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ABSTRACT
We present Targeted Automatic Patching (TAP), an automatic buffer
and integer overflow discovery and patching system. Starting with an
application and a seed input that the application processes correctly,
TAP dynamically analyzes the execution of the application to locate
target memory allocation sites and statements that access dynamically
or statically allocated blocks of memory. It then uses targeted error-
discovery techniques to automatically generate inputs that trigger
integer and/or buffer overflows at the target sites.

When it discovers a buffer or integer overflow error, TAP automati-
cally matches and applies patch templates to generate patches that
eliminate the error. Our experimental results show that TAP success-
fully discovers and patches two buffer and six integer overflow errors
in six real-world applications.

1. INTRODUCTION
Integer and buffer overflow errors are a well-known source of

serious security vulnerabilities. We present a new system, Targeted
Automatic Patching (TAP), that can automatically discover and patch
both integer and buffer overflow errors.

Starting with a seed input that the application can process success-
fully, TAP uses targeted error discovery to automatically generate
inputs that trigger either 1) buffer overflows at statements that access
dynamically or statically allocated blocks of memory or 2) integer
overflows in the computations of expressions that specify the sizes of
allocated memory blocks. Once TAP obtains such an error-triggering
input, it matches a collection of templates against expressions that
characterize the source of the error. If one of the templates matches,
TAP uses the template to automatically generate and insert a source-
level patch that checks for the error and exits if the input would trigger
the error. Given appropriate binary or binary hot patching infrastruc-
ture, it would be straightforward to patch the (potentially running)
binary as well.

Because the generated patches check a condition and, if the condi-
tion holds, exit the program, they do not introduce new vulnerabili-
ties. They instead simply narrow the set of inputs that the application
chooses to process. We also discuss templates that are designed to
enhance the survival in the face of buffer overflow errors. These tem-
plates apply either failure-oblivious computing [40] (discarding out
of bounds writes, manufacturing out of bounds reads) or boundless
memory blocks [42] (storing out of bounds writes in a hash table
to return for corresponding out of bounds reads). The goal is to en-
able the program to execute through out of bounds accesses without
corruption so that it can continue on to deliver useful service and
results. Server programs (which process a sequence of inputs) are a
particularly appropriate class of programs for these kinds of patches —
they often enable the server to survive errors triggered by one input so
that the server can continue on to process subsequent inputs correctly.

This paper makes the following contributions:

• Template-Based Patching: It introduces templates that TAP
uses to generate patches that eliminate buffer and integer over-
flow errors. These templates operate with symbolic expres-
sions that characterize the errors in the applications. An au-
tomatic patch insertion algorithm takes the generated patches
and inserts them into the application to check for the buffer or
integer overflow condition. If the condition holds, the patch
exits the application before the overflow occurs.

• Buffer Overflow Discovery Algorithm: It presents a new
buffer overflow discovery algorithm. This algorithm lever-
ages information present in implicit flows to find and exploit
incorrectly coded checks that are designed to (but in fact do
not) protect against buffer overflows. It then leverages this
information to automatically generate inputs that trigger the
buffer overflow error.

• Experimental Results: It presents results from experiments
that run TAP on six real-world applications. These results show
that TAP can successfully discover and patch two buffer and
six integer overflow errors in these six applications.

2. EXAMPLE
We next present an example that illustrates how TAP discovers and

patches a buffer overflow error. Figure 1 presents a simplified exam-
ple from gif2tiff 4.0.3 [6]. This example reads datasize from the
input file, then uses datasize to compute how many entries in the
statically allocated prefix file to clear. A large datasize field
can trigger a buffer overflow at theprefix[code] = 0 statement.

2.1 Buffer Overflow Discovery
TAP first performs an instrumented execution of the gif2tiff appli-

cation on a benign seed input file that gif2tiff can process successfully
(such inputs are typically available, for example, as part of standard
regression test suites). This instrumented execution operates on the
compiled binary representation of the program. It uses Valgrind to
obtain and analyze the sequence of executed instructions, analyz-
ing the execution at the level of the Valgrind VEX IR [36]. This
first instrumented execution records which input bytes directly influ-
ence the value of each computed expression. It also records control
dependence information between conditional branches and corre-
sponding control dependent statements whose values are influenced
by overlapping sets of input bytes.

In the example, this instrumented execution records the fact that
the statement prefix[code] = 0 is control dependent on the
loop condition code < clear. It also records the fact that the
loop condition is influenced by code, which also influences the



unsigned int prefix[4096];
int datasize;
int clear;

readraster(void)
{

register int code;

datasize = getc(infile);
clear = 1 << datasize;

for (code = 0; code < clear; code++) {
prefix[code] = 0;

}
}

Figure 1: (Simplified) gif2tiff Buffer Overflow Error

readraster(void)
{

register int code;

datasize = getc(infile);
clear = 1 << datasize;

for (code = 0; code < clear; code++) {
if ((int64_t) code << 2 >= 16384)
{ exit(-1); }
prefix[code] = 0;

}
}

Figure 2: Patched gif2tiff Code

expression used to index the array. Finally, it records the fact that the
value of clear is influenced by input file bytes, but the size of the
prefix array is not.

