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consider dlstrlbuted algorlthms for solving
d)n1n10 programming problems whercby several pro-
cessors participate simultaneously in the computa-

. tion while maintaining coordination by information

" exchange via communication links. A model of asyn-
chronous distributed computation is developed which

 requires very.weak assumptions on the ordering of -

" computations, the timing of information exchange,
the amount of local information necded at each com-
putation node, and the initial conditions for the
algorithm. The class of problems considered is

very broad and includes shortest path problems, and
finite and infinite horizon stochastic optimal con-
trol problems. . When specialized to a shortest path
problem the algorithm reduces to the algorithm orig-
inally implemented for routlng of messages in the
ARPAALT.

1. Introduction

Recent advances in microcomputer technology
have intensified interest in distributed computa-
tion schemes. Aside from modular expandability,
other potential advantages of such schemes are a
reduction in computation time for solving a given
problem due to parallelism of computation, and
elimination of the need to communicatc problem
data available at geographically dispersed data
collection points to a computation center. The
first advantage is of crucial importance in real
time applications where problem solution time can
be an implementation bottlereck. The second advan-
tage manifests itself for example in applications
involving communication networks where there is a
natural decentralization of problem data acquisi- |
tion. ; i

The structure of dynamic programming naturally
lends itself well to distributed computation since '
it involves calculations that to a grcat extent
can be carried out in parallel. In fact it is
trivial to devise simple schemes taking advantage
of this structure whereby the calculation involved
in each iteration of the standard form of the algo-
rithm is simply shared by scveral processors. Such
schemes require a certain degree of synchronization

*This rescarch was conducted at the M.I.T. Labor-
atory for Information and Decision Systems with
partial support provided by the National Science
Foundation Grant No. NSF/ECS 79-188S0.

To be presented at the 20th IEEE Conference on Decision and Control,

December 1981.
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An’that all processors musf completé their assign-
ed portion of the computation beforc.a new iter- |
ation can begin. As a result complex protocols for
‘algorithm initiation and processor synchronization
may be nccessary, and the speed of computation is
limited to that of the slowest processor. These
drawbacks motivate distributed algorithms.vhereby. .
computation is performed asynchronously at various
nodes and independently of the progress in other _:
‘nodes. Their potential advantages arc simpler
. implementation, faster convergence to a solution
;.and, possibly, a reduction in information exchange
between computation nodes.
This paper con31der> an asynchronou> distrib-
uted algorithm for a brozd class of dynamic pro-
“gramming problems. This class is described in
Section 2. The distributed computation model is
described in Section 3. It is shown in Section 4
-that the algorithm converges to the correct solu-
tion under very wecak assumptions. For some classes
_of problems convergence in finite time is demon-
strated. These include shortest path problems for
which the distributed algorithm of this paper turns
out to be essentially the same as the rogtino'algo~
rithm originally implemented in the ARPANET in
1969 [1]. To our knowledge there is no published
proof of convergence of this algorithm.
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2. Problex Formulation

We use an abstract framework of dynamic pro-
gramming, first introduced in [2], [3] which in-
cludes as special cases a number of specific prob-
‘lems of practical interest.

Let S and C be two s¢ts referred to as the
state space and the control spacec respectively.
Elements of S and C are referred to as states and
controls and are denoted by x and u respectively.
.For cach xcS we are given a subset U(x)}C C referred
‘to as the control constraint set at x. Let F be
the set of all extended 1 valued functions

a

o
rca

J: S§>[-»,»] on S. For any two functions Jl’ JZSF :
we use the notation "E
31 < J2 if Jl(x) < Jz(x), v xe$, (la)i
Jl = J2 if Jl(x) = JZ(X)’ v xeS. (1b) s

be a mapping which is
21l xeS and usl(x)

Lat I: S x C x F = [-o,e]
tonc in the sense that for

San Diego, CA,
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H(x u, J: REEERe R ), VJ sidy eF with J, < J,.
|
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i(?.l The -functiens. g-and- £ map.8ix; L x:Wuinto

[~w,] and S respectlvely

I
Given ‘a subset FCF the problen is tor:find .a; funcs A
tion J*eF such that

e

HO'convention +®-o

. .(3) . The scalar o is pos1t1ve.
ek (; muid

wliia

ru~—«Because the-set-w-isAassumed'countab1e~{he
lexpected value-in-(9). .is well .defined:for-all JeF
in terms of infinite summation provided we use the
+o (see! [3], p.31). It is pos-
sible -to . consider-a -more- general- probabilistic
Istructure_for. W (see.[3]) at the. expense of compli-

t
the problenm.is altelnately stated ‘as”one of finding”
a fixed p01nt of 1 w1th1n L 1 c.;‘a functloﬂ J*eF

such that ’ j

=T,

We w111 assﬁne throughout that T has a unlque fixed

3201nt within F; =7

“We prov1de some examples that illustrate the
broad scope of the problem formulation just given.

