
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2015-008 March 11, 2015

Staged Program Repair in SPR
Fan Long and Martin Rinard

Staged Program Repair in SPR

Fan Long and Martin Rinard
MIT EECS & CSAIL

{fanl, zichaoqi, sarachour, rinard}@csail.mit.edu

ABSTRACT
We present SPR, a new program repair system that uses
condition synthesis to instantiate transformation schemas to
repair program defects. SPR’s staged repair strategy com-
bines a rich space of potential repairs with a targeted search
algorithm that makes this space viably searchable in prac-
tice. This strategy enables SPR to successfully find correct
program repairs within a space that contains many meaning-
ful and useful patches. The majority of these correct repairs
are not within the search spaces of previous automatic pro-
gram repair systems.

1. INTRODUCTION
We present a new program repair system, SPR, that uses a

novel staged repair strategy to generate and efficiently search
a space of candidate program transformations. After us-
ing fault localization to identify target statements to trans-
form [41], the first stage selects a (non-semantics preserving)
parameterized transformation schema. The second stage in-
stantiates the parameter to obtain a transformation that it
applies to the target statement. SPR validates the transfor-
mation against a test suite of test cases. The suite contains
positive test cases, for which the program already produces
correct outputs, and negative test cases, which expose a de-
fect that causes the program to produce incorrect outputs.
SPR searches the transformation space to find a transfor-
mation that produces correct outputs for all test cases.

Transformation-based repair exhibits an inherent tradeoff
between the size and sophistication of the transformation
search space and the time required to search the space —
larger spaces may contain more correct repairs but may take
longer to search. Staged repair promotes the development
of targeted schema instantiation algorithms that enable the
system to efficiently search the space of potential repairs.
SPR’s first stage contains transformation schemas that take
conditions as parameters. SPR’s second stage uses a con-
dition synthesis algorithm to find successful conditions for
these parameters. The following SPR schemas take a con-
dition as a parameter and rely on condition synthesis to
efficiently find the condition:

• Condition Refinement: Given a target if statement,
SPR transforms the condition of the if statement by
conjoining or disjoining an additional (synthesized) tar-
get condition to the original if condition.

• Condition Introduction: Given a target statement,
SPR transforms the program so that the statement
executes only if a (synthesized) target condition is true.

• Conditional Control Flow Introduction: SPR in-
serts a new control flow statement (return, break, or
goto an existing label) that executes only if a (synthe-
sized) target condition is true.

SPR stages the condition synthesis as follows. It first finds
branch directions that deliver correct results on all inputs
in the test suite. It then generates a target condition that
successfully approximates these branch directions:

• Semantics-Preserving Target Conditions: Each
transformation schema has a target condition value
that preserves the semantics of the program. For Con-
dition Transformation, the semantics-preserving value
is true for conjoined conditions and false for disjoined
conditions. For Condition Introduction, the semantics-
preserving value is true (so that the target statement
always executes). For Conditional Control-Flow Intro-
duction, the semantics-preserving value is false (so that
the introduced control flow statement never executes).

• Target Condition Value Search: SPR applies the
schema to the program, using an abstract target con-
dition for the parameter. SPR then repeatedly reex-
ecutes the transformed program on the negative test
cases. On each execution it generates a sequence of
0/1 values for the abstract condition (the sequence
contains one value for each execution of the abstract
condition). The goal is to find sequences of target con-
dition values that produce correct outputs for all neg-
ative test cases.

• Instrumented Executions: SPR executes instru-
mented versions of the program on both negative and
positive test cases. For each negative test case, it uses
the discovered target condition values that produce the
correct output. For each positive test case, it uses the
semantics-preserving target condition values. For each
execution of the abstract target condition, the instru-
mentation records a mapping from the values of vari-
ables in the surrounding context to the corresponding
target condition value.

• Condition Generation: The goal is to obtain a sym-
bolic condition, over the variables in the surrounding
context, that generates the same target condition val-
ues as those recorded in the successful instrumented
executions. In practice, when a correct repair exists
in the search space, it is almost always possible to re-
alize this goal. In general, however, a correct repair

may not need to exactly match the target condition
values [36]. SPR therefore does not require an exact
match — it works with the recorded mappings to gen-
erate symbolic conditions that maximize the number
of generated target condition values that are the same
as the target condition values recorded in the previous
instrumented executions (in many but not all cases
these symbolic conditions match all of the recorded
target condition values).

• Condition Test: SPR instantiates the schema with
the generated condition, applies the transformation,
and runs the transformed program to determine if trans-
formed program produces correct outputs for all test
cases. If not, SPR proceeds on to test the next gener-
ated condition in the sequence.

Staging condition synthesis as target condition value search
followed by condition generation is the key to efficient condi-
tion synthesis. In practice, well over 99% of the schema ap-
plications are rejected in the target value search stage (when
the target value search fails to find values that produce cor-
rect results), eliminating the need to perform any condition
search at all for the overwhelming majority of schema ap-
plications. And when the target value search succeeds, the
resulting values enable SPR to quickly find conditions that
are likely to deliver a successful repair.

In addition to the condition-oriented schemas, SPR also
contains several schemas that focus on changing the values
of target program variables.

• Insert Initialization: For each identified statement,
SPR generates repairs that insert a memory initializa-
tion statement before the identified statement.

• Value Replacement: For each identified statement,
SPR generates repairs that either 1) replace one vari-
able with another, 2) replace an invoked function with
another function, or 3) replace a constant with another
constant.

• Copy and Replace: For each identified statement,
SPR generates repairs that copy an existing statement
to the program point before the identified statement
and then apply a Value Replacement transformation.

The rationale for the Copy and Replace modification is to
exploit redundancy in the program — many successful pro-
gram modifications can be constructed from code that al-
ready exists in the program [9]. The goal of the Replace
part of Copy and Replace is to obtain a rich repair search
space that includes variable replacement to enable copied
code to operate successfully in a new naming context. The
success of these modifications is consistent with previous
work that shows that, without replacement, only approxi-
mately 10% of developer changes can be fully derived from
existing statements without modification [27, 9, 17].

