

Room 14-0551 77 Massachusetts Avenue Cambridge, MA 02139 Ph: 617.253.5668 Fax: 617.253.1690 Email: docs@mit.edu http://libraries.mit.edu/docs

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable flaws in this reproduction. We have made every effort possible to provide you with the best copy available. If you are dissatisfied with this product and find it unusable, please contact Document Services as soon as possible.

Thank you.

Due to the poor quality of the original document, there is some spotting or background shading in this document.

FORAL SIZE BY, X-11

With particular reference to circuits we study the jump behavior, that is, the seemingly discontinuous change in state of systems driven by constrained (or implicitly defined) dynamics; i.e. $\dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{y}) \ 0 = g(\mathbf{x}, \mathbf{y})$. To be specific, dynamics of a circuit are defined implicitly by specifying the velocities (time-derivatives) of capacitor voltages and inductor currents as well as the nonlinear resistive and Kirchoff constraints that the branch voltages and currents must satisfy. These constraints represent a constraint manifold over the base space of capacitor voltages and inductor currents. The process of integrating the circuit dynamics to obtain the transient response of the circuit consists of "lifting" the specified velocities to a vector field on the constraint manifold . ("lifting" is the inverse operation of projecting). Lifting may not, however, be possible at points of singularity of the projection map, from the constraint manifold to the base space. We propose a way of resolving these singularities, consistent with the interpretation that the constraint manifold is a degeneration of very fast or singularlyperturbed dynamics. The physical meaning of this degeneration is the neglect of certain parasitic elements in the course of modelling. The detailed development is in [1].

1. CONSTRAINED DIFFERENTIAL EQUATIONS

Dynamics of circuits, power systems [2] and several other engineering systems are specified (implicitly) by constrained differential equations of the form

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{y}) \tag{1.1}$$

(1.2)

$$0 = q(x, y)$$

where $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$; $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ and $g : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ are <u>smooth</u> functions. Further, <u>assume</u> that 0 is a <u>regular value</u> of g. We try to interpret (1.1), (1.2) as describing <u>implicity</u> a dynamical system on the n-dimensional configuration manifold for Σ :

$$M = \{ (x, y) : g(x, y) = 0 \} \subset \mathbb{R}^{n+m}$$

*Research supported by DOE under grant ET-A01-2295T050 and by NSF under grant ENG-78-09032-A01. The vector field X on M is specified by specifying its projection on the x-axis, namely,

	the second	· ···· ·	
πX(x,y)	= f(x,y)		(1.3)

(here $\pi: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ is the projection map $(x, y) \to x$). At points at which $\pi TM(x, y)$, the projection of the tangent space to M at (x, y), is equal to \mathbb{R}^n it is clear that f(x, y) uniquely specifies X. Difficulties arise when $\pi TM(x, y) \subseteq \mathbb{R}^n$ and f(x, y) is transverse to $\pi TM(x, y)$. As specimens, two different kind of behavior are illustrated in Figure 1 at a point where M has a "fold".

(i) (Figure (la)) f points out of the manifold M at (x_0, y_0) so that it would seem that the trajectory would jump off the manifold M, i.e., the y-coordinate changes discontinuously.

(ii) Figure (lb)) f points into the manifold M at (x_0, y_0) so that trajectories starting away from (x_0, y_0) do not tend towards (x_0, y_0) .

These so called <u>singular points</u> of Σ are the points at which the implicit function theorem fails to hold in (1.2) in order to solve y as a function of x. At such points (x_0, y_0) it may not be possible to continuously extend an integral curve of Σ and it may be necessary to restart the integral curve of Σ at some (x_0, y_1) satisfying (1.2). We give a <u>physically meaningful</u> way of choosing this (x_0, y_1) :

Empirical evidence leads us to postulate as in literature (a recent reference is [3]) that (1.2) is the degenerate limit as $\varepsilon \neq 0$ of

$$\varepsilon \dot{\mathbf{y}} = \mathbf{g}(\mathbf{x}, \mathbf{y}) \tag{1.4}$$

The system Σ is referred to as the degenerate system and the system (1.1), (1.4) for $\varepsilon > 0$ is referred to as the <u>augmented system</u> Σ_{ε} . For each $\varepsilon > 0$ the solution curves to $\overline{\Sigma_{\varepsilon}}$ are well defined.