TAP therefore proceeds under the hypothesis that the loop con-
dition is designed to prevent any buffer overflow at the statement
prefix[code] = 0. But because the loop condition involves in-
put bytes that do not influence the size of the allocatedprefix array,
it may be possible to create an input file that causes gif2tiff to generate
a value for code that 1) satisfies the loop condition check but 2) is
larger than the size of the indexed array and therefore generates an
overflow.

TAP next executes another instrumented exection of gif2tiff. This
instrumented execution computes symbolic expressions that capture
the complete computation of relevant values from constants and input
bytes. This execution determines that, for the seed input, datasize
is byte 415 of the input. It also determines that the value of clear
is 1 << Byte(415) (here Byte(415) is byte 415 of the input)
and that the offset used to index the prefix array is (at the analyzed
VEX IR level) clear << 2. TAP uses this value to generate the
following two constraints (here 16384 is the size of the prefix
array in bytes):

(code<< 2)≥ 16384 code< (1 << Byte(415))

The first constraint forces the solver to produce an offset that gener-
ates an overflow, while the second constraint ensures that the solver
produces values for the index and input bytes that together satisfy the
loop condition.

TAP then invokes the Z3 SMT solver [20], which processes the
two constraints to produce a value of 30 for input byte 415. Starting

with the seed file, TAP generates a new gif file with 30 at byte 415.1

TAP then runs gif2tiff on the new input file and verifies that the input
file triggers the buffer overflow.

2.2 Patch Generation
TAP next moves on to generate a patch that checks for a buffer

overflow and, if the check detects an overflow, exit the application.
Conceptually, the patch checks the index against the size of the
(dynamically or statically) allocated buffer, then exits the application
if the index exceeds the buffer size. In our example, TAP generates
the following patch (appropriately adjusting the value of code and
the size of the prefix array):

if ((int64_t) code << 2 >= 16384) { exit(-1); }

TAP inserts the patch before theprefix[code] = 0 statement,
ensuring that the application exits before the overflow occurs. Fig-
ure 2 presents the patched code.

2.3 Additional Complexity
Of course, TAP can successfully discover and patch much more

complex errors. Additional sources of complexity include dynami-
cally allocated buffers, much more complex index expressions, loop
and if conditions that are designed to check for overflows, relevant
code that is spread arbitrarily throughout the application, low-level
complexity associated with instrumenting binaries to record symbolic
expressions for relevant values, and finding an appropriate insertion
point for patches that need to access input bytes scattered throughout
the memory of the application. And of course TAP can also discover
and patch integer overflow errors. See Sections 3 and 4.

3. ERROR DISCOVERY ALGORITHMS
The TAP integer and buffer overflow discovery algorithms both

start with an application and at least one seed input (which the applica-
tion may process successfully without error). Based on instrumented
executions of the application running the seed input(s), they both use
a goal-directed approach to generate a new error-triggering input that
exposes the buffer and/or integer overflow error in the application. In
addition to the error-triggering input, the discovery algorithms also
produce symbolic expressions that the patch generation algorithms
use to generate patches that eliminate the errors.

3.1 Discovering Buffer Overflow Errors
We illustrate the buffer overflow discovery algorithm with the

following example:

char *buf = malloc(size);
...
for (i = 0; i < height*width; i++) {
buf[i] = 0;

}

Here size is the size field of an image input file, height is the
height field of the image, and width is the width field of the im-
age. An input file in which size < height*widthwill trigger a
buffer overflow at the statementbuf[i] = 0. The key concept here
is that the check height*width is designed to prevent a buffer
overflow, but because the size of the allocated buffer depends on
size but not height or width, there are inputs for which the
check does not prevent the overflow. The TAP buffer overflow dis-
covery algorithm is designed to find (generalizations of) such code
1For gif files TAP can simply rewrite the relevant bytes directly. For
more complex file formats TAP uses a combination of Hachoir [3]
and Peach [7] to generate new input files.



patterns and generate inputs that expose any buffer overflow errors
present in the patterns.

The TAP buffer overflow discovery algorithm therefore dynami-
cally monitors the execution of the application on the seed input to
find code patterns of the following form (here the ifmay be any con-
ditional branch, including conditional branches from loop conditions
and if statements):

p = malloc(s);
...
if (e op b) {
...

*(p + o)
...

}

Here s, e, b, and o are expressions that TAP derives during the
monitoring process. op is a comparison operator (such as <, >, <=,
=<, ==, !=, ...). Note that the target memory access *(p + o) is
control dependent on the conditione op b so that there is an implicit
flow between the condition and the target access. We note that there
is no requirement that the allocation, condition, or target access be
located in the same procedure or module — because TAP dynamically
monitors the execution to track the flow of values through the program,
it can find overflows in which these three elements are located in
distant parts of the program.

TAP also works with patterns that statically allocate the buffer.
In this case s is simply the constant that is the size of the statically
allocated buffer.

3.2 Target Patterns
TAP operates under the principle that the condition e op bmay

be designed to check that the offset o is within the bounds of the
allocated block of memory p, but that the check may be incorrect.
In particular, if the bound b is influenced by more input fields than
the size s of the allocated memory block p, then it may be possible
to generate an input that satisfies the condition but overflows the
target access. If the condition was (incorrectly) designed to prevent
an overflow, then the condition e op bwill have some relationship
with the offset o. Specifically, TAP checks for patterns in which the
following two constraints hold:

IBb− IBs 6= /0 Ve∩Vo 6= /0

Here IBb is the set of input file bytes that influence the value of b, IBs
is the set of input bytes that influence the value of s (for statically
allocated buffers IBs = /0), Ve is the set of variables in e, and Vo is the
set of variables in o.

