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ABSTRACT

One of the most interesting discoveries of the last decade is the surprising degree of
phenotypic variability between individual cells in clonal microbial populations, even
in identical environments. While some variation is an inevitable consequence of low
numbers of regulatory molecules in cells, the magnitude of the variability is
nevertheless an evolvable trait whose quantitative parameters can be “tuned” by the
biochemical characteristics and architecture of the underlying gene network. This
raises the question of what adaptive advantage might be conferred to cells that
implement high variation in their decision-making. Currently, the predominant
answer in the field is that stochastic gene expression allows cells to “hedge their
bets” against unpredictable and potentially catastrophic environmental shifts. We
proposed and experimentally demonstrated an alternative solution: that
heterogeneity implements the evolutionarily stable mixed strategy (or mixed ESS),
from the field of evolutionary game theory. In a mixed ESS, phenotypic
heterogeneity is a result of competitive interactions between cells in the population
rather than a response to uncertain environments, so unlike with bet-hedging, in a
mixed ESS the evolutionary fitness of different phenotypes is frequency dependent.
Each phenotype can invade the other when rare, and the resulting equilibrium—the
stable mix of the two—is not necessarily the one that maximizes the population’s
fitness. We demonstrated these and other predictions of the mixed ESS using
engineered “pure strategist” strains of the yeast GAL network. We demonstrated
also that the wild type mixed strategist can invade both pure strategists and is
uninvasible by either. Taken together, our results provide experimental evidence
that evolutionary hawk-dove games between identical cells can explain the
phenotypic heterogeneity found in clonal microbial populations.

Thesis supervisor: Jeff Gore
Title: Assistant Professor of Physics
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CHAPTER ONE: PHENOTYPIC
HETEROGENEITY AND SURVIVAL
STRATEGIES



PHENOTYPIC HETEROGENEITY IN CLONAL CELLULAR POPULATIONS

Historical perspective

For decades, it was taken for granted in the field of biology that the phenotype of a
cell was basically a deterministic function of the cell’s genetic material and its
environment. The cell’s DNA sequence and epigenetics would contain information
on what proteins to make and when to make them, while the environment would
modulate the levels of gene expression through protein signaling cascades. In this
model, two cells with identical genetic material and in identical environments will
adopt identical phenotypes. In other words, genetic clones would also be

phenotypic clones.

This model of gene expression is somewhat simplistic, however. It was observed as
early as the 1940s and 50s that even apparently clonal microbial populations
exhibited meaningful phenotypic differences, such as variable phage burst sizes (1),

cell division times (2), flagellar phases (3), and f -galactosidase concentrations (4).

Some variation arises inevitably from Poisson distributions of small numbers of
important regulator molecules(5). If a bacterium, for example, has exactly three
copies of a certain transcription factor when it divides, at best, one daughter will
have half the concentration of that factor than her sister, while there would be a
relatively high probability that one daughter will have all three, and the other none

at all. Still, for decades, non-genetic individuality was considered a statistical side-



effect, and the exception rather than the rule. Perhaps because microbial gene
expression was studied from the average behavior of cells in a population, few
would have guessed the magnitude of phenotypic heterogeneity that became

apparent decades later.

In the late 1990s and early 2000s, technological advances in single-celled
measurements allowed the first in-depth look at cell-to-cell variation in gene
expression . Clonal populations, rather than being phenotypically similar, showed a
remarkable amount of phenotypic heterogeneity even in homogenous environments
(6, 7). Furthermore, the magnitude of variation was not uniform from gene to gene;
controlling for cell-wide differences (“extrinsic” variation) such as size, volume, and
stage of the cell cycle, there was still a high degree of individual variation (6, 8, 9).
This observation raised two important questions: First, how do cells introduce
variable degrees of stochasticity into their cellular decision-making, and secondly,

why?

Phenotypic heterogeneity is an evolvable trait

The question of how clonal microbial populations managed such high phenotypic
variation drove a whole new field of biochemical inquiry into the mechanisms
underlying stochastic gene expression. Several mechanisms have since been

described. We will consider some of them here:



Firstly, as mentioned earlier, low numbers of molecules in cells necessarily produce
a high variance from cell to cell, and variation of a gene can thus be increased by
lowering the average numbers of regulatory molecules (or mRNA) of that gene
within a single cell (5, 10). All other things equal, if a cell has fewer genetic copies of
a gene, or very low fidelity transcription, it will produce few mRNAs on average with
high variance from cell to cell. Inefficient transcription combined with efficient
translation is alone sufficient to create a high amount of variation between cells
(11). Moreover, rather than occurring at a roughly uniform rate, transcription can
also take place via “bursting,” wherein a background of low transcription is
punctuated by sudden furious bouts of transcription that occur at intervals (12-14) .
Most intriguingly, perhaps, the topology of the gene network itself can promote
randomness—positive feedback loops can create thresholds and tipping points in
gene expression. In some extreme cases, genes are expressed bimodally in a clonal
population: each cell expresses either at high levels or not at all (15), as in the case

of the yeast GAL network (16) or the lambda phage lysis and lysogeny genes (17-19).

What is interesting about these mechanisms is that they are all evolutionarily
tunable. Gene copy numbers, binding affinities, and network structures can be
altered by genetic mutation and maintained across generations (20). Consequently,
not only the phenotypes themselves can be selected for, but also the level of

stochasticity in the gene expression levels. (21-24). Variation is an evolvable trait.



Which brings us to the second question about phenotypic heterogeneity: why
variability? In biology, randomness is typically associated with imprecision and
noise, to be controlled and limited if possible (25, 26). Given some environment,
different phenotypes will confer different fitness on the individuals expressing
them, so the winning evolutionary strategy would seem to be: “adopt the most fit
phenotype for every environment as precisely as possible.” However, given that
heterogeneity can be evolutionarily tuned, and given that some genetic systems
exhibit a great deal of heterogeneity, what might be the adaptive benefit of a high

degree of randomness in gene expression?

We will first consider the predominant answer in the literature: namely that
heterogeneity allows populations to evolutionarily “hedge their bets” in
unpredictable environments (27). Bet-hedging is by far the most commonly-cited
evolutionary explanation for phenotypic heterogeneity; indeed, the term has nearly
become synonymous with the phenomenon of phenotypic heterogeneity itself (28).
We will next consider a frequently-overlooked alternative explanation: the
evolutionarily stable mixed strategy (or mixed ESS) from evolutionary game
theory, which, although theoretically well-established, is rarely considered in the
context of microbial phenotypic heterogeneity, and has yet to be demonstrated
experimentally in that context. Although both methods promote phenotypic
heterogeneity, they are distinct in several ways that make experimentally testable
predictions. The main difference is that a mixed ESS is the stable result of

interactions within the population, and can happen even in the absence of
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environmental uncertainty, while bet-hedging is independent of interactions and
only occurs in uncertain environments. We will briefly contrast the mixed ESS with
a similar but also distinct third form of heterogeneity, the altruistic division of
labor. Before we attempt to demonstrate that any particular microbial
heterogeneity is more consistent with one theory than another, we will need to

explore the three theories in more detail.

BET-HEDGING

One reason why an organism may not benefit from completely deterministic
decision-making is that the environment may be somewhat uncertain, and
organisms may not have the time or ability to respond to sudden (and potentially
catastrophic) shifts. They may therefore benefit from “hedging their bets” by
adopting a phenotype that is suboptimal for their current environment, but which
may increase their overall chances of survival in some possible future environment

(27, 29-31). The old investment adage about not putting “all your eggs in one basket

may just as well apply to microbial survival strategies as it does to finance.

Many examples of bet-hedging abound in the literature. Cohen (32, 33) initially
developed the theory in the 1960s in the context of annual plants, which can either
germinate, yielding more seeds in numbers that depend on environmental
conditions, or remain dormant in the soil to germinate a different year. Dormant
seeds decrease the plant’s yield during favorable years, but in unfavorable years,

germinating plants may die while dormant seeds increase the chances for survival.
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The optimal strategy may therefore be for each seed to germinate sometimes and
remain dormant sometimes (34-37). Ecologists have subsequently described bet-
hedging strategies in a diverse range of plants and animals, in everything from body

mass in wild boars (38) to mating choice in Salmon (39).

Some of the early examples of phenotypic heterogeneity in microbial populations
resemble the plant germination problem and were candidates for being modeled as
bet-hedging. For example, in multiple experimental bacterial systems it was
observed that identical cells stochastically switch between fast-growing phenotypes
and slow-growing “persister” cells or spores (40, 41), Persister cells and spores have
much lower fitness in plentiful resources, but also have much higher survival of
extreme environmental stress such as in the presence of antibiotics. Since then, bet
hedging has been used to explain scores of observed microbial phenotypic
heterogeneity (42-48). It has become so popular as an explanation, however, that it
is common for researchers to explain phenotypic heterogeneity as a response to
environmental uncertainty with little empirical support and without considering

alternative explanations (for review, see (28)).

Definition of bet-hedging

The defining concept of bet-hedging is that maximizing the geometric mean fitness
of an individual over time often comes at the cost of lower arithmetic mean fitness
(27, 34, 35). The geometric mean fitness is always less than the corresponding

arithmetic mean by a function of the variance. Bet-hedging strategies maximize
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geometric mean fitness by reducing the fitness variation across time. For example,

consider two different cases of crop yields across two consecutive years:

Table 1. Crop yields across consecutive yields

Case 1l Case 2
Year 1 yield 10 4
Year 2 yield 2 6
Mean yield 6 5
Combined yield 20 24
(y1xy2)
Geometric mean 4.47 4.89
yield

In Case 2 (which might be thought of as a bet-hedging strategy relative to Case 1),
even though the mean yield is lower, the combined yield over the two years is
higher. Given that the geometric mean is the square root of the combined yield, this
example illustrates the tradeoff between geometric and arithmetic mean that is at

the center of bet-hedging.

A simple model of bet-hedging considers an organism with two possible
phenotypes: Xand Y. The organism exists in an environment that for each period of
time can be in one of two states, which we will call Good (&) and Bad (B). The
environment fluctuates between Good and Bad randomly, with the probability over
time of Good environments denoted as Pg and bad as Pg= (1-Pg). The evolutionary

yield, Y, ;, is defined as the number of progeny produced by in individual of
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phenotype iin in environment j). An individual’s fitness in environment j, Wj, is an
average of the fitness of each phenotype in that environment, weighted by f; the

probability of the individual’s stochastically adopting phenotype i:

VVJ' = Yx,jf;c + Yy,j(l _fx)

As mentioned above, bet-hedging strategies maximize the geometric mean fitness of

the individual across time, which is given as:

W = [Yeofe + Yo (1= fOI Yenfi + ¥y 5 (1 = £I]OFO

Solving for f,’, the probability of adopting phenotype x that maximizes geometric

mean fitness, yields:

Yx,B Yy,GPG - Yx,B Yy,G - Yx,G Yy,BPG + Yy,G Yy,B
(Yx,G - Yy,G) (Yx,B - Yy,B)

fi=

In a common example of bet-hedging (shown in figure 1), the phenotypes are to
either grow (X) or remain dormant (Y). In a good environment, a growing
phenotype produces another individual (Yx; = 2), while in a bad environment, the
growing phenotype has a 90% chance of dying (Yx» = 0.1). Remaining in a dormant

state results merely in the survival of the individual regardless of environment (Y
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=Y, = 1). If good environments occur with a probability 0.8, then the optimal

probability of adopting the growth phenotype would be about 0.69.