The uniform limits of these solution curves as $\varepsilon \neq 0$ (provided they exist) are taken to be the solution concept for Σ . This is in keeping with the notion of consistent solutions in singular perturbation theory [4]. Thus, we have the following

FRIAL FIZE 315 X 11

definition of jump behavior: Warden		manifold be denoted a misuscortage of hore
Definition 1 (Jump Behavior)	ed by (1).	$s = \{y: \lim_{\tau \to \infty} \xi(\tau, y) = y_0\}.$
(2) is said to admit of jump from (x_0, y_0) $(x_0, y_1) \in M$ if given $\delta > 0, \exists \varepsilon_0 > 0, t_0$	E M to 0 such	Theorem 1 (Jump Characterization from
that Vcel0, c0l	AUT:	Assume y ₀ to be a hyperbolic equilibrium of
$ \mathbf{x}_{\varepsilon} - \mathbf{x}_{0} + \mathbf{y}_{\varepsilon} - \mathbf{y}_{0} < 0$ and for t $\in [\varepsilon t_{c}, \alpha]$	OLGAND	$\frac{15}{x_0} = \frac{1}{2} \frac{g(x_0, y_0)}{x_0} \cap \frac{\pi}{x_0} \neq \emptyset.$ Further ZAllet all sufficiently small neighbourhoods V of y
$ \mathbf{x}(t,\varepsilon) - \tilde{\mathbf{x}}(t) ^{-1} + \mathbf{y}(t,\varepsilon) - \tilde{\mathbf{y}}(t) ^{-1}$	<u>ک</u>	$ \begin{array}{c} \text{in } \{x_0\} \times \mathbb{R}^m \text{ be decomposed as} \\ be strated output of the set of t$
where $x(t,\varepsilon)$, $y(t,\varepsilon)$ is the trajectory of ing from $(x_{\varepsilon}, y_{\varepsilon})$ at t = 0; $\tilde{x}(t)$, $\tilde{y}(t)$ is	Σ_{c} start-	$v = (v \cap s_{\gamma_0}) \cup (v \cap s_{\gamma_1}) \cup \dots (v \cap s_{\gamma_p})$
trajectory of Σ starting from $(x_0, y_1) \in M$ and defined on $[0, \alpha[$.	at t=0	where $V \cap S_{y_i}^0 \neq \emptyset$ for $i = 1,, p$ and $S_{y_1}^0$ are the
Remark: The intuitive content of our defitient trajectories of the augmented system	inition is start	stable manifolds of the (hyperbolic) equilibria y_i of B_x . Then Σ admits of jump from (x_0, y_0) to
close to one solution (x_0, y_0) of (1.2) and increasing rapidly towards trajectories s for some other solution (x_0, y_1) of (1.2).	d tend tarting	$(x_0, y_1), (x_0, y_0)$ to $(x_0, y_2) \dots (x_0, y_0)$ to (x_0, y_p) .
To get a feel for this definition read in equation (1.1) and (1.4) and obtain with	scale time th $\tau = t/\epsilon$	Comments: (i) The theorem is visualized in Fig. 2. (ii) It is intuitive that a subset of M that does not admit of jumps is
$\frac{\mathrm{d}x}{\mathrm{d}\tau} = \varepsilon f(x,y)$	(1.5)	$M_{a} = \{ (x,y) : g(x,y) = 0, \sigma(D_{2}g(x,y)) \subset \mathbb{C} \}.$
$\frac{dt}{d\tau} = g(x,y)$	(1.6)	(iii) Of course, a similar theorem holds at singular points:

so that in the limit that $\varepsilon \neq 0$ equations (1.5), (1.6) would only describe the dynamics of the frozen boundary layer system; B_{x_0}