Example 1 (Shortest Path Problems): Let (N,L) be
a directed graph where N = {1,2,...,n} denotes the
set of nodes and L denotes the set of links. Let
N(i) denote the downstream neighbors of node i,
i.e., the set of nodes j for which (i,j) is a link.
Assume that each link (i,j) is assigned a positive
scalar aij referred to as its length. Assume also

that there is a directed path to node 1 from every
other node. Then is is known ([4], p.67} that the
shortest path distances d; to node 1 from all other

nodes i solve uniquely the equations
d* = min {a,; + d%}, vwi#1 (6a)
Poogenam M .
¥ o= !
d1 0. (6b)¥
If we make tiue identifications
$ = C = NUX) = Nx), F = FJX) = &
1)
i
Hix,u,J) = 2t Ju) if x#1
0 if x =1 (8)

: : !
we find that the abstract problem (3) reduces to
the shortest path problem,

Example 2 (Infinite Horizon Stochastic Optimal Con-
trol Problems): Let H be given by

H(x,u,J) E{g(x,u,w) + aJ[f(x,u,w}]]x,u} (9)E

vhere the following are assumed:

(1) The parameter v takes values in a countable
set W with given p10h1h111L\ distribution p(dw|x,u)
depending on x and u, and E{-]x,u} denotes expected
value with respect to this distribution.

) -
§ [
J*{x} = Tinf TTTH(X U J*) A7 > U 3 S B
| uel(x) AUT
By considering-the. mapplng_T -F.».F-defined- by-m«af-‘«
TI)(x) = inf | H(x,u,J) ] ()
ueU(x) ;

O"Q"'\‘iJf‘worﬂmhlle in view of the compuuat1ona1 purposes

cating the presentatlon but this does not seem

.,of_the. paper./;

2004 o
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i It is shown in [3] that with this definition
lof H the abstract problem (3} reduces under more
ispecificassumptions’ to various’ types of standard
xstochastlc optimal control problems. Thus if g
,unlfoxmlv bounded above and below by some scalars
‘and 0 < @ < 1 the problem is equivalent to the
-standard infinite horizon discounted stochastic
opt:val control problem with bounded cost per stage
(see [5] Sections 6.1-6.3). Under these circum-
stances the mapping T of (4) has a unique fixed
‘point J* in the class of all bounded real valued
functions on S and J* is the optimal value function
of the corresponding stochdstlc opt1mal control
problem

Is we assume that 0 < g(x,u,w) or g(x,u,w} <0
for all (x,u,w)}ES x C x ¥ then we obtain stochastic
optimal control problems of the type discussed ex-
tensively, for example, in [5], Sections 6.4-6.6,
7.1-7.4, and [3], Chapter 5. If J* is the optimal
value function for such a problem then J* is the
unique fixed point of T over all functions JeF such
that 0 < J < J* if 0 < g(x,u,w} for all (x,u,w), or
J* < J <0 1If g(x,u,w) <0 for all (x,u,w) (see
[5] p. 256).

Example 3 (Finite llorizon Stochastic Optimal Control

Problems): Let S,C,U(x), ¥, p(dw][x,u), g and f be
as in Examplec 2 and consider the set of equations

QN(XN) o , stS (10a)
J, (x,) = inf E{g(x, ,u, ,w, ) +

‘1\ k uy U x) i S S Y

: + Jk+1[f(xk,uk,wk)}]xk,uk}, - (10b)

k =0,1,...,N-1, X
where N is a positive integer. These are the usual
dynamic programming equations associated with fi-
nite horizon stochastic optimal control problems
with zero terminal cost and stationary cost per
stage and system function. It is possible to write
these cquations in the form (3) by defining a2 new
state space consisting of an (N+1)-fold Cartesian
product of S with itsclf, writing J* = (Jo’Jl"'

JN), and appropriately defining [I on the basis of

(10). 1In fact this is a standard precedure for con-
verting a finite horizon problem to an infinite ho- -
rizon problem (sec [5], p.325). This reformulation

