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INTRODUCTION

With particular reference to circuits we study The vector field X on M is specified by specifying
the jump behavior, that is, the seemingly discon- its projection on the x-axis, namely,

tinuous change in state of systems driven by con- . ..........
strained (or implicitly defined) dynamics; i.e. : rX(x,y) = f(x,y) (1.3)
x = f(x,y) 0 = g(x,y). To be specific, dynamics of . ._
a circuit are defined implicitly by specifying the (here T:1Rnx m- R nis the projection map (x,y)-x).
velocities (time-derivatives) of capacitor voltages At points at which 7rTM(x,y), the projection of the
and inductor currents as well as the nonlinear re- tangent space to M at (x,y), is equal to IR

n
it is

sistive and Kirchoff constraints that the branch clear that f(x,y) uniquely specifies X. Diffi-
voltages and currents must satisfy. These con- culties arise when 7TM(x,y) C 3Rn and f(x,y) is

straints represent a constraint manifold over the transverse to rTM(x,y). As specimens, two dif-
base space of capacitor voltages and inductor cur- ferent kind of behavior are illustrated in Figure

rents. The process of integrating the circuit 1 at a point where M has a "fold".

dynamics to obtain the transient response of the
circuit consists of "lifting" the specified veloci- (i) (Figure (la)) f points out of the

ties to a vector field on the constraint manifold manifold M. at (xo,y ) so that it would seem that

("lifting" is the inverse operation of projecting). the trajectory would jump off the manifold M, i.e.,
Lifting may not, however, be possible at points of the y-coordinate changes discontinuously.
singularity of the projection map, from the con-
straint manifold to the base space. We propose a (ii) Figure (lb)) f points into the manifold

way of resolving these singularities, consistent M at (xO,y 0) so that trajectories starting away from
with the interpretation that the constraint mani- (xOyO) do not tend towards (xO,yO).

fold is a degeneration of very fast or singularly-

perturbed dynamics. The physical meaning of this
These so called singular points of . are thedegeneration is the neglect of certain parasitic

elements in the course of modelling. The detailed points at which the implicit function theorem fails

development is in c e. to hold in (1.2) in order to solve y as a function

of x. At such points (xO,yO) it may not be possible
1. CONSTRAINED DIFFERENTIAL EQUATIONS to continuously extend an integral curve of 7 and

it may be necessary to restart the integral curve

Dynamics.of circuits, power systems (2] and seve- of E at some (xoyl) satisfying (1.2). We give
a physically meaningful way of choosing this

ral other engineering systems are specified (impli-

citly) by constrained differential equations of the (x0 1yl):
form

Empirical evidence leads us to postulate as in
x = f(x,y) (1.1) literature (a recent reference is [31) that (1.2)

o = g(xy) (1.2) is the degenerate limit as £ Y' 0 of
0 = g(x,y) (1.2)

where xLR ,y.eR m; f:R
n
x IRm) yn and g:IRn x m = g(x,y) (1.4)

are smooth functions. Further, assume that 0 is a
regular value of g. We try to interpret (1.1), The system E is referred to as the degenerate system

(1.2) as describing implicity a dynamical system on and the system (1.1), (1.4) for £ > 0 is referred
the n-dimensional configuration manifold for E: to as the augmented system Z . For each e > 0

the solution curves to E are well defined.
M = (x,) : g(x,xy) = o0 C Rn+m e

The uniform limits of these solution curves as

*Research' supported by Do under grant E - 0 (provided they exist) are taken to be the

ET-A01-2295T050 and by NSF under grant solution concept for E. This is in keeping with
ENG-78-09032-A01. the notion of consistent solutions in singular

perturbation theory [4]. Thus, we have the following
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idefinition of jumnp behavio': : .; - manifold be denoted - -;. ;:

Definition 1.-- -(Jump. Behavior )- . ...... .... ......................... 
the .- . S {y: lim , (I, Ty) = yo} 

The solution of the system Z described by (1), 1 ° T

(2) is said to admit of-jump from (x ,y ) E M to- :.-. --
I t )0 Msuch - 'Theorem 1 (Jump Characterization from..---.