The constraint IBb− IBs 6= /0 checks that the condition depends on
some input bytes that are not involved in the computation of the size
of the allocated buffer. The constraint Ve∩Vo 6= /0 checks that there
is some relationship between the condition and the access offset o.

The TAP monitoring system obtains the information required to
compute IBb, IBs, Ve, and Vo by tracking how input fields and values
flow through the application as it runs [49].

3.3 Generated Constraint System
When TAP finds such a pattern, it attempts to generate a new input

that triggers the overflow. Specifically, it generates and solves (using
the Z3 SMT solver [20]) the following two constraints:

o≥ IEs e op IEb

Here IEs is a symbolic expression (the variables in this symbolic
expression represent input bytes) that captures the complete compu-
tation of s starting from constants and input bytes, and similarly for

IEb. The TAP monitoring system produces these expressions as part
of its instrumented execution of the program [49]. Here the constraint
o ≥ IEs forces the solver to generate a solution that causes the off-
set o to exceed the size s of the allocated buffer p. The constraint
e op IEb ensures that the solution also satisfies the condition so
that the check does not skip the out of bounds access.

The solution to this constraint system delivers a set of values for
the input bytes involved in the computation of s and b. These input
byte values satisfy these constraints.

The constraint system in the illustrative example above contains
the following two constraints:

i≥ IEsize i< IEheight ∗ IEwidth

Note that i, by linking the condition to the values in the target access,
makes the constraints associated with the implicit flow explicitly
present in the constraint system. This is a critical step in enabling the
solver to find input byte values that trigger the overflow.

Given a solution to the constraint system, TAP next generates a
new input file. This file replaces the old values in the seed input file
with the generated input byte values from the solver. If this new file
causes the application to follow a path through the condition to the
access, it will trigger the overflow.

3.4 Conditional Branch Enforcement
In some cases, however, the application may contain other checks

that prevent the application from following a path that triggers the
overflow. In this case TAP uses the goal-directed conditional branch
enforcement algorithm from DIODE [49] to find input byte values that
cause the application to traverse a path that executes the target access.
The enforcement algorithm includes not just the TAP constraints
above, but other constraints generated by DIODE designed to force
the flow of control to the target access. If successful, this algorithm
produces an input file that triggers the buffer overflow error.

3.5 Discovering Integer Overflow Errors
The TAP integer overflow discovery algorithm is taken directly

from DIODE [49]. This algorithm monitors the execution of the
application to identify memory allocation site and construct symbolic
expressions that capture the size of the allocated buffer as a function
of the input bytes. It then uses goal-directed conditional branch
enforcement to generate inputs that 1) overflow the computation of
the size of the allocated buffer while 2) forcing the application to take
a path that executes the statement at the memory allocation site.

4. PATCH GENERATION
We next discuss the TAP patch generation algorithms. These

algorithms start with symbolic expressions generated by the instru-
mented executions of the application that TAP performs to obtain
error-triggering inputs. It is also straightforward to start with any
error-triggering input obtained by any means whatsoever, then use
the TAP instrumented execution functionality to obtain the required
symbolic expressions. TAP contains a set of templates that it matches
against the symbolic expressions. If a template matches, TAP applies
the template to generate an associated patch and inserts the patch into
the application.

4.1 Buffer Overflow Patches
The TAP buffer overflow patch generation algorithm starts with the

two expressions IEs and o produced by the TAP monitoring system.
Conceptually, the generated patch should check if o >= IEs and,
if so, exit to avoid the overflow. Recall that the variables in the
expression IEs represent input field bytes, not program variables.
To generate a source-level patch that implements this expression,



TAP must translate IEs into the name space of the application. In
other words, TAP must find a place in the application where the input
byte values are accessible via program variables and source-level
expressions in the application. It can then replace the input bytes
in IEs with source-level expressions that contain the corresponding
input bytes.

4.2 Patch Insertion
TAP performs the patch insertion using the CodePhage patch in-

sertion algorithm [51]. This algorithm tracks the flow of input bytes
through the variables and memory of the program. Given an ex-
pression over the input bytes and a candidate insertion point in the
program, the insertion algorithm traverses the heap to find source-
level expressions that contain the relevant input bytes [51]. These
source-level expressions may be simply program variables (if the
program read the relevant input bytes into a program variable) or
more complex expressions that start at a program variable, then tra-
verse the heap to access a memory location that contains the input
bytes. If expressions for all of the required input bytes are available
at the candidate insertion point, the patch insertion algorithm uses
the discovered source-level names for the input bytes to translate the
expression into the source-level name space of the application at the
candidate insertion point.

The patch insertion algorithm also ensures that the patch is in-
serted to execute before the target access. This ensures that the patch
terminates the program before the overflow at the target access occurs.

4.3 Buffer Overflow Patch Template
Given the expression IEs and translation T R(IEs) into the source-

level name space of the program at the candidate insertion point, the
TAP buffer overflow patch template generates the following patch at
the candidate insertion point:

if (o >= T R(IEs)) { exit (-1); }

This patch checks to see if the target access will overflow the buffer
via the offset o and, if so, exits the program to prevent the overflow
from occurring.

