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Abstract

Despite the rapid growth of next-generation cellular networks, researchers and end-
users today have limited visibility into the performance and problems of these net-
works. As LTE deployments move towards femto and pico cells, even operators strug-
gle to fully understand the propagation and interference patterns affecting their ser-
vice, particularly indoors. This thesis introduces LTEye, the first open platform to
monitor and analyze LTE radio performance at a fine temporal and spatial granular-
ity. LTEye accesses the LTE PHY layer without requiring private user information
or provider support. It provides deep insights into the PHY-layer protocols deployed
in these networks. LTEye's analytics enable researchers and policy makers to un-
cover serious deficiencies in these networks due to inefficient spectrum utilization and
inter-cell interference. In addition, LTEye extends synthetic aperture radar (SAR),
widely used for radar and backscatter signals, to operate over cellular signals. This
enables businesses and end-users to localize mobile users and capture the distribution
of LTE performance across spatial locations in their facility. As a result, they can
diagnose problems and better plan deployment of repeaters or femto cells. We imple-
ment LTEye on USRP software radios, and present empirical insights and analytics
from multiple AT&T and Verizon base stations in our locality.
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Chapter 1

Introduction

Cellular service has become an integral part of our life. Yet as users and researchers,

we have little visibility into the performance and real problems of these networks.

Even the little information we have is primarily from trace analysis sanctioned by

mobile operators [14, 15]. The lack of open and transparent access into the operation

and inefficiencies of the cellular physical layer limits our ability as researchers to

contribute effectively to the development of these networks. It also limits the ability

of policy makers to independently verify operators' claims of spectrum needs, and

make informed decisions on licensed vs. unlicensed spectrum.

The need for increased visibility into the cellular PHY-layer is further emphasized

by three recent trends. First, cellular deployment is moving towards small, femto, and

pico cells [25], many of which will be deployed by a user to cover her home or small

business. As a result, cellular operators no longer have full control over their LTE

deployments, and struggle to understand the propagation and interference patterns

affecting their service, particularly in indoor settings. Open, cheap, and ubiquitous

radio monitoring can help deal with the challenging propagation patterns brought

in by small cells. Second, the rise of LTE-based M2M applications motivates a more

open access to LTE signal-based analytics. For example, Walmart, Home Depot, or

Disneyland may leverage LTE signals and recent RF-based localization techniques to

track how clients navigate their space and obtain business analytics. Also, oil and gas

companies who are deploying LTE-supported seismic sensors [6] can leverage access
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to LTE radio propagation to better plan their sensor network and debug connectiv-

ity problems. Third, the FCC plans to repurpose certain bands (e.g., 3.5 GHz) for

multi-tier spectrum sharing, including LTE small cell deployments [9]. Operating in a

shared spectrum naturally fits with an open model for signal monitoring and analysis,

where all the entities sharing the spectrum can better understand the problems and

cooperate to find solutions.

All of these reasons motivate a more open access to the cellular PHY layer, par-

ticularly LTE. In this thesis, we ask the following question: Can we access the cellular

PHY-layer of today's LTE deployments, without support from mobile operators? In

particular, can we do this without requiring access to private user data or encrypted

LTE channels? If such a service exists, it could contribute to better deployment of

femto cells and repeaters, more businesses built on top of LTE networks, better in-

formed spectrum policies, more efficient sharing of newly released bands, and an

overall increase in transparency in an industry that is a major part of the world

economy.

We introduce LTEye, an open platform for monitoring and analyzing the LTE

PHY layer. LTEye is a passive sniffer that runs on off-the-shelf software radios (e.g.

USRPs). It-does not require provider support, and hence can serve end users, re-

searchers, policy makers, or mobile broadband providers. LTEye extracts per-user

analytics purely from the LTE control channels that contain meta-deta on uplink and

downlink transmissions, without accessing private data or system parameters from en-

crypted data channels. Specifically, it tracks individual users based on their temporal

PHY-layer IDs, without requiring or exposing their private information. It then intel-

ligently links these IDs across control messages to generate transmission records for

each user. Each record reports the transmission's resource utilization, modulation and

coding rate, and frame loss rate. LTEye also records the wireless channel it perceives

from base stations and mobile users within radio range. These channels are used to

accurately monitor the 3-dimensional physical location of the users. LTEye maintains

these records in a database called LTEyeDB. It processes the records to generate two

dimensions of fine-grained analytics: temporal analytics, to track LTE performance
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over time, and spatial analytics, to characterize LTE service across spatial locations.

We implemented LTEye on USRP software radios [7]. We deployed LTEye in four

locations in our campus to compare the temporal performance of two major LTE

providers: AT&T and Verizon. Our results revealed several inefficiencies in these net-

works. First, both providers deploy a Frequency Division Duplexing scheme, which

uses independent equally sized frequency bands for uplink and downlink traffic. How-

ever, LTEye reported that for both providers, the average utilization of downlink

resources (25.2% - AT&T, 58.2% - Verizon) far exceeded that of uplink resources

(0.6% - AT&T, 2.6% - Verizon). While it is expected that the downlink is higher

in demand, our results reveal that the LTE uplink is a remarkable 20 to 40 times

less utilized than the downlink. LTEye's analytics can therefore help policy makers

encourage operators to adopt revised LTE standards that allow more prudent alloca-

tion of resources to the uplink and downlink1 , without relying on data from providers

themselves to make the case.

Second, LTEye localized certain spots in our campus, where Verizon cellphones

suffer poor link quality and often switch to 3G, despite reporting high signal power

from the LTE base station. To investigate this, we moved our LTEye sniffers to these

spots and found that they experienced high inter-cell interference (about 27 dB)

from as many as five different base stations. To make matters worse, many of these

base stations used overlapping channel estimation pilots that interfered, significantly

impacting the decodability of these transmissions. These results help end-users better

plan the deployment of femto cells to avoid such interference. Further, they benefit

cellular providers themselves because they reveal interference problems that end-users

face in indoors, hitherto inaccessible to providers. Interestingly, some of these PHY-

layer inefficiencies may be unknown even to the operators as they are part of the

PHY-layer implementations adopted by the base station vendors.

LTEye also benefits researchers by providing deep insights into the PHY-layer pro-

tocols deployed by cellular providers. While the LTE standard spells out much of the

'E.g. Asymmetric Carrier Aggregation [18] in LTE Advanced (3GPP Release 10) allows downlink
resources to exceed the uplink.
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PHY layer, the choice of rate adaptation algorithm is still left to individual operators.

To gain insights into this algorithm, we analyzed LTEyeDB records of an AT&T base

station in our locality. We found that even for static users with completely coherent

channels and stable SNRs, the modulation and coding scheme changes significantly

even between adjacent transmissions. More interestingly, the average modulation and

coding of frames sent to a user changes, based not only on her wireless channels,

but also on the network state as a whole. Specifically, if the network is scarcely uti-

lized, the base station transmits to the user conservatively at low modulation on

average, even if the wireless link is stable and supports much higher modulation.

In contrast, as network utilization increases, under identical SNRs, the base station

steadily increases its modulation to support more aggressive data rates to the user.

Such analytics on the performance and design choices of today's cellular operators

help researchers design better LTE protocols.

LTEye enables businesses and network administrators to continuously monitor the

spatial locations of mobile users, and build a geographic heatmap of LTE coverage and

performance within their facility. However, accurately localizing mobile users purely

based on their LTE signals is a challenging task. This is because past work on accu-

rate indoor localization proposes two classes of solutions that are ill-suited to LTE

networks: First, localization using antenna arrays [29, 17] requires large bulky arrays,

owing to the relatively low frequencies of LTE signals. Second, recent localization

techniques using synthetic aperture radar (SAR) are less bulky, but are limited to

signals transmitted and received by the same node (e.g. radar [11] or RFID backscat-

ter [28] systems) and therefore do not apply to LTE signals. LTEye provides the

best of both these solutions by extending SAR localization techniques to operate over

communication signals as opposed to backscatter or radar signals. It also introduces

a novel technique to handle errors due to multipath by identifying the shortest (or

most direct) path.