(x0,Yl) E M if given 6 > 0,£ 3 o>-O,°t- >"O such .i0'l;0 0 y Mi n0 Non Singular Points).
,that VWe]0,0] 1'0,

_ . __ Assume y to be a hyperbolic equilibrium of
.............. ..a.. let....

I-X0 Yo+- ----- and let 0 D2g(x0,YO ) n(e v a . Further

'and for t [t0,a] j j [;" 7 :fIet'all sufficiently small neighbourhoods V of y
'~ ' ........... I .. ~ in {x-} x Rm be decomposed as..

Ix- .(t, ).- (t + ) I;< ' .y...) .... .........t 
x x

V= (VnS ) U (vfls) U... (vflS
where x(t,S), y(t,c) is the trajectory of Z start- (v n s
ing from (x,.y£) at t = 0; x(t),(t)t) is the

c
- _ :

trajectory of Z starting from (xo,Y1) e M at t=0 where VfnS A 0 for i = ,...p and S are the

and defined on [0,ct. . Yi
stable manifolds of the (hyperbolic) equilibria yi

Remark: The intuitive content of our definition is of . Then -admits of jump from (xO,yO) to
that trajectories of the augmented system start O
close to one solution (x ,y ) of (1.2) and tend (x ,yl), (x0,1y) to (xO,y2).... (x,y)
increasing rapidly towards trajectories starting
for some other solution (x0,Y1) of (1.2). to (xOYp).

Tsdefinition rescale time .Comments: (i) The theorem is visualized in Fig. 2.
To get a feel for this definition rescale time

in equation (1.1) and (1.4) and obtain with T-t/E (ii) It is intuitive that a subset of M that doesin equation (1.1) and (1.4) and obtain with T=t/S
not admit of jumps is

- £ = f(x,y) (1.5) Ma = {(x,y) : g(x,y)= 0, o(D2g(x,y))c }
d--t

dt 16 (iii) Of course, a similar theorem holds at= g(xy) (1.6)
dT singular points:

so that in the limit !that c + 0 equations (1.5), Theorem 2. (Jump Characterization from Singular
(1.6) would only describe the dynamics of the Points
frozen boundary layer system; B

K0 Let a(D2 g(x0 ,YO)) f{0} A 0. Then E admits of

= g(xOy) iB (1.7) jump from (x0,yO) if for all neighbourhoods V of

°T (x0 1Y 0) in {x0 } x i
m

The assumptions required for the limits in XO
Definition 1 above to exist are: V C S

f yo
Assumption 1 (Complete Stability of B )

0 Further, let all sufficiently small neighbourhoods
For each x Oe M, the system E is completely V of (xO,YO) in{x } 'x Rm be decomposed as

stable i.e. if C(T,y)'is the trajectory of x x

V = (VS ) U (vnS °)...(VvS )

dT g(XOY ) , y(O) = y pdT x X
where Vr S # 0 for i = l,...,p and the S are

then, lim ~(T,y) exists and e{y:g(x0,) = 0} . Y Y
where VN yi f 0

Equivalently S(T,y) converges to an equilibrium stable manifolds of hyperbolic equilibria yi of

point of x for each y.

Assumption 2 '(No Dynamic Bifurcation) (x0 ,yl), ,(op

As (x ,y ) moves over M, the eigenloci of Comments: (i) The theorem is visualized in Fig. 3.
As (x0,Y') 0es over M, the eigenloci of (ii) In general the hypothesis of the theorem

D2 g(xO,YO) cross the jw-axis only at the origin. a (equation (1.7)) are verified by a study of the
singularity using bifurcaticn theory. The detailedThe first observation that we make is that de-

finition 1 allows for jump from non-singular points: development is presented in g r]. Here, we show
First some notation: let Y by an equilibritun of the pictures two of the singularities that occur ifFirst some notation: let Y0 by an equilibrium of
the system Bx and let its attracting set or stable D2g(xOYO) has a single zero-eigenvalue.
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Fold-Singularity:: : :- " | Note that unless A =0 (when-we have normal form

!equations) equations (2.3), (2.4) are a pair of

This is shown in-Fig. 4.-- From-the-viewpoint -of -- constrained differential equations-to which we apply

8 two equilibria of S :come together and annihi-, .the theory of the previous section. The physical

