the system at 1500 C. After the bakeout, vacuum was maintained with a 200
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L/s getter pump (SAES CapaciTorr, St 185 Ti-V alloy) and a 2 L/s ion pump. These

pumps were attached to the cell via the metal flange diagrammed in Fig. 3-1.

3.9"

Metal flange

Figure 3-1: Octagonal, all-glass, 80 cm 3 ultra-high vacuum cell. Optical flats (A/10)

were fused to a machined quartz frame using quartz frits, and a glass-to-metal seal

at the neck enabled use with conventional vacuum hardware.

The octagonal, all-glass design allowed for excellent optical access, accommodating

three orthogonal beam pairs for laser cooling, as well as beams for state preparation,

read out, and Raman atom optics. A diagram of the beam configuration and the

overall apparatus is shown in Fig. 3-2. The large windows enabled fluorescence detec-

tion optics to be placed in close proximity to the atoms. Both sides of the windows

reflected 4% of the 852-nm light used in our experiments. A second cell with an

appropriate anti-reflection coating reduced back-reflections to <1%. The glass de-

sign also eliminated eddy currents that would have arisen with a traditional metal

chamber positioned between pairs of magnetic coils. Eddy currents near the atoms

are problematic, as they degrade the temporal and spatial uniformity of magnetic

environments.

Cesium atoms in the vacuum chamber were sourced by a current-driven alkali

metal dispenser (SAES, 5.2 mg). During bakeout, the dispenser was heated (via op-

eration at 3 A) to expel trapped hydrogen and prevent adsorption of water molecules.

We positioned the dispenser in the neck of the cell so that cesium atoms were emitted
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MOT beams\ Raman beams

Figure 3-2: Configuration of laser beams and vacuum hardware for atom trapping

and interferometry. A conventional six-beam MOT was used to trap and cool atoms.
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with a flux directed toward the atom trapping region. The flux and background ce-

sium vapor were controlled using the dispenser current. At a fixed dispenser current

setting of 3 A, atoms were loaded into the magneto-optical trap (MOT) at a rate of

0.7 s-1. The steady state atom number was ~1 x 106. In other applications, the dis-

penser is typically operated at 4.5-7.5 A, and the resulting evaporation rate depletes

the cesium supply in about 20 min. Operation at 3 A provided both a cesium flux

and background vapor pressure, while extending the dispenser lifetime to over 3 years

with daily usage. At the cost of added complexity and size, higher loading rates can

be achieved with a 2D MOT [951 or with much larger 3D MOT beams and optical

powers [96].

Achieving zero-power ultra-high vacuum remains an important challenge for many

atomic sensors intended for multi-year operation. Unsaturated getter pumps require

no power and efficiently trap many abundant gases (e.g., N 2, H 20, CO 2, H 2) for

extended periods of time in ultra-high vacuum. Removal of noble gasses, however,

requires an ion pump. Helium is a particularly troublesome noble gas, because of

its ability to diffuse through glass. This problem is potentially solved through use

of a titanium cell body with sapphire windows or other materials with low helium

permeability.

3.2 Atom cooling and trapping

Cold atom samples in this work were produced by trapping cesium atoms in a MOT

and cooling them further in an optical molasses. Our MOT used six laser beams,

with the geometry shown in Fig. 3-2, to trap ~3 x 105 atoms in 500 ms at the

start of each measurement cycle. The loading time was shortened by roughly a

factor of 4 in some experiments to increase the data-rate. Cooling light drove the

F = 4 - F' = 5 cycling transition in cesium (F' denotes an excited hyperfine level

on the D2 line). A repump beam, resonant with the F = 3 - F' = 4 transition,

prevented accumulation of atoms in the F = 3 hyperfine ground state due to off-

resonant cooling excitations. Following trapping, the MOT quadrupole field was shut
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off and the cooling light was attenuated and detuned by 8F = 40 MHz for 2 ms to

reduce the cloud temperature to 9 pK. Prior to reaching the atoms, the MOT beams

were collimated to a 1/C 2 intensity diameter of 1 cm and circularly polarized after

passing through polarizing beamsplitter cubes and quarter wave plates. Each beam

delivered 61sat of optical intensity' to the atoms. After the cell, the each beam passed

through a second quarter wave plate and was retroreflected to create the opposing

MOT beams. The three beam pairs were orthogonally oriented and overlapped near

the center of the vacuum chamber, and the retroreflections were adjusted slightly to

optimize cooling and atom number. Switching to the second cell, with anti-reflection

coated windows, did not noticeably increase the number of trapped atoms or reduce

the atom temperature, suggesting that backreflections from the original cell windows

did not measurably impact the MOT.

The cooling and repump frequencies were generated by two 852-nm Toptica TA

100 laser systems, each of which comprised an external cavity diode laser seeding a

tapered diode amplifier (TA). The amplified outputs were fiber coupled such that

the cooling (repump) laser generated 250 mW (150 mW) of optical power at the

fiber output. We used saturated absorption spectroscopy [971 to frequency lock both

lasers, with the repump laser locking to the F = 3 F' = 3/4 crossover feature,

and the cooling laser locking to the F = 4 - F'= 4/5 crossover feature. As

shown in the optics diagram in Fig. 3-3, the cooling laser output was passed through

a series of two acousto-optic modulators (AOMs) (Isomet), which provided MHz-

scale frequency control and optical beam switching with 100-ns transients. The first

AOM was double-passed to enable fine changes in frequency without a corresponding

change in optical intensity; the second AOM was single-passed to act primarily as

a switch and fixed frequency shifter. Following the AOMs, the cooling light was

amplified by a second TA 2 and divided into three paths to generate the MOT beams.

The three separated beams were then coupled into polarization-maintaining fibers

and delivered to the MOT beam collimators near the vacuum cell. Light from the

"sat = 1.1 mW/cm 2 for 133 Cs.
2 All TAs outside the Toptica TA 100 laser systems were built in-house. A detailed description of

the design is provided in [46].
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Figure 3-3: Diagram of electo-optics used for atom trapping and state preparation.
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repump laser was initially divided into two beam paths: one for frequency locking

with saturated absorption spectroscopy and the other for atom manipulations. A

single-passed AOM frequency-shifted the first beam by +100 MHz, so that locking to

the prominent F = 3 - F' = 3/4 crossover feature meant the laser was operating at

the F = 3 - F' = 3 transition. Light from the second beam path was double-passed

through another AOM to reach the F = 3 - F' = 4 resonance. This light was fiber

coupled, directed to the cell, and collimated to a 1/e2 intensity diameter of 5 mm.

The quadrupole magnetic field for the MOT was provided by two 80-mm magnetic

coils in an anti-Helmholtz configuration. Each coil encircled a large window on the

vacuum cell. Running 2.3 A of current through the coils produced a 10-G/cm field

gradient. A solid state relay enabled rapid switch-on of the current. Zener diodes con-

nected in parallel dissipated the back-EMF when the relayed closed, thus shortening

the switch-off time to about 100 ps. Environmental magnetic fields were canceled by

three orthogonal pairs of coils in an approximate Helmholtz arrangement. Magnetic

shielding was not compulsory for this work, because the cold atoms traversed -1-mm

distances during interferometry. However, temporal variations in the environmental

magnetic field did ultimately limit the stability of our atomic frequency reference, as

discussed in Sec. 4.5. Demonstration of good long-term clock stability will require

the addition of magnetic shields.

The experimental sequence was programmed in LabVIEW and executed using

a National Instruments PXI-1042Q real-time embedded controller. This controller

was responsible for data acquisition, frequency tuning and timing of AOMs, and

timing of mechanical shutters and magnetic fields. Raman pulses were controlled by

an arbitrary waveform generator, which accepted a trigger from the PXI controller

signaling the start of interferometry.

3.3 State preparation

Prior to interferometry, cold atoms from the MOT were prepared in the magnetically-

insensitive IF = 3, mF = 0) ground state, where mF identifies the Zeeman sublevel.
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The second-order magnetic sensitivity of this state is crucial for precision sensing, as

it heavily suppresses noise contributions from environmental electromagnetic fields.

State preparation began with the application of a vertical bias field that lifted the

degeneracy between various Zeeman sublevels. The bias field was produced by the

vertically oriented set of Helmholtz nulling coils with 12" diameters. With the bias

field present, atoms were optically pumped for 100 ps on the F = 4 - F' = 4 transi-

tion, with light polarized linearly and parallel to the field, until >90% of the sample

was in the F = 4, mF 0) dark state. Repump light simultaneously removed atoms

that decayed to the F = 3 ground state. The optical pumping efficiency was ver-

ified by probing for transitions between magnetically sensitive states once pumping

was complete. Measurements of transition probability as a function of microwave 7T

pulse detuning, shown in Fig. 3-4(a), indicated that over 90% of the atoms were in

the desired state. To finish state preparation, a resonant, 90-ps microwave 7T pulse

transferred atoms in IF = 4, mF = 0) to IF = 3, mF= 0), and a subsequent pulse

of cooling light pushed lingering atoms in F = 4 out of the interaction region. Effi-

ciency of the entire state preparation sequence was checked with another microwave

detuning scan. The >97% peak transfer seen in Fig. 3-4(b) indicated that at least

this percentage of the remaining atoms were in IF = 3, mF = 0).

The optical pumping beam used a small fraction of optical power from the Toptica

TA 100 cooling laser, as illustrated in Fig. 3-3. This light was diverted from the cooling

beam path and switched by a double-passed AOM. Double-passing also down-shifted

the frequency by 125 MHz to make the beam resonant with the F = 4 -9 F' = 4 tran-

sition. The beam was then overlapped with repump light, and both frequencies were

directed at the atoms with the same fiber-coupled collimator. The optical pumping

and repump beams were linearly polarized by a Glan-Thompson polarizer. For state

preparation, the pushing pulse used cooling light from a dedicated beam shown in

Fig. 3-3. An RF signal generator (Aeroflex 2042) supplied the microwave signal used

for state preparation. Specifically, a 4.6-GHz signal was frequency-doubled, amplified

(Microwave Power L0809-35), and transmitted through a low-loss coaxial cable to

a microwave horn. A high-frequency RF switch (Mini-Circuits ZASWA-2-50DR+)
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Figure 3-4: Efficiency of optical pumping and state preparation. (a) Optical pumping

on the F = 4 -+ F' = 4 transition put >90% of atoms in the desired state. (b)

After applying a pusher pulse to remove atoms in undesired states, over 97% of the

remaining atoms were in the correct state.

provided 70 dB of attenuation and control over microwave pulse duration and timing.

3.4 State detection with laser-induced fluorescence

State preparation was usually followed by the atom interferometer. Atoms exiting

the interferometer were in superpositions of the F = 3 and F = 4 ground states, with

weightings that depended on the interferometer phase. To read out this phase, we

measured the normalized population difference between the hyperfine ground states

using atom fluorescence induced by two laser pulses. The readout sequence began

with a 500 Its pulse of cooling light; the resulting fluorescence was associated with

atom wavefunctions that had collapsed to F = 4. A second pulse of the same light

then pushed these atoms out of the interaction region. Remaining atoms in F = 3

were pumped to F = 4 with 100 ps of repump light and then fluoresced using another

pulse of cooling light. The two fluorescence signals f3, f4 were proportional to the

population in each ground state. We assessed the interferometer phase by calculating

the normalized F = 4 population f4/(f3 + f4).

79

(a)



Fluorescence was measured using a high-gain photodetector (6 x 10' V/A tran-

simpedance gain; 1.5-kHz bandwidth). A typical fluorescence trace is shown in Fig.

3-5(a), in which 70% of the atoms were in F = 4; shapes of the peaks were bandwidth-

limited by the photodetector. A 2f imaging system was used to capture the fluores-

cence. The photodetector was placed 25-35 mm behind a system of plano-convex

lenses with an effective focal length of f = 16 mm, and the lens system was positioned

2f away from the atoms. The overall collection efficiency was ~1%. The fluorescence-

inducing pulses were red-detuned by 1 MHz and retroflected to balance scattering

forces, thus providing 2 .5 1 ,st of optical intensity. The pulses traveled nearly verti-

cally through the cell, at a small angle with respect to the quantization axis. This

orientation eliminated one source of readout sensitivity to cloud position, since the

falling atoms remained inside the laser beam over varying measurement intervals.
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- Atom fluorescence signals
- Light Background 0.52
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Figure 3-5: Performance of state detection based on laser-induced atomic fluores-

cence. (a) Experimental trace of measured fluorescence and light background. The

photodetector witnessed pusher and repump laser pulses due to scattered light from

the vacuum cell. (b) Evaluation of readout-limited SNR using a Raman Ramsey

clock with T = 500 ps. The limit on phase SNR was a- = A x 100, where A is

interferometer contrast.

Fluorescence measurements typically contained backgrounds that were about 10%

of the total signal f3 + f4, due to scattered light from the vacuum cell. This light

background, also shown in Fig. 3-5(a), was subtracted from every experimental shot

using the following procedure: the ratio of the light background signal to readout

optical power was calibrated at the beginning of each experiment by capturing several
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shots with the MOT shut off, while also sampling the readout pulse intensity. For

the remainder of the experiment, this ratio was used with additional measurements

of readout power to predict and subtract the light background on a per-shot basis.

Detection noise creates instabilities in transition probability measurements that

can contribute to perceived interferometer phase noise. Recall that interferometers

infer phase deviations from transition probability measurements made near the mid-

point of a fringe. Since the transition probability P is related to phase (D by the

equation P = 0.5 0.5A cos (4) + B, propagation of uncertainties dictates that if

4 ~/2, the uncertainty in 4I is

2
U' Au, (3.1)

where up is the uncertainty in transition probability. Therefore, when detection noise

dominates Up, it also registers as a phase instability. We assessed the detection signal-

to-noise ratio (SNR) a-' using a Ramsey sequence with two Raman wr/2 pulses and a

500-ps dwell time. A short dwell time was chosen to suppress the frequency sensitivity

of the interferometer. The Ramsey sequence was operated near the fringe mid-point

for several experimental shots, resulting in a standard deviation for the measured

transition probabilities of Up = 0.005 (see Fig. 3-5(b)). The detection SNR was then

0-' = A x 100, implying that the per-shot phase resolution was limited by detection

noise to uq = 10 mrad in an interferometer with contrast A = 1.

A normalized readout eliminated sensitivity to shot-to-shot fluctuations in atom

number, as well as laser intensity and frequency. Normalization, however, did not

prevent measurement errors due to laser parameter variation between the first and

second readout pulses of a given shot. Measurement errors due to intensity fluctu-

ation were suppressed by applying readout pulses with intensities higher than 'sat.

Laser frequency uncertainty due to the -100-kHz linewidth was more problematic.

To evaluate the contribution of laser linewidth to the measurement uncertainty, we

81



rewrite the transition probability as

P = Yp'4N4 (3.2)
73N3 + _ p, 4N4'

where 7p,3,4 and N3,4 are, respectively, the photon scattering rate and atom number for

each fluorescence pulse. Assuming the atom population is evenly divided (N3 = N4 ),

and that the scattering rates and their uncertainties are the same for both pulses,

it can be shown that p = V/2'cYP/(4-yp). Sensitivity of y7, to laser detuning A is

characterized by the equation

F I/Isat
7P = F11a /2 (3.3)

2 1 + (1/Isat) + (2A/F) 2

where F-1 is the excited state lifetime and I is the optical intensity [43]. Propagating

the uncertainty in A (-100 kHz) reveals that o/-l ~ 1% when A = 1 MHz and

I = 2 .5Isat. Thus, variations in cooling laser frequency limited the readout resolution

to o-p ~ 0.004, which accounts for over half the detection SNR limit. The limit

can be improved upon by increasing the laser pulse intensity, though this increase

also brightens the light background. Readout frequency and amplitude sensitivity is

eliminated in systems that detect both hyperfine states simultaneously with a single

detection pulse. This approach unfortunately requires either large spatial separation

between atoms in F 3 and F = 4 1531 or absorption imaging with two frequencies

(e.g., F = 4 - F' 5 and F = 3 -* F' = 2) generated by a common laser.

Both solutions would be challenging to implement in a compact sensor operating in

dynamic environments.

