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Using existing programming tools, writing high-performance simulation
code is labor intensive and requires sacrificing readability and portability. The
alternative is to prototype simulations in a high-level language like Matlab,
thereby sacrificing performance. The Matlab programming model naturally
describes the behavior of an entire physical system using the language of
linear algebra. However, simulations also manipulate individual geometric
elements, which are best represented using linked data structures like meshes.
Translating between the linked data structures and linear algebra comes at
significant cost, both to the programmer and the machine. High-performance
implementations avoid the cost by rephrasing the computation in terms of
linked or index data structures, leaving the code complicated and monolithic,
often increasing its size by an order of magnitude.

In this paper, we present Simit, a new language for physical simulations
that lets the programmer view the system both as a linked data structure in
the form of a hypergraph, and as a set of global vectors, matrices and tensors
depending on what is convenient at any given time. Simit provides a novel
assembly construct that makes it conceptually easy and computationally effi-
cient to move between the two abstractions. Using the information provided
by the assembly construct, the compiler generates efficient in-place computa-
tion on the graph. We demonstrate that Simit is easy to use: a Simit program
is typically shorter than a Matlab program; that it is high-performance:
a Simit program running sequentially on a CPU performs comparably to
hand-optimized simulations; and that it is portable: Simit programs can
be compiled for GPUs with no change to the program, delivering 5-25x
speedups over our optimized CPU code.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Animation

General Terms: Languages, Performance

Additional Key Words and Phrases: Graph, Matrix, Tensor, Simulation

1. INTRODUCTION

Efficient large-scale computer simulations of physical phenomena
are notoriously difficult to engineer, requiring careful optimization
to achieve good performance. This stands in stark contrast to the
elegance of the underlying physical laws; for example, the behavior
of an elastic object, discretized (for ease of exposition) as a network
of masses connected by springs, is determined by a single quadratic
equation, Hooke’s law, applied homogeneously to every spring in
the network. While Hooke’s law describes the local behavior of
the mass-spring network, it tells us relatively little about its global,
emergent behavior. This global behavior, such as how an entire
object will deform, is also described by simple but coupled systems
of equations.

Each of these two aspects of the physical system—its local interac-
tions and global evolution laws—admit different useful abstractions.
The local behavior of the system can be naturally encoded in a graph,
with the degrees of freedom stored on vertices, and interactions be-
tween degrees of freedom represented as edges. These interactions
are described by local physical laws (like Hooke’s law from above),
applied uniformly, like a stencil, over all of the edges. However,
this stencil interpretation is ill-suited for representing the coupled
equations which describe global behaviors. Once discretized and lin-
earized, these global operations are most naturally expressed in the
language of linear algebra, where all of the system data is aggregated
into huge but sparse matrices and vectors.

The easiest way for a programmer to reason about a physical
simulation, and hence a common idiom when implementing one, is
to swap back and forth between the global and local abstractions.
First, a graph or mesh library might be used to store a mass spring
system. Local forces and force Jacobians are computed with uniform,
local stencils on the graph and copied into large sparse matrices and
vectors, which are then handed off to optimized sparse linear algebra



2 • F. Kjolstad et al.

Simit GPU

Simit CPU

ms per frame

Source lines

1080

16,584

207,548

93

Matlab

Eigen

Vega

interactive

Matlab Vec

1,891

1,182
1,145

363293234180

Fig. 1: Scatter plot that shows the relationship between the code size and
runtime of a Neo-Hookean FEM simulation implemented using (Vectorized)
Matlab, the optimized Eigen Linear Algebra library, the hand-optimized Vega
FEM framework, and Simit. The runtimes are for a dragon with 160,743
tetrahedral elements. The trend is that you get more performance by writing
more code, however, with Simit you get both performance and productivity.
Simit requires fewer lines of code than the Matlab implementation and runs
faster than the hand-optimized Vega library on a single-threaded CPU. On a
GPU, the Simit implementation runs 10x faster with no code changes.

libraries to calculate the updated global state of the simulation.
Finally this updated state is copied back onto the graph.

While straightforward to conceptualize, the strategy of copying
data back and forth between the graph and matrix representations
incurs high performance costs as a result of data translation, and
the inability to optimize globally across linear algebra operations.
To overcome this inefficiency, highly-optimized simulations, like
those used for games and other real-time applications, are built as
monolithic codes that perform assembly and linear algebra on a sin-
gle set of data structures, often by computing in-place on the graph.
Building such a monolithic code requires enormous programmer ef-
fort and expertise. Doing so while keeping the system maintainable
and extensible, or allowing retargeting of the same code to multiple
architectures such as GPUs and CPUs, is nearly impossible.

The Simit Language

To allow users to take advantage of implicit local-global structure
without the performance pitfalls described above, we propose a new
programming language called Simit that natively supports switching
between the graph and matrix views of the simulation. Because
Simit is aware of the local-global duality at the language level,
it allows simulation code to be concise, fast (see Figure 1), and
portable (compiling to both CPU and GPU with no source code
change). Simit makes use of three key abstractions: first, the local
view is defined using a hypergraph data structure, where nodes
represent degrees of freedom and hyperedges relationships such
as force stencils, finite elements, and joints. Hyperedges are used
instead of regular edges to support relationships between more

than two vertices. Second, the local operations to be performed are
encoded as functions acting on neighborhoods of the graph (such
as Hooke’s law). Lastly, and most importantly, the user specifies
how global vectors and matrices are related to the hypergraph and
local functions. For instance, the user might specify that the global
force vector is to be built by applying Hooke’s law to each spring
and summing the forces acting on each mass. The key point is that
defining a global matrix in this way is not an imperative instruction
for Simit to materialize a matrix in memory: rather, it is an abstract
definition of the matrix (much as one would define the matrix in
a mathematical paper). The programmer can then operate on that
abstract matrix using linear algebra operations; Simit analyzes these
operations and translates them into operations on the hypergraph.
Because Simit understands the map between the matrix and the
graph, it can globally optimize the code it generates while still
allowing the programmer to reason about the simulation in the most
natural way: as both local graph operations and linear algebra on
sparse matrices.

Simit’s performance comes from its design and is made possible
by Simit’s careful choice of abstractions. Three features (Section 9)
come together to yield the surprising performance shown in Figure 1:

In-place Computation is made possible by the tensor assembly
construct that lets the compiler understand the relationship between
global operations and the graph and turn global linear algebra into
in-place local operations on the graph structure. This means Simit
does not need to generate sparse matrix index structures or allocate
any matrix or vector memory at runtime;

Index Expression Fusion is used to fuse linear algebra operations,
yielding loops that perform multiple operations at once. Further, due
to in-place computation even sparse operations can be fused; and

Simit’s Type System , with natively blocked vectors, matrices and
tensors, lets it perform efficient dense block computation by emitting
dense loops as sub-computations of sparse operations.

Simit’s performance could be enhanced even further by emitting
vector instructions or providing multi-threaded CPU execution, opti-
mizations that are planned for a future version of the language.

Scope

Simit is designed for algorithms where local stencils are applied to a
graph of fixed topology to form large, global matrices and vectors, to
which numerical algorithms are applied and the results written back
onto the graph. This abstraction perfectly fits many physical simu-
lation problems such as mass-spring networks (where hyperedges
are the springs), cloth (the bending and stretching force stencils),
viscoelastic deformable bodies (the finite elements), etc. At this time
Simit does not natively support graphs that change topology over
time (such as occurs with fracture or penalty-based impact forces)
or simulation elements that do not fit the graph abstraction (colli-
sion detection spatial data structures, semi-Lagrangian advection of
fluids). As discussed in Section 5, Simit is interoperable with C++
code and libraries, which can circumvent some of these limitations.

The target audience for Simit is researchers, practitioners, and
educators who want to develop physical simulation code that is
more readable, maintainable, and retargetable than MATLAB or
C++, while also being significantly more efficient (comparable
to optimized physics libraries like SOFA). Of course Simit pro-
grams will not outperform hand-tuned (and complex, unmaintain-
able) CUDA code, or be simpler to use than problem-specific tools
like FreeFem++, but Simit occupies a sweet spot balancing these
goals (see Figure 1 and benchmarks in Section 8) that is ideal for a
general-purpose physical simulation language.
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Contributions

Simit is the first platform that allows the development of physics
code that is simultaneously:

Concise The Simit language has MATLAB-like syntax that lets
algorithms be implemented in a compact, readable form that closely
mirrors their mathematical expression. In addition, Simit matrices
specified from the hypergraph are indexed by hypergraph elements
like vertices and edges rather than by raw integers, significantly
simplifying indexing code and eliminating bugs.

Expressive The Simit language consists of linear algebra oper-
ations augmented with control flow that let developers implement
a wide range of algorithms ranging from finite elements for de-
formable bodies, to cloth simulations and more. Moreover, the hy-
pergraph abstraction is powerful enough to allow easy specification
of complex geometric data structures.

Fast The Simit compiler produces high-performance executable
code comparable to that of hand-optimized end-to-end libraries and
tools, as validated against the state-of-the-art SOFA and VEGA
real-time simulation frameworks. Simulations can now be written
as easily as a traditional prototype and yet run as fast as a high
performance implementation without manual optimization.

Performance Portable A single Simit program can be compiled
to CPUs and GPUs with no additional programmer effort, while
generating efficient code for each architecture. Where Simit deliv-
ers performance comparable to hand-optimized CPU code on the
same processor, the same simple Simit program delivers roughly an
order of magnitude higher performance on a modern GPU in our
benchmarks, with no changes to the program.

Interoperable Simit hypergraphs and program execution are ex-
posed as C++ APIs, so developers can seamlessly integrate with
existing C++ programs, algorithms and libraries.

2. RELATED WORK

The Simit programming model draws on ideas from programming
systems, numerical and simulation libraries, and physical and math-
ematical frameworks.

