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C .lnr txtl: ofhIrst pae hAbsfrt:ai hr:r. Pis Ivtlcs aicist l'eroiessors must'complete their assign-
Besfn ' end of Aa . : - i. Th' Cd h;f ed portion of the computation before..a new iter- 
.We consider distributed algorithms for solving ation can bein. As a esult complex protocols for

dynamic programming problems whereby several pro- ialgorithm initiation and processor synchronization
cessors participate simultaneously in the comnputa- may be necessary, and the speed of computation is
tion while maintaining coordination by information limited to that of the slowest processor. These
exchange via communication links. A model of asyn- drawbacks motivate distributed algorithms whereby.,
chronous distributed computation is developed which computation is performed asynchronously at various
requires very weak. assumptions on the ordering of - nodes and independently of the progress in other .
computations, the timing of information exchange, jnodes. Their potential advantages are simpler
the amount of local information needed at each com- implementation, faster convergence to a solution
putation node, and the initial conditions for the .and, possibly, a reduction in information exchange
algorithm. The class of problems considered is between computation nodes.
very broad and includes shortest path problems, and
finite and infinite horizon stochastic optimal con- Thlis paper considers an asynchronous distrib-
trol problems. . When specialized to a shortest path uted algorithm for a broad class of dynanric pro-
problemi the algori.t.hml reduces to the algori.tllm orig- gramming problems. This class is described in
inally implemented for routing of messages in the Section 2. The distributed computation model is
ARPANET. described in Section 3. It is shown in Section 4

that the algorithm converges to the correct solu-
1. Introduction tion under very weak assumptions. For some classes

of problems convergence in finite time is demon-
Recent advances in microcomputer technology strated. These include shortest path problems for

have intensified interest in distributed computa- which the distributed algorithm of this paper turns
tion scI;hmes. Aside from modular expandability, out to be essentially the same as the routing algo-
other potential advantages of sucth schemes are a rithn originally implemented in the ARPANET in
reduction in computation time for solving a given 1969 [1]. To our knowledge there is no published
problem due to parallelism of computation, and proof of convergence of this algorithm.
elimination of the need to communicate problem
data available at geographically dispersed data 2. Problem Formulation
collection points to a computation center. The
first advantage is of crucial importance in real Wte use an abstract framework of dynamic pro-
time applications where problem solution time can gramming, first introduced in [2], [3] which in-
be an implementation bottleneck. The second advan- cludes as special cases a number of specific prob-
tage manifests itself for excamnple in applications lems of practical interest.
involving communication networks where there is a
natural decentralization of problem data acquisi- Let S and C be two sets referred to as the
tion. state space and the control space respectively.

Elements of S and C are referred to as states and
The structure of dynamic programming naturally controls and are denoted by x and u respectivelyxa

lends itself well to distributed computation since For each xcS we are given a subset U(x)c C referred
it involves calculations that to a great extent to as the control constraint set at x. Let F be
can be carried out in parallel. In fact it is the set of all extended rcal valued functions
trivial to devise simple schemes taking advantage J: S-i[-,pap] on S. For any two functions J1, JieF
of this structure whereby the calculation involved we use the otatio 
in each iteration of the standard form of the algo- i
rithm is simply shared by several processors. Such < J if (a)
schemes require a certain degree of synchronlization 1 - 2 J 1 (X) J 2 xcS (a)

R:JP J if J(X) · (X), i S. ib)

*This research ias conducted at the .I.T. Laor- 2 = 2
atory for Information and Decision Systemcls ith
partial suilpport provided by thle National Science Lt IIn: S x C x F be a mapping which is
Foundation Grant No. NSF/ECS 79-19SSO. monot eone in the sense that for all xcS and ucU(x)

we have
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|~l(Y~~ cl(~xjuJ);'J l jJ26Ej7 with J 1 < J (2I:l The. :functiQns..g, aind f ima.p,Six; C- I:l.into
[~.%] ;and S respectively-.