€S,
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ican d]eo be. tTlVldlly gcnerallved to flnlte hori-

-zon problems involving a nonzero terminal cost

and a nonstationary syst;m and..cost per stages---—
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A 'Model for Dlstrlbuted Dyn
[
Our algorithm canvhe described -in terms -of - a—f—-
collection of n computation centers referred to as

nodes and denoted 1,2,..;,n.! The state space S is*
partitioned.into n. d15)01nt sets-denoted- Sl,...,S~4

3.
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} 'aSCwell/éS*&‘bUffcn’Bii‘whcre it
: ik

istores its own_estimate_of yalues of the solution

function J* for all states xEX The éontcnts of

- s

o~

aﬁﬁ ‘buffer'Bs,”
,_AiJ_

,‘from SJ 1nto {—m ] and may be viewed as the estlv

where j=i or JEM(L) at tlre.t are

zs,mfor every_t, _a. functlon

‘denoted J

_mate bx_goder;mof_the‘restrlctlon of;Iheﬁsclutxon :
|function J* on S available at time t. The rules

Each node i is assigned the responsibility” of“bom—
puting the values of the!solution function J*:at:
all states x in the corrcspondlng set S A node

P

. according to whlch functlons J

. are updated are as
follows: J i 1

j:is 'said to.be a nelghbor of node i 1f 3 #*iand
there exist a:state x. eS1 .and -two-functions Jl,

J,¢F such that

1 300, S

TU)Q) #'Hﬁ)&)‘
GPACER
The set of all nelghbors of 1 is denotcd N(i).”
tuitively j is not a neighbor of i if, for every

JEF, the values of J on S. do not Jnfluencc the
values of T(J) on Si:

As a result, for any JEF,

in order for node i to be able to compute T{J) on
Si it is only necessary to know the values of J on

sets Sj’ jEN(i), and, possibly, on the set Si.

At each time instant, node i can be in onec of
three possible states compute, transmit, or idle.
In the compute state node i computes a new esti-
mate of the values of the solution function J* for
all states xESi. In the transmit statec node i com-

municates the estimate obtained from the latest
compute phase to one or more nodes m for which
i€N(m). In the idle state node i does nothing re-
lated to the solution of thec problem. It is as-
sumed that a node can receive a transmission from
neighbors simultaneously with computing or trans-
mitting, but this is not a real restriction since,
if needed, a time period in a separate receive
state can be lumped into a time period in the idle
state.

We assume that computation and transmission
for cach node takes place in uninterupted time in-
tervals [tl’tZ] with ty < t_, but do not exclude

the possibility that a node may be simultaneously
transmitting to more than one nodes nor do we as-
sume that the transmission intervals to these nodes
have the same origin and/or termination. Wec also.
make no assumptions on the length, timing and se-
quencing of computation and transmission 1ntcrvals
other than the following:

Assumption (A): Therc exists a positive scalar P
such that, for cvery node i, every time intcrval of
length P contains at least onc computation interval
for i and at least onec transmission interval from i
to each node m with i€N(m).

. Each node i also has onc buffer per ncighbor
FEN(1) denoted Bjj where it stores the latest trans-

15 1Es {tl,tz] 15 A transﬁ é sion 1nterva1 for node
j to node i with ieN(j) tne contents Jjj of the
‘buffer Bj

i
'

5 at time t. are:transmltted and entered

1

in- the buffer~B.:'at-tine?t ,i.e.
1j ; 2

t t R

P T i e ;
J.. = J... P 12
ilJ 33 X ( )§
e s — !
i2 ‘If [t ] is a computation interval for node

i the contents of buffer B.. at time t2 arc rcplaced

by the restriction of th° function T(J. 1) on S

where, for all t, J is defined by

Ji. (x) if xS, -
3t = b0 if xes, and jEN(E)  (13)
i ij 5 .
0 otherwise
In other words we have »
4 tI Y
Jii(x) = T(Ji J(x) = inf H(x,u,Ji ), szsi.
: ucl(x)
(14)

3) The contents of a buffer Bii can change only at

the end of a computation interval for node i. The
contents of a buffer Bij’ JEN(i), can change only

at the end of a transmission interval from j to i.

Note that by definition of the neighbor set
N(i), the value T(Jz)(x) for xeSi does not depend on
the values of JF at states sz with mf#i, and m#N(i).