3.5 Raman frequency generation and optics

3.5.1 Doppler-insensitive Raman optics

The Raman optical frequencies were generated by a Toptica DL 100 external cavity

diode laser. To reduce spontaneous emission, we red-detuned this master laser by
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2 GHz with respect to the F = 3 - F' = 4 transition. Frequency locking with a

large detuning offset was accomplished using a combination of saturated absorption

spectroscopy and phase modulation. As illustrated in Fig. 3-6(a), a small fraction of

the laser output power was diverted to a fiber-coupled electro-optic modulator (EOM)

that phase modulated the light at -2 GHz. The resulting optical spectrum contained

frequency sidebands spaced about the carrier by integer multiples of the microwave

frequency driving the EOM. We used saturated absorption spectroscopy with the first-

order positive sideband to lock the laser. Since this sideband was necessarily resonant,

the laser carrier frequency w, was red-detuned by the EOM driving frequency (i.e.,

A ~ -2 GHz).

(a) F= 3 -+ F'= 3/4 cross

d
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Figure 3-6: Raman master laser offset lock and phase modulation. (a) An EOM

phase modulated the master laser output we at frequency A, and the laser was locked

using the positive first-order sideband. (b) Raman frequencies were generated by a

second EOM driven near wHFS/(27r). Multiple Raman transitions were possible, with

relative strengths determined by corresponding laser detunings. Bold arrows (red and

maroon) represent frequency components that drove the dominant Raman transition.

The detuned (and unmodulated) output of the master laser provided one of the

Raman optical frequencies. The second Raman frequency was generated by an ad-
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ditional stage of phase modulation with an EOM. The driving frequency for the

second EOM was generally set to the Zeeman-shifted hyperfine splitting frequency

wHFS/(27r) = 9192631770+324 Hz. As indicated by the thick red and maroon arrows

in Fig. 3-6, the carrier and -1 sideband frequencies drove the dominant Raman tran-

sition. For timekeeping experiments, which used Doppler-insensitive, co-propagating

Raman frequencies, the entire phase modulated spectrum was applied to the atoms.

Other frequency pairs that satisfied the two-photon resonance condition drove much

weaker Raman transitions due to their larger single-photon detunings, labeled A'

and A" in Fig. 3-6. The three-frequency Raman system, in which Raman transitions

are driven by pairings of the carrier frequency with both first-order sidebands, has

been studied analytically in [98]. Depending on the sign of A, the weaker Raman

transition essentially adds or subtracts from the two-photon Rabi rate due to optical

interference.

The Raman pulse detuning and phase were controlled using the microwave signal

that drove the EOM. To obtain agile control over these experimental parameters, we

used a single-sideband mixer (Polyphase SSB90110A) to combine the 30 MHz out-

put of a 625 MS/s arbitrary waveform generator (Agilent N8241A) with a constant

9.163 GHz signal (Agilent E8257D). The phase, frequency, and power of the resulting

RF signal were controlled through the waveform generator, enabling rapid frequency

sweeps for Raman ARP. Figure 3-7 provides a simplified block diagram of the as-

sociated RF circuitry. As shown in the optics diagram in Fig. 3-8, an AOM placed

80 MHz
40 MHz @ 1.3W

AWG x2 Ap AOM

(N8241 A)
130 MHz

10 MHz Ref. (Dynamic) IF
(507 1A Cs beam clock) 1 1S AmP 9.Gz EM

(LO+F @S 9-24 d~

Analog Sig. Gen. (OF 62 ~

(E8257D) 9.2 G iz

Figure 3-7: Microwave circuit block diagram for Raman frequency generation. Agile
control over Raman frequency and phase was achieved using the dynamic 30-MHz
signal from the arbitrary waveform generator (AWG).
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before the second EOM switched the Raman light in 50 ns, and a tapered amplifier

downstream of the EOM typically increased the total Raman optical power presented

to the atoms to -40 mW. The AOM acoustic wave velocity (3.6 mm/ps) produced a

~ 1 ps delay in optical beam switching, relative to the EOM RF signal, that was cor-

rected for by delaying the EOM signal using the arbitrary waveform generator. Such

synchronization errors were problematic for ARP and composite pulses, because of

their time-dependent frequencies, phases, and intensities. The optical spectrum of

the tapered amplifier contained a 30 nm-wide pedestal carrying a small amount of

resonant light. To reduce spontaneous emission during the interferometer, we filtered

the resonant light from the pedestal by passing the output of the tapered amplifier

through a Cs reference vapor cell. The Raman beam was vertically oriented, circu-

larly polarized, and delivered to the cell using a fiber-coupled collimator with 7.1 mm

1/e2 intensity diameter and wavefront aberrations of < A/10 (Silicon Lightwave Tech-

nologies LB10). At a -2-GHz master laser detuning, the differential AC Stark shift

was canceled when the optical power was -10% larger in the carrier frequency than

in each first-order sideband. Additionally, the Doppler-insensitive Raman resonance

had a residual Doppler sensitivity that shifted resonance by 30.7 Hz/(m/s), or 0.3

Hz/ms in a 1 g environment.

To generate an interferogram, we often measured the transition probability while

shifting the Raman phase offset p. This phase was scanned over several values, typi-

cally in steps of -r/4 rad, and the transition probability at each phase was measured

multiple times (consecutively) to enable averaging. With a per-shot data-rate of 1.5-5

Hz, a full interferogram was usually acquired in under 1 min.

3.5.2 Doppler-sensitive Raman optics

For inertially sensitive interferometry with ARP, additional lasers and optics were re-

quired for Raman frequency generation. The Raman frequencies in this case were

produced by two injection-locked Fabry-Perot slave lasers (Blue Sky VPSLO850-

150X9B). As the diagram in Fig. 3-9 shows, both lasers were seeded by the Ra-

man master laser, which was red-detuned from the F = 3 - F' = 4 transition by
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Figure 3-8: Diagram of electro-optics for Doppler insensitive (co-propagating) Raman

frequency generation.

A = -3.9 GHz to reduce spontaneous emission. The master laser was phase mod-

ulated to create frequency sidebands spaced by ~9-GHz intervals. Each slave laser

was seeded with roughly 100 pW of optical power from the phase modulated beam

and tuned to predominantly amplify either the carrier or the negative first-order fre-

quency sideband. In this manner, two physically separated Raman frequencies were

created, and the RF signal driving the EOM still controlled the Raman detuning and

phase. Residual amplification of neighboring sidebands by each slave laser produced

undesired frequency content with 1 - 5% of the optical power in the primary fre-

quency component. If the EOM drive frequency had been set to WHFS/(27r), coupling

between the residual and primary frequencies in each slave laser would have driven

Doppler-insensitive transitions. Therefore, a double-passed AOM frequency-shifted

the seed for slave laser 1, which primarily amplified the -1 frequency sideband, by 160

MHz. The EOM phase modulation was then set to wHFS/(27r) + 160 MHz so that

the slave laser difference frequency matched the Raman resonance condition. In turn,

Doppler-insensitive transitions were detuned by 160 MHz (i.e., -1000 linewdiths).
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During an interferometer sequence, the Raman frequency difference was chirped at

23 kHz/ms to continually match the Doppler-shifted Raman resonance in a 1-g

environment. The sign of the chirp rate was determined by the orientation of the

effective Raman wave vector keff.

The two Raman beams were delivered to the atoms in a counter-propagating,

vertical orientation via two polarization maintaining fibers. As indicated in Fig. 3-

2, the downward (upward) beam entered the vacuum cell through the top (bottom)

window. The beams were linearly cross-polarized by polarizing beamsplitter cubes

and collimated to a 7.1-mm 1/e2 intensity diameter by commercial fiber-coupler col-

limators. Each beam delivered one Raman frequency at any given time. Relative

alignment of the Raman beams was verified by coupling light from one beam into the

fiber collimator of the other beam. Each Raman collimator was mounted to enable

adjustment of its Euler pitch and yaw angles, as well as linear translations in the

plane orthogonal to the beam axis. This method aligned the beam axes to within

-1 mrad of each other. The beams were then centered on the atom cloud by driving

Doppler-insensitive Rabi oscillations and translating the collimators to minimize the

oscillation decay rate.

A combination of two AOMs and polarization-selective optics, shown in the lower

lefthand side of Fig. 3-9, enabled rapid optical switching (~50 ns) of the beams and

reversal of keff. Specifically, the outputs of the slave lasers were orthogonally polarized,

overlapped on a polarizing beamsplitter cube, and directed through a switchyard of

two AOMs. The outputs of each AOM, represented by the blue and green beam

paths, carried both cross-polarized Raman frequencies and were never switched on

simultaneously. Since each beam entered the downstream polarizing beamsplitter

cube through a different input port, the AOMs determined the output port from

which a particular Raman frequency exited the beamsplitter. The beams were then

coupled into optical fibers that routed light to the atoms. Depending on which AOM

was switched on, the Raman frequencies could take either optics path downsteam of

the polarizing beamsplitter cube, thereby reversing the directions of k, and k2, and

consequently keff. We boosted the optical power in each Raman beam to -100 mW
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with two TAs. The TA drive currents were also tuned relatively to obtain a ratio of

optical powers that canceled the differential AC Stark shift of the clock states.

3.6 Inertial stability assessment

In a simpler method for inertially sensitive atom interferometry, counter-propagation

of the Raman frequencies was achieved by retroreflecting the full spectrum of fre-

quency sidebands pictured in Fig. 3-6(b). The two primary Raman frequencies thus

traveled upward and downward through the vacuum cell, and pairings of these fre-

quencies produced two Raman processes-one with keff= k, - k2 , and the other

with keff= k2- ki [99]. The anti-parallel orientation of these vectors changed the

sign of the Doppler shift in the Raman resonance condition. As a result, the appro-

priate choice of Raman detuning made it possible to drive each Raman transition

selectively. In a vertical orientation, for example, the atom cloud gained velocity

during free fall, resulting in a Doppler-induced separation of the resonances at a rate

of 2keffg/(27) = 2 x 23 kHz/ms. Without this Raman resonance splitting, both tran-

sitions would have occurred simultaneously [100]. An atom beam splitter would then

have produced more than two momentum states, thus breaking the symmetry of the

Mach-Zehnder interferometer.

Retroreflected Raman pulses offer important practical benefits for atom interfer-

ometric gravimetry. Sourcing both Raman frequencies from one laser reduces phase

noise, since variations in laser phase are common to both frequency components.

Additionally, variations in Raman beam path length are less problematic: the only

portion of the path not common to both Raman frequencies is the segment between

the atoms and the retroreflecting mirror. Motion of other optical elements in the

path equally shifts both Raman laser phases #1 and # 2 , resulting in a fixed effec-

tive Raman phase O = 01 - #2. If the Raman frequencies are physically separated,

as in the approach described in Sec. 3.5.2, variations in path length are no longer

common-mode and result in added phase noise. In the present approach, interferom-

eter sensitivity to acceleration results from motion of the atom cloud with respect to

89



the retroreflector. As a result, vibration of this mirror can also lead to noise in p.

Phase perturbations during a three-pulse Mach-Zehnder interferometer combine to

shift the phase by 4 i - 242 + 3 , where subscripts denote the pulse number. If the

mirror is stationary during the interferometer, its contribution to the phase cancels.

We used a retroreflected Raman beam to test the inertial stability of the apparatus.

To stably reflect the beam, a corner cube reflector was mounted on a passive vibration

isolation stage (Minus K 1OBM-10) placed above the vacuum cell on a rigid aluminum

platform. Compared to flat mirrors, corner cubes improve pointing stability, since the

direction of the reflected beam is independent of reflector orientation. Importantly,

the Raman beam collimator was rigidly mounted to the floated optical table on which

the apparatus was built. Local gravity was measured using a Mach-Zehnder atom

interferometer, with a w pulse time of 10 ps (A = -1 GHz) and contrast of 0.5.

Measurements were acquired for 30 min with a data-rate of 3.6 Hz and a dwell time

of T = 3.5 ms, while operating the interferometer with a p = w/2 phase offset (i.e.,

near the middle of a fringe). Allan deviations of these phase measurements, shown

in Fig. 3-10, reveal a short-term stability 30 pg/ /Hz and a bias stability of 3 pug at

T =150 s. The long-term stability may have been limited by milliradian tilts of the

floated optical table with respect to vertical. The local value of gravity was found

to be 9.80362 0.00003 m/s2, which deviated from the National Geodetic Survey

prediction of local gravity at the 10-ppm level. This discrepancy was largely due

to mrad-scale misalignment of the Raman beam with respect to vertical, since an

accurate gravity measurement was not a primary focus.

A previous assessment of inertial stability, made without passive vibration isola-

tion, produced a short-term stability of 120 pg//Hz [46], indicating that environ-

mental vibration was the dominant noise source. This limitation was expected, given

that our laboratory is located on the 6 th story of a building in an urban setting and in

close proximity to the subway. While vibration-driven noise was heavily suppressed

in the more recent measurement, the stability was still roughly 5 times worse than the

limit imposed by detection SNR, namely 6 pg/v/ Hz. To monitor residual vibrations

of the isolation platform, a seismometer (Endevco 86) measured the acceleration noise
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Figure 3-10: Allan deviations characterizing the inertial stability of the testbed.

The Doppler-sensitive Mach-Zehnder interferometer had a short-term stability of 30

ptg/v Hz and a bias stability of ~3 pg at -r = 150 s. The dwell time and data-rate

were T = 3.5 ms and 3.6 Hz, respectively, and measurements were acquired for 30

min. The interferometer used a retroreflected Raman laser beam, with the reflec-

tor mounted on a passive vibration isolation platform. Milliradian-scale tilts of the

floated optical table over several minutes may have limited the bias stability.
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experienced by the corner cube reflector. An acceleration noise spectrum, shown in

Fig. 3-11(a), was acquired from these measurements and used to estimate its con-

tribution to short-term interferometer instability. The phase uncertainty a, of the

atom interferometer is related to the single-sided acceleration power spectral density

Sa (w) by the equation

o2 = k dw IH (w)1 2 Sa (w), (3.4)

where H (w) is the frequency response of the Mach-Zehnder sequence [991:

16
|H (W) = 6 sin (T/2) (3.5)

A plot of IH (w) 12 in Fig. 3-11(b) exhibits two interesting behaviors. First, the notches

at integer multiples of w = 1/T reflect the insensitivity of the accelerometer to mirror

motion at these frequencies. The insensitivity results from the mirror returning to

the same position for all three Raman pulses, despite moving during the dwell times.

Second, the frequency response of IH (w) 1 rolls off as ~1/w for w > 1/T, indicating

that the atom interferometer behaves like a second-order low-pass filter.
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Figure 3-11: Acceleration amplitude spectrum and frequency response of the Mach-

Zehnder interferometer. (a) The acceleration amplitude spectrum was measured with

a seismometer. (b) The frequency response notch filters inertial inputs at integer

multiples of w = 1/T and low-pass filters frequencies above - 1/T.
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Applying this frequency response function to the power spectral density, we found

from Eq. (3.4) that vibrations added 35 mrad of phase noise per shot. The measured

short-term stability, however, corresponded to a per-shot phase noise of 100 mrad,

suggesting that the measured acceleration spectral density excluded important high

frequency noise content. The spectrum between 100-200 Hz, for example, may have

contained resonances and was only partially suppressed by IH (w) (see Fig. 3-11(b)).

Furthermore, a separate stability assessment for a Mach-Zehnder interferometer with

Doppler insensitive Raman transitions-which are immune to vibration-achieved a

per-shot phase noise of 20 mrad (contrast of 0.8). Therefore, it seems likely that

residual accelerations, transmitted through the vibration isolation stage, limited the

short-term stability of our accelerometer. Raman pulse intensity noise at the ~0.5%

level (not actively controlled) was not a major driver of instability. Other noise sources

related to microwave frequency generation, the differential AC Stark shift, and inertial

effects such as gravity gradients and rotations did not limit the measurement. The

interested reader may consult references [99, 461 for additional details on measurement

noise and systematic effects.

