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ABSTRACT

The basis for reciprocity has been studied in some
detall. It is shown that all linear Lagranglan systems
are reciprocal whether formulated on a lumped or distri-
buted parameter basis. Some non-~reciprocal systems are
discussed and a general statement of electroacoustic
reciprocity including viscous losses 1s presented.

Method for describing the near field of a transducer
in terms of 1ts far field are described. The acoustic
center and limit of the far field are defined. A graphi-
cal method 1s described for computing this limit directly
from the directivity gain plot. The technique is of great
use 1n estimating the error introduced by the close spacing
of transducers. All of these results are shown to have
meaning, whether the transducer is acting as a source or
a recelver, Some calculations are made for idealized trans-
ducers, a point source and a piston source on a hard sphere.

Measurements were made of the acoustlc center and the
directivity patterns of a number of commercial microphones.
A free-fleld calibration was performed in a non-anechoic
space utllizing an approximation to a point source on a
hard sphere. A discussion of experimental techniques in-
cludes the following topics: the measurement of reciprocity
and linearity, effects of standing waves, effect of the
size of the enclosure, measurement of the microphone polar-
izing voltage, pulse techniques applied to detection of
reflecting surfaces and to calibration, transducer stability,
point-by-point and automatic data-taking technliques, and
factors governing the selection of a sound source.
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CHAPTER I
INTRODUCTION

1.1 Purpose

The fundamental tool of acoustic measurements is the
microphone. Hdwever, existing methods for the accurate
calibration of microphones are of sufficlent complexity
to restrict their use to the well-egulpped acoustical
laboratory. The errors introduced by simplifications in
technique cannot be predicted until the physical limita-
tions on microphone calibration are understood. It is
the purpose of the work described below to investigate
these limitations and to describe some resultant practical

considerations for free-field calibrations,

1.2 Results

The reciprocity technique 1s the most accurate and
convenient of the absolute callbration methods, and for
this reason other methods were not investigated. The
basis for reciprocity, however, has been studied 1in some
detail. It is shown that all linear Lagranglian systems
are reciprocal whether formulated on a lumped or distributed
parameter basis. Some non-reciprocal systems are discussed
and a general statement of electroacoustic reciprocity
including viscous losses 1is bresented. This materlal 1is
useful in the design of experiments whose purpose is to

discover whether a transducer is reciprocal.



Methods for describing the near fleld of a trans-
ducer 1n terms of its far field are described. The acoustic
center and 1iﬁit of the far fleld are defined. A graphical
method is described for computing this 1limit directly from
the directivity gain plot. The technlique 1s of great use
in estimating the error introduced by the close spacing
of transducers, All of these results are shown to have
meaning whether the transducer is acting as a source or
a receiver, Some calculations are made for idealized trans-
ducers, a polint source and a piston source on a hard sphere,

Measurements were made of the acoustic center and the
directivity patterns. of a number of commercial microphones,
A free-field calibration was performed in & non-anechoic
space utilizing an approximetion to a point source on a
hard sphere. A discussion of experimental technlques 1in-
cludes the following topics: measurement of reciprocity
and linearity, effects of standing waves, effect of the
size of the enclosure, measurement of the microphone pola-
rizing. voltage, pulse techniques applied to detection of
reflecting surfaces and to calibration, transducer stability,
point-by-polnt and automatic data-taking techniques, and

factors governing the selection of a sound source.

1.3 History of Primary Means for the Measurement of Sound
The first important method of making an absolute

measurement of the sound pressure (actually velocity) of

a sound wave was suggested by Rayleigh.~l-. A small circular

- e e em  em e em ww e e - o ws Yeu w Yo - - T I e e . S

lRayleigh, "On an Instrument Capable of Measuring the Inten-
sity of Aerial Vibrations," Phil. Mag., v. 14, p. 186, 18&.



disk suspended in & stream of alr by a thin fiber tends

to rotate against the restoring torque of the fiber so
that the particle motlon éf the alr 1s normal to 1its
surface, The position of the disk is unchanged by revers-
ing the directlon of the stream of alr, Thus a steady
angular displacement of the disk is observed in an alter-
nating sound fleld,.

The thermophone method, first discussed guantitatively
by Arnold and Crandall1 conslists of a small cavity acous-
tically excited by passing a pulsating direct current
through strips inside the cavity. If one knows the cur-
rent and the thermal propertles of the components, it is
possible to calculate the sound pressure at the diaphragm
of a miérophone located in the cavity. »

The plstonphone method, perfected by Wentee, 1s
simllar to the thermophone in that the microphone 1s placed
in a cavity in which the pressure can be computed. In this
method the actual amplitude of motion of a piston located
in a wall of the cavity 1s observed. If one knows the
impedance of the cavitj, the pressure acting on the dia-
phragm of the microphone may be computed,

The difference between the pressure calibration and the
free-field calibration was first discovered experimentally

T T S . .. T T e R )

larnold, H. D. and Crandall, I. B., "The Thermophone as a

Precision Source of Sound", Phys. Rev., v. 10, p. 22, 1917.

°Wente, "The Thermophone®, Phys. Rev., v. 19, p. 333, 1922.



by Ballantinel

when trying to check a thermophone call-’
bration with a Rayleigh disk calibration. The difference
18 caused by the diffracted wave introduced by the micro-
phone itself. For certain simplified microphones this
diffraction effect may be predicted.2’3’4’5’6’7

A method of callbration utllizing a perforated grille
located adjacent to the microphone diaphragm was suggested
by Ballantine.7 - To this grille 1s applied a pulsating
d-c voltage which exerts an electrostatic force on the

diaphragm., If one knows the dimensions of the grllle,

-1t 1s possible to calculate the force acting on the dia-
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1Ba11antine, S., "Effect of Diffraction Around the Microphone
in Sound Measurement™, Phys. Rev., v. 32, p. 988, 1928, '

2Ballant1ne, S., "Effect of Cavity Resonance on the Frequency
Response Characteristic of the Condenser Microphone", Proe.
Inst. Radio Eng. v, 18, p. 1206, 1930.

3Aldridge, A. J., "Calibration of Wente Condenser Transmitter",
Jour. Post Office Elec. Eng., v. 21, p. 223, 1928.

4Barnes, E. J., "Discussion of a Paper by R. S. Cohen," Proc.
Inst. Elec. Eng., v. 66, 'p. 195, 1928.

5West, W., "Pressure on the Diaphragm of a Condenser Trans- .
mitter,” Proc. Inst. Elec. Eng., v. 5, p. 145, 1930.

6011ver, D. A., "An Improved Condenser Microphone for Sound
Pressure Measurements," Jour. Scientific Inst., v. 7, p. 113,

1930.

7Ballant1ne, S., "Technique of Microphone Calibration”, Jour.
Acous, Soc. Am., v. 3, p. 319, 1932.
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Schottky™ and later Ballantine™ described the
reciprocity principle for electroacoustlc transducers,.
Hovever, MacLean3 and Cook4 were the first to show how

this principle could be applied to microphone calibra-
tion. No solid foundation for the reciprocity calibra-
tion technique was established until the treatment by
Foldy and Primakoff.5 Essentially the method requires that
a microphone be put in its own sound field. The overall
transfer impedance is proportional to the square of the
microphone calibration. The only other quantities that
need be known are: the frequency,‘the separatibn between
the two locatlons of the acoustic center of the microphone,
and the density of the medium. The method has proven to

be the most accurate of all, and yet the experimental

techniques are comparatively simple,
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1Schottky, W., "Tiefenpfangagesetz", Zeits, f. Physik, v. 3,
p. 689, 1926.

2Ballantine, S., "Reclprocity in Electromagnetic, Mechanical,
Acoustical, and Interconnected Systems™, Proc. Inst. Radio

Eng., v. 17, p. 929, 1929.

3MacLean, W. R., "Absolute Measurement of Sound without a
Prtmary Standard", Jour. Acous. Soc. Am., v. 12, p. 140,
1040.

4Cook, R. XK., "Absolute Pressure Calibration of Microphones",
Jour. Acous. Soc, Am., v. 12, p. 415, 1941,

5Foldy, L.L. and Primakoff, H., "General Theory of Passive
Linear Electroacoustic Transducers and the Electroacoustlc
Reciprocitg Theorem I and II"™, Jour, Acous, Soc. Am., v. 17,
p. 109, 1945.




1.4 Need for the Investigation

Accurate calibration of microphones is of primary
importance in most acoustic measurements. The accuracy
of final data can never be superior to the accuracy of
the calibration of the microphone with which the data
were taken. Ideally, each element of a measurement chaln
should be capable of ylelding results with an accuracy of
the same order of magnitude as any other element of the
chain. At present the microphone is almost invariably
the weakest link of any acoustic measurement chain. Errors
of the order of 20 per cent are taken for granted, and
errors of ten or twenty times thls size aré not uncommon,
The errors in the remalnder of the measurement chaln (the
electrical components, the indicating device, and the ob-
server) can, with moderate care, be kept less than 5 per
cent.

Any methods ylelding reasonable accuracy that would
not require large or costly facilities would ald almost
all branches of acoustic measurements. Several of these
branches have become extremely important recently and
probably will be even more important in the future. The

evaluation and gqulieting of industrial noise and the establls

h-

ment of damage risk criteria for the ear are two such branches

of acoustic measurements, The development of better micro-
phones and loudspeakers is greatly hampered by the 1nability

of the manufacturer to measure the performance of a new



device with precision.

The present state of affalrs is not a result of any
pasic theoretical trouble with classical methods of call~
bration but rather an economic trouble. Only & half-dozen
laboratories in the nation have the expensive facllities
necessary for accurate calibration and, in genersal, these
laboratories find {t difficult to spend the tlime required
to set up and perform accurate calibration, In additlion
it 1s extremely difficult by existing methods to estimate
the errors introduced into a calibration performed under
less than ideal conditions., It is therefore of consider-~
able interest to investigate the physical limitations on

the callibration of microphones,

1.5 Free-Fleld Calibrations

In the vast majority of measurement problems, one
needs to know either the free-field response of the micro-
phone or a response derivable from 1t. The thermophone,
the plstonphone, the electrostatic actuator, and coupler
reciprocity are all methods ylelding the pressure response
of a microphone., It 1s not possible to derive the free-
field response from the pressure response except in cases
of extremely simple geometry. For this reason no pressure

methods are discussed, Other than reciprocity, the only



free-field method in use 1s the Rayleigh disk, and it is
limited by a seriocus vulnerabillity to winds, In addition
the method falls when the dimensions of the disk are com-
parable to a wavelength,

The reciprocity method, on the other hand, may be
applied in either free-field or pressure calibrations.
There 1s no fundamental limitation on the method at either
low or high frequencles, providing the transducers involved
are reciprocal and have reasonable sensitivity.

Most of the experimental techniques discussed will
>.have particular reference to callibrations above about one
kilocycle. Below this frequency the wavelength of sound is
long enough that diffraction effects are of secondary im-
portance for most microphones, For thls reason 1t is
probably easier to méke a pressure calibration of a stand-
ard microphone and apply a free-field correction., Second-
ary comparison calibrations carried out with such a stand~-
ard and in a moderately anecholc space can be quite accurate.

Above one kilocycle, however, almost all measurements
become more difficult, At some freguency dependent on the
size of the microphone and the gas used, all the coupler
methods will fall, The electrostatic actuator method may
still be used for condenser microphones and other types with

conductive diaph;agms.1 But the free-fleld correction to

- o e wm e e ew = - e - - e e e e e o - e e o e o = e

l"Application de la Methode Electrostatique d'Etalonnage
Absolu a Certains Types de Microphones,™ Note - 152, Centre
de Recherches Sclentifiques Industrlelles and Maritimes,

Marseille, 1947,



the pressure calibration becomes larger and more difficult
to evaluate with accuracy. Free-fleld comparison calibra-
tions must be carried out with great care in order to main-
taln the accuracy obtalned with ease below one kilocycle,
In practice one finds that the precautions necessary
to the performance of an accurate comparison callbration
at high frequencies are only slightly less stringent than
those necessary to the performance of an accurate reciprocity
calibration, Therefore, if accurate high-frequency com-
parison calibrations are to be carried out, the most prac-
tical method of primary calibration is probably the free-

field reciprocity technique,.

1.6 Unit and Conventions

TheAunits used throughout will be the rationalized
MKS systeml. This cholce simplifies the form of the
electroacoustic reciprocity theorem considerably.

In general capital Roman letters without other mark-
ings will represent matrices, In some cases subscripts
on Roman letters will indicate an element of a matrix, In
any case capltal Roman letters with subscripts will be
scalaré except for the subscripts d and t, These notations

will indicate the dual matrix and the transposed matrix,

respectively,.
1see for instance: 3killing, H.H., Fundamentals of Electric
John Wiley, New York, 1948.
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The term '‘electrostatic transducer will describe all
those electroacoustic devices employlng coupling by means
of plezoelectric mechanisms and/or static charge. The
term 'electromagnetic transducer! will describe those
devices employing coupling by means of magnetostrictive
mechanisms or a steady magnetic field, Those transducers
that employ coupling of both the electrostatic and electro-
magnetic type are ruled out of both classifications.

The words 'level! and 'gain' and 'response' will
always be used in connection with logarithmic quantities
such as 'sound pressure level!', When these quantities
are contained in equations, it will always be stated. whether

the units are decibels or nepers,



CHAPTER II
RECIPROCITY IN LINEAR SYSTEMS

2.1 History
One of the first references to the phenomenon of reci-

1 in 1859, He describes an ex-

procity is by von Helmholtz
periment with a simple source first located at A and then
at B. The proof that the intensity of the sound at B in
the first experiment is the same as that at A in the second
utilizes Green's theorem in the manner now well known, In
1873 Rayleigh2 described a general statement of the principle
of reciprocity which sets down, probably for the first time,
several of the slmple ways by which the principle may mani-
fest itself. A great unifylng step was taken by Lamb3 five
years later, He showed that many systems satisfying the
Lagrange equatlons will obey reciprocity.

Apparently Schottky4 was the first to realize that the
principle of reciprocity could be applied to an electro-

acoustic system such as a microphone located in a free field.

This subject was agéin studied by Ballantine5 who attempted

™ Em am em  am e ws e GR an w8 e a8 em  mm e mm  em #m e mm w8 wm mm am e

Helmholtz, H. von, "Theorie der Luftschwingungen in Rohren
mit offenen Enden," Crelles Journal, v, 57, p. 1, 1859,

2Rayléigh, Lord, "Some General Theorems Relating to Vibrations",
Proc. London Math. Soc., v. 4, 1873,

3Lamb, H., "On Reciprocal Theorems in Dynamics," Proc. London
Math, Soc., v. 19, 1888,

4Schottky, W., "Das Gesetz des Tiefempfangs in der Akustik

und Elektroakustik", Zeits. f. Physik, v. 36, p. 689, 1926,

5Ballant1ne, 3., "Reciprocity in Electromagnetic, Mechani-
cal, Acoustical and Interconnected Systems"™, Proc. Inst.

Radio Eng., v. 17, p. 929, 1929.
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the first proof of the reciprocity of electroacoustic and
electromagnetic transducers. His proof rested on the assump-
tion that the transducer could be represented by an analogous
network of inductances, capacitances and resistances, It was
then a simple matter to complete the proof. This step cer-
tainly made electroacoustic reciprocity plausible, but the
necessity to assume that the system can be repreSented by

an electrical network seriously limited the application of
the proof. The question remalned, "Which physical systems
are representable by this type of analog?"

Further light on the fundamental basis of the electro-
acoustic reciproclity theorem was not shed untll after several
writers had shown how the principle could be applied success-
fully to the calibration of microphones.l’2 It was Foldy
and PrimakoffB_who finally laid the theoretical foundation

on which this reciprocity callbration 1s based.

2.2 Lumped Constant Systems

Some of the results in thls section are not new. The
methods presented here are belleved to be novel and useful,

however, In addition, the material provides the necessary

- e e aw s mwm ww we em em  em am mm me me e 2w wm @ e wm e um e e @ = = e e

lMacLean, W.R., "Absolute Measurement of Sound without a
Primary Standard", Jour. Acous. Soc. Am., v. 12, p. 140, 1940,

2 Cook, R.K., "Absolute Pressure Callbration of Microphones",
Jour. Acous. Soc. Am., v. 12, p. 415, 1941,

3 Foldy, L.L. and Primakoff, H., "General Theory of Passive
Linear Electroacoustic Transducers and the Electroacoustic
Reciprocity Theorem I and II", Jour. Acous, Soc. Am.,

v. 17, p. 109, 1945, and v. 19, p. 50, 1347.
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foundation for the new results in thls and later sections.

The phrase "linear, lumped-constant, passive system"
guite often implies that the system 1s representable by
network equations or a schematic diagram employing re-
sistances, inductances, capacltances and 1deal transformers,
Either one of these two devices 1s sufficlent to specify
completely, or at least for normal purposes, the behavior
of the system once the boundary and initial conditlons are
known. If any system 1s completely described by electrical
network equations, it must be linear, reciprocal, and have
a finite number of normel frequencies,

For the purposes of thls section it will be conveni-
ent to generalize slightly the meaning of "linear, lumped-
constant system." Let us include within this category any
linear system that 1s completely represented for the purpose
at hand by a finite number of variables, all a function of
time or frequency only. Under these conditions the system
need nelther satisfy reciprocity nor have & finlte number
of normal frequencies. For instance, a transistor is not
reciprocal, and over a portlon of 1ts operating character-
istic 1t may be described by linear equations. Similarly,
the behavior at the terminals of a length of transmlission
line may be described by linear equations even though the

line itself is a distrlibuted system,



2.21 Conditions for Reclprocity
This generalized characterization of a lumped system

may be expressed mathematically by the matrix equations

E=2Z1 (2.1)

or

I=YE (2.2)
Here E and I are column matrices with the same number of
elements of the form El,E2"' and 11,12"‘. Throughout
this chapter Roman letters without subscripts will rep-
resent matrices. The additlon of a subscript usually
indicates an element of the matrix, The impedance and: ad--
mittance matrices Z and Y are square and the number of
elements per side is equal to E or I. The symbols E, I,
Z and Y are all complex functions of radian frequency and
do not involve time,

The generalized condition for recliprocity utilizes
the results of two experiments on the same system. The
variables pertaining to the two different experiments will
be identified by the superscripts (1) and (2). These
superscripts will be applied to E and I, but not to Z or
Y, since the impedance or admittance matrices are invari-

ant as long as only one system 1s studled, The generalized

condition for reciprocity 1is

() g (2} () )
[ED - [WED = 0 2.3

-14-



In this case I must become & row matrix, The statement
that the matrix product I(l)E(g) 1s invariant under the
interchange of superscripts is a necessary and sufficient
condition for reciprocity. Thls statement can be placed
in a more recognizable form by the substitution of the

system equations (2.1) or (2.2).

I(l) Z I(t) - I(“ZI(” - I(l) [Z - Zt] I(Z) =0 (2.4)

The subscript t indicates that the impedance matrix has
been transposed, Assuming that neither of the I matrices

vanlsh

Z- Z, =[0] (ie Zj = Zi) (2.5)

whereBD};s the null matrix, Similar manipulations in-

volving the admittance matrix yield

Y=Y, =[0]  (ie Yi =Yy) (2.6)

These two equations describe the equallty of the transfer
impedances and admlttances connecting any two ports (termi-
nal pairs) of the system,

Some familiar aspects of reclprocity appear when the
behavior of any two ports of an electrical system are examined

separately. The condition for reciprocity now reads

(2.7)

@

E:.;I(‘z) _ E| I.

(13

+ B I - EVIV =0



Let experiment (1) be the measurement of the open-clircult

transfer impedance from port 1 to 2, Z,5q - Similarly, let

experiment (2) be the measurement of the open-circuit trans-
fer impedance from port 2 to 1, Zip- These two experi-
ments are illustrated in Fig., 2.1la. Since the resulting
output voltages are measured'under open-circult conditions,
11(2) and Ig(l) must vanish, Thus the first and last terms
of (2.7) become zero and the resultant equation may be re-
written to show that the transfer impedances are equal,
( (z
Zzs"“%%i“:%?- Z 2 (2.8)

A second palr of experiments 1s shown schematically
in Fig; 2.1. These experiments yield & measurement of the
short-circuit transfer admlttances, Y51 and Y10 and require
that E2(1) and El(e) vanish, Dropping the second and third

terms of (2.7), the result may be rewrltten,

I(;) I(Z)
Yy = B = = = Y 2.
21 =y E® 2 (2.9)

The third pair of experiments (Fig. 2.1c) 1s a measure-
ment of the transfer ratios of the system, h21 and h12.
These quantities are analogous to the turns ratio of a

transformer (see Guilleminl). In thls case Ez(l) and 11(2)

- - - - - - - - - o = e e e - e e wm  em  wm  en  am e e - o am =

lGuillemin, E.A., Communication Networks, Vol, II, John
Wiley and Sons, Inc., New York, (1935), p. 137.