Libraries for Physical Simulation

A wide range of libraries for the physical simulation of deformable
bodies with varying degrees of generality are available [Pommier
and Renard 2005; Faure et al. 2007; Dubey et al. 2011; Sin et al.
2013; Comsol 2005; Hibbett et al. 1998; Kohnke 1999], while still
others specifically target rigid and multi-body systems with domain
specific custom optimizations [Coumans et al. 2006; Smith et al.
2005; Liu 2014]. These simulation codes are broad and many serve
double duty as both production codes and algorithmic testbeds.
As such they often provide collections of algorithms rather than
customizations suited to a particular timestepping and/or spatial
discretization model. With broad scope comes convenience but even
so interlibrary communication is often hampered by data conversion
while generality often limits the degree of optimization.

For very specific problems, previous work developed highly-
optimized code, but these instances are limited in scope. For exam-
ple, multigrid solvers on CPU and GPU [McAdams et al. 2011; Dick
et al. 2011] are very fast, but limited to corotated linear material
models for tri-linear hexahedral finite elements.

Mesh data structures

Simulation codes often use third-party libraries that support higher-
level manipulation of the simulation mesh. A half-edge data struc-
ture [Eastman and Weiss 1982] (from, e.g., the OpenMesh li-
brary [Botsch et al. 2002]) is one popular method for describing
a mesh while allowing efficient connectivity queries and neigh-
borhood circulation. Alternatives targeting different application
requirements (manifold vs. nonmanifold, oriented vs unoriented,
etc.) abound, such as winged-edge [Baumgart 1972] or quad-
edge [Guibas and Stolfi 1985] data structures, and modern software
packages like CGAL [cga ] have built sophisticated tools on top
of many of these data structures for performing common geometry
operations. Simit differs from these approaches in that its hierarchi-
cal hyper-edges provide sufficient expressiveness to let users build
semantically rich data structures like many of these meshes, while
not limiting the user to any specific mesh data structure.

DSLs for computer graphics

Graphics has a long history of using domain-specific languages
and abstractions to provide high performance, and performance
portability, from relatively simple code. Most visible are shading
languages and the graphics pipeline [Hanrahan and Lawson 1990;
Segal and Akeley 1994; Mark et al. 2003; Blythe 2006]. Image
processing languages also have a long history [Holzmann 1988;
Elliott 2001; Ragan-Kelley et al. 2012], and more recently domain-
specific languages have been proposed for new domains like 3D
printing [Vidimče et al. 2013]. In physical simulation, Guenter et al.
built the D∗ system for symbolic differentiation, and demonstrated
its application to modeling and simulation [Guenter and Lee 2009].
D∗ is an elegant abstraction, but its implementation focuses less on
optimized simulation performance, and its model cannot express
features important to many of our motivating applications.

Graph programming models

A number of programming systems address computation over graphs
or graph-like data structures, including GraphLab [Low et al. 2010],
Galois [Pingali et al. 2011], Liszt [DeVito et al. 2011], SociaLite [Ji-
won Seo 2013], and GreenMarl [Sungpack Hong and Olukotun
2012]. In these systems, programs are generally written as explicit
in-place computations using stencils on the graph, providing a much
lower level of abstraction than linear algebra over whole systems. Of
these, GraphLab and SociaLite focus on distributed systems, where
we currently focus on single-node/shared memory execution. So-
ciaLite and GreenMarl focus on scaling traditional graph algorithms
(e.g., breadth-first search and betweenness centrality) to large graphs.
Liszt exposes a programming model over meshes. Computations
are written in an imperative fashion, but must look like stencils,
so it only allows element-wise operations and reductions. This is
similar to the programming model used for assembly in Simit, but
it has no corollary to Simit’s linear algebra for easy operation on
whole systems. Galois exposes explicit in-place programming via
a similarly low-level but extremely dynamic programming model,
which inhibits compiler analysis and optimization.

Programming systems for linear algebra

Our linear algebra syntax is explicitly inspired by MATLAB [2014],
the most successful high-productivity tool in this domain, though
we believe our syntax is improved in key ways for our applications.
In particular, the combination of coordinate-free indexing and the
assembly map operator, with hierarchically blocked tensors, dramat-
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ically reduces indexing complexity, while also exposing structure
critical to our compiler optimizations. Eigen is a C++ library for
linear algebra which uses aggressive template metaprogramming to
specialize and optimize linear algebra computations at compile time,
including fusion of multiple operations and vectorization [Guen-
nebaud et al. 2010]. It does an impressive job exposing linear algebra
operations to C++, and aggressive vectorization delivers impressive
inner-loop performance, but assembly is still both challenging for
programmers and computationally expensive during execution.

3. FINITE ELEMENT METHOD EXAMPLE

To make things concrete, we start by discussing an example of
a paradigmatic Simit program: a Finite Element Method (FEM)
statics simulation that uses Newton’s method to compute the final
configuration of a deforming object. Figure 2 shows the source code
for this example. The implementation of compute_tet_stiffness
and compute_tet_force depends on the material model chosen by
the user and are omitted. In this section we introduce Simit concepts
with respect to the example, but we will come back to them in
Section 4 with rigorous definitions.

As is typical, this Simit application consists of five parts: (1) graph
definitions, (2) functions that are applied to each graph vertex or
edge to compute new values based on neighbors, (3) functions that
compute local contributions of vertices and edges to global vectors
and matrices, (4) assemblies that aggregate the local contributions
into global vectors and matrices, and (5) code that computes with
vectors and matrices.

Step 1 is to define a graph data structure. Graphs consist of el-
ements (objects) that are organized in vertex sets and edge sets.
Lines 1–16 define a Simit graph where edges are tetrahedra and
vertices their degrees of freedom. Lines 1–5 define an element of
type Vertex that represents a tetrahedron’s degrees of freedom. It
has two fields: a coordinate x and a velocity v. Next, lines 7–12
define a Tet element that represents an FEM Tetrahedron with four
fields: shear modulus u, Lame’s first parameter l, volume W, and
the strain-displacement 3× 3 matrix B. Finally, lines 15–16 define
a vertex set verts with Vertex elements, and a edge set tets with
Tet elements. Since tets is an edge set, its definition lists the sets
containing the edges’ endpoints; a tetrahedron connects four ver-
tices (see Figure 3). That is, Simit graphs are hypergraphs, which
means that edges can connect any fixed number of vertices.

Step 2 is to define and apply a function precompute_vol to pre-
compute the the volume of every tetrahedron. In Simit this can be
done by defining the stencil function precompute_vol shown on
lines 19–22. Simit stencil functions are similar to the update func-
tions of data-graph libraries such as GraphLab [Low et al. 2010]
and can be applied to every element of a set (tets) and its endpoints
(verts). Stencil functions define one or more inout parameters that
have pass-by-reference semantics and that can be modified. Lines
24–26 shows the Simit procedure init that can be called to precom-
pute volumes. The procedure contains a single statement that applies
the stencil function to every tetrahedron in tets.

Step 3 defines functions that compute the local contributions of a
vertex or an edge to global vectors and matrices. Lines 29–34 define
tet_force that computes the forces exerted by a tetrahedron on its
vertices. The function takes two arguments, the tetrahedron and a
tuple containing its vertices. It returns a global vector f that contains
the local force contributions of the tetrahedron. Line 32 computes
the tetrahedron forces and assigns them to f. Since tet_force only
has access to the vertices of one tetrahedron, it can only write to
four locations in the global vector. This is sufficient, however, since
a tetrahedron only directly influences its own vertices.

1 element Vertex
2 x : vector[3](float); % position
3 v : vector[3](float); % velocity
4 fe : vector[3](float); % external force
5 end
6

7 element Tet
8 u : float; % shear modulus
9 l : float; % Lame’s first parameter

10 W : float; % volume
11 B : matrix[3,3](float); % strain-displacement
12 end
13

14 % graph vertices and (tetrahedron) hyperedges
15 extern verts : set{Vertex};
16 extern tets : set{Tet}(verts, verts, verts, verts);
17

18 % precompute tetrahedron volume
19 func precompute_vol(inout t : Tet, v : (Vert*4))
20 t.B = compute_B(v);
21 t.W = -det(B)/6.0;
22 end
23

24 proc init
25 apply precompute_vol to tets;
26 end
27

28 % computes the force of a tetrahedron on its vertices
29 func tet_force(t : Tet, v : (Vertex*4))
30 -> f : vector[verts](vector[3](float))
31 for i in 0:4
32 f(v(i)) = compute_tet_force(t,v,i);
33 end
34 end
35

36 % computes the stiffness of a tetrahedron
37 func tet_stiffness(t : Tet, v : (Vertex*4))
38 -> K : matrix[verts,verts](matrix[3,3](float))
39 for i in 0:4
40 for j in 0:4
41 K(v(i),v(j)) = compute_tet_stiffness(t,v,i,j);
42 end
43 end
44 end
45

46 % newton’s method timestepper
47 proc newton_method
48 tol = 1e-6;
49 while abs(f - verts.fe) > tol
50 f = map tet_force to tets reduce +;
51 K = map tet_stiffness to tets reduce +;
52

53 verts.x = vert.x + K\(verts.fe - f);
54 end
55 end

1

3

4

5

2

Fig. 2: Simit code for a Finite Element Method (FEM) simulation of statics.
The code contains: (1) graph definitions, (2) a function that is applied to
each tetrahedron to precompute it’s volume, (3) functions that compute
local contributions of each tetrahedra to global vectors and matrices, (4)
assemblies that aggregate the local contributions into global vectors and
matrices, and (5) code that computes with those vectors and matrices. The
compute_* functions have been omitted for brevity. For more Simit code,
see Appendix A for a full Finite Element Dynamics Simulation.