Our evaluation of LTEye's spatial analytics in large indoor environments reveals

a median accuracy in 3D localization of mobile users of 61 cm in line-of-sight and

85 cm in non-line-of-sight settings. Further, we visualize the LTE performance of the
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mobile users across locations, helping building managers find optimal locations for

relays or femtocells.

Contributions: . This thesis contributes the following:

" The thesis presents LTEye, the first open platform to monitor and analyze per-

user LTE PHY performance at fine temporal and spatial granularity.

" LTEye employs a new technique to identify and track individual users at the

LTE PHY layer in a robust manner, without help from operators, and without

requiring or exposing private user information.

* LTEye develops an innovative technique for accurate localization of users based

on their LTE signals. This involves extending synthetic aperture radar (SAR)

to operate over communication signals as opposed to backscatter and radar

signals, and a novel technique for identifying the shortest and most direct path

in the presence of multipath.

" LTEye's evaluation on AT&T and Verizon LTE deployments reveal deep in-

sights on the inefficiencies, utilization patterns, and differences between these

providers. LTEye also provides heat maps to characterize LTE performance

across indoor locations, without GPS support.
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Chapter 2

Related Work

(a) LTE Sniffing Equipment:. Devices such as Wavejudge, ThinkRF and Intel-

liJudge [24, 27] are wireless protocol sniffers to capture RF signals. They are mainly

tools for wireless development and interoperability testing that provide visibility into

the interaction between the PHY and protocol layers. Unlike LTEye, these devices

need inputs from the cellular provider and do not perform localization or provide

spatial analytics.

(b) Open LTE Implementations:. There have been efforts in developing

open source implementations of LTE protocols, notably OpenAirInterface [8], and

OSLD [12]. These initiatives enable running LTE base stations on software radios;

they do not extract spatial or temporal analytics.

(c) LTE Measurement Studies:. Many recent LTE studies have been con-

ducted using traces collected on participating smartphones or from inside LTE net-

works. Findings from these studies include: (1) The available bandwidth of LTE net-

works is highly variable and TCP is not able to fully utilize the bandwidth [15]; (2)

LTE is significantly less power efficient than Wi-Fi [14]; (3) LTE latency is more

consistent (less variable) than Wi-Fi [26]. Such studies focus on the higher layers of

the stack, e.g., TCP throughput, transfer delay, and power usage. In contrast, LT-

Eye focuses on the LTE radio layer; it provides fine-grained temporal and spatial
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information and does not require traces from the provider.

(d) Cellular Location-Specific RF Measurements:. Cellular operators need

location-specific RF measurements to troubleshoot performance problems and plan

future deployments. They typically obtain coarse location information by mapping a

user to her serving cell. Operators then rely on drive tests to refine the spatial mea-

surements. Drive tests are costly and constitute a big part of the network operating

expenditure [16]. Further, they are increasingly inadequate as operators move toward

femto cells, and need indoor coverage data. To reduce the cost and improve the spatial

measurements, recent LTE releases propose mechanisms known as MDT [2]. MDT

techniques localize a mobile phone either using in-network time measurement or by

collecting location information using the phone's GPS. It is well-known however that

in-network localization in cellular networks is not accurate (at hundreds of meters [21])

as time-delay measurements are only available for the serving cell of a mobile user.

Even the E911 service using positioning reference signals can only guarantee 150m

accuracy 95% of the time [20]. GPS measurements cannot be invoked often as they

drain the user's battery. They also cannot capture indoor location.

(e) RF-based Localization Techniques:. Our work is related to past work

on RF-based localization. This problem has received much recent interest resulting

in highly accurate systems. ArrayTrack [29] and PinPoint [17] are an antenna-array

based indoor location systems that tracks wireless clients at fine granularity. Chen et.

al.[13] build antenna arrays using software radios synchronized with a reference signal.

PinIt [28] is an RFID localization system that combines SAR with a deployment of

reference RFIDs to achieve highly accurate localization.

Our design builds on this past work but differs in that it introduces two inno-

vative localization techniques. First, we extend SAR to operate over communication

signals exchanged between a transmitter and a receiver. This contrasts with the cur-

rent approach for SAR, which is limited to backscatter and radar signals, where the

transmitter and receiver are a single node with no Carrier Frequency Offset (CFO)

or Sampling Frequency offset (SFO). Second, we introduce a new technique that
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when combined with SAR or standard antenna arrays, estimates the delay difference

between the various paths traversed by the signal to identify the shortest path. In

particular, we measure these delays in time based on phase offsets in the frequency

domain. Hence, LTEye can resolve differences in delay below one time sample, unlike

past work that estimates these delays via correlation in time [17].
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Chapter 3

LTE Primer

In this chapter, we briefly introduce LTE concepts relevant to this thesis, at a high

level. LTE networks are divided into multiple geographical regions called cells. Each

cell contains a cellular base station that serves multiple mobile users. We focus on

Frequency Division Duplexing, the mode of LTE most widely used by cellular opera-

tors. This LTE mode uses different dedicated carrier frequency bands for uplink and

downlink transmissions. Hence, each base station uses a pair of frequency bands to

communicate with users in its cell.

Subframe (1ms)

N -Resource
Block

CD

Resource
Element

7 Symbols (0.5ms)

Figure 3-1: Resource Block. Resource Grid is divided into Resource Blocks, each 12
OFDM subcarriers and 7 symbols.
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(a) Radio Resources. LTE's uplink and downlink transmissions are based on

OFDM. While medium access and resource sharing is largely distributed in typical

OFDM-based systems such as Wi-Fi, LTE centralizes much of resource allocation

at the base station. In particular, base stations divide radio resources into multiple

frames over time, each containing ten subframes, spanning 1 ms each. Resources in

each sub-frame are divided both along time and frequency as a two dimensional time-

frequency grid, as shown in Fig. 3-1. Each cell in the grid, called a resource element

corresponds to one OFDM sub-carrier (15 KHz) over the duration of one OFDM

symbol (66.7 ps).

The key task of an LTE base station is to apportion both uplink and downlink

resources between different users along both time and frequency. It allocates resources

to users at the granularity of resource blocks, each of which spans 0.5 ms (i.e., half

a sub-frame) by 180kHz (i.e., 12 sub-carriers). To combat frequency-selective fading,

the assignment of resource blocks to users both on the uplink and downlink is not

fixed, but hops from transmission to transmission.

RB 49 SM|1111 U I I I I I 

Control

RB 27'

Data

RB 22 T 180 KHz

Broadcast
Resource
Block

RB 0 Hybrid
ARQ

Subframe 0 (1 ms)

Figure 3-2: Physical Channels. Physical Channels are mapped to well defined Re-
source Elements in the Grid.

(b) Physical Layer Channels. As LTE centralizes PHY-layer control, base stations

need to transmit both data and control information to the users. To this end, LTE

partitions network resources into well defined channels, each responsible for different
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types of information. These channels are mapped to well-known resource elements of

the grid, as shown in Fig. 3-2.

Broadly, LTE base stations use four main channels on the downlink: (1) A data

channel to send users their downlink data. (2) A control channel to allocate network

resources. (3) A broadcast channel for new users to learn system parameters. (4) A

hybrid-ARQ channel to send ACKs to the users. Similarly, the mobile users on the

uplink are allocated data and control channels to transmit their uplink data and

control messages. Table 3.1 describes these channels in greater detail.

Downlink LTE Channels

Name Description

PBCH Physical Broadcast Channel: Carries general information about the cell,

like number of antennas on the base station and total bandwidth.

PDCCH Physical Downlink Control Channel: Sends downlink control messages,

e.g. for resource allocation on uplink/downlink.

PDSCH Physical Downlink Shared Channel: Holds downlink data meant for users

in resource blocks indicated by the PDCCH.