_16-
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Fig. 2.la Measurement of Open-circult Transfer
Impedances, Z54 and Zio.

(2)

£ ) ! 5 S (2) ES

Plg., 2.1b Measurement of Short-clrcult Transfer
Admittances, y21 and MUY

7% () e (2) E®

Fig. 2.1c Measurement of Transfer Ratlos, h21 and
h
12°

Fig, 2.1 Pertaining to the Definition of the Transfer
Parameters of an Electrical Network



in (2.7) vanish and one finds that

4
=

@
: EI = — h, (2.10)

|

hy

—
o
-c
=

o g
)

which is the same result that one would expect for the

turns ratio of a transformer. The current 12 is defined
flowling into the network rather than out, accounting fior the
negative sign,

ILet us consider an interesting hypothetical situation
in which two englineers set out to measure the transfer 1m-
pedance of a rather large network. Unfortunately they are
from two different countries and occasionally misunderstand
each other., They plan to perform the experiment shown 1in
Fig. 2.1la, but the man at the second port confuses the
words for voltage and current, He therefore measures the
short-circult current instead of the open-circult voltage
in experiment (1). Similarly, he measures the voltage
supplied to the network rather than the current as he should
have in experiment (2). When the data are reduced they are
surprised to find that the transfer impedances are apparently
equal, but opposite in sign. This result could have been
predicted from Filg. 2.1c, since this i1llustrates that the
experiment actually performed was the measurement of the

transfer ratio,

~-18-
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The above example serves to emphasize that confusion
of the guantlity to be called voltage and that to be called
current can result in & device that apparently violates
reciprocity. This rather improbable experiment becomes more
significant when one investigates the reciprocity of an
electroacoustic transducer,

It has beenrshown that the reciprocity condition leads
directly to reciproclty as expresséd by the three palrs of
experiments shown 1n Fig, 2.1. Lilkewlse, equatlions like
(2.4) show that reciprocity from any one of the three pairs
of experiments will lead to the general condition for recip-

rocity (2.3).

2.22 Conservation of Energy

If the system deécribed by (2.1) is lossless, it is
possible to show an interesting relation involving the trans-
fer impedances, The average power consumed by the system

®,, must vanish. Therefore,

Pn=7% Re{I*E}=%[I"2I+1Z"*I"]=0 (.11

Here the star indicates that the complex conjugate has been
taken, Script capitals like le will in general be scalars,
Note thét the factor 1/2 appears in front of the product

I*E indicating that variables are peak rather than root mean

square quantities,



If the term IZ I  1in (2.11) is transposed, Lt is
possible to factor an I 1n front of and after the brackets,

For an arbitrary I this manipulation yields
¥ _ ;
Z + 2 = [0] (2.12)

The above equation shows that any corresponding pair of
transfer impedances of a lossless and not necessarily
reciprocal system are equal in magnitude., The driving
point impedances must be imaginary, but the transfer im-
pedances may have any angle, It is only necessary that a
corresponding pair be images of each other in the imaglnary
axis,

An equation similar to (2.12) may be obtained for the
admittance matrix, Thus any lossless system satisfies
reciprocity in magnitude, but not in argle. This proves
to be a tremendous weakenlng of true reciprocity. The ad-
dition of a reciprocal, but lossy system to a system satis-
fying reciprocity in magnitude only, in general, will yield

a completely non-reciprocal result.1

2.23 C(Combination of Reciprocal Systems
By the methods of matrix algebra it is falrly difficult

to prove that any combinaticn of two reciprocal systems wilth

many ports will give a new system that is reciprocal be-
tween all palrs of ports. A novel and relatively simple
proof of this theorem that avoids the use of matrices 1s

described below.

e e am am emm we em em o mm e em  wm e e wm  ee  wm e M ew = am - e =

lMcMillan E.M., "Violation of the Reciprocity Theorem in
Linear Passive Electromechanical Systems,”™ JLA.S.A. V. 18,

p. 344, 1946,
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Consider the three-port system and the load impedance

Z. shown in Fig. 2.2a, This load impedance may be zero if

L
one wishes to connect two terminal pairs together., If the

current I1 1s applied at the port 1, the current flowling
in the load impedance can be calculated as shown in Fig.
2.2b. The open-circuit voltage at port 2, E2, i1s a result
of the currents flowing at ports 1 and 3 times the proper

transfer impedance and is given by

E, = 2, I, - %;f;_f' (2.13)
Note that this expression would have been the same 1f the
current had been input at port 2 and the voltage measured
at port 1 and If the original device was reciprocal. There-
fore, the addition of a load impedance leaves a reciprocal
system reciprocal. Thls proof is perfectly general, since
the ports 1 and 2 may be taken anywhere in the system.

It is now necessary to show that the replacement of

the load impedance Z. by a reciprocal system with many

L
ports will leave the resultant system reciprocal. The
tandem connection of systems shown 1in Fig. 2.2¢c can be
treated in a fashion like that above to obtain E4 in terms

of I,. The result 1s

L ZaaZa 1
B, = 27% (2.14)
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Fig. 2.2 Diagrams Useful in Proving that the

Combination of Reciprocal Systems is
Reciprocal,
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Agéin 1nterchanging the current generstor and the voltmeter
will not alter the resultant transfer impedance provided the
original systems were recilprocal.

These two steps constitute a general proof that any
combinatlon of reciprocal systems 1is reciprocal, since
parallel, series and other interconnections may be handled
one wire at a time, This concept is usefﬁl in the analysis
of & complex system, For instance, & complicated electrical
network can be resolved 1lntoc the combinatlon of meny T or 7
networks., The components are reciprocal by inspection and,
therefore, the comblnation is reciprocal, Likewise, acoustic
reciprocity may be proved by demonstrating reciprocity for
an infinitesimal volume of air, This, in turn, is trivial

because the infinitesimal volume must be symmetrical,

2.24 Systems Described by the Lagrange Equations

The Lagrange equatlons cah be used to describe the be-
havior of a vast number of lumped systems, It 1s important,
therefore, to investigate the conditions under which these
equations display reciprocity.

Let us assume from the outset that the Lagranglan is

not an explicit function of time., This restriction is

probably of little lmportance, since & system with time-
varying parameters could hardly be reciprocal. The intro-
duction of such an element into an otherwise reclprocal

system would make the results of any signiflicant experliment



different at different times., Even if the element varied
sinusoldally at the driving frequency, the output would
depend upon the phase relation between the input signal
and the driven element.

Thus for the purposes of this section, the general
Lagrangian 22 may be written as a functlon of a set of
generalized coordinates 915 Goseees and their time deriva-
tives él, éz,,.., but not as an explicit functlion of time,
Throughout this and several of the following sectlons the
matrix operations are not always as clear as in the above,
For this reason a single bracket will denote a row or
column matrix and double brackets will denote a rectangu-
lar matrix, Under these circumstances the Lagrange equa-

tions1 are given by the matrix equation

4038 - 3] - e 2.5

in which the elements of the second matrix are derivatives
of the lagrangian with respect to each of the generalized
coordinates qy5 pse-. The first matrix is constructed in
a similar fashion from the time derivative of the Lagrangian
with respect to the generallzed velocitles, The final

- an  em em  Em mm  wm am e ew  mm  we s em W e en  an  em  er s e mm  wm M e wm e e ew

See for instance: Slater and Frank, Mechanlcs, McGraw-
Hill, New York, p..74, 1947.
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matrix contains any additional generalized forces €15 €5,
acting on the system. The unusual notation for these forces
has been lntroduced so that the results may be applied to
electrical circults and to avoid notatioconal confusion later,
The instantanecus power input to the system may be
evaluated by multiplying the Lagrange equations by their

respective velocltles and summing, Thls may be written

. d [d% s o0k .

iu(aq)} ‘iac,] = 4 el (2.16)
Expanding the first term this becomes

:%(i%%]) ~A, -3:,’-‘-] “i%f‘] =34, €] (2.17)

but the second and third terms are the negative of the

total derivative of the Lagranglan with respect to time.

Thus
ﬁ'(i%%ﬁ'] "o() = q, €] (2.18)

Since the righthand side of this equation is the total
power input to the system, the quantity within the parenthe-
ses must be identified with the energy of the system }f
When”}# is expressed in terms of generalized momenta Pq»
Pysene and coordinates qq q2,...it mey be called the
Hamiltonian of the system, The relationship between the



Hamiltonian and the Lagrangian 'is glven by the equations

M (p,q)—p, i%—(ff'—ﬂ)"] + £(4,9) = O (2.19)

Hpa-g 2589 4 2 (4,0) = 0 (220

2.25 Reciprocity of the Lagrange Equations

The review material of the precedlng section has lald
the groundwork for an investigation of the requirements on
the Lagrange eguations in Qrder that they exhiblt reclproc-
ity. In this investigation it is agaln necessary to per-
form two different experiments, (1) and (2), on the same
system., In additlon, the time coordinate of one of the
experiments will be reversed and the origin shifted., The
transformation is accomplished by replacing t by T - t in
all variables pertalining to experiment (2). This change
In the time coordinate does not mean that the results of

experiment (2) are changed, On the contrary, it is simply
a device that allows us to combine in one equation the re-

sults of experiment (1) at time t and the results of experi-

ment (2) at a different time T - t.

-26-



With these changes the lLagrange equations for the two

experiments are

g 22V M) _ 22" 1) (-)
4 (P 1t)Y] . 2xP -0 ] _ o .
dt (aé‘w('f’—t) )] aq(z) (T~ t) =@ ( ! t) [ -22)

Note that the dot represents differentiation with respect
to the argument and not with respect to t. Multiplylng
(2.21) by q(2)(ﬁ‘-t) and (2.22) by q(l)(t) and expanding

the first term of each will result in

d (2 a,):f” OR Y & @ LM @
QT(& 351(1)] +.3_. aq(n)]"'& —a—c—]-(r]—‘_cﬁe ] (2.23)

d o L™ L LY W d 2% — ) o)
“J?(u aqu + 9, 3485 T a, —"'—aq“']"'ﬂ_. e®] (2.24)

Here the notation that q(l) and q(z) are functions of t
and T -t has been dropped for brevity. Integrate both of
these equations with respect to time from negatlive infinity

to positive infinity. The total derivative terms will vanish



because one or the other of the factors makling up these
terms will be zero at the limits of the integral. At a
very large negative value of t experiment (1) has not be-
‘gun, and therefore, the system must be at rest, Since the
time coordinate has been reversed for the variables of
experiment (2), the system 1s at rest for very large
positive values of t.

After elliminating the total derivative terms, the

difference of the two equations is

4+ o0

@ dLY RORY < oz taxm
f(‘i 3q® ]-3.; 2 4@ ] - ﬁ(‘l) —-—-—-—-aq(,, ]+ ﬂi)—aqﬂ—)] dt
- 00 + 0o (2.25)

The righthénd side 1s a convolution integral, and there-
fore, may be rewritten in terms of the transform of the

reciprocity condition in the frequency domailn (2.3),

+ O

j(q(z)(fr_t) oW (t)] — qu) (t) e""(T-t)]) 3t

Voo » L (2.26)

= [(I"E"-1"E“) % do

- OO

vhere I and E are the Fourlier transforms of ¢ and e,
respectively. Thus in order that reclprocity hold for
the Lagrange equations (2.15), it 1s necessary that the
lefthand side of (2.25) vanish for arbitrary values of
1(1) ana 1(®) . This is equivalent to stating that the
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integral
= )
.@) 0 2 xW
‘-Q = f(j_‘“) a;io) ] - :Lw aﬂu) ])dt (2,27)

be unchanged when evaluated with the superscripts inter-

changed and wilth arbltrary values of q(l) and q(e).
Examination of the necessary conditions for reciproc-

ity can be accomplished by assuming that all the gq's are

zero except for one in each experiment. Therefore, the

only variables will be q(l), q(g), d(l) and d(z)' A general

term of the power serles expansion of the lLagranglan could

be q7¢™. This gives

+ o0
:Q -.-.f { mél(z)(q(-))'\(ém)m-l_ nc.l(z)(q (l))ﬂ-l(c.‘u))m} 4t (2 .28)

Interchanging (1) and (2) will, in general, change the
value of the integral unless the Lagranglian 1s a quadratic
form in the g's and é's. It is also possible to have a
Lagranglian that will contaln a constant and linear terms

in the g's. The constant will vanish by differentiation.
The q terms can be integrated with respect to time and

will vanish for large positive and negative times 1f the
driving forces are not malntained for an infinite time and
if any of the external forces are dissipative. It is inter-
esting to speculate on the fact that a purely lossless sys-
tem may not show reciprocal behavior because of a current

that has been circulating forever,



These conditlons on the Lagranglan represent the antici-
pated restriction thét the Lagrange equations be linear,
With this restriction the Lagrangian may be written in the

following more explicit form:

93=%i[‘§‘%‘;]ﬂ [ ]q] -; [b:stq] a] (2.29)

The sgquare matrices contain the mixed partials with respect
to all the q's and §'s. These mixed partials must be con-
stants of the system. The result of substituting this ex-

pression into the integral (2.27) is

& f (2) ] ém] +£ aa:i ] qm]

/ oo (2.30)
@ ratd -(n) (a) F*L 1
—a, aqaq] ] [éqa‘l]q ])

The corresponding evaluation starting with the Lagrangian
for experiment (2) 1s just the transpose of the original
integral (2.30). Of course, the square matrices are un-
changed when transposed because their elements are mixed
partials and the order of differentiation is immaterial,

It can be concluded, therefore, that linear and only linear
Lagrange equations exhibit reciprocity.

The general condlition for reciprocity expressed in the

time domsin 1s not as simple as the equivalent statement in

_30_
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the freguency domain (2.26). However, for a displacement

impulse §(t) at the time origin

(2.31)

..o000 O

for both experiments, the general reciprocity condition

becomes

+ 00

f (6 (T-t) el ) = § @) e‘f’(’rut)) dt

-

(2.32)

= e (T)~ & (T)

This equation states that if a displacement impulse set off
at port 1 results in a certain force at port-2 at a.time T
later, then an equlivalent impulse set off at port 2 will

result in an egulvalent voltage at port 1 at a time T later.

2.26 Dissipative Systems

So far the system under consideration has been conserva-
tive, All dissipative elements were removed from thevsystem
by including the resultanﬁ forces in the 1list of those acting
on the system externally. Dissipation can be included in the
system 1tself by subdividing the force matrix into those forces
resulting from lossy elements €n1s erg,...fand those applied

externally eg,, If only viscous elements are

e .
s2’
included, it is possible to write



e]= €] -e] = e]- Rq] | (2:33).

where R 1s a square resistance matrix relating the q's to

the erfs.v As a matter’of convenlence all the matrices in

(2.323) have been defined with a number of iero elements so
that each i3 conformable withLEJ. Thus es] may have zeros
corresponding to the dissipative forces and er] may have

zeros corresponding to the external forces. Substitution

of this modifled expression for the forces into the left-

hand side of (2.26) ylelds

+ oo
f(ﬂ‘:’ es]- 9" e’]-q"Rq"] + q‘"Re,‘”]) dt = 0 (2.34)

when the result is equated to zero. Noting that

+ o0

. 4o
f(i)R"ﬂ(l)]—i)R‘:lU)]) cH.‘ = q(z.) R c‘(n \—“ = O (2/5—\‘
it is again possible to write
z 1 1 @ /
[ (3;) es()] _ Cl() es]) dt = O (2.3%6)

providing that the matrix R is symmetrical,
The system to which (2.36) applies has been generalized

to include viscous forces €pys © that are related to

ror



the §'s by a set of linear equations. Since R must be
symmetrical, it is possible to derive the viscous forces
from a quadratic form. This is called the Rayleigh dissi-

pation function and is defined by

¥ =% 4, R4l (2.37)

The viscous forces in terms of the dissipation functlon may

be written

e]-3L] - R4l - (2.38)

Therefore, the most general matrix egquation describing a

realizable lumped system that displays reciprocity is

#3551 - 331 e =

vhere both { and # are quadratic forms with < a func-

tion of the g's and g's and F a functlon of the §'s only.

The function £ wmay include a constant and linesr terms in

the q's,

2.27 Conditions on the Energy of the System

The relationship between the Lagrangian and the
Hamiltonian of the system was given in (2.19) and (2.20).
If the Lagrangian 1s a quadratic form, it is clear that

the Hamiltonlan muét also be, Under these circumstances
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one can identify .

> M . T L T . |
* M _ [
'i'[aqaq} = i.[aqaq] 9] (2.41)

However, the cross term

will drop out in the calculation of W from L . Similarly

the cross term in 7*
2 4 }
L. [99 29 4]

will drop out in the calculation of X . Therefore, if

such cross terms are allowed, there will bte no unlque re-
lationship between the Lagranglan and the totasl energy of
the system. Furthermore, a Lagrangian defined by (2.19)
cannot be a valid representation of a linear system con-
talning such a cross term iIn the energy because a computa-
tion of the energy from the Lagrange equations would omit

this term.



Let us examine a few systems in which terms involving
g and p appear in the energy. Stated in another manner,
let us examlne systems in which a glven displacement will
do work that is proportional to one of the momenta,

- Perhaps the first system of thls type that would come
to mind is the rotating top or gyroscope. The significant
aspects of the top can be illustrated by a much simpler
example, the rotation of & particle in central field of
constant magnitude. A physical realization of such a
system 1s a spherical mass, m, rotating in a conical bowl,
Under quiescent conditions the sphere rolls around the

bowl at radius r, with constant angular veloclty W,

The equations describling incremental motlon of the particle

about the guliescent conditions are

mr-ma’r -~ (Zmr.wo) 8= (2.42)

mrié + (zmrw,)r = (2.43)

_35-

where f 1s the externsl force acting on the mass in a radlal

direction exclusive of the steady force caused by gravity.

The guantlity t 1s the incremental torque acting on the mass,

The equations (2.42) and (2.43) do not obey reciprocity

in the usual sense because the coefficient of 6 in (2.42)

1s equal to the negative of the coefficient of r in (2.43).

The klnetlc energy 0" of the sphere is
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T = ;';m (ro + r)z(w” 6)1 +% mrt © (24 44)

The totallenergy:H' of the system 1s obtalned by adding the
potential energy of the sphere resulting from the elevation

above the apex of the cone.

Hedmi*+ smw’r* +fmré +2mrw.ré+ ¥ (2.45)

where 9¢'contains terms not necessary for the derivation of
the equations of motion and cubic and quartic terms in the
Incremental variables, If the total energy had been evalu-
ated directly from the equations of motion, the next to
last term of (2.45) would not have appeared. (Incidentally,
% ‘would not have appeared either.) Thus, the sphere
rolling 1in a bowl is a simple example of the kind of con-
fusion that can be expected when the total energy of the
system contalns both q and p in a single term,

The equations of motion (2.42) and (2.43) are like the
equations that would have been obtalned experimentally by
the two englineers who set out to measure Zy5 and Z51s but
actually measured h12 and h21' This suggests that inter-
changing one pair of gquantities analogous to current and
voltage 1n the equations of motion would yield a recipro-
cal system, For instance, 1f the incremental angular

momentum p which, in terms of the steady momentum Py is



given Dby

Porp = m(resr) (0e+8) (2.46)
EmMnW.+ Mr,*8+ 2 mrow. r

is substituted into the equations of motion, they may be

rewritten in the form

“ A P,
mr + 3!':6‘ r "(Z mr.os) P = 'F (2'47)
P A ,
m ror -(2' mr',’) r =28 (2.48)

Thus by recasting the equations in terms of the ahgular
momentum rather than the angular displacement, they become
reciprocal. Transposing the angular varisbles in this
fashion was appgrently first discussed by Rayleighl.
The total energy of the system expressed in terms of

the incremental angular momentum p is -

2. p. /
r—2 = pfﬂ-?ﬁ" (2.49)

Except for the term %’ the new equations of motion yield
the same expression,

The essential change that has been made in the expres-
sion for the energy is that p has been substituted for 6 as
a generalized coordinate. Under these circumstances p cor-

responds to a generalized velocity,6to a generalized

lLord Rayleigh, Theory of Sound, v. I, p. 154, Dover, New

York, 1945,




momentum and 6 to a generalized force,

In order to understand the general application of the
manlpulations discussed above, let us investigate the con-
ditions for the reciprocity of systems described by

Hamilton's eguations

) Vas
4] = bp] (2.50)

pl = %%] - e] (2.51)

Agalin consider two experiments (1) and (2) and again assume
that the argument of the (2) variables is T -t., Multipli-
cation of (2.50) for experiment (1) by (2.51) for experi-
ment (2) will result in

3,

TR Y. e dH
1355 )+ £ ETH (2.52)

The integral

¥ o9 4+ ©o

) ) o az% (2!
lj_‘)e]d'f: =‘((.3_: [c’)———qaq]q ]

(2.53)
o[ M i anf*M @ .o [ 3N .
L [af5r] PrT+ ‘*”[aqap]” 1+ £ |55 "'”})dt

should be unchanged by interchanging (1) and (2) in order
that reciprocity hold. With the aid of integral relations
similar to (2.35), it s possible to switch the differentia-

tion with respect to time from the front to the rear of the

..38..



terms. However, when the integral

I

+ 00

( 3 e”] - 4”e"] ) dt

o[ (¢ [22] 41 (2% ] ) ¢

1s evaluated, the mixed terms in the p's and g's evidently

(2.54%)

remain, Therefore, systems described by Hamilton's equa-
tions are reciprocal only when all mixed terms such as
those in (2.54) are absent.