Step 4 uses a Simit assembly map to aggregate the local contribu-
tions computed from vertices and edges in the previous stage into
global vectors and matrices. Line 50 assembles a global force vector
by summing the local force contributions computed by applying
tet_force to every tetrahedron. The result is a dense force vector f
that contains the force of every tetrahedron on its vertices.

Finally, Step 5 is to compute with the assembled global vectors
and matrices. The results of these computations are typically vectors
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Fig. 3: Tetrahedral dragon mesh consisting of 160,743 tetrahedra that connect
46,779 vertices. Windows zoom in on a region on the mesh and a single tetra-
hedron. The tetrahedron is modeled as a Tet edge t1 = {v1,v2,v3,v4}.
that are stored to fields of graph vertices or edges. Line 53 reads
the x position field from the verts set, computes a new position
and writes that position back to verts.x. Reading a field from a set
results in a global vector whose blocks are the fields of the set’s
elements. Writing a global vector to a set field works the same way;
the vector’s blocks are written to the set elements. In this example
the computation uses the linear solve \ operator to perform a linearly
implicit time-step, but many other approaches are possible.

4. PROGRAMMING MODEL

Simit’s programming model is designed around the observation that
a physical system is typically graph structured, while computation on
the system is best expressed as global linear and multi-linear algebra.
Thus, the Simit data model1 consists of two abstract data structures:
hypergraphs and tensors. Hypergraphs generalize graphs by letting
edges connect any n-element subset of vertices instead of just pairs.
Tensors generalize scalars, vectors and matrices, that respectively
are indexed by 0, 1 and 2 indices, to an arbitrary number of indices.

We also describe two new operations on hypergraphs and tensors:
tensor assemblies, and index expressions. Tensor assemblies map
tensors to graphs, while index expressions compute with tensors.

4.1 Hypergraphs with Hierarchical Edges

Hypergraphs are ordered pairs H = (V, E), comprising a set V of
vertices and a set E of hyperedges that are n-element subsets of V .
The number of elements a hyperedge connects is its cardinality,
and we call a hyperedge of cardinality n an n-edge. Thus, hyper-
graphs generalize graphs where edges must have a cardinality of
two. Hypergraphs are useful for describing relationships between
vertices that are more complex than binary relationships. Figure 4
shows four examples of hyperedges: a 2-edge, a 3-edge, a 4-edge
and an 8-edge (in black) are used to represent a spring, a geometric
triangle, a tetrahedron and a hexahedron (in grey). Although, these
hyperedges are used to model geometric mesh relationships, hyper-
edges can be used to model any relationship. For example, a 2-edge
can also be used to represent a joint between two rigid bodies or
the relationship between two neurons, and a 3-edge can represent a
clause in a 3-SAT instance.

Simit hypergraphs generalize normal hypergraphs and are ordered
tuples HSimit = (S1, ..., Sm), where Si is the ith set whose ele-
ments connect 0 or n elements from other sets, called its endpoints.

1In this section we will use bold when we first mention a new concept.
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springs':'set{Spring}(verts,verts);
trigs''':'set{Triangle}(verts,verts,verts);
tets'''':'set{Tetrahedron}(verts,verts,verts,verts);
hexes''':'set{Hexahedron}(verts,verts,verts,verts,
''''''''''''''''''''''''''verts,verts,verts,verts);

Fig. 4: Four geometric elements are shown in gray: a spring, a triangle, a
tetrahedra and a cube. Degrees of freedom are shown as black circles. Simit
graph nodes match the degrees of freedom, while Simit edges of cardinality
three, four and eight are shown as blue squares. Note that these Simit edges
represent area/volume and not mesh edges.

We refer to a set with cardinality 0 as a vertex set and a set of
cardinality n greater than 0 as an edge set. So Simit hypergraphs
can have any number of vertex and edge sets, and edge sets have one
or more endpoints. The endpoints of an n-cardinality edge set are a
set relation over n other vertex or edge sets. That is, each endpoint
of an edge is an element from the corresponding endpoint set. This
means that edge sets can connect multiple distinct sets, and we call
such edge sets heterogeneous edge sets.

Elements (vertices and edges) of hypergraph sets can contain data.
An element’s data is a tuple whose entries are called fields. This is
equivalent to record or struct types in other languages. Fields can
be scalars, vectors, matrices or tensors. For example, the Vertex

element on lines 2–5 in Figure 2 has two vector fields x and v. We
say that a hypergraph set has the same fields as its elements; however,
the field of a set is a vector whose blocks are the fields of the set’s
elements. Blocked vector types are described in Section 4.2.

Edge sets can connect other edge sets, so we say that Simit sup-
ports hierarchical edges. Hierarchical edges have important ap-
plications in physical simulation because they let us represent the
topology of a mesh. Figure 5 demonstrates how hierarchical edges
can be used to capture the topology in a triangle mesh with faces,
triangle edges and vertices. The left hand side shows two triangles
that share the edge e3. Each triangle has three vertices that are con-
nected in pairs by graph edges {e1, e2, e3, e4, e5} that represent
triangle edges. However, these edges are themselves connected by
face edges {f1, f2}, thus forming the hierarchy shown on the right
hand side. By representing both triangle edges and faces we can
store different quantities on them. Moreover, it becomes possible to
accelerate typical mesh queries such as finding the adjacent faces
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verts&:&set{Vertex};
edges&:&set{Edge}(verts,verts);
faces&:&set{Face}(edges,edges,edges);

Fig. 5: Hierarchical hyperedges model triangles with faces, edges, and ver-
tices. On the left two triangles with faces f1 and f2 are laid flat. On the right
the same triangles are arranged to show the topological hierarchy.
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A":"matrix[3,4](float)
B":"matrix[V,U](float)
C":"matrix[V,U][3,4](float)

Fig. 6: Three Simit matrices. On left is a basic 3× 4 matrix A. In the middle
is a matrix B whose dimensions are the sets V and U . The matrix is indexed
by pairs of elements from U, V , e.g. B(v2,u2). Finally, on the right is a
blocked matrix C with V ×U blocks of size 3× 4. A block of this matrix is
located by a pair of elements fro V, U , e.g. C(v2,u2), and an element can be
indexed using a a pair of indices per matrix hierarchy, e.g. C(v2,u2)(2, 2).

of a face by inserting topological indices, such as a half-edge index,
into the graph structure.

4.2 Tensors with Blocks

We use zero indices to index a scalar, one to index a vector and two
to index a matrix. Tensors generalize scalars, vectors and matrices
to an arbitrary number of indices. We call the number of indices
required to index into a tensor its order. Thus, scalars are 0th-order
tensors, vectors are 1st-order tensors, and matrices are 2nd-order
tensors. Further, we refer to the nth tensor index as its nth dimension.
Thus, the first dimension of an m× n matrix is the rows m, while
the second dimension is the columns n.

The dimensions of a Simit tensor are sets: either integer ranges or
hypergraph sets. Thus, a Simit vector is more like a dictionary than
an array, and an n-order tensor is an n-dimensional dictionary, where
an n-tuple of hypergraph set elements map to a tensor component.
For example, Figure 6 (center) depicts a matrix B whose dimensions
are (V, U), where V = {v1, v2} and U = {u1,u2,u3}. We can
index into the matrix using an element from each set. For example,
B(v2,u2) locates the gray component.

Simit tensors can also be blocked. In a blocked tensor each di-
mension consists of a hierarchy of sets. For example, a hypergraph
set that maps to tensor blocks, where each block is described by
an integer range. Blocked tensors are indexed using hierarchical
indexing. This means that if we index into a blocked tensor using an
element from the top set of a dimension, the result is a tensor block.
For example, Figure 6 (right) shows a blocked matrix C whose

dimensions are (V × 3, U × 4), which means there are |V | × |U |
blocks of size 3× 4. As before, we can index into the matrix using
an element from each set, C(v2,u2), but now the index operation
results in the 3 × 4 grey block matrix. If we index into the ma-
trix block, C(v2,u2)(2, 2) we locate the dark grey component. In
addition to being convenient for the programmer, blocked tensors
let Simit produce efficient code. By knowing that a sparse matrix
consists of dense inner blocks, Simit can emit dense inner loops for
sparse matrix-vector multiplies with that matrix.

4.3 Tensor Assembly using Maps

A tensor assembly is a map from the triple (S, f, r) to one or more
tensors, where S is a hypergraph set, f an assembly function, and
r an associative and commutative reduction operator. The tensor
assembly applies the assembly function to every element in the
hypergraph set, producing per-element tensor contributions. The
tensor assembly then aggregates these tensor contributions into a
global tensor, using the reduction operator to combine values. The
result of the tensor assembly is one or more global tensors, whose
dimensions can be the set S or any of its endpoints. The diagram in
Figure 7 shows this process. On the left is a graph where the edges
E = {e1, e2} connect the vertices V = {v1, v2, v3}. The function f

is applied to every edge to compute contributions to the global V ×V
matrix. The contributions are shown in grey and the tensor assembly
aggregates them by adding the per-edge contribution matrices.

Assembly functions are pure functions whose arguments are an
element and its endpoints, and that return one or more tensors that
contain the element’s global tensor contributions. The arguments
of an assembly function are supplied by a tensor assembly as it
applies the function to every element of a hypergraph set, and the
same tensor assembly combines the contributions of every assembly
function application. The center of Figure 7 shows code for f: a
typical assembly function that computes the global matrix contri-
butions of a 2-edge and its vertex endpoints. The function takes as
arguments an edge e of type Edge, and a tuple v that contains e’s two
Vertex endpoints. The result is a V × V matrix with 3× 3 blocks
as shown in the figure. Notice that f can only write to four loca-
tion in the resulting V × V matrix, since it has access to only two
vertices. In general, an assembly function that maps a c-edge to an
n-dimensional tensor, can write to exactly cn locations in the tensor.
We call this property coordinate-free indexing, since each assem-
bly function locally computes and writes its matrix contributions to
the global matrix using opaque indices (the vertices) without regards
to where in the matrix those those contributions end up. Further,
since the global matrix is blocked, the 3× 3 matrix k can be stored
into it with one assignment, by only specifying block coordinates
and not intra-block coordinates. As described in Section 4.2 we call
this property hierarchical indexing, and the resulting coordinate-free
hierarchical indexing removes a large class of indexing bugs, and
make assembly functions easy to write and read.