In this thesis, other inertially sensitive experiments used the Raman beam config-

uration described in Sec. 3.5.2, in which the Raman frequencies were physically sepa-

rated by slave lasers. While the retroreflection approach is convenient for gravimetry

with resonant Raman pulses, it restricts the useable velocity acceptance of typically

wideband ARP atom optics. Wideband atom optics are problematic for retroreflec-

tion, because they simultaneously drive both, oppositely-directed Raman transitions

and create parasitic double diffraction [100, 1011. Wider velocity acceptances, how-

ever, are necessary for our approach to large area atom interferometry, which is pre-

sented in Chapter 5. Furthermore, since retroreflection applies twice as much light

to the atoms, relative to our separated frequency approach, it effectively doubles

the spontaneous emission rate. Separating the Raman frequencies thus reduces the

per-pulse spontaneous emission, which is particularly useful for long Raman ARP

pulses.
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Chapter 4

Robust atomic timekeeping with

Raman adiabatic rapid passage

This chapter presents a method for atomic timekeeping that employs atom optics

based on Raman adiabatic rapid passage (ARP) 1102]. Our demonstration of Ramsey

interferometry with Raman ARP suppresses important systematic effects that limit

stable clock operation in uncontrolled environments or under dynamics. We also show

that perturbations to parameters defining the ARP frequency sweeps do not introduce

resolvable shifts in the phase of the Ramsey interferometer. Finally, we investigate

the comparative short-term stability of Ramsey sequences based on Raman ARP,

resonant Raman, and microwave pulses in our system.

4.1 Motivation

Atomic clocks are vital to modern technologies ranging from the Global Positioning

System and distributed networks to communication systems and laboratory instru-

ments. Primary atomic timing references, however, are presently limited to operation

in benign environments, large volumes, and mild external dynamics. State-of-the-art

atomic fountain clocks, for example, use laboratory-scale systems to realize fractional

frequency uncertainties of 3 x 10-16 [19]. These clocks achieve high sensitivity at

the expense of size and data-rate, by launching laser cooled alkali atoms over ~1
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m distances [87] and implementing long interrogation times with microwave Ramsey

sequences [103, 88]. On the other hand, secondary frequency references have made

tremendous progress toward size and power reduction with the advent of chip-scale

atomic clocks (CSACs), which occupy a 17 cm 3 package and consume just 120 mW

of electrical power [23, 241. However, due to the limited long-term stability of CSAC,

there remains an unfulfilled need for primary atomic references that operate in a

compact and portable package.

One approach to developing a robust, compact primary reference involves interro-

gating atoms in the trapping region of the vacuum cell and applying Ramsey sequences

with short dwell times [30, 31, 104, 105]. This approach trades the high sensitivity

of atomic fountain clocks for reduced size and higher data-rate. Importantly, these

modifications still allow for significant improvements in long-term stability when com-

pared to what is currently achievable with CSAC. In dynamic environments, a short

Ramsey time provides the added benefit of reducing displacements of the atom cloud

relative to the Raman beam. If, for example, measurements are completed on a 10-

ms time scale, a cold atom cloud experiencing 1-10 g accelerations is displaced from

the trap site by <5 mm, enabling interferometry under dynamics, recapture of cold

atoms, and fast data-rates with small-diameter laser beams [47, 331.

The traditional method of applying microwave pulses to the atoms in a Ramsey

interrogation requires well-engineered cavities or waveguides, which constrain mini-

mum size and may be adversely affected by thermal environments or vibration [1061.

An alternative approach that circumvents the cavity employs Raman transitions with

optical photons [107]. Optical interrogation, however, introduces challenges distinct

from those of microwave interrogation. Variations in laser beam intensity drive spu-

rious phase shifts via the AC Stark effect [82]. Furthermore, the Gaussian intensity

profile of the beam creates spatially-dependent Rabi rates that, in some techniques,

link Ramsey fringe contrast to radial motion of the cloud. In this work, we experimen-

tally demonstrate that these important systematic effects can be suppressed through

use of Ramsey sequences with Raman ARP atom optics.
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4.2 Raman adiabatic rapid passage pulses

ARP is particularly useful when inversion is required in the presence of an inhomo-

geneous drive field [59, 60], as discussed in Sec. 2.3. We implemented ARP with

stimulated Raman transitions by sweeping the two-photon detuning and modulating

the Raman beam intensity. We reiterate that frequency-swept Raman ARP funda-

mentally differs from Stimulated Raman Adiabatic Passage (STIRAP), which drives

adiabatic transfer in a three-level system using time-delayed intensity modulation of

two optical fields satisfying the two- and one-photon resonance conditions. The pres-

ence of multiple excited levels in alkali atoms reintroduces residual Stark shifts to

STIRAP, with dependencies on pulse duration, optical intensity, and single-photon

laser detuning [1081. These shifts are ultimately detrimental to clock stability, but

can be suppressed with frequency-swept ARP.

In nuclear magnetic resonance (NMR), many combinations of intensity and fre-

quency modulation provide efficient adiabatic transfer, and should apply equally well

to stimulated Raman processes. The simplest approach is to slowly chirp the detuning

through resonance while maintaining a constant field intensity. More complex ARPs

use nonlinear modulations of intensity and frequency to achieve population inversion

that, in some cases, is rapid and wideband or highly-selective. Our interest lies in

rapid ARPs, since shorter pulses help minimize spontaneous emission, dephasing from

atom motion in a non-uniform laser field, and higher-order interferometer phase shifts

due to finite pulse durations. To that end, we focus primarily on the frequency sweep

described by the equation [65, 86]

6(t) = Qarp tan [a 2 1 ,t C {0, T,} (4.1)
Ic T,

where T, sets the total sweep duration, Qarp controls the sweep rate without perturb-

ing its duration or range, and a = arctan(6 max/Qarp), where 6 max is the maximum

detuning. Hwang et al. proposed coupling this frequency sweep with an intensity
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modulation I(t) of the form [671

I(t) = I0 tanh [ 1 T 
- , ) (4.2)

where I0 is the maximum intensity, and the unitless parameter # is typically 7.5. Since

1(0) = I(T,) = 0, the drive field at the beginning and end of the sweep is parallel

with the z-axis of the Bloch sphere. This alignment helps maximize transfer efficiency

when atoms are prepared in one of the so-called clock states (i.e., IF = 3; mF = 0) and

IF = 4; mF = 0)). For this ARP, the adiabaticity Q(t) = Qgen(t)/16(t)I is equivalent

to T, in units of Raman 7r pulses when the sweep nears resonance and Qarp = Qeff;

away from resonance, Q is orders of magnitude larger.

Figure 4-1 shows simulations (described below) of population inversion for this

Tan/Tanh [frequency/intensity] ARP, as well as a variety of other ARPs, as a func-

tion of Raman detuning with respect to the center frequency of the frequency sweep.

Corresponding frequency and intensity modulations are detailed in Tab. 4.1, along

with simulation parameters. Other pulses may be found in [661. Comparison of the

T,= 10t,

-10 -5 0
Raman detuning (Un

Chirp/
Square
Tanh/Sech
Erf/
Gaussian
Rational/
Square

- Tan/Tanh

5 10 15 -15
its of A ,)

L
-10 -5 0 5

Raman detuning (Units of Qef,

Figure 4-1: Simulations of Raman ARP inversions for different detuning offsets.

Shortening the pulse duration from T, = 25t, to T, = 10t, does not degrade the

peak transfer efficiency of the Tan/Tanh and Rational/Square ARPs. For suitably

long pulses, Tanh/Sech and Erf/Gauss functions provide highly selective inversion

bands with sharp edges.

plots in Fig. 4-1 highlights the effects of pulse duration on peak ARP transfer effi-
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Pulse Frequency Intensity 6 max Qarp )3

Tan/Tanh 1671] Qarptan[a(2t/T - 1)] tanh[3(1 - 12t/TT - 11)] 214 1 7.5

Rational/Square [601 Qarp(2t - Ti)/ ( T.) 2 - (2t - T-,) 2  1 214 1 -

Tanh/Sech [69] 6max tanh[B(2t/T, - 1)] sech[0(2t/T, - 1)] 3 - 3

Erf/'Gauss [69] 6maxerf[3(2t/T, - 1)] exp[-/32 (2t/T, - 1)2/2] 3 - 3

Chirp/Square 6max(2t/T, - 1) 1 10

Table 4.1: ARP intensity and frequency modulation functions. t E {O, T 1}, 6max and
Qarp are in units of the maximum Qeff, and all intensities are scaled by 1o. Note that
for intensity-modulated pulses, Qeff(t = 0 and T,) is less than the maximum Qeff.
Also, a = arctan(6 max/Qarp) and = V1+ (Qarp/ 5 max) 2 .

ciency. In particular, only the Tan/Tanh pulse and Rational1 /Square pulse maintain

perfect transfer efficiency near resonance as the duration is shortened from T, = 25t,

to Tr = 10t, (t, is the Raman 7 pulse duration). Interestingly, the frequency mod-

ulations of these two ARPs differ markedly from those of the other pulses, as the

detunings in these cases accelerate away from resonance near the beginning and end

of each pulse (see Fig. 2-11). This feature allows the Tan/Tanh and Rational/Square

ARPs to sweep across a wide frequency range without violating the adiabatic condi-

tion (i.e., 0 (t) < Qgen(t)), since a large detuning also enlarges Qgen. We note that

the Tanh/Sech and Erf/Gauss pulses provide a "top-hat" transfer profile that selects

a well-defined subset of the atom sample (e.g., for velocity selection). Additionally,

the Chirp/Square pulse displays ripples in the transfer efficiency that result from low

adiabaticity during the resonance crossing.

Focusing our attention on the rapid Tan/Tanh ARP, Fig. 4-2(a) shows the ex-

perimental, ensemble-averaged time evolution of the transition probability during

this pulse. The sweep parameters were T, = 10.3t, 6max/(2-) = 15 MHz, and

Qarp/(2-F) = Qeff/(27) = 86 kHz. For Qeff = Qarp, the measured transition probabili-

ties follow the sinusoid predicted by our model (described below). Measurements of

transition probability as a function of the center frequency of the sweep, shown in

'Technically, the square of this detuning sweep is a rational function.
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Fig. 4-2(b), reveal a full width at half maximum of 8Qeff, which is about five times

broader than the corresponding bandwidth of a Raman 7r pulse. Near resonance, the

coherent transfer efficiency is limited to 93% by spontaneous emission. Agreement

between the measurements and model helped validate our hardware implementation

of Raman ARP.
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Figure 4-2: Population inversion with the Tan/Tanh ARP pulse. (a) Time evolution

of the transition probability during the pulse. The end of the pulse corresponds to

Tr = 10.3tr. (b) With the same T, value, scanning the Raman ARP (red diamonds)

center frequency produces a Raman resonance with linewidth five times broader than

that of a Raman 7r pulse (black circles). Lines are predictions for a two-level system

that were scaled and offset to fit the data.

The predictions plotted in Fig. 4-2 were based on a model of a two-level atom.

Recall that the dynamics of this system on the Bloch sphere are given by the equation

d]i = Qgen X P.
dt

(4.3)

100



With a set of initial conditions for the drive field and the pseudo-spin polarization, the

model numerically integrates Eq. (4.3). Numerical integration is necessary because

Raman ARP frequency sweeps introduce time-dependencies to gen that generally

preclude analytic solutions. The framework can be extended to model interferometer

sequences by incorporating a period of free precession about the z-axis of the Bloch

sphere during the time between two pulses. Following a pulse sequence, the model

reports the atom transition probability in response to a varied parameter (e.g., Raman

detuning or phase). The model is also capable of accounting for atom ensemble

effects by repeating the calculation for many atoms with randomly assigned positions

and velocities, making Qeff a Gaussian function of position, and averaging over the

resulting transition probabilities. In this chapter, predictions from the model do not

include ensemble averaging effects.

4.3 Ramsey interferometry with Raman ARP

In addition to inverting population, Raman ARP also serves as an effective beamsplit-

ter in a Ramsey sequence when the sweep is stopped midway, at Raman resonance

1631. Figure 4-3 depicts a Raman ARP Ramsey sequence on the Bloch sphere. The

first beamsplitter pulse begins with fgen and p initially parallel, as shown in Fig.

4-3(a). The drive field then slowly drags the Bloch vector into the x-y plane (Fig.

4-3(b)), creating a coherent superposition of the clock states. After an interrogation

time T, a second beamsplitter starts nearly on resonance to complete the Ramsey

sequence. At the beginning of this pulse, 2 gen and p are generally nonparallel, be-

cause of discrepancies between the oscillator and atomic resonance frequencies-which

the atomic reference is intended to correct. The misalignent leads to the precession

shown in Fig. 4-3(c). The drive field then drags pIto the z-axis (Fig. 4-3(d)), thereby

converting the interferometer phase into population difference.

Figure 4-4 shows examples of Ramsey fringes based on Raman wF/2 pulses and

Tan/Tanh ARP beamsplitters with T, = 10t, and 26t , . Two different ARP pulse

durations were considered in order to study the benefits of higher adiabaticity. The
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Figure 4-3: Raman ARP Ramsey sequence on the Bloch sphere. (a) Initialized ARP

drive field and Bloch vector. (b) Action of the first ARP beamsplitter. (c) State of

the system after the dwell time and prior to the second ARP beamsplitter. (d) Action

of the second ARP beamsplitter maps the Ramsey phase into population difference.

interrogation time was set to a realistic operating point of T = 10 ms. The magnitude

of the two-photon Rabi rate was Qeff/(27r) = 73 kHz, and the Tan/Tanh sweep pa-

rameters were 6max/(27r) = 15 MHz and Qa,,p/(27r) = 73 kHz. To reduce discrepancies

arising from oscillator drifts and environmental magnetic fields, the three pulse-types

were applied sequentially at a given detuning, and measurements were collected at

1.6 Hz over 10 minutes. The measurements were fit to the sinusoidal function for a

near-resonant interferogram P = 1/2 + (A/2) cos [(6 - 6o)T] + B, where P was the

measured transition probability, and free parameters such as contrast A, background

offset B, and Raman detuning offset 60, were determined through minimization of

the sum of squares of the residuals. For both the Raman 7r/2 and T, = 26t, cases,

the fit uncertainty in 6o/(2wr) was t0.24 Hz, indicating similar short-term stability.

For a device operating in dynamic environments, a short dwell time ensures that

an atom cloud experiencing large transverse acceleration remains within the Raman

laser beam during the Ramsey interrogation. While the short dwell time reduces per-
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Figure 4-4: Ramsey fringes with an interrogation time of T = 10 ms. Lines are best-

fit cosine functions, points are measured values, and error bars represent standard

error. The condition 6 = 0 includes a Zeeman shift of 324 Hz.
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shot sensitivity, the fractional frequency of a clock in this configuration still achieves

excellent short-term stability. For example, an interrogation time of T = 10 ms,

coupled with a sampling rate of f, = 80 Hz and a phase signal-to-noise ratio of

o71 = 200, results in a fractional frequency stability of

S1 X 10-(4.4)
WHFST ~sr_ 

44

for an averaging time of 1 s. Moreover, the cloud remains within the 1/e 2 intensity

radius of the Raman beam for transverse accelerations up to 5 g.

4.4 Systematic effects

A cold atom frequency standard based on Ramsey sequences is likely to experience

parameter fluctuations during operation outside the laboratory. In dynamic environ-

ments, variations in optical power, RF power, and atom cloud position are expected

to systematically affect Ramsey interferograms. In this section, we demonstrate how

Raman ARP beamsplitters in a Ramsey sequence suppress some of these systematic

effects.

4.4.1 Light shifts during a Raman pulse

A Ramsey sequence based on Raman ARP affords an important advantage over Ra-

man 7r/2 pulses: light shifts during a pulse leave the interferometer phase unperturbed.

Recall that the Ramsey phase is governed by the azimuthal angle between the Bloch

vector and drive field prior to the second beamsplitter pulse. The presence of the light

shift during ARP moves the center frequency of the sweep off resonance, causing an

error in drive field polar angle that leaves the beamsplitter in Fig. 4-3(b) outside

the x-y plane. The parallel Bloch vector p also carries this error in polar angle, but

the Ramsey phase (i.e., azimuthal angle) remains unperturbed. Polar angle errors,

however, do affect interferometer contrast. When the second beamsplitter is initially

-F rad out of phase with 0, the light shift reduces the transfer efficiency, causing the
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troughs of the interferogram to rise up. For the small light shifts relevant to a prac-

tical device, the resulting variations in contrast and background offset have a minor

impact on sensitivity, as we will soon show.