For the example of the rollihg sphere discussed'agove,
1t was possible to transpose momentum and angular displace-
ment coordinates in & manner that ylelded a reciprocal
system, That this technique is possible in general can
be demonstrated by considering & system whose energy con-

tains only mixed terms of the form

M= 9a 5355 [a, }pb] (2.55)

where the g and p matrices have been subdivided into two
groups, a and b, It has been assumed that no terms coupling
a displacement with a momentum of the same group exist.
With the momenta and displacements in the b group inter-

changed, the reciprocity condition is

flagensaren-araa-genn)at =0 @59

-9
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The evaluation of the first two terms of this integral for

the system whose energy is given by (2.55) ylelds

+ ™

f(& el] + j_?’el”])df
- veo (2.57)

. () 6‘?" @rq. ) a“}:l— o ()
= j(& [ban]P" +1‘L[bqbp] Pe )dt

By means of (2.35) 1t is possible to see that it makes no
difference whether the differentiation with respect to time
is applied to the (1) or (2) experiment variables. Thus the
lefthand side of (2.56) vanishes and the system obeys reci-
procity,

The fact that it 1s possible to interchange momenta
and displacements for a portlon of a system should not be
surprising. The symmetry of these variables is well known
in quantum mechanics, The electrical principle of duality
is another expression of thls symmetry. If the dual rep-
resentation 1is possible, the potential energy may be written
in terms of the derivatives of a new set of coordinates
composed of linear combinations of the original momenta,
For lumped systems where the kinetlc and potentlal energles
are separsate gquadratic forms, this new set of coordinates
can always be found.

The total energy as a functlon of time must of course
be the same in both coordinate systems, The new Lagranglan,
however, will be the negatlve of the o0ld, since formally

the kinetic and potential energies have changed places,
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This change of sign does not alter the fact that the inte-
gral of the Lagranglian will be stationary. Therefore, the
form of the Lagrange equations will be the same whether they
are in terms of the old or the new coordinates, The formula-
tion of the Lagranglan on this dual basls for electrical
networks is given by Guilleminl. |
Since transformations of this sort leave the Lagrange
equations and, therefore, Hamllton's equations unchanged in
form, one should expect that they are a type of canonical
transformationa. The condition satisfied by a canonical
transformation is that the integral with respect to time
of the difference between the Lagranglans expressed in the
two coordinate systems be a function of the end points only.
The dual formulation for the Lagrangian satisfies this con-
dition, since the difference between the 0ld and new
Lagrangian 1s just twice the old, The integral of this
difference is statlionary and therefore dependent on the
end polnts only,.
Returning to the total energy of the rolling sphere,
let us review the ways in which the coupling can be expressed.

If the notation is revised so that p, r and © are no:longer

incremental quantities, but now represent the quiescent plus

n

Morse, P. M. and Feshbach, H,, Methods of Theoretical
Physics, MeGraw-H1l1ll Co,, New York, p. 287, 1953.




the incremental values, the energy involved in the coupling

of the rotational and rectangular systems is
L oa=4 242 '.E:
zp0 =7z mr’e =z (2.58)

It is now clear that the second form must be used and that
an angular momentum is analogous to a rectangular displace-

ment.

Another example of the same problem 1s the condenser
microphone, The energy stored is half the voltage € times
the charge q.

)

| A X‘ _ 1
7€9=2Cd 5 = 7 ¢

=

(2.59)

g

where CO is the quiescent capacitance of the microphone
with qulescent spacing 5 o and instantaneous spacing §

The integral with respect to time of the voltage e 1s the
total flux ‘A . Here the second form is again chosen and
charge is chosen as the gquantity analogous to displacement,
This cholce will also set current analogous to veloclty

and 1s called the classical analogy.

One final example is the moving iron telephone recelver.

The energy stored is half the flux A times the current 1.

) .2 xJ
zAi= 3 Loéf%' = —'2'_1%'5 (2.60)
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where LO is the gquiescent inductance of the receiver with
a quliescent spacing 50 and an lnstantaneous spacing 5 .
In this case the flux }. 1s analogous to the displace-
ment, and therefore, the voltaze 1s analogous to veloclity,
the mobillity analogy.

Thus, by examining the energy involved 1n the coupling
between two systems, it is possible to determine the coordi-
nates that will make the system reciprocal. Of course, in
systems involving more than one kind of coupling, 1t may
not be possible to choose coordinates that would make the
whole system reciprocal et one time,

The treatment of the material in this and several of
the preceding sectlions has been carried out in the time

domein, It seemed that these sections would be less ambigu~

ous done in this fashlion rather than in the frequency domain,

In general, however, the manlipulations encountered in the

study of reciprocity are easier to handle in the freguency

domain. Appendix I contains a section devoted to the evalua-

tion of the kinetic energy, potential energy, and dlssipa-
tion function for the sinusoidal case, Also included is an
evaluation of driving point and transfer ilmpedance in terms

of these energy functions,

2.3 Distributed Systems
Our intuition might tell us that any distributed linear

system can be approximated to any desired tolerance by a

lumped system. One would expect, therefore, that a distributed
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system willrbe_reciprocal if it is linear, 1is passive, con-.
tains only viscous losses, has a kinetic energy thaet is a func-
tion of the velocities ohly, has & potential energy that is

a function of the coordinates only, and has no explicit
dependence on time, With the ald of the groundwork lald

in past sections, it is not difficult to prove that this is
indeed the case,

From an intuitive point of view one can examine a
differential volume of a linear distributed system. 1In
many cases the volume will be homogeneous and therefore
reclprocal., Since the comblnation of reciprocal systems
is recipfocal, it can be concluded that the whole system 1s
reciprocal. This point of view indicates that violations
of reciprocity are likely to occur at a boundary or as a
result of coupling between two systems. As shown in Sectlon
2.27, this is actually the case when the coordinates of the
two systems are assoclated incorrectly.

Though the steps are straightforward, the detalils of
the proof of'reciprocity for distributed systems is rather
involved and is therefore contained in Appendix I. The
basic techniques involved are identical with those used 1in
the lumped system case, The general distributed system
that obeys reciprocity can be described by a Lagrangian
density that is made up of two separate gquadratic forms:
the kinetic energy density, a function of the generallzed
velocities only and the potential energy density, a function

of the coordinates themselves plus all possible combinations



of the coordinates and thelr spatial derivatives,

It is shown that a dual representation of the system
is always possible if the potential energy contains no terms
in the generalized coordinates themselves, 1In the case of
a large steady component of charge or magnetic fleld, the
dual representation is not possible, It turns out that it
is necessary to avoid combinations of such systems 1f one
expects reciprocity because both systems cannot be described
by the same generallized coordinates.

The general description of the viscous forces that can
be included in a distributed system without destroying recl-
procity is much the same as the general description of the
conservative forces. Another weay of expressing this con-
clusion is to allow the constants in the Lagrange equatlions
to become complex for sinusoidal variations of the coordi-
nates. This modification of these equations will include
the most general form of vlscous forces obeyiné‘reciprocity.

Also included in Appendix I is a demonstration of the
relationship between the general reciprocity condition and
the symmetry of the Green's function. A generalized imped-

ance has been defined so that the distributed systems may
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be connected to lumped systems. This impedance for distributed

systems: takes the form of a matrix of mode impedance}
in the general case. If one of the coordinates is ‘constant
over the area under consideration, the formulation may be

simplified so that only one impedance 1is necessary for a
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Crout, P. D., "Am Extension of Lagrange's Equatlons to
Electromagnetic Field Problems," Jour. of App. Phys.,
v, 19, p. 1007, 1¢kg.
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particular coordinate,

The general description of the Lagranglan 1s showﬁ to
include the special cases of hetrogeneous, anistroplc elastic
and electromagnetic media. Viscous forces caused by ex-}
pansive friction and slearing losses will be included as
will losses caused by electrical conductivity 1f the con-
ductivity matrix 1s symmetric.

Systems with steady rotational motlon are not in general
reciprocal, If the motion 1s in an lncompressible fluild, it
18 possible to utilize the dual rotational coordinates as in
section 2.27 and obtaln reclprocity. Similarly the proper
set of coordinates must be chosen in order than an electro-
static or an electromagnetic transducer be reciprocal, Let
us include within the classification "electrostatic trans-
ducer”™ all those employing coupling by static charge or
plezoelectric mechanisms. Llkewlse, "electromagnetic
transducers" include those coupled by magnetostriction or s
staticmagnetic field. For electrostatic coupling the mag-
netic field strength becomes a generallized veloclity and for
electromagnetic coupling the electric fleld strength is the
generalized veloclity.

The electroacoustic reciprocity theorem may be expressed
in terms of the complex current and voltage at the electrical
terminals i1 and e and the complex pressure and volume velocity
at an ideal acoustic point transducer, pO and u°, Utilizing
(85), (92), (118), (122), and (123) from Appendix I, the

reciprocity condition foi:electrostatic transducers becomes
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where'$° is the complex veloclty vector, Q. is the area of
a small sphere surrounding the acoustic point transducer,
-ﬁois the complex electric field vector,'ﬁO is the complex
magnetic fileld vector and Qe 1s the area surrounding the
electrical terminals., With the same notation the reciproc-

ity condition for an electromagnetic transducer 1is

m @ 2 ) @D (2) alt? e
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(2.62)
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These relations will hold if the transducer is linesar,
passive and has no time-varying parameters, In addition
1t 18 necessary that no electrostatic coupling exist 1ln an
electromagnetic transducer and vice-versa. Outside of
these restrictions the characterization of the transducer

1s qulite general.

2.4 Summary
It has been shown that certain systems described by

the Lagrange equations are reciprocal, Included in this



group are all linesr, péssive,lumped and distribuféd systems,
Also if a linear passive system 1s not reciprocal, it cannot
be described by linear Lagrange equations,

In some non-reciprocal cases it may be possible to
choose new coordinates for part of the system that will
restore reciprocity. In these cases the relationship be-
tween the energy and the Lagranglan will not be unique for
the original coordinates,

A simple example may demonstrate this condition more
clearly, Consider a two-port, lossless network. A per-
fectly general representation of such a network consists
of a shunt admittance, a transformer, and a series impedance,
Suppose that it is necessary to evaluate the impedances and
the transformer turns ratio by energy measurements only.
There 1s a unit current generator and a unit voltage genera~
avallable, If the current generator 1s applied to the series
impedance side of the network, the energy stored in this
element will be equal to the value of the impedance. This
result will be completely independent of the power input at
the other port. Conversely, if the shunt admittance is
measured with the voltage source attached to its terminals,
changes on the series lmpedance side cannot be detected,

The experimenter might erronecusly conclude that ﬁhere was
no coupling between the two halves of the system. With the
experiments described there 1s no possible way to evaluate

the transformer turns ratio.
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Therefore, if one expects to be able to descrlbe the
system in terms of 1its energy, 1t is necessary that the same
coordinates be used on both sides of the transformer; 1i.e.,
current generators on both sides, By turning the genera-
tors off and on 1t wouid be possible to devise enough
experiments to evaluate the impedance, admittance, turns
ratio, and in addition prove that the devicé was reclprocal.

The major result of the chapter is given by equations

(2.61) and (2.62). Here the results of Foldy and Primakoff’

have been duplicated, and in additlon viscous terms have

been included., The proof was based on energy donsiderations,

and the equations of motion were derived instead of serving
as the starting point, These results are specliglized state-
ments arising from the fact that any linear Lagrangian

system 1s reciprocal.
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1Foldy, L. L. and Primakoff, H., op. ¢it., Part II, Jour,
Acous. Soc. Am., v. 19, p. 50, 1947.




CHAPTER I[IC
TRANSDUCER THEORY

3.1 Introduction

An electroacoustic transducer 1s & device that con-
verts electrical energy into acoustic energy or vice-versa,
The complete behavior of a transducer 1s extremely diffi-
cult to formulate in termé of the general electromechanical
equations developed in the last chapter, Measurement of
all the parameters involved throughout the volume of the
transducer is almost an impossible task for a relatively
simple device., Even 1f all the parameters were known, the
computation of, for instance, the input impedance of the
device, would 1in general be impractical,

It would then seem wise to attack the problem from
the point of view of the information desired about the trans-
ducer rather than from the equations describlng the device,
If the transducer is a sound source, one 1is usﬁally inter-
ested in the relationship between the sound pressure at
some point and the electrical input, If the transducer 1Is
a microphone, one is usually interested in the relationship
of the electrical output to the sound pressure that would
have been detected by an 1deal point pressure detector.

In general these relationships wlll not be & function
of the transducer alone, but will Include the effects of

the enclosure within which the system 1s located, One



method of eliminating the effect of the enclosure is to
make 1t so small that wave motion can be neglected, This
method fails for large transducers and for high‘frequencies.
Another method of reducing the effect of the enclosure 1is
to place the transducer in or cause it to generate a

random field., As long as the field 1s uniformly random 1in
the neighborhood of the measurements, the boundsry surfaces
of the enclosure will have an effect that is easlly calcu-
lated.

A third method of eliminating the effect of the enclo~
sure 1s to place the transducer in a free fleld. This is
the onious method and also yields the most general results.
The behavior of the transducer in many environments can be
predicted from certain properties measured in a free fleld.
For instance the random field response of a microphone can
be found from its free field response, The converse, how-

ever, 1s not true,

3.2 Source of Finlte Dimenslons in a Free Fleld

Consider a source of finite dimensions surrounded by a
homogeneous and unbounded acoustic medium. Henceforth, this
environment will be called a free field, No matter how comr
plicated the structure of the source may be, the complex
amplitude of the pressure p in the free field outside a.
hypothetical sphere enclosing the source wlll satisfy the

wave equation
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#ﬁ(‘%+ﬁﬁ%(s’"e%§)+m§fi+rr =0 (3.1)

where r, O, ¢ and k are the radlus, polar angle, azimuth
angle, and the wave number. The spherical wave functlons
that satisfy this equation form a complete set, and there-
fore, the radiation from any source may be expressed by
an infinite series of these functions.

The radial part of the wave functlons are spherical
Hankel functlons hgg)(kr) if only outgoing waves are con-
sidered. The behavior of all the spherical Hankel func-
tions for a sufficiently large radius willl be proportional
to 1/r(expjkr). Therefore, at some large distance it 1is
possible to factor out the radlal dependence of the series
expression for the pressure., The remaining terms, dependent
on 6 and ¢ only, describe the directivity pattern of the
source, l

If one were given the directivity pattern of & source
and 1t was possible to expand this pattern in a series whose
terms would be the angular part of a spherical wave function,
one could then compute the pressure throughout the remainder
of the field. Thls is true because the process of expanding
the directivity pattern in terms of the angular functions

will automatically evaluate the coefflclents of the seriles



representation of the fleld for any radius, Since the
angular parts of the wave functions form a complete set
themselves, it will be possible to expand any directiviﬁy
pattern in this fashion.

Onemay conclude that the directivity pattern of a
source 1s sufficient to specify the fleld completely ex-
cept for points within a sphere that just encloses the
source, This 1s an extremely useful concept, since it
makes 1t possible to specify the source performance guite
completely in terms of three parameters: the directlvity
pattern, the electrical input impedance, and the source
response, The input impedance is defined for the trans-
ducer immersed in a free fleld and the source response
gives the pressure at some large distance from the source

for a unit current input to the electrical terminals,

%.21 The Field of a Source in Terms of the Directlvlity
Pattern

Although any given directivity pattern can be expanded
in a series of angular functions by graphlcal or numericai
methods 1f analytical techniques fail, a direct approach
to the partial differential equation will yleld some inter-
esting relationships between the directivity pattern and
the remainder of the field, Let us investigate the solu-
tions'qf of a new partial differential equation which is

formed from (3.1l) by means of the transformation
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. 3
where(3.= kr and P, is a reference pressure measured at
o = kro and 8 = 0, This new equation will have solutions
whose radial dependence vanishes for large values of kr.
The region 1n which the r dependence of p is 1/r(exp(-jkr)
and in which that of Y 1is constant will be called the far
field of the source. The modified partial differential

equation is
'y Y =
7 ~2jy 53 T F Le+(‘V}"0 (3.3)

where[_a* 1s the differential operator

P) a() | *(
Los( )= 55 2 (57 055 )+ e 54 (3.4)

The original differential equation (3.1) had a regular
singularity at r = 0 and an irregular singularity at r =0
The modified equation still has the same singular points,
One would like to expand QI in inverse powers of % , since
the fleld from a finlte source must vanish at an infinite
distance from the source. Since the irregular singularity
1s present at Infinity, it should be expected that such an

expansion will be of the asymptotic type. The series
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V(3.04)- 2 Yl (5.5

substituted into the differential equation (3.3) will lead

to the recurrence relation

an VY, +(n-nNn{,_ + Loy (Yn,)=0 (3.6)

Note that for n = 0 both sides vanish automatically, since
there can be no coefficlent for terms in positive powers of
3. Therefore, it 1is possible to begin with any w; , & fuﬁc-
tion of the angular variasbles, and compute all the V& from
this relation, (3.6). These functions QQ together with
(3.5) and (3.2) provide us with a formal solution for the
pressure anywhere in the field of a sound source whose
directivity”W; is known. Practically, however, the compu-
tation becomes enormously complicated after the first few

terms.,

3.22 The Field of an Axially Symmetrical Source

Some of the complexity involved in evaluating the W;
is eliminated by considering only sources that are symmet-
rical about the polar axis, The fleld produced by such
sources will also have axial symmetry, and the angular

differential operator Lo+ in (3.6) therefore becomes
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Appendix II shows that with the ald of the Legendre poly-
nomlals 1t is possible to compute the'w; in terms of a
summation of the derivatives of\V° with respect to cos 6.
The coefficlents of the first few terms of the series have
been evaluated for arbitrary 6. For 6 = 0, 6 = 7, and

8 = L the coefficients can be expressed in closed form.

2
The resulting expression for cos 8 = 4 1 is simply

\k"cos e=%| - (*”"\K(MICosO:il (-8

where the superscript (n) indicates differentiation with

respect to cos 6 n times, This same result may be obtained

th

directly by comparison of the n derivatives of hé?)(
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and Pm(cos 8), the spherical Hankel function and the Legendre

polyneomial of the order m,

For 8 = L the expression for Q& in terms of the deriva-

2
tives of q& 1s slightly more complicated

(Wl

Va2n ( I)%nl \y 0='£ (3 9)
el 70 251 (n-3)/(v-n)!
2
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where all the odd derivatives vanish because their coeffi-
cients always contaln the factor cos 8,

These results agree with what one would expect intul-
tively for the relationship between the dlrectivity pattern
and the near field. If the directivity pattern is a rapild
function of angle, the series in inverse powers of the radius
will have increasingly large coefficients, It is therefore
necessary to get a large distance away from the source before
the far fleld 1s reached. At a discontinuity in the direc-
tivity pattern the coefficients of the inverse powers of
radius blow up. In this case 1t is never possible to get
far enough away from the source to reach the far field. For
instance, in the plane of symmetry of a dipole one would
expect to find large tangentiasl velocitles even at great
distances from the source. Thus the limit of the far field
will be much farther from the source in the vicinity of
the plane of symmetry than along the axis of the dipole.