Expected
fithess

0.0 0.5 1.0
Probability of adopting
growth phenotype

Figure 1. A simple example of bet-hedging. Geometric mean fitness for an

individual seed is shown as a function of the probability that the seed will

germinate vs remain dormant.
We should note here that the technical definition of bet-hedging encompasses more
than just a diversified phenotypic strategy. In fact there are two categories of bet-
hedging: diversified bet hedging, which we have been discussing, and conservative
bet-hedging (49). In conservative bet-hedging, there is no stochastic “coin-flipping”
between alternative strategies. Each individual makes a deterministic phenotypic
choice, only the phenotype it chooses is one with a lower temporal variance and
lower average fitness than the phenotype that produces the highest average fitness.
While they may appear somewhat different, both strategies involve sacrificing
average yield while minimizing temporal variation, so are therefore forms of bet-

hedging. Following the terminology in the field of microbial heterogeneity, and since
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we are primarily interested in phenotypic heterogeneity, for our purposes the term

“bet-hedging” will refer specifically to diversified bet-hedging.

The benefits of bet-hedging are best intuited from a population level, but we should
be careful not to assume it is primarily a population-level survival strategy the way
an altruistic division of labor (discussed below) is. True, a population of bacteria
which hedges its bets against the possibility of encountering antibiotics will contain
some percentage of slow-growing “persister” cells at any given time, and those
individuals may survive a catastrophic shock and replenish the population as a
whole. But although bet-hedging, does preserve (and indeed optimizes) the long-
term fitness of the population, bet-hedging solutions to uncertainty exist
independently of population-level dynamics. Adopting a bet-hedging strategy is a
way for cells to maximize their individual expected fitness; it is an individual level
survival strategy. A bet-hedging clonal population is merely a collection of
individuals that is each implementing an identical stochastic survival strategy for
itself. Put differently, the optimal probability distribution over the available
phenotypes is exactly identical for a single cell existing alone as it is for a cell in a
population of a million clonal sisters. Furthermore, for an individual existing in a
population of a million, the optimal probability is the same regardless of which
phenotype the sister cells adopt. Note that in the above equation, the optimal
probability for the cell to adopt a specific phenotype is a function only of the

probabilities of “good” and “bad” environments and the fitness of each phenotype in
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each environment. It is not a function of the numbers or phenotypes of any other

individuals.

Of course, in the real world, it is likely that the fitness of each phenotype does, in
fact, depend somewhat on the phenotypes the other members of the population.
Resources can be scarce, and crowding of resources reduces payoffs for those
consuming them. Accordingly, some bet-hedging models incorporate frequency or
density-dependence. However, it is vital to recognize that environmental uncertainty
alone is sufficient to drive the evolution of phenotypic heterogeneity, in the absence
of any interaction with other individuals. And likewise, as we will discuss in the
following two sections, frequency dependent interactions with other individuals is
also alone sufficient to drive the evolution of phenotypic heterogeneity, even in the
absence of any environmental uncertainty. Therefore, although uncertain
environments and population interactions can coexist, they are distinct drivers of

heterogeneity.

EVOLUTIONARILY STABLE MIXED STRATEGIES

Game theory and the Nash equilibrium

The second kind of heterogeneity that we will discuss is driven by frequency-
dependent interactions, and is described by the evolutionarily stable mixed strategy,
or mixed ESS, from the field of evolutionary game theory (EGT). Evolutionary game

theory is a subset of traditional economic game theory, which concerns itself with
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the question of which strategy is optimal when the payoffs of strategies depend on
the strategies adopted by others. It therefore deals with inherently social situations.
Such situations are called “games,” and the individuals are called “players.” In game
theory, a player’s “strategy” is a specification of what an individual will do in any

situation it may find itself.

There is often confusion when discussing strategies and phenotypes in a game
theory context, since both terms broadly refer to the characteristics of the cell. In
order to avoid confusion, then, we will consider the immediate characteristics of the
cells to be phenotypes, and strategies will be complete specifications of what
individuals will do. For example, in the bet-hedging example above, the phenotypes
would be “grow” and “remain dormant,” while the strategies may be things like
“always grow”, “always remain dormant” or “remain dormant with probability p.”
Contrary to some common usage, then, we will consider bet-hedging to be a
strategy, rather than a phenotype. This distinction will become especially important

when discussing the differences between bet-hedging and evolutionarily stable

mixed strategies.

The Nash Equilibrium

For simple games, the solution concept is called a Nash Equilibrium. A Nash
Equilibrium occurs when all players are “content” with their chosen strategy, in the
sense that they have no incentive to change their strategy, given the strategies of

others(50). Perhaps the most canonical game in game theory is the Prisoner’s
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Dilemma, which illustrates the concept of a Nash Equilibrium well. In the Prisoner’s
Dilemma, two individuals agree to cooperate with each other, but each has a choice
to actually cooperate (C) or defect (D), and they have no knowledge of the other’s
actions. If they both cooperate, they both receive high payoffs. If they both defect,
they receive low payoffs. However, if one player cooperates, then the other can get
an even higher payoff by defecting, and the cooperator receives the lowest payoff of
all. The following payoff matrix—typical notation in game theory—illustrates the

payoffs faced in the Prisoner’s Dilemma.

Table 2. The Prisoner’s Dilemma

Player 2
Cooperate Defect
Cooperate (3,3) (0, 5)
Player 1
Defect (5,0) (1,1)

[t is easy to see that, for the prisoner’s dilemma, the unique Nash Equilibrium is that
both players defect, because regardless of whether an opponent cooperates or
defects, the best option is to defect, and when both players defect, neither has an
incentive to cooperate. This illustrates an important principle: that Nash equilibria

are not necessarily the “optimal” outcomes for either player. Unlike the solution to
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the in the bet-hedging example described previously, the solution concept in game
theory—the Nash equilibrium—is about stability rather than optimality. In the
Prisoner’s Dilemma, both players could get a higher payoff if they cooperated;

however, cooperation is not stable.

Pure vs. mixed strategies

With the Prisoner’s Dilemma, we have only considered deterministic, or “pure”,
strategies (“cooperate” and “defect”). There are other strategies known as “mixed”
strategies, where the strategy is a probabilistic distribution over the pure strategies
(for instance, in the Prisoner’s Dilemma, a player’s strategy could be to just flip a
coin: cooperate with probability %2 and defect with probability %2.) Mixed strategies
are central concepts in game theory, partly because there are some games whose
most important (or only) Nash equilibria require players implement mixed
strategies. For example, in the popular game of rock-paper-scissors, the only
situation in which neither player has an incentive to change strategies is if both
players adopt a strategy of randomizing between rock, paper, and scissors with
probability 1/3 each. The link between phenotypic heterogeneity and mixed
strategy equilibria will become more clear in the following sections, when we will

discuss the hawk-dove game.

Evolutionary game theory and evolutionarily stable strategies
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Evolutionary game theory (EGT) considers the same principles as traditional game
theory, but in an evolutionary context with biological players. Evolutionary game
theory differs from traditional game theory in a few respects. First, payoffs are
measures of evolutionary fitness (numbers of progeny). Secondly, all strategies are
determined genetically and passed on to subsequent generations, with more
“rational” strategies coming to dominate the populations in the course of natural
selection. Therefore, while game theory generally assumes rational players will
remain at Nash equilibria through rational analysis of the relevant strategies and
payoffs, in EGT the players are individuals or genes that are not able to “think”
through the payoffs, but must stumble upon new strategies through random
mutation and are kept at stable equilibria not because they are rationally satisfied,
but because deviations are competed away through natural selection. In

evolutionary game theory, then, natural selection takes the place of rationality.

Evolutionary game theory largely concerns itself with finding evolutionarily stable
strategies (ESS) rather than specific Nash equilibria (51, 52). An evolutionarily
stable strategy is one that, “if all members of the population adopt it, then no mutant
strategy could invade the population under the influence of natural selection.” (52)
Evolutionarily stable strategies are considered subsets of Nash equilibria because
when a population implements an evolutionarily stable strategy, no single

individual can improve its fitness by switching to any other strategy, pure or mixed.!

1 The statement that evolutionarily stable strategies are a subset of Nash equilibria
is useful, but somewhat misleading. An ESS is a type of strategy, while a Nash
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However, though every ESS implements a Nash equilibrium, not all Nash equilibria
involve evolutionary stability. For example, in the hawk-dove game, discussed
below, one player playing “hawk” and the other playing “dove” is a Nash equilibrium
because neither player has an incentive to deviate. However, as we will see, neither

of these strategies are evolutionarily stable.

Just as there exist some games from classical game theory whose only Nash
equilibrium is a mixed strategy Nash equilibrium (ie rock, paper, scissors), there
also exist a class of biological games whose only evolutionarily stable strategy is a
mixed strategy. The simple two player versions of these games are commonly called
anti-coordination games, also known as snowdrift or chicken games. The defining
characteristic of these games is that the optimal strategy is the opposite of the
opponent’s strategy. If interactions are randomized (ie the population is well-

mixed), then rare strategies are favored over common ones.

The hawk-dove game

The canonical example of an evolutionary anti-coordination game is the hawk-dove
game, first described by Maynard Smith and Price (53) to explain—from a selfish
gene perspective rather than a “good of the species” perspective—why some
animals back down from violent conflict over resources. In this game, two animals

are competing over a resource of value V. The animals will display aggressive

equilibrium is a type of outcome. An ESS implements a Nash equilibrium when
every individual in the population adopts it.
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behavior towards each other, but ultimately each animal has two pure strategies
available: to escalate the contest to a fight (Hawk) or back down (Dove). Note that
Hawks and Doves are not intended to be separate species, but rather behavioral
variants of the same species. There are three possible pairings in a symmetric two-
player Hawk-Dove game:

1. If Hawk meets Dove (H,D), Dove flees and Hawk gets the resource (V). Dove
retreats and receives a payoff of zero.

2. If Hawk meets Hawk (H,H) they fight. Each has a % probability of getting the
resource, but only after each incurs an injury cost (C) greater than half the
value of the resource.? Their expected payoffis ¥ (V-C). The key point is
that the expected payoff of Hawk against Hawk, E(H, H), is less than the
payoff from retreating against Hawk (H,D).

3. If Dove meets Dove (D,D) they share the resource. Their expected payoff is %2

(V)s

In matrix notation, the payoffs are as follows:

21f, instead, C < %V, then the game becomes a Prisoner’s Dilemma with Hawk being
the only stable strategy.
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Table 3. The two-player hawk-dove game

Player 2
Hawk Dove
Hawk (%V-C %V-(C)) (V,0)
Player 1
Dove (0,V) (*2V,%V)

Since the expected payoff of playing Hawk against Hawk, E(H,H) is less than the
expected payoff of playing Dove against Hawk, it is apparent that the Hawk strategy
cannot be evolutionarily stable. In a population of all Hawks, a single Dove will
receive a higher payoff than the rest, and invade the population. Likewise Dove is
also not evolutionarily stable, since against a Dove opponent, hawks can win the
entire resource. E(H,D) > E(D,D); a single Hawk will invade a population of all Doves.
Thus, the pure strategies are mutually invasible. If we assume that all individuals
play pure strategies (they must either be Hawks of Doves), then the stable result
will be a coexistence of the two kinds of individuals. Importantly, as with the
Prisoner’s Dilemma earlier, the coexistence ratio will not necessarily be optimal for
the population as a whole; indeed, in this case, it is easy to see that a population of

100% Doves gives the highest average payoff, of %2 V (see Figure 1).