,-..T scalar (2)-----_ isp(2) _ -
Given 'a subset FCF the problem is to:-,find a:func-fCi:) The scalar a is positive.

tion F,*cF such that _|_ - ------r ... Because the-set-W-isl assumed-countable--the
....... J*( . -- f- ( S- expected value-in-.(9) -is well -defined:-for--all. JF 

J(... . , x , ; S in terms of infinite summation provided we use thef sUECX) l AUTFIConvention + +' (see [31], p.31). It is pos-

By considering.-the. mapping-T.J--.-.---F-defined-by --- - sible-to-consider-a -more general probabilistic
' structure_for..W (see [3]).- atthe-expense of compliJ

T(J) (x) = inf H(x,u,'J) ' f4) J cating the presentation but this does not seem
ueU(:) O ( AN1iZAworthwhile in view of the computational purposes

the problem-is alternately-'stated 'as-one-of findin ..- --I e .- 

|a fixed Poitt~,i 3' t4itl:l~i , r,, .ea:- :fu~fnction J*cF, j It is shown in [3] that with this definition
such that of It the abstract problem (3) reduces under more

~J* .......T(J*) _ I.......... ............... )-- [specific-assumptions-to various types. of standard -
istochastic optimal control problems. Thus if g is

. -- --.----- --.------------ --.-- -------------- -----------. .- ,- uniformly bounded above and below. by some scalars
.We will assume throughout that T has a unique fixed ,and O <

a 
< 1 the problem is equivalent to the

-point Within F. ......--. '.''..- istandard infinite horizon discounted stochastic

,.' .x>-.:.. ! f,:_.:,:',"-.- S -1,.'! !optimal control problem with bounded cost per stage

We provide some examples that illustrate the (isee [51' Sections 6.1-6.3). ' Under these circum-
broad scope of the problem formulation just given. stances the mapping T of (4) has a unique fixed

point J* in the class of all bounded real valued
Example 1 (Shortest Path Problems): Let (N,L) be 'functions on S and J* is the optimal value function
a directed graph where N = {1,2, .. ,.n} denotes the of the corresponding stochastic optimal, control
set of nodes and L denotes the set of links. Let problem.
N(i) denote the downstream neighbors of node i, '
i.e., the set of nodes j for which (i,j) is a link. Is we assume that 0 < g(x,u,w) or g(x,u,w) < 0
Assume that each link (i,j) is assigned a positive for all (x,u,w)ES x C x W1s then we obtain stochastic
scalar a. referred to as its length. Assume also optimal control problems of the type discussed ex-

1) tensively, for example, in [5], Sections 6.4-6.6,
that there is a directed path to node 1 from every 7.1-7.4, and [31, Chapter 5. If J* is the optinal
other node. Then is is known ([4], p.67) that the value function for such a problem then J* is the
shortest path distances dt to node 1 from all other fixed point of T over all functions JF such

I unique fixed point of T over all functions JaF such
nodes i solve uniquely the equations that 0 < J < J* if 0. < g(x,u,w) for all (x,u,w), or

J* < J < 0 if g(x,u,w) < 0 for all (x,u,w) (see
dit = mrin {a. + dc, Vi Z 1 (6a) [53, p. 256).

jcN(i)
Example 3 (Finite Ilorizon Stochastic Optimal Control

d* = 0. (6b) Problems): Let S,C,U(x), I, p(dwlx,u), g and f be
1 ' - - - as in Example 2 and consider the set of equations

If we make tie identifications JN(x) = , xES (lOa)

S = C = N, U(x) = N(x), F = F,J*(x) = d*
x Jk(xk) = inf E{g(xk'uk' k) +

(7) UkSU (xk)

H(x,u,J) = 4axu + J(u) if x 1: + Jk l[f(X k uk('k)I0xk'Uk}, (lOb)

0 if x = 1 (8) k =,1,. -1, xkcS,

we find that the abstract problem (3) reduces to where N is a positive integer. These are the usual

the shortcest path prolblenm, dynamic programming equations associated with fi-
: 2 (Infinite , . nite horizon stochastic optimal control problems

ExamlE1e 2 (Infnitc lhorizon Stochastic Oti.mal Con- with zero terminal cost and stationary cost per
trol P'roblems) : Let II be given by stage and systcem function. It is possible to write

these equations in the form (3) by defining a new
lH(x,tu,J) = E{g(x,u,w) + ctJ[f(x,u,w)]lx,u} (9) state space consisting of an (N+l)-fold Cartesian

product of S wlithl itsclf, wiriting J* = (JO'J1'' .
where the following are assumded:

J ), and appropriatcly defining II on the basis of
(1) 'The parameter ! takes valtues in a countable (10). In fact thlis is a standard procedure for con-
set W w\ithi given probability distribution p(dw lx,u) vcrt-in a finite horizon problem to an infinite ho-
depending on x and u, and E{I-x,u} denotes expected rizn (see izt,vdapldinue on x and thil, ancl xu di not-cs ctipbtct d nrizon problem (see [5], p.325). This reformulation
value withi recspect to this distribution.



AUTJHOi F3 IN i%1 8nE r' P ,:' PAG I'EHiE

7-, FV '-D. 1MC)O i L1 PAP ERR - FidNAi SIZE 8'2 X 1 

- ...............--.....1 [ ii.....
[ican.also be-trivially generalized to finite hori- mission.fro!l ell-s bfe it
zon problems involving a: nonzero terminal cost i t
and a nonstationary system-andc--cost per stage-------fstoos its own astim ate of X.alues o..the_.sonutioan a s'afunction J* for all states xvX Ti... The con.tents 

3. A':todel for Distributed Dynamic 'Proun raruning . eacch'bouffer Bt' where =i- or uicit J at tire dt are a
_..L ... .. .... ------------.-..--. ....----- r- --- t---... .

our. algorithm can -be described -in terms-of-a.--- .. . .... i.for .every-Tt,_. a fun.tion
collection of n computation centers referred to asd from S. into [-O ] and mcay be viewed as the nesti,
nodes and denoted 1,2,...,n.; The state space S iJ-' i i !

_ i mate bynode i _ofthe_restriction ofthesolution partitionedinto.n-.disjoint-. ets--denoted- ms

oi--;- ? oFS~r-..f-3-i, ~ ~ ~ ~ n 1* 'function J* on S. availabl at time a t, The rulesEach node i is as-signed -the-responsiSl ity--6f-dom- tJtm- such that :accordingb to which functiaons Jmt areupdated are a'puting the values of the',solution function J*-at--\!j-w- ccording to wllch functions Jij are updated-are asrfo1 lowsall states x in the corresponding set S .. A node t ....
-._-....._ . - --- ·...- 1 , .............. ...... -r -"- is -said-tol be- aneighbor of inode i if'j i' and- i j 1If [t-t2 'is a tracnsmission interval' for node

there exist a.state x.Y.':and two:'functions J · 1 tl ;y j is n to a-
_:r 1 valusof J o n to node i withi ieN(j) the contents J.. of the i

s obufferf BTatAtsmeaetl arertransmitted and entered
5J X)...- .J2(X) C__-lla) Jiin- the bufrfer-iB.. --at- tme 2,uti.e. -- o ..... .
*J~cF'--Suc~ '"tha - .............. .

TOJ )(x ) / T(J (x b) (12)

The set-of all neighbors of i is denoted N(i).tte In- e . nter
tuitively j is not a neighbor of i if, for every 2
JtF, the values of aJ on Sp do not influence Sthe contents of buffer B.. at time t are replaced

i iIi {.2
values of (J) on S........... As a result, for an JdeF, t- 1 by the restriction of the restriction of the function T(J on S
in order for node i to be able to be able to compute T(J) on t S.~ nowhere, for all t, J. is defined by S. it is only necessary to know the values of J on

sets S., jNo'(i), and, possibly, on the set S.. h (xi if XES.
1 i ) 1

At each time instant, node i can be in one of t t......
three possible states compute, transmit, or idle. Ji ) if X and -N(i) (13)
In the compute state node i computes a new esti- 
mate of the values of the solution function J* for ( otherwise
all states xES.. In the transmit state node i com -il In other words we have
municates the estimate obtained from the latest
compute phase to one or more nodes In for whichl 2 T 
iFN(m). In the idle state node i does nothing re- Jii(x) T(Ji (x) = inf H(x,u,Ji ), 'ES i
lated to the solution of the problem. It is as- u U(x)
sumed that a node can receive a transmission from . i.l4)
neighbors simultaneously with computing or trans-

f) The contents of a buffer B. can change only atmitting, but this is not a real restriction since, he r on
if needed, a time period in a separate receive

ifneeded, a time period in a.separatereceie .the end of a computation interval for node i. Thestate can be lumped into a time period in the idle
contents of a buffer Bij, J£N%(i), can change onlystate. I>
at the end of a transmission interval from j to i.