We have ass:vnﬂd arbitrarily tne default valuc zero
to these states in (13). Our Ob)OC»lve ]S to show
that for all 1 =1,...,n

1n It ) = J*), wxeS,, § =i or JéN(i).
oo 13 J . ﬂ

It is clear that an assumption such as (A) is neces-
sary in order for such a vesult to hold. Since it-
eration (14) is of the dynamic programming type it -
is also clear that some restrictions must be placed
on the mapping I that guarantee convergence of the
algorithm under the usual circumstances where the
algorithm is carrvied out in a centralized, synchro-
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fious manner~(1 €5 whenrthere .is. only one compu-
tation node). The following assumption places
somewhat-indirect restrictions-on-H but- simplifies'-
the convergence an31y51s‘
! |

in F such that the set-of all functions-JeF- Twith-—e ‘

J < J < J belongs to F and fTrthcrmor

TITLE OR FIRST PAGE HERE,
AS?HEQEigﬂﬁﬁﬁl'" There- exist—two -functions -J -and - J;—-—

< st sup s-inunE {g (xu,w) b B firgy reonas hare

7 xeS uel(x) !

i%~v1nf 1nf E{g(x,u,w)}
“ xes ueU(x)

‘sathf) Assumptlon By

eo<5<

!
AU71-34) For infinite horizon Stochastic optimal control

l problems with nonpOSItxve cost per stage (Example 2
J Zf*T(J)"T“JrQD"ZT'g‘ "(15)""”L"1w1th g <'0) it can’be ‘shown that™ the” funct1ons J, J
[ with ™~ - “"‘““%
im TN (F = lyeex ORGANIZATION - X ,
]}:ZT ) = J ()\); Y x.ES 1 ig")‘_:‘]*(x)’ Jx) = 3;0, v xeS
f = sasa leave ¥ [ T St Er i A P I P oy Frpe oo o oy oty
1im TV (g) (x)-o= 23 (x) ;' ¥xeS s2 leave ¥(16) satisfy Assumption (B) ([5], pp. 261, 298). If the

sii koo vy g rwr ASrstracl and frse l'm, of text.

vhere T denotes. comp051tlon of the mapping .T. with
itself k times.’ i .

Note that in view of the monotonlclty of H
[cf. (2)] and the fact J* = T(J*), Assumption.-(B)
implies

DU EATER TVWG C0AD

z;_"iff o S

Z(J)ST(J)> J

Furtherrore if JeF satlsfles J <Jd < J then
lim T (J)(x) = J*(x) for all xeS.

koo

Assumption (B) leaves open the question of how
to find suitable functions J and J. On the other
_hand for most problems of interest the choices are
clear. In particular we have the following:

1) For shortest path problems (Example 1) it is
straightforward to verify that the choices

Atl?a)

JE) = 0 , vi=1,...,n
3 w  ifif1
J@A) =
0 ifi=1 (17b)

satisfy Assumption (B).

'2) For finite horizon stochastic optimal control
problems (Example 3} for which the function g in
(10) is uniformly bounded below it can be easily

verified that the fuactions J = (J 3&,..., ) and

= (go’gl""’gN) vhere for all k and x

-] = ' wm

T = =, 300 - as)

satisfy Assumption (B). . :
3) For discounted infinite horizon stochastic op-‘

timal control probleams with bounded cost per stage
(Example 2 with «e(0,1) and g uniformly bounded

above and below) it is casily shown that cvery p111
of functions J, J of the form
Je) = B, J(0 = B, uxeS

where

cost per stage is nonnegative (Example 2 with g > 0)
then, under a mild asqunpulon {which is satisfied .
in particular if U(x) is a finite set for each x),%
it.can be shown that the choices.J, J with __ o
J(x). =0, _ J*'(x),_,.w.\zxss —
+

satisfy Assumption (B) ([S], pp. 263, 298).. The
ichoice of J and J can be further sharpened and sim-
pllflcd under morc specific assumptions on problem
structuxc but we will not _pursue this matter further.

Jo .=

!
'
\
'
1
i

i Our convergence result will be shown under the

'éssumption that the contents J?i of the buffers Bij

at the initial time t=0 satisfy oo

Jx) < J‘.;J. (x) f_j_(x), VXS, . e (19)
The broad range of initial conditions allowed by
(19) eliminates the nced to reset the contents of
the buffers in an environment where it is necessary
to execute periodically the algorithm with slightly
different problem data as for example in routing
algorithms for communication networks. This is
particularly true for cascs 1)-3) above where con-
dition (19) implies that the initial buffer contents
can be essentially arbitrary. .-

4. Convergcnce Analysis

Our main result is the following proposition.