Suppose now that individuals can implement a mixed strategy rather than being

only Hawk or only Dove. We will define a mixed strategy as “play Hawk with
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probability p, and Dove with probability (1-p)”. The ESS of our hawk-dove game, Pgss
is found, not by optimizing the expected as in our bet-hedging example, but by
finding the fraction of hawks and doves in a population that would result in an equal
expected payoff for playing hawk and playing dove. For an individual in a population
consisting of both Hawks and Doves, the expected payoff of adopting a strategy
depends on the fraction of Hawks and Doves in a population. If Hawks exist with
frequency fand Doves with frequency (1-f), then for any strategy I, the expected

payoff of adopting I, E(I), is a weighted average, given as:

E(D) =f*E(LH) + (1-f) *E(LD)

The evolutionarily stable mixed strategy will be to choose p such that E(H) = E(D).
Since for a clonal population playing a mixed strategy,p = f, solving the above

equation generally for E(D) = E(H) yields an evolutionary stable probability:

pESS _ E(D,D) — E(H,D)
~ E(H,H)—E(D,H)—E(H,D)+ E(D,D)

Substituting the payoffs in table 3, we have:

PESS —
2C

The key characteristic to note in this example is that evolution will favor equal
payoffs rather than optimal payoffs, because only when the payoffs are equal for the

phenotypes is there no incentive for any individual to switch to the other
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phenotype. ForV = EC , for example, the optimal scenario—the one which provides

the highest expected fitness—is for all individuals to be Doves all the time, while the

mixed ESS is to play Hawk with frequency 1/3 (see Fig 1).

1
1
“ Dove
] 1
c 1
£ 1 Hawk
:
1 !
0.0 0.5 1.0
Population
0
)
S
ic
0.0 0.5 1.0

Frequency of Hawks
Figure 1. A simple hawk-dove game with C = 3V. The ESS occurs when
Hawks are 1/3 of the population, so by playing Hawk with frequency 1/3, a
clonal population can be evolutionarily stable. Note also that the payoff for
the population as a whole (below) is maximized when there are no Hawks,
but that such a population is prone to invasion by Hawks. Thus, the growth-
optimal frequency is not necessarily evolutionarily stable.
The key characteristic of a mixed ESS, like that in the hawk-dove game, is that the
stable point is not the one that maximizes the mean payout. A non-game-theoretic
way to consider hawk-dove games is in the context of frequency-dependent
selection. Any negative-frequency dependent scenario can be thought of as a sort of
hawk-dove game, as long as the frequency dependence is strong enough to produce

mutual invasibility. Given that negative frequency dependence often results in

stable polymorphisms (coexistence of different species) an evolutionarily stable
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mixed strategy can be thought of as a way for a single genetic entity to mimic a

stable polymorphism through phenotypic heterogeneity.

MIXED ESS vs BET-HEDGING

To this point, we have introduced two unique survival strategies that both rely on
phenotypic heterogeneity: bet-hedging and the evolutionarily stable mixed strategy.
The question now becomes: when faced with phenotypic heterogeneity, how to tell
which of the two survival strategies it might be (or might it be both?) Is the clonal
population hedging its bets in response to environmental uncertainty, or has it been
driven to a stable heterogeneity by a hawk-dove game between the individual
phenotypes?3. Hitherto, explanations of microbial heterogeneity have centered
almost exclusively around bet-hedging. Though recognized by some as a theoretical
possibility (28, 54-56) evolutionarily stable mixed strategies have been largely
overlooked in the literature to this point; indeed, there are no empirical
demonstrations of mixed ESSs in the context of microbial phenotypic
heterogeneity). It is possible, however, to experimentally probe which survival
strategy (or neither, or both) is being implemented, because the models make
different predictions about the fitness dynamics between the phenotypes in

question. We will list the three main differences here, and go into more detail.

1. In a hawk-dove game, pure phenotypes are mutually invasible, while in bet-

hedging there is no frequency dependent fitness.

3 Given that there are still other survival strategies that produce heterogeneity
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2. Atthe mixed ESS, all individuals in the population have the same fitness,
while in a bet-hedge, each pure phenotype has a fitness advantage in
different environments.

3. Abet-hedging “optimum” maximizes expected yield over time, while an

evolutionarily stable strategy does not necessarily maximize yield.

1. Mutual invasibility

Evolutionarily stable mixed strategies arise from situations in which neither pure
strategy is evolutionarily stable, because a population composed almost entirely of
one phenotype can be invaded by the other, and each phenotype’s fitness is
negatively correlated with its prevalence in the population. In contrast, phenotypic
fitness in bet-hedging is not a function of the population composition. By probing
the phenotypes for negative frequency dependence, one can establish that a hawk-

dove game is likely (at least partially) responsible for the observed heterogeneity.

Mixed ESS Bet hedging
"Good" year "Bad" year
1 Growing
1
“ Dove ) )
2 1 &1 Dormant & | Dormant
b= : Hawk S S .
b . i ic [ Growing
1
1 I L I
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
"Hawk" population "Growth" pop. "Growth" pop.
fraction fraction fraction

Figure 3. A side-by-side comparison of a mixed ESS (left) and a bet-hedge
(right), showing fitness as a function of population frequency of each

28



phenotype. The parameters are those previously discussed for the hawk-
dove game and the seed germination examples, respectively. The cross-
shaped fitness curve in the mixed ESS show the negative frequency
dependence and mutual invasibility of the pure phenotypes, while the pure
phenotypes in the bet-hedge are frequency-independent in both
environment types.

2. Equal fitness of any strategy at the stable point

When a clonal population implements an evolutionarily stable mixed strategy, the
phenotypic fitness of all the relevant pure strategies is equal, as is every possible
mixed strategy combination of them. This is best intuited by considering the
counterfactual in the context of the hawk-dove game. Suppose that there existed
some other mixed strategy such that when that strategy was implemented, hawks
received a higher expected payoff than doves in the population. Then it would be
true that a single individual would receive a higher fitness from the “hawk”
phenotype than the “dove,” and a single mutant individual which used the strategy
“only play hawk” would have a higher expected fitness than the mixed strategy, and
would increase in the population over time. This trend would increase the fraction
of hawks in the overall population, which would in turn decrease the fitness of the
hawks relative to the doves until it they were again equal. Thus, natural selection
will generally drive the mixed strategy towards the point where hawks and doves
have equal fitness, and, indeed where either those strategies or any mixed strategy
of hawk and dove all have equal fitness. (Exceptions to this rule are the altruistic
divisions of labor discussed below). In contrast, consider the bet-hedging example

from earlier. In any given environment, one of the phenotypes is more fit than the

29



other—adopting the lower-fitness phenotype is merely a “bet” that the environment

will change.

That is all well and good for a single environment, but we might be tempted to argue
that because it is inherently a multi-environment strategy, it is somewhat unfair to
limit bet-hedging to a single environment. We may wish to make the claim that with
bet hedging as with mixed strategies, all strategies are still equal over a long period
of time, taking into account all the environmental shifts. We might reason, then, that
if, over time, one phenotype had an advantage over the other, there would exist an
incentive to alter the stochastic bet-hedging strategy to include a higher probability

of the more fit phenotype, and so the optimal bet-hedging phenotype must take.

However, this reasoning ignores an important difference between bet-hedging and
mixed ESS: while it’s true that evolution will drive a bet-hedging population towards
its optimal mixing frequency, this does not mean that every strategy has equal
fitness, as it does in the mixed ESS. Quite the reverse: in a bet hedge, over time the
optimal frequency has higher fitness than any other strategy. By way of illustration,
let us contrast the previous example of a mutant pure strategist hawk arising in a
mixed ESS population with its counterpart in the bet-hedging example of growing
and dormant phenotypes. Recall that if a mutant “pure strategist hawk” arises in a
population implementing a mixed ESS, the pure strategist mutant will have identical
fitness with the rest of the population, because in a mixed ESS the population

fractions of each phenotype are such that hawks and doves have equal fitness.
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However, if a population is in an optimal bet-hedge and a mutant arises with the
strategy “always remain dormant”, it is easy to see that, because it will never grow,
this mutant will have lower fitness than the bet-hedging population. Likewise
“always grow” will have lower fitness because it will perish in bad years. Indeed,
any other strategy—randomized or otherwise--will have a lower geometric average
fitness than the bet-hedging optimum. This is an essential (and experimentally
verifiable) difference between mixed strategies and bet-hedges: in bet-hedging, the
optimal mix of phenotypes is better than any other over time, while a population
playing the mixed ESS will render a single newcomer or mutant totally indifferent to

any of the possible strategies it could adopt, whether they be pure or mixed.

3. Not necessarily growth optimal

As we have mentioned a few times before, stable mixed strategies are unlike both
bet-hedging and altruistic divisions of labor in that they are not necessarily growth-
optimal for the population. This is because the optimal fitness strategies for a
population often involve some sort of cooperative behavior. As an illustration,
consider the optimal outcomes of our two games, the Prisoner’s Dilemma and the
Hawk-Dove game. In both the Prisoner’s Dilemma and the Hawk-dove game, the
“optimal” payoff is reached through unstable pure strategies: “all players cooperate”
and “all players choose dove”, respectively. (They are unstable because a mutant
defector or hawk can invade the population.) If the optimal average payout is
instead reached through an unstable mixed strategy—as in the case of colicin

production discussed below— instead of a pure strategy, the unstable optimum can
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be considered an altruistic division of labor#. Since altruistic divisions of labor are,
like their pure strategy counterparts, inherently unstable, they must likewise be
maintained through inclusive fitness effects like kin selection or group selection.
The uninvasible strategy does not necessarily correspond to the strategy that causes

the population to grow the fastest.

Mixed ESS Bet hedging
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Figure 4. For both our mixed ESS (left) and bet hedging (right) examples,
the expected fitness (of an individual or a population) is given as a function
of the probability of its adopting one of the phenotypes. The parameters for
the models were given previously, and fitness is measured in geometric
mean fitness over time. The shape of these curves can very (the mixed ESS
curve may have mixed strategy optimum, for example). The curves serve to
highlight that the bet hedging optimum is always the fitness optimum, while
the mixed ESS may be sub-optimal in fitness.

4 If the optimal payout is achieved through a stable mixed strategy wherein all
phenotypes have equal fitness, then the optimal division of labor is not altruistic and
coincides with the selfish stable point, the mixed ESS.
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MIXED ESS VS ALTRUISTIC DIVISIONS OF LABOR

A third distinct survival strategy bears mentioning here: the altruistic division of
labor (DoL)®. Altruistic DoLs are related to stable mixed strategies in that they rely
on interactions within the population rather than on uncertain environments. The
primary difference is that evolutionarily stable mixed strategies are selfish and
stable, while altruistic divisions of labor are cooperative and unstable (or at least can

only be stabilized through kin selection).