To experimentally verify the suppression of light shifts, we tested the sensitivity

of three types of Ramsey sequences to 6 AC. In particular, we compared Raman w/2

pulse sequences to Tan/Tanh ARP sequences with T, durations of 10t, and 26t.,

recording contrast A, background offset B, and systematic phase offset 1 for each

interferogram. The transition probability P is related to these quantities by the

equation P = 1/2 + (A/2) cos [4+ ] + B, where o is the programmed Raman phase

shift between the two Ramsey pulses and the Raman detuning is assumed to be

0. We extracted entire interferograms to determine A, B, and D simultaneously,

which suppressed undesirable cross-coupling effects in the measurement of P. This

technique differs from a simpler one in which each measurement of phase is related

to a single measurement of transition probability made with o = -F/2 and 4) ~ 0. In

that approach, phase measurements are susceptible to variations in A and B since

the transition probability varies with these parameters.

For each 6 AC setting, the three types of interferometers were measured sequen-

tially, three times over 8 minutes. The 6 AC settings were tested in a pseudo-random

order. To extract an interferogram, p was scanned over two fringes in steps of wF/4 rad

(to enable averaging, each phase condition was repeated five times, consecutively).

We controlled 6AC with the modulation depth of the EOM in the Raman beam path,

which adjusted the ratio of the optical powers in each Raman frequency. At each set-

ting of the modulation depth, the overall optical power was adjusted with the tapered

amplifier to maintain Qeff/2WF = 73 kHz to within 2%. The light shift was assumed

to be the Raman detuning at which population transfer with a standard Raman wr

pulse was maximized. Following these calibration steps, the oscillator frequency was

set to the Zeeman-shifted clock resonance before interferometry commenced. At this

frequency, the oscillator was detuned by the light shift during application of the pulse,

but resonant with the atoms during the Ramsey dwell period. The short dwell time

of T = 1 ms suppressed sensitivity to oscillator frequency instabilities and helped
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isolate phase shifts associated with pulse dynamics.

Clock phase shifts

Figure 4-5(a) shows the systematic phase offset 4) of each interferometer as a function

of 6AC. The Raman-pulse measurements show good agreement with the predictions

from our model. Linear fits to the predictions and measurements give a light shift

sensitivity of 26 mrad/kHz. The Tan/Tanh ARP interferometers strongly suppress

this sensitivity. A closer view of the Raman ARP data, shown in Fig. 4-5(b), reveals

an overall linear trend of 0.34 mrad/kHz with localized curvature, neither of which

our model predicts. The predictions for T, = 10t, (red dash-dot curve) are restricted

to detunings where the sweep is adiabatic enough for the model to produce controlled

phase shifts. That the corresponding measured phases at 6 Ac/27r = 100 kHz are

not completely randomized may result from ensemble averaging effects.
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Figure 4-5: Sensitivity of Ramsey phase to differential AC Stark shifts. (a) The

Raman pulse case (black circles) was about 75 times more sensitive to 6AC than

Tan/Tanh ARP interrogations with T, = 10t, (red diamonds) and T, = 26t, (blue

squares). (b) Residual Raman ARP phase variations not predicted by our model.

(c) Over a narrower range of 3 AC values, standard Raman pulses were roughly 100

times more sensitive to 6 AC than Raman ARP with T, = 26t, . Error bars represent

standard error. All lines are based on an unmodified model for a two-level system.
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In practice, the differential Stark shift, with A ~ -2 GHz, could reasonably be re-

stricted to 0.02Qeff due to -1% power fluctuations in the RF signal modulating the

EOM; below this bound, the measurement and stabilization of RF power is challeng-

ing. We therefore repeated the previous experiment over a narrower detuning range

near 6 AC = 0. In this version of the experiment, Qeff was not calibrated from one

condition to the next, because the measured variation was just 2% of the nominal

setting. The light shift was calibrated to the modulation depth of the EOM, which

was then tracked via real-time RF power measurements. In this manner, the entire

experiment was automated and completed in under one hour. The 6 AC values were

tested in a pseudo-random order and three times over for averaging. Linear fits to

the Raman ARP phase offsets (shown in Fig. 4-5(c)) and the Raman phase offsets

(not shown) were compared to determine the relative sensitivity to 6 AC. The ratios

of the two ARP slopes to the Raman slope were 0.063 0.008 for the T, = 10t,

case and 0.005 0.008 for the T, = 26t, case. Since drifts in 6AC on the order of

0.02Qeff are expected in a practical device, the measured sensitivity of the Raman

wA/2 sequence to 6 AC implies that the phase will vary by 26 mrad. To put this result

into context, consider the case where 8 A0 is a white noise process. The fractional

frequency stability for the example presented in Eq. (4.4) then becomes 5 x 10-12

after 1 s of averaging, because the phase signal-to-noise ratio drops to a-' = 40. By

comparison, the Tan/Tanh ARP interferometer, with T, = 26t, would suppress the

light shift to a level where atom shot-noise would be a larger noise source (assuming

1 x 106 atoms).

Contrast and background variation

The extraction of full interferograms also enabled the study of contrast and back-

ground offset variations in response to the light shift. These variations are particu-

larly important when phase shifts are estimated from single measurements of tran-

sition probability, made near o = 7/2. In this case, variations in background offset

can lead to large apparent phase shifts. Small changes in contrast, however, are in-

herently tolerable near o = r/2, since they merely scale existing errors in transition
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probability. Figure 4-6(a) shows the contrast response to 6 AC for the three pulses

considered above. In each case, the maximum measured contrast serves to normalize

the associated predictions. This normalization qualitatively accounts for spontaneous

emission losses during Tan/Tanh sweeps and yields good agreement with measure-

ments when the sweep is adiabatic. For Raman pulses, normalization approximately

accounts for dephasing due to inhomogeneities in Qeff and 6AC (spontaneous emis-

sion makes a minor contribution). Since these inhomogeneities scale with Qeff and

6AC and are coupled, it is reasonable that the model overestimates the contrast away

from resonance. For small differential Stark shifts of 0.02Qeff (within the bounds of

reasonable RF power control), the contrast is expected to vary by about 0.13% and

should scale phase deviations from o = r/2 by this fraction.

Variations in background offsets follow the unmodified predictions of our model, as

shown in Fig. 4-6(b). The rise in Raman ARP offsets in response to detuning indicates

that the troughs of the interferograms are pulled up due to impaired transfer during

the second Ramsey pulse. For Stark shifts of 0.0 2Qeff, the offset is expected to

vary by about 0.07%, leading to <2 mrad error in phase and a fractional frequency

stability at 1 s of 3 x 10-13 -a minor contribution to frequency instability (see Eq.

(4.4)). Sensitivity to background offsets can be further suppressed by sequentially

measuring transition probability near p = 7/2 and estimating the phase error from

the difference of consecutive measurements. Slow background variations are then

immaterial since they produce the same differential phase.

4.4.2 Laser beam intensity profile

Raman ARP also achieves a high degree of robustness against optical intensity vari-

ations. Since ' is unaffected by Qeff in the adiabatic limit, Ramsey sequences based

on Raman ARP maintain high contrast despite fluctuations in optical power or poor

beam quality. An important cause of power variation, particularly on dynamic and

mobile platforms, is motion of the atom cloud along the beam radius. During a

T = 10-ms interrogation, for instance, a cloud accelerating transverse to the beam

axis at 3.5 g traverses the la- radius of a Gaussian beam with a 3.5-mm 1/e 2 intensity
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Figure 4-6: Sensitivity of (a) contrast and (b) background offset to differential AC

Stark shifts for Ramsey sequences based on Raman (black circles), Tan/Tanh ARP

with T, = 10t, (red diamonds), and Tan/Tanh ARP with T, = 26t, (blue squares)

beamsplitter pulses. Lines represent predictions from a model.
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radius. Over this distance, the beam profile introduces substantial position-dependent

changes to the gradient and average of the optical intensity experienced by the cloud.

A practical timing reference might measure such accelerations using an inertial sen-

sor. With a T = 10 ms interrogation time, a low-performance accelerometer with 10

mg resolution can determine the radial position of the cloud to within 5 Pm. Such

accurate position information, along with knowledge of the beam profile, enables com-

pensation for changes in the average intensity via modification of optical power or

pulse duration.

Optical intensity gradients, however, are more challenging to correct in real-time.

An alternative approach is to provide uniform intensity with a "flat-top" beam. Un-

fortunately, uniform intensity only occurs in a small region along the propagation

axis of this beam, and the resulting optical wavefronts are distorted. Being limited

to use of a Gaussian beam, we tested the effect of the intensity gradient on interfer-

ometer contrast by displacing the Raman beam relative to the atom cloud and using

pulse duration to compensate for changes in the average intensity. Specifically, we

corrected pulse durations so that at each position t, = r/Qeff. During real transverse

accelerations, the first Ramsey pulse occurs with the cloud near beam center, while

the second occurs with the cloud closer to the beam edge, where the gradients are

larger. In our experiments, conditions were more adverse: the Raman beam position

was kept constant for a given experimental condition, meaning both pulses imposed

deleterious intensity gradients.

To control the radial position of the cloud within the beam, the Raman beam

collimator was mounted to a linear translation stage. Prior to the experiment, the

beam was centered on the cloud by maximizing eff with a fixed optical intensity,

and then minimizing decoherence during Rabi flopping experiments. Qeff and 6 AC

were extracted at each position from measurements of the Raman 7 pulse resonance

as a function of detuning (e.g., Fig. 4-2(b)), and the differential AC Stark shift was

reduced to 16 AC I< 0.0 2 Qeff. The Tan/Tanh sweeps were adjusted to maintain Qarp =

Qeff so that in units of t,, the frequency profile remained the same. Interferometry was

then carried out using Raman 7/2 pulses and ARP pulses with T, = 10t, and T, =
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26t,. A realistic interrogation time of T = 10 ms captured contrast loss associated

with cloud expansion.

Figure 4-7 shows that over a la range of the beam radius (2- corresponds to

the 1/e2 radius), the fractional variation in contrast is 15 times smaller for ARP

sweeps with T, = 26t, than for resonant Raman pulses. While the contrast of the

T, = 10t, ARP interferometer still trends with beam position, the more adiabatic

T, = 26t, interferometer exhibits just a 1.5% contrast variation out to half the 1/e2

intensity radius. This robustness should improve the stability of clock interferometers

operating in dynamic environments without the need for larger beam diameters and

higher optical power. Also problematic is the motion of an atom cloud along the beam

axis, because it introduces Doppler shifts that create frequency instability. Methods

for overcoming the Doppler instability are proposed in Sec. 4.5.
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Figure 4-7: Ramsey contrast variation due to laser beam intensity gradients. Beam-

splitters were based on Raman pulses (black circles), Tan/Tanh ARP with T, = 10t,

(red diamonds), and Tan/Tanh ARP with T, = 26t, (blue squares). Over the l-,
or e- 1/ 2 , intensity radius, the fractional variation in contrast was 15 times larger for

Raman 7r/2 pulses than for Tan/Tanh ARP with T, = 26t , .
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4.4.3 Coupling of light shifts and intensity variation

Sensitivity of the Ramsey phase to optical intensity, coupled with differential AC Stark

shifts, was studied using Bloch sphere simulations. The intensity was the same for

both Ramsey pulses and was related to atom displacement by assuming a Gaussian

spatial intensity profile for the laser beam. Tan/Tanh and Rational/Square ARP

beamsplitters were considered, along with standard Raman w/2 pulses. As shown

in Fig. 4-8(a), the Tan/Tanh pulse provides the strongest suppression of systematic

Ramsey phase shifts (<1 mrad) for cloud displacements covering 10- of the Raman

beam 1/e 2 intensity radius, coupled with differential AC Stark shifts approaching 10%

of the two-photon Rabi rate. For consistency, the ARP parameters were matched to

those used experimentally: T, = 26ti, =max 27 x 15 MHz, Qeff = Qarp =27 x 71

kHz, and / = 7.5. Pulse durations were constant throughout the simulation, and t,

was defined with respect to the two-photon Rabi rate at peak intensity.

The superior performance of Tan/Tanh as compared to Rational/Square is sur-

prising given the general similarities between these frequency sweeps. Upon closer ex-

amination, however, the Tan/Tanh pulse displays distinguishing qualities that deserve

mention. First, a tangent frequency sweep without intensity modulation produces a

Bloch vector trajectory that follows a great circle on the Bloch sphere, as originally

shown by Baum, Tycko, and Pines 165]. These authors further showed that tangent

sweeps with finite adiabaticity also generate Bloch vector trajectories along a great

circle when T, and Qarp are appropriately modified. An ARP beamsplitter benefits

from this great circle trajectory, since it results in a well-defined Ramsey phase. The

addition of a hyperbolic tangent intensity modulation allows the Tan/Tanh ARP to

mimic the behavior of the infinitely adiabatic tangent sweep from [65], but without

infinite detuning or pulse duration. Conversely, an ARP beamsplitter that causes the

Bloch vector to trace tiny precession rings creates intensity- and detuning-dependent

shifts in the Ramsey phase. The smooth curves in Fig. 4-8(b) provide examples of

Bloch sphere trajectories of a Bloch vector subjected to a Tan/Tanh sweep (i.e., with

intensity modulation). Importantly, a detuning error results in minor phase variation
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Figure 4-8: (a) Simulation of Ramsey phase variation due to coupling of Stark shifts

and displacement of a Gaussian laser beam. The Tan/Tanh pulse suppresses phase

shifts to <1 mrad for atom cloud displacements exceeding l- of the Gaussian beam

intensity radius, and for AC Stark shifts up to 6 AC = 0.07Qeff. These simulations

neglect ensemble averaging effects. (b) Bloch sphere trajectories of a Bloch vector

subjected to Tan/Tanh (smooth curves) and Rational/Square (rotary curves) pulses.

Examples include resonant (blue) and 6 AC = 0.2Qeff (red) cases. Since the trajectories

for Tan/Tanh beamsplitters nearly follow a great circle, they produce a well-defined

Ramsey phase.
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(6AC= 0. 2Qeff in this example), especially when compared to the variations produced

by the Rational/Square ARP (see rotary curves). One would expect other ARPs,

including Rational/ Square, to perform better with longer pulse durations and cor-

respondingly higher adiabaticity. For reasons mentioned in Sec. 4.2, we prefer the

shortest possible ARP.

4.4.4 Sweep parameters

Parameter fluctuations in practical frequency sweeps will introduce instabilities to

a Raman ARP-based clock. Variations in Qeff typically arise from drifts in optical

power, polarization, and RF power, whereas perturbations to the sweep parameters

T, Qarp, and 'ma. may result from reproducibility-issues associated with broad fre-

quency sweeps in RF systems. To provide a robust timing reference, a Raman ARP

Ramsey sequence must withstand reasonable variations in these parameters. Our

model predicted phase deviations of <1 mrad and contrast variations consistent with

zero in response to 10% changes in the parameters listed above. We experimen-

tally tested the sensitivity by extracting ARP interferograms with T = 1-ms inter-

rogation times, while deliberately adjusting the sweep parameters over t10% of a

nominal value. For each parameter, we acquired Tan/Tanh ARP interferograms with

T7 = 10t., and T7, = 26t7, . The phase responses plotted in Fig. 4-9 represent weighted

averages, while error bars signify standard errors. Nominal settings were T, = 10t ,

(red diamonds) or T7, = 26t , (blue squares), 6max/(27F) = 15 MHz, Qarp/(27r) = 73

kHz, and Qeff/(2-r) = 73 kHz. Over the ~1000 s averaging times relevant to these

experiments, second-order Zeeman shifts resulting from the large 870 mG bias field

limited the long-term stability. At about 4 x 10-11, the fractional frequency uncer-

tainty of our open-loop clock was consistent with the <3 mrad phase uncertainty seen

in this experiment, given an interrogation time of T = 1 ms. In the next section, we

discuss improvements in stability resulting from a reduction in bias field strength.

Due to spontaneous emission, the contrast responded linearly to changes in T,

and Qeff. The T, = 26t, and 10t , cases exhibited maximum contrast deviations

of 3.8% and 1.8%, respectively. The maximum respective deviations in background
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Figure 4-9: Phase sensitivity of Tan/Tanh ARP Ramsey sequence to 10% variations

in parameters defining the ARP frequency sweep. Nominal settings: T, = 10t, (red

diamonds) or T, = 26t, (blue squares), 6max/(2ir) 15 MHz, Qarp/(27r) = 73 kHz,
and Qeff/(27r) = 73 kHz. The residual instability in these measurements was driven

largely by magnetic field fluctuation.
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offset were 0.7% and 0.4%. This sensitivity is unlikely to limit a deployed sensor, in

which T, and Qeir will be controlled to 1% or better. With this stricter bound on

pulse parameters, the resulting 0.07% instability in offset yields a fractional frequency

stability at 1 s of 3 x 10--3. These effects will be further suppressed by averaging of

sequential phase measurements at = 7/2.