We have so far discussed the functional semantics of tensor as-
semblies, but it is also important to consider their performance
semantics. The way they are defined above, if executed literally,
would result in very inefficient code where ultra-sparse tensors are
created for every edge, followed by a series of tensor additions. How-
ever, as we will see in Section 6, the tensor assembly abstraction
lets Simit’s compiler produce code that stores tensor blocks on the
graph elements corresponding to one of the tensor dimensions. Thus,
memory can be pre-allocated and indexing structures pre-built, and
assembly becomes as cheap as computing and storing blocks in a
contiguous segmented array. Generally, as discussed in Section 9,
the tensor assembly construct lets the Simit compiler know where
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func%f(e%:%Edge,%v%:%(Vertex*2))%
%%%%5>%K%:%matrix[V,V](matrix[3,3](float))
%%k%=%compute_block(s,%v);
%%K(v(0),%v(0))%=%%k;
%%K(v(1),%v(1))%=%%k;
%%K(v(0),%v(1))%=%5k;
%%K(v(1),%v(0))%=%5k;
end

extern%V%:%set{Vertex};
extern%E%:%set{Edge}(verts,%verts);

f(e1,%(v1,v2));

f(e2,%(v2,v3)); K%=%map%f%to%E%reduce%+

Fig. 7: Global matrix K assembly. The assembly map (on the right) applies f to every edge in E, and sums the resulting matrix contributions.
f computes a block k that is stored into the positions of K that correspond to the current edge’s endpoints. Since each edge only has two
endpoints, f can only store into four locations of the matrix. This is sufficient, however, since if v1 and v3 do not directly interact; if they did
there should have been an edge between them. As a result of this restriction, the top right and lower left entries of the final matrix K are empty.
Finally, note the collision at (v2, v2) due to v2 being connected by both e1 and e2.

global vectors and matrices come from, which lets it emit in-place
code that executes very fast.

4.4 Tensor Computation using Index Expressions

So far, we have used linear algebra to compute with scalars, vectors
and matrices. Linear algebra is familiar and intuitive for program-
mers, so we provide it in the Simit language, but it has two important
drawbacks. First, it does not extend to higher-order tensors. Second,
it is riddled with operators that have different meanings depending
on the operands, and does not cleanly let us express computations
that perform multiple operations simultaneously. This makes linear
algebra ill-suited as compute operators in the Simit programming
model. Instead we have designed index expressions, which are a
generalization of tensor index notation [Ricci-Curbastro and Levi-
Civita 1901] in expression form. Index expressions have all of the
properties we seek, and as an added benefit we can build all the
basic linear algebra operations on top of them. Thus, programmers
can program with familiar linear algebra when that is convenient,
and the linear algebra can be lowered to index expressions that are
easier to optimize and generate efficient code from (see Section 7).

An index expression computes a tensor, and consists of a scalar
expression and one or more index variables. Index variables come
in two variants—free variables and reduction variables—and are
used to index tensor operands. In addition, free variables determine
the dimensions of the tensor resulting from the index expression,
and reduction variables combine values. Thus, an index expression
takes the form:

(free-variable*) reduction-variable* scalar-expression

where scalar-expression is a normal scalar expression with
operands such as +, -, * and /, and scalar operands that are typ-
ically indexed tensors.

Free index variables are variables that can take the values of a
tensor dimension: an integer range, a hypergraph set, or a hierar-
chical set as shown in Figure 6. The values an index variable can

take are called its range. The range of the free index variables of an
index expression determine the dimensions of the resulting tensor.
To compute the value of one component of this tensor the index
variables are bound to the component’s coordinate, and the index
expression is evaluated. To compute every component of the result-
ing tensor, the index expression is evaluated for every value of the
set product of the free variables’ ranges. For example, consider an
index expression that computes a vector addition:
(i) a(i) + b(i)

In this expression i is a free index variable whose range is implicitly
determined by the dimensions of the vectors a and b. Note that an
index variable can only be used to index into a tensor dimension
that is the same as its range. Thus, the vector addition requires that
the dimensions of a and b are the same. Further, the result of this
index expression is also a vector whose dimension is the range of i.
Next, consider a matrix transpose:
(i,j) A(j,i)

Here i and j are free index variables whose ranges are determined
by the second and first dimensions of A respectively. As expected,
the dimensions of the resulting matrix are the reverse of A’s, since
the order of the free index variables in the list determines the order
of the result dimensions. Finally, consider an index expression that
adds A and BT :
(i,j) A(i,j) + B(j,i)

Since index variables ranges take on the values of the dimensions
they index, this expression requires that the first and second dimen-
sions of A are the same as the second and first dimensions of B

respectively. This example shows how one index expression can
simultaneously evaluate multiple linear algebra operations.

Reduction variables, like free variables, range over the values of
tensor dimensions. However, unlike free variables, reduction vari-
ables do not contribute to the dimensions of the resulting tensor.
Instead, they describe how a range of computed values must be
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combined to produce a result component. How these values are
combined is determined by the reduction variables’s reduction oper-
ator, which must be an associative and commutative operation. For
example, a vector dot product (

∑
i
a(i) ∗ b(i)) can be expressed

using an addition reduction variable:

+i a(i) * b(i)

As with free index variables, the range of i is implicitly determined
by the dimension of a and b. However, instead of resulting in a
vector with one component per value of i, the values computed for
each i are added together, resulting in a scalar. Free index variables
and reduction index variables can also be combined in an index
expression, such as in the following matrix-matrix multiplication:

(i, k) +j A(i,j) * B(j,k)

The two free index variables i and k determine the dimensions of
the resulting matrix.

In this section we showed how index expressions can be used
to express linear algebra in a simpler and cleaner framework. We
showed a simple example where two linear algebra operations (ad-
dition and transpose) were folded into a single index expression.
As we will see in Section 7, index expressions make it easy for
a compiler to combine basic linear algebra expressions into arbi-
trarily complex expressions that share index variables. After code
generation, this results in fewer loop nests and less memory traffic.

5. INTERFACING WITH SIMIT

To use Simit in an application there are four steps:

(1) Specify the structure of a system as a hypergraph with vertex
sets and edge sets, using the C++ Set API described in Sec-
tion 5.1,

(2) Write a program in the Simit language to compute on the hy-
pergraph, as described in Sections 3 and 4,

(3) Load the program, bind hypergraph sets to it, and compile it to
one or more Function object, as described in Section 5.2,

(4) Call the Function object’s run method for each solve step (e.g.,
time step, static solve, etc.), as described in Section 5.2.

Collision detection, fracturing, and topology changes are not
currently expressed in Simit’s language, but can be invoked in C++
using Simit’s Set API to dynamically add or remove vertices and
edges in the hypergraph between each Simit program execution.
For example external calls to collision detection code between time
steps would then express detected contacts as edge sets between
colliding elements.

5.1 Set API

Simit’s Set API is a set of C++ classes and functions that create
hypergraph sets with tensor fields. The central class is the Set class,
which creates sets with any number of endpoints, that is, both vertex
sets and edge sets. When a Set is constructed, the Set’s endpoints
are passed to the constructor. Next, fields can be added using the
Set’s addField method and elements using its add method.

The following code shows how to use the Simit Set API to con-
struct a pyramid from two tetrahedra that share a face. The vertices
and tetrahedra are given fields that match those in the running exam-
ple from Section 3:

Set verts;
Set tets(verts, verts, verts, verts);

// create fields (see the FEM example in Figure 2)

FieldRef<double,3> x = verts.addField<double,3>("x");
FieldRef<double,3> v = verts.addField<double,3>("v");
FieldRef<double,3> fe = verts.addField<double,3>("fe");

FieldRef<double> u = tets.addField<double>("u");
FieldRef<double> l = tets.addField<double>("l");
FieldRef<double> W = tets.addField<double>("W");
FieldRef<double,3,3> B = tets.addField<double,3,3>("B");

// create a pyramid from two tetrahedra
Array<ElementRef> v = verts.add(5);
ElementRef t0 = tets.add(v(0), v(1), v(2), v(4));
ElementRef t1 = tets.add(v(1), v(2), v(3), v(4));

// initialize fields
x(v0) = {0.0, 1.0, 0.0};
// ...

First, we create the verts vertex set and tets edge set, whose
tetrahedron edges each connects four verts vertices. We then add
to the verts and tets sets the fields from the running example
from Section 3. The addField method is a variadic template method
whose template parameters describe the tensors stored at each set
element. The first template parameter is the tensor field’s component
type (double, int, or boolean), followed by one integer literal per
tensor dimension. The integers describe the size of each tensor
dimension; since the x field above is a position vector there is only
one integer. Thus, to add a 3 × 4 matrix field we would write:
addField<double,3,4>. Finally, we create five vertices and the two
tetrahedra that connects them together, and initialize the fields.

5.2 Program API

Once a hypergraph has been built (Section 5.1) and a Simit program
written (Sections 3 and 4), the Program API can be used to compile
and run the program on the hypergraph. To do this, the programmer
creates a Program object, loads source code into it, and compiles a
procedure in the source code to a Function object. Next, the pro-
grammer binds hypergraph sets to externs in the Function objects’s
Simit program, and the Function::run method is called to execute
the program on the bound sets.