We assume that computation and transmission
for' each node takes place in uninterupted time in- Note that by definition of the neighbor set
tervals [tP t ] with t < t c but do not exclude ttoeach [lod2] with il < t2' N(i), the value T(Jt)(x) for xeS. does not depend on
the possibility that a node may- be simultaneously tt 1
transmitting to more than' one nodes nor do wie as- the vat states xSm ith mi, and m i
sunle that the transmission intervals to these nodes We have assigned arbitrarily the default value zero
have the same origin and/or termination. WTeo also to these states in (13). Our objective 'i s to show
make no assumptions on the length, timing and se- that for all i = 1,...,n
quencing of computation and transmission intervals 
other than the following: lim JIjx) = J*(x), SS, j =i orJN(i).

Assulmption (A): There exists a positive scalar P
such that, for every node i, every time interval of It is clear that an assuio such as () is ncs-

lengtl P contains at least on C ttiol iT-Vl sar) in order for such a result to hold. SineICC it-
for i and at least one transmission intcrval fr- itio (14) is of the dv-ic prra. ng yp it

to each nodoU m title iEN(m). is also cltear that some restrictions rust be placed
on the mapping II that guarante-e convergence of the
algorithm under the usual circumstances where theEach node i also has one buffer per neighborI.. N~i) , enoted Djj t~hcre iaalgorithm is carried out in a centralized, synchr-o-j N(i) denoted B.. where it stores the latest trans-

1.
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OUS nmanner-(i-e..,:iwhen:there is. bnly one compu- 1 C sup yin }.;'E{g(X4IW) } -A-.:J * here
tation node). The following assumption places xS ucU(x) x 
somewhat -indirect -restrictions -on -Il but-simplifies- .------ -

the convergence analysis' < - inf inf E{g(x,u,w)}
T IT LE 0' FIR~SfrT PAE'iEEE, ":_.-- \ .. xES uEU(x)'

Assumption (B) :-- Thlere- exist--two- functions J -and -J. s-ti--As-s 6i-- - .-i(B) 
in F Fsuch that -the- set-of all functions---JEF-- with---;---, - - - - ---------.----------'- -
J < J < J belongs to F and furthermore ' A~ .J-- -< J < J belongs to F and f..rther..ore A.T .For infinite horion stochastic optimal control

J >~-T(J}--,----T(J -- *--·J j- ~--_ ,, (5-' L problems with nonpositive cost per stage (Example 2
J >_LT T(J)-v---T (J_) -- >-- z-J- ~~(15)--[-- 'iwith'-g <O) 'if'tcan be shoW.. thatt the-functions J, J

k-- r- --l -v -- | 'ithth - - --i

lim T (-J)(x) ~X: )GAN!EZATIs O;:.' _ , N A
lim T (J)(x) =J*(x), V xcS j .J(x) J*(x), J(x) =0, VES
k-t~oL_____.___ _ _ L___ __ . ___. ... _...............

lim T (J)(x)--= --J*(x),; VXS 2 8(t6) satisfy Assumption (B) i[ pp- 21,298). If the

sk-', : ko.n :.. ".: -,;, c :r.;.: :L o d :r','.' ;:Ir~co.: n.td ;'.Xt. 29. If *th
k ,.: Kr per | 1:! X tcost per stage is nonnegative (Example 2 with g > 0)

where Tk denotes composition .of..the mapping T with .then, under a -mild assumption (which is satisfied.;

itself k times. i in particular if U(x) is a finite set for each x),
it..can be shown. that..the choices.J,.J with--- .. ,

Note that in view of the monotonicity of H
[cf. (2)] and the fact J*.= T(J*), Assumption (B) J(x). = __0, .J...J(x) . = J*x) ._. ... ..
implies

satisfy Assumption (B) ([5], pp. 263, 298)._ The

J > T(J) > T2(j) ,-'..> J*" > ... - Ichoice of J and J can be further sharpened and sim-
.... : - -plified under more specific assumptions on problem

... >T 2(J)>T(J) > J .structure but we will not pursue this matter further.