Altruistic divisions of labor occur when, through phenotypic heterogeneity,
individuals with some phenotype “sacrifice” some of their immediate fitness in
order to increase the immediate fitness of other phenotypes. Often called “public
goods cooperation” or merely “altruism,” examples from the animal world abound—
including, most canonically, eusocial insects where a large subset of the population
is sterile and serves only to increase the reproduction of a separate subset (57, 58).
Some altruistic divisions of labor have been described in clonal microbial
populations as well, most famously in the production of some colicin toxins, wherein

the toxin is only released upon lysis of the cell (59). Only a subset of the clonal

5 Although we use the term “altruistic” here, we recognize that in evolutionary
theory, nothing is considered truly altruistic. Every survival strategy must either
increase or maintain the associated alleles in the population or be competed away.
We use the term rather to distinguish situations wherein apparent altruism creates
and incentive for an individual to “cheat” (ie an individual adopts a lower fitness
phenotype that increases the fitness of other individuals). This behavior may
ultimately increase the genes in the population through kin or group selection.
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population releases the colicins, and the colicin-producing phenotype is self
sacrificing (60). A similar example is the self-sacrificing virulent phenotype of S.
typhimurium, which causes host inflammation at a cost to its fitness, while the
nonvirulent phenotype takes advantage of the inflammation but does not need to
produce the virulence factors (61, 62). Such divisions of labor are unstable because
at any point, a single individual has a clear incentive to “cheat” by never adopting
the self-sacrificing phenotype, and such cheaters will then increase in the
population, driving it towards the evolutionary stable state and decreasing the
fitness of the population as a whole. Because of this constant incentive to cheat,
divisions of labor cannot be maintained by classical natural selection, and must be

maintained by kin selection, group selection, or some other inclusive fitness effect.

Divisions of labor can be thought of as a phenotypically heterogeneous equivalent to
the “optimal” strategies mentioned in the context of the Prisoner’s Dilemma and
Hawk-Dove game (“always cooperate” and “always play Dove”, respectively). In
those strategies, the population as a whole is better off than in the evolutionarily
stable point, but they are unstable because there is an incentive to “cheat” or “play
hawk,” respectively. The only difference between these optimal states and the
altruistic division of labor, is that in a division of labor, the optimal state is a mixed,

rather than a pure strategy.

Divisions of labor are also similar to bet-hedging, in that both kinds of strategies

feature asymmetric fitness between phenotypes: some phenotypes have higher
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fitness than others. The difference between them is that bet-hedging is individually
selfish in that 1) the lower-fitness phenotypes exist as a bet on the survival of the
individual and 2) the presence of the lower-fitness phenotype lowers, rather than
raises, the immediate fitness of the population as a whole. In contrast, the presence
of self-sacrificial “cooperators” in altruistic divisions of labor serve to increase the

fitness of the other phenotypes in the population.

SUMMARY

Phenotypic heterogeneity can arise from multiple distinct survival strategies. Here
we have discussed three: bet-hedging, evolutionarily stable mixed strategies, and
altruistic divisions of labor. Though all three strategies involve similar-looking
phenotypic heterogeneity, they are all driven by unique evolutionary forces:
negative frequency dependence in the case of mixed ESS, uncertain environment in
the case of bet-hedging, and kin or group selection in the case of altruistic divisions
of labor. Furthermore, each has a unique profile of observable phenotypic fitness
characteristics that allows observers to fairly simply classify specific instances of

heterogeneity.

Table 1 shows an example of separate fitness profiles that characterize the three
strategies. In each case, the relevant evolutionary driver (negative frequency
dependent interactions, uncertain environment, and kin or group selection) is
sufficient to drive evolution of phenotypic heterogeneity independently of the

others. They are unique strategies in response to different environmental
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conditions. However, the evolutionary drivers are not mutually exclusive; an
environment may contain two or even all three evolutionary drivers. In cases of
overlap, the resulting phenotypic heterogeneity can be considered a mixture of

multiple strategies.

For example animal bet-hedging models sometimes include frequency dependence
that modifies the bet-hedging optimum (63). While not yet described in a clonal
microbial system, in the context of our “growth vs dormancy” bet-hedging example,
overlap with the mixed ESS could for instance occur in the (rather likely) event that
limited resources caused negative frequency dependence whereby higher numbers
of growing individuals result in a lower payoff for the growing phenotype. One
might expect then that the stable mix of strategies would be some combination of
the bet-hedging optimum and the mixed ESS. Furthermore, at least one microbial
system, S. typhimurium, has been described as an altruistic division of labor that is
simultaneously bet-hedging as well. (64) The virulent phenotype sacrifices its
fitness to enhance the fitness of the nonvirulent phenotype, but also has higher
survival in the presence of antibiotics, and so may be thought of as a combination of
bet-hedging and altruistic division of labor. Such combinations of strategies muddy
the experimental water a bit, but the three strategies should still be considered
separate survival strategies because they each drive the evolution of phenotypic

heterogeneity independently of the others and through different means.
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Table 1. Survival strategies implementing phenotypic heterogeneity

Mixed ESS Bet-hedging | Altruistic division
of labor
Negative Uncertain Kin or group
Evolutionary driver frequency environment selection
dependence
Hawk-dove/ N/A (No Prisoner’s
Relevant game theory SIlOWdI'ift/ interactions) dilemma
model Chicken
Individual fitness depends
on phenotypic composition v X v
of population
Phenotypes are mutually v X X
invasible
At equilibrium, fitness is 4 X X

the same for all phenotypes

“Optimal” mix of X v v
phenotypes maximizes
population growth
Presence of a low-fitness N/A (No “low X v
phenotype increases the fitness”
fitness of other phenotypes phenotype)

Note: Green checks indicate that the observation in the row is predicted by the
survival strategy (column). Red Xs indicate the strategy does not predict the

observation.
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Abstract

Genetically identical cells in microbial populations often exhibit a remarkable
degree of phenotypic heterogeneity even in homogenous environments. While such
heterogeneity is often thought to be a bet-hedging strategy against unpredictable
environments, evolutionary game theory also predicts phenotypic heterogeneity as
a stable response to frequency-dependent cellular interactions, in which rare
strategies are favored over common ones. Here we provide experimental evidence
for this game theoretic explanation in the context of the well-studied yeast GAL
network. In an environment containing the two sugars glucose and galactose, the
GAL network displays stochastic bimodal activation. We show that the two relevant
phenotypes (GAL-ON and GAL-OFF) can each invade the opposite strategy when
rare, indicating frequency dependence between the two. Consistent with the Nash
equilibrium of an evolutionary “hawk-dove” game, the stable mix of pure strategists
does not necessarily maximize the growth of the overall population, as it would in a
bet-hedging or labor-dividing population. Yeast with the wild type GAL network can
invade populations of both pure strategists while remaining uninvasible by either.
We show that, beginning with populations of pure strategists, a mixed sugar
condition drives both the evolution of a clonal population of mixed strategists
similar to the wild type GAL network, and the evolution of a stable coexistence of
opposite pure strategists. Taken together, our results provide experimental
evidence that frequency-dependent interactions between identical cells can underlie
the phenotypic heterogeneity found in clonal microbial populations.
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Introduction

Stochastic gene expression is ubiquitous in biological systems (6, 9, 24, 61). While
some noise in gene expression is inevitable, phenotypic heterogeneity is an
evolvable trait whose quantitative parameters can be tuned by the architecture and
properties of the underlying gene network (20-23). This raises the question of what
adaptive advantage might be conferred to cells that implement stochastic decision-
making (54, 65). Microbial phenotypic heterogeneity is most often thought to be a
response to environmental uncertainty; populations that “hedge their bets” by
stochastically adopting a range of phenotypes can gain a fitness advantage if the
environment shifts unexpectedly (22, 23, 41-43, 65-68). For example, bacteria may,
at some frequency, stochastically adopt a dormant or slow-growing “persister” state,
which has reduced fitness when times are good, but which is more likely to survive

in the event of catastrophic environmental stress (36, 41).

Other evolutionary drivers of heterogeneity, such as altruistic divisions of labor and
evolutionary “hawk-dove” (or snowdrift) games, are distinct from bet-hedging in
that they result from interactions between individuals within populations, and can
manifest even in deterministic environments (28, 56, 69, 70). Altruistic divisions of
labor occur when one phenotype sacrifices its fitness to increase the fitness of the
remaining population. Canonical examples include the self-sacrificing virulent
phenotype of S. typhimurium(61, 62) and colicin production, in which toxin is only
released upon cell lysis(60, 61). Because there exists the potential for an individual

to gain a fitness advantage by never adopting the low-fitness phenotype, such
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altruistic divisions of labor must generally be maintained by inclusive fitness effects
such as kin or group selection(67, 71). In contrast, phenotypes in hawk-dove games
are mutually invasible. Such games tend toward an equilibrium wherein all
phenotypes have equal fitness: either a stable coexistence of pure strategies or a
single evolutionarily stable mixed strategy (mixed ESS). Identifying which of these
three evolutionary drivers (hawk-dove games, uncertain environment, altruistic
division of labor) is at work in a given phenotypically heterogeneous population is
complicated by the possibility that multiple of these phenomena can coexist in a
given system (70, 72). While bet-hedging and altruistic division of labor have been
observed in microbial populations (41-43, 62, 72), the relevance of hawk-dove

games to microbial phenotypic heterogeneity remains largely unexplored.

Evolutionary game theory concerns itself with situations in which the fitness of a
phenotype is a function not only of the individual’s own phenotype, but of the
phenotypes adopted by other individuals. In the hawk-dove game of animal conflict,
neither pure strategy (ie “play hawk” or “play dove”) is evolutionarily stable, since
populations of each can be invaded by a minority population of the other. Because of
this mutual invasibility, if allowed to evolve, the system reaches a stable equilibrium
that contains a mix of phenotypes. In microbial populations, such negative
frequency dependent interactions have been shown to stabilize the coexistence of
different genes (73-75).. However, a genetically identical population can
theoretically achieve the same stable mix of phenotypes, provided each individual

randomizes between strategies with the appropriate probabilities. Such stochastic
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choices between strategies are called mixed strategies, and the specific probabilistic
strategy that implements a stable equilibrium is the evolutionarily stable mixed

strategy (or mixed ESS).

Mixed ESS in hawk-dove games have several experimentally observable
characteristics that distinguish them from bet-hedging strategies and altruistic
divisions of labor (Chapter 1 Table 1). The primary defining characteristic of the
hawk-dove game is that the pure strategies, or phenotypes, are mutually invasible:
each pure strategy can invade the other when rare. Secondly, if the mixed strategy is
evolutionarily stable, all individuals in the population—and potential invaders
implementing any other strategy, pure or mixed—will receive an equal payoff (52).
Thirdly, while other strategies of phenotypic variation maximize some measure of
population growth (see discussion), evolutionarily stable mixed strategies are not

necessarily growth optimal for a population (76).