By varying the single-photon Raman laser detuning, we confirmed that sponta-

neous emission reached a broad minimum between -2 and -3.5 GHz. The magnitude

of the detuning was bounded by the hyperfine splitting frequency to enable the can-

cellation of light shifts through correct choice of optical intensity ratio between the

Raman frequency components.

4.5 Stability assessment

To assess the stability of our atomic reference, we computed the Allan deviations of

Ramsey frequency measurements based on Tan/Tanh ARP pulses with T, = 26t.,

as well as Raman -/2 pulses and microwave w/2 pulses. For these measurements,

the bias field was reduced to 87 mG to suppress contributions from environmental

magnetic fields. Since the clock state Zeeman shift has a quadratic dependence on

field strength, small drifts in the magnetic environment, acting in conjunction with

a weak bias field, produce smaller systematic phase shifts (i.e., Af xc BAB). Phase

deviations were related to frequency shifts through precise knowledge of the inter-

rogation time, which was set to T = 16.667 ms to sychronize with (and thereby

suppress) environmental electromagnetic noise at 60 Hz. Contrast values for the

ARP and microwave interferometers were not noticeably changed by the increase in

interrogation time from 10 ms to 16.667 ms. The three pulse-types were applied se-

quentially with a data-rate of 1.6 Hz. However, the effective data-rate for a particular

pulse-type was 0.13 Hz, because frequency measurements were based on interferogram

fits. Interferograms were extracted from four consecutive measurements with phase

shifts of o {-37r/4, -7/4, -F/4, 37/4}. This scheme allowed simultaneous measure-

ments of interferometer contrast and background offset. The RF signal generator,
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provided with a 10 MHz reference from a separate Cs beam clock (Symmetricom

5071A), produced a stable signal that enabled examination of the long-term stability

of our atomic reference. The fractional frequency stability of the Cs beam reference

is < 5 x 10-/12/ T.

The Allan deviations, plotted in Fig. 4-10(a), indicate that the fractional fre-

quency uncertainty for all interferometers was limited to -3.5x 1012 around 2500

s. The similarities in Allan deviations across all pulse-types suggest that light shifts

were not a limiting factor in this experiment. Subsequent Ramsey spectroscopy with

10__ _ _
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Figure 4-10: Allan deviations of fractional frequency measurements characterizing

the stability of the three Ramsey sequences. (a) Frequency measurements were ac-

quired with three interleaved pulse-types. Light shifts were not the dominant system-

atic effect. Magnetic field instability limited the fractional frequency uncertainty to

~3.5 x 10-12. (b) A stability measurement with higher data-rate (5 Hz) improved the

short-term stability of all pulse-types to -1.5x10--" for an averaging time T = 1 s.

Magnetic fields remained the limiting source of instability for T > 5 s.

mF = 1 states, which carry a first-order sensitivity to the Zeeman shift of 700 kHz/G,
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revealed magnetic field instability to be the dominant noise source. In that measure-

ment, Ramsey phase jitter was attributed to magnetic field fluctuations, which were

then used to predict the instability in the clock resonance (see purple diamonds in

Fig. 4-10(a)). At short averaging times from T = 10 to 100 s, the slopes of the

Allan deviations indicate a white noise process driven largely by the low effective

data-rate. As shown in Fig. 4-10(b), frequency measurements acquired at 5 Hz-a

38-fold increase in data-rate-improved the short-term stability to ~1.5x10-" at

T = 1 s, though white noise was no longer the limiting process. Beyond T = 5 s,

magnetic field instability once again became the limiting systematic effect. We note

that frequency measurements at the higher data-rate were based on single shots ac-

quired near quadrature phase and that the pulse-types were not interleaved. These

results are comparable to a recent timekeeping demonstration using CPT with opti-

cal fields, which achieved a fractional frequency uncertainty (also limited by magnetic

field instabilities) of 2 x 10-12 at 1000 s [331.

An important source of frequency instability not addressed in this work is atom

motion along the Raman beam axis, which Doppler shifts the clock resonance. The

Doppler shift could ultimately be measured with a low-cost inertial sensor and com-

pensated by adjusting the Raman detuning. An accelerometer with 10 mg resolution

determines the Doppler-induced phase shift to within 1 mrad, limiting the short-term

stability to 2 x 10-13 if one assumes an averaging time of 1 s, a sampling rate of 80 Hz,

and a Ramsey interrogation time of 10 ms. Alternatively, one could discern Doppler

shifts that are stable over consecutive measurements by cycling between forward- and

backward-propagating Raman beams. This technique relies on the fact that reversal

of beam propagation changes the sign of the Doppler shift but not the clock frequency.

4.6 Summary

We have presented frequency-swept Raman ARP as a tool for robust Ramsey interro-

gation. With a sufficiently adiabatic sweep, we have produced Raman ARP Ramsey

fringes that agree well with those of corresponding sequences based on Raman r/2
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pulses. Raman ARP Ramsey sequences strongly suppress phase sensitivity to light

shifts during the pulse. For the small differential AC Stark shifts expected in a practi-

cal timing reference (I 6Ac < 0.0 2 Qeff), the phase sensitivity is reduced by about two

orders of magnitude, effectively eliminating light shift contributions to short-term

noise and improving the prospects for long-term stability with an optical Ramsey

interrogation. Our approach also reduces the sensitivity of Ramsey fringe contrast to

Gaussian laser beam intensity gradients, which is a critical attribute for cold atom

clocks operating in dynamic environments. Potential phase sensitivity to the fre-

quency sweep parameters, if present, is below the resolution limits of our system.

Single pulse experiments indicate that the Tan/Tanh ARP characterized by Eq. (4.1)

is faithfully reproduced by our RF electronics and electro-optics. Our results suggest

that Ramsey interferometry based on Raman ARP provides a promising timekeeping

method for primary references operating in dynamic environments. Future work will

focus on increasing the data-rate while maintaining signal-to-noise ratio, adding mag-

netic shields to suppress ambient field fluctuations, and using our atomic reference to

actively stabilize a 10 MHz oscillator.

119



120



Chapter 5

Large area interferometry with

Raman adiabatic rapid passage

In this chapter, we present atom interferometry with large momentum transfer (LMT)

atom optics based on frequency-swept adiabatic rapid passage (ARP). LMT is par-

ticularly useful for inertial sensing applications, since it increases the interferometer

sensitivity without sacrificing bandwidth. In our demonstration of atom interferom-

etry with LMT atom optics, we use Raman ARP to achieve high-contrast interfero-

grams with interrogation times that are pertinent to fast data-rate operation. ARP

atom optics are beneficial because they offer wide velocity acceptances, allowing one

to work with the entire laser cooled cloud and forgo evaporative cooling or velocity

selection steps that inherently lower atom number and data-rate. Interestingly, these

atom optics have provided momentum separations of up to 30hk between diffract-

ing wavepackets in an acceleration-sensitive interferometer-a record for stimulated

Raman transitions. We have verified scale factor enhancement and characterized de-

coherence as a function of momentum separation, interferometer dwell time, and ARP

sweep parameters. We also demonstrate symmetric 4hk beamsplitters and mirrors

that may be useful for long baseline atom interferometry in space-based interferome-

ters.
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5.1 Motivation

Highly sensitive light pulse atom interferometry (LPAI) may be an enabling tech-

nology for next-generation inertial navigators [109, 51], gravitational wave detectors

[1101, and tests of the equivalence principle [111]. However, inertially sensitive LPAIs

are presently limited by atom beamsplitters and mirrors that create small momen-

tum separations (two photon recoil momenta) between diffracting wavepackets. The

sensitivity of these interferometers typically increases with the effective area enclosed

by the interfering wavepackets [841. Since this area is proportional to the wavepacket

momentum separation, sensitivity can be enhanced using atom optics that gener-

ate large momentum transfer (LMT). LMT has been demonstrated with multipho-

ton atomic transitions and sequential application of 2hk atom optics. In particular,

previous demonstrations of atom interferometry with LMT have used sequential ap-

plication of stimulated Raman transitions [77, 112], Raman composite pulses [101],
and stimulated Raman adiabatic rapid passage pulses [75], as well as application of

multiphoton-Bragg transitions 178, 113], and Bloch oscillations in an optical lattice

[79, 114].

In most of these demonstrations, cold atoms from a magneto-optical trap (MOT)

were either evaporatively cooled or velocity selected-both of which typically discard

>90% of the original atom sample. Reduced atom number is detrimental to atom

shot-noise limited measurement uncertainty and to operation at fast data-rates. A

slower data-rate results because, following every measurement cycle, the steady-state

atom number in the MOT must be recovered primarily from room-temperature atoms.

When cold atoms are recaptured, however, the number of atoms per interrogation

that must be loaded from the room-temperature background vapor is reduced, and

the data-rate can be increased to >100 Hz [47]. High data-rates are crucial for atom

interferometric measurements of dynamic signals, such as rapidly varying accelera-

tions and rotations of moving platforms, as well as strains from high frequency (-10

Hz) gravitational waves [110, 79]. The fastest data-rates with evaporative cooling

have been limited to <1.3 Hz [91]; velocity selection at high data-rates requires the
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added complexity of a 2D MOT to maintain atom number [95].

In this work, we demonstrate cold atom interferometers with high contrast and up

to 30hk beamsplitter pulses, while forgoing evaporative cooling and velocity selection.

The atom beamsplitters are implemented in an acceleration-sensitive interferometer

and use a combination of stimulated Raman transitions and frequency-swept adiabatic

rapid passage (ARP). These atom optics will enable large area atom interferometry

with improved counting statistics, fast data-rates, and reduced constraints on atom

temperature. Our approach to ARP fundamentally and practically differs from the

demonstration of STIRAP in reference [751, as will be discussed below.

To illustrate the utility of LMT atom interferometry with an entire laser-cooled

atom cloud, consider that an atom shot-noise limited accelerometer, operating with

107 atoms, T = 5 ms, and efficient 22hk beamsplitters, resolves -10-ng variations in

acceleration per shot. At data-rates approaching 100 Hz, such a device would pro-

vide ng/vHz sensitivity while maintaining sufficient compactness and bandwidth for

precision inertial sensing. By comparison, the nominal LPAI with 2hk beamsplitters

would need a longer dwell time of T = 25 ms to achieve the same sensitivity, resulting

in a factor-of-5 reduction in data-rate and bandwidth. Combining LMT with higher

atom number and data-rates may also prove useful in scientific applications. For ex-

ample, increasing the dwell time in the previous example to -100 ms would produce

sensitivities comparable to those achieved using Bose Einstein condensates (BECs)

in large experimental systems with interrogation times of -1 s.

5.2 Atom interferometry with large momentum trans-

fer atom optics

Our demonstration of LPAI with LMT atom optics is carried out in a Mach-Zehnder

interferometer, depicted in Fig. 5-1. The interferometer is composed of a beamsplit-

ter pulse sequence that coherently divides the atom wavepacket, a mirror sequence

that brings the wavepackets back together, and a second beamsplitter sequence that
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overlaps the wavepackets to create interference. The first (-/2), middle (F), and

final (7r/2) pulses drive Raman transitions that produce the nominal 2hk interfer-

ometer discussed in Secs. 2.2.2 and 2.2.3. Achieving higher momentum separations

requires "augmentation" pulses with effective wave vectors keff directed as shown by

the vertical arrows in Fig. 5-1. These augmentation pulses must invert population

while maintaining atomic coherence. In the absence of gravity gradients, the pulse

sequence in Fig. 5-1 produces a relative phase between the interferometer arms given

by the equation [77]

AO = keff -a [(2N + 1)T2 - 2N(N + 1)TTimt] , (5.1)

where a is an acceleration, T is the dwell time, and augmentation pulses in the

beamsplitter sequence are numbered 1 to N and separated by time TImt. Relative

to the nominal 2hk interferometer, the phase shift per unit acceleration or scale

factor-is amplified by a factor of approximately 2N + 1 for a fixed T.

The LMT atom optics are created by sequentially driving stimulated Raman tran-

sitions with physically separated Raman frequencies (see Sec. 3.5.2 for implementation

details). LMT beamsplitters, for example, apply a Raman 7/2 pulse followed by N

augmentation pulses, while the LMT mirror employs 2N augmentation pulses with

a Raman w pulse situated in the middle. Each of the N augmentation pulse in the

beamsplitter increases the momentum separation between wavepackets by 4hk, re-

sulting in a maximum momentum splitting of (4N + 2)hk. This momentum splitting

is achieved using LMT atom optics that reverse the effective wave vector from one

Raman pulse to the next. In Fig. 5-2, the case of parallel keff shows two Raman F

pulses, with the same wave vector orientation, acting sequentially on an initially un-

moving atom in state 13,0), where the second state label denotes atomic momentum.

The first pulse transfers the atom to 14, hkeff), because an atom in F = 3 absorbs w,

and is stimulated to emit w 2 (see energy level diagram in Fig. 5-2). The second pulse

returns the atom to 13, 0) because a F = 4 atom absorbs w 2 and is stimulated to emit

wi. If the orientation of the photons in the second pulse is flipped, as in the reversed
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Figure 5-1: Diagram of pulse timings and wavepacket trajectories for Mach-Zehnder

interferometers with 2hk, 6hk, and 10hk atom optics. Augmentation pulses (A)

increase the momentum separation between diffracting wavepackets and are either

Raman 7r, ARP, or composite pulses in this work. The nominal 2hk interferometer

(black) is composed of a 7r/2-7r-7r/2 sequence of Raman pulses.
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Figure 5-2: Raman effective wave vector reversal for large momentum transfer atom

optics. When two atom optics with the same keff orientation are applied, momentum

transfer from the first pulse is canceled by the second pulse. The photon recoil

momenta add when the keff orientation is reversed for the second pulse.

keff case in Fig. 5-2, the second momentum kick increases the atomic velocity, result-

ing in an atom in state 13, 2hkeff). This pulse sequence produces a 6hk LMT atom

optic in our interferometers and can be extended, as shown in Fig. 5-1, to achieve

even higher wavepacket momentum separations. Importantly, the Raman resonance

condition for the second pulse is Doppler-shifted in the case of reversed keff, since the

Raman transition occurs in an atom with a lower ground state velocity of 2hkeff. As

a general consequence of these photon recoils, the resonance conditions for the up-

per and lower interferometer arms separate during the jth beamsplitter augmentation

pulse by 4jwr, where w,/(27r) = 8.26 kHz is the 131Cs two-photon recoil frequency

shift. For a 10hk (N=-2) interferometer, for example, the upper and lower wavepacket

resonances separate by up to 66 kHz. Simultaneously addressing both interferometer

arms thus requires broadband atom optics that tolerate substantial detuning offsets.
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5.3 Augmentation pulses

Since large area interferometers require a minimum of four additional laser pulses,

they are susceptible to decoherence induced by spontaneous emission, transfer inef-

ficiency, and phase dispersion-all of which lower contrast and hence signal-to-noise

ratio (SNR). To improve coherence during an LMT interferometer, we use broadband

Raman augmentation pulses based on frequency-swept ARP or composite pulses. In

direct analogy to ARP methods from NMR, Raman ARP coherently inverts pop-

ulation in an effective two-level system by slowly sweeping the Raman detuning 6

through resonance [591. Composite pulses, on the other hand, often invert population

using resonant, square pulses with discrete Raman phase shifts [581. In Fig. 5-3, the

simulated bandwidths of the ARPs and composite pulses we considered are compared

to the significantly narrower bandwidth of a standard Raman 7r pulse. The sweep

parameters were Qeff/(2r) = Qarp/(27) = 200 kHz, 6max/(27r) = 15 MHz, and 3 = 7.5

Wider bandwidths allow these pulses to improve transfer efficiency with a hot atom

(a) (b)

0.8-

S0.6-
0

0

0.4-

0.2-

0
-6 -4 -2 0 2 4 -6 -4 -2 0 2 4 6

Raman detuning (units of Qe) Raman detuning (units of Q )

Figure 5-3: Velocity acceptances of ARP and composite Raman pulses. (a) Tan/Tanh

transfer efficiency for a wide range of detuning offsets. T, = 10t, (blue) and T, =

3t, (red) cases are compared with Raman ir pulses (black), as well as the velocity

distribution of a 9-pK cloud (filled grey). (b) Transfer efficiency for WALTZ (blue)

and MLEV (red) composite pulses (see Sec. 5.3.2 for details).
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cloud (see atom velocity distribution (grey) in Fig. 5-3), though at the expense of

increased spontaneous emission and, in some cases, additional dephasing. The rest of

this section further discusses the use of composite and ARP Raman pulses in LMT

atom interferometry.