PHICH Physical Hybrid-ARQ Channel: Contains positive or negative acknowl-

edgments for uplink data.

Uplink LTE Channels

PUCCH Physical Uplink Control Channel: Holds control information from users to

base stations, e.g. ACKs, channel reports and uplink scheduling requests.

PUSCH Physical Uplink Shared Channel: Mainly carries uplink data in resource

blocks indicated by the PDCCH.

Table 3.1: LTE Channels. Details the name and function of PHY-layer channels, as
defined in LTE standards [3].

We point out here that the downlink control channel bears rich information on

the LTE PHY-layer. Specifically, it contains multiple downlink control information

messages in which the base station allocates resource blocks to specific users for every

transmission on either the uplink or downlink. In addition, the control information
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also specifies the modulation and coding to be used in these blocks. Upon hearing a

control message, a user accesses the relevant data channel to send (receive) her uplink

(downlink) transmission.

(c) PHY User Identifier. The LTE PHY refers to each mobile user using a

temporary unique ID called the Cell Radio Network Temporary Identifier (C-RNTI).

The C-RNTI reveals no private information about the user. It is local to the users's

serving cell, and is assigned when she enters the cell via a higher-layer connection

establishment procedure[4].

A user continues to have the same C-RNTI as long as she is in the same cell and is

not idle for more than the pre-configured tail timer value. The timer value is typically

a few seconds to tens of seconds (12 seconds in the measurement result of [14]). Hence,

the C-RNTI assigned to a user may change quite often if it transmits sporadically.
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Chapter 4

LTEye

LTEye is an open platform to analyze LTE radio performance. Its design aims to

satisfy the following key attributes:

* Provider-Independent: LTEye does not require any information or support from

cellular providers. Thus, LTEye allows end-users, policy makers and third par-

ties to make a fair assessment and comparison of the service quality of different

providers, without relying on information furnished by the providers themselves.

" Off-the-Shelf: LTEye must be built on low-end off-the-shelf components, such

as standard laptops and software radios. This makes LTEye more accessible to

end-users and easy to be deployed in large numbers.

" Secrecy Preserving: LTEye cannot and does not decode private data or system

parameters from encrypted uplink and downlink data channels, but gathers

analytics purely from unencrypted control channels.

4.1 System Architecture

LTEye operates as a passive 2-antenna MIMO receiver. LTEye's architecture is a

pipeline of two components: (1) the LTE Logger, and (2) the Data Analyzer. (see

Fig. 4-1)

(a) LTE Logger: The LTE Logger sniffs on the LTE control channels to gener-
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Figure 4-1: LTEye's Architecture.LTEye's Architecture is a pipeline of two compo-

nents: The LTE Logger and Data Analyzer.

ate transmission records. The logger begins by listening to the broadcast channel to

gather system parameters. It then sniffs the downlink control channel and performs

LTE decoding, i.e., it demodulates the OFDM symbols, applies de-interleaving, de-

scrambling and convolutional decoding to extract the actual bits of the downlink

control messages.

The logger reads each of these control messages to populate LTEyeDB, a database

of LTE information records tagged with their transmission time. Each transmission

record consists of several fields retrieved from the control messages, as listed in Ta-

ble 4.1. Many of these fields help characterize network performance and utilization,

both for the user over time, and for the network as a whole, if viewed in aggregate. In

addition, notice two important fields in the records: (1) Each record is indexed by the

user's C-RNTI (i.e. her PHY-layer user ID), which are key to link multiple records

belonging to the same user. (2) Records maintain the uplink channels seen by the

LTEye sniffer over time. In 4.3, we show how these channels are essential to localize

users.
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Field Description Format

Time Transmission Time 32-bit timestamp

C-RNTI PHY-layer ID 16-bit Sequence

UL/DL Uplink or Downlink 0/1

nrb Number of Resource Blocks 0 to NRB

alloc Bit-Map of Resource Blocks NRB bits

MCS Modulation and Coding Scheme 5 bits

isAcked Acknowledgment 1 (ACK/NACK)

UE-channel Channel from user (if U/L) NcN, Complex Floats

BS-channel Channel from Base Station NcNtNr Complex Floats

SNR, SINR SNR and SINR of Base Station Floating Point

Table 4.1: Fields of LTEyeDB. Where NRB: Number of resource blocks, Nt,: Number
of base-station antennas, N,,: Number of sniffer antennas, N,,: Number of OFDM sub-
carriers.

(b) Data Analyzer: The data analyzer processes the records in LTEyeDB to extract

fine-grained analytics on both cellular base-stations and individual mobile users. It

extracts two types of analytics: temporal analytics which describe LTE PHY metrics

as functions of time (e.g., the per-user resource allocation over time), and spatial

analytics which describe position-dependent RF metrics (e.g., the user location and

the observed multipath effects). Sections 4.2 and 4.3 discuss both types of analytics

in detail.
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4.2 Enabling Temporal LTE Analytics

In this section, we describe some of the challenges in obtaining temporal analytics,

without access to private user information or system parameters in encrypted data

channels.

Uniquely Identifying Users: To extract per-user temporal analytics, LT-

Eye needs to uniquely identify each user served by the base station. One option is

to require LTEye to sniff the LTE channel continuously for an extended duration

of time to catch each user at the time she joins the cell and capture her C-RNTI

(i.e. her PHY-layer user ID) assignment. Unfortunately this option has two limita-

tions: First, the C-RNTI assignment is often transmitted from higher layers in the

encrypted downlink data channel [4]. Second, low-end off-the-shelf equipment is un-

likely to be able to continuously monitor and decode the LTE channel in real-time.

Instead, LTEye sniffers should be able to periodically sniff the channel and obtain

representative snapshots of the system. Hence, we need LTEye to uniquely identify

all users, including those who joined the cell even when LTEye is not sniffing (i.e.,

LTEye did not hear their C-RNTI assignment).

To address this problem, we observe that a user's C-RNTI is used to scramble

her control information on the downlink control channel. Specifically, recall from 3

that the control channel transmitted by the base station consists of multiple downlink

control information messages, for different users. At the end of each message is a 16-

bit sequence, which is the XOR of the checksum of the control message with the user's

C-RNTI. Traditionally, a user de-scrambles this sequence by her C-RNTI to retrieve

the checksum and validate correctness of the control information. In contrast, LTEye

performs the opposite operation to retrieve the C-RNTI: It decodes each control

message in the log including their corresponding scrambled checksums. For each of

these packets, LTEye reconstructs the expected checksum and XORs them with the

scrambled checksum to recover the C-RNTI. Of course, it is important to verify if

the control messages and C-RNTIs that are decoded are actually correct. To do

this, LTEye convolutionally re-encodes the retrieved control information message and
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compares it against the original coded control message to obtain the number of bit

errors. It then discards control messages and C-RNTIs that report bit errors beyond

a few bits.1 Hence, our solution enables LTEye to map a C-RNTI to a user even if it

was assigned when LTEye is not sniffing the channel.

NEW EXIT

C-RNT C-RNTI
#1 #4

C-RNTI C-RNTI
#2 #5

Old Logs Current Log

Figure 4-2: Mapping C-RNTI. Mapping C-RNTI from old logs to the current log.
Three possibilities exist: (1) An old C-RNTI maps to a new C-RNTI; (2) A user with
an old C-RNTI has left the cell; (3) A current C-RNTI is a new user.

Tracking User IDs: . LTEye's second challenge is to map C-RNTIs between

logs. Recall from 3 that a user's C-RNTI may be re-assigned if she remains idle

beyond a few seconds. Further, the same C-RNTI can be assigned to several users

over time. Hence, while the C-RNTI is a natural PHY-layer user ID, LTEye must

recognize when a user's C-RNTI changes and track the list of C-RNTIs assigned to

it.