The results described by (3.8) and (3.9) have been used
to investigate the near field of a pilston in an infinite
baffle (Appendix II). The field on the polar axis (6 = 0)
may be calculated directly from the integral of the source
distribution for a pulsating pill box. The expansion of
this result in a series of inverse powers of radius checks
the calculation based on the directivity pattern and (3.8).

A series expression for the pressure in the plane 6 = %
has been calculated in Appendix II. This result is apparently

new and converges raplidly for low freguencies or large r, At
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high frequenclies the series osclillates and converges rather

poorly unless r 1s quite large,

3,2% The Acoustic Center of a Source

In the far fleld of any sound source, the dependence
on the radius is the same as that for a simple source; 1i.e.,
1/r(exp-jkr)., Thus, in the far fleld, for a given angle
1t 1s possible to replace an arbltrary source by a simple
source of the proper strength. As a point receiver is
brought closer to the origin, ﬁhe difference between the
source and its equlivalent simple source will be detected.

At very great distances from the source, the exact
positioning of the equivalent scurce is of little consequence.
The distance at which differences between the source and its
equivalent appear will, however, be determined by this posi-
tloning.

Consider a simple source displaéed a distance a away
from the origin along the polar axis (8 = 0). The direc-
tivity pattern of the displaced source will be altered in

The derivatives of , with respect to cos 8 evaluated
at 8 = 0 may be substituted into (3.5) to obtain the fleld

of the displaced point source on the polar axis
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V(ro)=1+2+ (%-)"+ ------ (3.11)

V(r.0)=1+ Q/:)(O)(}%)+\Kd(o) (7';): ------ (3.12)

In both cases the reference polint ?. in (3.2) has been chosen
so thai;qﬁ(o) = 1., Thus if the equlvalent source is adjusted

so that

9,_=‘4a=‘9m[\k:”] (5.13)

the difference in the magnitude of the two expressions for
\y (r,o) will have a leading term of the order (L/r)2. In
most practical cases one is interested iIn the magnitude of
the pressure only., The value of a given in (3.15) 1s there-
fore the best possible adjustment of the eguivalent source
in order that it will duplicate the magnitude of the origi-
nal field as close as possible to the origin. Let us defilne
this position @a.= ka as the acoustic center of the source,
For 6 = 7 the acoustic center 1s given by an identical
relation evaluated at the new angle., A source that 1s sym-
metrical about the equatorial plane will have its acoustic
centers for 8 = 0 and & = 7 located equidistant from the

equitorial plane as one might expect, This fact makes 1t
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clear that the location of the acoustic center is a func-
tion of angle. For other angles the best location is
difficult to evaluate and may not even be on the polar
axls, Fortunately, most practical interest in this topic
wlll be for measurements made along the polar axis,.

If the dlrectivity pattern is expressed in terms of
1ts phase £ and the natural logarithm of 1ts magnitude «
which shall be called the directivity galn

@+ js(
e[ae”po] (3.14)

V, (6) =

some of the Implications of the definition of the acoustic

center become more apparent

5 = k51=.a1§2

Jdcos e

= (0 (3.15)
6xo
Thus the derivative of the phase of the directivity pattern
with respect to cos 6 is proportional to the location of
the acoustic center, 1If the differentiation is with respect
to © 1tself, the righthand side becomes the negative of the
second derivative, Note that the dirst derivatives of 44,,
oL , or £ with respect to 6 must vanish at the polar axis
in order that the fleld have the assumed symmetry,

Therefore, changes in the magnitude of the directivity

pattern do not influence the location of the acoustic center.

A good 1llustration of this point 1s a source that is



contained in the equatorial plane, If the elements of
‘such a source all radiate in phase, the directivity pat-
tern will be real for all angles. Thus, even though the
magnitude of VQ may change rapidly with angle, the deriva-
tive of the phase will always be zero. The acoustic center
must then be at the origin, as one should have guessed,

The concept of an acoustic center 1s extremely useful
in the calibration of transducers because the far field
may be specified by a measurement at distances much closer
to the origin than would be otherwise possible, This is a
great practical advantage because large free field spaces
are expensive and difficult to construct, Before the
acoustic center can be used with confidence, it is neces-
sary to evaluate the error involved in replacing a source
by its equivalent simple source. This error will increase
as the distance to the origin is decreased. At some point
the error will become too great to tolerate in any given
experiment. This polnt will be called the 1limit of the far

fleld.,

3.24 Limit of the Far Field

Let us assume for the purposes of this sectlon that
the source has been adjusted so that its acoustic center
1{s at the origin, Any deviation of'¢ from the far fleld

value WQ will be indicative of an error that will appear

when the source 1s replaced by its equlvalent simple source,
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Measurements will in general be made of the magnitude of
the pressure only. The error € resulting from the intro-

duction of the eguivalent source 1s then

e(r.e)- i\&? -'zJ'J'%).%(T‘?T) \V\I./((:;(”) ""," (3.16)

where the real part of the second term within the magnitude
signs must vanish, since the source 1s located so that its

acoustic center is at the origin,

On the polar saxis the leading term for the error becomes

e(r.0) = —(z K"+ «")) 5. + O(3) (3.17)

where X 1s the directivity galn as defined in (3.14). Here
the superscripts indlcate differentlatlon with respect to

cos 8 as usual. If the differentiatlion had been carried out

with respect to 6, the result would be

elr.o)= - (3 (§2)'+ §'%)

.7 * 06 (3.8

Thus the error 1is determlned largely by the shape of the
directivity galn pattern, The leading term of the error
can be expressed in terms of the slope and curvature of a

plot of the directivity gain & against the cos 6. If the
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directlvity galn is plotted against & 1tself, the error
will be determined by the curvature and the fourth deriva-
tive,

Unless the dlrectivity pattern 1s very irregular in
the vicinlty of the polar axis, the leading term given in
(3.17) or (3.18) will give a good indlcation of the limit
of the far field. Usually one is interested in evaluating
small errors, and under most circumstances the1%i term

will appear well before the higher order terms,

3. 25 A Construction Approximating the Limit of the Far Fileld
At some frequencies for sources wlth smooth direc-
tivity patterns, it is often possible to neglect the second

term on the righthand side of (3.17) and (3.18). If the
source is an efficient radiator, most of the power will
be in the lower modes of radiation. Higher ordér sources
can never radlate well at low frequencles and ténd to pro-
duce irregular directlivity patterns at high freguencies.
Thus for many practical sources the term o (0) may be small.

It would be convenient to be able to compute the limit
of the far field by means of a construction on the direc-
tivity gain pattern which 1s usually plotted in decibels,
Patterns of this sort may be obtailned sutomatically with
the aid of a rotating microphone and a synchronized polar
plotter,

Since by symmetry the slope of the directlvity gain

pattern will always be zero on the polar axls, the radius



of curvature p of the pattern at this point becomes

P - &l)(o)
o« (o) = (0] (3.19)

1f&(0) 1s the distance in nepers from the origin to the
pattern (Fig. 3.1). Eliminating &’®) in (3.17) with the
ald of the radius of curvature, the error may now be ap-

proximated by

| [x(0) «(o)-~p *
¢ (r.0)=-3|5~ =5

L (3.20)
when € is expressed in nepers or
. _
¢ (r.ol = - 3 2 (=92 (3.2

when «(o) is expressed in decibels.

For a given & (o), note that the error is precportional
to the»distance between the center of the plot and the
center of curvature divided by the radius of curvature.
Thus for patterns that are very little different from that
of & simple source, the center of curvature approaches the
center of the plot, This causes the numerator of (3.20)
and (3.21) to become quite small and will therefore yleld
a small value for the error € . On the other hand, If p
becomes small, as 1t would for a directional source, the

error will become large unless the radius r is Iincreased
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Fig. 3.1 Relative to the Computation of the Limit
of the Far Field of a Sound Source.
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accordingly. Thus the limit of the far field for the direc-

tional source is at a much greater distance than that for
the omnidirectional source,.

This construction 1s extremely simple, and use has
been made of it in the calculation of the limit of the
far field for a number of commercial transducers. In prac-
tical microphone calibration it provides a method whereby
the distance between source and receiver may be minimized

for a given error,

3.3 Reciprocal Transducers

By virtue of the electroacoustic reciprocity theorem
of Chapter II, 1t is possible to demonstrate that a recipro-
cal transducer has properties that are especlally useful
in caiibration work. Let us first evaluate the transfer
impedancg between the terminals of a transducer and some
polnt in the free field surrounding the transducer. If
the device is reciprocal, the transfer impedance will be
the same whether measured from the electrical to the
acoustical side or vice-versa,

In Fig. 3.2a, a current 1 1is input into the electri-
cal terminals and a pressure p observed &t the point r and
8. This measurement defines elither the transfer impedance
z,4(r,8) or the transfer ratio hy;(r,8). The reverse
experiment (Fig. 3.2b) involves a simple source of volume
velocity u placed at r and 6., The open-circult voltage

e 1s proportional either to the transfer impedance Z1o
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or to the transfer ratio h12‘ By the electroacoustic

reciprocity theorem (2.61)

Wi
a 22)
Al _5‘2 e’ (3'
=u§+l."’ (Eo)‘H).dae:T_F’ Z;
de

the transfer impedances must be equal 1f the device 1s

electrostatic and the transfer ratios

o | .
hay = 0 = @@)Jf;,vw'dam
da
N RN - (3'25)
- Fp (B H ) dde= @ = —h,
ae

will be equal and opposite in sign If the device 1s elec-
tromagnetic (2.62). As indicated in Chapter II, the classi-
cal analogy must be used wlith electrostatic transducers and

the mobility analogy with electromagnetic transducers,

%.3]1 Parameters Describing a Reciprocal Transducer

In the following analysis the classical analogy will
pe used. Strictly speaking, the results should only be
applied to electrostatic transducers. The only lmportant
difference in the treatment for the mobllity analogy 1s
that a negative sign will appear here and there, There-

fore, the results for electromagnetic transducers can be

..6;8..
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inferred from the following treatment for electrostatic
transducers.

The speaker callbration of & transducer is the pres-
sure produced &t some point in the far field by & unit
current input to the electrical terminals. In terms of
the transfer impedance z,, the speaker callbration S(r,8)

may be written

z, (r.e)— S(r,e) (3.24)

ro»e

where r must be large enough so that the measurement is
carried out in the far fleld (symbolically indicated by
r—e),

The microphone calibration of a transducer is the
open~circult voltage produced in a free field by a plane
wave of unit pressure amplitude incident upon the micro-
phone at an angle 6. The plane wave may be generated by
a simple source at a very large distance from the trans-
ducer, The pressure p that would be detected by a point

pressure detector if 1t were substituted for the transducer

would be

a -jkr
p= zzz;: e (3.25)
where Z5s 1s the driving polnt impedance of a simple source,

a is the radius of the source, r is the distance to the
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transducer, k is the wave number, and u is the volume
velocity of the source, Let us define the reciprocity
parameter J(r) as the pressure p detected by the point
pressure detector divided by the volume veloclty of the
simple source u,

LB _IpC geikr
J(")‘TI"Z)J € (3.26)

Here the driving polnt impedance of the simple source has
been evaluated (see Appendix I, Section 9.) and g is the

density of air, c is the ’velocity of sound, and A 1s the
wavelength,

‘ For large values of r the transfer Impedance z,, may
be written in terms of the microphone calibration M(6)

and the reciprocity parameter J(r)
z,(r.e)— J(r) M(8) (3.27)
r—»

and since the transfer impedances are egual

s(r,e) = Jir) M (e) (3.28)

for any reciprocal electrostatic transducer, For recipro-
cal electromagnetic transducers the speaker calibration

will be equal to the negative of the reciprocity parameter

times the microphone calibratlion.



The equatlons above are applicable in the far field
only, but may be generalized by rewriting (3.2) in terms

of the reciprocity parameter and the speaker calibration

p = S(r.,,e)a"{—((r'i’)\y(r,e)i (3.29)

where 3 has been evaluated at the reference point where

po was measured., This reference point is for convenience

on the polar axls and 1s always in the far field. Now from

Fig. 3.2a 1t is possible to identify the transfer impedances

Zsy and Z15
Zy=2Zz = s(r.a)\k(r.e)a- JiriM@yV¥(r,e) (3.30)

and thls expression is valld at any polnt in the field
outside of a sphere just enclosing the transducer. In the
far field ¥ becomes V¥, the directivity pattern of the
microphone. Thus the directivity pattern of a reciprocal
transducer is the same whether it acts as a source or a
receiver,

In addition the deviation of the speaker response
from that of a simple source ¥ 1is the same as the devia-
tion of the microphone response from that of a point pres-
sure detector, For the microphone this effect may be
visualized as a curvature of the wavefronts arriving at
the transducer as a result of placing the source in the

near fleld of the microphone. Therefore, the calibration



of a miérophone by means of a simple source placed in the
near fleld will differ from the callibration made with the
source in the far fleld., The relationship between these

two callbrations may be expressed in terms of the direc-

tivity pattern with the aid of the functlon Q’ .

The computation of the first few terms of the func-
tion QI from the directivity pattern will not only predict
the acoustic center and the limit of the far field of a
transducer acting as a sound source, but 1ln addition will
predict the acoustic center of the transducer acting as a
microphone and the point at which the curvature of the
wavefronts becomes important, The expressions for € ,
(3.17), (3.18), (3.20), and (3.21) may therefore be inter-
preted as glving the error incurred by calibrating a micro-
phone with a simple source located at r,

Thus a reclprocal transducer can be characterlzed by
three parameters: the electrical input impedance, the
directivity pattern, and elther the speaker or the micro-
phone calibration in the axial direction. All parameters
are measured with the transducer immersed in a free field,.
If the transducer is placed in an enclosure, the change in
input impedance can be computed, formally at least, by
replacing all reflecting surfaces by sources whose velocity
is equal and opposite to that of the incident wave. Inte-
grating the response to a polnt source of arbltrary loca-

tion (3.30) over the reflecting surfaces will gilve an
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output voltage that 1s equal to the current times the
change in 1lmpedance,

The only other parameter that might be included in
a description of the transducer is the scattering pattern,
This pattern is proportional to the amplitude of a scat-
tered wave in the far field of the transducer as a result
of a plane wave incident at an arbitrary angle. The re-
sulting parameter is a functlon of both the angle of the
incident plane wave and the angle at which the scattered
wave is measured. Since the scattered wave is an outgoing
solution of the wave equation, the results obtained for
the directivity pattern of a source will apply equally

well to its scattering pattern,

3,32 Recliprocity Calibration
If two transducers, (a) and (b), are placed in a free
field, the transfer impedance Z,b between the two electri-

cal ports can be computed

Zay = M (0) W, (r,0,) Sy (r,0) YV, (r,6,) (3.31)

1f one assumes that the pressure at the receiveryis not
altered appreciably by the wave scattered from the source
as a result of the wave scattered from the receiver. This
1s usually a second order effect at low and moderate fre-

guencies, but at high frequencies multiple reflections
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may become gulte significant especlally i1f the two trans-
ducers have plane, parallel surfaces,

If the resﬁlts of a comparison callbration between
transducers (a) and (b) are included in (3.31) one can

write

. | 1
= Zab hddp) q&(hékl z
WQ (rl BQ)MQ(O) [J‘(r) Mb(o) \yb (T.Bs)] (3-32)

where the spacing between transducers for the comparison
calibration 1s large., This expression (3.32) will reduce
to the usual reciprocity formula as the spacing 1s increased
and \K and \‘/5 approach the directivity patterns ‘lf., and \yb. .

An example of the use of (3.32) in the calibration of
a speclal tfansducer (a simple source on a sphere) 1s des-
cribed below, For most practical transducers, however, it
is hard to get accurate information about'w by calculation
from the geometry of the transducer, by direct measurement,
or by computation from the directivity pattern. The direc-
tivity gain pattern usually may be measured with little
difficulty, but phase information about the pattern is
almost always inaccurate. The location of the acoustic
center and the limit of the far fleld can be found for all
transducers, and therefore, this Information will be of great
value in the practical calibration of microphones and sound

sources.,
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3.4 The Fleld of a Spherical Source

In order to galin a better understanding of the acous-
tic center and the 1limit of the far field, 1t 1s helpful
to compute the fileld of some simple sources. A complete
description of the field of a general spherical radisgtor
with axial symmetry can be obtalned in terms of the Legendre
polynomials Pn(cos 8) and the spherical Hankel functions
hn(kr)l. Two particular cases have been chosen for com-
putation: a polnt source located on the surface of the
sphere on the polar axis, and a spherical plston pulsating
in the surface of a sphere. The angle subtended by an arc
in the surface of the pliston and passing through its center
is 120 degrees,

The calculations pertinent to the following discus-

sions will be found in Appendix IT.

2,41 Calculation of the Acoustic Center

Fig., 3.3 1s a plot of the locatlion of the acoustic
center of a point source and a pliston source located on
the surface of & hard sphere, The horizontal axis of
Fig. 3.3 1s the wave number k times the radius of the sphere
ry- The vertical axls 1s the locatlon of the acoustic center
a in terms of the radius of the sphere. The distance a is

measured from the origin along the 6 = 0 axis,
lSee for instance, Morse, P. M., Vibration and Sound, McGraw-
Hill, New York, p. 319, 19i48,
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At low frequencies the acoustic center for the point
source 1s a half radius in front of the sphere. As the
frequency 1is increased, the center moves toward the sur-
face of the sphere. Above kr, = 1 (circumference of the
sphere equal to a wavelength) the position of the center
osclllates about the surface of the sphere with an ever-
decreasing amplitude, At very high frequencles the series
expressions involved in the evaluation of the location of
the center may be approximated by integrals, and one finds
as . k approaches infinity a approaches unit, This 1s
actually the geometrical optlcs approximation, since the
wavelength will be very small compared to the sphere,

The point source appears to be radlating in an infinite
baffle and, as a result, acts llke a simple source located
at r = ry.

At very low frequencies the acoustic center for s

plston set iIn a sphere is given by

r‘.(|+c.059.) (2.33)

o
1]
o

where 290 1s the angle subtended by the piston., When 80
vanishes, this expression should give the acoustic center
for a point source on a sphere, Inspection of Filg. 3.3
and (3.33) indicates that this is indeed the case. If the
whole sphere is pulsating uniformly (eo = 7), the right-

hand side of (3.33) vanishes. Thus the acoustic center of
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& simple source is at its center as one should expect.

Calculations have been made at higher frequencies
for the case 6 = 1’3-, and the results are plotted in Fig.
3.3. The curve runs parallel to that for a point source
up to about krl = 1, but at higher frequencies gradually
drops toward zero, For sources with a well-behaved veloc-
ity distribution (no discontinuitles in the slope), the
directivity pattern is proportional to the velocity dis-
tribution, Thus, if all the elements on the surface of
the sphere radlate in phase, the‘directivity pattern will
have constant phase, One can conclude that the acoustic
center of this sort of source 1s at the origin at high
frequencies,

The plston set in a sphere does not have a well-
behaved velocity distribution, but any physical realiza-
tion of this source will, Therefore, the acoustic center
willl be at the origin for some high frequency; the sharper
the drop in the velocity at the edge of the piston, the

higher the frequency.

3.42 Calculation of the Field of a Point Source on a Sphere
The pressure on the axis in front of a point source on
a sphere has been calculated for three freguencies; kr1_$ 0.1,

kr, = 0.5, and krl = 1.0, These data are plotted in Fig.

1
3.4 as deviations from the pressure broduoed by a point

source located at the origin (a = 0) and then located at
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the acoustlc center as given in Fig. 3.3. Thils procedure
emphasizes the advantage to be galned by choosing the
proper acoustlic center, Note that the three bottom curves
indicate that the difference between the actual pressure
and that from an eguivalent source i1s less than 0.5 deci-
bels as close as one dlameter away from the surface of
the sphere for all three frequencies,

The low frequency curve deviates at larger distances
than do the other two, Examination of the series expres-

sion for ¥ at low frequencies (see Appendix II) shows

2

that the (1/krl) term has a rather large coefficient that

is proportional to (krl)g. This term could not have been
predicted by the construction on the directivity pattern

given in Section 3%.25. The first term in the complete ex-

pression for the error (3.17) is proportional to (krl)u and

the second to (krl)z. Therefcre, at low frequencles the

term that was neglected in the graphical construction pre-
dominates, This situastion indicates that the graphical

method may fail at very low frequencles,

At kry = 0.5 the second term of the error (3.17) Ls
still important, but at krl = 1,0 the graphical method pre-
dicts the error accurately.l This might have been guessed
without calculation, since the first term of the error will

always predict an increase in \V .