1.1 Experimental Results
We evaluate SPR on 69 real world defects and 36 function-

ality changes from the repositories of seven large real world
applications, libtiff, lighttpd, the PHP interpreter, fbc, gzip,
wireshark, and python. This is the same benchmark set used
to evaluate several previous automatic patch generation sys-

tems [24, 39].1 The SPR search space contains transforma-
tions that correctly repair 19 of the 69 defects (and 1 of the
36 functionality changes). For 11 of these 19 defects (and 1
of the 36 functionality changes), SPR finds a correct repair
(i.e., a repair that completely eliminates the defect for all
inputs, see Section 3) as the first repair in the search space
that delivers correct outputs for all test cases. These cor-
rect repairs semantically match subsequent repairs provided
by human developers. For comparison, GenProg [24] finds
correct patches for only 1 of the 69 defects [33] and AE [39]
finds correct patches for only 2 of the 69 defects [33]. These
results are consistent with the fact that the correct SPR
transformations for 17 of the 19 defects are outside the Gen-
Prog/AE search space. Kali, an automatic patch generation
system that only deletes functionality, also finds 2 correct
patches [33].

We define a repair to be plausible if it produces correct
results for all of the inputs in the test suite used to validate
the repair (a plausible repair may be incorrect — it may pro-
duce incorrect outputs for inputs not in the test suite). SPR
generates plausible repairs for 37 of the 69 defects (and 3 of
the 36 functionality changes). For comparison, GenProg [24]
generates plausible patches for only 16 of the 69 defects (and
2 of the 36 functionality changes) [33]. AE [39] generates
plausible patches for only 25 of the 69 defects (and 2 of the
36 functionality changes) [33].2 Kali also generates plausible
patches for 25 defects (and 2 functionality changes) [33].

These results highlight the success of SPR’s staged ap-
proach and the synergistic relationship between its trans-
formation schemas and condition synthesis algorithm. The
transformation schemas generate a rich transformation space
with many useful repairs. The condition synthesis algorithm
provides the efficient search algorithm required to make this
rich search space viably searchable in practice.

1.2 Contributions
This paper makes the following contributions:

• Staged Repair: It introduces a staged repair tech-
nique for generating and efficiently searching rich re-
pair spaces that contain many useful repairs.

• Search Space: It presents a set of transformation
schemas that 1) generate a search space with many
useful repairs and 2) synergistically enable the devel-
opment of a staged repair system that uses condition
synthesis to efficiently search the generated space.

1Papers for these previous systems report that this bench-
mark set contains 105 defects [24, 39]. Our analysis of the
commit logs and applications indicates that 36 of these de-
fects correspond to deliberate functionality changes. That is,
for 36 of these defects, there is no actual defect to repair. We
evaluate SPR on all 105 defects/changes, but report results
separately for the actual defects and functionality changes.
2Because of errors in the patch evaluation scripts, the Gen-
Prog and AE papers report incorrect results [33]. Specifi-
cally, the GenProg paper reports patches for 55 of the 105
defects/changes. But for 37 of these 55 defects/changes,
none of the reported patches produces correct outputs
even for the inputs in the test suite used to validate the
patches [24, 33]. Similarly, for 27 of the 54 defects/changes
reported in the AE result tar file [39, 33], none of the re-
ported patches produces correct outputs for the inputs in
the test suite used to validate the patches [24, 39, 33].

• Condition Synthesis: It presents a novel condition
synthesis algorithm. This algorithm first uses instru-
mented executions to discover branch directions that
produce correct outputs for all inputs in the test suite.
It then generates symbolic conditions that successfully
approximate the set of branch directions. This con-
dition synthesis algorithm enables SPR to efficiently
search the space of conditions in the SPR search space.

• Experimental Results: It presents experimental re-
sults that characterize the effectiveness of SPR in auto-
matically finding correct repairs for 11 out of 69 bench-
mark defects and plausible repairs for 37 of these de-
fects. The results also show that the SPR search space
contains correct repairs for 19 of the 69 defects. We
discuss several extensions to the SPR search space and
identify the correct repairs that each extension would
bring into the search space.

Copying statements and manipulating conditionals are not
new ideas in program repair. But by themselves, these tech-
niques fail to deliver anything close to a successful program
repair system [24, 32, 39, 11, 33]. A more targeted ap-
proach may produce more successful repairs [22, 26, 31],
but only within a limited and potentially very fragile scope.
SPR, with its unique combination of powerful transforma-
tion schemas and an efficient search algorithm driven by
condition synthesis, shows one way to productively over-
come the limitations of previous systems and automatically
generate repairs for a significant number of defects.

2. EXAMPLE
We next present an example that illustrates how SPR re-

pairs a defect in the PHP interpreter. The PHP interpreter
before 5.3.7 (or svn version before 309580) contains an error
(PHP bug #54283) in its implementation of the DatePeriod
object constructor [5]. If a PHP program calls the DatePe-
riod constructor with a single NULL value as the parameter
(e.g., DatePeriod(NULL)), the PHP interpreter dereferences
an uninitialized pointer and crashes.

Figure 1 presents simplified source code (from the source
file ext/date/php_date.c) that is responsible for this er-
ror. The code in Figure 1 presents the C function inside
the PHP interpreter that implements the DatePeriod con-
structor. The PHP interpreter calls this function to handle
DatePeriod constructor calls in PHP programs.

A PHP program can invoke the DatePeriod constructor
with either three parameters or a single string parameter. If
the constructor is invoked with three parameters, one of the
two calls to zend_parse_parameter_ex() on lines 9-15 will
succeed and set interval to point to a created DateInterval
PHP object. These two calls leave isostr_len and isostr

unchanged. If the constructor is invoked with a single string
parameter, the third call to zend_parse_parameter_ex() on
lines 17-18 parses the parameters and sets isostr to point
to a created PHP string object. isostr_len is the length of
this string.