The following code shows how to load the FEM code in Figure 2,
and run it on tetrahedra we created in Section 5.1:
Program program;
program.loadFile("fem_statics.sim");

Function func = program.compile("main");
func.bind("verts", &verts);
func.bind("tets", &tets);

func.runSafe();

In this example we use the Function::runSafe method, which lazily
initializes the function. For more performance the initialization and
running of a function can be split into a call to Funciton::init

followed by repeated calls to Function::run.

6. RUNTIME DATA LAYOUT AND EXECUTION

In Sections 3 and 4 we described the language and abstract data
structures (hypergraphs and tensors) that a Simit programmer works
with. Since the abstract data structures are only manipulated through
global operations (tensor assemblies and index expressions) the
Simit system is freed from implementing them literally, an impor-
tant property called physical data separation [Codd 1970]. Simit
exploits this separation to compile global operations to efficient
local operations on compact physical data structures that look very
different from the graphs and tensors the programmer works with.
In the rest of this section we go into detail on how the current Simit
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Fig. 8: Table that shows all the per-element data stored for each tets tetra-
hedron and verts vertex in the two tetrahedra we constructed in Section 5.1.
The global vector f and global matrix K from the code in Figure 2 are stored
on the verts set, since verts is their first dimension. The table is stored by
columns (struct of arrays) and matrices are stored row major. The matrix K

is sparse so it is stored as a segmented array (top right), consisting of two
index arrays and one value array. Since K is assembled from the tets set
its sparsity is known and the index can be precomputed, and it can also be
shared with other matrices assembled from the same edge set.

implementation lays out data in memory and what kind of code it
emits. This is intended to give the reader a sense of how the physical
data separation lets Simit pin global vectors and matrices to graph
vertices and edges for in-place computation. It also demonstrates
how the tensor assembly construct lets Simit use the graph as the
index of matrices, and how the blocked matrix types lets Simit emit
dense inner loops when computing with sparse matrices.

As described in Section 5, Simit graphs consist of vertex sets and
edge sets, which are the same except that edges have endpoints. A
Simit set stores its size (one integer) and field data. In addition, edge
sets store a pointer to each of its n endpoint sets and for each edge,
n integer indices to the edge’s endpoints within those endpoint sets.
Figure 8 (top) shows all the data stored on each Tet in the tets

set we built in Section 5.1 for the FEM example in Figure 2. Each
Tet stores the fields u, l, W, and B, as well as an endpoints array
of integer indexes into the verts set. The set elements and their
fields form a table that can be stored by rows (arrays of structs) or
by columns (structs of arrays). The current Simit implementation
stores this table by columns, so each field is stored separately as
a contiguous array with one scalar, vector, dense matrix or dense
tensor per element. Furthermore, dense matrices and tensors are
stored in row-major order within the field arrays.

Global vectors and matrices are also stored as fields of sets. Specif-
ically, a global vector is stored as a field of its dimension set, while
a global matrix is stored as a field of one of its dimension sets.
That is, either matrix rows are stored as a field of the first matrix
dimension or matrix columns are stored as a field of the second
matrix dimension. This shows the equivalence in Simit of a set
field and global vector whose dimension is a set; a key organiz-
ing property. Figure 8 (bottom) shows all the data stored on each
Vertex in the verts set, including the global vector f and global
matrix K from the main procedure in Figure 2. Since K is sparse, its
rows can have different sizes and each row is therefore stored as

an array of column indices (K index) and a corresponding array
of data (K). The column indices of K are the verts vertices that
each row vertex can reach through non-empty matrix components.
Since the K matrix was constructed from a tensor assembly over
the tets edge sets, the neighbors through the matrix is the same as
the neighbors through tets and can be precomputed. Since global
matrix indices and values are set fields with a different number of
entries per set element, they are stored in a segmented array, as
shown for K in Figure 8 (upper right). Thus, Simit matrix storage is
equivalent to Blelloch’s segmented vectors [Blelloch 1990] and the
BCSR (Blocked Compressed Sparse Row) matrix storage format.

A Simit vector or matrix map statement is compiled into a loop
that computes the tensor values and stores them in the global vec-
tor or matrix data structures. The loop iterates over the map’s tar-
get set and each loop iteration computes the local contributions
of one target set element using the map function, which is in-
lined for efficiency. Equivalent sequential C code to the machine
code generated for the map statement on line 51 of Figure 2 is:

for (int t=0; t<tets.len; t++) {
for (int i=0; i<4; i++) {
double[3] tmp = // inlined compute_tet_force(t,v,i)
for (int j=0; j<3; j++) {
f[springs.endpoints[s*4 + i]*3 + j] = tmp[j];

}
}

}

The outer loop comes from the map statement itself and iterates
over the tetrahedra. Its loop body is the inlined tet_force func-
tion, which iterates over the four endpoints of the tetrahedra and
for each endpoint computes a tet force that is stored in the f vector.
A global matrix is assembled similarly with the exception that the
location of a matrix component must be computed from the ma-
trix’s index array as follows (taken from the Simit runtime library):

int loc(int v0, int v1, int *elems, int *elem_nbrs) {
int l = elems[v0];
while(elem_nbrs[l] != v1) l++;
return l;

}

The loc function turns a two-dimensional coordinate into a one-
dimensional array location, given a matrix index consisting of the
arrays elems and elem_nbrs. It does this by looking up the location
in elem_nbrs where the row (or column) v0 starts. That is, it finds
the correct segment of v0 in the segmented array elem_nbrs. It then
scans down this segment to find the location of the element neighbor
v1, which is then returned.

Figure 9 shows an end-to-end example where a matrix is assem-
bled from a 2-uniform graph and multiplied by a vector field of the
same graph. The top part shows the abstract data structure views that
the programmer works with, which were described in Section 4. The
arrows shows how data from the blue edge is put into the matrix on
matrix assembly, how data from the p4 vertex becomes the p4 block
of the b vector, and how the block in the (p2,p4 matrix component
is multiplied with the block in the p4 b vector component to form the
p2 c vector component when the A is multiplied with b. The bottom
part shows the physical data structures; the vertex set has a field
points.b and the edge set has a field edges.m. The stippled arrows
show how the loc function is used to find the correct location in the
array of A values when storing matrix contributions of the blue edge.
The full arrows show how the edges.m field is used to fill in values
in the (p2,p4 matrix component (the sixth block of the A array), and
how this block is multiplied directly with the p4 points.b vector
component to form the p2 points.c vector component when the A

is multiplied with b.
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Fig. 9: Top: an assembly map assembles the abstract matrix A. The field
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A, into c. Finally, c is written to field points.c. Bottom: the neighbor index
structure rowstart and neighbors arrays are used to store A’s values to
a segmented array. The array is then multiplied in-place by points.b to
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Index expressions are compiled to loop nests. For the matrix-
vector multiplication in Figure 9 the following code is emitted:

for (int i=0; i<points.len; i++) {
for (int ij=elems[i]; ij<elems[i+1]; ij++) {
int j = elems_nbrs[ij];
for (int ii=0; ii<3; ii++) {
int tmp = 0;
for (int jj=0; jj<3; jj++) {
tmp += A[ij*9 + ii*3 + jj] * points.b[j*3 + j1];

}
points.c[i*3 + ii] += tmp;

}
}

}

This code is equivalent to the standard block compressed sparse row
matrix-vector multiplication. Two sparse outer loop iterate over A’s
index structure and the two inner loops iterate over the blocks. In

z = x + y;

for!i
!!t!=!0;
!!for!k
!!!!t!+=!A[i,k]!*!x[k];
!!end
!!z[i]!=!x[i]!+!t;
end

zi = xi + (Aikxk)

for!j
!!y[j]!=!0;
!!for!k
!!!!y[j]!+=!A[j,k]*b[k];
!!end
end
for!i
!!z[i]!=!x[i]!+!y[i];
end

Lower to 
Index

Expression

Lower to 
Loop Nests

Lower to 
Loop Nests

Fuse

Index Expressions Code

zi = xi + yi

yj = Ajkbky = Ab

Linear Algebra

Fig. 10: Code generation from index expressions. First, linear algebra opera-
tions are parsed into index expressions. These can be directly converted to
loops (top), or they can be fused (bottom), resulting in fewer loop nests and
fewer temporary variables.

the innermost block a (3 × 3) block of A is retrieved using the ij

variable, which corresponds to a matrix location.

7. COMPILER IMPLEMENTATION

The Simit compiler is implemented as a C++ library below we list
the stages that Simit code goes through before it is emitted as binary
code using LLVM. During parsing, an internal compiler representa-
tion containing maps, index expressions and control flow constructs
is built. Index expressions are the Simit compiler’s way to represent
computation on tensors and is similar to tensor index notation [Ricci-
Curbastro and Levi-Civita 1901]. Linear algebra expressions are
turned into index expressions during parsing. Figure 10 shows a
linear algebra expression that adds the vectors x and y = Ab. This
linear algebra is first lowered to two index expressions, the first of
which is yj = Ajkbk, where j is a free variable and k is a reduction
variable that sums the product of Ajk and bk for each k. This exam-
ple uses the Einstein convention [Einstein 1916], where variables
repeated within a term are implicitly sum reductions.

A Simit program goes through four major transformation phases
before being turned into machine code using LLVM. Parallel code
generation requires one additional phase. The idea behind these
phases is to lower high-level constructs like assembly maps, index
expressions and multidimensional sparse tensor accesses, to simple
loops and 1D array accesses that are easy to emit as low level code.

Index Expression Fusing. Expressions that consist of multiple
index expressions are fused when possible, to combine operations
that would otherwise require tensor intermediates. Figure 10 shows
an example of this phase in action; the lower portion of the figure
shows how fused index expressions lead to fused loops. Without the
use of index expressions, this kind of optimization requires using
heuristics to determine when and how linear algebra operations can
be combined. Simit can easily eliminate tensor intermediates and
perform optimizations that are difficult to do in the traditional linear
algebra library approach, even with the use of expression templates.