The directivity plots of a point source on a sphere used
here are from Morse, P.M., op. c¢it., p. 322. However, the
plots in this reference are not of great enough accuracy to
be used in determining the error € ., For this reason, the
original calculations were obtalned through the cooperation

of the MIT RLE Computing Group.



A series expression for the field of & piston in an
infinite baffle for 6 = O 18 given in Appendix II (21),.
Examination of the error (3.17) for thils source shows that
the situation is much the same as for the polnt source on
a sphere, The first term of (3.17) is again of the order
(kr1)2 )2 4

whereas the second term has both (kry)~ and (kr

1)
terms. At low frequencies the second term will predominate
and the graphical constructlon will be invalid, At moder-
ate and high freguencles both terms are about the same size,
and the construction will give a good approximation tc the
error,

Tre closed form expression for the pressure In front
of the sphere at low frequencies given in Appendix II
allows one to make an accurate plot of the reciprocal of”
the pressure without difficulty. Such a plot is shown in
Fig. 3.5. It is interesting to note that a limlted amount
of ddta taken no farther than 5rl from the origlin would
indicate that the acoustic center was located closer to
the surface of the sphere than %rl. Thus, in determining

the acoustic center, it 1s wise to take measurements well

beyond the 1limit of the far fleld in addition to those

taken near the limit.
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3.5 BSummary

It has béen shown that the near field of a sound
source is directly related to its directivity pattern.
Formulas for the acoustic center and the limit of the
far field were developed 1n terms of this pattern. These
formulas help to give the experimenter the answer to one
of the most frequent questions in microphone calibration:
"How closely can I space source and receiver?"

The calculations for the speclal sources gave greater
meaning to the concepts of acoustic center and the limit
of the far fleld and also pointed out some of the limita-
tions, The real test of the usefulness of these two con-

cepts will come in thelr applicat{on to experimental data.
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CHAPTER IV
MEASUREMENTS AND MEASUREMENT TECHNIQUES

4.1 Introductjon

The materiél discussed above has been entirely theo-
retical in nature, The work leading to the discussions 1in
Chapters II and III has helped to produce a more firm and
detailed understanding of the phenomenon of reciprocity and
the behavior of the field of a transducer, That many of
the concepts developed there are useful in practical cali-
bration work will be demonstrated in the present chapter.

Measurements of the directivity patterns and acoustic
center have been made for seven different types of commer-
clal transducers:

1) Altec-Lansing Model 633*A dynamic micorphone

2) Shure Rochelle salt Model 9898 crystal microphone

%) Western Electric Model 640-AA condenser microphone

4) Altec-Lansing Model 21-B condenser microphone
5) Altec-Lansing Model 21-C condenser microphone
6) Altec-Lansing Model 21-BR condenser microphone
7) Altec-Lansing Model L-1 dynamic pressure unit

mounted in a special spherical housing
In several cases more the~ one unit of a gliven type was
studied. Throughout the forthcoming discussion reference

will be made to these seven types of transducers by their

model numbers only.



Following the presentation of the measured date 1is
a section describing experimental technigues of microphone
calibration. This discussion includes the method of appli-
cation of the acoustic center and directivity data to a
calibration setup. Also discussed are many of the other

limitations and errors that may arise in practice.

4 2 Measurements

All the measurements were carried out in the MIT
Acoustics Laboratory anecholic chamber, The free space
available was about 14 feet cubed. The chamber actually
has a longer dimension, but the full benefit of this ad-
ditional space could not be realized because of the panel
transmission apparatus, The chamber 1s designed to reflect
less than 10.per cent of the incldent energy down to about
70 cps. Very few measurements were carried out below

1000 cps, however,

4y 21 Experimental Apparatus

Most of the electronic equipment was mounted in a
trio of relay racks located just outside the chamber (Fig.
4.,1). Included in this equipment are the following items;

1) Two-frequency audio oscillator

2) Power amplifier

3) Pulsed sine wave generator
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Fig. 4.1

Electronic equipment and
control panel.
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4) Precision attenuators
5) Universal microphone preamplifier panel
6) Condenser microphone line amplifier
7) Amplifier compensated for microphone response to
provide uniform output at all audio frequencies,
8) Tracking wave analyzer electronically coupled to two-
frequency oscillator
9) Expanded scale voltmeter for monitoring condenser
microphone polarizing voltage
10) Expanded scale output meter for making accurate
judgments of attenuator settings
11) Oscilloscope for monitoring output wave form
12) Oscilloscope for determining frequency by Lissajous
patterns against frequency standard
13) Graphic level recorder mechanically coupled to
oscillator
This equipment was found to be guite flexible and was
easily adapted to all the experiments conducted. Most of
the special equipment was designed and constructed by
Mr. B. G. Watters and is described in detall in his thesis.l
In particular, a speclal transducer of hils deslgn was used
extensively (Fig. #.2). This device is an L-1 pressure
unlt from a 63%3-A dynamic microphone enclosed in a spherical

housing about two inches in dlameter. The acoustic circuit

- e e s e e am e e e e o e e me e omm e e e em e e R . S S

1Watters, B.G., "Sound Sources for Microphone Calibration”,
MIT Masters Thesis, 1953,



Fig. 4.2 Altec-Lansing L-1 pressure unit mounted
in a 2-inch sphere,
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of the pressure unlt has been modified so that the source
response of the unit 1s gquite smooth between 1 and 20

kilocycles (kc).

4 22 Scannlng Apparatus

An automatic method of scanning the fleld 1in front
of a sound source was found to be desirable. One of the
prime considerations was the accuracy with which the scan-
ning microphone was positioned. For this reason a dis-
mantled lathe bed was used as the baslis of the scanner
(Fig. 4.3). A small and extremely qulet motor was at-
tached by O-ring belts to the screw, Thus the scanning
framé was driven along by means of the lathe carrlage.

The information desired from the experiment was the
deviation of the sound field from that of & simple source.
Therefore, a novel and simple method of recording the
position of the microphone was designed. A ten-turn
potentiometer was attached to the carriage and geared to
a rack fixed on the bed (Fig. 4.4). The audio signal
from the oscillator was fed to the potentiometer. The
output of the potentiometer was then proportlonal to the
distance travelled by the microphone, This voltage, pro-
portional to dlstance, was connected to the input of the
power amplifier which, in turn, was connected to the sound
source. If the scanner starts at the acoustic center of

a simple source, the pressure arriving at the microphone
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Fig. 4.3

scanner for plotting field of

e sound source,
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Fig. 4.4 Detail of scanner showing potentiometer.
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will be independent of the movement of the scanner,

The scheme described above has several advantages,
The voltage output of the microphone will be approximately
constant allowing for close examination of any changes.
A lafge dynamic range 1s not necessary in the measuring
equipment. The information about the separation of
source and receiver is automatically taken into account,
thereby reducing the amount of data necessary., Finally,
it 1s possible to include an adjustable resistor in series
with the potentiometer to provide a means for positloning

at will the effective acoustlic center of the scanner,

4 23 Acoustic Center Measurements

The procedure for making measurements of the acoustic
center of a transducer conslsted of adjusting the seriles
resistor on successive scans until the curve with the
least deviation from a straight line was obtained., The
series resistor was calibrated in terms of the number of
centimeters between the acoustic center and some arbitrary
reference.

Two typical scans are shown in Fig. 4.5. The first
was taken at 2 kc and shows clearly the limit of the far
field at slightly under 5 cm from the beginning of the
scan. At large separations the effects of reflections
from the wall of the chamber begin to manifest themselves

as standing waves,
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Note that the vertical scale is qulte expanded., The
amplitude of the standing waves shown is only about 0.1
db. This large scale was obtailned by means of a differ-
encing circuit. The output of the wave analyzer was
rectified and compared with a d-c reference voltage., The
difference voltage was connected to an Esterline-Angus
recording milllameter and the scans shown in Filg. 4.5
are full size tracings from the originai data.

Because of the high sensitivity of the system, great
care had to be exercised in order to svoild erroneous
readings as a result of amplifier drift. In general,
any suspected recording was rerun untll several similar
plots were obtained, Recordings had to be taken during
periods when the llne voltage was stable,

The second scan of Fig. 4.5 illustrates the effect
of multiple reflections between scurce and receiver, 1In
this case the L-1 pressure unit and a 640~AA were used,

The flat face of the 640-AA evidently served as an ideal

reflector at the fairly high frequency of thls scan. Other

more complicated reflections occur after about 35 cm.

These may be caused by the scanning apparatus itself.
In splte of a certain amount of trouble at a few

frequenclies caused by reflections from the scanner, the

scheme was much more satisfactory than others that were

tried. Point-by-point measurements were taken with extreme

care and perseverance every centimeter for a distance of



80 centimeters and at five frequencies, From these data
1t was difficult to guess the acoustic center within a
guarter of an inch., The results of these measurements
are shown for comparison in Fig. 4.6.

More data were taken on the L-1 unit because it was
to serve as the source in the measurement of the centers
of the other microphones tested., For the measurements
shown in Fig. 4.6 microphones with known acoustic centers
were used. At low frequencies a probe tube attached to
a 640-AA was employed. However, about about 5 kc the
attenuation of the probe became so great that noise and
flanking were insurmountable problems,

A Tibbets Rochelle salt Diabow unit was used for
measurements from 3 ke up to 16 kc. This unit is about
1/4-inch square and 1/16-inch thick. Its sensitlvity
when attached to a double-shielded cathode follower input
is about -70 db re 1 volt and 1 microbar, Because of the
drop in the source sensitivity and the increase in the
acoustic background noise, this unit could not be used

with accuracy below 3 or 4 kc,

The Diabow unit was mounted on & long tube which acted

as the second shleld for the shielded wire running up the

middle. Shielding problems were critical and trouble was
actually experienced as & result of a standing wave between

the acoustic and electrostatic fileld of the transducer,
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The vertlical axls of the data and sketch of the L-1
unit are plotted double size in Fig, 4.6, The reference
for the locsation of the acoustic center is as shown, The
data are quite smooth, considering the scale to which they
are plotted, In addition, they appear to follow in a
general way the predicted curve for a plston in a sphere,
The low frequency value is what one would expect for a
piston in a sphere subtending an angle of 80° at the origin,
The high frequency value 1s between that for a piston in
a sphere and & plane source in an infinlte baffle, These
data were used as a correction to all the subseguent dats
taken on acoustic centers,

Figures 4.7 through 4.10 show similar data for the
other microphones, The data for the 633-A microphones
show an appreclable spread in the region between ? and
8 kc. This may be explained by the fact that the far
field recedes in this frequency range., Perhaps the near
field is rather complicated in this range and was Included
incorrectly in the scans determining the acoustic center,.

The 21 series of condenser microphones has the least
change in acoustic center as a function of frequency. As
one would expect, the additlion of the holes moves the
acoustic center forward. The accuracy of the data for
these three microphones as well as that for the others is
dependent on freguency. At high fregquencies because of a

number of measurement difficulties, the error may be as
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Location of Acoustic Center in Inches
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large as 0.2 inch, In the remainder of the frequency
range except for the 633-A measurements, the error should

be less than 0.1 inch,

4 24 Measurements of a Point Source on & Sphere

An experimental verification of the callibration theory
set forth in (3.%2) was carried out. This equation states
that a reclprocity calibration may be carried out in the
near field of one or both of the transducers, providing
the deviation of the fleld from that of a simple source
is accurately known, In Section 3.42 the near field of
a point source on & sphere was calculated, These curves
can be utilized in a reciproclity calibration 1f the second
transducer approximates a point receiver and does not
cause multiple reflections between the source sgnd the
recelver,

An experimental setup that meets these specifications
1s shown 1in Fig. 4,11, The sphere 1s a hollow copper float.
The point source on the sphere is approximated by a 633-A
microphone mounted flush with the surface of the sphere,
The polnt receiver 1s a 640-AA microphone with a double-
shlelded extension cable between 1t and the preamplifier,

The sphere is 18 c¢m in dlameter and its circumference
equals a wavelength (krl = 1) at about 600 cps. The sphere
is filled with glass wool to prevent resonances caused by

sound that lesks into the interior.
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Fig. 4.11 Apparatus for the measurement of the field
of a point source on a hard sphere.
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Measurements of the field were made in the anechoic
chamber from 200 to 1000 cps. A typlcal plot of these
data 1s shown in Fig. 4.12. The measured points fall on
the theoretical curve within 0.1 db from 2.5r1 to 8rl
from the center of the sphere., Therefore, the source
proved to be an extremely satisfactory approximation to
a point source on a hard sphere, However, at frequencies
above 500 cps the first two points begin to depart from
the theoretical curve slightly,.

Additional measurements were taken with the source and
recelver set up in the anechoic chamber control room. These
data show that the reflections from the walls of the room
begin to be important at greater than }rl. Measurements
taken closer to the source ylelded data that were used in
a reciprocity calibration of the 640-AA. The resultant
response was within a few tenths of a decibel of the actual
callibration.

Of course the reciprocity measurement in the anecholic
chamber control room was only part of the complete cali-
bration. It was still necessary to perform a comparison
calibration of the 640-AA and the sphere, Thils was done
in the anechoic chamber, but could have been carried out
in & moderately dead room for frequencles below 1000 cps.

The method for this measurement will be discussed helow,
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4 25 Directivity Measurements

Directivity galn patterns were automatically recorded
at a number of frequencies for all seven types of trans-
ducers, The equlipment used consists ofsg rotating boom
and a synchronized polar level recorder, The source
was placed on the boom and rotated around the microphone
at a distance of about 40 cm. This distance was chosen
so that reflections from the walls would not be important
and yet the spacing would not be so close that the exact
position of the center of rotation would be critical.

The data have been traced directly onto Figs, 4.13
through 4.28. To save space only half the plot has been
shown in most cases, Fig. 4.17 is an exception which com-
pares the two halves of the directivity galn pattern of
a 633%-A., At this frequency there 1s apparently a fairly
serious assymetry in thlis microphone, Other microphones
(the 640-AA, for example) do not show any assymetry, thus
ruling out the possibility that the difference shown in
Fig. 4.17 might be caused by reflections from the walls,

A speclilsal plot of the variation in response of the
9898 in the eguitorial plane is shown in Fig. 4.20., Since
the microphone apparently has axial symmetry, 1t is rather
surprising that variations of the order of 20 db are ob-
served at 8 and 10 kc¢c. These data emphasize the futility

of making one calibration at grazing Incidence for such
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s microphone, If one expects to find an average grazing
response, azlmuth directivity gain plots such as those
in Fig. 4.20 must be run at all the higher frequencies,

The accuracy of these directivity gain patterns will

-12%-

be greatest for situations where the sensitivity 1s highest.

When the source is positioned at angles of 90O and greater
with respect to the axis of the microphone, sound energy
reflected from the wall of the chamber may arrive at the
microphone in the normal direction, The output voltage
caused by the reflected wave may be comparable to that
caused by the direct wave, and hence the rear two quadrants
of the pattern may be in error by several decibels at high
frequencies, The portions of the patterns that are on the
ma jor lobe should be accurate to about one declibel, the

practical 1limit of the recorder,

4,26 Calculation of the Limit of the Far Fileld

The graphicél construction described in Section 3.25
was applied to the directivity gain patterns (Figs. 4.13-
4,28). The results are plotted to show the minimum dls-
tance to which a polnt receiver may be brought without
observing more than a 3 per cent deviation from the pres-
sure radiated by a simple source, This minimum distance
for the IL-1 unit 1is shown in Fig. 4.29a. Also shown in
this figure are the equivalent distances taken directly

from the scanner data. The prediction by means of the
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graphical construction seems to give a good indication of
the actual fleld, and, 1f anything, the estimate is &
little conservative, The scanner data are rather scattered
because the polnt at which the pressure deviates by 3 per
cent apparently depends on higher order terms which are
neglected in the graphical construction, The scanner
plots rarely made a smooth turn away from the horizontal
line.

The data for the other microphones (Figs, 4.29b and
¢) 1indicate that the condenser microphones have the smallest
near flelds, The far field of the 21-B recedes around 12 kc
as a result of the dipole actlion of the slots, This phe-
homenon 1is almost completely absent from the 21-C even
though the slots have not been elimlinated., Apparently

the holes tend to shunt the volume veloclty from the slots,

4.3 Measurement Techniques

The data of the previous sections and the theory of
Chapters II and III, together with additional information
gained through experience enable us to dellineate the
physical limitatlons on the free-field calibration of
microphones. Let us assume that a reclprocity calibra-
tion of a certaln transducer is to be carried out over a
specified frequency range and with a speciflied accuracy.

The experimenter may ask:



1) Is the transducer to be calibrated reciprocal?
2) How closely can source and recelver be spaced?
%) What will be the error caused by reflections?
4) May pulse technigues be used to advantage?
5) Should the data be recorded point by point or
automatically?
6) What errors may occur in the measurement of elec-
trical quantities?
7) What factors should be considered in the selection
of a sound source?
With the aid of the material in the foregoling plus a cer-
tain amount of practical experience, it 1s possible to

give englineering answers to these questions,

4,31 Linearity and Reciprocity

As shown 1n Chapter II, the transducers used in a
reclprocity calibratlion will in general be reciprocal
for incremental signals. In any case one can prove that
they are reclprocal by making measurements of the electri-
cal transfer impedance of a palr of transducers. Equality
of these two transfer impedances for an arbitrary second
transducer will be sufficient grounds for concluding that
the first is reciprocal, It 1ls wise to make the measure-

ment with two completely different types of transducers
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becaugse 1t 13 possible that an identical :nonreciprocal
mechanism may exist in two transducers of the same type,

Let us assume that the transducers under considera-
tion exhibit reciprocity for incremental signals., The
guestion that the experimenter must still answer ls, "At
what level will nonlinearities become important?®

A small, low-nolse microphone should be placed as
close as possible to the transducer whose linearity is
to be studied. The frequency response is recorded for
several different input levels., Any changes in the shape
of the response indicate errors that will occur in a reci-
procity calibration.

Every effort should be made to maske measurements at
input levels that correspond to the output levels obtained
when the transducer operestes as a mlicrophone, An illustra-
tion of this point is shown in Fig. 4.3Ca and b. The
response of an Altec-Lansing bull-horn driver was measured
at close renge with a 640-AA microphone, The heavy curve
i1n both Fig. 4.30a and b was measured with a fairly small
voltage (about 40db below rated voltage) appllied to the
driver., However, reductions in the applied voltage of
20db (Fig. 4.20a) and 60db (Fig. 4.30b) show important
changes 1n the frequency response of the source. A limited
number of measurements over a range of about 10 db might

not show significant nonlinearities, It can be concluded
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that the horn driver will be a satlisfactory reciprocal
transducer above 2 ke, but not below,

In general it 1is not safe to assume that a trans-
ducer is linear until measurements of the sort described
above have been conducted., Horn drivers will, in general,
exhibit nonlinearities like those shown in Fig. 4.30. Cone
louspeakers show even more erratic behavior, At frequencies
near the rim resonance the exact form of the cone break-up
will be strongly influenced by the level of the input volt-
age. In some cases the cone may not break up in exactly
the same way even when the same voltage 1s applied a second
time. Dynamic microphones like the 633-A show nonlinearities
at low frequencies for extremely small inputs, Most high
quality transducers are linear and reciprocal throughout
some usable portion of the freguency range, and it is al-
ways possible to use a number of sources of different types
in order to cover the entire audio range,.

The data shown in Fig. 4.30 were recorded through a
narrow band wave analyzer, thus eliminating the contribu-
tion to the response of the higher harmonics., O0ften a
harmonic can be detected with greater ease than a corre-
sponding change 1n the fundamental, Unfortunately there
is no general relationship between the levels of the har-
monics and the change in the fundamental, It Is interest-
ing to note, however, that even harmonics alone can never

cause changes in the fundamental., Thils 1s a result of the



fact that a nonlinear element that is an even function of
some generalized coordinate can never produce a contribu-
tion to the fundamental or any odd harmonics,

A pertinent example of this kind of nonlinearity is
thaet introduced by the square term of a condenser micro-
phone.1 No matter how great the second harmonic distor-
tion may be, thls transducer will exhiblt no changes in
the fundamental. Of course, changes in the fundamental
may occur for other reasons. A nonllnear compliance will
usually cause changes in the fundamental and the result-
ant fallure of the device to obey reciprocity.