Proposition 1: Let Assumptions (A) and (B) hold

and assume that for all i =1,...,n

J(x) 5VJ§j(x] < J, \zanj, j =1ior JaN(l) (20)
Then for all i ;>1,;..,n -

?lim Jgj(x] =.'J*tx), \ixssg, 5 =”i or jéﬁii).

oo

Proof: Since the contents of a buffer can change
only at the end of a computation or transmission
interval at a node we can analyze convergence in
terms of a discrete time process. We focus atten-

tion at the sequence of tines {tk} with 0 < ty <

t, <... vhere cach t, is the cnd of a computation

jntcerval for one or morc nodes.

Let us consider for 2ll t > 0




v ‘ AUTHOR [‘j, UMBER PAGES HERE

77% RED. MODEL PAPLH FIMAL SIZE 8 X 11

ot e ity : . -t - T
J. a8 x et 351 suSyaslif se e ] Jhee L e conthiotnan s
i3Sy e lst 3083 It Lrwie] 1(X) > CXB WXES,
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where for each XSSJ , the value J (X) [J J(X)] TCP" with potent11l strict inequality only for nodes j
resent{_the contents of buffer B 1y at time t'if the"OE"for which either t, or t; was the end of a compu-

- - —— y 0y - —— !
algorithm were executed with the same timing and rtatiomintervali~"The preceding argunent can be

order] of computation and transmission intervals put ] repeated-to-show-that-for-all-k;-i~=-lyriym; and
O,]eN(1] we have i H i

with the initial condition J(x) [J(x)] instead Ofg\JTH f

» f__ ! « t . ot . _
J (x for-each-buffer-B :-and- sz;«——?he—mono on ‘ 7.5 > 3?.(x) A J.¥+%(x),
1c1ty assumption (2) and the ‘definition of the alge- T =3 i JJ; 3

rithm [cf. (13), (14)] clrarly imply that for all;tnNiZATION ngsb te{tk’ k+1)
l l

i
i
{

(28)

!

} © | Bestn Let 'K “bei the' first- 11teoer for which 2P < tk
| where P is as in Assumption (A). Then each node

: i= 1,..u,n, j=1ior JEN(l) (21) ! must have completed at least one computation phase

R ‘in the interval [0,P] and at least one transmission
It will thus suffice to show _that phase to all nodes in the interval [P,2P]. It is

s easily seen that this together with (28), the mono-

J* (9, \1X§$j, i=1,...,n, jeN(@E) tonicity of H, and the definition of the_ aloorlthm

3500 I

llm,lij(¥)ﬁ“”

»taw ~ (22).I implies that for all te[tkl, k1+1)
e ——— S — ‘ S, e PR —
=t - . s e s . : - k
t =1 (X)W xeSTy i=17075n) eN e I , .
Hm J;;5 () ()5 xSy SN T 2 T007 > T M, vxes;, Lo,
T : TT(23) RS |
: - — : e : JeN(i).
- In-view of the fact J > T(J) we have clearly e R . : -
P R 'This argument can be repeated and-shows that if
Jx) = 32-(x) 3_»31%(x) , ¥xeS., e ;m(k) is the largest integer m such that 2mP < t,
J ’ ‘then for all te[tk’tk+1) R
i=1,...,n, jeN(i) (24)
' : PO > TE 60 > 7K, vxes,
with potential strict inequality only for nodes j THOI > ij xX) Z ij X), ¥Xe j?
i i ti interval.
for which t1 was the end of a computation lﬁoer a .- L . L . .. jeN(i). (29)
For tg[tl,tz) the content of Bi' is either Jij or
N e »Similarly we obtain for all ts[tk,tk+1)
J.. so from (24) we must have )
33 o . ’ % t m{k)
= t o L) > IS > T @), wxeS, (30)
Ji.[x) > J..(x), ¥xeS,, i=1,...,n, jeN(i}, : :,JJ U A 3’
J 33 J : P i=1,...,n jeN(i).
teft,,t,) e
“}l —t i .By combining (21), (29), and (30) and using As-
J..(x) > Ji'(x)’ vxeS,, i=),...,n, jeN(i), sumption (B) we obtain (22), (23) and the proof of
= J J “the proposition is complete. Q.E.D.
te[tl,'tz). Co