Results
To study stable mixed strategies in the laboratory, we investigated the decision of

the budding yeast S. cerevisiae regarding which carbon source to consume. Yeast
prefers the sugar glucose, but when glucose is limited yeast can consume other
carbon sources (77). The well-studied yeast GAL network contains the suite of genes
required to metabolize the sugar galactose. The GAL network activates as a
phenotypic switch: each cell is either GAL-ON or GAL-OFF (16, 78). The network is

under catabolite repression by glucose (77); however, yeast can still activate the
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GAL genes in the presence of modest glucose concentrations provided there is
galactose in the media as well. The presence of a negative feedback loop involving
GAL8O0 serves to reduce the heterogeneity of GAL expression under activation and
deactivation (79). However, due to a positive feedback loop from GAL3 (Figure 1), in
a wide range of glucose and galactose environments the GAL network is neither
uniformly activated or deactivated across the population, but is expressed bimodally
(78, 80) (Figure 3). In mixed sugar conditions, a tradeoff exists between activation
and repression of the GAL network: activation of the GAL network in the presence of
glucose may provide some benefits to the cell in consuming galactose, but
expression of the GAL genes also imposes a significant metabolic cost (80, 81)
(Figure 6). Similar tradeoffs in catabolite-repressed networks have been

characterized previously (23, 44, 82, 83).
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Figure 1. Feedback loops in the GAL network modulate phenotypic

heterogeneity

The GAL network is composed of three feedback loops through GAL4p, the
universal activator of the GAL network. The sole negative feedback loop is
responsible for inhibiting phenotypic heterogeneity of the ON and OFF states
(79), while the positive feedback loops through GALZ2 and GAL3 create a
bistable “switch,” which ultimately increases phenotypic heterogeneity
significantly. The combination of the three feedback loops produces the
characteristic bimodal behavior of the GAL network in mixed glucose and

galactose. Figure modified from Acar et al. 2005.

GAL bimodality in mixed glucose and galactose suggests a similarity to the following
hawk-dove-like foraging game. In this game, an isogenic population is confronted
with a phenotypic decision to “specialize” in consuming one or the other of two

limited food sources, A and B (Figure 2a-b). The more individuals who adopt the
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pure strategy “specialize in A,” the more quickly A will be consumed, reducing the
payout to individuals who chose that strategy. Hence, if all individuals choose
“specialize in A,” an incentive may exist for an individual to choose instead
“specialize in B,” and vice versa. The resulting equilibrium consists of a stable mix of
the two pure strategies; therefore, an isogenic population that can adopt that stable

mix via phenotypic heterogeneity would be uninvasible.
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Figure 2. A simple foraging game with multiple food sources can favor
phenotypic heterogeneity

a, A simple foraging game with a mixed Nash equilibrium. Each member of a
group of foragers is confronted with a binary decision about whether to
specialize in consuming food source A or B. We assume that individuals
choose simultaneously and without knowledge of the actions of others.
Resource limitation makes it a game; each individual’s payoff is a function of
the actions of other individuals. b, If all other members of the population
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adopt some pure strategy (e.g. “specialize in food A”), an individual opting for
the opposite pure strategy (e.g. “specialize in food B”) gains a fitness
advantage (top and middle panels). The Nash equilibrium of the simple
foraging game is reached when the population divides between the two
sources such that both phenotypes receive the same fitness and there is no
fitness incentive for any single individual to change strategies (lower panel).
In such a game, if each individual adopts the mixed strategy that
stochastically chooses between pure strategies with the equilibrium
probabilities, then that mixed strategy is evolutionarily stable. Though this
game is not necessarily representative of real life foraging scenarios, it serves
to illustrate why we might expect environments with multiple food sources
to favor the evolution of mixed strategies. ¢, Gene expression in the yeast GAL
network is regulated in part by GAL4, GAL80, and GAL3 (full network not
shown). A GAL-OFF pure strategist is engineered by inducing the expression
of GAL80, whose protein product inhibits GAL expression. Likewise a GAL-ON
pure strategist can be engineered by inducing expression of GAL3, which
inhibits GAL80 in the presence of galactose. d, In a mixed sugar environment
(0.03% glucose, 0.05% galactose), “GAL-ON” and “GAL-OFF” pure strategists
remain unimodally activated and inactivated, respectively, while the wild
type GAL network exhibits bimodal gene expression. Cultures in Figure 1d
were initially grown overnight in 0.01% (w/v) glucose and 1ug/mL
doxycycline to saturation, then diluted to an OD of 0.002 and grown 8 hours
in mixed glucose and galactose before measuring GAL activation via flow
cytometry.

Given the bimodal expression of the yeast GAL network in some conditions, we

sought to probe experimentally whether this phenotypic heterogeneity might be the

implementation of an evolutionarily stable mixed strategy in response to a foraging

game. Since mutual invasibility of phenotypes is the defining characteristic of a

hawk-dove game, we began by competing mutant “pure strategists” at many initial

population frequencies. As a GAL-OFF pure strategist, we used a yeast strain whose

native GAL80 (a repressor of the GAL network, Figure 2c) was replaced with a

mutant version containing a tet-inducible promoter (78). As a GAL-ON pure

strategist, we used a mutant whose GAL3 (a repressor of GAL80, Figure 2c) was

similarly tet-inducible. We confirmed that, in the range of glucose and galactose
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concentrations that induce bimodality in the wild type yeast, our doxycycline-

induced GAL-OFF and GAL-ON pure strategists are unimodally inactivated and

activated, respectively, for GAL gene expression (Figure 2d, Figure 3b-c).
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Figure 3. Response of the GAL network to mixed glucose and galactose.
Wild type mixed strategist (a), GAL-OFF pure strategist (b), and GAL-ON pure
strategist (c) strains were induced in 1 pg/mL doxycycline and 0.01%
glucose for 8 generations, then diluted and incubated in 1 pg /mL
doxycycline and various concentrations of glucose and galactose as shown.
GAL activation states were measured after 8 hours via flow cytometry, and
normalized histograms plotted against log YFP with a smoothing of 3.
Broadly speaking, the wild type exhibits bimodal GAL expression over a wide
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range of roughly equal ratios of glucose and galactose concentration. At
higher ratios of glucose to galactose, it remains GAL-OFF, while at lower
ratios it is unimodally GAL-ON. In all of the conditions wherein the wild type
adopts a mixed strategy, the GAL-OFF pure strategist is inactivated, and the
GAL-ON pure strategist is activated. However, in the cases of both the wild
type and the GAL-ON pure strategist, increasing ratios of glucose to galactose
result in lower activation levels of the GAL network.

To test for negative frequency dependence between the pure strategists, we mixed
six biological replicate pairs of RFP-labeled GAL-ON and CFP-labeled GAL-OFF
strains at a total of 60 different initial frequencies, and incubated them for 20 hours
in a mixed glucose and galactose environment. To calculate precise fitness values
for both strains, we measured population frequencies before and after incubation
via flow cytometry (Figure 4). We found that small populations of each pure
strategist were indeed able to invade majority populations of the other (Figure 5b).
Our experimental yeast populations therefore display mutual invasibility between
the two pure strategists. Furthermore, there was a unique stable equilibrium
frequency of GAL-ON cells that resulted in the same fitness for both pure strategies.
Importantly, we find that the frequency of GAL-ON cells that is evolutionary stable is
not the frequency that maximizes population growth. Populations with much higher
fractions of GAL-ON cells than the equilibrium population grow to saturating density

more quickly than the evolutionarily stable population (Figure 5c).
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Figure 4. Absolute and relative fitness determinations
a, In order to calculate relative fitness, we first labeled each strain with either
RFP (tdTomato) or CFP driven on a TEF1 constitutive promoter We
determined population frequencies before and after competition ( f; and f,
respectively )f;andff) for each strain via flow cytometry using a Miltenyi
MACSquant flow cytometer (20,000+ cells per well). Separation of the two
strains was very clean. Absolute fitness for each strain was calculated as the
number of doublings:
oD, *,

OD. * f,
Relative Fitness for each strain is calculated as follows:

OD, * f, I OD, *(1-f,)
OD,* f, OD,*(1-f)
where f; and frare the initial and final fractions of the strain in the population,

and OD;0D; and ODrare the initial and final population densities as measured
by absorbance at 600 nm in a microplate spectrophotometer.

Wabx = 10g2

mel = lnl:
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Figure 5. Characterization of the game played between GAL-OFF and
GAL-ON pure strategists
a, Pure strategists are mutually invasible. Population frequency of the GAL3-
induced GAL-ON pure strategist (orange circles) relative to the GAL80-
induced GAL-OFF pure strategist (blue triangles) is plotted at the beginning
and end of a 20-hour competition. Six independent cultures of each pure
strategist were mixed at high (top panel), intermediate (middle panel), and
low (bottom panel) initial frequency of the GAL-ON strain. Each pure
strategist invades the other when rare. b, Game payoffs (in number of
doublings) for both pure strategists are plotted for 60 initial starting
frequencies of the GAL-ON strain. The crossing point corresponds to the Nash
equilibrium of the pure strategists for the experimental foraging game. ¢, The
evolutionarily stable equilibrium is not necessarily growth optimal.
Population densities of the mixed populations are shown at 16 hours, before
all cultures have reached saturation. Mixed cultures with high initial
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frequency of the GAL-ON strain grew faster than cultures near the

evolutionarily stable mix.
A more in-depth investigation of the dynamics between the pure strategists
indicates that the negative frequency dependence is related to the depletion of
glucose in the media. Both pure strategists adopt a diauxic growth model; they
consume primarily glucose until it is depleted (Figure 6e). Indeed, recent evidence
argues that the advantage provided to GAL-ON cells may be primarily due to their
ability to consume galactose quickly when the glucose is exhausted (80). The GAL-
ON pure strategist suffers a fitness disadvantage while glucose is still relatively
abundant, but outcompetes the GAL-OFF pure strategist when the glucose becomes
low and galactose remains. The GAL-OFF and GAL-ON strategies can therefore be
thought of as “specialists” in glucose and galactose, respectively. The hawk-dove
game arises because the galactose “payoff” goes to the GAL-ON cells, but the more
cells that activate their GAL networks in a population, the slower the glucose gets

depleted, and the higher the resulting payoff to glucose specialists (Figure 6).
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Figure 6. Dynamics of growth, fitness, and sugar consumption for the
20-hr competition between GAL-ON and GAL-OFF pure strategists.
Competitions took place in the presence of 1 pg/mL doxycycline, 0.03%
(w/v) glucose and 0.05% (w/v) galactose. In all plots, color gradients
indicate the increasing initial frequencies of GAL-ON as described in panel A
legend.
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Game theory predicts that varying the payoff structure of a hawk-dove game
correspondingly alters the Nash equilibrium fractions (Box 1). In the context of the
simple foraging game, this simply means that if food source A increases, then the
stable equilibrium should shift towards a larger fraction of the population
specializing in food source A. To test for this phenomenon in the GAL network, we
replicated the initial competition of our two pure strategists in eight different
concentrations of glucose and galactose. More galactose yields a higher equilibrium
fraction of GAL-ON cells, while more glucose yields a lower equilibrium fraction of
GAL-ON cells (Figure 7). The stable equilibrium between our pure strategists
therefore shifts as predicted by a negative frequency dependent game. However,
while this well-behaved shifting of the equilibrium is robust within a range of
relatively low sugars, the pattern breaks down in environments of high total sugar

concentrations (>0.1%), where carbon may not be limiting in the same way.
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Figure 7. Altering sugar concentration adjusts game payoffs and
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equilibrium fractions accordingly.