It is also possible to apply a failure-oblivious computing [40] patch
template. Instead of exiting when the target access will overflow
the buffer, it instead discards out of bounds writes and manufactures
values (zero, one, a predetermined sequence of values, or sequence of
random values) to return as the result of out of bounds reads. It is also
possible to apply a boundless memory blocks [42] patch template
that stores out of bounds writes in a hash table for subsequent out of
bounds reads to read. The goal of both of these patch templates is
to enable successful continued execution despite the out of bounds
access.

4.4 Patch Validation
TAP next runs the patched application on the error-triggering input

to verify that the patch eliminates the overflow. It also runs the
patched application on any available input test suite to check that the
patch does not interfere with correct executions on inputs that the
unpatched program processes correctly.

4.5 Integer Overflow Patches
The TAP integer overflow patch generation algorithm starts with an

expression IEs and a memory allocation site that allocates a buffer of
size s. The DIODE integer overflow discovery algorithm generates
this expression. This expression captures the complete calculation
that the application performs to compute the size s of the allocated
buffer. IEs is an expression over the input bytes.

TAP starts with the expression IEs and generates an overflow
detection expression D that checks for an integer overflow in the
computation of the size s [31]. These overflow detection expressions
often take the form of templates that apply to certain computation
patterns. Here are several overflow detection expressions that TAP
currently implements:

• Unsigned 32 Bit Multiplication Overflow: If IEs is of the
form A∗B, where A and B represent unsigned 32 bit integers,
the overflow detection expression D is:

((uint64_t)A * (uint64_t)B > MAX_UINT32)

We note that because the detection expression D captures the
entire computation of s, the generated overflow check can
detect overflows that occur even if the computation of A ∗B
occurs very far away in the program from allocation site.

• Signed 32 Bit Multiplication Overflow: If IEs is of the form
A ∗ B, where A and B represent signed 32 bit integers, the
overflow detection expression D is:

((int64_t)A * (int64_t)B < MIN_INT32) ||
((int64_t)A * (int64_t)B > MAX_INT32)

As for unsigned overflows, because the detection expression
D captures the entire computation of s, the generated overflow
check can detect overflows that occur even if the computation
of A∗B occurs very far away in the program from allocation
site.

• 64 to 32 Bit Cast Overflow: If IEs is of the form (C)A, where
A is a 64-bit unsigned integer and the cast C converts A to a
32-bit unsigned integer, the overflow detection expression D is
((uint64_t) ((uint32_t) A)) != A. We note that because
the detection expression D captures the entire computation
of s, the generated overflow check can detect overflows that
occur even if the cast occurs very far away in the program from
allocation site.

More generally, it is possible to apply a general integer overflow
patch template that, given an arbitrary symbolic expression IEs, auto-
matically generates a patch that checks if any subcomputation of IEs
overflows. Because IEs captures the complete computation of the
size of the allocated memory block starting from constants and input
bytes, this patch can detect overflows that occur in subcomputations
arbitrarily far away (in the code or computation) from the allocation
site s.

4.6 Patch Insertion
As for buffer overflow patches, TAP uses the CodePhage patch

insertion algorithm to find an appropriate patch insertion point and
translate the detection expression D into the name space of the appli-
cation at the patch insertion point.

The patch insertion algorithm also ensures that the patch is inserted
to execute before the memory allocation site whose size computation
produces the overflow.

4.7 Integer Overflow Patch Template
The TAP integer overflow patch template generates the following

patch at the candidate insertion point:

if (T R(D)) { exit (-1); }

where T R(D) is the translation of D at the patch insertion point. The
CodePhage patch insertion algorithm generates this translation [51].



Discovered Overflow Patch Patch Number of Candidate Check
Application Overflow Location Type Template Insertion Point Insertion Points Size

CWebP 0.3.1 jpegdec.c:248 Integer A∗B jpegdec.c:246 23-2-16 = 5 45→ 5
Dillo 2.1 png.c:203 Integer A∗B png.c:195 16-0-10 = 6 46→ 4

Display 6.5.2 xwindow.c:5619 Integer A∗B xwindow.c:5590 71-4-57 = 10 19→ 5
Display 6.5.2 cache.c:3717 Integer A∗B cache.c:3788 48-4-41 = 3 24→ 8

SwfPlay 0.5.5 jpeg_rgb_decoder.c:253 Integer A∗B jpeg_rgb_decoder.c:252 30-2-24 = 4 13→ 5
SwfPlay 0.5.5 jpeg.c:192 Integer (C)A jpeg.c:186 26-0-25 = 1 546→ 22

JasPer 1.9 jpc_dec.c:500 Buffer o≥s jpc_dec.c:492 32-0-31 = 1 44→ 10
gif2tiff 4.0.3 gif2tiff.c:355 Buffer o≥s gif2tiff.c:342 1-0-0 = 1 2→ 2

Figure 3: Summary of TAP Experimental Results

Discovered Seed Input Error Patch Generation
Application Overflow Location Analysis Time Discovery Time and Validation Time

CWebP 0.3.1 jpegdec.c:248 4 min 13 sec 0 min 10 sec 0 min 48 sec
Dillo 2.1 png.c@203 34 min 59 sec 2 min 54 sec 1 min 40 sec