The then clause in lines 35-38 is designed to process calls
with one parameter. The defect is that the programmer
assumed (incorrectly) that all one parameter calls will set
isostr_len to a non-zero value. But if the constructor is
called with a null string, isostr_len will be zero. The if
condition at line 34 misclassifies the call as a three param-
eter call and executes the else clause in lines 40-44. In this

1 // Creates new DatePeriod object.
2 PHP_METHOD(DatePeriod, __construct) {
3 php_period_obj *dpobj;
4 char *isostr = NULL;
5 int isostr_len = 0;
6 zval *interval;
7 ...
8 // Parse (DateTime,DateInterval,int)
9 if (zend_parse_parameters_ex(..., &start, date_ce_date,

10 &interval, date_ce_interval, &recurrences,
11 &options)==FAILURE) {
12 // Parse (DateTime, DateInterval, DateTime)
13 if (zend_parse_parameters_ex(..., &start, date_ce_date,
14 &interval, date_ce_interval, &end, date_ce_date,
15 &options)==FAILURE) {
16 // Parse (string)
17 if (zend_parse_parameters_ex(...,&isostr,
18 &isostr_len, &options)==FAILURE) {
19 php_error_docref(...,"This constructor accepts"
20 " either (DateTime, DateInterval, int) OR"
21 " (DateTime, DateTimeInterval, DateTime)"
22 " OR (string) as arguments.");
23 ...
24 return;
25 } } }
26 dpobj = ...;
27 dpobj->current = NULL;
28 // repair transformation schema
29 /* if (isostr_len || abstract_cond()) */
30 // instantiated repair. abstract_code() -> (isostr != 0)
31 /* if (isostr_len || (isostr != 0)) */
32 // developer patch
33 /* if (isostr)*/
34 if (isostr_len) {
35 // Handle (string) case
36 date_period_initialize(&(dpobj->start), &(dpobj->end),
37 &(dpobj->interval), &recurrences, isostr, isostr_len);
38 ...
39 } else {
40 // Handle (DateTime,...) cases
41 /* pass uninitialized ‘interval’ */
42 intobj = (php_interval_obj *)
43 zend_object_store_get_object(interval);
44 ...
45 }
46 ...
47 }

Figure 1: Simplified Code for PHP bug #54283

case interval is uninitialized and the program will crash
when the invoked zend_object_store_get_object() func-
tion dereferences interval.

We apply SPR to automatically generate a repair for this
error. Specifically, we give SPR:

• Program to Repair: Version 309579 of the PHP
source code (this version contains the error).

• Negative Test Cases: Test cases that expose the
error — i.e., test cases that PHP version 30979 does
not pass but the repaired version should pass. In this
example there is a single negative test case.

• Positive Test Cases: Test cases that prevent regres-
sion — i.e, test cases that the version 30979 already
passes and that the patched code should still pass. In
this example there are 6974 positive test cases.

Error Localization: SPR compiles the PHP interpreter
with additional profiling instrumentation to produce execu-
tion traces. It then executes this profiling version of PHP
on both the negative and positive test cases. SPR observes
that the negative test case always executes the statement at

lines 42-43 in Figure 1 while the positive test cases rarely ex-
ecute this statement. SPR therefore identifies the enclosing
if statement (line 34) as a high priority repair target.
First Stage: Select Transformation Schema: SPR se-
lects transformation schemas to apply to the repair target.
One of these schemas is a Condition Refinement schema that
loosens the if condition by disjoining an abstract condition
abstract_cond() to the if condition.
Second Stage: Condition Synthesis: SPR uses con-
dition synthesis to instantiate the abstract condition ab-

stract_cond() in the selected transformation schema.

• Target Condition Value Search: SPR replaces the
target if statement on line 34 with the transforma-
tion schema on line 29. The transformation schema
takes an abstraction condition abstract_cond() as a
parameter. SPR links PHP against a SPR library
that implements abstract_cond(). Note that if ab-

stract_cond() always returns 0, the semantics of PHP
does not change.

SPR searches for a sequence of return values from ab-

stract_cond() that causes PHP to produce the cor-
rect result for the negative test case. SPR repeat-
edly executes PHP on the negative test case, gener-
ating a different sequence of 0/1 return values from
abstract_cond() on each execution. In the example,
flipping the return value of the last invocation of ab-

stract_cond() from 0 to 1 produces the correct out-
put.

• Instrumented Reexecutions: SPR instruments
the code to record, for each invocation of ab-

stract_cond(), a mapping from the values of lo-
cal variables, accessed global variables, and values
accessed via pointers in the surrounding context to
the abstract_cond() return value. SPR reexecutes
the negative test case with the sequence of ab-

stract_cond() return values that produces the correct
output. It also reexecutes the positive test cases with
an all 0 sequence of abstract_cond() return values
(so that these reexecutions preserve the correct out-
puts for the positive test cases).

• Condition Generation: SPR uses the recorded
mappings to generate a symbolic condition that ap-
proximates the mappings. In the example, isostr is
never 0 in the negative test case execution. In the pos-
itive test case executions, isostr is always zero when
abstract_cond() is invoked (note that || is a short cir-
cuit operator). SPR therefore generates the symbolic
condition (isostr != 0) as the parameter.

• Condition Validation: SPR reexecutes the PHP
interpreter with abstract_cond() replaced with
(isostr != 0). The PHP interpreter passes all test
cases and SPR has found a successful repair (lines 30-
31 in Figure 1).

Note that the official patch from the PHP developer in
version 309580 replaces isostr_len with isostr (line 33 in
Figure 1). At this program point, isostr_len is zero when-
ever isostr is zero. The SPR repair is therefore functionally
equivalent to the official patch from the PHP developer.

c := 1 | 0 | c1 && c2 | c1 || c2 | !c1 | (c1) | v==const
simps := v = v1 op v2 | v = c | print v | v = read
ifs := if (c) `1 `2
absts := if (c && !abstc) `1 `2 | if (c || abstc) `1 `2
s := skip | stop | simps | ifs | absts
v, v1, v2 ∈ Variable const ∈ Int `1, `2 ∈ Label
c, c1, c2 ∈ CondExpr s ∈ Stmt ifs ∈ IfStmt
simps ∈ SimpleStmt absts ∈ AbstCondStmt

Figure 2: The language statement syntax

3. DESIGN
The current implementation of SPR works with applica-

tions written in the C programming language. We use a sim-
ple imperative core language (Section 3.1) to present the key
concepts in the SPR repair algorithm. Section 3.2 presents
the transformation schemas as they apply to the core lan-
guage. Section 3.3 presents the core repair algorithm, in-
cluding condition synthesis. Section 3.4 discusses how we
extend the core algorithm to handle C.

3.1 Core Language
Language Syntax: Figure 2 presents the syntax of the
core language that we use to present our algorithm. A pro-
gram in the language is defined as 〈p, n〉, where p : Label→
Statement maps each label to the corresponding statement,
n : Label → Label maps each label to the label of the next
statement to execute in the program. `0 is the label of the
first statement in the program.