5.3.1 ARP augmentation

A number of combined intensity and frequency modulations are known to provide

efficient adiabatic population inversion. We selected fast ARPs in order to suppress

decoherence and contributions to interferometer phase from finite pulse durations. In

particular, we focused on the Tan/Tanh ARP described in Secs. 2.3 and 4.2, and in

references [65, 67, 86]. We reiterate that the time-dependent detuning for this ARP

is 6(t) = Qarp tan [a (2t/T, - 1)], where t E {0, T}, T, sets the total sweep duration,

Qar alters the sweep rate, and a = arctan(6 max/Qarp), with 6 max being the maximum

detuning. The optical intensity is proportional to tanh [7.5 (1 - 12t/T, - 1|)]. In our

apparatus, a Doppler-sensitive Tan/Tanh pulse with duration T, = 10t, achieved

-96% transfer efficiency over a broad range of detuning offsets and was limited pri-

marily by spontaneous emission. The benefits of this ARP have already been dis-

cussed in Secs. 2.3, 4.2, and 4.4.3. Here, we note that the minimum adiabaticity of

the Tan/Tanh ARP is not significantly lowered by large detuning offsets, even for

relatively short pulse durations such as T, = 3 tr, as shown in Fig. 5-4. The simulated

adiabaticities in Fig. 5-4 were obtained using the same sweep parameter values listed

at the beginning of this section. The detuning offset of 0. 2 5Qeff is relevant to this

work since it corresponds to the l- Doppler width of a 9-puK ensemble of cesium

atoms. The Rational/Square ARP (see Sec. 4.2 for details) is also interesting for

LMT applications due to its rapid sweep rate. The constant adiabaticity of this pulse

is much lower than that of Tan/Tanh toward the beginning and end of the sweep,

but larger by a factor of r/2 near resonance.

Compared to the two-pulse Ramsey sequences from Chapter 4, large area interfer-

ometers call for many additional laser pulses and are sensitive to Doppler detuning.

The larger total pulse area increases spontaneous emission, and atom temperature
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Figure 5-4: Adiabaticity of the Tan/Tanh ARP with T, = 10t, (blue) and Tir = 3tir

(red). Dashed lines indicate ARP center frequency detunings of 6 = 0.25Qeff.

variation across the sample causes detuning inhomogeneity that, in turn, reduces

population transfer efficiency. We address these issues in large interferometers by

first using ARP pulse durations that are roughly 3 to 10 times shorter than the du-

rations used for timekeeping (in units of t7,). Second, the two-photon Rabi rate in

our large area interferometers is about 3 times larger, which improves the velocity

acceptance of each augmentation pulse.

Since ARPs in an LMT atom interferometer act on coherences, they imprint a

detectable dynamic phase
S= jdtQgen(t')/2 (5.2)

onto the atom wavefunction in the adiabatic limit [63, 8511. Of course, ARPs that

produce minimum adiabaticity factors of Q = 3 to 10 only approximately satisfy

the adiabatic condition throughout the pulse. Taking Q = 10 as our threshold for a

coarse adiabatic approximation, we find that the dynamic phase accrued during the

Tan/Tanh ARP considered above, with T, = 10t., is y ~- 100 rad. When T, = 38,,

the first and last 8% of the sweep-during which Q(t) ;> 10-produce a dynamic

phase of ~..20 rad. The magnitudes of these phases create ample opportunity for

'The source of this phase factor is apparent in the dressed state picture, which was reviewed in

Sec. 2.3.1.
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dephasing, since 1-10% variations in y result in phase dispersion of ~1 rad across the

atom ensemble. However, pairs of identical ARP pulses cancel -y when the optical

intensity profiles of both pulses are identical. 2 From these considerations, we gather

that (1) dynamic phase is a potentially important driver of contrast loss in ARP LMT

interferometers, and that (2) applying adiabatic pulses in rapid succession may help

cancel this phase.

5.3.2 Composite pulse augmentation

A wide variety of NMR composite pulses efficiently invert population in the presence

of detuning offsets and field intensity inhomogeneity. A survey of these pulses can be

found in [70]. Composite pulses have also been proposed as efficient atom optics for

Raman pulse atom interferometry [11, 64] and implemented as augmentation pulses

for LMT atom interferometry [46, 101]. In this work, composite pulses provide an

additional point of comparison for augmentation pulse performance. To build on

our results reported in [101], we consider MLEV (7/2o, -7 rgoo - w/2oo) and WALTZ

(w/20 , - 7 18 0o - 3w/20 .) composite pulses, where subscripts in our notation denote

"subpulse" phase and standard-script denotes subpulse area. The trajectory of a

Bloch vector under the influence of these pulses is shown in Figs. 5-5(a) and 5-5(b),
and experimentally acquired scans of the transfer efficiency as a function of detuning

offset are shown in Fig. 5-5(c) for Doppler-insensitive Raman transitions. WALTZ

is generally adept at maintaining high transfer efficiency despite detuning offsets,

whereas MLEV is insensitive to intensity errors. WALTZ and MLEV are relatively

short composite pulses and consequently produce a minimal amount of spontaneous

emission. While in principle the phase steps happen instantaneously, in practice

they need only occur within a time period that is short with respect to t,. Our RF

electronics limit phase transients to ~ 0.01t, for Rabi rates of Qeff/(27F) = 200 kHz.

Finally, to differentiate composite pulse results presented here from those in [101], we

note that the current results were acquired with separated Raman frequencies, higher
2 This concept has been used in NMR to produce adiabatic r/2 pulses that are robust to intensity

inhomogeneity [69].
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Figure 5-5: Action of (a) MLEV (green) and (b) WALTZ (blue) pulses on the Bloch

vector, as compared to a Raman 7r pulse (red). MLEV is shown for the case of a

15% reduction from nominal intensity, and WALTZ is shown with a detuning error

of 0.5Qeff. Perfect transfer corresponds to a Bloch vector reaching the positive z axis.

(c) Experimental observation of broadband transfer efficiency with composite pulses

using Doppler-insensitive atom optics. Lines are guides for the eye.
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Rabi rates, and hotter atom clouds for reasons discussed in Secs. 3.6 and 5.1.

5.4 Demonstration of large area atom interferometry

5.4.1 Enhanced scalefactor

To experimentally verify the enhancement of phase shift per unit acceleration A#/a,

we produced interferograms by varying the chirp rate c, of the Raman frequency dif-

ference w1 - w 2. Changes to the chirp rate act as pseudo-accelerations 6a = c,/keff

that shift the interferometer phase according to Eq. (5.1). In response to chirp rate

variation, interferograms with up to 30hk beamsplitter pulses exhibited periods that

decreased with higher LMT order and matched expected values, as shown in Fig. 5-6.

A short dwell time of T = 1 ms was used to reduce phase noise from environmental

vibration. Furthermore, chirp rate conditions were sampled in order from lowest to

highest value, with each value tested 10 to 15 times for averaging. Other experimen-

tal parameters included T, = 3tr, Qeff/(2-F) Qar,/(27) = 200 kHz, 6 max/(27r) = 15

MHz, and Tlmt = 41 ps. Similar agreement was verified for up to 14hk beamsplit-

ters with other augmentation pulses, such as Raman ir pulses, MLEV, WALTZ, and

Tan/Tanh ARPs with T, = 5t,. Percent-level discrepancies between the measured

and predicted scale factors may be due to finite pulse duration effects [81], which were

not included in the predictions.

5.4.2 Contrast loss

While the LMT interferometers clearly enhanced the phase shift per unit accelera-

tion, the contrast A of the interferograms in Fig. 5-6 was simultaneously degraded

with increasing LMT order. Maintaining contrast is important because it scales the

phase SNR and can thus reduce sensitivity despite the enhancement of scale factor.

To avoid systematically underestimating contrast because of vibration-induced phase

noise, we assessed contrast using histograms of transition probability measurements

from each LMT interferometer. The arcsine probability density function characterizes
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[hk] Measured Predicted

0.2
& 2 14.8(3) 14.9
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6 41.5(3) 41.7
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Figure 5-6: Phase shift per unit acceleration AO/a for various LMT orders with

Tan/Tanh augmentation pulses. Interferograms were acquired by perturbing the chirp

rate of the Raman difference frequency, which produced a time-varying Doppler shift.

6a represents the acceleration of the atoms, relative to the Raman beams, that pro-

duces the equivalent Doppler shift when the chirp rate is fixed. Points represent 10-

or 15-shot averages, error bars indicate standard error, and lines are fitted sine waves.

The table shows reasonable agreement between measured and predicted values (26hk

was not measured).
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the statistics of the interferometer transition probability in the limit of uniform ran-

dom phase noise [781. In our experiments, this limit was effectively realized through

a combination of vibration-driven phase noise and deliberate variation of the inter-

ferometer phase [115], as seen in Fig. 5-7. We therefore fit the arcsine distribution

to our histograms, while keeping A a free parameter. The resulting contrast esti-

mates matched separate estimates of contrast based on the standard deviation of the

transition probabilities: A, = 212/ap.

50- TanlTanhl18hk

40

30-

20

10-

0
0.4 0.45 0.5 0.55 0.6 0

Transition Probability

40T 14

30-

20-

10

01
.65 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

Transition Probability

Figure 5-7: Histograms of transition probabilities from Tan/Tanh 14hk and 18hk

interferometers with randomly varying phase and statistics governed by the arcsine

distribution (red curves).

Changes in contrast with varying LMT order are driven by several factors: single-

photon excitations; detuning offsets due to photon recoils; detuning inhomogeneity

due to temperature-dependent Doppler shifts; and Rabi rate and spatial phase inho-

mogeneity due to a combination of wave front distortion and thermal motion of the

atoms. To jointly study these effects, we used Monte Carlo interferometer simulations

described in detail in Appendix B. Briefly, we note that simulations accounted for

inhomogeneity effects listed above by using initial atom positions and velocities that

were normally distributed and centered on the Raman beam axis. A CCD image of

the spatial intensity profile of only one Raman laser beam was used to approximate

the true variation in eff with position. Non-ideal spatial modes are an important

source of contrast loss in ARP-based LMT interferometers, because they introduce
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variations in the dynamic phase y across the sample. We empirically determined that,

due to spontaneous emission, the fractional loss of population per Raman 7r pulse was

Rsc = 0.004. Therefore, we scaled the simulated contrast results by (1 - Rc) 4 NIau9+2 I

where taug is the augmentation pulse duration in units of t, and the exponent quanti-

fies the pulse duration for the entire interferometer. The Raman process was modeled

as an effective two-level system [811, and we assumed uniform Raman wave fronts. To

reduce computation times, probability amplitudes corresponding to population loss

were not computed, as they do not contribute significantly to contrast.

Experimentally measured and simulated contrast values are shown in Fig. 5-

8(a) for Tan/Tanh pulses and Fig. 5-8(b) for composite pulses. At all LMT orders,

+.4

(a) Tan/Tanh ARP

5 10 15 20
LMT order (hk)

4% 444*
4% 44

4% 44

4% 4
4%

4%

(b) Composite pulses

25 30 2 4 6 8 10
LMT order (hk)

Figure 5-8: Contrast as a function of LMT order for (a) Tan/Tanh ARP augmentation

with velocity-selected (red diamonds) and 9-ptK atoms (blue squares); (b) compos-

ite pulse augmentation with WALTZ pulses (magenta diamonds) and MLEV pulses

(green squares). Both plots include Raman augmentation (black circles) for compari-

son. The bottoms of the gray regions indicate spontaneous emission-limited contrast

in LMT interferometers augmented with WALTZ and Tan/Tanh pulses. Symbols rep-

resent contrast fits to histograms of transition probabilities. Contrast fit uncertainties

are nearly equivalent to the symbol sizes. Lines are Monte Carlo predictions.

Tan/Tanh interferometers with the entire laser cooled sample clearly achieved higher

contrast than interferometers based on Raman ir or composite pulses. To observe con-

trast enhancement with Tan/Tanh pulses, we had to simplify and clean many optical
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components in the Raman beam path. In the process, we replaced the original vacuum

cell to remove a defect on the vacuum-side of an optical flat that created intensity rip-

ples in the Raman beam. These improvements benefited ARP augmentation moreso

than 7 pulse augmentation. Using velocity-selected samples with temperatures of

-100 nK along the Raman beam axis, we observed a nominal increase in contrast.

Since this improvement was largely driven by the 2hk interferometer, inhomogeneity

in the temperature-dependent Doppler detuning was not a dominant contrast loss

mechanism. Experimental composite pulse LMT interferometers (without velocity

selection) performed as well as interferometers with Raman - augmentation. Note

that the WALTZ interferometers were acquired with the last 2N augmentations act-

ing in reverse (i.e., 3w/2 0o - 7isoo - 7/20 . pulses) in order to achieve time-reversal

symmetry. In this case, an atom propagating forward or backward through the inter-

ferometer would experience the same pulse sequence. This modification resulted in a

5-10% fractional improvement in contrast.

Using known experimental parameters and adjustments to the atom sample size

(order 10%), our Monte Carlo simulation produced contrast values, shown in Fig.

5-8, that agreed with measurements based on Raman 7 augmentations. With the

same experimental parameters, simulations based on Tan/Tanh augmentation pulses

predicted higher levels of contrast at all LMT orders. These predictions were borne

out qualitatively in experiments, though the measured contrast values were lower.

Taking the same approach with composite pulse interferometers also produced op-

timistic contrast predictions. The discrepancy may have resulted from a favorable

model of the Raman beam spatial profile, which accounted for just one of the two

Raman beams. Other sources of disagreement may have included dephasing due to

spatial aberrations in the Raman beam wave front and temporal variation of the

Raman beam intensity.

Assuming contributions from other noise processes (e.g., laser phase noise) were

unchanged with varying LMT order, the inferred sensitivity (defined as A x A#/a)

was maximized with 14hk Tan/Tanh beamsplitters and was a factor of 2.6 larger than

that of a 2hk interferometer, as shown in Fig. 5-9. If contrast is perfectly maintained,
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30hk beam splitters can enhance the sensitivity by a factor of 15 when T >T mi. For

our choice of short T, this sensitivity enhancement can be a factor of 10, in principle.

2.6 Tan/Tanh
2.4 - -- Raman

?2.2 0 WALTZ

2 --- MLEV

0 1.8-

1.6

1.4-

1.2-

1-

0.8-

5 10 15 20 25 30
LMT order (hk)

Figure 5-9: Enhancement of inferred acceleration sensitivity (A x A#/a), relative to

the sensitivity of a 2hk interferometer, as a function of LMT order for augmentation

with Tan/Tanh ARP, composite, and Raman 7r pulses. Lines are guides for the eye.

As a function of dwell time T, and with an ARP pulse duration of T, = 3t.,

the measured contrast in Fig. 5-10(a) decreased at a rate of roughly 0.03/ms for all

LMT orders. Note that estimates for the 6hk interferometer were based on a con-

trast measurement at T = 1 ms and the fairly uniform trend observed with all other

LMT orders. This trend was likely caused by the transverse motion of atoms in laser

beams with spatially non-uniform intensity and wave front aberrations, both of which

increasingly dephase the atoms as T is lengthened [79]. In the case of wave front aber-

ration, dephasing occurs because spatially separated and localized atom wavepackets

are imprinted with different position-dependent Raman phases. With non-uniform

spatial intensity, the dynamic phase during an ARP varies across the ensemble, as will

be discussed below. Transverse thermal motion of atoms was substantial in this work,

since a 9-yK cloud of 133Cs atoms, with an initial 1/e2 diameter of 2 mm, expands by

40% during an interferometer with T = 8.5 ms. Clearly, microkelvin-temperature and

velocity-selected atom samples place more stringent requirements on the transverse
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spatial mode of the atom optics beams, when compared to LMT demonstrations

with small BECs. With improved beam quality, however, large area interferome-

try becomes possible without the complexity of evaporative cooling or atom optics

based on Bragg transitions, which usually require narrow-linewidth (~ 10 kHz) lasers

[78, 1131.
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Figure 5-10: Large area interferometer contrast with various (a) dwell times and (b)

Tan/Tanh pulse durations. a) The contrast trends down with T at a rate of - 0.3/ms

for all LMT orders, suggesting the atoms are dephased by their motion through a non-

ideal spatial beam mode. b) The contrast also trends down with increasing Tan/Tanh

pulse duration T, due to spontaneous emission and dispersion of the dynamic phase.