LTEye addresses this challenge by formulating it as a matching problem. The

goal of this problem is to map C-RNTIs in the current (most recent) log produced

by the LTE logger with the C-RNTIs in prior logs as shown in the bi-partite graph

in Fig. 4-2. In addition, the graph has two additional nodes: EXIT and NEW, which

account for C-RNTIs in the old log that have "exit" the system, and C-RNTIs in

'In our experiments, LTEye correctly retrieved 99.5% of C-RNTIs across locations.
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the current log that are "new" to the cell, respectively. The weights in this graph

must capture the similarity between the users associated with each pair of C-RNTIs.

Specifically, we associate with each C-RNTI #i an RF fingerprint fi that includes

metrics such as the user's location (extracted by our localization method described

in 4.3), its SNR and multi-path characteristics. We can then assign a weight to each

edge (i, j) in the graph by the similarity metric between these fingerprints sim (fA, f).
In 4.6, we design effective RF fingerprints and similarity metrics based on spatial

analytics.

Given the graph and weights, we can now solve this matching problem using the

standard Hungarian Algorithm[19].2 The resulting matching either maps a C-RNTI

to a user in a prior log, or identifies her as a new user.

Extracting System Parameters: . LTEye needs to reverse-engineer several

PHY parameters, otherwise available to users via encrypted data channels. For e.g.,

the LTE standard allows several possible formats for downlink control information,

each spanning multiple lengths [5]. Exhaustively searching for each of the possible

format-length pairs in all downlink control messages is prohibitively expensive. For-

tunately, operational LTE base stations employ only a small subset of these formats

for all users (only three possible formats for AT&T and Verizon). As a result, LTEye

learns the possible list of formats and lengths using the first few control messages to

greatly reduce the search-space of formats for subsequent control information.

2We modify the algorithm to allow multiple C-RNTIs to map to NEW/EXIT simply by replicating
these nodes. Edges at NEW/EXIT are weighted by a minimum threshold similarity.
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4.3 Enabling Spatial LTE Analytics

Z
T Signal Direction

e
RX

Antenna moves

X

Figure 4-3: Signal Direction Notation. Definition of (#, 6) in 3-D space.

Path I
(window)/

Path 3

RXTX
Path 2

--- 1Z (direct)

Figure 4-4: Multipath (Layout). Depicts an example layout of a transmitter and
receiver in two rooms separated by a wall. The signal has three main paths: Path 1
is the strongest, and reflects from the ceiling through a window. Path 2 is the direct
path penetrating a wall. Path 3 is the weakest reflecting at the farthest wall. The figure
labels (0, 0) for each path.

At the heart of LTEye's spatial analytics is the ability to localize the source of an

LTE signal. To this end, LTEye performs the following functions:

* Extracts the multipath profile of an LTE signal: To begin with, LTEye extracts

the multipath profile of a signal, which measures the power received along each

spatial angle, i.e., along various signal paths. Fig. 4-5 shows an example multi-

path profile, where the signal traverses three paths corresponding to three local

maxima in the graph.
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Figure 4-5: Multipath Profilen. Simulated multipath profile for (b) has peaks for
each path at expected (0, 6). The height of the peaks (in shades of red) corresponds to
the relative power of the corresponding paths.

" Identifies the direct path from the source: Once LTEye has the multipath pro-

file, it is natural to try to identify which path is in direct line of sight to the

source (e.g., path 2 in Fig. 4-4). Finding the direct path is an important step in

localizing the source. It should be noted that in some cases the direct path may

be completely blocked and absent from the multipath profile. Our objective is

to identify the direct path provided it exists in the multipath profile.

* Localizes the source of the LTE signal: Once LTEye finds the direct path to the

source, it can localize the source to within a specific spatial direction. We can

then deploy multiple LTEye sniffers to locate the source at the intersection of

the direct paths as seen from these sniffers.

Past work on RF-based localization takes two approaches to build multipath pro-

files: The first approach, shown for Wi-Fi, uses an antenna array to steer its beam

spatially and identify the power along each spatial direction [29]. However, LTE runs

at much lower frequencies than Wi-Fi (700 MHz as opposed to 2.4 GHz), and hence

an LTE antenna array will be 4 to 5 times more bulky than a comparable Wi-Fi

array. The second approach uses synthetic aperture radar (SAR) [28], which uses a

single movable antenna to emulate a virtual array of many antennas. As the antenna

moves, it traces the locations of antenna elements in a virtual array.

SAR has traditionally been used in radar and RFID localization as it assumes
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backscatter signals where the transmitter and receiver are the same node and therefore

have no carrier frequency offset (CFO) relative to each other. Hence, changes in

the channel as the antenna moves are a function only of the antenna's location. In

contrast, LTE signals are exchanged between an independent transmitter and receiver,

with non-zero CFO. As the antenna moves, the channel changes both due to CFO and

antenna movement. One option is to estimate and correct the CFO. Unfortunately

this solution is fragile since any residual error in CFO estimation accumulates over the

duration of movement and causes large localization errors. In the following section,

we explain how we perform SAR over LTE signals without CFO estimation to realize

the three functions in the beginning of this chapter.
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4.4 SAR over LTE Signals Using Channel Ratios

Figure 4-6: LTEye Sniffer Prototype. Prototype of the rotating antenna on a LTEye

sniffer.

z
Signal Direction

9y

Antenna Path

x

Figure 4-7: Circular SAR. Circular Synthetic Aperture Radar.

LTEye operates as a 2-antenna MIMO receiver, with one static antenna and an-

other movable antenna. The movable antenna may be mounted on a rotating arm at-

tached to the device, which is the approach taken in our implementation (see Fig. 4-6).

The advantage of this approach is that it provides the 3-dimensional spatial direction

(i.e. both the azimuthal angle # and polar angle 0) of the various signal paths as

shown in Fig. 4-3. Alternatively, the antenna may slide back and forth on an arm

fixed to the body of the device.

LTEye uses its MIMO capability to perform SAR over communication signals,

but without frequency offset estimation. Our key idea is that instead of applying the
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Figure 4-8: Channel Notation. Depicts hi(t) and h2 (t), the measured wireless chan-

nels from a transmit antenna to the mobile and static antennas respectively.

SAR equations to the wireless channel of the moving antenna [11], we apply SAR

equations to the ratio between the channel of the moving antenna to that of the

static antenna. Taking the ratio of the two channels eliminates any effect of frequency

offset since both MIMO antennas experience the same offset relative to the sender.

However, since the ratio is between two antennas, one moving and the other static,

it preserves how antenna displacement changes the channel of the moving antenna.

This allows SAR to safely retrieve the multipath profile of the signal from the ratio,

modulo frequency offsets.

Next, we mathematically show the validity of the above technique. Suppose that

the receiver, placed at the origin, wants to measure the power of the signal P(6, #)

received from an independent transmitter along a spatial direction specified by the

polar angle 6 and azimuthal angle # (see Fig. 4-3). According to the SAR formulation,

this quantity can be measured as: [10, 221:

P(6, #) =h(6, 0)12, where h(6, #) = E af(t, 6, #)h(t) (4.1)

Here, h(t) is the wireless channel to the moving antenna at time t, assuming zero

frequency offset between the transmitter and receiver. The quantity af (t, 0, #) cap-

tures the relative motion of the transmitter and receiver, and is independent of the

wireless channels. For e.g., if the antenna moves along a straight line (i.e., linear SAR)
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a1 (t, 9, #) is defined as: af(t, 9, #) = e-j2 -'x()cos(O), where x(t) is the antenna location

at time t, and f is the frequency of the signal [28]. Similarly, if the antenna rotates

with radius r (i.e., circular SAR) a1 (t,9,q) = e-j 21/Os(-0o(t)), where #0 (t) is the

angular position of the antenna at time t (see Fig. 4-7).

Past work on SAR require both transmitters and receivers to share a common

reference clock. For e.g., SAR devices on airplanes or satellites both transmit signals

and receive their reflections to image the topography of the ground[11]. Consequently,

the measured channel h(t) at the moving antenna is independent of frequency offset,

i.e., h(t) = h(t).