The language in Figure 2 contains arithmetic statements
and if statements. An if statement of the form “if (c) `1
`2” transfers the execution to `1 if c is 1 and transfers the
execution to `2 if c is 0. The language uses if statements to
encode loops. A statement of the form “v = read” reads an
integer value from the input and stores the value to the vari-
able v. A statement of the form “print v” prints the value
of the variable v to the output. Conditional statements that
contain an abstract condition abstc (i.e., AbstCondStmt) are
temporary statements that the algorithm may introduce into
a program during condition synthesis. Such statements do
not appear in the original or repaired programs.
Operational Semantics: A program state
〈`, σ, I, O,D,R, S〉 is composed of the current program
point (a label `), the current environment that maps
each variable to its value (σ : Variable → Int), the re-
maining input (I), the generated output (O), a sequence
of future abstract condition values (D), a sequence of
recorded abstract condition values (R), and a sequence
of recorded environments for each abstract condition
execution (S). I and O are sequences of integer values (i.e.,
Sequence(Int)). D and R are sequences of zero or one values
(i.e., Sequence(0 | 1)). S is a sequence of environments (i.e.,
Sequence(Variable→ Int)).

Figure 3 presents the small step operational semantics of
our language for statements without abstract conditions. “◦”
in Figure 3 is the sequence concatenation operator. The
notation“σ ` c⇒ x” indicates that the condition c evaluates
to x under the environment σ. D, R, and S are unchanged
in these rules because these statements do not contain an
abstract condition.

3.2 Transformation Schemas

p(`) = skip

〈`, σ, I, O,D,R, S〉 =J 〈p, n〉 K⇒ 〈n(`), σ, I, O,D,R, S〉
p(`) = stop

〈`, σ, I, O,D,R, S〉 =J 〈p, n〉 K⇒ 〈nil, σ, I, O,D,R, S〉
p(`) = v = const

〈`, σ, I, O,D,R, S〉 =J 〈p, n〉 K⇒ 〈n(`), σ[v7→ const], I, O,D,R, S〉
p(`) = v = v1 op v2 x = σ(v1) op σ(v2)

〈`, σ, I, O,D,R, S〉 =J 〈p, n〉 K⇒ 〈n(`), σ[v7→ x], I, O,D,R, S〉

p(`) = v = read I = x ◦ I′
〈`, σ, I, O,D,R, S〉 =J 〈p, n〉 K⇒ 〈n(`), σ[v7→ x], I′, O,D,R, S〉

p(`) = print v

〈`, σ, I, O,D,R, S〉 =J 〈p, n〉 K⇒ 〈n(`), σ, I, O ◦ σ(v), D,R, S〉

p(`) = if (c) `1 `2 σ ` c⇒ 1

〈`, σ, I, O,D,R, S〉 =J 〈p, n〉 K⇒ 〈`1, σ, I, O,D,R, S〉 p(`) = if (c) `1 `2 σ ` c⇒ 0

〈`, σ, I, O,D,R, S〉 =J 〈p, n〉 K⇒ 〈`2, σ, I, O,D,R, S〉
Figure 3: Small step operational semantics for statements without abstract condition

M(〈p, n〉) = MIfStmt(〈p, n〉) ∪MStmt(〈p, n〉)
MIfStmt(〈p, n〉) = ∪`∈TargetL(〈p,n〉),p(`)∈IfStmt(MTighten(〈p, n〉, `) ∪MLoosen(〈p, n〉, `))
MStmt(〈p, n〉) = ∪`∈TargetL(〈p,n〉)(MControl(〈p, n〉, `) ∪MInit(〈p, n〉, `) ∪MGuard(〈p, n〉, `) ∪MRep(〈p, n〉, `) ∪MCopyRep(〈p, n〉, `))
MTighten(〈p, n〉, `) = {〈p[` 7→ if (c && !abstc) `1 `2], n〉}, where p(`) = if (c) `1 `2
MLoosen(〈p, n〉, `) = {〈p[` 7→ if (c || abstc) `1 `2], n〉}, where p(`) = if (c) `1 `2
MControl(〈p, n〉, `) = {〈p[`′ 7→ p(`)][`′′ 7→ stop][` 7→ if (0 || abstc) `′′ n(`)], n[`′ 7→ n(`)][` 7→ `′][`′′ 7→ `′]〉}
MGuard(〈p, n〉, `) = {〈p[`′ 7→ p(`)][` 7→ if (1 && !abstc) `′ n(`)], n[`′ 7→ n(`)]〉}
MInit(〈p, n〉, `) = {〈p[`′ 7→ p(`)][` 7→ v = 0], n[`′ 7→ n(`)][` 7→ `′]〉 | ∀v ∈ Vars(p(`))}
MRep(〈p, n〉, `) = {〈p[` 7→ s], n〉 | s ∈ RepS(p, p(`))}
MCopyRep(〈p, n〉, `) = {〈p[`′ 7→ p(`)][` 7→ s], n[`′ 7→ n(`)][` 7→ `′]〉,

〈p[`′ 7→ p(`)][` 7→ s′)], n[`′ 7→ n(`)][` 7→ `′]〉 | ∀s ∈ SimpleS(〈p, n〉), ∀s′ ∈ RepS(p, s)}
RepS(p, v = v1 op v2) = {v′ = v1 op v2, v = v′ op v2, v = v1 op v′ | ∀v′ ∈ Vars(p)}
RepS(p, v = const) = {v′ = const , v = const ′ | ∀v′ ∈ Vars(p), ∀const ′ ∈ Consts(p)}
RepS(p, v = read) = {v′ = read | ∀v′ ∈ Vars(p)}
RepS(p, print v) = {print v′ | ∀v′ ∈ Vars(p)}
RepS(p, s) = ∅, where s /∈ SimpleStmt

Figure 4: The program transformation function M. Note that `′ and `′′ are fresh labels.

Figure 4 presents our program transformation function M.
It takes a program 〈p, n〉 and produces a set of candidate
modified programs after transformation schema application.
In Figure 4 TargetL(〈p, n〉) is the set of labels of target state-
ments to transform. Our error localization algorithm (Sec-
tion 3.4) identifies this set of statements. SimpleS(p) de-
notes all simple statements (i.e. SimpleStmt) in p. Vars(p)
and Vars(s) denote all variables in the program p and in the
statement s, respectively. Consts(p) denotes all constants in
p.