a-b, Relative fitness of the GAL-ON pure strategist, and absolute fitness (in
number of doublings) of both pure strategists is shown for 30 different
populations at varying initial frequency of GAL-ON. Data is shown for .05%
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galactose and two conditions: high glucose (.03%, a), and low glucose
(.017%, b). The payoff for the GAL-ON pure specialists remains roughly the
same between the two conditions, while the GAL-OFF pure strategists receive
a higher payoff in higher glucose. Lower glucose results in a higher
equilibrium frequency of GAL-ON cells, as expected in a hawk-dove like
game. ¢, Equilibrium GAL-ON pure strategist frequencies as a function of
increasing glucose concentrations. Data is shown for high (0.05%, circles)
and low (0.017%, triangles) galactose. All Nash equilibria were calculated by
polynomial spline fitting of relative fitness curves (error bars are 95%
confidence intervals; n = 3.)
Because the Nash equilibrium mix of pure strategies is a function of sugar
concentrations, we next tested whether the wild type mixed cells naturally alter the
frequency of mixing based on the concentrations of glucose and galactose. Just as
the Nash equilibrium of the pure strategists shifts with varying sugar
concentrations, we observed that the mixing frequency of the wild type yeast also
shifts: in a higher concentration of galactose, yeast adopt a higher GAL-ON
frequency. This type of responsiveness is one of the hallmark predictions of the
mixed strategy model. Yeast is able to sense even small differences in the ratio of

glucose to galactose (84) and adopts a pure OFF, pure ON, or appropriate mixed

strategy accordingly (Figure 8).
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Figure 8. Mixed strategist (wild type GAL network) senses payoff ratio
and alters strategy accordingly. The mixing frequency of the wild type
mixed strategist is highly responsive to sugar concentrations. GAL network
activation level is shown for nine different mixtures of glucose and galactose.
From a bimodal expression state, more galactose in the media results in a
higher frequency of cells with GAL activation, while more glucose in the
media has the opposite effect. This trend is essential to the implementation
of an evolutionary stable mixed strategy.
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Another prediction of the hawk-dove game is that a strain adopting a mixed ESS
cannot be invaded by either pure strategist. However, as the population frequency
of the mixed strategist approaches one, it becomes only neutrally uninvasible. In
other words, in the limit of a population consisting entirely of mixed strategists, any
single invading cell adopting any strategy (pure or mixed) will receive a payoff equal
to the mixed strategist. By competing the pure strategist strains (GAL-ON/OFF)
with a strain containing the wild type GAL network (mixed strategist), we
determined that the mixed strategist is indeed uninvasible by either pure strategist.
Additionally, a competition between pure GAL-OFF and the mixed strategist displays
the neutral uninvasibility predicted from the game theoretic model (Figure 9). The
wild type mixed strategy can spread in a population of GAL-OFF cells, but as the wild
type strategy increases in frequency, its advantage disappears. Moreover, the wild
type mixed strategist cells are uninvasible by the GAL-ON pure strategist at all
frequencies (Figure 9b), though the interaction does not display strong frequency
dependence. This lack of strong frequency dependence between this pair suggests
that the dynamics of yeast in mixed sugar environments have some subtle

deviations from a simple foraging game.
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Figure 9. Wild type mixed strategist invades both pure strategists and
is uninvasible by either.

Relative fitness of the wild type mixed strategist over the GAL-OFF pure
strategist (a) and GAL-ON pure strategist (b) is shown. Low frequencies of
the mixed strategist invade strongly in populations dominated by either pure
strategist. As expected of an evolutionarily stable mixed strategy, the relative
fitness of the mixed strategist to the GAL-OFF pure strategist approaches one
in populations dominated by the mixed strategist. However, the mixed
strategist does not display frequency dependence against the GAL-ON pure
strategist.

To more directly investigate whether a mixed-sugar environment drives the
evolution of phenotypic heterogeneity, we evolved eight replicates of each pure
strategist strain over 250 generations in the presence of doxycycline and three
resource conditions: pure glucose, pure galactose, and a mixture of glucose and
galactose. Cultures were diluted daily 1000x into fresh media, and GAL activation
levels over time were determined via flow cytometry (Figure 10). Starting from the
GAL-OFF glucose specialist strain (Figure 10a), all eight populations in mixed sugars
evolved a mix of GAL-OFF and GAL-ON. In contrast, a pure galactose condition

drove the rapid evolution of GAL-ON pure strategist strains in six of the eight
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populations while the remaining two replicates were driven to extinction. The eight

GAL-OFF populations in pure glucose remained GAL-OFF throughout.

Starting from the GAL-ON galactose specialist strain (Figure 10b), all eight
populations in mixed glucose and galactose similarly evolved a phenotypic mix of
GAL-OFF and GAL-ON, while the strain in pure galactose remained essentially GAL-
ON throughout. (In pure glucose, the GAL-ON strain adopted a low-level wide
distribution of GAL activation, which remained unchanged throughout the

experiment.)
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Figure 10. Frequency dependence from a mixed resource environment
drives the evolution of both phenotypic and genetic heterogeneity.
Eight replicates of each of the two specialist strains (GAL-OFF, a, and GAL-
ON, b) were incubated in the presence of doxycycline and three separate
sugar conditions: 0.1% glucose (blue), 0.1% galactose (orange), and a
mixture of 0.03% glucose and 0.05% galactose (purple.) Cultures were
diluted 1000x daily into fresh media after reaching saturation. To determine
the composition of the final population, cultures were plated on agar and
individual colonies were grown separately in appropriate sugars. a) Starting
from a glucose specialist strain and in the presence of galactose, mutant pure
strategist GAL-ON strain arose spontaneously. In pure galactose, the strain
eventually took over the population (orange), while in the mixed resource
condition, they evolved towards a stable equilibrium with the GAL-OFF strain
(right). b) Starting from a galactose specialist strain in the presence of mixed
sugars, the population similarly evolved to a stable mix of GAL-ON and GAL-
OFF, but colony purification revealed that it had evolved to a clonal
population of mixed strategists rather than a coexistence of pure strategists.
Importantly, while all three drivers of heterogeneity (uncertain environment,
hawk-dove game, and king/group selection) promote evolution of clonal
phenotypic heterogeneity, the hawk-dove game is the only one that also
promotes the stable coexistence of pure strategists.

To determine whether the heterogeneous populations that evolved in the mixed
resource conditions represented mixed strategists or the coexistence of pure
strategists, we isolated individuals through colony purification on agar plates, and
incubated them separately in the presence of doxycycline and in mixed glucose and
galactose. We found that the GAL-OFF history population had evolved into a stable
coexistence of GAL-ON and GAL-OFF pure strategists, while the GAL-ON population
had evolved into a clonal population of mixed strategists similar to the wild type
strain. This result strongly indicates that frequency dependent interactions drove
the evolution of phenotypic heterogeneity in the mixed sugar conditions, because
while all three evolutionary drivers of heterogeneity (uncertain environments,

negative frequency dependent games, and public goods cooperation) drive the
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evolution of mixed strategies in clonal populations, only negative frequency
dependence also drives the stable coexistence of pure strategies. This experiment
directly demonstrates that phenotypic heterogeneity in clonal populations can arise

from frequency-dependent foraging interactions.

Discussion
When observing phenotypic heterogeneity in microbial populations, it is important

to consider the underlying evolutionary reasons for heterogeneity and distinguish
between the different explanations where possible. While it is very difficult (if not
impossible) to prove claims about historical reasons for the evolution of
stochasticity in specific systems like the yeast GAL network, different survival
strategies do make unique and experimentally verifiable predictions about the
fitness dynamics between the associated phenotypes (see Chapter 1 Table 1 and
deJong and Kupers’ review(28)). In this work we have demonstrated a simple way
of probing whether observed phenotypic heterogeneity might be implementing an
evolutionarily stable mixed strategy. By isolating the pure strategies and probing
them for mutual invasibility, we have determined that a hawk-dove style foraging
game is being played between the GAL-ON and GAL-OFF strategy in the presence of
mixed glucose and galactose. This frequency dependent mutual invasibility
distinguishes a mixed ESS from bet-hedging (which is not frequency dependent) and
altruistic division of labor (in which the altruistic phenotype is always less fit). We
have also verified the theoretical prediction that the evolutionarily stable mixed

strategy is not necessarily optimal for growth, and confirmed that a strain
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implementing a mixed strategy invades populations of both pure strategists, and is
uninvasible by either. Additionally, we have shown directly that mixed resource
environments can drive the evolution of phenotypic heterogeneity by evolving a
mixed strategist strain from a pure strategist over 250 generations in mixed sugars,
a condition which separately drove the evolution of stable coexistence of opposite

pure strategists.

In the mixed sugar conditions we have shown, the wild type mixing frequency is
roughly the same as the Nash equilibrium between the mutant pure strategists
(compare Figure 2 d and Figure 4b). However, we do not expect the quantitative
agreement to be general, since budding yeast did not evolve its mixing frequency in
laboratory cultures of mixed glucose and galactose. There are also slight differences
between the mutants and the wild-type phenotypes. For example, the GAL-
repressed subpopulation of the mixed strategist adopts a diauxic growth phenotype:
it activates its GAL network upon glucose depletion (Figure 6), but because of the
doxycycline induction of GAL80, the GAL-OFF pure strategist does not transition to
GAL-ON within the time frame of the competition (Figure 11). Consequently, in a
mixed sugar scenario, the GAL-suppressed fraction of the mixed strategist is likely
to be more fit than the GAL-OFF pure strategist. Additionally, the GAL-ON pure
strategist’s induction activates the GAL network to a greater degree than the
induction in the wild type (Figure 2d), resulting in slightly different costs for
expressing the GAL network. Also, while the majority of the wild type yeast’s

stochastic decision to be GAL-OFF or GAL-ON is determined early, there is a small
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amount of stochastic switching between the states (Figure 12), which does not

occur in the mutant pure strategists.
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Figure 11. Dynamics of wild type mixed strategist yeast in mixed
glucose and galactose. Yeast containing a wild-type GAL network were
incubated in 0.03% (w/v) glucose and varying levels of galactose. a, In low
(0.025%) galactose, the wild type remains unimodally off (black squares)
until the glucose (blue triangles) is mostly consumed, then rapidly turns on

its GAL network and consumes galactose (green circles). b, At intermediate

(.05%) galactose, the wild type exhibits bimodal expression of the GAL
network (see Figure 4c) until the glucose is depleted, then rapidly switches
to all ON. c, At high galactose, the GAL network is rapidly activated in all
cells. The 0-10 hr data in panels b and ¢ suggest that even when the GAL
network is activated in either half (b) or all (c) of the population, the yeast
still consumes primarily glucose while it is still available.
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Figure 12. Stochastic switching of the wild
type GAL network in mixed glucose and
galactose. To measure the stochastic switching
rate between the GAL-ON and GAL-OFF states,
we grew the mixed strategist RFP-labeled strain
for 8 hours in 0.03% glucose and 0.05%
galactose from a density of about 2x10*
cells/mL. After 8 hours, cells were sorted by
FACS into GAL-OFF and GAL-ON fractions, and
diluted back into the same concentration of
mixed sugars. Activation states were monitored
by flow cytometry. We observe a low rate of
stochastic switching from GAL-OFF to GAL-ON.
The reverse switching rate was much lower or in
some cases not observable. We replicated the
experiment at 0.1% glucose and 0.2% galactose
and observed no stochastic switching between
the two states. Taken with Supplementary Fig.
S3b, this data suggests that the bulk of
distribution of GAL activation occurs soon after
introduction into the mixed sugar environment.
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Negative frequency dependent interactions are often invoked as reasons for stable
coexistence, and evolutionary stable mixed strategies (in the context of hawk-dove
games) are central to evolutionary game theory. Yet this broad class of interactions
has received almost no attention as an evolutionary reason for phenotypic
heterogeneity in clonal populations. To our knowledge this work constitutes the
first experimental evidence that phenotypic diversity in an isogenic microbial
population implements—at least in part—a game theoretic mixed strategy in
response to a frequency-dependent foraging game. Given the abundance of multi-
resource environments, we suspect that such foraging games may be fairly common;
however it remains to be seen to what degree such games underlie the widespread

phenotypic heterogeneity found in clonal microbial populations.