MODEL PARES

$$\frac{dy}{d\tau} = g(x_0, y) = B_{x_0}$$
(1.7)

The assumptions required for the limits in Definition 1 above to exist are:

Assumption 1 (Complete Stability of B_{x_0})

27 J H B B.

For each $x_0 \in \pi M$, the system B_x is completely stable i.e. if $\xi(\tau, \tilde{y})$ is the trajectory of

$$\frac{dy}{d\tau} = g(x_0, y), \quad y(0) = \tilde{y}$$

then, $\lim_{\tau \to \infty} \xi(\tau, \tilde{y})$ exists and $e\{\overline{y}: g(x_0, \overline{y}) = 0\}$.

Equivalently $\xi(\tau, \tilde{y})$ converges to an equilibrium point of B_x for each $\tilde{\tilde{y}}$.

Assumption 2 (No Dynamic Bifurcation)

As (x_0, y_0) moves over M, the eigenloci of

 $D_2g(x_0, y_0)$ cross the jw-axis only at the origin. **0** The first observation that we make is that definition 1 allows for jump from non-singular points: First some notation: let y_0 by an equilibrium of the system B_x and let its attracting set or stable Let $\sigma(D_2g(x_0, y_0)) \cap \{0\} \neq \emptyset$. Then Σ admits of

Theorem 2. (Jump Characterization from Singular

jump from (x_0, y_0) if for all neighbourhoods V of

Points

Further, let all sufficiently small neighbourhoods V of (x_0, y_0) in $\{x_0\} \times \mathbb{R}^m$ be decomposed as

$$V = (V \cap s_{y_0}^{x_0}) \cup (V \cap s_{y_1}^{x_0}) \dots (V \cap s_{y_p}^{x_0})$$

where $V \cap s_{y_i}^{x_0} \neq \emptyset$ for $i = 1, \dots, p$ and the $s_{y_0}^{x_0}$ are
stable manifolds of hyperbolic equilibria y_i of
 $B_{x_0}^{x_0}$. Then Σ admits of jump from (x_0, y_0) to
 $(x_0, y_1), \dots, (x_0, y_p)$.

<u>Comments</u>: (i) The theorem is visualized in Fig. 3. (ii) In general the hypothesis of the theorem (equation (1.7)) are verified by a study of the singularity using bifurcation theory. The detailed development is presented in [1]. Here, we show the pictures two of the singularities that occur if $D_2g(x_0, y_0)$ has a single zero-eigenvalue. :