Furthermore if JeF satisfies J < J < J then Our convergence result will be sho.e;n under the
k .

lim T (J)(x) = J*(x) for all xES. assumption that the contents J.i of the buffers B..
:k~ce i.J - ii

-k-tco at the initial time t=O satisfy
Assumption (B) leaves open the question of how

to find suitable functions J and J. On the other J(x) (x), 19)
hand for most problems of interest the choices are 13 3

clear. In particular we have the following: The broad range of initial conditions allowed by

(19) eliminates the need to reset the contents of
1) For shortest path problems (Example 1) it is the buffers in an environment where it is necessary
straightforward to verify that the choices to execute periodlically the algorithm; with slightly

different problem data as for example in routing
J(i) = 0 , i = 1 ..... n (17a) algorithms for communication networks. This is

particularly true for cases 1)-3) above where con-

o if i 1 dition (19) implies that the initial buffer contents
J(i) = - - - - .can be essentially arbitrary.

0 if i = 1 (17b)
- .- - - 4. Convergence Analysis

satisfy Assumption (B).
Our main result is the following proposition.

2) For finite horizon stochastic optimal control
problems (Example 3) for which the function g in Proposition 1: Let Assumptions (A) and (B) hold

(10) is uniformly bounded below it can be easily and assume that for all i = 1,,..,n

verified that the functions J = (J oJ1 ..... ) and O
J = ~ ~~(J 0~~~o,' 1. '.,) w e efrlN J(x) < J .(x) < J(x), VxfgS., j = i or ja.N(i).(20)

J = t~o,, ** *) JJhere for all k and x :-

8Then for all i = 1,..,n
Jk(X) = , (x) = .) . .J t -

li J .(x) =J*(x), VxcS j = i or JEN(i).

satisfy Assumption (B). t - -

Proof: Siince the contents of a buffer can change
3) For discounted infinite horizon stochastic op- only at te end of a co. itation or transmission
timal control problems with bounded cost per stagC interval at a node we can analyze convergence in
(Example 2 with ac(O,1) and g uniformly bounded terms of a discrete tine process. Ie focus atten-
above and below) it is easily shown that ever) pair tion at thle seu;cncc of times {t} *with 0 < tl <
of funct:i.ons .J, J of Ctei forrml

t 2 <... where each tk is the end of a computation

J(x) -- , J(x) = $, VXES interval for one or more nodes.

where Let us consider for all t > 0

"". .-- ~ ~ ~ ~ ' ~ - -- - -.
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where for each xCS., the value J..(x) [J. (x)] rep- with potential strict inequality only for nodes j
3 1 3 .whicither t or t was the end of a co.

resent the contents of buffer B.. at time t ift 3fither t1 or t2 was thnhed of a o
.. ...._.__ .. ........-_

algorithm were executed with the same timing and -T tatio-n-tlterval. 'The- preceding- argument c-an be
order' o.f computation ~.and 'ransmission intervals -6ut-r-l repeated-to~-show --th at-- for --all-- k;---i--=-l;,.,;n s and
with the initial condition J(x) [J(x)] instead ofAitJTHoN(i) we have 
o hf I o 

J (x --for-each -buffer -B .---and-xS-.- -- The-monoto i tk+

icity assumption (2)aniiid rtheadefinieiti ttheI' algo- 
rithm (cf. (13), (14)] clearly imply that for alk.tjIZATION V _ ,ttktl) (28)

IJ.(k' < X&J; (x) < J () 1 x I£ ,ei Let k -be th first-int*oer for which 2P < t
--. $;tf2 lJii at - . ICwhere P is as in Assumption (A). Then each node kl

i - l...,n, j = i or jcN(i).(21) must have completed at least one computation phase
in the interval [0,P] and at least one transmission