Materials and Methods
Strains: The three strains of Saccharomyces cerevisiae (wild type mixed strategist,

GAL-OFF specialist and GAL-ON specialist), are modified from those used in Acar et
al. (2005), which were derived from the diploid W303 strain of S. cerevisiae. All
strains have a ADE2-PcaL1-YFP reporter construct inserted at one adeZ site for
monitoring activation of the GAL network. Since one ura3 locus was already
occupied by inducible forms of GAL80 or GAL3, yeast was first sporulated to isolate

the remaining ura3 locus. Identity of the haploids was confirmed by replica plating.
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Haploids containing ura3 were then transformed with the yeast integrating vector
pRS306 containing URA3 and either RFP(tdTomato) or CFP cloned downstream of a
TEF1 promoter. Constitutive fluorescence was confirmed by microscopy and flow
cytometry. Fluorescent cells were then mated with the appropriate haploid to
produce the desired strain. All strains were maintained on synthetic media his- and

ura- agar dropout plates supplemented with 2% glucose.

The Gal80-inducible (GAL-OFF pure strategist) strain has a double GAL80 deletion.
Prero2-GAL80 is inserted at one ura3 locus, while Puyoz-rtTA is inserted at an ade2
locus. The GAL3-inducible (GAL-ON pure strategist) strain has a double GAL3
deletion with Prero2-GAL3 inserted at a ura3 locus and PMYO2-rtTA inserted at an
adeZ locus. Complete genotypes for the strains are found in the Supplementary

Information.

Competitions: To initiate doxycycline induction in pure strategists, strains were
initially mixed at desired initial frequencies from plated colonies, then incubated in
1.0 pg/mL doxycycline and 0.01% (w/v) glucose for 24 hours from a starting
density of ~3x10% cells/mL to a saturating density of ~6x10° cells/mL, then diluted
to ~3x10%cells/mL in synthetic media supplemented with glucose and galactose as
indicated. Fractions were measured before and after incubation using a Miltenyi
MACSquant flow cytometer (20,000+ cells per well), and population density was
measured as absorbance at 600 nm in a microplate spectrophotometer (conversions

assume 3x107 cells/mL at Asoo = 1.0). Competitions involving the wild type GAL

67



network were necessarily limited to a single day because the wild type GAL-OFF
fraction switches to GAL-ON when all the galactose is consumed. Subsequent days,
beginning from the GAL-ON history, do not adopt a bimodal state in mixed sugars.
Rather, the population adopts a very wide intermediate distribution of GAL
activation which remains essentially unchanged over the course of multiple rounds

of growth in mixed sugars.
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Figure 13. Doxycycline-dependent GAL induction states of GAL-OFF and
GAL-ON mutants.

Doxycycline induction of Gal80 (top) and Gal3 (bottom) produces various
GAL-induction states, dependent on Glucose and Galactose environmental
composition as well. GAL activation in the Gal80 inducible mutant at 12
hours was decreasing in doxycycline concentration and glucose
concentration, and increasing in galactose concentration. GAL activation in
the Gal3 inducible mutant at four hours was increasing doxycycline
concentration and galactose, and decreasing in glucose concentration. For
competition conditions we settled on 1ug/mL doxycycline, as the lowest
concentration that produced the desired pure strategies across the relevant
ranges of glucose and galactose for the study.

Evolution of mixed strategists from pure strategists: Pure strategist Gal80-inducible
(Gal80i or GAL-OFF) and Gal3-inducible (Gal3i or GAL-ON) strains were initially
doxycycline-induced in media containing YNB, CSM, 1ug/mL doxycycline, and

0.01% glucose for 24 hours to saturation (~OD 0.25). Then they were diluted 100-

69



fold into 0.1% glucose, 0.1% galactose, and a mixture of 0.03% glu/0.05% gal. After

consuming all the sugars and reaching saturation, they were diluted 1000x into

fresh media and allowed to resume growing. This process was repeated on a daily

basis for 26 days, however, due to two early rounds of 200x and 500x dilution,

respectively, the total number of generations of growth over the 26 days was ~250.

GAL-activation states were analyzed via flow-cytometry. To explore the

composition of the evolved populations 30uL of evolved saturated culture was

streaked on agar plates containing his- and ura- dropout YNB/CSM and 2% glucose.

After 2 days of growth, individual colonies were suspended in separate wells of a

96-well plate and grown for 2 additional cycles in the presence of doxycycline and

the same sugar mix they evolved in, and the resulting populations’ GAL-activation

states were measured via flow cytometry. All evolution experiments were

performed in flat-bottomed 96-well culture plates incubated at 30°C.

Table 1. Yeast strains used in this study

Strain

WT-R

(mixed strategist)
WT-C

(mixed strategist)
Gal80i-R
(GAL-OFF)

Gal80i-C
(GAL-OFF)

Genotype

MATa/q, ura3/URA3-PTEF1-tdTomato, his3::HIS3 /his3,
ade2/ade2::ADE2-PGAL1-YFP

MATa/a, ura3/URA3-PTEF1his3::HIS3 /his3,
ade2/ade2::ADE2-PGAL1-YFP

MATa/a, URA3-PTEF1-tdTomato/ura3::URA3-PTET02-GAL80,
his3::HIS3/his3, ade2::ADE2- PMYO2-rtTA/ade2::ADE?2-
PGAL1-YFP, gal80A::KanMX/gal80A::KanMX

MATa/a, URA3-PTEF1-CFP Jura3::URA3-PTETO2-GAL80,
his3::HIS3 /his3, ade2::ADE2- PMYO2-rtTA/ade2::ADE?2-
PGAL1-YFP, gal80A::KanMX/gal80A::KanMX
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Gal3i-C MATa/a, URA3-PTEF1-CFP/ura3::URA3-PTET02-GAL3,
(GAL-ON) his3::HIS3/his3, ade2::ADE2- PMYO2-rtTA/ade2::ADE2-
PGAL1-YFP, gal3A::KanMX/gal3A::KanMX

Gal3i-R MATa/a, URA3-PTEF1-RFP/ura3::URA3-PTET02-GAL3,
(GAL-ON) his3::HIS3 /his3, ade2::ADE2- PMYO2-rtTA/ade2::ADE?2-
PGAL1-YFP, gal3A::KanMX/gal3A::KanMX
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Appendix: Foraging game models and
simulations
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Introduction
In Chapter 1, we used a simple two-player hawk-dove game to model basic

predictions of scenarios with mutually invasible phenotypes. In chapter 2, we
outline a similar scenario which we call the “simple foraging game,” which we
hypothesize should also exhibit mutual invasibility of phenotypes with a stable
coexistence. However, in the context of microbial foraging, even the simple foraging
game has significant conceptual deviations from the canonical two-player hawk-

dove game.

In order to better understand the dynamics of foraging in environments with
multiple resources, we constructed mathematical models and ran simulations.
These models simulated three different and increasingly complex versions of a
foraging game: 1) the simple foraging game outlined in figure 1 of chapter two,
wherein two phenotypes are available and each can only consume one of the two
resources, 2) the same game, but allowing for phenotypic switching with diauxic lag
upon depletion of one of the resources, and 3) a game more closely approximating
that played by our mutant GAL-ON and GAL-OFF pure strategists. This last game
resembles the simple version, but allows the GAL-ON mutant to consume glucose

even when galactose is still present.

Insights from these three simulated games include:
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. While the stable mixed strategy is the one in which both phenotypes have
equal fitness, the “growth optimal” mixed strategy (defined as the mix that
produces the highest average growth rate for the population) can be
intuitively thought of in terms of resource consumption. The growth optimal
mix is generally the phenotypic mix whose resulting population finishes both
of the resources at the same time.

. A growth rate “cost” for consuming one of the two resources is sufficient to
distinguish the growth-optimal mixed strategy from the evolutionarily stable
mixed strategy.

In several parameters—including the magnitude of the difference between
the growth rates of the two phenotypes—the stable mix and the optimal mix
diverge.

. The canonical diauxic growth model, in which the resources are consumed
sequentially in order of decreasing growth rate, is the unique solution (both
stable and optimal) to the case in which the individuals are allowed to switch
to the opposite resource with a relatively short diauxic lag time.

“Ratio sensing”—dividing between GAL-ON and GAL-OFF using the ratios of
the two resources rather than their absolute concentrations (84)—will
generally either allow the cell to closely adopt the optimal or the stable mix,
but not both. Which solution concept can be adopted faithfully by ratio

sensing depends on the parameters of the model.
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Simple Foraging game

In the basic version of the foraging game, individuals are confronted with two finite
resources, A and B, and can adopt one of two corresponding mutually exclusive
phenotypes, Nand M. Phenotype N is necessary to consume resource A4, while
phenotype Mis necessary to consume resource B. Growth is exponential; per capita
growth is constant while corresponding resources are abundant, and zero when the
resource is depleted. Table 1 lists relevant parameters. For comparability with the
later simulations of the yeast glucose/galactose foraging game, simulation values for
the simple general foraging game are approximated from experimental data in
Chapter 2 2S2 if A is glucose and B is galactose, and populations grow in a volume of

200ul.

Table 1. Parameters for simulation of simple foraging game

Parameter Description Default simulation value
Yo Initial population density 0.001 OD
fn Starting fraction of 0.5

phenotype n
fm Starting fraction of 0.5
phenotype m
No Initial density of phenotype n Y,
n<o
M Initial density of phenotype
Ao Initial density of resource A 0.03% (w/v)
By Initial density of resource B 0.05% (w/v)
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" Growth ate of phenotyper
i Growth rate of phenotype m | 475

A Rate of consumption of | 0.0003 0D~ hr ™"
As Rate of consumption of | 0.0003 0D=1hr™?