Display 6.5.2 xwindow.c@5619 7 min 3 sec 0 min 1 sec 2 min 49 sec
Display 6.5.2 display.c@4393 7 min 3 sec 0 min 3 sec 2 min 54 sec

SwfPlay 0.5.5 jpeg_rgb_decoder.c:253 23 min 29 sec 16 min 9 sec 2 min 0 sec
SwfPlay 0.5.5 jpeg.c:192 23 min 29 sec 26 min 0 sec 0 min 1 sec

JasPer 1.9 jpc_dec.c:500 11 min 0 sec 0 min 11 sec 0 min 28 sec
gif2tiff 4.0.3 gif2tiff.c:355 13 min 41 sec 0 min 1 sec 0 min 24 sec

Figure 4: TAP Seed Input Analysis, Error Discovery, and Patch Generation and Validation Times

4.8 Patch Validation
As for buffer overflow patches, TAP verifies that the generated

patch 1) enables the application to correctly reject the error-triggering
input and 2) does not interfere with the semantics of test suite inputs
that the unpatched program already processes correctly. TAP also
leverages the semantics of integer overflow errors to perform an addi-
tional validation step [51]. Specifically, TAP analyzes the generated
patch, the expression that overflows, and other existing checks that
are relevant to the error to verify that there is no input that 1) satisfies
the checks to traverse the exercised path through the program to the
overflow and also 2) triggers the overflow.

5. EXPERIMENTAL RESULTS
We implemented the TAP buffer and integer overflow discovery

and patching algorithms and applied these algorithms to discover and
patch a set of buffer and integer overflow errors in the following set
of benchmark applications: JasPer 1.9 [5], gif2tiff 4.0.3 [6], CWebP
0.31 [1], Dillo 2.1 [2], swfplay 0.55 [10], and Display 6.5.2-8 [4].
TAP discovered and patched buffer overflow errors in JasPer 1.9 and
gif2tiff 4.0.3 and integer overflow errors in CWebP 0.31, Dillo 2.1,
swfplay 0.55, and Display 6.5.2-8. The buffer overflow and two of
the integer overflow errors are listed in the CVE database. One of
the integer overflow errors was first discovered by BuzzFuzz [24];
the other four were, to the best of our knowledge, first discovered by
DIODE [49]. The errors are triggered by JPG image files (CWebP),
PNG image files (Dillo), SWF video files (swfplay), and TIFF image
files (Display).

Figure 3 summarizes the results. There is a row in the table for
each discovered error. The first column (Application) identifies the
application that contains the error. The second column (Discovered
Error Location) identifies the source code file and line where the
discovered overflow error occurs. The third column (Overflow Type)
specifies whether the error was a buffer or integer overflow error. The
JasPer buffer overflow error involves a dynamically allocated buffer,
while the gif2tiff buffer is statically allocated.

The fourth column (Patch Template) specifies whether the patch
template was a multipy template (A∗B), a cast template (C)A, or the
buffer overflow template (o≥s). The fifth column (Patch Insertion
Point) identifies the source code file and line where TAP inserted
the generated patch. TAP usually (CWebP, Dillo, SwfPlay, JasPer,
gif2tiff) inserts the patch relatively close to the error.

The sixth column (Candidate Insertion Points) contains entries of
the form X−Y −Z = W . Here X is the number of candidate insertion
points, Y is the number of unstable points (TAP filters these points), Z
is the number of insertion points at which TAP was unable to translate
the patch because it was unable to find source-level expressions for
some of the required input bytes, and W is the number of points at
which TAP is able to insert a successfully translated patch. See [51]
for more details.

The seventh column (Check Size) contains entries of the form
X → Y . Here X is the number of operations in the untranslated
representation of the check. Y is the number of operations in the
translated check as it is inserted into the recipient. We attribute the
significant size reduction to the ability of the CodePhage Rewrite
algorithm to recognize complex expressions that are semantically
equivalent. The typical scenario is that TAP recognizes that a complex
expression containing shifts and masks over input byte values from
(for example) endianess conversions as the input byte values are read
into the application is equivalent to a single variable or data structure
field in the recipient. See [51] for more details.

Figure 4 presents the amount of time TAP requires to perform vari-
ous activities for each error. The third column (Seed Input Analysis
Time) presents the amount of time that TAP requires to perform the
instrumented executions of the application on the seed inputs. These
instrumented executions record the input bytes that influence each
value and generate the required symbolic expressions (IEs, IEb) that
TAP records to perform the subsequent error discovery and patch
phases. In general, these instrumented executions are the most time-
consuming part of the end to end TAP system. Dillo and SwfPlay take
longer because they are interactive applications. TAP must therefore



timeout the execution instead of simply observing the application
terminate when it finishes processing the seed input.

The fourth column (Error Discovery Time) presents the amount
of time that TAP takes to execute the error discovery algorithm once
it has the information from the instrumented seed input executions.
These times are at most several minutes for our set of benchmark
applications. The final column (Patch Generation and Validation
Time) is the time required to generate and validate the patch. Again,
the times are at most several minutes, with the majority of the time
devoted to rebuilding the application once TAP has installed the
patch.

Overall, the end to end analysis, discovery, and patch generation
and validation are always less than 45 minutes and in many cases
are much less than 45 minutes. We next discuss some of the specific
patches that TAP generates.