Unfortunately, when performing SAR between independent transmitters and re-

ceivers, the measured wireless channel h(t) varies both due to position and due to

carrier and sampling frequency offset between the transmitter and receiver, as well as

any phase noise. In particular, we denote:

h(t) = h(t)ejO(t) (4.2)

Where ?P(t) denotes the phase accumulated due to any carrier frequency offset,

sampling frequency offset or phase noise between the reference clocks of the trans-

mitter and receiver until time t. Thus, the key challenge to measure the power of the

signal along any spatial direction, P(9, #), as in the SAR Eqn. 4.1, is to eliminate this

accumulated phase.

To resolve this challenge, LTEye is built on receivers that have at least two an-

tennas: a static antenna, and a mobile antenna that moves along a known path. Let

h1(t) and Ik(t) denote the measured wireless channels from a given transmit antenna

to a mobile and static antennas respectively (see Fig. 4-8). As both antennas are

connected to the same reference clock, they both accumulate the same phase 0(t)

until time t. Hence, from Eqn. 4.2, we have:

we(t) = ( (tr)ejt(, h(t) = sin(t)ej an(t) (4.3)

where h2(t) ~h2 is relatively constant over a short duration since antenna-2 is static.
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Hence, the ratio of the wireless channels is: hr(t) = 1  =yhi(t) ; that is, the
h, (t) T2

channel ratio is a constant multiple of the moving antenna channel without the phase

accumulation from frequency offset or phase noise. Thus, we can perform SAR as in

Eqn. 4.1 by substituting the channel ratio hr(t) for the value of h(t). Hence, LTEye

allows a wireless receiver to perform SAR over LTE signals without frequency offset

or phase noise estimation.

Finally, we make a few important observations:

* The above approach can be readily extended to OFDM / OFDMA signals.

Specifically. we apply Eqn. 4.1 with: h(6, #) = E> Et af(t, 0, #)hr,j(t)/hr,(O),
where the quantity hr,,(t) on subcarrier f of the OFDM signal is the ratio

of the frequency (Fourier) Domain channels h1 (t) and h2(t) measured on that

subcarrier. 3

* Our solution is resilient to movement of the transmitter that can be neglected

relative to the movement of the rotating antenna. However, one can easily detect

and exclude fast moving transmitters by checking if the channel of the static

antenna h2 (t) is coherent over a rotation of the moving antenna, using the

coherence metric in 5.2.4.

" Our technique applies beyond LTE, and enables applying SAR to Wi-Fi and

other communication technologies.

3 Note that this is robust to frequency hopping by LTE users.
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4.5 Identifying the Direct Signal Path

In this section, we describe how LTEye separates the direct path from the reflected

paths in a multipath profile reported by SAR so as to localize the transmitter. Intu-

itively, the direct path is the shortest path among all paths traversed by the signal

(even if the direct path is completely blocked, the shortest path is the path closest

to the direct path). Thus, one may identify the direct path (or the path closest to

the direct path) by measuring the delay difference between the various paths in the

multipath profile of the signal.

Directly measuring time delays (e.g. by correlating with known pilot signals), how-

ever is not sufficiently accurate. Specifically, LTE receivers have a channel bandwidth

of 10 MHz. However, electromagnetic waves travel at the speed of light. Hence an

error of even one time sample for a 10 MHz sampling rate (i.e., each time sample

spans 0.1 microseconds) translates to an error in path lengths of 30 m.

Below we explain how LTEye can measure sub-sample delay differences between

the signal paths. The key idea is to exploit that delay in time translates into phase

rotation in the frequency domain. Since LTE signals use OFDM, a time delay of the

signal translates into phase rotation in the OFDM subcarriers. Yet, different OFDM

subcarrier rotate at different speeds - i.e., higher OFDM frequencies rotate faster

than lower frequencies. In fact, the phase rotation of a particular OFDM subcarrier

fi as a result of a delay T is 4'j = 27rfir. Thus, for each subcarrier, the difference in

delay between two paths, p and q, for a particular subcarrier is:

fr = (4.4)
2,7rfi

One may also average across subcarriers to improve robustness to noise. Multiple

sub-carriers can also resolve ambiguity if I0p,i-/q,iI > 21r by correcting discontinuities

in V,, - Oq,i across frequencies. Thus, to identify the shortest path in a multipath

profile, LTEye does the following:

9 First, it computes the phase of the channel for each subcarrier for each path
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separately. This can be done by leveraging the fact that the SAR formulation

defines h(9, #), which provides not just the power, but also the phase of the

channel component along different spatial directions (see Eqn. 4.1). Hence, we

can simply measure the phase of this path as 4 = arg[h(9, #)], for each OFDM

subcarrier.

e Second, it computes the delay difference between each pair of paths using the

Eqn. 4.4 above. It then identifies the shortest path as the one with least delay.

Once the direct path is found, the source can be localized along this path. Com-

plete localization can be performed by using multiple LTEye receivers and intersecting

their direct paths. If the direct paths do not intersect, the best estimate is the point

that minimizes total distance (or equivalently, delay) to all LTEye receivers. The point

can be found using simple geometric optimization omitted for brevity.
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Next, we show how the multipath profile reported by SAR allows us to compute

unique RF fingerprints for the users.

4.6 Measuring RF Fingerprints with Multipath Pro-

files

As described in 4.2, LTEye tracks the different C-RNTIs (PHY-layer user IDs) as-

signed to mobile users between logs. To this end, LTEye employs RF fingerprints

to map C-RNTIs between logs. LTEye defines a user's fingerprint as the set of ob-

served multipath profiles at each LTEye sniffer (See 4.4). The key advantage of this

fingerprint is that it captures the user's location, multipath, and SNR, as perceived

from LTEye sniffers. To measure similarity of two fingerprints, we employ dynamic

time warping (DTW[23]), a technique that has recently been applied to capture sim-

ilarity of two multipath profiles[28]. Given any two multipath profiles, DTW returns

a cost function that varies inversely with their similarity. Hence, LTEye defines the

similarity metric between two RF fingerprints as the inverse of the total DTW cost

function[28] between each pair of profiles in the fingerprints.

One might wonder if LTEye's fingerprint matching algorithm scales, given that a

cell may serve a large number of users. Fortunately, while LTE cells can serve hundreds

of users, we observed that only a small fraction of these users (about 4%) are re-

assigned C-RNTIs between two logs. 4 Further, while capturing C-RNTI reassignments

is essential to track individual users over time, it does not alter aggregate radio

analytics in a statistically significant way, given that 96% of users in a cell retain

their C-RNTI between logs.

4This is on average 1-2 users for AT&T and 3-4 users for Verizon.
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Chapter 5

Results

5.1 Implementation

We implemented LTEye on USRP N210 software radios[7] and WBX daughter-boards.

The USRPs receive in the 700MHz frequency range at a bandwidth of 10 MHz on up-

link and downlink channels corresponding to either AT&T (734-744MHz) or Verizon

(746-756MHz). We implement an OFDMA receiver for LTE signals that interfaces

directly with the USRP Hardware driver (UHD).

To obtain temporal analytics, we decode the downlink control channel in a pipeline

of two modules: The first module in C++ performs synchronization, channel estima-

tion and QPSK demodulation. It logs the demodulated soft bits received over one

second into a file, and repeats this process every three seconds. The second module

in MEX (C++) and Matlab reads the file and performs descrambling, de-interleaving

and convolutional decoding. It then processes the downlink control information mes-

sages to get per-user LTEyeDB records for uplink and downlink traffic, as in 4.1.

To obtain spatial analytics, we build prototype LTEye sniffers, each containing

two USRPs connected to an external clock. We mount the antenna of one of the

USRPs on a light-weight rotating arm fabricated by a 3D printer, with an adjustable

radius of 15-30 inches, as shown in Fig. 4-6. The arm is driven by an off-the-shelf

stepper motor rotate at 30-120 rotations per minute. We use an Arduino UNO board

to rotate the stepper motor accurately at a constant speed and provide real-time
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feedback on the position of the rotating antenna. We implement a C++ module to

use these positions and channel measurements, as in 4.3, to localize the users.