The transformation function in Figure 4 applies condi-
tion refinement schemas (MTighten, MLoosen) to all target if
statements. It applies the condition introduction schema
(MGuard) and conditional control flow introduction schema
(MControl) to all target statements. These four schemas in-
troduce an abstract condition into the generated candidate
programs that will be handled by condition synthesis.

The transformation function also applies the insert initial-
ization schema (MInit), value replacement schema (MRep),
and copy and replace schema (MCopyRep) to all target state-
ments. Note that RepS(p, s) is an utility function that re-
turns the set of statements generated by replacing a variable
or a constant in s with other variables or constants in p.

3.3 Main Algorithm with Condition Synthesis
Figure 5 presents our main repair generation algorithm

with condition synthesis. Given a program 〈p, n〉, a set of
positive test cases PosT , and a set of negative test cases
NegT , the algorithm produces a repaired program 〈p′, n′〉
that passes all test cases. Exec(〈p, n〉, I,D) at lines 13 and

21 produces the results of running the program 〈p, n〉 on the
input I given the future abstract condition value sequence
D. Test(〈p, n〉,NegT ,PosT) at lines 29 and 35 produces a
boolean to indicate whether the program 〈p, n〉 passes all
test cases. See Figure 6 for relevant definitions.

The algorithm enumerates all transformed candidate pro-
grams in the search space derived from our transformation
function M(〈p, n〉) (line 1). If the candidate program does
not contain an abstract condition, the algorithm simply uses
Test to validate the program with test cases (lines 35-36).
Otherwise the algorithm applies condition synthesis in two
stages, condition value search and condition generation.
Condition Value Search: We augment the operational
semantics in Figure 3 to handle statements with an abstract
condition. Figure 7 presents the additional rules. The first
two rules specify the case where the result of the condition
does not depend on the abstract condition (the semantics
implements short-circuit conditionals). In this case the exe-
cution is transfered to the corresponding labels with D, R,
and S unchanged. The third and the fourth rules specify
the case where there are no more future abstract condition
values in D for the abstract condition abstc. These rules
use the semantics-preserving value for the abstract condition
abstc, with R and S appropriately updated. The last four
rules specify the case where D is not empty. In this case
the execution continues as if the abstract condition returns
the next value in the sequence D, with R, and S updated
accordingly.

For each negative test case, the algorithm in Figure 5
searches a sequence of abstract condition values with the

Input : original program 〈p, n〉
Input : positive and negative test cases NegT and

PosT , each is a set of pairs 〈I,O〉 where I is
the test input and O is the expected output.

Output: the repaired program 〈p′, n′〉, or ∅ if failed
1 for 〈p′, n′〉 in M(〈p, n〉) do
2 if p′ contains abstc then
3 R′ ←− ε
4 S′ ←− ε
5 for 〈I,O〉 in NegT do
6 〈O′, R, S〉 ←− Exec(〈p′, n′〉, I, ε)
7 cnt ←− 0
8 while O′ 6= O and cnt ≤ 10 do
9 if cnt = 10 then

10 D ←− 1 ◦ 1 ◦ 1 ◦ 1 · · ·
11 else
12 D ←− Flip(R)

13 〈O′, R, S〉 ←− Exec(〈p′, n′〉, I,D)
14 cnt ←− cnt + 1

15 if O 6= O′ then
16 skip to the next candidate 〈p′, n′〉
17 else
18 R′ ←− R′ ◦R
19 S′ ←− S′ ◦ S
20 for 〈I,O〉 in PosT do
21 〈O′, R, S〉 ←− Exec(〈p′, n′〉, I, ε)
22 R′ ←− R′ ◦R
23 S′ ←− S′ ◦ S
24 C ←− {}
25 for σ in S′ do
26 C ←− C ∪ {(v == const), !(v == const) |

∀v∀const , such that σ(v) = const}
27 cnt ←− 0
28 while C 6= ∅ and cnt < 20 do
29 let c ∈ C maximizes F (R′, S′, c)
30 C ←− C/{c}
31 if Test(〈p′[c/abstc], n′〉,NegT ,PosT) then
32 return 〈p′[c/abstc], n′〉
33 cnt ←− cnt + 1

34 else
35 if Test(〈p′, n′〉,NegT ,PosT) then
36 return 〈p′, n′〉

37 return ∅

Figure 5: Repair generation algorithm with con-
dition synthesis

goal of finding a sequence of values that generates the cor-
rect output for the test case (lines 5-19). Flip is an utility
function that enables SPR to explore different abstract con-
dition value sequences (see Figure 6). The algorithm (line
13) executes the program with different future abstract con-
dition value sequences D to search for a sequence that passes
each negative test case. If the algorithm cannot find such a
sequence for any negative test case, it will move on to the
next current candidate program (line 16).

Exec(〈p, n〉, I,D) = 〈O,R, S〉 ∃I′, O,R, S, such that 〈`0, σ0, I, ε,D, ε, ε〉 =J 〈p, n〉 K⇒
〈nil, σ, I′, O,D′, R, S〉

⊥ otherwise

Test(〈p, n〉,NegT ,PosT) = False ∃〈I, O〉 ∈ (NegT ∪ PosT), such that
Exec(〈p, n〉, I, ε) = 〈O′, R, S〉, O 6= O′

True otherwise

F (ε, ε, c) = 0
σ ` c⇒ x

F (x ◦ R, σ ◦ S, c) = F (R,S, c) + 1

σ ` c⇒ (1− x)

F (x ◦ R, σ ◦ S, c) = F (R,S, c)

Flip(ε) = ε
R = R′ ◦ 0

Flip(R) = R′ ◦ 1

R = R′ ◦ 1

Flip(R) = Flip(R′)

Figure 6: Definitions of Exec, Test, Flip, and F

SPR tries a configurable number (in our current im-
plementation, 11) of different abstract condition value se-
quences for each negative test case in the loop (lines 8-14).
At each iteration (except the last) of the loop, the algorithm
flips the last non-zero value in the previous abstract condi-
tion value sequence (see Flip definition in Figure 6). In the
last iteration SPR flips all abstract condition values to 1
(line 10 in Figure 5) (note that the program may executes
an abstract condition multiple times).

The rationale is that, in practice, if a negative test case
exposes an error at an if statement, either the last few exe-
cutions of the if statement or all of the executions take the
wrong branch direction. This empirical property holds for
all defects in our benchmark set.