Lines are guides for the eye. Symbols represent contrast fits to histograms of transition

probabilities. Fit uncertainties are smaller than the symbol sizes.

As a function of increasing ARP sweep duration T,, the contrast seen in Fig.
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5-10(b) decreased for all LMT orders considered. The dwell time for these interfer-

ometers was T = 1 ms. Spontaneous emission and dispersion of the dynamic phase

-y most likely dominated this trend, since the pulse area more than tripled over this

range of T,. Under relevant conditions, differentiation of Eq. (5.2) with respect to

Qeff reveals that for a Tan/Tanh ARP, variations in -y caused by the uncertainty in

Qeff scale with the ARP duration T,. 3 A crude adiabatic approximation thereby in-

dicates that dephasing of -y during a T, = 10t, ARP is approximately a factor of

3.3 larger than dephasing from a T, = 3t, ARP. This estimate, however, neglects

the effect of rephasing, which was discussed qualitatively in Sec. 5.3.1. Recall that if

Qeff were constant, consecutive pairs of contiguous augmentation pulses would cancel

-y in the adiabatic limit, because the imprinted phases would carry opposite signs.

The fractionally larger loss of contrast observed experimentally at longer T, suggests

that rephasing in this experiment was hampered by poor laser beam mode quality.

Monte Carlo simulations of a 6hk interferometer with T, = 10t , Tan/Tanh augmen-

tation show that, in the case of an ideal Gaussian laser beam mode, the contrast is

limited purely by spontaneous emission and rephasing is highly efficient. We have

also experimentally observed rephasing with four-pulse interferometers comprising a

7r/2 - ARP - ARP - -/2 sequence of Doppler-sensitive atom optics with the same keff

orientation. The four-pulse interferometer contrast was 0.35 for identical ARPs and

0 for ARPs with oppositely-directed frequency sweeps, which cause the two dynamic

phases to add. Therefore, improvements to the spatial mode quality of the Raman

beams may enable application of spontaneous emission-limited Tan/Tanh pulses with

Ti, > 3t7, . These more adiabatic pulses should efficiently cancel dynamic phases, par-

ticularly when LMT beamsplitters comprise an even number of augmentation pulses

(i.e., even N). Cancellation of -y will also require precise control over ARP sweeps

parameters. Finally, further suppression of spontaneous emission and simultaneous

cancellation of the AC Stark shift is possible with far-detuned, high-power lasers.

3For simplicity, we have assumed that the optical intensity is unmodulated, 6
max > Qeff - arp,

and that there are no detuning offsets.
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5.4.3 ARP sweep parameters

We additionally checked for contrast and phase sensitivity to Tan/Tanh sweep-defining

parameters Qarp and 6 max, which can vary when RF electronics add imperfections to

ARP frequency sweeps. The nominal experimental parameters were the same as

above, except for T, = 5t,. Over a broad range of Qarp and 5 max values, a 6hk in-

terferometer displayed fairly small variation in contrast, as seen in Fig. 5-11. In real

applications, the fractional values of these parameters will be controlled at the 1%

level or better, resulting in negligible contrast instability. A bona fide assessment of

phase stability requires an inertially stable system in which environmental accelera-

tion noise is heavily suppressed. We reduced this noise in a stability measurement,

discussed in Sec. 3.6, using a retroreflected Raman beam with the reflector mounted

on a vibration isolating platform. Since LMT interferometry was implemented with

separated Raman beams, vibration isolation was more complicated and not pursued

for this initial demonstration of high contrast and correct scale factor. Questions

regarding phase instability will be answered when the experiment is rehosted on an

isolated platform. Nevertheless, a 6hk interferometer with a short dwell time allowed

us to resolve interferograms whose phase offsets are reported in Fig. 5-11. Clearly,

the phases are controlled to well within a fringe. The phase response to 6ma, varia-

tion, if present, cannot be resolved; the response to Qarp variation near the nominal

setting of Qarp = eff may be statistically significant. The standard deviations of the

Qarp and 6max phase offsets are both <70 mrad. The limited sensitivities in LMT

interferometers to ARP parameters is promising and motivates further investigation

at higher LMT orders.

5.5 Symmetric Raman beamsplitters

The LMT beamsplitters described above separate atom wavepackets in an asym-

metric fashion: the diffracting wavepacket receives two photon recoils while the non-

diffracting wavepacket continues on its original trajectory. This asymmetry is prob-

lematic in certain space-based interferometers intended to detect gravitational waves.
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Figure 5-11: Effect of Tan/Tanh parameters Qarp and 6 max on the LMT interferom-

eter contrast and phase of a 6hk interferometer. Lines are guides for the eye, and

symbols represent contrast fits to histograms of transition probabilities. Contrast fit

uncertainties are similar to the symbol sizes.

While the details of atom interferometric gravitational wave detection are beyond the

scope of this thesis, we briefly note that the issue at hand results from considerations

of orbital dynamics and the requirement that interfering wavepackets overlap at the

end of an interferometer. If the Raman beams are parallel to the tangential velocity of

the atom cloud, momentum kicks from the atom optics drive changes in velocity that

alter the wavepacket altitude. For long dwell times on the order of 1 s, wavepacket

separation prior to the final atom beamsplitter pulse reaches the 10-um level [116],

which is roughly 1000 times the coherence length of the microkelvin-temperature

atoms used in this work. The wavepackets in this scenario no longer overlap and con-

trast is completely suppressed. Even ultracold atoms would fail to achieve coherence

lengths that produce interference.

The wavepackets can be made to overlap, and thus revive contrast, using sym-

metric beamsplitters and mirrors based on Raman transitions. For the symmetric

beamsplitter, a 7r/2 Raman pulse with Doppler-insensitive (DI) Raman frequencies

first creates a superposition of internal ground states. A subsequent 7r pulse with
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Doppler-sensitive (DS) frequencies provides symmetric wavepacket deflection about

the classical atom trajectory. Similarly, the mirror is composed of a sequence of

FDS ~- 7DI - 7FDS Raman pulses. The thick blue lines in Fig. 5-12 depict the desired

wavepacket trajectories for a 7-pulse, 4hk interferometer based on symmetric atom

optics. Other lines indicate loss channels that contribute spurious interference sig-

nals. The pulse timings are identical to the case of a 6hk interferometer, shown in

Fig. 5-1. In particular, a long dwell time separates the DI atom optics, which are

closely preceded or followed by the DS pulses. We note that this interferometer was

previously described in [54], but with microwave pulses in place of optical DI Raman

pulses. Experimental results were not discussed. Other approaches to symmetric

Raman beamsplitters [117, 100] produced similarly structured Mach-Zehnder inter-

ferometer arms, but with wavepackets in the same internal state. In this case, the

interferometer phase becomes insensitive to AC Stark and Zeeman shifts common to

both arms, and loss channels can be extirpated with resonant light that is far detuned

from wavepackets in the primary interferometer arms.

To experimentally implement the symmetric interferometer, we used the retrore-

flected Raman beam described in Sec. 3.6. The beam was circularly polarized (rather

than cross-linearly polarized) to avoid suppressing the DI transition and enable rapid

switching between DI and DS Raman pulses. The atom cloud fell for 13 ms prior

to interferometry, allowing the Doppler shift to lift the degeneracy between DI and

DS transitions. These transitions were selectively driven by choosing the appropriate

Raman detuning. Using a dwell time of 1 ms and a 40-ps separation time between

DI and DS pulses, we scanned the chirp rate of the Raman difference frequency to

verify that the scale factor of the symmetric interferometer was roughly twice that of

a 2hk interferometer. The contrast of the symmetric interferometer (A7puse = 0.11)

was two-thirds that of the 2hk interferometer (A 3-puise 0.17), as seen in Fig. 5-13.

Though the overall contrast values were low, the results indicate the potential for a

33% sensitivity improvement, even in our unoptimized implementation.

Low contrast values were most likely due to the combination of hot atom tem-

perature (9 pK) and relatively low Rabi rate (Qeff/(27) = 55 kHz), which allowed
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Figure 5-12: Diagram of a symmetric Raman pulse interferometer. Vertical lines

(dotted red) represent Raman pulses and the thick lines (blue) indicate the primary

interference channels. Spurious interfering outputs at the end of the interferometer are

highlighted (green), and non-interfering paths are truncated (dashed lines). Numbers

3 and 4 refer to the internal state of the local wavepacket, with slashes identifying

superposition states and parenthesis indicating population resulting from transfer

inefficiency of the DI ir pulse. The horizontal midline (purple) marks a troublesome

loss channel, since it interferes with the primary interferometer loop.
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Figure 5-13: Interferogram from a symmetric, 4hk Raman pulse interferometer (red

circles), acquired by stepping the phase of the final beamsplitter pulse. All lines are

sinusoidal fits. Since a 2hk interferometer (black diamonds) achieved roughly 50%

higher contrast, the symmetric interferometer potentially improved the sensitivity by

33%. The relatively low contrast values resulted from a combination of hot atom

temperatures and weak Rabi rate.

substantial population transfer to interferometer loss channels, such as the purple

midline path in Fig. 5-12. Additionally, the 13-ms drop time prior to interferometry

limited the frequency separation between DI and DS Raman transitions and likely

allowed for residual mixing of these processes. Future iterations of this experiment

will benefit from efficient Raman pulses that drive either DI or DS transitions, but

not both. Raman ARP may then provide a nearly ideal DI mirror that is robust

to beam inhomogeneity, as will be discussed in Sec. 5.5.1. Such pulses would pre-

vent population from reaching trajectories labeled with parenthesis in Fig. 5-12 and

thereby reduce spurious interference. An even simpler approach involves substituting

microwaves for DI laser pulses, as suggested in [54]. However, for a space-based sensor

relying on long baseline atom interferometry, DI Raman laser beams will ultimately

be necessary.

5.5.1 Mach-Zehnder ARP interferometers

The symmetric interferometer described in Sec. 5.5 is fundamentally a DI Mach-

Zehnder interferometer with auxiliary DS augmentation pulses. The fidelity of DI
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atom optics is relatively simple to optimize, as it is insensitive to inhomogeneities in

atomic Doppler detuning and only suffers from Rabi rate variation across the atom

cloud. Optimized DI atom optics would improve the prospects for a high-contrast,

symmetric Raman interferometer. Section 2.3 explained how transfer efficiency with

ARP in the adiabatic limit becomes robust to intensity uncertainty. This robustness

can be extended to DI Mach-Zehnder interferometers based on ARP beamsplitters

(see Secs. 5.5 and 4.3) and an ARP mirror, which is described next.

In general, the Mach-Zehnder atom interferometer comprises a beamsplitter-

mirror-beamsplitter sequence of atom optics. For ARP atom optics, the mirror cannot

be fashioned from a continuous sweep of the Raman detuning, as was done in the LMT

interferometers of Sec. 5.4.2. The dynamic phase from such a pulse is never canceled

in a three-pulse interferometer, and would thus lead to decoherence and phase noise

from Raman beam intensity variation. Instead of a continuous sweep, we use an ARP

composite pulse composed of two parts shown on the Bloch sphere in Fig. 5-14. The

first part is identical to the first half of a downward inversion sweep; the second part is

identical to the second half of an upward inversion sweep. In between these two parts,

the phase of the drive field is instantaneously shifted by 7 rad in the equatorial plane.

Unlike in previous discussions of ARP atom optics, this ARP mirror acts on a Bloch

vector initially in the equatorial plane. Precession of the Bloch vector, in the plane

orthogonal to the slowly-rotating drive field, is a manifestation of the dynamic phase.

Shifting the phase in the middle of the ARP reverses the precession and cancels the

dynamic phase if the intensity remains constant during the pulse [69].

An interferogram from a DI Mach-Zehnder interferometer with Tan/Tanh ARP

pulses is shown in Fig. 5-15(a). Its contrast is comparable to that achieved with

standard Raman atom optics. Additionally, the uncertainties in the transition prob-

ability measurements are not noticeably different for the two pulse types, indicating

that phase noise from ARP was controlled. Experimental parameters were T = 900

fs, Qef/(27) Qarp/(27) = 86 kHz, 6max/(2-F) = 15 MHz, T, = 10.3t., and / = 7.5.

The contrast achieved with standard Raman atom optics was sensitive to fre-
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Figure 5-14: Bloch sphere depiction of an ARP mirror that acts on atomic coherences.

The first half of the pulse adiabatically rotates the drive field from the z to y axis,
inducing precession of Bloch vectors initially in the equatorial plane. Due to Rabi

rate inhomogeneity, these vectors form a disc (blue) that remains orthogonal to the

rotating drive field in the adiabatic limit. Next, the phase of the drive field is stepped

by 7r rad, and the second half of the mirror begins. The field now rotates toward the

positive z axis while reversing Block vector precession, thus canceling the dynamic

phase.

146



1 a) Doppler-insensitive b) Doppler-sensitive

S0.8

0.6|

0.2

0
-6.28 -3.14 0 3.14 6.28-0.5 02 0.5

Phase (rad) 8a (m/s2

Figure 5-15: Interferograms for Mach-Zehnder ARP interferometers. a) DI Tan/Tanh

ARP atom optics (blue filled circles) produced contrast values similar to the contrast

achieved with standard Raman pulses (red circles/squares). Contrast fractionally

improved by 25% (red circles) due to a detuning offset of -324 Hz (see text). b)

DS ARP interferometer with correct scale factor and contrast of 0.68. The utility

of this interferometer, relative to the standard Raman pulse approach, is limited

by sensitivity of the ARP mirror to Doppler detuning inhomogeneity. All lines are

sinusoidal fits.

quency errors, as evidenced by the 25% contrast variation in response to detuning,

seen in Fig. 5-15(a). This sensitivity is, in fact, a result of both Rabi rate inhomo-

geneity and detuning offset. Rabi rate inhomogeneity disperses the Bloch vectors of

different atoms, since they precess at varying rates during a standard Raman pulse.

During the dwell time, the detuning 6 shifts the phase of the second Raman pulse,

relative to the first, by <D = 6T. If 1D ~ r, the second pulse rotates the Bloch vectors

back toward their initial orientation, canceling their dispersion and leading to im-

proved contrast [45]. Such contrast sensitivities, which can create instability, should

not arise in the ARP Mach-Zehnder interferometer, because the mirror is insensitive

to <D.

We also implemented a DS Mach-Zehnder interferometer with these ARP atom

optics and produced the interferogram shown in Fig. 5-15(b). Experimental param-

eters in this case were T = 1 ms, Qeff/(2W) = Qarp/(2W) = 200 kHz, 6max/(27r) = 15

MHz, T, = 10t., and 3 = 7.5. By varying the chirp-rate of the Raman difference fre-

quency, we verified that the scale factor was correct and also achieved good contrast.
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The Doppler detuning sensitivity, however, limited the value of this interferometer

over the standard Raman pulse approach. Due to its non-adiabatic phase shift, the

ARP mirror achieved a velocity acceptance similar to that of a Raman T pulse. In

parameter regimes where the Rabi rate is much larger than the Doppler detuning

inhomogeneity, the DS Mach-Zehnder interferometer with ARP atom optics could

prove useful for its robustness to intensity variation.

5.6 Summary

We have presented LMT light pulse atom interferometry using atom optics based

on stimulated Raman transitions with ARP and composite pulses. The 30hk beam-

splitters reported here provide the largest momentum separation achieved to date in

an interferometer without velocity selection or evaporative cooling. In principle, the

beamsplitter momentum transfer could be increased beyond 30hk by switching to

diffraction of a single interferometer arm with resonant pulses. This approach is effi-

cient when the separation between wavepacket resonances (induced by photon recoils)

exceeds the temperature-dependent detuning inhomogeneity. For a 1-piK sample of
1 33Cs atoms, 14hk beamsplitters would provide the necessary frequency separation.