1

1

Fold-Singularity and collegers in a	Note that unless $A = \emptyset$ (when we have normal form equations) equations (2.3), (2.4) are a pair of
This is shown in Fig. 4. From the viewpoint of	constrained differential equations to which we apply
B_{x} two equilibria of B_{x} come together and annihi-	the theory of the previous section. The physical
···0	significance of various assumptions and perturbations
late each other. The flow in the vicinity of the	introduced in the foregoing will be presented at the
fold boundary is as shown in Fig. 4.	meeting (see, also [1]). We only make a brief
	comment on the singular-perturbation assumption -
Cusp-Singularity	(2.4) is the limit as $\varepsilon \neq 0$ of
This is shown in Fig. 5 From the viewpoint	$\varepsilon \dot{y}_{A} = \dot{x}_{A} - f_{A} (\dot{y}_{A}, \dot{x}_{B})$
of $\mathcal{B}_{\mathcal{A}}$ three equilibria of $\mathcal{B}_{\mathcal{A}}$ fuse together and	
x ₀ x ₀ c	This perturbation is shown dotted in Fig. 6, and
result in one equilibrium (conserving index) No	is the multiport generalization of the following:
jump is necessary at the cusp point and in the	and the second secon
vicinity of the cusp point are two fold surfaces	A current-controlled resistor is envisioned as
which have been studied above.	the singularly perturbed limit as $\varepsilon \downarrow 0$ of the re-
and a second	sistor in series with a small linear parasitic
Other Singularities	inductor because current is the controlling variable.
	The dual is true for a voltage-controlled resistor.
A complete zoo of other singularities is pos-	
sible, see for instance [5].	
	3. DETERMINISTIC AND NOISY CONSTRAINED
and a second	DYNAMICAL SYSTEMS
2. JUMP BEHAVIOR IN CIRCUITS AND PHYSICALLY	
MEASURABLE OPERATING POINTS	In [6] we study noisy constrained systems of
	the form
Consider the class of non-linear, time-invariant	•
networks shown in Fig. 6:	$\dot{x} = f(x,y) + \sqrt{\mu} \xi(t)$ (3.1)
	· · · · · · · · · · · · · · · · · · ·
(C)&(L). We assume the capacitors to be time-in-	$\varepsilon \dot{y} = g(x,y) + \sqrt{\lambda}\varepsilon \eta(t)$ (3.2)
variant charge controlled and inductors to be time-	
n _c +n _k	in the limit that $\varepsilon i 0$ (weakly convergent limits).
invariant flux controlled. Let z e R n repre-	Here $\xi(\cdot)$ and $\eta(\cdot)$ are independent vector valued
sent charges on the capacitors $(z \in \mathbb{R}^{C})$. fluxes	white noise and λ , u scale their variance. It is
n + n	remarkable that in the limit of noise variance
in inductors $(z \in \mathbb{R}^{l})$ and $x \in \mathbb{R}^{c''l}$ represent	tending to zero $(\lambda, \mu \downarrow 0)$ the results for noisy
	constrained systems are guite different from those
capacitor voltages ($x_1 \in \mathbb{R}$) and inductor currents	of the preceding section. Here we only illustrate
n _o L	the difference for the instance of a degenerate
$(x_2 \in \mathbb{R}^{\sim})$. Then, we assume	van der Pol oscillator.
2	
$\mathbf{x} = \mathbf{h}(\mathbf{z}) \tag{2.1}$	Example 3.1 (Degenerate van der Pol oscillator).
$n_{c} + n_{\ell}$ $n_{c} + n_{\ell}$ 1	$\dot{\mathbf{x}} = \mathbf{y}$
with h : $\mathbb{R} \xrightarrow{\sim} \mathbb{R} \xrightarrow{\sim} \mathbb{R} \xrightarrow{\sim} \mathbb{C}$ diffeomorphism.	
(R) We assume that the linear time-invariant re-	$0 = -x - y^{3} + y$.
sistive n-port has a global hybrid representation	
i a if y is the hybrid vector of capacitor port	The phase portrait of the degenerate system inclu-
currents (x) and inductor port voltages (x) with	ding jumps from two fold singularities is shown in
m	Fig. 7. Note the relaxation oscillation formed
x'y representing power into the n-port then there	by including the two jumps.
exists a partition AUB of $\{1, \ldots, n\}$ such that	
	Example 3.2 (Noisy degenerate van der Pol oscillator)
$x_{a} = f_{a}(y_{a}, x_{B})$	
A A A B (2.2)	$\dot{\mathbf{x}} = \mathbf{v} + \sqrt{\mathbf{u}} \boldsymbol{\xi}$
$y_{p} = f_{p}(y_{p}, x_{p})$	and the second se
	$e\dot{v} = -x - y^3 + y + \sqrt{\lambda e} n$