We evaluate LTEye's spatial analytics using five LTEye sniffers in multiple indoor

testbeds, in both line-of-sight and non-line-of-sight settings. We employ ten Samsung

Galaxy Note LTE smart phones as users. Unless specified otherwise, each user com-

municates over LTE with a mix of varying traffic patterns including browsing activity,

file transfer, Skype calls, and video streaming.
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5.2 Results on Temporal Analytics

In this section, we perform an extensive evaluation of LTEye's temporal and spatial

analytics:

" We compare temporal analytics of two LTE providers and highlight their PHY-

layer inefficiencies in 5.2.1 and 5.2.2.

" We provide insights on the LTE rate adaptation algorithm in 5.2.4.

" We apply LTEye's spatial analytics to two applications: detecting cheaters in

an exam hall in 5.3.1 and visualizing a spatial heatmap of LTE performance

in 5.3.2.

" We perform micro-benchmarks to evaluate the accuracy of LTEye's localization

and RF fingerprints in 5.3.3 and 5.3.4.

5.2.1 Comparing Temporal Analytics of Providers

End-users can deploy LTEye sniffers to compare different providers in their locality

in terms of their usage patterns, quality of service and congestion. In this experiment,

we compare aggregate temporal analytics of two providers serving our campus: AT&T

and Verizon.
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Figure 5-1: Number of Users. The plots show the Number of Active Users per second
for AT&T (left) and Verizon (right), measured every minute over a typical working day
from a representative base station.

Setup. We place LTEye sniffer in four locations in a large campus, each listen-

ing to the AT&T and Verizon base stations that serve that location. We populate
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LTEyeDB over the duration of a representative weekday from 9:00am to 9:00pm.

To reduce processing overhead, LTEye's logger collects traces for a duration of one

second, every three seconds. It validates these traces by only accepting control in-

formation with low bit error rate as reported by the convolutional decoder. We then

measure the following metrics for each one-second trace: (1) Number of Active Users

(Fig. 5-1); (2) Mean Utilization of the Uplink and Downlink (Fig. 5-2); (3) Mean Link

Quality measured as the number of bits per resource element (bits/RE) in the uplink

and downlink (Fig. 5-3). We average each of these quantities over one minute inter-

vals and plot them over time of day at a representative location. We also estimate the

mean value of these metrics across locations over one week to infer aggregate trends

(Table 5.1).
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Figure 5-2: Number of Users. The plots show the Percentage of Utilized Resource
Elements on the Uplink and Downlink for AT&T (left) and Verizon (right), measured
every minute over a typical working day from a representative base station.
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Figure 5-3: Number of Users. The plots show the Mean Number of Bits per Resource
Element on the Uplink and Downlink for AT&T (left) and Verizon (right), measured
every minute over a typical working day from a representative base station.
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Table 5.1: Aggregate Statistics. Tabulates mean and standard deviation of statistics
over four locations for AT&T and Verizon.

Number of Active Users. Fig. 5-1 measures the number of active mobile users

in a representative AT&T and Verizon cell over different times of the day. We observe

that for both providers, the number of users in the morning increases steadily, and

peaks at around 12:00 pm, after which the number begins to decrease. The increase

in activity at around noon may be attributed to a greater number of subscribers who

access LTE outdoors as they leave for lunch. Across locations, we observe that Verizon

has a greater number of active users on average at 87.7, while AT&T has 23.4 active

users through the day (see Table 5.1).

Network Utilization. Fig. 5-2 plots the utilization of a representative AT&T

and Verizon cell, over different times of the day. Specifically, We measure the per-

centage of resource elements used by uplink and downlink traffic. Two trends emerge:

First, both providers often achieve high downlink utilization (over 80%) through the

day. AT&T achieves such high utilization sporadically through the day (for 2% of the

day), while Verizon is heavily utilized for a more significant fraction of the day (for

18% of the day). Second, the utilization of the uplink is significantly lower than the

utilization of the downlink, both for AT&T and Verizon.

Specifically, the mean downlink utilization (25.2% - AT&T, 58.2% - Verizon), far

exceeds uplink utilization (0.6% - AT&T, 2.6% - Verizon) even when averaged across

locations. While it is expected that the downlink is higher in demand, our results

reveal that the LTE uplink is an unprecedented 20 to 40 times less utilized than the
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AT&T Verizon
Metric

Mean Std-dev Mean Std-dev

Number of Users 23.37 7.90 87.66 44.75

% Downlink Utilization 25.20 17.35 58.18 20.58

% Uplink Utilization 0.59 0.47 2.60 1.06

Downlink MCS (bits/RE) 4.56 0.26 5.23 0.30

Uplink MCS (bits/RE) 3.25 0.22 3.61 0.18



downlink. This exposes the practical limits of Frequency Division Duplexing mode

of the LTE standard used by both AT&T and Verizon, which provides independent

equally sized uplink and downlink frequency bands. Hence, our results can help policy

makers encourage operators to adopt revised LTE Advanced standards that permit

unequal allocation of resources to the uplink and downlink (e.g., via asymmetric

carrier aggregation[18]) without relying on data from providers themselves to make

the case.

Link Quality. Fig. 5-3 measures the average quality of channels in the network

for a representative AT&T And Verizon cell measured over different times of the day.

In particular, we measure the mean number of bits transmitted per resource element

(bits/RE), capturing the modulation and coding scheme (MCS) on the uplink and

downlink. Our results show that the mean quality on the downlink (5.2 - Verizon, 4.6

- AT&T) exceeds that of the uplink (3.6 - Verizon, 3.3 - AT&T). As mentioned earlier,

this is because users are limited in transmit power and number of MIMO antennas,

when compared to the base station. Further, the mean link quality of Verizon is

marginally higher when compared to AT&T.

5.2.2 Identifying PHY-Layer Problems and Inefficiency

Cellular Providers and independent researchers can use LTEye to diagnose problems

and inefficiencies at the LTE-PHY layer. In this experiment, we identify such deficien-

cies by analyzing the LTEyeDB database populated for both AT&T and Verizon. In

particular, we consider the traces gathered over four locations in our campus served

by different base stations over one week, as explained in 5.2.1. Interestingly, many

of these PHY-layer inefficiencies may be unknown even to the operators as they are

part of the PHY-layer implementations adopted by the base station vendors.

Unnecessary Control Overhead. . As explained in 3, the LTE resource grid

on the downlink is divided into three main PHY-layer channels: the broadcast channel,

the control channel and the data channel. The control channel occupies the first 1-3

symbols of each LTE sub-frame resulting in a control overhead ranging from 7% to
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21% of all downlink resources. Ideally, an LTE base station should adapt the number

of control symbols used in each sub-frame depending on the amount of control traffic

that is required to be sent.

25 Control Overhead
Control Channel Utilization

Q 20

S15

0 10

C
0 5

0
AT&T Verizon

Figure 5-4: Unnecessary Control Overhead. Utilization of the control channel for
AT&T and Verizon, across different number of symbols allotted to the control channel.

In practice, we discovered that the control overhead of AT&T base-stations was

10%, while that of Verizon base-stations was 21%. This is because, unlike AT&T,

Verizon always uses three control symbols in each sub-frame, regardless of the amount

of control traffic they contain. One might wonder if this is because Verizon's control

channels are significantly more utilized, warranting the additional overhead. Fig. 5-4

plots the control overhead of both AT&T and Verizon, as well as how much of this

overhead is utilized. Clearly, the overhead of Verizon is significantly larger, despite

having only a marginally higher control traffic (7.5%) than AT&T (6.1%). As a result,

we estimate that Verizon can gain as much as 10% of additional downlink resources

for data, just by adapting its control overhead to control-traffic demand.