Map Lowering. Next, the compiler lowers map statements by
inlining the mapped functions into loops over the target set of the
map. In this process, the Simit compiler uses the reduction operator
specified by the map to combine sub-blocks from different elements.
Thus, the map is turned into inlined statements that build a sparse
system matrix (shown in Figure 9) from local operations.
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Index Expression Lowering. In this phase, all index expres-
sions are transformed into loops. For every index expression, the
compiler replaces each index variable with a corresponding dense or
sparse loop. The index expression is then inserted at the appropriate
places in the loop nest, with index variables replaced by loop vari-
ables. This process is demonstrated in the middle and right panes
of Figure 10.

Lowering Tensor Accesses. In the next phase, tensor accesses
are lowered. The compiler takes statements that refer to multidimen-
sional matrix locations and turns them into concrete array loads and
stores. A major optimization in this phase is to use context infor-
mation about the surrounding loops to make sparse matrix indexing
more efficient. For example, if the surrounding loop is over the
same sets as the sparse system matrix, we can use existing generated
variables to index into the sparse matrix instead of needing to iterate
through the column index of the neighbor data structure for each
read or write.

Code Generation. After the transformation phases, a Simit pro-
gram consists of imperative code, with explicit loops, allocations
and function calls that are easy to turn into low-level code. The code
generation phase turns each Simit construct into the corresponding
LLVM operations, using information about sets and indices to assist
in generating efficient code. Currently, the backend calls LLVM
optimization passes to perform inter-procedural optimization on the
Simit program, as well as other standard compiler optimizations.
Only scalar code is generated; we have not yet implemented vector-
ization or parallelism, and LLVM’s auto-vectorization passes cannot
automatically transform our scalar code into vector code. Future
work will implement these optimizations during code generation,
prior to passing the generated code to LLVM’s optimization passes.
Our index expression representation is a natural form in which to
perform these transformations.

GPU Code Generation. Code generation for GPU targets is
performed as an alternative code generation step specified by the
user. Making use of Nvidia’s NVVM framework allows us to code
generate from a very similar LLVM structure as the CPU-targeted
code generation. Because CUDA kernels are inherently parallel, a
GPU-specific lowering pass is performed to translate loops over
global sets into parallel kernel structures. Broadly, to convert global
for-loops into parallel structures, reduction operations are turned into
atomic operations and the loop variable is replaced with the CUDA
thread ID. Following this, we perform a GPU-specific analysis to
fuse these parallel loops wherever possible to reduce kernel launch
overhead and increase parallelism. Using a very similar pipeline for
CPU and GPU code generation helps us ensure that behavior on the
GPU and CPU are identical for the code structures we generate.

8. RESULTS

To evaluate Simit, we implemented three realistic simulation applica-
tions, Implicit Springs, Neo-Hookean FEM and Elastic Shells (Sec-
tion 8.1), using Simit, Matlab and Eigen. In addition, we compared
to SOFA and Vega, two hand-optimized state-of-the-art real-time
physics engines (Section 8.2). Note that Vega did not support Im-
plicit Springs, and neither Vega nor SOFA supported Elastic Shells.
We then conducted three experiments that show that:

With the traditional approaches we evaluated you get better per-
formance by writing more code. With Simit you can get both
performance and productivity (Section 8.3)

You can compile a Simit program to GPUs with no change to the
source code to get about 10×more performance. (Section 8.4)

Fig. 11: Still from an Implicit Springs simulation of the Stanford bunny.
The bunny consists of 36,976 vertices and 220,147 springs, which can be
simulated by Simit on a GPU at 12 frames per second. (Only surface vertices
and springs are shown.) The Simit code is only 93 lines, which includes a
conjugate gradient solver implementation.

Simit scales well when the data set size increases (Section 8.5)

All CPU timings are taken on an Intel Xeon E5-2695 v2 at
2.40GHz with 128 GB of memory running Linux. All CPU mea-
surements are single-threaded—none of the libraries we compare to
support multi-threaded CPU execution, nor does the current Simit
compiler, though parallelization will be added in the future. Simit
and cuSPARSE GPU timings are taken on an Nvidia Titan GK110.

8.1 Applications

We implemented three simulation applications with different edge
topologies and computational structure, and paired each with a
suitable data set (bunny, dragon and cloth).

For Implicit Springs and Neo-Hookean FEM we chose to im-
plement the CG solver in Simit instead of using an external solver
library. The reason for this is that Simit offers automatic portability
to GPUs, natively compiles SPMV operations to be blocked with
a dense inner loop (see Section 9), and because this avoids data
translation going from Simit to the external solver library. To eval-
uate the performance benefit of performing CG in Simit, we ran
an experiment where Simit instead used Eigen to perform the CG
solve. This resulted in a 30% slowdown, due to data translation and
because Eigen does not support the Blocked CSR format.

8.1.1 Implicit Springs. Our first example is a volumetric elastic-
ity simulation using implicit springs. We tetrahedralized the Stanford
bunny to produce 37K vertices and 220K springs, and passed this to
Simit as a vertex set connected by an edge set. Our implementation
uses two assembly maps—one on the vertex set to compute the
mass and damping matrices, and one on the edge set to compute the
stiffness matrix. To solve for new vertex velocities, we implement
a linearly-implicit time stepper and use the method of conjugate
gradients (CG) as our linear solver. One benefit of CG, as an in-
direct solver, is that it can implemented without materializing the
system matrix A: only a function to compute Ax and AT x given an
arbitrary vector x is needed. For this reason, highly-optimized CG
libraries require the user to implement a pair of callbacks rather than
passing in the matrix. Simit offers the same benefit without the has-
sle: the user construct and passes the A matrix to a straightforward
implementation of CG that can implemented in Simit. By analyzing
data flow Simit can automatically avoid materializing it if possible.
Per common practice when implementing a performance-sensitive
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Fig. 12: Still from a Tetrahedral FEM (Finite Element Method) simulation of
a dragon with 46,779 vertices and 160,743 elements, using the Neo-Hookean
material model. Simit performs the simulation at 11 frames per second with
only 154 non-comment lines of code shown in Appendix A. This includes
15 lines for global definitions, 14 lines for utility functions, 69 lines for local
operations, 23 lines to implement CG and 13 lines for the global linearly-
implicit timestepper procedure to implement the simulation, as well as 20
lines to precompute tet shape functions.

Fig. 13: Still from an Elastic Shells simulation of a cloth with 499,864
vertices, 997,012 triangle faces and 1,495,518 hinges. Elastic shells require
two hyperedge sets: one for the triangle faces and one for the hinges. The
Simit implementation ran at 15 frames per second on a GPU.

implicit solver, we limit (in all three implementations) the maximum
number of conjugate gradients iterations (we choose 50.)

8.1.2 Neo-Hookean FEM. Our second example is one of the
most common methods for animating deformable objects, tetrahe-
dral finite elements with linear shape functions, in Simit. We use
the non-linear Neo-Hookean material model [Mooney 1940], as it
is one of the standard models for animation and engineering, and
we set the stiffness and density of the model to realistic physical
values. The Simit implementation uses three maps, one to compute
forces on each element, one to build the stiffness matrix and one
to assemble the mass matrix, and then solves for velocities. We
then use the conjugate gradient method to solve for the equations of
motion, again relying on an implementation in pure Simit.

8.1.3 Elastic Shells. As a final example, we implemented an
elastic shell code and used it to simulate the classic example of a
rectangular sheet of cloth draping over a rigid, immobile sphere. The
input geometry is a triangle mesh with 500K vertices, and is encoded
as a hypergraph using one vertex set (the mesh vertices) and two
hyperedge sets: one for the triangle faces, which are the stencil for
a constant-strain Saint Venant-Kirchhoff stretching force; and one

for pairs of triangles meeting at a hinge, the stencil for the Discrete
Shells bending force of Grinspun et al [Grinspun et al. 2003]. The
bending force is a good example of the benefit of specifying force
computation as a function mapped over an edge set: finding the two
neighboring triangles and their vertices given their common edge, in
the correct orientation, typically involves an intricate and bug-prone
series of mesh traversals. Simit provides the bending kernel with
the correct local stencil automatically. The Simit implementation
uses a total of five map operations over the three sets to calculate
forces and the mass matrix before updating velocities and positions
for each vertex using explicit Velocity Verlet integration.

8.2 Languages and Libraries

We implemented each application in Matlab and in C++ using the
Eigen high-performance linear algebra library. In addition, we used
the SOFA simulation framework to implement Implicit Springs
and Neo-Hookean FEM, and the Vega FEM simulator library to
implement Neo-Hookean FEM.

8.2.1 Matlab. Matlab is a high-level language that was devel-
oped to make it easy to program with vectors and matrices [MAT-
LAB 2014]. Matlab can be seen as a scripting language on top
of high-performance linear algebra operations implemented in C
and Fortran. Even though Matlab’s linear algebra operations are
individually very fast, they don’t typically compose into fast sim-
ulations. The main reasons for this is Matlab’s high interpretation
overhead, and the fact that individually optimized linear algebra
foregoes opportunities for fusing operations (see Sections 7 and 9).

8.2.2 Eigen. Eigen is an optimized and vectorized linear alge-
bra library written in C++ [Guennebaud et al. 2010]. To get high
performance it is uses template meta-programming to produce spe-
cialized and vectorized code for common operations, such as 3× 3
matrix-vector multiply. Furthermore, Eigen defers execution through
its object system, so that it can fuse certain linear algebra operations
such as element-wise addition of dense vectors and matrices.