If a future abstract condition value sequence can be found
for every negative test case, the algorithm concatenates the
found sequences R′ and the corresponding recorded envi-
ronments to S′ (lines 18-19). The algorithm then executes
the candidate program with the positive test cases and con-
catenates the sequences and the recorded environments as
well (lines 22-23). Note that for positive cases the algorithm
simply returns zero for all abstract conditions, so that the
candidate program has the same execution as the original
program.
Condition Generation: The algorithm enumerates all
conditions in the search space and evaluates each condition
against the recorded condition values (R′) and environments
(S′). It counts the number of recorded condition values that
the condition matches. Our current condition space is the
set of all conditions of the form (v == const) or !(v ==

const) such that ∃σ ∈ S′.σ(v) = const . It is straightfor-
ward to extend this space to include comparison operators
(<,≤,≥, >) and a larger set of logical expressions. For our
benchmark set of defects, the relatively simple SPR condi-
tion space contains a remarkable number of correct repairs,
with extensions to this space delivering relatively few addi-
tional correct repairs (see Section 4.5).

We define F(R′, S′, c) in Figure 6, which counts the num-
ber of branch directions for the condition c that match the
recorded abstract condition values R′ given the recorded en-
vironments S′. The algorithm enumerates a configurable
number (in our current implementation, 20) of the top con-
ditions that maximize F (R′, S′, c) (lines 27-33). The al-

p(`) = if (c && !abstc) `1 `2 σ ` c⇒ 0

〈`, σ, I, O,D,R, S〉 =J 〈p, n〉 K⇒ 〈`2, σ, I, O,D,R, S〉 p(`) = if (c || abstc) `1 `2 σ ` c⇒ 1

〈`, σ, I, O,D,R, S〉 =J 〈p, n〉 K⇒ 〈`1, σ, I, O,D,R, S〉
p(`) = if (c && !abstc) `1 `2 σ ` c⇒ 1

〈`, σ, I, O, ε, R, S〉 =J 〈p, n〉 K⇒ 〈`1, σ, I, O, ε, R ◦ 0, S ◦ σ〉
p(`) = if (c || abstc) `1 `2 σ ` c⇒ 0

〈`, σ, I, O, ε, R, S〉 =J 〈p, n〉 K⇒ 〈`2, σ, I, O, ε, R ◦ 0, S ◦ σ〉

p(`) = if (c && !abstc) `1 `2 σ ` c⇒ 1 D = 0 ◦D′
〈`, σ, I, O,D,R, S〉 =J 〈p, n〉 K⇒ 〈`1, σ, I, O,D′, R ◦ 0, S ◦ σ〉

p(`) = if (c || abstc) `1 `2 σ ` c⇒ 0 D = 0 ◦D′
〈`, σ, I, O,D,R, S〉 =J 〈p, n〉 K⇒ 〈`2, σ, I, O,D′, R ◦ 0, S ◦ σ〉

p(`) = if (c && !abstc) `1 `2 σ ` c⇒ 1 D = 1 ◦D′
〈`, σ, I, O,D,R, S〉 =J 〈p, n〉 K⇒ 〈`2, σ, I, O,D′, R ◦ 1, S ◦ σ〉

p(`) = if (c || abstc) `1 `2 σ ` c⇒ 0 D = 1 ◦D′
〈`, σ, I, O,D,R, S〉 =J 〈p, n〉 K⇒ 〈`1, σ, I, O,D′, R ◦ 1, S ◦ σ〉

Figure 7: Small step operational semantics for if statements with abstract condition

gorithm then validates the transformed candidate program
with the abstract condition replaced by the generated con-
dition c (lines 31-32). p[c/abstc] denotes the result of re-
placing every occurrence of abstc in p with the condition
c.

Enumerating all conditions in the space is feasible be-
cause the overwhelming majority of the candidate trans-
formed programs will not pass the condition value search
stage. SPR will therefore perform the condition generation
stage very infrequently and only when there is some evidence
that transforming the target condition may actually deliver
a correct repair. In our experiments, SPR performs the con-
dition generation stage for less than 1% of the candidate
transformed programs that contain an abstract condition.
(see Section 4.4).
Alternate Condition Synthesis Techniques: It is
straightforward to implement a variety of different condition
synthesis techniques. For example, it is possible to synthe-
size complete replacements for conditions of if statements
(instead of conjoining or disjoining new conditions to exist-
ing conditions). The condition value search would start with
the sequence of branch directions at that if statement with
the original condition, then search for a sequence of branch
directions that would generate correct outputs for all neg-
ative inputs. Condition generation would then work with
the recorded branch directions to deliver a new replacement
condition.

The effectiveness of condition value search in eliminat-
ing unpromising conditions enables the SPR condition gen-
eration algorithm to simply enumerate and test all condi-
tions in the condition search space. It is of course possible
to apply arbitrarily sophisticated condition generation al-
gorithms, for example by leveraging modern solver technol-
ogy [29]. One issue is that there may be no condition that
exactly matches the recorded sequences of environments and
branch directions. Even if this occurs infrequently (as we
would expect in practice), requiring an exact match may
eliminate otherwise correct repairs. An appropriate solver
may therefore need to generate approximate solutions.

3.4 Extensions for C
We have implemented SPR in C++ using the clang com-

piler front-end [1]. Clang contains a set of APIs for manip-
ulating the AST tree of a parsed C program, which enables
SPR to generate a repaired source code file without dra-
matically changing the overall structure of the source code.
Existing program repair tools [24, 32, 39] often destroy the
structure of the original source by inlining all header files

and renaming all local variables in their generated repaired
source code. Preserving the existing source code structure
helps developers understand and evaluate the repair and pro-
motes the future maintainability of the application.
C Program Support: SPR extends the algorithm in
Section 3.3 to support C programs. SPR applies the trans-
formation function separately to each function in a C pro-
gram. When SPR performs variable replacement or con-
dition synthesis, it considers all variables (including local,
global, and heap variables) that appear in the current trans-
formed function. During condition generation, SPR also
searches existing conditions c that occur in the same en-
closing compound statement (in addition to conditions of
the form (v == const) and !(v == const) described above
in Section 3.3).

When SPR inserts control statements, SPR considers
break, return, and goto statements. When inserting re-

turn statements, SPR generates a repair to return each con-
stant value in the returned type that appeared in the enclos-
ing function. When inserting goto statements, SPR gener-
ates a repair to jump to each already defined label in the
enclosing function. When SPR inserts initialization state-
ments, SPR considers to call memset() to initialize memory
blocks. When SPR copies statements for C programs, SPR
considers to copy compound statements in addition to sim-
ple statements, as long as the copied code can fit into the
new context.