Using equations (2.1), (2.2) and Coulomb's, Faraday's law we have

$$\mathbf{x} = -Dh(h^{-1}(\mathbf{x})) \begin{bmatrix} \mathbf{y}_{A} \\ \mathbf{f}_{B}(\mathbf{y}_{A}, \mathbf{x}_{B}) \end{bmatrix}$$
(2.3)

$$0 = x_{A} - f_{A}(y_{A}, x_{B})$$
 (2.4)

for $\lambda,\mu>0$ as $\epsilon \downarrow 0$ the x-process converges (weakly on C([0,T], IR)) to one satisfying

$$\dot{\mathbf{x}} = \overline{\mathbf{y}}^{\lambda}(\mathbf{x}) + \sqrt{\mu} \boldsymbol{\xi}$$

where \overline{y}^{λ} is plotted for $\lambda_1, \lambda_2 > 0$ in Figure 8. In the further limit that $\varepsilon \downarrow 0$ followed by $\mu \downarrow 0$, x satisfies

APT NEED			;	1.01	21	PAPER
----------	--	--	---	------	----	-------

$(\hat{\mathbf{x}})_{ij}$ and $\hat{\mathbf{x}}_{i} = (\hat{\boldsymbol{\psi}}(\mathbf{x})_{ij})_{ij}$ and $\hat{\mathbf{x}}_{ij} \neq 0^{*}$ and $\hat{\mathbf{x}}_{ij}$ propositional	 Other is a value of an analysis of the Handwald stype calibred in
$= 0 \qquad \mathbf{x} = 0$	
where $\Psi(x)$ is shown heavy in Figure 8. Note the	والمتحمد الاستان والمستعمين ومتاريها والمنصين بسن المنتها للمنها الالال المالي والالها
discontinuity of ψ at x = 0 and that the relaxation	on press mentantinas
oscillation is broken up by the presence of small	
noise.	
REFERENCES	AUTHOR Sto Sto
	y2 Sy6 × 30
1. Sastry, S.S., Desoer, C.A., and Varaiya, P.,	(x_0, y_2)
"Jump Behavior of Circuits and Systems",	y ₃
ERL Memo No., 80/44, Univ. of Cal. Berkeley,	3411/ZA1. cx0 00000 00005
to appear <u>IEEE Trans.</u> CAS.	
2 Contrar C.C. and Marsins D. "Microsphical	(x_0, y_5) (x_0, y_1) $S_{y_1}^{x_0}$
Stability and Alert State Steering Control	
of Power Systems: IEEE Trans. Circuits and	(xo,y4) Sv
Systems, Vol. CAS-27 (1980), pp. 1102-1112.	74
3. Chua, L.O., Alexander, G.R., "The Effect of	
Parasitic Reactances on Non-Linear Networks",	
IEEE Trans. Circuits Theory, Vol.CT-18 (1971)	Figure 2. Jump from Non-Singular Points.
pp. 520-532.	
	· · ·
4. Fenichel, N., "Geometric Singular Perturbation	1.
Theory for Ordinary Differential Equations",	· ·
Journal of Diff. Equations, Vol. 31, (1979)	
pp. 53-98.	
• ••• • • • • • • • • •	

/g(x,y)=0

(x₀,y₀)

 $\tilde{X}(x,y)$

 $\pi X(x,y)$

 $f(x_0, y_0)$

- Thom, R., Structural Stability and Marphogenesis, Benjamin, 1975, Chap. 5, pp. 60-90.
- Sastry, S. and Hijab, O., "Bifurcation in the Presence of Small Noise", LIDS-P-1089, M.I.T., to appear in <u>Systems and Control Letters.</u>

g(x,y) = O

(x₀,y₀)

 $f(x_0, y_0)$

Figure 1. Illustrating the Nature of the

from f(x,y).

Difficulty Obtaining X(x,y)

X(x,y)

 $\pi \chi(x,y)$

У

У

Figure 3. Jump from a (fold) Singularity

. Cusp Singularity and Flow nea the Cusp. Figure 8. The Drift $y^{\lambda}(x)$ for the Limit Diffusion of the Degenerate Van Der Pol Oscillator.