Hysteresis mechanisms are basically nonlinear and
may therefore introduce violatlions of reciprocity. For
incremental variations in the coordinates, the area
enclosed by the hysteresis loop may be approximated by
an ellipse, This does not represent a nonlinearity but
merely the presence of a small linear dissipative element,
As the area enclosed by the loop increases, the direction
of the major axis or the ratio of the major to minor axis
may begiln to change. It 1s at this point that the device

becomes nonreciprocal. In any case a test of linearity

by a method simlilar to that employed above will indicate

the maximum level at which the device may be operated

- - B -

_150_

1Cox, J.R., "Nonlinear Analysis of the Condenser Mlcrophone,"

Quarterly Progress Report of the MIT Acous. Lab., p. 4,
Oct.-Dec., 1951.
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4 32 Spacing of Source and Recelver

The limit of the far field can be predicted with satis-
factory accuracy from the directivity pattern (Section 4.26).
However, spacings as close as those indicated in Fig. 4.29
are probably not useful. The locatlon of the acoustic
center varies slightly for different mlicrophones of the
same type. Therefore, it willl be necessary to space the
transducers far enough apart to reduce these individusl
variations to negligible proportions or, alternatively,
to find the position of the center of each transducer.

If a callbration is to be conducted for which the
desired accuracy is of the order of 0.5 db, it is suggested
that the average values of the acoustic center be used. In
the worst case (that of the 633%-A) thls accuracy could
be maintained for a spacing of 5 ilnches, providing that
multiple reflections are unimportant. This will, In general,
be true at this spaclng at low and moderate frequencies,

At high frequenclies 1t may be necessary to use other tech-
niques,

If a greater accuracy 1s desired and space 1is limlted,
it may be wise to find the exact location of the ascoustic
center., Polint by point measurements of the field at several
different spacings will serve to define the acoustic center
accurately if measurements close to but not in the near field

are made, Knowledge of the limit of the far field is necessary
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in order to eliminate errors like that illustrated for the

point source on a sphere (Fig. 3.5).

4 33 Reflections
The wave 1mpedance of a spherical wave 1s
P st
17 -— P \ o+ \ (4-1)

jkr
At low freguencies the reciprocal of jkr predominates even at
large distances from the source., Thus, if the wall of an
anechoic space 1s the order of a wavelength from the source,
the wave impedance wlll not be matched by the wall impedance
even if the wall is perfectly absorbing. Therefore, the
reactive term of (4.1) causes a reflection at the wall.

This problem has been treated in detall by Ingard1 and the
gsimplified result

Ck 1

(?5 - 2kr ¥ Ro

may be obtalned from his work 1f one assumes that the wall

(4.2)

has an impedance that is close to the characteristic impedance
of air and that the angle of Incidence is normal. Here the
original source strength 1is Qs’ the image source strength

is Qi’ the reflection coefficient of the wall 1is RO, the

— o wm e e wm am ws ee mme ek o e ew e mm  am s e mm  ms M em e wm ms en e e -

Ingard, U., "On the Reflection of a Spherical Sound Wave
from an Infinite Plane," Jour. Acous. Soc. Am., V. 23,

p. 329, 1951.
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distance from the image of the source to the receiver is r,.
If the reflection coefficient 1s RO = 0.1, the two terms
of (4.2) will be about equal in magnitude when the source
is located a half wavelength from the wall, A source
placed closer to the wall will tend to nullify the effect
of the absorbling material. If the wall has greater ab-
sorption, the source should be spaced even farther away

in order that the first term in 4.2 does not pfedominate.

Thus the low frequency limit of an anecholc enclosure
is determined by its size and the absorption of the walls,
Calibrations in the 100 cps to 1000 cps range may be carried
out with less expense in a large but only moderately absorba-
tive room. At higher frequencles it is profitable to make
the enclosure smaller and increase the absorption of the
walls,

Above 1 ke or 2 kc the first term of (4.2) may be
neglected by comparison with the reflection coefficient.
The directivity patterns of both source and recelver must
now be considered, however, The wall may be replaced by
an 1lmage source with a strength of Ro times the strength
of the original source. The directivity pattern of the
image source will naturally be the image of the originsal
pattern., The worst reflections will usually be from the
wall opposite the major lobe of the source, It will be
assumed then that this is the wall under consideration,

Obviously the least error resulting from the image source

L4



will be incurred when the major lobe of the directivity
pattern of the receiver faces the source. Other orienta-
tions such as that required for a grazing incidence cali-
bration will result in a greater error.

It is suggested, therefore, that all reciprocity
calibrations be carried ocut with both transducers at
normal incidence, If callbrations at other angles are
required, they may be obtained from the directivity pat-
tern and the normal incidence calibration. Lacking a
directivity pattern for the transducer, a comparison
calibration at the required angle may be carried out for
several different orientations in the anechoic space so
that errors caused by reflections will be smoothed. The
recording of the directivity pattern is naturally subject
to the same errors, but a large amount of data will have
been recorded, and the effect of reflections may be smoothed
somewhat by eye.

J.et us consider two transducers facling each other, The
spacing between them has already been determlined by con-
siderstions similar to those discussed in Section 4,32,

The error caused by reflections may be approximated by
replacing the six walls of the enclosure by the images of
the source. The strength of these images will be equal to
the original source strength times (4.2). On the average

the reflected intensity for a cublcle enclosure will be



six times the intenslity reflected from one wall, since the
contributions of the image sources can be expected to add
incoherently.

Agaln taking the example of Ro = 0.1, the above con-
siderations lead to a ratio of path lengths for the direct
to the reflected sound of 1l:5 for an error of 0.5 db and
about . 1:25 for an error of 0.1 db, At low frequencies the
reactive part of the impedance of a spherical wave will

cause additional reflections.

4 34 Pulse Techniques

For freguencies greater than about 5 k¢ a train of
sine waves a few cycles long can often be used to advantage.
An oscillographic display of the microphone response to
such a pulsed sine wave will yield considerable information
about the magnitude of reflections and the btal path length
involved., One may lgncre the direct pulse and expand the
scale of the display so that the reflections are examined
in detall. It is then possible to track down the offending
reflecting surface with great rapidity, whereas plots of the

field yield little information other than the fact that
reflections are present,
The space length of the pulse should be 6 to 12 inches

so that distances of this order of magnitude can be resolved

on the oscilloscope screen, This corresponds to a minimum
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pulse length of 2.5 cycles at 5 k¢ or 8 cycles at 16 kec.
Thus at low freguencles the bandwidth of the pulse will

be quite wide, and 1t is often necessary to accept a

longer pulse length unless the responses of the transducers
are smooth, A short pulse passed through a transducer that
has an irregular response (such as the 9898) will produce

a ringing in the transducer that may be mistasken for re-
flections. This ringing phenomena may be detected by
bringing the receiver intc the near field of the source

so that the effect of reflections may be neglected.

In addition to use In studying reflections pulse tech-
niques may be employed directly in callbration work., More
emphasis is placed on the requirement thaet the frequency
response of the transducer be smooth, however, For in-
stance, 1f a portion of the response of a microphone can
be approximated by & simple resonant circuit with a certein
Q, the output of the microphone when exposed to a pulse of
sound will approach some steady-state value, When the output
is a fraction of a decibel (db) from the final value, one

may make the approximation

£d

PSS

db = 8.6 e‘(3Q (4.3)

where 4 is the space length of the pulse in feet received

before the time of observation and f is the freguency in

_136-
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ke. PFor instance, 1f Q = 5 and £ = 5 ke, almost 20 feet
of the pulse must be recelved before the output of the
microphone is within 0.1 db of the steady-state value,
Thus unless the space 1s large or the microphone response
smoother than above, pulse techniques will be of little
value in eliminating reflections from the walls.

In some cases multiple reflections between source and
receiver will cause errors, The begiqning of this kind of
difficulty is shown in the lower scan of Fig. 4.5, At
higher frequencies sizeable variatlions in the field will
be found at much larger spacings. For both the L-1 pres-
sure unit and the A40-AA the frequency response 1s guite
smooth, and it was found that by pulsing the source it
was possible to elimlnate these multiple reflections at
frequencles above 10 kc. When this technique is used,
great care must be exercised to be sure that the signal
is of sufficient duration to approximate steady-state

conditions.

4 25 Methods of Data Taking

There are two basic methods of recording the data:
discrete measurements at a number of frequencies and con-
tinuously recording the output as a function of frequency.
The point-by-point method can yield results with accuracles

in the vicinity of 0.1 db, but it is extremely laborious



and time consuming. It is necessary to obtain a Lissajous
pattern at each frequency and to obtain a balance between
the acoustic signal and that introduced by means of the
insert resistor. If the calibration is irregular, many
points will have to be taken within a small frequency
range,

On the other h@nd,‘if automatic recording technlques
are employed, the Iregularity of the response 1s of no
consequence, However, the accuracy of the data obtalned
will be considerably less than 0.1 db. The recorder that
was used in this work had 0.25 db steps but was often in
error by 0.5 db., In the contlinuous recording technique
it is not possible to record frequency accurately. Small
inaccuracies in positioning the paper or slippage 1n the
drive can cause sizeable errors,.

A combination of the two techniques can often be used
profitably. ?he frequencies at which point-by-point
measurements should be taken in order to obtain the re-
sponse curve with the minimum amount of dats can be chosen
with the aid of an automatic recording., If accuracy of

the order of 0.5 db 1is required, it is often possible to
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take only a few discrete points., The remainder of the curve

may be interpolated from the data recorded automatically.
If the frequency scale is in error, the discrete data will

disclose this. In some cases the frequency scale may be
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translated, and it will be possible to shift the automatic

recording so that it will fit the discrete data.

4 .26 Electrical Measurements

The electrical measurements of magnitude of the
transfer impedance Zgp C8R be accomplished by comparison
with a callbrated attenuator. If the current into the
source 1ls adjusted so that 1t is the same as that into
the attenuator, and 1f the attenuator 1s adjusted so that
the voltage introduced by the insert resistor 1s the same
as that produced by the microphone, the transfer impedance
will be directly related to the attenuator setting. An
accurately calibrated attenuator can yleld data with an
error of less than 0.1 éb,

The insert resistor must always be in series with the
equivglent voltage generator of the microphone. If the
impedance of the microphone is low, there 1is no problem,
If the impedance 1s high, for instance, a condenser
microphone, it 18 necessary to take speclal precautions
to be sure that no shunting capacitance appears between

the microphone and the insert resistor. Wattersl has shown

that the insert resistor may be located at the line amplifier
if the circultry is arranged so that this capacitance is

negligible.

T T T e e e T T . S N

lvatters, B.G., ibld.



In the calibration of condenser microphones the polar-
izing voltage must be accurately measured, Since the
microphone must face a high impedance, 1t is not practicsal
to measure this voltage directly. Usually a cathode fol-
lower preamplifier 1s employed in such a way that the
voltage across the cathode resistor supplies the microphone
blas. The cathode voltage is then closely related to the
bias voltage. However, 1f any current flows between grid
and cathode, the polarizing voltage may deviate appreciably
from the cathode voltage,

Figure 4,31 shows the variations in the sensitivity
of a 640-AA microphone as a function of the voltage across
the cathode resistor of the preamplifier, The straight
line shows the variation in sensitivity to be expected if
the polarizing voltage were known accurately,

The data of Fig. 4.31 were taken with the microphone
mounted first on a Cruft and then on an Altec-Lansing
preamplifier, The Cruft preamplifier had a 10-megohm
resistor connected between grid and cathode, The Altec-
Lansing preamplifier was measured as bullt with the grid
open. A 2-megohm resistor was then inserted between grid
and cathode,

The open-grid ccndition incresses the uncertalnty

of the measurement of the polarizing voltage. Grid current
plus very small currents flowing through the extremely

high leskage resistance of the tube evidently cause. these
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variations, The 2-megohm grid resistor reduces the varia-
tion of the grid bias markedly, but at a s8light sacrifice
in the signal to noise level and in the low freguency
sensitivity. Usually these sacrifices can be tolerated in

microphone calibration work.

4 37 Selection of a Sound Source

The selection of & sound source is an important step
in the instrumentation for reciprocity calibration. There
sre a number of desirable characteristics that one should
bear in mind, The frequency response should be smooth, the
front of the source should be free from flat surfaces, the
near field should be small, the acoustic center should change
smoothly with frequency, and the response should be prac-
tically independent of time and minor variations in tempera-
ture and pressure,

It is important to have a source with a smooth frequency
response for two reasons. First, small changes in frequency
should not cause large changes in the electrical output.

Such a situation makes the source impractical for use with
automatic recording equipment and inconvenlent for use when
point-by-point data is taken. Second, a smooth frequency
response is desirable for pulse measurements,

The front of the source should not be flat so that
multiple reflections between source and receiver are mini-

mized. A spherical shape will diffuse the wave reflected
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from the microphone most effectively, The L-1 pressure
unit has a dome-shaped diaphragm mounted in a spherical
housing (Fig. 4,2 - note that the diaphragm 1s removed
in this photograph), and even though the L-1 unit is
larger, this configuration was found to be more satis-
factory than that of the 640-AA (Fig. 4.9).
A smooth directivity pattern will usually insure
that a sound source has & small near field. This will
be a great advantage 1n conducting calibrations in a
small enclosure as dlscussed in Sectlon 4,32, However,
a smooth directivity pattern does not always insure that
1t is possible to make calibrations at close spacing., As
in the case of the 640-AA, a flat face may cause multiple
reflectlons,
An acoustic center that dces not change irregularly
as a functlion of freguency is desirable for use 1in cali-
brations at close spacing. Erratic behavior of the acoustic
center, like erratic behavior of the response, will cause
large changes in electrical output for small changes in
frequency, Such behavior will make the saccurate measure-
ment of the acoustic center more difficult, since scans of
the field at a large number of frequencies will be necessary.
Finally, the stabillity of the source under normal
variations of pressure and temperature should be observed.

The 640-AA microphones are by far the most stable of those
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studled, The 21 series of condenser microphones prove to
be slightly less stable in general., A few of the 21
series microphones exhlbit quite large Ilnstabilities, but
this 1s probably a production difficulty that will be
eliminated in the future. The 633-A microphones have
excellent short-term stebility, but thelr sensitivity

may change by several tenths of a decibel over a period

of days or weeks, In practice it was found that the L-1
pressure unlt (used 1n 633-A microphones) need to be
calibrated against the A40-AA only at the beginning end end
of a group of calibration runs, At the end of the runs,
from 2 to 4 hours, later the sensitivity was found to be
unchanged., The stabllity of the crystal microphones is
poor because both the coupling constant and the electrical
capacitance depend on temperature, The 98308 microphone 1is
beﬁter than most crystal microphones in thls respect, but

not as stable as the other microphones studied,.

4 4  Summary

The measurements and techniques discussed in this
chapter should be of assistance 1in the instrumentation
for the free~field calibration of microphones, Gilven
microphones of the type studled here and given the desired
accuracy, one should be able to determine the optimum
spacing of source and receiver. If one knows the reflec-

tion coefficient of the acoustic material to be used on
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the walls of the enclosure, 1t is possible to compute
the minimum dimensions that will be consistent with the
given error.

In addition & number of other pertinent topics have
been discussed including reciprocity linearity, pulse
techniques, data taking, electrical measurements, and
s¢lection of a sound source, It is hoped that this informa-
tion will lead to microphone calibrations of increased

accuracy.



APPENDIX I

1. Energy Functions and Reciprocity for Sinusoldal Signals

. Section 2.27 contained a proof stating that a reclprocal
system must have a klnetic energy that is a function of the
veloclties only and a potential energy that is a function
of the displacements only. The dissipation function was
shown to be a functlon of the velocitlies only. Each one
of these functions was a quadratic form with no explicit

dependence on time,

Under the above condlitions and with sinusoidal signals

the kinetic energy ﬁ‘ is
4 jwt * _—jwt jwt * _-jwt
T=g(le™ +1"e?)L(Ie™ +1%™"") (1)
where 1, 1s the square matrix
2*
L= [aaﬁq (2)

The kinetic energy given in (1) can be separated into two

parts, an average partdr;v that is independent of time,
o~ | *
o =2 ILI (3)

"\
and a double frequency part | af

q:; = i ILI (%)



so that

T=Re{To +Tus €94 (5)

The potential energy 9/ can be separated in the same fashion.

An w2 factor will appear because 1t 1s necessary to express

the charges in terms of the currents,

%Y, =;-'5,151"' (6)
Vs = ~7ar 151 (7)

where the sguare matrix S is

5= {%}%—’,} (8)

Likewise the two parts of the dissipation function ? are

?av = 7:: IRI. (9)

% =< IRI (10)

where the square matrix R 1s

_ ] %7 r11
R= [ 4%] Y



Utilizing the matrices L, S, and R, the Lagrange

equations may be written in a more compact fashion,
La] + Sq] = el = e,]- R4] (12)
Sinusoidal behavior of the system will be described by
: SI _ =
joLI +RI o T Es=Z21 (13)

the famlliar electrical network equations. Following the

analysis of Bodel; it 1s possible to evaluate the driving

point impedances and admittances in terms of the energy

functions., The complex power absorbed by the network is
. I"S]
I"E,=I"RI+jw (I"LI -+23) (14)
which in terms of the average energy functions 1is

I"E.= 4%, + 4 jwda (15)

where the average Lagrangianotav is

- mm e e am mm e mm mm mm e em me  am e wn ws  mm ws m mm em am mm e ew e e e mw
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1 Bode, H. W,, Network Analysis and Feedback Amplifier Design,

D. Van Nostrand Co., New York, p. 128, 1945,
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The complex power lnto the network may be expressed in terms

of the admittance matrix

1ES=(I"E,) = E,YE; (17)

th

The n driving point admittance may be evaluated by setting

all the driving forces or voltages except Esn equal to zero,

»* n) . n)
Y = Esn Yn E&I\ = 7a.v - )wL v
nn _lEsn. l o 4 ‘E“ l z (18)

where the superscript (ﬁ) indicates that the energy and
dissipation functions have been evaluated wiﬁh.only ESn
non-zero,

To illustrate the dual representation of the system,

consider the alternate definltion of the energy and dissi-

pation functlons

Y, = ‘Iz'l&r Al (20)
Yi=3 A G Al (21)

The notation here is electrical. The results can be applied

equally well to & mechanical system, however, with A

standing for the momenta instead of the fluxes. The dual



of (13) is

juCE +GE+{& = I, = YE (22)

where IS is a matrix containing the driving currents or

velocities. The nth driving point impedance 1is

- dav "wad(::
Z pn 4 T (23)

where notation similar to that in (18) has been employed,
The proof of the reciprocity of systems described by

(13) or (22) is extremely simple. It 1s only necessary to
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remember that L, ™ , R, G, S, and C are symmetrical matrices,

since they were all derived from quadratic forms. By inspec-
tion of (13) and (22), one sees that Z and Y are also sym-

metical. A more formal proof utilizes the two experiments

(1) and (2).
I"EY = IRI™ + ju(1L1°- SL) (2

and clearly
1"E -~ 17E} =0 (25)

the condition for reciprocity.



_ Evaluation of one of the transfer admittances in terms
of the energy and dissipation functions 1s somewhat more
difficult than that carried through above for the driving
point admittances and apparently has not been reported
before. In experiment (m) all the source voltages except

Esm vanish, In experiment (n) all except Esn vanish,

- - - . o ) )
I(m)E(‘» = Esm Y., E,, = I™RI +jw(1wLI”-I ci’-I ) (26)
Utilizing the notation
.o-l\d_f(ntn) =Zl (Ion) th) L (Iq,.) + I(,,,) =a'\“(.m)t % I(m)LI(u) - fl\“(n)
(27)

the expression for the transfer admittance Ymn becomes

i (men) (m-n) gin) o (men) (msn) (m-n)
Yoo = Esm Esn (?M = Taf "’J“’{ '4{ ~{af +%{' "%f }
(28)

Interchanging m and n will not alter the result as long as

the energy and dissipation functions are guadratic forms.

-151~
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2. Lagrange Equations for a Distributed System

Assuming that the necessary conditions for reciprocity
in a lumped system will also have to hold in a diétributed
system, makes 1t possible to simplify the analysls greatly.
Therefore, let us assume that the system has a kinetic

energy density ﬁ“ that can be written In the form

—

T =334 L4l (29)
—
where the elements of the symmetrical matrix L are inde-
pendent of time. This 1s exactly the same as the kinetlc
energy of a lumped system,
The potentiasl energy density V will, however, be
considerably more complicated, 1In general it will depend
on the coordinates themselves and thelr derivatives with

respect to each of the space coordinates,.