5.1 JasPer 1.9
JasPer 1.9 is an open-source image viewing and image processing

utility. It is specifically known for its implementation of the JPEG-
2000 standard. JPEG-2000 images may be composed of multiple
tiles, with the number of tiles specified by a 16 bit field in the input
file. JasPer contains an off-by-one error in the code that processes
JPEG-2000 tiles. When JasPer processes the tiles, it includes code
that is designed to check that the number of tiles actually present in
the image is less than or equal to the number specified in the input file.
Unfortunately, the check was miscoded — at jpc_dec.c:492, JasPer
checks if the number of the current tile is greater than (>) the specified
number of tiles. The correct check is a greater than or equal to (>=)
check. The result is that JasPer can access tile data beyond the end of
the buffer allocated to hold that data.

The following code fragment contains the error. The incorrect
check occurs in the first line. The resulting out of bounds access
occurs when the application evaluates tile->partno:

if (JAS_CAST(int, sot->tileno) > dec->numtiles) {
jas_eprintf("invalid tile number ...\n");
return -1;

}
/* Set the current tile. */
dec->curtile = &dec->tiles[sot->tileno];
tile = dec->curtile;
/* Ensure that this is the expected part number. */
if (sot->partno != tile->partno) {
return -1;

}

TAP applies the buffer overflow template to obtain the following
patch, which it inserts at jpc_dec.c:192 just before the code fragment
above:

if (((((sot->tileno << 3) << 3) -
(sot->tileno << 3)) + 40 >=
((dec->numtiles << 3) << 3) -
(dec->numtiles << 3)))

{exit(-1);}

This patch uses shift operations to efficiently compute a multi-
ply by 56 (the size of a single element of the dec->tiles array).
TAP uses this efficient form because the expressions that it works
with are derived from the compiled application and therefore reflect
the optimizations that the compiler applies to array indexing opera-
tions. 40 is the offset of the partno field within an element of the
dec->tiles array. The check determines whether the accessed
offset is larger than the size of the allocated array. Note that to gener-
ate this check, TAP must determine that dec->numtiles contains
the number of elements in the dynamically allocated dec->tiles
array.

5.2 Dillo 2.1
Dillo is a lightweight graphical web browser. Dillo 2.1 is vulnera-

ble to an integer overflow when decoding the PNG file format. Dillo
computes the size as a 32-bit product of the image width, height, and
pixel depth from the input file. A check for potentially malicious
width and height values is present, but the check itself is unfortunately
vulnerable to an overflow. When the buffer size calculation overflows,
the allocation at png.c:203 returns a buffer that is too small to hold
the decompressed image (CVE-2009-2294).

The potentially malicious width and height check (which is itself
vulnerable to an overflow) appears starting at png.c:142 as follows:

/* check max image size */
if (abs(png->width*png->height) >

IMAGE_MAX_W * IMAGE_MAX_H) {
MSG("Png_datainfo_callback: ... %ldx%ld\n",

png->width, png->height);
Png_error_handling(png_ptr, "Aborting...");
return; /* not reached */

}

The integer overflow occurs at png.c:203 as follows when Dillo
calculates the size of the buffer to allocate:

png->image_data = (uchar_t *)
dMalloc(png->rowbytes * png->height);

Here png->height contains the height field from the input png
file and png->rowbytes is the number of bytes in each row of the
image (which is a function of the width field from the input png file).

TAP applies the multiply integer overflow patch template (the A∗B
template) at png.c:195 as follows:

if (((uint64_t) png->rowbytes *
(uint64_t) png->height >
__UINT64_C(4294967295))) {exit(-1);}

This example illustrates the difficulty that developers can have
writing correct code. Even though the developer anticipated the
possibility of inputs with potentially malicious width and height fields,
the application is still vulnerable to an integer overflow involving
those fields.

The remaining integer overflow errors with the A∗B template have
similar patches.

5.3 Display 6.5.2
ImageMagick Display is an image viewing and formatting utility

released as part of the popular ImageMagick suite. Display 6.5.2
contains overflow errors when creating a resized version of the image
for display within the GUI window, and when creating a cache buffer
for the image during TIFF decompression (a request for pixel space at
tiff.c:1044 eventually results in an allocation at cache.c:3717). When
the computation of any of these buffer sizes overflows, the allocated
memory blocks are too small, causing Display to write beyond the
end of the block.

Here is the code at cache.c:3717 that allocates the buffer and
contains the overflow:

cache_info->pixels=(PixelPacket *)
AcquireMagickMemory((size_t) cache_info->length);

In this code cache_info->length is a 64 bit integer con-
taining the number of bytes required to contain the image. Dis-
play casts this 64 bit integer to a 32 bit integer before passing it to
AcquireMagickMemory(). For large image sizes, the overflow
occurs at this cast.

The following code, which occurs starting at cache.c:3787, com-
putes cache_info->length. All of the calculations are per-
formed in 64 bit arithmetic.



cache_info->rows=image->rows;
cache_info->columns=image->columns;
...
number_pixels=(MagickSizeType)
cache_info->columns*cache_info->rows;

...
length=number_pixels*packet_size;
...
cache_info->length=length;

Here image->rows contains the bytes from the input file that
specify the number of rows in the image, image->columns con-
tains the bytes from the input file that specify the number of columns
in the image, and packet_size is the constant 8.