Inefficient Resource Allocation. . In this experiment, we analyze the downlink

resource allocation mechanism of LTE base-stations during periods of high network

utilization (over 80%). Fig. 5-5 plots the percentage of downlink data transmitted in

each resource block across users, measured for both AT&T and Verizon. For AT&T,

the graph remains flat across resource blocks, indicating that on average, a user is

equally likely to get any of the downlink resource blocks. For Verizon however, we
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Figure 5-5: Inefficient Resource Allocation. Percentage of data allotted to different
downlink resource blocks for AT&T and Verizon.

observe a peculiar dip around resource blocks 22-27. To investigate this, we noticed

that Verizon avoids these resource blocks completely on subframes 0 and 5. This is

because a few symbols in these resource blocks are dedicated for the broadcast chan-

nel. As a result, Verizon avoids allocating these resource blocks completely, leading

the remaining symbols in these resource blocks to lie completely unused, even during

peak hours of demand.

1 SNR
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Figure 5-6: Inter-Cell Interference. CDF of measured Signal-to-Noise Ratio (SNR)
and Signal to Interference Plus Noise Ratio (SINR) at spots of high inter-cell interfer-
ence.

Inter-Cell Interference. One of the key benefits of LTEye is to provide insight

into why users obtain poor performance. During the course of our experiments, LTEye
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localized users at certain spots that achieved poor link quality on the downlink (the

lowest QPSK rate), but high quality on the uplink. To investigate this, we moved our

LTEye sniffers and testbed mobile phones to these locations. Surprisingly, our phones

at these spots reported very high RSSI' from the base station, yet often switched to

3G. We then used our LTEye sniffers at these spots to measure the signal-to-noise

ratio (SNR) as well as the signal-to-interference plus noise ratio (SINR) on the down-

link. Fig. 5-6 reports the CDF of these quantities across these locations. The figure

demonstrates that these locations suffer from significant interference, with a mean

SINR of 1.3 dB and a minimum of -1.2 dB, despite a high mean SNR of 29 dB. We

realized the source of about 27 dB of interference is from neighboring Verizon base

stations sharing same downlink spectrum. Specifically, our sniffer could sense as many

as five distinct base station cell IDs at a single location. This is problematic as it af-

fects pilot reference signals (known as cell-specific reference signals) that are critical

for channel estimation. Base stations transmit these pilots in one of three different

subsets of resource elements depending on their cell ID.2 Given that five base stations

are observed at a given location, some of these pilots will inevitably collide, signif-

icantly impacting the decodability of signals from those base-stations. Hence, these

observations emphasize the need for effective placement and power control of base

stations and small cells. They further highlight the importance of careful assignment

of cell IDs to neighboring cells, to avoid interference between their pilots.

5.2.3 Insights into LTE Scheduling

In this experiment, we gather insights on the scheduling policy of an AT&T base

station in our campus. We deploy a LTEye sniffer that listens to the downlink control

channel of the base station. We then perform the following tests during periods of

low network utilization, where the UEs in our testbed are the sole active users of the

network.

'The phone reported a receive signal strength (RSSI) of around -85 to -95 dBm, where the noise
floor is at -120 dBm.

2For 2-antenna base stations, reference signals on both antennas occupy one of three subsets of
REs, based on cell ID modulo 3 [3].
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Figure 5-7: Stress Test. CDF of percentage downlink utilization in a user stress test.

Stress Test. We begin by performing a stress test on a single UE in the network.

The UE downloads a large bitfile containing random strings via six simultaneous

TCP connections to saturate the LTE downlink. We repeat the process multiple

times across locations. Fig. 5-7 plots a CDF of the percentage of available downlink

resources granted to the UE. The results show that UE is indeed allocated most

(93.7% on average) of the downlink resources in the network.
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Figure 5-8: Fairness Test. CDF of percentage downlink utilization of two users sharing
the network.

Fairness Test. Next, we evaluate the fairness of two UEs: UE-1 and UE-2 that

perform the above stress test. We place UE-1 at a static location, while UE-2 is placed

in a wide variety of locations with different channel quality. Fig. 5-8 plots a CDF of

the percentage of available downlink resources granted to each UE. The results show
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that the UEs consistently obtain nearly equal shares of available resources (about

49% each), across experiments. This means that the static UE-1 achieves the same

throughput across runs, regardless of UE-2's location or performance. In contrast,

since UE-2 is placed in a wide range of locations, its throughput is dictated by its

link quality. In other words, unlike Wi-Fi which is packet fair, LTE users with greater

link quality achieve greater throughput compared to those with poor link quality.
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Figure 5-9: Mobility Test. Percentage of data transmitted in each resource block for
a static and mobile user.

Mobility Test. Finally, we wish to understand the effect of the LTE scheduling

algorithm for static and mobile users. We consider two UEs in an office building

downloading a random bitfile over a 1 Mbps UDP connection. We move one UE in a

random walk around a floor of the building, while the other is static. Fig. 5-9 plots the

percentage of data transmitted on each resource block for the static and mobile UEs.

Note that the distribution is relatively flat for the mobile user, but has distinct peaks

for the static user. This is because, unlike the mobile user, the channel of a static user

is relatively coherent, leading the base station to preferentially allot resource blocks

with high channel quality to the UE. Hence, the LTE base station actively adapts its

scheduling algorithm in response to the user's channels.
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5.2.4 Insights into LTE Rate Adaptation

While the LTE standard describes much of the PHY-layer protocol and procedures,

the rate adaptation algorithm is still left to the choice of individual operators. In

this section, we show how LTEye can shed light on some interesting aspects of this

algorithm for an AT&T base-station in our locality.

We consider a single user device that downloads a random bitfile over a 1 Mbps

TCP link from a server (we control TCP rate by throttling the bandwidth at the server

using tc[1]). We conduct our experiment during periods of low network utilization,

where the mobile device in our testbed is the sole active user of the network. The

user device is placed at a static high SNR location, which should support the highest

modulation and coding on the downlink.
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*i QPSKx2

E 64-QAM x 1

o 16-QAM x 1

QPSK x 1
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Time (s)

Figure 5-10: Downlink MCS. Trace of Downlink MCS for a user over time.

Fig. 5-10 plots the user's modulation and coding scheme for one second on the

downlink. Surprisingly, the graphs indicate that the rate adaptation algorithm hops

over a wide range of modulation, during the experiment. One possible explanation is

that the base station is responding to loss of downlink packets. However, the control

channel indicated no packet loss on the downlink over the entire experiment. A second

explanation is that the wireless channel is not actually coherent over the duration of

one second, even though the phone is static. To investigate this, we place a USRP

at the user's location and estimate a channel coherence metric3 capturing the base

3Given an initial channel h(0) and current CFO-adjusted channel h(t), channel coherence metric

is 10 logio Jh(t)12 /Ih(t) - h(0)12
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Figure 5-11: Channel Coherence. Channel Coherence metric of a USRP placed at
the user's location over time.

station's SNR over two seconds, assuming the channel was estimated only once at

time 0 (see Fig. 5-11). We observe that the channel is indeed coherent throughout

the experiment. Hence, the rate adaptation algorithm is fairly complex, involving

aggressive modulation exploration.
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Figure 5-12: MCS vs. Demand. Mean downlink MCS (bits/resource element) across
demand, with and without another high-demand user.

Next, we repeat the above experiment for different downlink demands (i.e. TCP

throughput) under identical SNR, and plot the mean downlink modulation (in bits per

resource element) as shown by the blue line in Fig. 5-12. Interestingly, as the downlink

demand increases, the observed modulation also increases as well. In other words, the

base station avoids transmitting packets to the user at high modulation (i.e. avoids
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risking higher loss probability), unless it is forced to, since the user demands high

throughput.

Finally, we repeat the above experiment, this time adding a second user device

(User-2) to the network, while first user (User-1) downloads a file at different TCP

throughputs, as before. We allow User-2 to download a large bitfile containing random

strings via six simultaneous TCP connections so as to saturate the LTE downlink

demand. Interestingly, we now observe that packets to User-1 are sent at higher

modulation, across demands (see the red line in Fig. 5-12). To understand why this is

the case, note that by sending data to User-1 at higher modulation, the base station

consumes less downlink resources per bit for User-i's data. This relieves more network

resources that the base station can now assign to User-2 to serve its high demand.