8.2.3 SOFA. SOFA is an open source framework, originally de-
signed for interactive, biomechanical simulation of soft tissue [Faure
et al. 2007]. SOFA’s design is optimized for use with iterative solvers.
It uses a scene graph to model the interacting objects in a simulation
and, during each solver iteration, visits each one in turn, aggregating
information such as applied forces. Using this traversal SOFA avoids
forming global sparse matrices which is the key to its performance.

8.2.4 Vega. Vega is a graphics-centric, high-performance finite
element simulation package [Sin et al. 2013]. Vega eschews special
scene management structures in favor of a general architecture that
can be used with iterative or direct solvers. It achieves high perfor-
mance using optimized data-structures and clever rearrangement of
material model computations to reduce operation count.

8.3 Simit Productivity and Performance

The general trend in the traditional systems we evaluate is that you
get more performance by writing more code. Table I shows this
for the three applications from Section 8.1. For each application
and each language/library we report the performance (seconds per
frame), source lines and memory consumption. For two applications
we vectorized the Matlab code to remove all the loops (Matlab Vec).
This made the Matlab code about one order of magnitude faster,
but took 9 and 16 hours of additional development time for domain
experts who are proficient with Matlab, and made the code very
hard to read.
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Table I. : Comparison of three applications implemented with Matlab, Vectorized Matlab, Eigen, hand-optimized C++ (SOFA and Vega) and
Simit, showing the productivity and performance of Simit. For example, the Simit Neo-Hookean FEM is just 180 lines of code (includes CG
solver), but simulates 160,743 tetrahedral elements in just 1.15 seconds using a single non-vectorized CPU thread. For each implementation
we report the non-comment source lines of code, seconds per frame and peak memory in megabytes (10242 bytes), as well as the size of each
number relative to Simit. The trend is that you can get better performance by writing more code, however, with Simit you get both performance
and productivity. For example, the Implicit Springs Simit implementation is shorter than any other implementation at 93 lines of code, yet runs
faster at 0.6 seconds per frame. Matlab ran out of memory running the cloth simulation. The applications were run on the bunny, dragon and
cloth data sets respectively with double precision floating point on an Intel Xeon E5-2695 v2 running at 2.40GHz with 128 GB of memory.

ms per frame Source lines Memory (MB)

Implicit Springs

Matlab 13,280 23.7× 142 1.5× 1,059 6.1×
Matlab Vec 2,115 3.8× 230 2.5× 1,297 7.5×
Eigen 883 1.6× 314 3.4× 339 2.0×
SOFA 588 1.1× 1,404 15.1× 94 0.5×
Simit 559 1.0× 93 1.0× 173 1.0×

Neo-Hookean FEM

Matlab 207,538 181.3× 234 1.3× 1,564 12.8×
Matlab Vec 16,584 14.5× 293 1.6× 53,949 442.2×
Eigen 1,891 1.7× 363 2.0× 626 5.1×
SOFA 1,512 1.3× 1,541 8.6× 324 1.8×
Vega 1,182 1.0× 1,080 6.0× 614 5.0×
Simit 1,145 1.0× 180 1.0× 173 1.0×

Elastic Shells
Matlab 203 1.1× OOM
Simit 600 1.0× 190 1.0× 785 1.0×
Eigen 489 0.8× 453 2.4× 354 0.5×

For example, the Implicit Springs Eigen implementation requires
60% more code than the Matlab implementation, but runs almost
15 times faster. In general, higher performance meant more code
had to be written in a lower-level language. Simit, however, breaks
this tradeoff and produces high performance with few lines of code.
In every case the Simit implementation is within 20% of the per-
formance of the fastest alternative we found, while being fewer
lines of code than Matlab. For example, Simit obtains equivalent
performance to Vega, an optimized FEM library (Section 8.2.4), but
requires 6×fewer lines of code, is more general, and compiles to
GPUs for 10×more performance (Section 8.4). Furthermore, we
plan to vectorize and multi-thread Simit in the future, which will
further increase its performance.

For the Elastic Shells, Simit is 18% slower than Eigen. This is due
to the application’s use of an explicit method to simulate the cloth,
which is amenable to Eigen’s vectorized dense vector routines. Simit,
on the other hand, does not yet implement vectorization. However,
by running on the GPU, Simit can drastically increase performance
on this code due to its large number of small dense operations (see
Section 8.4) while still using code that is less than half the size of
the Eigen implementation.

8.3.1 Memory Usage. While Matlab enables productive exper-
imentation, its memory usage relative to Eigen and Simit is quite
large; in some cases, Matlab uses an order of magnitude more
memory. Interestingly, vectorizing the Matlab code can drastically
increase memory usage, as in the case of the Neo-Hookean FEM
example, where memory usage increased by 35×. In two applica-
tions, Simit is much more memory-efficient than Eigen due to its
single representation for both the graph and matrices. Table I shows
that SOFA’s strategy of not building system matrices does indeed
reduce memory usage. In Discrete Elastic Shells, Simit consumes
about double the memory that Eigen uses.

8.3.2 Compilation and Initialization. Simit applications gen-
erate and compile code during two operations: Simit code is just-
in-time compiled from source prior to the first time it is executed,
and graph-specific code is generated to bind datasets to the appro-

Table II. : Compilation and initialization times for Simit applications, in mil-
liseconds. Simit code is just-in-time compiled prior to starting the timestep-
per for the first time. Initialization time measures how long it takes to
construct and compile code passing in the graph prior to a timestep. The
applications were run on the bunny, dragon and cloth data sets respectively
with double precision floating point on an Intel Xeon E5-2695 v2 running
at 2.40GHz with 128 GB of memory.

Compilation (ms) Initialization (ms)
Implicit Springs 37 263
Neo-Hookean FEM 52 48
Elastic Shells 38 31

Table III. : Comparison of Simit applications running on a CPU and a GPU,
and a cuSPARSE hybrid CPU-GPU implementation. The cuSPARSE FEM
implementation was hand written. The applications were run on the bunny,
dragon and cloth data sets respectively with single precision floating point.
GPU measurements were taken on an Nvidia Titan GK110. With a GPU
Simit achieves interactive rates on these data sets: 13 fps, 9 fps and 59 fps.

ms per frame Source lines

Implicit Springs
Simit CPU 431 1.0× 93 1.0×
Simit GPU 90 0.2× 93 1.0×

Neo-Hookean FEM
Simit CPU 944 1.0× 180 1.0×
cuSPARSE 801 0.8× 464 2.6×
Simit GPU 93 0.1× 180 1.0×

Elastic Shells
Simit CPU 427 1.0× 190 1.0×
Simit GPU 17 0.04× 190 1.0×

priate pointers prior to calling the timestepper. Table II shows the
compilation and initialization times for the three applications. In
all three applications, Simit program compilation and initialization
code compilation takes a fraction of a second.

8.4 Simit GPU Execution

Simit programs compile to GPUs with no change to the source code.
We compiled all three applications to run on an Nvidia GPU, and the
resulting code executed 5-25× faster than the CPU implementation.
Shown in Table III is a comparison of execution times and lines of
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Fig. 14: Scaling performance of Eigen and Simit implementations of Neo-
Hookean Tetrahedral FEM, as the number of elements in the dragon mesh
are increased from approximately 100,000 elements to 1 million elements.

code for the single-precision implementations of each application.
We saw the largest gains in the most computationally intense appli-
cation, the Elastic Shells application, because GPUs are designed
to excel at floating point operations over small dense vectors. For
Elastic Shells, the runtime was improved by 25× over GPU Simit.

GPU Simit also performs on par with an efficient hand-written
CUDA implementation. To compare against hand-written CUDA
code, the Eigen code for the Neo-Hookean FEM example was rewrit-
ten into a hybrid CPU-GPU implementation. The matrix assembly
was performed using the Eigen library, using code identical to the
full Eigen implementation. Using the CUDA cuSPARSE library to
perform fast sparse matrix operations, the resulting matrix was then
passed to the GPU to be quickly solved via the conjugate gradient
method. This hybrid code approach is common for simulation de-
velopers to gain performance from a GPU by taking advantage of
available libraries. At the cost of roughly 2.5× the lines of code, the
CG solve step, previously half the computation time of the Eigen
solution, was improved to 48ms. The GPU Simit code achieves the
same speed for the CG solve step, with fewer lines of code. Due to
Amdahl’s Law, the hybrid implementation is limited in the speedup
it can achieve, since the assembly step (which is roughly half of the
runtime) is not sped up by cuSPARSE. As a result, the Simit GPU
implementation still significantly outperforms this hybrid version.

8.5 Simit Scaling to Large Datasets

Figure 14 shows the performance of Eigen and Simit as the number
of elements are increased in the Neo-Hookean Tetrahedral FEM
application. In both cases, the implementations scale linearly in the
number of elements, as we expect, given that both of the major
computational steps (assembly and CG with a capped maximum
number of steps) will scale linearly. Across the various sizes, Eigen
averages 14us per element per timestep, while Simit averages 8.7us
per element per timestep.

9. REASONS FOR PERFORMANCE

Simit’s performance comes from its design and is made possible
by the choice of abstract data structures (hypergraphs and blocked
tensors), and the choice of collection-oriented operations on these
(stencils, tensor assemblies and index expressions). Little effort has
so far gone into low-lever performance engineering. For example,
Simit does not currently emit vector instructions, nor does it opti-
mize memory layout order or run in parallel on multi-core machines,

but we plan to add this in the future. Specifically, there are three
keys to the performance of Simit presented in this article:

In-place Computation. The assembly map construct unifies the
hypergraph with computations expressed as index expressions on
system tensors. This lets the compiler reason about where tensors
come from, and thus how their non-empty values are distributed
relative to the graph. Simit uses this information to pin every value
in a system tensor to a graph node or edge, which lets it schedule
computation in-place on the graph. In-place computation allows
efficient matrix assembly, since the graph itself becomes the sparse
index structure of matrices. Matrix values can be placed directly in
their storage location without the the need to construct and compress
a dedicated sparse index structure. Traditional sparse matrix libraries
require separate insertion and compression steps; in Simit, these are
replaced by the map construct, and compression disappears. In some
cases it is even possible to completely remove matrix assembly by
fusing it with the first computation that uses it.