Growth conditions are as follows:

dN {rnN, A>0
dt =

am {rnM, B>0
dt 0

aa _ {—AAN, A>0
dt 0 =

d_B:{_lBM, B>0
dt 0, B=20

Simulations were run in 1-minute increments until all the resources were
consumed. Figure 1 shows an example of a single simulated run with equal starting
fractions of phenotypes nand m, and with a growth cost, c=0.15, for consuming

sugar B such that:

T, =1,(1—7¢) 0

IA
o

IA
—_
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Simple simulation
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Figurel. Simple foraging game with two phenotypes and two
resources
In this simulation of a simple foraging game, phenotype N and M can
consume resource A and B, respectively, but not the opposite resource.
Resource B is more abundant than resource A, but consuming resource B
incurs a 15% growth cost. Phenotypes N and M start out at equal
abundance in the population.
[t is important to note that in the simulations, phenotype m consumes resources at
the same rate as phenotype n, but it has a smaller growth rate. This simulates the
presumably common scenario wherein a proportion of the energy extracted from a

food source goes towards paying the metabolic cost of producing the proteins and

enzymes necessary to consume the resource.

We next investigated the frequency-dependent game played between individuals of

the two metabolic phenotypes. By running the simulation with a range of different
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starting fractions of phenotype m, f;,, we show that even in this very simplified

foraging game, our experimental results are borne out in simulation. There is strong
negative frequency dependence and mutual invasibility between the phenotypes
(Figure 2 a-b), with an intermediate stable equilibrium at about 60% phenotype m.
We also calculated an average growth rate for the population defined as the final
population density (which is basically the same regardless of population
composition) divided by the time it took the population to reach saturation. We
found, as we did with our experimental results, that the “optimal mix”"—the
composition that maximizes the population’s growth—contains much more
phenotype m than the evolutionarily stable mix (Figure 2d, grey dashed line). Since
the final population densities are equal (Figure 2c), average growth rate can be
thought of as mostly a function of the time it takes a population to consume all of the
sugars. The optimal mix, with higher proportion of phenotype m, finishes the sugars
the fastest, and is also the one that finishes the sugars at the same time. Indeed, in all
cases where phenotype m has lower growth rate than phenotype n, we find the

optimal mix contains a higher proportion of phenotype m than does the stable mix.
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Figure 2. Frequency dependence of simple foraging game

As a function of initial population frequency of m phenotype: a) Relative
fitness of the m phenotype and b) absolute fitness of both n (purple) and m
(green) phenotypes indicate negative frequency dependence and mutual
invasibility between phenotypes. Each phenotype is more fit than the other
when rare. c) the final total population density remains essentially
unchanged by the phenotypic composition of the population. However, since
the time to reach the final OD does change depending on the composition of
the population, then (d) the average growth rate of the population is
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maximized at an intermediate frequencies. However, the optimal mix for the
population (grey dotted line) is not the same as the evolutionarily stable mix
(green dotted line).

Divergence of stable and optimal mixes

We next investigated the stable and optimal mixes as a function of phenotypic
growth rates. Unsurprisingly, both the stable and the optimal mixes changed
depending on the growth disparity between the phenotypes, but remarkably, they
changed in opposite directions. As phenotype m gets less and less fit relative to
phenotype n, the evolutionarily stable strategy is to adopt phenotype m less
frequently, while the growth optimal strategy is to adopt phenotype m more
frequently. This difference can be understood intuitively by recalling the informal

definitions of the stable and the optimal mix.

The stable mix is the one in which all individuals have the same fitness regardless of
phenotype. Hence, with negative frequency dependent fitness, if phenotype m
becomes less fit, more individuals must adopt phenotype n until their fitness is
correspondingly lower. On the other hand, the growth optimal mix is the one in
which the two resources are consumed at the same time (so that no phenotype sits
idle). A lower fitness for phenotype m means that resource B will take longer to
consume than resource 4, so to maximize the growth of the population, individuals
should adopt phenotype m to consume resource B more quickly. Figure 3 illustrates
the divergence of the stable and the optimal mixes as a function of the fitness cost of

phenotype m. Intriguingly, although the “optimal mix” population grows much
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faster than the “stable mix” population, an evolutionary competition between the
two mixed strategies in the absence of opportunities for group or kin selection
would favor would favor the slower-growing stable mix. A spatially-structured
environment, however, may favor the optimal mix through group or kin
selection(67). The simulations demonstrate that the two solution concepts diverge

even with a relatively simple two-resource scenario.
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Figure 3 Stable and optimal mixes diverge with increasing metabolic
cost of phenotype m.
(a-d) Frequency dependent fitness, similar to Figure 2, is plotted for two
different growth costs of adopting phenotype m: ¢ = 0.15% (light) and
c=0.4% (dark). In other words, in the light case, phenotype m grows 15%
slower and in the dark case it grows 40% slower than phenotype n. Higher
phenotype m growth cost lowers the total number of divisions possible on
resource B, shifting the stable equilibrium left, while the growth optimal mix
(d, grey dotted lines) shifts right. e) The stable mix (green) and optimal mix



(gray) are plotted as a function of the growth cost of adopting phenotype m.
The fact that the two solution concepts not only are different but also diverge
serves to highlight that mixed ESS and optimal divisions of labor are very
different solution concepts.

Foraging game with facultative phenotypic switching

The simple foraging game outlined above assumes that each phenotype can only
consume one of the resources exclusively. However, this assumption is bears little
resemblance to most microbial environments with multiple carbon sources. In
reality, individuals can generally sense the presence of a resource and adopt the
appropriate phenotype for consuming it, switching from one to the other if
necessary. Indeed, the canonical response to multiple sugars is thought to be a
diauxic response: consume the most advantageous carbon source first, then switch
to the next most advantageous, and so on. A reasonable follow-up to the simple
game, therefore, is to relax the consumption constraints and allow individuals to
switch their phenotype when the resource runs out. However, given that many
metabolic regimes such as galactose or lactose consumption involve the production
of large numbers of specialized metabolic enzymes, a diauxic lag phase is typically
observed during the switch. Given that little growth happens during this time, such
a lag phase represents a cost to switching. Accordingly, for our simulations, we
altered the simple foraging simulation to allow such phenotypic switching, and we

introduced a new parameter, 6, the diauxic lag time:
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Parameter Description Default simulation value

0 Diauxic shift lag time 2.0 hr

Figure 4 shows simulations with the same default growth parameters as in Figure 1,
but with ability to switch phenotypes after sugars are consumed and with a lag

growth time of 2 hrs.

Foraging game with diauxic shift

16 0.06
L4y Phen. N {0.05
8 12} &
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Figure 4. A simulated foraging game allowing for diauxic growth with a
diauxic lag time of 2 hr. Individuals of phenotypes n and m begin at 80%
and 20% of the population, respectively, and consume resource A and
resource B, respectively. At around 13hr, resource A is depleted and
individuals of phenotype N switch to consuming resource B after a diauxic
lag of 2 hours.

Diauxic lag, stability, and optimality
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To explore the effects of the switching costs on the stable mixed and optimal mixed
strategies, we ran simulations with many different switching costs. As expected, at
the limit of high diauxic lag time—or very costly switching—frequency dependence
is identical to that in the simple foraging game (Figure 5a, darkest curve). At the
limit of very low diauxic lag time, frequency dependence vanishes entirely (Figure
5a, lightest curve), and phenotype n is more fit than phenotype m regardless of
population composition. Below a threshold lag time, the optimal and stable solution
to the foraging game is the classic diauxic growth strategy: all individuals consume

the best resource first.

With intermediate diauxic lag times, the situation is somewhat more complicated.
The relative fitness of phenotype m as a function of its population frequency can be

essentially divided into three sections: low, intermediate, and high fm. At
intermediate f;,,—close to the optimal mix—the fitness of the two phenotypes are

identical to those in the simple foraging game (Figure 5a) because the two resources
are consumed close enough together that there is not time enough for the faster
phenotype to switch before the other resource is gone also. The higher the diauxic
lag time, the wider this intermediate fitness zone is. One corollary of this
observation is that, since the optimal mix is the one in which both resources are
consumed at the same time, the optimal mix is not really responsive to differences
in the diauxic lag time (Figure 5d). And in the parameters we have outlined, the
stable mix follows a similar pattern, though there is a remarkable phenomenon

where in low-to-intermediate lag times (1.5-2.0 hr in Figure 5d) the population mix
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that grows the fastest consists almost entirely of phenotype m, while the population

mix that is evolutionarily stable is 100% phenotype n.
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Figure 5 The effect of diauxic lag times on the stable and optimal
solutions to the foraging game

Frequency dependent a) relative fitness, b) number of divisions, and c)
average population growth are shown for a range of diauxic lag times from 0
to 8 hours. At high diauxic lag times, the frequency dependence is identical
to the simple model simulation, and at the limit of low diauxic lag times,
frequency dependence disappears altogether and phenotype n is more fit
than m at all frequencies. d) The stable (green) and optimal (gray) mixed
strategies are shown as a function of diauxic lag time. Both solutions display
transition between no phenotype m at low lag times to intermediate
frequencies of phenotype m at high lag times.

Simulation of GAL-OFF and GAL-ON pure strategists

To try to better understand the foraging game being played between our GAL-ON
and GAL-OFF pure strategist strains, we undertook a simulation that roughly
approximates our understanding of that game. Because the GAL-OFF pure
strategists do not switch to GAL-ON during the course of the experiment, the game
resembles the simple foraging game, with the exception that in this case, phenotype

m (the GAL-ON phenotype) can consume resource A (glucose) even when resource B

is abundant. This necessitates us replacing the 73;; and parameter with sugar-

specific parameters.
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Parameter Description Default simulation value

A GAL-ON growth rate on

-1
T'm glucose 0.425 hr
B GAL-ON growth rate on 1
Tm galactose 0.3825 hr

Because in the mixed sugar conditions the GAL-ON cells are still GAL-ON even when
consuming glucose, their growth rate on glucose reflects the 15% growth cost we
imputed to them earlier. GAL-ON’s growth rate on galactose was also estimated
from experimental values. The most salient question that arose during these
simulations was the amount of galactose that GAL-ON pure strategists consume.
Some researchers have claimed that, in the presence of substantial glucose, even
GAL-activated yeast do not consume substantial amounts of galactose (80), while
others have observed some galactose consumption (81, 84). Our own data is
somewhat ambiguous (see chapter 2 Figure 6). It appears that before the glucose is
entirely consumed, the galactose has been somewhat consumed, though not to the
same degree. Under growth parameters estimated from our experimental data, in
order to see stable mixed strategies of intermediate frequencies we must either
make the GAL network more costly to run than we anticipated (15-30% growth
cost) or allow the GAL-ON mutants to consume significant galactose even in the
presence of glucose (in that case, we assume that galactose is displacing rather than
adding to the glucose in the metabolic pathways). Figure 6 illustrates the
frequency-dependent fitness as a function of the proportion of GAL-ON’s sugar

consumption being galactose.
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Figure 6. GAL-ON and GAL-OFF frequency dependence in .03/.05%
glu/gal as a function of the distribution of sugar uptake for GAL-ON in
mixed sugars.

Frequency dependent a) relative fitness, b) number of divisions, and c)
average population growth are shown for a range different galactose-
consumption conditions, ranging from GAL-ON only consuming 1% galactose
while glucose is still present (lightest curve) to GAL-ON’s consuming
galactose in proportion to its initial fraction of total sugars (62.5%, darkest
curve). The amount of galactose that GAL-ON consumes in the presence of
glucose does not have a large effect on the optimal mix (c,d), but does have a
large effect on the stable mix (a,d) d) The stable (red) and optimal (green)
mixed strategies are shown as a function of the proportion of galactose
consumed in the presence of both glucose and galactose.
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