TAP generates the following patch, which it inserts just before the
calculations presented above starting at cache.c:3787:

if ((8 * (uint64_t) ((uint32_t)
((uint64_t) image->rows *
(uint64_t) image->columns)) !=
(uint64_t) ((uint32_t)
(8 * (uint64_t) ((uint32_t)
((uint64_t) image->rows *
(uint64_t) image->columns))))))

{exit(-1);}

Here TAP recognizes that cache_info->length is the prod-
uct of the number of rows and columns from the input file times the
packet size (8). The check converts the value to 32 bits, then back to
64 bits, and checks if the conversion does not produce the original
value.

6. RELATED WORK
We discuss related work in buffer and integer overflow discovery

as well as work in automatic error patching (see [49, 51, 31]).
Random and Directed Fuzzing: Random fuzzing has been shown
to be surprisingly effective in uncovering errors [33, 52] and is heavily
used by security researchers [9, 7, 43]. But because most randomly
generated inputs fail input sanity checks, random fuzzing has been
relatively ineffective at generating inputs that trigger errors (such as
integer overflows) deep inside applications. Its ability to generate
such inputs can be especially limited for programs that process deeply
structured formats such as videos.

Motivated by the need to expose errors deep inside applications,
researchers have proposed directed fuzzing techniques [24, 54, 23].
BuzzFuzz [24] and TaintScope [54] use taint tracking to identify input
bytes that influence values at critical program sites such as memory
allocation sites and system calls. In contrast with random fuzzing
techniques that modify the entire input, these techniques then fuzz
only the input bytes that influence critical program points. While
successful at reducing the size of the fuzzed input space, our results
indicates that these directed techniques are ineffective at finding the
carefully crafted inputs required to navigate the sanity checks and ex-
pose integer overflow errors. Because these directed fuzzing systems
operate directly on the raw binary input bytes, the modifications can
also produce syntactically incorrect inputs that immediately fail the
sanity checks.
Symbolic Test Generation: Symbolic test generation (i.e., concolic
testing) has been proposed as an alternative to random and directed
fuzzing [46, 25, 26, 34, 15, 14, 53, 27]. These systems execute pro-
grams both concretely and symbolically on a seed input until an inter-
esting program expression is reached (e.g., an assert, a conditional
or a specific expression). Although successful in many cases [26,
14, 15, 34], symbolic test generation faces several challenges [47,
13]. Specifically, once past the initial parsing stages, the resulting
deeper program paths may produce very large constraints with com-
plex conditions that are beyond the capabilities of current state of the

art constraint solvers. Our results also show that the path taken by a
seed input may contain additional blocking checks that can prevent a
constraint solver from generating inputs that satisfy the checks and
trigger an overflow [49].

SmartFuzz [34] is a symbolic test generation tool to discover inte-
ger overflows, non-value-preserving width conversions, and poten-
tially dangerous signed/unsigned conversions. SmartFuzz, like other
concolic systems, is limited by deep program paths and blocking
checks.

Dowser [27] is a fuzzer that combines taint tracking, program anal-
ysis, and symbolic execution to find buffer overflows. The key idea is
to use program analysis to guide symbolic execution (e.g.,KLEE [14])
along a path that is more likely to discover buffer overflows than run-
ning symbolic execution over the entire program. Like most concolic
systems, Dowser optimizes for path coverage and is thus unlikely to
discover integer overflow errors.

TAP uses DIODE [49] to discover integer overflow errors. DIODE
differs from these echniques in that it is targeted — instead of ex-
ploring paths to find critical sites, it starts with a critical site that
is executed by a seed input, then uses a variety of techniques that
are designed to produce inputs that successfully navigate sanity and
blocking checks to trigger an overflow at the critical site. TAP extends
the targeted DIODE approach to discover buffer overflow errors.
Runtime and Library Support: To alleviate the problem of false
positives, several research projects have focused on runtime detection
tools that dynamically insert runtime checks before integer opera-
tions [12, 56, 22]. Another technique is to use safe integer libraries
such as SafeInt [8] and CERT’s IntegerLib [45] to perform sanity
checks at runtime. Using these libraries requires developers to rewrite
existing code to use safe versions of integer operations. TAP, in con-
trast, pro-actively finds integer errors during testing (i.e., does not rely
on observing a malicious input in the wild) and imposes no runtime
overhead other than the inserted patch.

Input Rectification is another technique that can protect applica-
tions from integer overflow errors [41, 29, 30] by empirically learning
input constraints from benign training inputs and then monitoring
inputs for violations of the learned constraints. Instead of discarding
inputs that violate the learned constraints, input rectification modifies
the input so that it satisfies the constraints. The goal is to nullify po-
tential errors while still enabling the program to successfully process
as much input data as possible. Because it learns the constraints from
examples, the technique is susceptible to false positives.
Static Analysis For Finding Integer Errors: Several static anal-
ysis tools have been proposed to find integer overflow and/or sign
errors [55, 18, 44]. KINT [55], for example, analyzes individual
procedures, with the developer optionally providing procedure speci-
fications that characterize the value ranges of the parameters. Despite
substantial effort, KINT reports a large number of false positives [55].
In contrast, TAP generates inputs that prove the existence of integer
errors without any false positives.