Furthermore, knowledge about matrix assembly even lets the com-
piler fuse sequences of sparse matrix operations, as it knows when
sparse matrices have the same or overlapping values distributions.
For example, adding two sparse matrices that come from the same
graph becomes a local operation where each graph node adds the
matrix values it owns for both matrices without any communication.
These kinds of static optimizations on sparse matrices have not been
possible before, as explained by Vuduc et al.: “while sparse com-
pilers could be used to provide the underlying implementations of
sparse primitives, they do not explicitly make use of matrix struc-
tural information available, in general, only at run-time.” [Vuduc
et al. 2005]. The knowledge of matrix assembly provided by Simit’s
assembly map breaks the assumptions underlying this assertion and
opens up for powerful static sparse optimizations.

Finally and importantly, in-place computation makes efficient
parallel computation on massively parallel GPUs straightforward
by assigning graph nodes and edges to parallel threads and com-
puting using the owner-computes rule. This works well because
given an assignment, Simit also knows how to parallelize system
vector and matrix operations. Furthermore, these are parallelized
in a way that matches the parallelization of previous stages thereby
reducing synchronization and communication. Without the in-place
representation, parallel code generation would not be as effective.

Index Expression Fusion. Tensor index expressions are a pow-
erful internal representation of computation that simplify make
program transformation. Index expressions are at once simpler and
more general than linear algebra. Their power and uniformity makes
it easy for the compiler to perform transformations like tensor oper-
ation fusion to remove tensor temporaries and the resulting memory
bandwidth costs. Moreover, it can do these optimizations without
the need to build in the many rules of linear algebra.

Dense Block Computation. Natively blocked tensors and hier-
archical indexing not only simplify the programmer’s code, they
also make it trivial for the compiler to use blocked representations.
Blocked matrix representations result in efficient dense or unrolled
inner loops within sparse computations such as SpMV. This greatly
reduces the need to look up values through an index.

10. CONCLUSIONS

A key insight in Simit is that the best abstraction for describing a sys-
tem’s structure is different from the best abstraction for describing
its behavior. Sparse systems are naturally graph-structured, while
behavior is often best described using linear algebra over the whole
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system. Simit is a new programming model that takes advantage of
this duality, using assembly maps to bridge between the abstractions.
Using information about system sparsity, combined with a new rep-
resentation of operations as index expressions, Simit compiles to
fast code while retaining the expressibility of high-level languages
like MATLAB. With the ability to run programs on CPUs and GPUs,
Simit attains an unprecedented level of performance portability.

We believe Simit has the potential to obtain higher performance
while retaining its expressibility. So far, our implementation has only
scratched the surface of what kinds of optimizations are possible
with assemblies and index expressions. Future work will extend our
optimization strategies for manipulating index expressions resulting
from linear algebra operations. Furthermore, we have not yet im-
plemented parallelization or vectorization of CPU code, which can
provide further factors of speedup. Finally, distributed and hybrid
code generation is possible given the Simit abstractions and will
further improve performance.

Simit lets programmers write code at a high level and get the
performance of optimized low-level code. Simit enables MATLAB-
like productivity with the performance of manually optimized C++
code.

APPENDIX

A. NEO-HOOKEAN FINITE ELEMENT METHOD

We show a complete implementation of a finite element method
with linear tetrahedral elements. Our implementation includes the
constitutive model, the assembly stage of forces and stiffness ma-
trices, and a linearly-implicit dynamics integrator. In the example,
we implemented the Neo-Hookean material model. Different ma-
terial models can be plugged in by changing the stress and stress
differential functions. Next, our assembly code only defines how
to locally compute stiffness and forces for a single element. The
global assembly is handled by Simit. Lastly, we show an implemen-
tation of a linearly-implicit time integrator with a conjugate gradient
linear solver. The time stepper is written purely in terms of linear
algebra. It is agnostic of the underlying finite element structures and
therefore can be applied to different element types.
const grav = [0.0, -10.0, 0.0];

element Tet
u : float;
l : float;
W : float;
B : tensor[3,3](float);

end

element Vert
x : tensor[3](float);
v : tensor[3](float);
c : int;
m : float;

end

extern verts : set{Vert};
extern tets : set{Tet}(verts, verts, verts, verts);

% precompute volume and shape function gradient for tets
func precomputeTetMat(inout t : Tet, v : (Vert*4))

-> (m:tensor[verts](float))
var M:tensor[3,3](float);
for ii in 0:3
for jj in 0:3
M(jj,ii) = v(ii).x(jj) - v(3).x(jj);

end
end
t.B = inv(M);

vol = -(1.0/6.0) * det(M);
t.W = vol;

rho = 1000.0;
for ii in 0:4
m(v(ii))=0.25*rho*vol;

end
end

proc initializeTet
m = map precomputeTetMat to tets;
verts.m = m;

end

% first Piola-Kirchoff stress
func PK1(u : float, l : float, F : tensor[3,3](float))

-> (P : tensor[3,3](float))
J = log(det(F));
Finv = inv(F)’;
P = u*(F-Finv) + l*J*Finv;

end

% gradient of first Piola-Kirchoff stress
func dPdF(u : float, l : float, F : tensor[3,3](float),

dF : tensor[3,3](float))
-> (dP : tensor[3,3](float))

J = log(det(F));
Fi = inv(F);
FidF = Fi*dF;
dP = u*dF + (u-l*J) * Fi’ * FidF’ + l*trace(FidF)*Fi’;

end

% assemble lumped mass matrix and gravitional force
func compute_mass(v : Vert)

-> (M : tensor[verts, verts](tensor[3,3](float)),
fg : tensor[verts](tensor[3](float)))

M(v,v) = v.m * I;
if(v.c <= 0)
fg(v) = v.m * grav;

end
end

% assemble internal forces, fixed vertices contribute
% no force
func compute_force(e : Tet, v : (Vert*4))

-> (f : tensor[verts](tensor[3](float)))
var Ds : tensor[3,3](float);
for ii in 0:3
for jj in 0:3
Ds(jj,ii) = v(ii).x(jj) - v(3).x(jj);

end
end
F = Ds*e.B;

P = PK1(e.u, e.l, F);
H = -e.W * P * e.B’;

for ii in 0:3
fi = H(:,ii);

if (v(ii).c <= 0)
f(v(ii)) = fi ;

end

if (v(3).c <= 0)
f(v(3)) = -fi;

end
end

end

% assemble stiffness matrix, fixed vertices contribute
% nothing to stiffness matrix
func compute_stiffness(e : Tet, v : (Vert*4))

-> (K : tensor[verts,verts](tensor[3,3](float)))
var Ds : tensor[3,3](float);
var dFRow : tensor[4,3](float);
m = 0.01;
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for ii in 0:3
for jj in 0:3
Ds(jj,ii) = v(ii).x(jj)-v(3).x(jj);

end
end

F = Ds*e.B;
for ii in 0:3
for ll in 0:3
dFRow(ii,ll) = e.B(ii,ll);

end
dFRow(3, ii) = -(e.B(0, ii)+e.B(1, ii)+e.B(2, ii));

end

for row in 0:4
var Kb : tensor[4,3,3](float) = 0.0;
for kk in 0:3
var dF : tensor[3,3](float) = 0.0;
for ll in 0:3
dF(kk, ll) = dFRow(row, ll);

end
dP = dPdF(e.u, e.l, F, dF);
dH = -e.W * dP * e.B’;

for ii in 0:3
for ll in 0:3
Kb(ii,ll, kk) = dH(ll, ii);

end
Kb(3, ii, kk) = -(dH(ii, 0)+dH(ii, 1)+dH(ii, 2));

end
end

for jj in 0:4
if(v(jj).c <= 0) and (v(row).c <= 0)
K(v(jj), v(row)) = Kb(:,:,jj);

end
end

end
end

% conjugate gradient with no preconditioning.
func CG(A : tensor[verts,verts](tensor[3,3](float)),

b : tensor[verts](tensor[3](float)),
x0 : tensor[verts](tensor[3](float)),
tol : float, maxIter : int)

-> (x : tensor[verts](tensor[3](float)))
r = b - (A*x0);
p = r;
iter = 0;
x = x0;
normr2 = dot(r, r);
while (normr2 > tol) and (iter < maxiters)
Ap = A * p;
denom = dot(p, Ap);
alpha = normr2 / denom;
x = x + alpha * p;
normr2old = normr2;
r = r - alpha * Ap;
normr2 = dot(r, r);
beta = normr2 / normr2old;
p = r + beta * p;
iter = iter + 1;

end
end

% linearly-implicit time stepper with CG solver
proc main
h = 0.01;
tol = 1e-12;
maxiters = 50;

M,fg = map compute_mass to verts reduce +;
f = map compute_force to tets reduce +;
K = map compute_stiffness to tets reduce +;

A = M - (h*h) * K;
b = M*verts.v + h*(f+fg);

x0 = verts.v;
verts.v = CG(A, b, x0, tol, maxIter);
verts.x = h * verts.v + verts.x;

end
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fem deformable object simulator. In Computer Graphics Forum. Vol. 32.
36–48.

SMITH, R. ET AL. 2005. Open dynamics engine.
SUNGPACK HONG, HASSAN CHAFI, E. S. AND OLUKOTUN, K. 2012.

Green-marl: A dsl for easy and efficient graph analysis. In 17th Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems.
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