To represent a abstract condition, SPR inserts a function
call abstract_code() into the modified condition. When
SPR tests a candidate transformed program with abstract
conditions, SPR links the program with its runtime library,
which contains an implementation of abstract_cond().
The abstract_cond() in the library implements the seman-
tics specified in Figure 7.
Error Localizer: The SPR error localizer first recompiles
the given application with additional instrumentation. It
inserts a call back before each statement in the source code
to record a positive counter value as the timestamp of the
statement execution. SPR then invokes the recompiled ap-
plication on all the positive and negative test cases.

For a statement s and a test case i, r(s, i) is the recorded
execution timestamp that corresponds to the last timestamp
from an execution of the statement s when the application
runs with the test case i. If the statement s is not executed
at all when the application runs with the test case i, then
r(s, i) = 0.

We use the notation NegT for the set of negative test cases
and PosT for the set of positive test cases. SPR computes

three scores a(s), b(s), c(s) for each statement s:

a(s) = | {i | r(s, i) 6= 0, i ∈ NegT} |
b(s) = | {i | r(s, i) = 0, i ∈ PosT} |
c(s) = Σi∈NegTr(s, i)

A statement s1 has higher priority than a statement s2 if
prior(s1, s2) = 1, where prior is defined as:

prior(s1, s2) =

1 a(s1) > a(s2)
1 a(s1) = a(s2), b(s1) > b(s2)

1
a(s1) = a(s2), b(s1) = b(s2),
c(s1) > c(s2)

0 otherwise

Intuitively, SPR prioritizes statements that 1) are exe-
cuted with more negative test cases, 2) are executed with
fewer positive test cases, and 3) are executed later during
executions with negative test cases.

SPR runs the above error localization algorithm over the
whole application including all of its C source files. If the
user specifies a source file to repair, SPR computes the in-
tersection of the top 5000 statements in the whole applica-
tion with the statements in the specified source code file.
PCR uses the statements in this intersection as the identi-
fied statements to repair. Unlike GenProg [24] and AE [39],
SPR can also operate completely automatically. If the user
does not specify any such source file, SPR identifies the top
200 statements in the whole application (potentially from
different source files) as the potential modification targets.

The SPR error localizer also ranks if statements based
on the statements inside their then and else clauses. Specifi-
cally, it gives an if statement the rank of the highest ranking
statement in its then or else clauses. The rationale is that
changing the condition of these enclosing if statement will
control the execution of the identified statement and there-
fore may repair the program.
Repair Test Order: SPR tests each of the generated
candidate repairs one by one (line 1 in Figure 5). SPR em-
pirically sets the test order as follows:

1. SPR first tests repairs that change only a branch con-
dition (e.g., tighten and loosen a condition).

2. SPR tests repairs that insert an if-statement before a
statement s, where s is the first statement of a com-
pound statement (i.e., C code block).

3. SPR tests repairs that insert an if-guard around a
statement s.

4. SPR tests repairs that insert a memory initialization.

5. SPR tests repairs that insert an if-statement before a
statement s, where s is not the first statement of a
compound statement.

6. SPR tests repairs a) that replace a statement or b) that
insert a non-if statement (i.e., generated by MCopyRep)
before a statement s where s is the first statement of
a compound statement.

7. SPR finally tests the remaining repairs.

Intuitively, SPR prioritizes repairs that contain condition-
als. With abstract conditions that SPR later synthesizes,
each condition value search stands in for multiple potential
repairs. SPR also prioritizes repairs that insert a statement

before the first statement of a compound statement (i.e., a
code block), because inserting statements at other locations
is often semantically equivalent to such repairs.

If two repairs have the same tier in the previous list, their
test orders are determined by the rank of the two corre-
sponding original statements (which two repairs are based
on) in the list returned by the error localizer.
Batched Compilation: When SPR tests candidate re-
pairs, compilations of the repaired application may become
the performance bottleneck for SPR. To reduce the time cost
of compilations, SPR merges similar candidate repairs into
a single combined repair with a branch statement. A global
integer environment variable controls the branch statement,
so that the batched repair will be equivalent to each individ-
ual candidate repair, when the environment variable takes
a corresponding constant value. SPR therefore only needs
to recompile the merged repair once to test each of the in-
dividual candidate repairs.
Test Case Evaluation Order: SPR always first tests
each candidate repair with the negative test cases. Em-
pirically, negative test cases tend to eliminate invalid re-
pairs more effectively than positive test cases. Furthermore,
whenever a positive test case eliminates a candidate repair,
SPR will record this positive test case and prioritize this test
case for the future candidate repair evaluation.
Repairs for Code Duplicates: Programs often contain
duplicate or similar source code, often caused, for example,
by the use of macros or code copy/paste during application
development. SPR detects such duplicates in the source
code. When SPR generates repairs that modify one of the
duplicates, it also generates additional repairs that propa-
gate the modification to the other duplicates.

4. EXPERIMENTAL RESULTS
We evaluate SPR on a benchmark set containing 69 de-

fects and 36 functionality changes drawn from seven large
open source applications, libtiff [4] (a TIFF image process-
ing library and toolkit), lighttpd [3] (a popular open source
HTTP server), the PHP interpreter [6] (an open source inter-
preter for PHP scripts), gmp (a multiple percision arithmetic
library), gzip (a popular compression toolkit), python (the
standard Python languague implementation), wireshark (a
popular network package analyzer), and fbc (an open source
Basic compiler) [2, 24]. We address the following questions:

1. Plausible Repairs: How many plausible repairs can
SPR generate for this benchmark set?

2. Correct Repairs: How many correct repairs can SPR
generate for this benchmark set?

3. Design Decisions: How do the various SPR design
decisions affect the ability of SPR to generate plausible
and correct repairs?