: Note that (21), (29), and (30) provide useful
The last relation can also be written as estimates of rate of convergence. In fact by us-
.ing these relations it is possible to show that in
‘some special cases convergence is attained in fi-

t
-1 ; :
=1,... N » - £
ij(X) > J (X): szsm’ j=1,...,n, meN(j) ‘nite time.

ts[tl’tZ)' (26) ‘Progos1tion 2: In the cases of Examples 1 and 3

In view of the monotonicity of H it follows from | ,with the choices of J, J given by (17) and (18)

(26) and (14) that o respectlvely and J° ij satisfying (20), there exists

Y i % ‘a time t > 0 such that for all i=1,. -.,n and t > T
Jsj{x) > J (x), \IxeSj i 27 thcrc holds

. ¢ = * . sz s sy -
with potential strict inequality only for nodes j 1j(h) J*(x), yxeSj, j =1 or jeN(@1).

for which t, was the end of a computation interval.

Combining (25) and (27) we obtain ‘Proof: For Example 3 it is easily seen that there

holds

i

TR = @) = I, Vxes, k> 8l
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Thé proof 'follows fron (21)y! ((29) fand (30). For
example 1 it is easily scen that

|
;

x—-,

!
Also for eachi;~ Tk(J)(i)'represents the Yength of

-
1

k — . . 5. Conclusions ’ ;
T(J)(il) = I, 1= 2ieeoms K2 Ry FIRST PAGE HERE, CENTEATD

riaalst

The analysis of this paper shows that natural

i"distributed dynamic programming schemés converge |
i

a path starting from-i with k -links;-and each 1ink* ”’*'J “to the-correct solutien under very weak assumptions

has p051t1ve length. Therefore there exists a k AUTE

uvh ‘that T (I)[J) represents length of a path from .
i to node 1, for otherw1se the_paths correspondlng
to T (J)(l] would cycle 1ndcf1n1te1y without reach‘H
1ng node 1 and we would have T (J)(l) > . Since

- T

T (J)(l) <.I*(1) and J*(l) 1s_the shortest dlstance
from i to 1 we'obtain "¢ i EivdnECl

T (ND@E) = I8y, ¥i = ‘2, S “k“'>'i7."”"‘w'*
.The result again follows from (21), (29) and (30).
- . . _Q.E.D.

It is p0551b1e to construct examples 9how1ng
that in the case of the shortest path problem the
number of iterations nceded for finite convergence

of Tk(g) depends on the link lengths in a manner
which makes the overall algorithm nonpolynomial.

In many problems of interest the main objec-
tive of the algorithm is to obtain a minimizing
control law U*, i.c. a function U*: S > C with
p*{x)eU(x) for all x€S such that

H{x,u*(x),J*] = min H{x,u,J*), ¥xe8. (31)
uel{x) -
It is thus of interest to inveStigate the question

of whether control laws u : S C satisfying

ut (JeU(x), ¥xeS (32)
and

BDout00,95] = min HEw,IY), wxes,, is1,...,n
uel(x) (33)

where Jz is given for all t by (13), converge in

some sense to a control law u* satisfying (31).

The following proposition shows that convergence

is attained in finite time if the sets U(x) are fi-
nite and M has a continuity property which is sat-
isfied for most problems of practical interest. A
related convergence result can be shown assuming,
the sets U{x) arc compzact (c.f. [5], Prop. 5.11).

Proposition 3: Let the assumptions of Proposition
1 hold. Assu‘c also that for cvcry x€S, uel(x) and

sequence {) }CZF for which lim J (x] = J*(x) for

for all x¢S we have K
lim H(x,u,Jk) = H(x,u,J*). “(34)
) )

Then for cach state xeS for which U(x) is a finite
set thcrc exists L > 0 such that for all t > L

if (x) satisfics (32), (33) then

ot .
H{x, u (x),Jd* = min H(x,u,J*).
l w(x),J%] TS ,

-on the problem structure, and the timing and order=
; “ing of computation and internode communication. e
7 The Testrictionson the initial conditions are also
~J~very -weak - This-means that,~for problems that are!
LA belna solved continuously in real time, it is not
i necessary to reset the initial conditions and re-
~~;-synchronize the algorithm each time the problem
data changes. As a result the potential for track-
ing slow variations in optimal control laws is im-
proved, and algorithmic implementation is_greatly |
simplified.

HO
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