[ oo ':Vn Vn Vos-] qw
13 8 % Ve Va Va Vs |3
vlo :Vll Vu vz; %e;
[ Vo 1 Ve Va2 Vi) %4,1

(20)
7 -4

This description of the potential energy 1s overly clumsy

and the following symbolic notation will be useful:

(31)

.aa

e sy
{]
3
P |
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It should be remembered that each element of the matrices
shown in (30) and (31) is 1tself a matrix, Each one of the
submatrices assoclated with the coordinates in (30), for
instance have as many elements as there are generalized
coordinates,

Utilizing (31) the potential energy may be written

o [l W] g
¥ - 14i9q,. VV = (32)

where the square matrix of (30) has been partitioned as

indicated by the dotted lines and

Vo

-

Vx = [vo. V,, Voal = Vie (33)

Via
el

(34)

Note that elements of the submatrix{vbmay be grouped
together to form a dyadic. Such dyadics have nine ele-
ments and operate on the vectoer Vg to produce a new vector.
Similarly elements in the submatrix V; may be grouped to-
gether to form a vector. Each vector will, of course, have

three elements and will operate on Vg to produce a scaler



or on g to produce a vector.

The equations of motion derived from the kinetic and
potential energles glven In (29 and (32) will, in general,
have terms Iinvolving the ccordinates themselves., These
terms will be in addlition to the usual terms involving the
first spatial derivatives and the second spatial and time
derivatives. This clrcumstance will, in general, make 1t
impossible to sgt up & dual representation of the system.
As will Dbe seen‘below, one cannot find a satisfactory set
of new coordinates that makes it possible to express the
potential energy in terms of the time derivatives of these
coordinates,

Although distributed systems whose potential energiles
contain the coordinates themselves in addition to their
spatlal derivatives. can be shown to display reciprocity,
they will not be 1included in the following general discus-
sion. With this simplification the Lagrangian density &
becomes

£ =17 —2/ =iTc'1]"zj‘°V°$ql (35)

which yields the Lagrange equations
T5]1-V-V-vql=-f] | (36)

where f is the generallzed force density vector opposing
at any point forces not included in the Lagranglan density;

1.e., viscous forces, The power density removed from the
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conservative part of the system as a result of these forces

is

but this can be rewritten in terms of the time derivsastive

of the energy density %

: oo T_2 - 7 ¥
&f]‘v'(& V- Vq])“‘g—l“’s%/" =-v-d - 3% (38)

where JF stands for the negative of vector within the paren-
theses, C(Clearly the power absorbed by the dlssipative
mechanisms within a volume plus the total power flow out

of the volume plus the rate of increase of the stored

energy wlthin the volume must vanish., Thus ;i is identified
with the outward intensity vector (Poynting vector) when (38)

is Integrated over a volume

Ii{]dv+ji'da+%jﬂdv=0 (39)
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.3. Dual Representation of the System

In most physical problems the intensity vector-gi can
be written in a symmetrical fashion in terms of components
that have the dimensions of a generalized velocity and
components that have the dimensions of a generalized stress,

The above observation can be stated in a general way by

defining the dual set of coordinates A

MAl = V. 4] (40)

where'ﬁ is a dimensionless matrix whose elements are vectors
independent of space and time. The purpose of ﬁ 1s to com-
blne the new coordinates in a& manner analogous to the combin-
lng of element voltages to get node voltages in a lumped
systeml: Like the lumped system case the matrix M need

not be square, This is a result of the fact that the number
of node equations necessary to describe a system need not be

the same as the number of loop equations,

In terms of the new coordinates the intensity vector

becomes

In a lumped electrical system one may write the node volt-
ages Iin terms of the capacitance and inductance voltages with
the aid of a similar M matrix where the g's are the charges
associated with the loop currents . Substitution of these
expressions Into the homogeneous Lagrange equations for the
loop charges g will show that the node fluxes A\ also satisfy

the Lagrange equations,
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an expression that is symmetrical in appearance, In this
case A will have the dimensions of a generalized momentum

per unit area.

One should not expect to be able to find the dual of a
system which involves the arbitrary forces descrlbed by the
matrix f],since these forces may have no dual presentation.

Therefore, consider only the homogeneous Lagrange equations

Ta]l- ¥-V-¥ql = 0 (42)

If the new coordinates defined by (40) are substituted

into (42), one finds that

7-MAT= M-9A)= T4l 53)

since ﬁ is independent of space,

Thus, in terms of the dual coordinates the kinetic

energy density 1s

- Iy ey P N Ly
T -5 9x-(M), 7'M 9Ad ()

and the potential energy density 1is
V=35 MV MA] (45)

where the inverse of the matrices T and'viare obtalined in

the usual fashion. Since each element of V is a dyadiec, it



may be more straightforward to take the inverse of the ex-

panded form (3&) and then recombine elements to form the

dyadics,
Utilizing the dual matrices

-1

Ta = KZfVIVl (46)
‘\74 = Mt T..' '\7 (47)

Za= 4 KTkl -4 FAVaGA] ==L (48)

which is identical in form to the original, The actual
magnitudes of the two are, however, opposite in sign.
Both expressions for the Lagranglan density will obey
Hamilton's principle and both q and A will satisfy a

set of Lagrange eqguations,

4. Reciprocity for Distributed Systems
Let us perform two separate experiments, (1) and (2),

on a system described by the Lagrange equations (36). If

-158-

the system undergoes sinusoidal motion, these equations for
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the (1) experiment will be

jwTd - 9-V-9J"=-F" (49)

where the J matrlx gives the complex amplitude of the q's; 1.e

.3

3l = Re { J ™'} .

and the F matrix 1is defined in terms of the f's in a similar

fashion. By analogy with the treatment cf Jjumped systems,

(49) 1s multiplied by J(2)

) (OB ) s ._. - Q) = (1) 1
jw J TJ ~jw J v vd =-d F (51)
The second term of this expression may be expanded to get

el

jud T e TV T U755 IOV 9 ¢7)-d7F

An expression ldentical to this (52) except with the super-

scripts interchanged can be obtalned by starting with the

Lagrange equations for the (2) experiment. The volume

integral of the difference of these two expressions 1is

L
jw

Ida'(du’V'-V.Jm"JmV‘ 6‘,‘”) j(Ju)F(-) J(.)Fm (53)
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The vanishing of the righthand side of this equatlon 1is
the reciprocity condition for distributed systems. The
similarity between this eXpression and the equivalent
for lumped systems can be seen if one substitutes S,

the matrix that is the dual of the J

jwMs = V.9J (54)

i{nto the lefthand side of (53) to get the reciprocity

condition
]da ’(Jmﬁsm _ Jmﬁsu.\ ) =0 (55)

In the lumped constant case a summation over all the ports
of the system was implied. For distributed systems this
summation becomes an integral over the surface of the system,.
If no arbltrary forces are present within the system, the

F matrix will vanish and the system will satisfy the reci-

procity condition (55).

5, Dissipation in Distributed Systems

If the forces F do work on dissipative mechanisms of
the viscous type, 1t 1ls possible to demonstrate that the
entire system will still display reciprocity. The form of
these forces must be similar to the general description of
the conservative forces. This statement results from a

consideration of the matrix product, JF. In order that the

righthand side of (53) vanish, JF must lead to a guadredtic
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form in the generalized velocities and the spatial deriva-
tives of the generalized velocities, The most general form
for JF is, therefore, a guadratic form similar to (30) for
the potential energy except that g would be replaced by d
plus a divergence term that will vanish when Integrated
cver the volume of the system,

Wifh these considerations in mind, the general form

for the viscous forces 1is
~line r -t
F=VvV'-R-vJ + R,J (56)

where the R and Roo matrices must be symmetrical. The

righthand member of (53) becomes

JUPEY- U dv =+ [ d-(JPURSI- O RIS Ys7)

which will vanish if there 1is elther no dissipation or no
power flow at the boundary surface, The dual matrix S may
be defined differently so that these viscous terms are in-
cluded in the lefthand side of (53). This corresponds to
the rearrangement 1n the node voltages that might take place
when resistances are added to zun otherwlse lossless network,
A simpler method of handling viscous forces would have
been to transfer them from the righthand side of the Lagrange
equations (49) and include them in the conservative forces.
This method is not quite as straightforward as that used
above because 1t hides the mechanics of the preoof, It does

have the virtue of a simplified notation,



~162~

In summary, systems whose behavior 1s described by the

differential eguations
joTd-G9-V-vJd=0 (58)

where T and‘v'may be complex, will be reciprocal and there-

fore satisfy (55).

6. Relationshlp to Green's Function

Suppose that power is fed Into the system by means of
simple point sources. On the boundary surface of the system,
the intensity vector is zero, and therefore, the integral
(55) will vanish except for the small spherical surfaces

surrounding the point scurces, Assume that in the (1) ex-

h

periment the kt coordinate has an impulse at the point'F<l)

Iy =) F- | (59)
hed [}

-
r~r

th

and 1n the (2) exveriment the £ coordinate has an impulse

at the point ()

(2)

Jy

- - -1
‘ XI¥ - T (60)
- (3
r~r

If these functions are substituted into the reciproclty
1)

™
condition, only the coefficients of'v\Jk and V,JQ willl remaln

3[4l N, 7R = JN@ ) [a8-V (F0)- R (61)
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where N 1s a unit vector normal to the surface of integra-
tion and summation over the repeated 1ndices is implied.
The integral averages the dlagonal components of the
dyadics Vj, and may be eliminated with the aid of the

Spur of the dyadics. The Spur is written l\ﬁ,l and is equal

to the sum of the dlagonal elements of‘iag

I EM N, P = 4P ENV, (FY) (62)
If the matrix V has only diagonal elements (remember that
each element of the matrix is a dyadic which is not neces-
sarily dlagonal or symmetric), the summation may be elimi-
nated, ylelding a more familiar form for the reciprocity
of the Green's function., That is, an impulse of magnltude
‘ij("\:m)\ located at ¥ will produce a response at ¥
that is equal to that produced at'?““by an impulse of
magnitude lV“(?“'\)\ located at T . A similar but more com-
plicated relationship could be developed for a dipole source
instead of a point source. For an electromagnetic field the

Spur of \Gg will be zero, and therefore, it becomes neces-

sary to use the dipole source,

7. Generallized Impedance

A generalized Iimpedance for a distributed system should

bear a close relationship to the impedance of & lumped system,
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A convenient bridge between the two kinds of systems are

the Lagrangians., In Sectlon 1. of thils Appendix, 1t was
shown that a driving point impedance may be written in terms
of the average Lagranglan I@y. For a distributed system,
1t 18 possible to proceed in an analogous fashion by evalu-

ating the volume integral of the average Lagranglian density

bl Jiw(TI- 573V 3 = [ 48 '(;’w‘"@) (63)

where the system under consideration s conservative, and
therefore, T and'v'are real, If an lmpedance matrix can

be defined, one would expect that a matrix product of the
form I* ZI would be egual to the surface integral on the

right.

So that the situation may be visualized more easlily,
let us assﬁme that the surface integral 1s zero over all the
boundary surface of the system except over an area Q. There
will be a set of solutions, or .eigenfunctlons, to the differ—
ential equatiéns describing the system that will be zero at.
the‘boundary except over (. These eigenfunctions will be
(k) th ) th

denoted by A, solution for the

(xl’XQ’XB)’ the k
coordinate., If these eigenfunctions form a complete set at
the surface (A, a linear combination of them ecan always be
found that will be equal to each of the elements of the matrix

J. Therefore, it is possible to write the matrix equation
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J= A(k\ Ikk\ (64)
vhere A(k) is a diagonal matrix whose elements are kth solu-
tions for each of the coordinates, The constants IQ (k) are
independent of the spatial coordinates and form the column
or rov matrix I<k). Summation over the repeated superscripts
is 1mpiied.

The definition of a generalized impedance matrlix becomes

clear when the set of solutions (64) is substituted into (63)

- 2 AT ANE .
djo Lo = 1 LA dd) D (65)

making it possible to identify the impedance matrix coupling

h h

and kt modes of the system

the jt
. — Py H *‘- -
z0 L [FANTYAT 42 (66)

From experience with lumped systems, one would expect that
the product at the right of (65) should equal complex power,
Comparison of this expression with (38) where the time
dependent intensity vector‘ﬁ-is defined, allows us to define

-3
a complex intensity vector &w.

') a—le

4jw°fov="] av® dQ = I(k\*z(kﬂI(j) (67)



and as expected the integral of the complex intensity over
the area A flowing out of the system gives the negative of
the total complex power flowing into the system,

If on the surface A the matrix J is chosen so that
all its elements except Jn are zero, one gets the set of

driving point impedances

(k) *

ajo L [ (68)

and if the distribution of Jn on O is such that only the

th

k mode is excited, the impedance Zggk) may be written in

terms of the average lLagranglan density for these conditions

(m{x)
Lav
(Y (K)
Z (kk\.—- A_J'w fav (69)
nn ‘1:\““7‘

Another simplification of the general result occurs
when J 1s constrained to be independent of the coordlnates
over the area (A . The matrix A(k) is diagonal and there-
fore possesses a simple inverse, If a unit matrix composed
of A(k) and its inverse is substituted into (65), the result

may be written

ot [T AT

and & different set of impedances deflined
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Zg(A(k\ [-h (k\"" da (71)

In this case the mode impedances no longer play a part be-
cause J has been constrained to behave in a certain way and
the impedance is associated with the total reaction on the
area (J . It is possible to go one step further. The matrix
J could have been made up of prescribed functions over a .
The amplitude of J could then be taken from under the inte-
gral as in (71). The impedance would then be modified to
contaln the normalized prescribed function both inside and

outside of the integral sign.

8. Some Distributed Systems that Obey Reciprocity

Up to this point the discussion has been in extremely
general terms. In this section, however, certain physical
systems will be examined to see 1f they satisfy the condi-
tions necessary for reclprocity.

One of the simpler distributed systems 1s the fluid.
It may be described in terms of the ﬁhree coordinates of a
packet of fluid, 81, 82 and 'e?»3 plus the time derivatives

of these coordinates., A 8 vector may be formed from the 5]

matrix with the aid of a unit vector matrix a]lso that

- s,
$ = Lo o0y, 51 = 3, 8] (72)
L3



A change in the volume of the fluid Av is

b

v =0, ¥-5 =0, V-3, 8] =%, & V8] =v, g, 8] (73)

i1f only linear terms are included and rectangular coordi-
nates are used. The V] matrix 1s a column matrix formed
from the three scalar elements of the del operator., The
zero subscripts indicate rest conditions. The potential
energy density V s equal to the work done per unit volume

during a compression or expansion of the fluid

T (74)

4

av
y=—f—1-;_—-—°=—P

and if the total pressure p 1s dependent on the change in

volume only, it is possible to write

o/

! (9.3) (75)

b
. -
°v%

2

Y =-F

@

where terms higher than quadratic have been discarded. The

matrix V

V=3l(-vng®| )&, (76)

-]
v 2

can be 1ldentifled and substituted into the expression for

the potentlial energy density

V=-p. & V8] +38.V.-Fs] (77)

-168-
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which except for the linear term 1s the form assumed in the
genersal discussion., If (77) 1is substituted into the general
Lagrange equations, this linear term offy will yleld the
gradlent of Py- Therefore, unless P, 1s constant, the
Lagrange equations become non-linear and non-reciprocal,.

If Pq is constant, however, no trouble is experienced. Note
that for constant po this extra term will drop out in the
total potential energy, since V-gnmay be integrated directly
and will van{sh at the boundary surface if none of the fluid

1s allowed to cross.

The kinetic energy density for the fluid is, of course

-~
[

T=3¢8-8=45 T3] (78)

where p is the density of the flulid. If p is not a function

-~

of the displacement of the packet 8, the matrix T

T =

O 0O
oD ©

o]
0 (79)
©

will be in the proper form for reciprocity.

Therefore, the limltations on a fluid or acoustic
system in order that it obey recliprocity are simply those
of linearity. Variations in the ambient pressure p, as a
result of winds or vortex motion may cause reciprocity to

fall,



The kinetic energy density of an elastic medium 1is the
same as that for a fluid (78), but the potential energy

density 1s

V=3(38] +v]3),-[C]- (¥ 81+ v]8) = GC]-© (80)
where{(:]is a matrix containing the 81 Hooke's law constants
for a anisotroplic elastic medium, Actually, since&?f)and
the strain matrix (3 are symmetric, there are only 21 inde-

pendent components of[}f].

The matrix ‘\7 is

e

z}

iy A e
V= NACIN (81)
P=S
where the dyadic matrix N is
i B S = ey e i ad - 1
2 A0, +Q,0,%0,4, a, 0, Q, 0y

A o, a, AQ, +20,0,%+ 0,0, o, Oy (82)

- by e -

| Qg O Q3 O, cx\o\‘-rc:«,a;\-z.a,cmsL

It should not be surprising thap an equation as complicated
as (80) can be written in terms of the dyadic matrix‘ﬁi sinc
this represents the most general quadratic form containing

all the spatial derivatives of all the coordinates. Both

T and Y have been written in the standard form, and it can

-170-
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therefore be concluded that the linear model of a aniso-
troplc, heterogeneous, elastic medium 1s reciprocal,

It is not clear whether electrostatic or electromag-
netic energy should be assoclated with kinetic or poten-

tial energy. However, the energy density must be

M

—;;E{e]E+-—H[/u]H (83)

where the matrix E contains the elements of electric fleld
strengtth[e]is the dielectric matrix, H 1s the magnetic
field strength, andbﬁ]is the permesability matrix., Suppose

that the generalized coordlnates are chosen so that
. 'X —d
&, A = &%38, %\ =E =3 E| (84)
PN
Utilizing one of Maxwell's equatlons
2. IxE =-[pH=+7-(8]x &) E (85)

it i{s possible to write the magnetic field strength in terms

of the coordinates

=S RN = DRI e



wvhere the vector matrix

0o -0, Q
[%]=| as o’ -a| = (3]x &) (87)
-0, a, © *

has been substituted for the cross product terms. The

energy in terms of these coordinates is

H=4h Ll 3] wg A LRIV IR] 9N )
ldentitylng ¥ and T wlth

- [RLIAIR] (59

= le] (90)

makes 1t clear that a anisotropic, hetrogeneous, electro-

magnetic medium will satisfy reciprocity if it is linear,

i

The dual varlables d] = H give for the intensity

vector

H
[& -
r—

x}
[ T—
>/o
fu— |

1]
>
=i
[ S
o)
P

fl

i

X

T}
)
A

3 =-4M 3]
and the energy density
m=ralplal+1 3a- (KL [R19q] (02

a8 one should expect. The dual matrices Td and‘va are

therefore
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T, =[n] | (93)

V, = X117 IX] | (9%)

The‘ﬁ matrix describing the losses due to expansive
friction ¥ in a fluid may be obtained easily by analogy
to the V matrix for a fluld. The losses resulting from
the shearing of the fluld f may be included by analogy to

the V matrix for an elastlic medium. Thus,
R=¥3]& - mN¢N (95)

which is symmetrical, since ¥ and m are scalars denoting

the second and first viscosity coefficients, Therefore,

the addition of viscous forces to fluid medium does not
destroy reciprocity. Although the reciprocity of the loss-
less systems considered above 1s well known, the author be-
lieves that viscous forces have never before been considered
explicitly.

For resistive losses in a conductive medium, the

current density vector is analogous to the dissipative

force density. In thls case the Roo matrix 1s simply

R.= Lol (95)



whereﬁﬁ]is the conductivity matrix which must be symmetric

for reciprocity. 1In the dual representation the dissipative

force density is
f1= 5- 1%Ll [<]E (96)

-\
If [e] Dr] does not vary markedly with space, 1t is pos-

sible to write for the dusal matrix ROO a

Rooa =[] [¢1[ 0] | (97)

which in general will not be symmetrical.