SIFT [31] generates input filters that nullify integer overflow errors
associated with critical memory allocation and block copy sites. SIFT
uses a sound static program analysis to generate filters that discard
inputs that may trigger overflow errors. SIFT requires access to
source code and is not designed to identify errors. TAP, in contrast,
operates directly on stripped x86 binaries with no need for source
code to generate overflow-triggering inputs (although it does require
source code access to generate and insert the patch).
Runtime Program Repair: Failure-Oblivious Computing enables
applications to survive common buffer overflow memory errors [40].
It recompiles the application to discard out of bounds writes, man-
ufacture values for out of bounds reads, and enable applications to
continue along their normal execution paths. RCV [32] enables



applications to dynamically recover from divide-by-zero and null-
dereference errors. When such an error occurs, RCV attaches the
application, applies a fix strategy that typically ignores the offend-
ing instruction, forces the application to continue along the normal
execution path, contains the error repair effect, and detaches from
the application once the repair succeeds. SRS [35] enables server
applications to survive memory corruption errors. When such an error
occurs, it enters a crash suppression mode to skip any instructions
that may access corrupted values. It reverts back to normal mode
once the server moves to the next request.

ClearView [38] first learns a set of invariants from training runs.
When a learned invariant is violated during the runtime execution,
it generates repairs that enforce the violated invariant via binary
instrumentation. It is also possible to learn and enforce data structure
consistency properties [21].

Jolt [16] and Bolt [28] enable applications to survive infinite loop
errors. Bolt attaches to unresponsive applications, detects if the
application is in an infinite loop, and if so, either exits the loop or
returns out of the enclosing function to enable the application to
continue successful execution.

DieHard [11] provides probabilistic memory safety in the presence
of memory errors. In stand-alone mode, DieHard replaces the default
memory manager with a memory manager that places objects ran-
domly across a heap to reduce the possibility of memory overwrites
due to buffer overflows. In replicated mode, DieHard obtains the
final output of the application based on the votes of multiple replica-
tions. Exterminator [37] automatically generates patches for buffer
overflow and dangling pointer errors. Starting with an input that
triggers the error, Exterminator patches overflow errors by padding
allocated objects and patches dangling pointer errors by deferring
object deallocations.

Rx [39] and ARMOR [17] are runtime recovery systems based on
periodic checkpoints. When an error occurs, Rx [39] reverts back to
a previous checkpoint and makes system-level changes (e.g, thread
scheduling, memory allocations, etc.) to search for executions that
do not trigger the error. ARMOR [17] reverts back to a previous
checkpoint and finds semantically equivalent workarounds for the
failed component based on user-provided specifications.

Error Virtualization [50, 48] is a general error recovery technique
that retrofits exception-handing capabilities to legacy software. Fail-
ures that would otherwise cause a program to crash are turned into
transactions that use a program’s existing error handling routines to
survive unanticipated faults.

All of the above techniques aim to repair the application at runtime
to recover from or nullify the error. In contrast, TAP is designed to
generate source-level patches that can be compiled into the applica-
tion to eliminate the error without additional runtime monitoring or
recovery support.
Runtime Checks and Library Support: To alleviate the problem
of false positives, several research projects have focused on runtime
detection tools that dynamically insert runtime checks before integer
operations [12, 19, 56, 22]. One drawback is that the inserted checks,
which are placed all throughout the application, can impose non-
negligible overhead. TAP, in contrast, only inserts checks when it has
found an input that causes a buffer or integer overflow. It therefore
imposes almost no overhead. TAP also discovers buffer and integer
overflow errors (as opposed to simply aspiring to detect overflows).

Another technique is to use safe integer libraries such as SafeInt [8]
and CERT’s IntegerLib [45] to perform sanity checks at runtime.
Using these libraries requires developers to rewrite existing code to
use safe versions of integer operations. TAP, in contrast, discovers and
patches errors in existing applications without requiring developers
to rewrite code.

Benign Integer Overflows: In some cases, developers may inten-
tionally write code that contains benign integer overflows [55, 53,
22]. A potential concern is that techniques that nullify overflows may
interfere with the intended behavior of such programs [55, 53, 22].
Because TAP focuses on critical memory allocation sites that are
unlikely to have such intentional integer overflows, it is unlikely to
nullify benign integer overflows and therefore unlikely interfere with
the intended behavior of the program.
CodePhage: Given multiple applications that process the same in-
put files and an input file that triggers an error in one application,
CodePhage finds checks in other applications that enable these other
applications to successfully process the input file [51]. It then uses
multi-application code transfer to transfer these checks into the origi-
nal application and eliminate the error. TAP differs in that its code
patch templates enable it to generate patches in the absence of other
applications that 1) can process the same inputs and 2) have checks
that eliminate the error.

7. CONCLUSION
Buffer and integer overflow errors are a longstanding and still

serious source of security vulnerabilities. TAP uses sophisticated
program instrumentation and analysis technology to automatically
discover and patch both buffer and integer overflow errors. By proac-
tively discovering errors, TAP can enable organizations to find poten-
tially serious security vulnerabilities before they are exploited. By
automatically generating patches with no need to wait for a human de-
veloper to analyze the error and produce a (potentially buggy) patch,
TAP can dramatically reduce the time between when the vulnera-
bility is discovered and when it is patched. TAP therefore promises
to dramatically reduce the time and effort required to discover and
eliminate this important class of security vulnerabilities.
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