It will thus suffice to show that Iphaseto all nodes in the interval [P,2P].__ It is

-J x -- o r- Ieasily seen that this together with (28), the mono-

- ~~~~~~ ~~~~~~~~~t --: t -1

- _ (3 . ..... .... ... > . -. (x),xS .J ni,.

In view of the fact J > T(J) we have clearly ---- - .. 

- . -l - -'This argument can be repeated and-shows that if
J(X) -oi(X) > Jn(X) , V XES, m(k) is the largest integer m such that 2mP < t

]r ihl[. (13), j(14)] cl4l then for all t[t ,tk .).. .)

.. t ix<.nl3x, ; N(i) (4) > J ) Vxk l

with potential strict inequality only for nodes j T (J)(x) > (x) > J(x) S-
for which t was the end of a c6mplutation interval. .

1t-otj N(i). (29)

For te[ti t2i the content of B.. is either J.. or
st 1Similarly we obtain for all t[etk,t +l) 

J so from i(4) we must havei, -

..(x) > J.................... ....................... ;..; ,n, j.-3 -
13: (x) > ~, 3s iJ = 1. n jN(i).

im : !-i = l, .............................. ,n jENCi).
t[tl't 2 (25. ..

-t . :'y combining (21), (29), and (30) and using As-
t-.

(x) > (x), xS. i]...,n, jN(i), .... sumption (B) we obtain (22), (23) and the proof of

13 13 the proposition is complete. Q.E.D.
tcttl't2 .

Note that (21), (29), and (30) provide useful
The last relation can also be written as estimates of rate of convergence. In fact by us-

ing these relations it is possible to show that in
I. (x) > 3. (X), VxcS , j=l,...,n, maN(j), some special cases convergence is attained in fi-

t ~t1,t2). (236) Proposition 2: In the cases of Exap.les 1 and 3

-1 - 227(26) and (14) that :. respectively and J satisfying (20) , there existst t ' a ti m e t > O such that for all i=<, ..,n and tk > tJ,(x) > J (x), Vx -(27) there xholds

f:Jo (x) J*(x), VxS., j = i or jN(i
with potential strict inequality only for nodes j I 
for which t2 was the end of a computation interval.

Combin (25):and(27)twe oProof: For Example 3 it is easily seen that there
Combining (25) and (27) uIc obtain holds

k k
T (J)(x) T (J)(x) J*(), VxS, k > N+l
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ThdprooflfolLo- s from i'(2l)-(29) ,and (30). For | Proof:''Sec '61 -sccg;d (�:sceti@i1fla r:ete

!example 1 it is easily seen that

k- r.. ; . ...... i .. .....~~~~~k - I'~~ ~~ ~1 s5. Conclusions 1T (J) (i) = J*(i), i = 2, .....,n ; --F- AG
! k } ' The analysis of this paper shows that naturall

Also for-each-i,--T (J) (i)- represents-the' length- of;--7-- distributed dynamic-progran i-ng s'cheme§s'co lverge 
a path starting -from-i with k links;-and each -link'--c--to the-correct--solution under very-weak-asstumptions
has positive length. Therefore there exists a k , ..,.on the problem structure, and the timing and order-

k . ing of computation and internode communication. .
su~h that P ~~(Jf) (i.)~ ~~represents length of a path from' -- he restrictions--on the initial-conditions are also
i to node i, for otherwise the paths corresponding 2 Teryweaki This-means that- forproblems that are

k- -very--weak-- This-means tat--forproblems that are.
to T (J)(i) would cycle indefinitely without reach-__ being solved continuously in real time, it is not

, ,,k .... h . J + 1k. , necessary to reset the initial conditions and re-
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Proposition 3: Let the assumptions of Proposition

k-1 hold. Assuml:e also that for every xcS, uZU(x) andsequence {.7k}CF for which liml J (x) = J*(x) for
for all xcS we have k

lim H(x,u,.J) = -I(x,u,J*). (34)
k-~o
Then for each state xES for 1which U(x) is a finite
set there exists t > 0 such that for all t > t

x -- x

if it (x) satisfies (32), (33) thlen

H[x, t (x),J'] m in 1l(x,u,.J'k) ..
u 0J (x)