The materlal of this secticon up to this point has shown
that electromagnetic, fluld, and elastic systems are recipro-
cal, It has really been an exercise in fitting some well-
known equations into the formalism that was used in the
general proof of reciprocity. There is no doubt that the
straightforward method of proving reciprocity for these sys-
tems taken one at a time would have been simpler., When all
three types of systems are combined, however, the simplifi-
cation and insight provided by the general method becomes
apparent,

As the first example of a mixed system, let us examine
a general mechanical system that 1s undergoing steadyrotation

motion. The kinetic energy density becomes

T =_92_(F.?‘ +§(-r;+?)x(3,+a)}z) - (98)



where ?5 1s the radius vector from the center of rotation,
¥ is the incremental radial displacement vector of a packet
of material originally located at'?é,'&é'is the steady angu-
lar rotation vector and © is the lncremental angular rota-
tion vector. The quadratic terﬁs of the kinetic energy

density are given by

T =E(F ¥+ a(TxB)(E xD) + @BV +Fx0d)+ T (99)

where t[‘contains the remaining terms., The presence of

the cross term between the radial displacement and the angu-
lar veloclity 1indicates that the system will not obey reci-
procity.

The potential energy of the system wilill be unchanged
wvhether expressed In e stationary or a roteting coordinate
system., This follows from the fact that the stress dyadic
depends on differences in displacement rather than on the
displacements themselves,

lLet us Investigate the possibility of using a dual

coordinate system for the rotational coordinates. By analogy

to the lumped system discussed 1in Section 2.27, substitute

the angular momentum density into (99). The last three terms

of (99) will then be included in an apparent potentlial energy

of the system 1f the angular momentum density is assumed to

-175..
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be a generalized coordinate. Unfortunately the potential
energy ltself will now have cross terms between the radial
displacement and the time derivatives of the angular momen-
tum density.

| In general it is not possible, therefore, to make such
a rotating system reciprocal. For the speclal case of an
{ncompressible medium, the potential energy is of no con-
sequency. It is possible, then, to make the change to the
dual coordinates to obtain reciprocity.

Since (99) is actually the Lagranglan of a system with
no potential energy, one wonders why 1t cannot be substi-
tuted directly into the Lagrange equations, As shown in
Section 2.27, the quadratic expression will yield the cor-
rect equations of motion, but the computation of the energy
from these equations will not contain the cross term between
radial displacement and angular velocity, This is another
indicsation of the fact that the energy of a linear but non-
reciprocal sjstem 18 not uniquely related to the Lagrangian,

Turning to a general electroacoustic system, the total
energy density will be made up of the mechanlcal kinetic
energy density i[w

T =3 8 0 81 (100)

the mechanical potential energy density °V,

V., = -.:,—_@-g (101)
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and the electromagnetic energy density 1i3

He =7 ED + 7 HB (102)

where é], §3 6} E, D, H, and B are matrices contalning
the components of velocity, stress, strain, electric field
intensity, electric displacement, magnetic field strength,
and magnetic induction.

Piezoelectric and magnetostrictive coupling effects

are taken into account by the constitutive relations

D=[e]E + [X]-G (103)
$=[€)C- (<] E - [F1H (105)

where €, u, C, o« and g are the dielectric, permeability,
Hooke's law, plezoelectric coupling and magnetostrictive
coupling matrices, The total energy of the electromechani-
cal system may be computed by adding the components (100)
through (102). The variables D, B, and S may be eliminated

with the aid of the relations (103) through (105).

* =38 3 S]+%€-[‘é’]-§ +3 E[e]E + $ H[p]H (106)
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The coupling terms apparently drop out of the expression,
However, both sets of electromagnetic coordinates g and A\
must be used to express the energy ln this form, In order

to eliminate one or the other of these variables it 1is neces-

sary to use one of Maxwell's relations

~3-I%]E = B+7.[¥13)-(p,1X15]) (107)
7 XIn= D+ e8] (108)

where the effects of the moving medlum have been included
and all non~linear terms excluded, It has been assumed
that a strong steady magnetic induction with components Bo]
may be present, Similarly, a large steady charge Pe mBY also
be present, Since losses cannot be included in the formu-
lation of the equations of motion by Hamiltont!s principle
except by inclusion as external forces, it must be assumed
that these dissipative mechanisms are temporarily outside
of the system., Therefore, all conductors have infinite
conductivity and all dielectrics have zero conductivity.
Expressing the two Maxwell's relations_given above in

terms of the coordinates g and A, 1t is possible to write

~3UIRIN = B+ 5. [8.]8] =[p]H+[3]- G + 9-[&.] 8] (209
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v-[X]ql =D+e8] =[e]E +[X]-G + o8] (110)
where the abbrevliation
lel=[x]3]. &, (¥] (111)

has been used. If using (109), H is eliminated from the
expression for the total energy, the result may be expressed
in terms of the &, §, ¥$, I\, and N . The coupling des-
cribed by[;{]and fe W11l not appear in the energy, and
therefore, the equations of motion derived from this ex-
pression by means of Hamilton's principle will not show any
‘evidence of electrostatic coupling. This 1s the kind of
sltuation that arocse in the derivation of the equatlons of
motion for a rotating system.

The electrostatic coupling will be included in the
total energy if E is eliminated with the ald of (111). 1In
this case, however, the magnetic coupling described by the
matrices [Ej and {E;J will disappear, One must conclude
that both electrostatic and magnetic coupling cannot be
present simultaneocusly if recliprocity is to apply. Further-
more, & linear system with both kinds of‘coupling cannot be
described by a Lagranglan, since the linear lLagrange equa-
tions are alweys reclprocel.

Utllizing the coordinates A and allowing no electro-
static coupling, the application of Hamilton's principle will

give the equations of motion
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H) (112)

(18] R[] (G- [F1N (8] 6+9-[8]8]) = -[e18] ()

If electromagnetic but no electrostatic coupling is present,
the g coordinates must be used and the equations of motion

are

(114)

[p15]-F- K1 (¥ %] al - [31-5- e §) (115)

BRIy

These two sets of equations describe reciprocal systems of
great generality. The first palr describe coupling resulting
from pilezoelectric effects and the presence of a steady charge,
The second pair describe coupling resulting from magnetostric-

tive effects and the presence of a steady field, Both sets

i{nelude losses resulting from expansive friction, shearing



viscosity and electrical conductive losses, If the equa-
tions are written in terms of the complex magnitudes of the
variables, it is possible to include many other kinds of
loss by assuming that the parameters on the lefthand side

of these equations may be complex.

9, Some Examples of the Impedance of a Distributed System
The driving point impedance &t a point source is par-
ticularly simple to evaluate, The radius of the sphere is
chosen small enough so that 1t can oscillate in only one
mode* 1.,e.,, constant amplitude over the surface, The A
matrix (64) glving the dependence on the space coordinates
of the generallzed velocitlies, degenerates to the single

element
Qo

where r 1s the radial coordinate and & the radius of the

sphere, The point source driving point impedance of the

kth coordinate becomes

Zuk"*%j’ 4T a (117)

where [kal 1s the contracted form of the dyadic.
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Let us evaluate this result for a pressure polint
source in acoustic medium., Defining the dual matrix M

in terms of the incremental pressure p

P?F:LEKIP:_B‘P (118)

[

g=-
makes 1t possible to write for the dual matrixlva

— i
e - - ‘QlQ

V=M TTM =

(119)

thus the driving point impedance of an acoustic point source

is
S ATa
=== " 120
P we (120)
where u® 1s the complex volume velocity and pO the com-

plex pressure,

The definitions of the two principle kinds of Iimped-
ance for acoustic systems may be written in terms of the
complex intensity vector E;N when either one or the other
of the dual pair of coordinates pO and V°, the normal veloc-

ity, is constant over the area (A . The mechanical impedance

7. is obtained if the normal velocity is constant

M

—y

v°*ZMv°=+ja:§W.c\a=ut°"£lp'o\a (121)
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where the righthand integral is the total force reacting
on Q. The dual acoustical impedance Z, ls obtailned if
the pressure is constant

N °‘~+f@‘-aa= fTF’ ad (122)
where the righthand integral is the total volume veloclty
passing through (. The equivalent relationship for the
definltion of the electrical impedance 1s slightly more

complicated and has been treated in detall by Foldy and

Primakoff% The result of course must be
1251=—f4-o\a=1\1 (123)

1f no extra power 1ls radlated at the electrical terminals.

Here V 1s the voltage drop between the terminals,

T e e P R R . T A T

Primakoff, H. and Foldy, L. L., op. ¢it., Part II, Jour.
Acous, Soc. Am., v. 19, p. 50.




APPENDIX II

1. Expansion of the 4’n in Terms of Derivatives of the

Directivity Pattern'qjo

First let us expand n in a series of Legendre

polynomials P _(x)
Vo =2 WYaw P (1)

where X = cos 68 and the q’nm are constants independent of

r and 6. Application of the operator Lx( ) gives the series

-

L= 3]

mszo

m(m-u-t)\\)“mpmkx) (2)

Equation (2) may be substituted into the recurrence relation

(3.6) yielding

ai [z. (n+1) \.\)M‘m-\-{n(m-\)— m(m-\—l)} \.}J“‘m] P, (x)=0 (3)

ms O

and since the summation must vanish for all X, one has the

m eguations
Z(n*") \Pm«\,m +(n-m)(n+m+l) \Pnn'\: o (4)

It can easily be demonstrated that
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" __(m'\‘n)‘. \Pom - (n)
q'nm"(m_n“ Znn\. - Pm “) L\)cm'i (5)
will satlisfy all the equations (4). Here the notation
Pén)(l) indicates that P_(x) has been differentiated n
times with respect to X and has been evaluated at x = 1.
Let us attempt to express the q’n in terms of deriva=-

tives of the directivity pattern. At x = 1 the directivity

pattern 1is
Poll = 2. W B () = 3 Wou (6)
th

and the n derivative of o evaluated at x = 1 18

o= el Bt (1)

but by (5) this is just equal to a summation of q;nm

over m, Thus

Yol = 2 or = 03 0) (8)

meo

Similar manipulations at x = -1 will show that

g =) = )T W) ' (9)



To evaluate P n for arbitrary x is more difficult.
Let us first expand q;o(x) in terms of its derivatives

evaluated at x = 0

v

Vo x) = 3w, (o) X (10)

Va0

th

where \pg”) (0) is the v"" derivative of the directivity

pattern evaluated at x = 0. The powers of x may be ex-

panded in a series of Legendre polynomials.l

v mev - B () cos? (")
X =Y (2m+1) i T
v\ vy : (!i’iﬂ"...\__\z_.)l (U—z'm)\. (11)
=3 Em+) B, ©) B, (X) cos*m [ ¥52)

If (11) is substituted into (10) in place of the powers
of x and the result substituted into the recurrence re-

lation (%.6), 1t 1s possible to write

(n

W, (x) = % B, (x) ¥, (0) (12)

v=0

- = - - e e - I T N -— m e - - -

1Byerly, W.E., Fourier's Series and Spherical Harmonics,
Ginn and Co., Boston, p. 178, 1893.
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=Y ~v- 0 z +m
B.,0d=2 2ma)P o Pl () cos TIERIP, (%) (13)

m=so

The lowest non-zero values of an, may be found without

much difficulty:

B.. ) =F_ 0] (14)
Boand = P, 0] (15)
B, ., = B ) ;t;:\:zz))&n(x) (16)
For other terms the recurrence relation
2(n+1) BM‘V+ Bn’v_z= [v(wl) - nin+ \‘)] B.., (17)

may be used, Thls relation may be proved by direct sub-
stitution of the B . (x) from (13). The first few B .,

have been computed and are shown in Table 1.
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TABLE 1.
(APPENDIX IT)
Values of B . (X) - See (13)

1 2 3 4
Pl(x) P P2(x) Po(x) Pj(x) P, Pz(x) P)(x)
6t T3 10t 715 izo * T2 * 7105
Pl(x) Pg(x) Pl(x) EPB(X) Pg(x) 2P4(x)
10 t75 1F * 21
0 P, (x) P3(x) Pe(x) 2Py (%)
15t T 7
0 0 PB(X) PQ(X)
0 0 0 Py (%)
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After a little experimentation it is possible to guess
a general form for the Bnb, evaluated at x = 0
iy

B (o) = (=0l cos T v (18)
w9 = T (e ()

Substitution of (18) into the recurrence relation (17) will

i
o

prove that this is the correct choice. Note that at x

the an exist for even values of the integer v only.

2. The Near Fleld of a Piston in an Infinite Baffle

The piston in an infinite bafflé is equivalent to a
thin pill box pulsating outward on both sides and there-
fore may be treated by the theory developed in Chapter III
and the previous section of this appendix., The results
check & simpler formulation for x = 1 and yield a new
result for x = O,

The directivity pattern of a plston in an infinite

baffle 1is
_2Jd(z,5in ) <& 3z ¢Y_Lsin o
e = 3, sine 2 (2) vl (v+) (19)

where 3, = krl and ry is the radius of the piston., The sin 8

terms may be expanded about x = 1
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ekg Hav

(sine) = (-xV =Y 2" (L)Y (1-x) (20)

A=o

where (}1 ) indicates the binomial coefficients. Collect-

ing terms for n =M+, 1t 1s possible to write for the nth

derivative of the directivity pattern

wol) = W) = -D-; Z (n2y) V\a;m‘ (21)

which will be the coefficlent of the (jz )™ term of the
expansion of \J on the axis in front of a piston in an
infinite baffle. An expression for J in closed form can

be obtalned by direct integration of the source distribution. <t
Y = 2;}33;:[_ exp (3 -VZr5)-1] (22)
. )}

Term by term expanslon of this function shows that at least
the first half dozen terms are identical with (21).
It 1s possible to evaluate the pressure in the near

fleld of a piston source in the equatorial plane (x = 0).

th

The V¥ derivative of the directivity pattern evaluated in

this plane can be shown to be

- e e e e m e ae e ee o e e s me R mm e mm e e mm wm B e W8 o mm e e

1Stewart, G.W., and Lindsay, R.B., Acoustics, Van Nostrand,
New York, p. 251, 1930.



vl L
Yo lo) =7 2 3.7 Jy, 30 (23)

Z.
for even ¥ and is zero for odd v . Equations (18) and (23)
can be substituted into (12) to yleld a series expression

for the coefficient of the (j 3)-n'term in the expansion

of QJ for this source.
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3, Calculation of the Acoustic Center for & Spherical Source

The pressure in front of a general axlally symmetrical

sphericel source of radius ry is

2 VNV BalX) |
p(\",e)é ecC g:o i h:n(?)‘) hm(%) (24)

where Vm is the velocity amplitude of the mth mode of vibra-

tion of the surface of the sphere, and as usual 3 = kr and
%, = kr,. The prime on the spherical Hankel function hm
indicates differentiation with respect to the argument, At

low fregquencles only the zero order term remains

Vo hol3) 2 Vo133
(r.6) = pc Yehol3l Yoo
AN IR L e

=J(lanrV, e'?]

(25)
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where the term in the brackets must be the volume velocity
emitted by the sphere,

At large distances

e & V. P (%)
r(-:,ooe) =Rz mz-o h:“(g\) (26)

gives the expression for the far field pressure, Here

the spherical Hankel functions of the second kind are used
so that (26) will represent an outgoing wave for a positive
jot time dependence. If (26) 1is normalized by the pressure

on the polar axis, one obtains the directivity pattern

- (27)

The acoustic center a as defined Iin (3.13) is glven by

Ve mim+1) € " (R

T

J_
Z SRV

m=0

Za = ka = (28)

The mode velocities Vm for a point source sare



V, = (zm+ 10V, (29)

and for a plston that subtends the angle 260 at the origin

the Vﬁ are

V.. =[Pm_\kx,) - P,;m(x,\] ;y-; (30)

where xo = COS 60.
Substituting the Vm for a plston inte the expression
for the acoustlic center and evaluating the result at low

frequencies, one finds that the important term 1s

<<

‘ H \o R ~
’5a= J‘M[J%]:‘ -‘Z —r-—-XT_%'=%(‘+x°)3‘ (31)

This low frequency result and the genersl expression
obtained by inserting either (29) or (30) into (28) were

used in the numerical calculations leading to Flg. 3.3.

The tables prepared by Morse, Feshbach and Laxl wvere found

to be very useful,

- o e e wm ew e wm e wm mm em e e e mm e mm  em  am e e mm em e eE e e e e

1Morse, P.M., Feshbach, H, and Lax, M., "Scattering and
Radiation from Circular Cylinders and Spheres™, OSRD Report
No. 62.1R, 1945,
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4. Radiation from a Point on a Sphere at High Frequencies
The expression for the acoustic center becomes rather

hard to evaluate directly at high freguencies, The spherical
Hankel functions have almost constant magnltude up to the
term in which the order eguals the argument. Thus 1if krl= 20,
one expects about twenty terms of equal magnitude before the
series will show any signs of converging. Above the QOth
term the magnitude of the h; increases very rapldly and the
series practically breaks off. The phases of the terms below
m = 2Q rotate rapidly, resulting in small differences of
large numbers,

An integral approximation to the summation seemed to

be the obvious method of circumventing the difficulties

outlined above., The starting polnt for such an integral
™

1
over m must be m = - 5 since the g--J-are even functions of m+%
m
sz"‘% e’—jhn+tY§
l"h = ' (32)
m ~{m+)

1et us assume that the coefficlent of the hm term can be

written as a series with terms of the form (m + %)n. Con-
sider the general sum
. \
; e o LT
n m=0 z \f'\‘ e hv-.‘_

mm
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where the continuous variable = m + % 1s substituted
under the integral,

Watsonl gives an asymptotlc form for the Bessel func-
tions that 1s valld over the path of integration. Chang-
ing his notation slightly and avoiding explicit reference

to higher order terms in one may write

oyl

-}13(cosh ¥ - ¥sinhY)

".i"fr("“!i)__ . e X i 3Y
h,., € = Ty ~(1+0(3) %

wvhere X
¥

]

jsinh¥ 1in contrast to Watsont's notation.
This expression may be differentiated with respect to the

argument of the spherical Hankel function

-13(cosh¥ - ¥sinhy)
coshy e (

% Ol ))(35

where higher order terms have again been included in 0(%).

The expression (35) is of the form usually used in
saddle-point integration., Theexponent will contribute a

rapldly rotating phase at high frequencies along the present

._—-—-.-..._———-----—.-——....-.c.—...-——

1Watson G.N., Theory of Bessel Functions, reprinted by

McMillan New York, pp. 260-267, 1948,




path of 1integration, However, deforming the contour so
that it leaves the saddle point at ¥= 0 on the path of
steepest descent wlll cause the main contribution to the
Integral to occur at the origin, The path chosen will
leave the origin at 450 and then proceed to igfinity in
the first quadrant, Consulting Watsont's figurel glving
the regions of validity of the expression (34) tells us
that this path is satlsfactory. |

By the usual methods of saddle~point integration,

1t 1s possible to obtain

¥, = (5! (215.)7% el® (36)

In order to compute the far-field pressure produced by a

polint source on a sphere at high frequencies, one should

multiply (36) by 2V pc e%' and select n = 1, The pressure
becomes
-3 -§(3-3)
e r 3
plr;0) =2V, e &= > =2V, pc -3, (37)
k —» 0 —5' 3’
¥ —b 0

which appears to be right, since the pressure has been
doubled and the phase changes by——% over the low frequency
case (25).

Noting that only the highest power of m need be con-

sidered 1in evaluating any series at high frequencles, the

T m e = e = m @ e e e o em e e e wm we mm e am e am e em e e



expression for the acoustic center may be approximated by

R N (2 (38)
k?’“ g [z\] 5

The general term in the expansion of the pressure in
inverse powers of r in front of this source may be evalu-
ated at high frequencies by means of (3%6). The pressure
turns out to be just twice that radiated by a simple
source wlth the same volume veloclty located at r = ry.
This should not be surprising, since this 1s what the

geometrical optlics approximation would predict.

5. Pressure on the Axis from a Point Source on a Sphere
On the polar axis the pressure radiated by a point

source on & sphere 1s

plr.0)=pc :L:}m—g‘()—\‘/)“ h w (2) (39)

This expression was used to calculate the curves of Fig,

%.4, Most of the points for krl = 1.0 have been calculated

1

by Stenzel™, and his data were used. At low frequencies

i1t is possible to derive a simplified expression, since

he (2) 3“rvw:.
R () (1) g™ (40)
X=-»0

- e m e em e wm e am e e e e e mm ee oam  me  em = em = - e e e = -
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Stenzel, H., "Gulide for the Calculation of Sound Processes",

Translated for Bureau of Ships, Navy Dept., Washington, D.C.,

p. 154, 1947,



the pressure becomes

plr,0) =‘39c\/°—7%t i_:.o{z(%‘r- \ \%}m] (41)

k-0

which may be put into closed form

p(\",O\:chVO_%L[ 2o v Enli-5)] o2

-5
w—+0 3

This last expression makes the calculation of the pressure

for the curve of Fig. 4.5 guite simple and accurate,.
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