To x0 O -O significance of various assumptions and perturbations

late each other.--;-The flow in- the vicinity of-the --... introduced in the foregoing will be presented at the

fold boundary-is -as shown in Fig.-4. .- meeting (see, also [1]). -We only make -a brief

conmment on the singular-perturbation assumption -

ICusp-Singularity (2.4) is the limit as: +O of

This is shown-in Fig. -5.---From the viewpoint---Y---;- 

iof B three equilibria of S fuse together and--. -

0O i x This perturbation is shown dotted in Fig. 6, and

'result in one equilibrium (conserving index).-- No is the-multiport generalization of the followin:

jump is necessary at the cusp point and in the - - -

vicinity of the cusp point are two fold surfaces A current-controlled resistor is envisioned as

which have been studied above. the singularly perturbed limit as E+0O of the re-

sistor in series with a small linear parasitic

Other Singularities inductor because current is the controlling variable.
,The dual is true for a 9oltage-controlled resistor.

A complete zoo of other singularities is pos- 

sible, see for instance [5]. 
sible, see. for instance f 5].3. DETERMINISTIC AND NOISY CONSTRAINED

- - DYNAMICAL SYSTEMS

2. JUMP BEHAVIOR IN CIRCUITS AND PHYSICALLY

MEASURABLE OPERATING POINTS In [6] we study noisy constrained systems of
the form

Consider the class of non-linear, time-invariant

networks sho.wn in Fig. 6: x = f(x,y) + VI i(t) . (3.1)

(C)&(L). We assume the capacitors to be time-in- (3.2)

variant charge controlled and inductors to be time-

nc+nZ in the limit that +0O (weakly convergent limits).
invariant flux controlled. Let z e R n repre- Here U(() and n(') are independent vector valued

sent charges on the capacitors (z e R ), fluxes white noise and X,u scale their variance. It is
n na +n- remarkable that in the limit of noise variance

in inductors (z e m ) and x e R represent tending to zero (X,V-0O) the results for ,noisy

2 nc constrained systems are quite different from those
capacitor voltages (1Xe IR ) and inductor currents of the preceding section. Here we only illustrate

the difference for the instance of a degenerate
(x2 e mR ). Then, we assume van der Pol oscillator.

x = h(z) (2.1) Example 3.1 (Degenerate van der Pol oscillator).

n+n n+n = 
y

with h : IR c + JR a C diffeomorphism.

(RY We assume that the linear time-invariant re- = -x -y + y.

sistive n-port has a global hybrid representation

i.e. if y is the hybrid vector of capacitor port The phase portrait of the degenerate system inclu-

currents (Y1) and inductor port voltages (y2) with ding jumps from two fold singularities is shown in

T Fig. 7. Note the relaxation oscillation formed
x y representing power into the n-port then there by including the two jumps.
exists a partition AUB of {1,... n} such that

Example 3.2 (Noisy degenerate van der Pol oscillator)

XA = fA
(y A '

XB
)

(2.2) :

YB 
=

fB
(Y A'

XB
)

3

Cy = -x - y + y + y + l

Using equations (2.1), (2.2) and Coulomb's, Faraday's
law we have for X,P > 0 as c+O the x-process converges (weakly

on C([O,T], JR)) to one satisfying

x =-Dh(h-l(x)) Y (2.3) x = () + V

fB(YA 'xB)

where y is plotted for A1, A2 > 0 in Figure 8. In

° = XA - fA(YA' XB) (2.4) the further limit that +0O followed by wp0, x
satisfies
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=0 x=0

where '(x') is'shown heavy in-Figure 8;- Note the
discontinuity of J at x = 0 and that the relaxation
·oscillation is broken up by the presence of small
noise.
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Figure 1. Illustrating the Nature of the
Difficulty Obtaining X(x,y)
from f(x,y).

Figure 3. Jump from a (fold) Singularity
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Figure 4. Fold Singularity and Flow near 
the Fold,

Figure 7. Degenerate Form of the Van Der Pol

Oscillator Showing Jump Behavior.
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cusp X) Y
Fold

Upper Center
Sheet

Sheet

Lower
Sheet

Figure 5. Cusp Singularity and Flow near Figure 8. The Drift y (x) for the TLimit
the Cusp. Diffusion of the Dcgenerate

Van Der Pol Oscill.aLor.