Therefore, base stations transmit packets at conservative modulation, only when this

does not impact overall network throughput.
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5.3 Results on Spatial Analytics

5.3.1 Detecting Cheaters in a Large Exam Hall

LTEye can enable new applications customized to the need of a particular community

of users. For example, many modern exams follow an open book/material policy and

allow students access to computers during the exams. However, students are asked to

abstain from using the Internet to chat and collude online. Enforcing this policy over

Wi-Fi is relatively easy by monitoring the Wi-Fi channels, turning the access point

off, or even jamming the signal. However cheaters can still use their cellular service

to chat with an accomplice. In this experiment, we demonstrate how LTEye's spatial

analytics can help localize such cheaters in a large exam hall that accommodates up

to 300 students.

Setup. We consider a large 24m x 17m exam hall as shown in Fig. 5-13(a) that

seats up to 300 students. The exam hall has multiple chairs on a platform that slopes

upwards from the podium. We place two LTEye sniffers on ledges close to the walls,

as shown by the blue squares in the figure. The sniffers localize the 3-D location of

ten active LTE cellphones accessing the Internet, placed in among twenty randomly

chosen locations (the red circles in the figure).

Results. Fig. 5-13(c) plots a CDF of the error in each dimension of the estimated

3D-location of each cellphone. We observe a mean error in localization of 34 cm along

each dimension and 61 cm in 3D displacement between the measured and actual

location. Note that our errors are in 3-D space unlike past work [29, 28] and the

experiments were performed in a large 24m x 17m area. LTEye identified the cheater's

seat with 95% accuracy. Note that the cellphones are predominantly in line-of-sight

to the LTEye sniffers, due to the nature of the exam hall. In 5.3.2, we estimate the

error in localization for non-line-of-sight scenarios as well.
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Figure 5-13: (a),(b): Depicts our two testbeds a large exam hall and a floor of a large
building. LTEye sniffers are denoted as blue squares and candidate phone locations
as red circles. Further, the red circles in (b) are colored in shades of red, based on
observed link quality from the base station; (c),(d): CDF of the error in 3D localization
on each dimension in line-of-sight and non-line-of-sight scenarios respectively; (e),(f):
Plots the measured SINR using USRPs and observed link quality from the downlink
control channel across phone locations.
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5.3.2 Visualizing LTE Performance over Space

As end-users, we have limited visibility into how LTE performance varies in differ-

ent parts of our home or work place. In this experiment, we address this issue by

synergizing LTEye's temporal and spatial analytics to visualize the performance of a

cellular provider across spatial locations.

Setup. We deploy five LTEye sniffers on a 60mx34m floor of a large building,

denoted by the blue squares in Fig. 5-13(b). We place ten phones in each of thirty

randomly chosen locations shown as red circles in the figure. Note that several phones

are in non-line-of-sight relative to all LTEye sniffers. We emphasize that for each client

device, 3D-localization is performed using the spatial angles from at most three LTEye

sniffers. The localization error can be further improved by incorporating spatial angles

from additional LTEye sniffers.

Results. Fig. 5-13(d) plots the CDF of localization error along each of the three

dimensions for phones that are in non-line-of-sight relative to all LTEye sniffers. Our

results show a mean error in localization of 43.7 cm along each dimension and 84.6 cm

in net 3-D displacement. Our algorithm to identify the direct line-of-sight path from

4.5 is crucial to localize phones in non-line-of-sight. Of course, the algorithm hinges

on the fact that the line of sight path is, at the very least, observable in the multipath

profile produced by SAR (See 4.4), even if it is not the most dominant path. Our

experiments revealed that the line-of-sight path was always observed in the multipath

profile of every phone in our large indoor testbed, including those furthest away from

each LTEye sniffer in Fig. 5-13(b). Of course, while this may not generalize to every

environment, our observations show the benefits of better penetration of signals in

the 700 MHz frequency range through walls and obstacles, compared to Wi-Fi signals

at 2.4 GHz or 5 GHz, and the higher transmit power of LTE devices in general.

Fig. 5-13(e) measures the mean and variance of Signal to Interference plus Noise

Ratio (SINR) observed by a USRP placed in each of the thirty phone locations. The

locations are sorted by mean SINR for ease of visualization. Fig. 5-13(f) plots the

mean and variance of link quality for each phone (as bits per resource element) at the
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same locations, measured from LTEyeDB based on the downlink control channels. We

observe that the link quality and SNR follow similar trends, showing that LTEye can

effectively characterize the performance of the LTE network across spatial locations.

Fig. 5-13(b) visualizes the spatial distribution of link quality across phone loca-

tions, denoting positions of high quality as circles with darker shades of red, and

low quality with lighter shades of red. The figure indicates that the link quality is

strongest at locations to the bottom right, and weakest along locations to the top

left. In fact, we found that placing an LTE relay at the top-left part of the floor

significantly improves LTE service across the floor.

5.3.3 Measuring Accuracy of Observed Spatial Angles

In this experiment, we measure the accuracy of the polar angle 9 and azimuthal angle

#, that are key primitives to LTEye's localization algorithm in 4.3, across spatial

locations.

Setup. We consider an LTEye sniffer placed in one of five possible locations

(denoted by blue squares) in a floor of a large building, as in Fig. 5-13(b). The LTEye

sniffers are elevated on ledges close to the walls.4 We place ten phones in several

randomly chosen locations in both line-of-sight and non-line-of-sight, spanning the

full range of spatial angles. We find the ground truth of the spatial angles by noting

the actual 3D positions of the phones and the sniffer on a scaled high-resolution

building floorplan.

Results. Fig.5-14(a)-(d) plot the CDF of error in 9 and # in line-of-sight (LOS)

and non-line of sight (NLOS) locations. The figures show a low median error in both

$ (LOS: 6.90, NLOS: 7.80) and 9 (LOS: 7.20, NLOS: 9.90) across locations. Note that

the accuracy can be further improved with multiple LTEye sniffers, particularly, in

cases where the deviation in angles is large. Note that our algorithm to find the path

of minimum delay was crucial for the accuracy of spatial angles in non-line-of-sight.

4 LTEye cannot tell apart up from down as the rotating antenna path is symmetric. Placing

sniffers on ledges removes this ambiguity.
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5.3.4 Tracking C-RNTIs using RF Fingerprints

In this section, we evaluate LTEye's RF fingerprinting to map C-RNTIs assigned

to the same phone. We consider the setup in 5.3.3 above and populate LTEyeDB

across several experiments spanning ten minutes each. We track the correct C-RNTI

mapping by constantly listening on the uplink from multiple USRPs placed close

to each phone to recognize the high power signals that are sent during connection

establishment. We also measure the inferred C-RNTI mapping from RF-fingerprints

(See 4.2 and 4.6).

Results. We measure two quantities: (1) Precision: The percentage of new C-

RNTIs which were correctly mapped to old C-RNTIs. (2) Recall: The percentage

of correctly retrieved C-RNTIs-mappings among all actual C-RNTI mappings. Our

algorithm achieves a high mean precision of 98.4+1.3% and mean recall of 96.7+1.4%,

demonstrating the effectiveness of LTEye's C-RNTI matching algorithm. Note that

we leveraged RF fingerprints to track C-RNTIs of users in 5.3.1 and 5.3.2 above.
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Chapter 6

Conclusion

We presented LTEye, the first open platform to provide fine-grained temporal and spa-

tial analytics on LTE radio performance, without private user information or provider

support. LTEye employs a novel extension of synthetic aperture radar to communi-

cation signals to accurately localize mobile users, despite the presence of multipath.

We empirically evaluate LTEye on software radios and provide deep insights on the

LTE PHY and highlight shortcomings such as inter-cell interference and inefficient

spectrum utilization.
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