By incorporating the entire laser-cooled atom sample into the measurement, our ARP

technique provides superior counting statistics compared to previously demonstrated

LMT atom interferometers. Retaining the full cold atom sample also enables op-

eration at higher data-rates and reduces deadtime, since cold atoms can be rapidly

recaptured in a MOT during subsequent measurements. These features would be

useful measurement of dynamic signals, such as accelerations and rotations of moving

platforms. For space-based applications, we have demonstrated symmetric Raman

beamsplitters and mirrors that could facilitate wavepacket overlap despite long inter-

rogation times. A demonstrated Mach-Zehnder interferometer based purely on ARP

atom optics could be useful in this application.
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Chapter 6

Conclusion

We have presented techniques for light pulse atom interferometry with atom optics

based on a combination of frequency-swept adiabatic rapid passage (ARP) and stimu-

lated Raman transitions with optical photons. In one application, a method for robust

atomic timekeeping with ARP Ramsey sequences was developed. Raman ARP was

vital to suppressing light shifts of the Ramsey phase, as well as loss of fringe contrast

due to optical intensity gradients in a Gaussian laser beam. In experiments, Ra-

man ARP reduced the phase sensitivity of Ramsey sequences to light shifts in 133Cs

atoms by about two orders of magnitude, relative to standard, fixed-frequency Ra-

man transitions. Furthermore, the Ramsey fringe contrast was maintained for atom

cloud displacements that approached the 1/e 2 intensity radius of the laser beam. A

stability assessment of the ARP Ramsey measurement revealed a fractional frequency

uncertainty of ~3.5 x 10-12 after about 2500 s of averaging. This uncertainty was

limited primarily by second-order Zeeman shifts.

In a second application, Raman ARP was used in an acceleration-sensitive Mach-

Zehnder atom interferometer to achieve large momentum transfer (LMT) atom optics.

The combination of ARP and high Rabi rate afforded atom beamsplitters that pro-

duced momentum splittings of up to 30 photon recoil momenta between interfering

wavepackets, which is a record for Raman transitions and atoms cooled purely in an

optical molasses. Enhancement of the phase shift per unit acceleration was verified

for many LMT orders, and sources of contrast loss were characterized using Monte
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Carlo simulations. By forgoing evaporative cooling and velocity selection, this LMT

method reduces the atom shot-noise-limited measurement uncertainty and enables

large area atom interferometry at higher (>10 Hz) data-rates.

6.1 Future work

The results presented in this thesis could be built upon by modifying certain aspects

of the apparatus or experimental methods. The primary source of instability in our

Ramsey sequences was the magnetic field environment. Operating the sensor inside

magnetic shielding should strongly suppress this contribution. Efforts to add magnetic

shielding have already been made in another apparatus operated by our group, and a

factor-of-2 improvement to the short-term stability of the ARP Ramsey sequence was

evident. To create a bona fide clock, the atomic Ramsey phase measurements must

also be fed back to a disciplined crystal oscillator whose frequency is counted. The

short-term stability of the clock could be lowered using higher data-rates (discussed

below) and readout pulses derived from narrower-linewidth lasers, which reduce the

readout uncertainty. Improving the long-term stability will likely require active opti-

cal intensity control, temperature control for RF circuits, and periodic recalibration

of light background levels.

The contrast of our LMT atom interferometers with ARP atom optics was lim-

ited by optical beam quality. Better beam quality can be achieved through exclusive

use of clean <A/10 optical components and vacuum cell windows. To reduce phase

noise and carefully characterize LMT interferometer phase shifts, the apparatus must

be vibrationally isolated, and differential phase between the separate Raman lasers

should be actively controlled. Reduction of atom temperatures to 1-2 [K would help

reduce loss of contrast with increasing dwell time and could be achieved through

polarization gradient cooling of cesium atoms [113] (which currently produces 9-pK

atom temperatures in our system). Relying entirely on acousto-optic modulators

for optical switching, and operating our tapered amplifier diodes with fixed current,

should reduce optical intensity transients. In addition to allowing for closer LMT aug-
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mentation pulse spacings, this change may limit a potential source of phase noise in

ARP interferometers, since intensity has a direct impact on the ARP dynamic phase.

Our preliminary demonstration of a symmetric Raman interferometer could be im-

proved upon through use of mutually exclusive, highly efficient Doppler-insensitive

and Doppler-sensitive atom optics. High transfer efficiency would prevent popula-

tion from entering interferometer loss channels, which potentially add spurious phase

shifts.

Sensors operating in dynamic environments must generally operate at fast data-

rates (>10 Hz), primarily to avoid under-sampling inertial input, but also to improve

short-term stability and minimize dead time. Our apparatus currently operates at

data-rates of 1-10 Hz, with the prime limitation being small atom signal size at faster

rates. To enlarge the signal size, the cold atom recapture efficiency can be improved

by (1) eliminating the pusher pulse from the readout sequence and (2) using a higher-

bandwidth detector to eliminate time spent resolving bandwidth-limited waveforms

of atom fluorescence.
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Appendix A

Allan deviations and stability

nomenclature

The stability of a precision sensor characterizes the extent to which consecutive mea-

surements deviate from one another. A powerful tool for quantifying stability is the

Allan variance ou (T). To compute the Allan variance, a series of many measurements

from the sensor is acquired over a long period of time. The time series is divided

into contiguous bins, each spanning time T and with average value 9k (subscript k

denotes the bin number). The Allan variance is given by the mean-squared deviations

between consecutive bin averages:

1
' (T) = ((Yk+ - 9k)2) . (A.1)

The pivotal difference between the standard and Allan variances is that deviations in

the former are taken with respect to the full sample mean. The Allan variance, on

the other hand, uses deviations between consecutive measurements or measurement

averages. Due to the random walks and drifts that commonly occur in measure-

ments from precision sensors, the standard deviation grows without bound over long

measurement times and carries little meaning. By comparison, the Allan variance

converges and provides a useful metric for stability. In some cases, the Allan variance

helps identify time scales at which different types of random noise, such as white or
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flicker noise, become dominant. The behavior of these noise processes is shown in

Fig. A-1 in an example log-log plot of Allan deviations o-y(T).

UantizatiRn.

noise... ........................... ...

F k wa.k

102 100 102 io 4
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Figure A-i: Example plot of Allan deviations o-y(T) for a range of measurement
averaging times T. Different random noise processes produce Allan deviations with
distinct slopes (see labels). Averaging over increasing T benefits the stability up until
the flicker floor is reached. For even long T, random walks and drifts dominate the
stability and cause an upturn in the Allan deviations.

When a particular noise process dominates a range of measurement periods r, the

Allan deviations produce a characteristic slope in this log-log plot. White noise, for

example, causes u-y(T) to trend downward as T-1 /2 , indicating that sensor stability im-

proves when measurements are averaged over time scales associated with white noise.

This behavior reflects the fact that the standard deviation of the mean for a normally

distributed random variable improves as 1/ /n, where ri is the number of samples.

For this same reason, white noise-limited stability at a given T improves with higher

sampling rate and is therefore quoted in units of lamplitude]/v Hz. The amplitude

represents acceleration, rotation rate, or fractional frequency. In the realm of inertial

sensing, the stability at short T is also interchangeably referred to as sensitivity or

velocity (angle) random walk in the case of accelerometers (gyroscopes). 1
1 These random walks are different from those identified in Fig. A-i, which instead occur in
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Averaging measurements beyond time scales associated with flicker noise typically

degrades stability, as indicated in Fig. A-1 by the upturn in Allan deviations at times

exceeding - = 100 s. The Allan deviation achieves a minimum at the so-called 'flicker

floor," and its value at the corresponding T is known as bias stability, or "the bucket,"

in the parlance of inertial sensing. In timekeeping applications, the minimum Allan

deviation is called the fractional frequency uncertainty. The best clocks are sometimes

not operated long enough for a determination of their flicker floor. In this case, their

fractional frequency uncertainties are limited by the total measurement duration.

acceleration and rotation rate for accelerometers and gyroscopes, respectively.
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Appendix B

Large area interferometer Monte

Carlo simulations

This appendix provides a detailed description of the simulations used in Sec. 5.4.2

to characterize loss of contrast in large area atom interferometers. In broad terms,

the simulation calculated scattering amplitudes for internal/momentum basis states

(e.g., IF = 3;p + hkeff), with p being the initial momentum) comprising an atom

subjected to Raman, ARP, or composite pulses. A sequence of these pulses produced

a large momentum transfer (LMT) interferometer. The scattering amplitudes from

each pulse were computed using the approach described in Sec. 2.2.2, which will be

discussed further below.

B.1 Spontaneous emission and inhomogeneities in

detuning and Rabi rate

Spontaneous emission was an important driver of contrast loss in this work, since LMT

interferometers required 5 to 50 times the pulse area of a standard 2hk interferometer.

The exact pulse area was dependent on augmentation pulse duration taug and LMT

order N. To account for spontaneous emission in simulations, we scaled the predicted

contrast values using empirically determined coefficients (1 - RSC) 4 Ntau g+2, where taug
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was in units of t, and the exponent was the number of w pulses applied. The

base of the exponent 1 - R,, was the fractional population remaining after a single

7 pulse. We experimentally found R,, = 0.004 by repeatedly applying Tan/Tanh

ARP inversions, with T, = 10t., and measuring the resulting oscillation in transition

probability. Spontaneous emission caused the oscillation to decay exponentially, as

seen in Fig. B-1. Given the wide velocity acceptance of a Tan/Tanh pulse of this

duration, population loss due to detuning or Rabi rate inhomogeneity was likely

minimal. Therefore, the measured decay rate was attributed entirely to spontaneous

emission.

0.8-
. 0.8 4-\

0. -

F0.2-

0 100 200 300 400
Pulse duration (pis)

Figure B-1: Empirical determination of spontaneous emission rate. Applying to the
atoms a sequence of 16 Tan/Tanh ARP inversions, with T, = 10t, induced decaying
oscillations in the transition probability. Squares are measurements and the curve
(gray) is a fitted, exponentially decaying sine function. The fractional population
decay rate, Rc = 0.004 per Raman w pulse, was attributed entirely to spontaneous
emission, because population loss from detuning and Rabi rate errors were minimal
for such an adiabatic sweep. The Raman i pulse duration was 2.5 pus.

In experiments, interferometer phase measurements were acquired from an en-

semble of atoms with varying positions and velocities. Furthermore, the atoms were

subjected to the spatially nonuniform intensity profile of a nominally Gaussian laser
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beam. Since the fluorescence readout detected an ensemble average of the atom

transition probability, it was important to include ensemble effects in our model.

Interferometer contrast, for example, can be degraded by detuning and Rabi rate

inhomogeneities across the ensemble. To capture such effects, the simulation gener-

ated random, normally distributed initial atom velocities and positions. The mean

position coincided with the Raman beam axis. In addition, a normalized CCD image

of one of the Raman beam intensity profiles, shown in Fig. B-2, scaled the Rabi rate

Qeff as a function of atom position.

Figure B-2: Central portion of the intensity profile from one Raman beam, used in

LMT interferometer simulations. Intensity inhomogeneity was an important aspect

of LMT interferometer simulations with ARP pulses, since these pulses were suscep-

tible to intensity-driven dephasing. This beam model was still optimistic, because it

accounted for just one of the two Raman beams used in experiments (see Sec. 3.5.2

for implementation). Cold atoms remained within the central red/orange peak during

interferometers.

B.2 Scattering amplitudes in large area interferom-

eters

After generating a randomly distributed atom ensemble, scattering amplitudes from

the interferometer pulses were calculated. The calculation was done several times for
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just the the final beamsplitter pulse, since its Raman phase was varied to produce

the interferogram. When the calculation was repeated for all the atoms, the resulting

average transition probabilities created interferograms, to which we fit sine functions.

Contrast was defined as the amplitude of the fitted sine curve.

The calculation of scattering amplitudes for diffracting wavepackets in LMT in-

terferometers followed the approach described in Sec. 2.2.2. Recall that each Raman

transition produces scattering (S) and continuing (C) wavepackets, described pictori-

ally in Fig. 2-6. For standard Raman transitions with constant detuning and intensity,

the scattering amplitudes are

C = cos (+ 7 t) A-k sin (Q2nt (B.1)

S Qeff sin (Q"e (B.2)
Qgen 2 /

and their effect on separating wavepackets is described by the equation

C*(t)|e) - iS(t)Jg), for b(0) = (B.3)
-iS*(t)Ie) + C(t)1g), for b(0) = 1g)

Scattering amplitudes for ARP, on the other hand, are determined through numerical

integration of Eq. (2.10). Composite pulses based purely on discrete Raman phase

shifts can be broken into multiple, contiguous Raman transitions, and can thus be

described by Eqs. (B.1) and (B.2).

Scattering diagrams for LMT interferometers must incorporate reversal of the

effective Raman wave vector keff (not considered in Sec. 2.2.2), as this reversal is

what enables LMT [77, 101]. A scattering diagram for a 10hk LMT beamsplitter

sequence is shown in Fig. B-3. Examining the number of two-photon recoils of each

wavepacket (second number in the ket labels), we find an important new consequence

of reversing keff: due to these additional recoils, the Raman detunings of wavepackets

generated by augmentation pulses change from one pulse to the next. Though the
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Figure B-3: Scattering diagram for a 10hk beamsplitter comprising a Raman 7r/2

pulse and two augmentation pulses. Additional augmentation pulses could be added.

The primary interferometer paths are blue, loss channels are black, and ket labels

indicate the internal hyperfine state, followed by number of two-photon recoils for a

particular wavepacket. Raman pulses are represented by the dashed vertical lines.

Raman wave vector reversal from one pulse to the next causes the primary paths

to diffract father apart, thereby enlarging the effective area (i.e., scale factor) of the

interferoemter.
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Raman detuning function for a particular wavepacket still takes the form

6(t) = wi(t) - w2 (t) - WHFS + + keff , (B.4)

the additional recoil velocity of the associated lower ground state IF = 3) is now

included in z. We associate z with |F = 3), because scattering amplitudes were

derived in Sec. 2.1 in a reference frame co-moving with this state. If, for example,

a Raman transition couples IF = 4; p + nhkeff) to IF = 3;p + (n + 1)hkeff), then

mz = p + (n + 1)hkeff . The definition of z is unchanged if the transition goes

from IF = 3;p + (n + 1)hkeff) to |F = 4;p + nhkeff). Using the correct detuning

function, scattering amplitudes are calculated (or determined numerically) for every

wavepacket in the interferometer.

Phase factors associated with dwell times and unitary transformations between

the jth and j + 1 th interferometer pulses (see Sec. 2.2.2 for details) can be grouped

together, yielding

Itj+j tj +Tj

j+1 -- j+1(t)dt - j 6j(t)dt. (B.5)

Again, 6i and 6j+1 may not be equal.

B.3 Reduction of computation time

Calculating scattering amplitudes for every wavepacket in an LMT interferometer can

be computationally inefficient for large LMT orders and ARP augmentation pulses,

which require numerical integration. For an order-N LMT interferometer with ARP

augmentation pulses, the numerical integration described in Sec. B.2 must be per-

formed 2 4N+3 times for every atom. This exponential scaling makes a complete cal-

culation intractable even for relatively small N. The number of integrations can be

drastically reduced to 8N + 4 per atom by calculating scattering amplitudes for just

the primary interfering arms, pictured in Fig. 5-1. We used this approach to pro-

duce the simulated contrast values reported in Sec. 5.4.2. The truncated calculation
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is suitable if loss channels do not interfere and detailed knowledge of interferometer

background offsets is unnecessary. Sources of interfering loss channels in an LMT

interferometer of order N are loops corresponding to all orders <N (see Fig. 5-1).

However, experimental observation of the correct LMT phase response to acceleration

suggests that loss channels did not substantially perturb the interferometer.

Computation times can also be reduced, while retaining all scattering amplitudes,

if the spatial separation between wavepackets is ignored. This assumption is relevant

to the short dwell times considered in this thesis, and generally applies when external

potentials are uniform across both interfering wavepackets. In this case, amplitudes

from wavepackets that carry the same internal and external state labels are added

coherently after every pulse and thus combined. Since each augmentation pulse adds

just two new momentum states, the number of per-pulse integrations increase linearly

and the total number of integrations scales, to leading order, with N2 .
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