4. Previous Systems: How does SPR compare with
previous systems on this benchmark set?

4.1 Methodology
Reproduce the Defects/Changes: For each of
the seven benchmark applications, we collected the de-
fects/changes, test harnesses, test scripts, and test cases
used in a previous study [2]. We modified the test scripts
and test harnesses to eliminate various errors [33]. For

App LoC Tests
Defects/
Changes

Plausible Correct
Init

Time

SPR
Search
Time

SPR(NoF)
Search
Time

SPR
SPR Gen

AE SPR
SPR Gen

AE
NoF Prog NoF Prog

libtiff 77k 78 8/16 5/0 5/0 3/0 5/0 1/0 1/0 0/0 0/0 2.4m 54.0m 71.4m
lighttpd 62k 295 7/2 4/1 2/1 4/1 3/1 0/0 0/0 0/0 0/0 7.2m 144.1m 182.3m
php 1046k 8471 31/13 17/1 13/1 5/0 7/0 8/0 7/0 1/0 2/0 13.7m 156.2m 186.2m
gmp 145k 146 2/0 2/0 2/0 1/0 1/0 1/0 1/0 0/0 0/0 7.5m 128m 374.5m
gzip 491k 12 4/1 2/0 2/0 1/0 2/0 1/0 1/0 0/0 0/0 4.2m 33.5m 29.5m
python 407k 35 9/2 2/1 2/1 0/1 2/1 0/1 0/1 0/1 0/1 31.1m 237.7m 163.0m
wireshark 2814k 63 6/1 4/0 4/0 1/0 4/0 0/0 0/0 0/0 0/0 58.8m 32.2m 40.3m
fbc 97k 773 2/1 1/0 1/0 1/0 1/0 0/0 0/0 0/0 0/0 8m 15m 53m
Total 69/36 37/3 31/3 16/2 25/2 11/1 10/1 1/1 2/1

Table 1: Overview of SPR Repair Generation Results

libtiff we implemented only partially automated repair val-
idation, manually filtering the final generated repairs to re-
port only plausible repairs [33]. We then reproduced each
defect/change (except the fbc defects/changes) in our ex-
perimental environment, Amazon EC2 Intel Xeon 2.6GHz
Machines running Ubuntu-64bit server 14.04. fbc runs only
in 32-bit environments, so we use a virtual machine with
Intel Core 2.7Ghz running Ubuntu-32bit 14.04 for the fbc
experiments.
Apply SPR: For each defect/change, we ran SPR with
a time limit of 12 hours. We terminate SPR when either
1) SPR successfully finds a repair that passes all of the test
cases or 2) the time limit of 12 hours expires with no gener-
ated SPR repair. To facilitate the comparison of SPR with
previous systems, we run SPR twice for each defect: once
without specifying a source code file to repair, then again
specifying the same source code file to repair as previous
systems [2, 24, 39]. 3

Inspect Repair Correctness: For each defect/change,
we manually inspect all of the repairs that SPR generates.
We consider a generated repair correct if 1) the repair com-
pletely eliminates the defect exposed by the negative test
cases so that no input will be able to trigger the defect, and
2) the repair does not introduce any new defects.

We also analyze the developer patch (when available) for
each of the 40 defects/changes for which SPR generated
plausible repairs. Our analysis indicates that the developer
patches are, in general, consistent with our correctness anal-
ysis: 1) if our analysis indicates that the SPR repair is cor-
rect, then the repair has the same semantics as the developer
patch and 2) if our analysis indicates that the SPR repair is
not correct, then the repair has different semantics from the
developer patch.

We acknowledge that, in general, determining whether a
specific repair corrects a specific defect can be difficult (or in
some cases not even well defined). We emphasize that this
is not the case for the repairs and defects that we consider
in this paper. The correct behavior for all of the defects is
clear, as is repair correctness and incorrectness.

4.2 Summary of Experimental Results
Table 1 summarizes our benchmark set and our experi-

mental results. All of the generated SPR repairs are avail-

3Previous systems require the user of the system to identify
a source code file to patch [2, 24, 39]. This requirement re-
duces the size of the search space but eliminates the ability
of these systems to operate automatically without user in-
put. SPR imposes no such restriction — it can operate fully
automatically across the entire source code base. If desired,
it can also work with a specified source code file to repair.

able [25]. Column 1 (App) presents the name of the bench-
mark application. Column 2 (LoC) presents the size of the
benchmark application measured in the number of source
code lines. Column 3 (Tests) presents the number of test
cases. Column 4 (Defects/Changes) presents the number of
defects/changes we considered in our experiments. Each en-
try is of the form X/Y, where X is the number of defects
and Y is the number of changes.

Each entry in Column 5 (Plausible SPR) is of the form
X/Y, where X is the number of defects and Y is the num-
ber of changes for which SPR generates a plausible repair.
Column 6 (Plausible SPR NoF) presents the corresponding
numbers for SPR running without a specified source code
file to repair. For comparison, Columns 7-8 present the cor-
responding results for GenProg [24] and AE [39].4 Columns
9-12 present the corresponding results for correct repairs.

SPR generates plausible repairs for at least 12 more de-
fects than GenProg and AE (37 for SPR vs. 16 for GenProg
and 25 for AE). Even with no specified source code file to re-
pair (note that GenProg and AE require the user to provide
this information), SPR is able to generate plausible repairs
for 31 defects. The GenProg result tar file [2] reports results
from 10 different GenProg executions with different random
number seeds. For some defects some of the patches are cor-
rect while others are not. We count the defect as patched
correctly by GenProg if any of the patches for that defect
are correct. Our results show that SPR generates correct re-
pairs for at least 9 more defects than GenProg and AE (11
for SPR vs. 1 for GenProg and 2 for AE). Even when the
target source file is not specified, SPR still generates correct
repairs for 10 defects.

Column 13 (Init Time) in Table 1 presents the average
time SPR spent to initialize the repair process, which in-
cludes compiling the application and running the error lo-
calizer. Column 14 (SPR Search Time) presents the aver-
age execution time of SPR on all defects/changes for which
SPR generates repairs. Column 15 (SPR NoF Search Time)
presents the average execution time for the runs where we
do not specify a source code file to repair. Our experimental
results show that for those defects for which SPR generates
a repair, SPR will generate the first repair in less than 2
hours on average.

4.3 SPR Repair Generation Results

4Note that due to errors in the repair evaluation scripts, at
least half of the originally reported patches from the Gen-
Prog and AE papers do not produce correct results for the
inputs in the test suite used to validate the patches [33].
See our previous work on the analysis of GenProg and AE
patches for details [33].

Defect/
Change

SPR SPR(No File Name Info)
Gen
Prog

AE SPR
Time

SPR
Search Gen Correct

Result
Search Gen Correct

Result
(NoF)

Space At At Space At At Time
libtiff-ee2ce-b5691 139321 5630 5630 Correct 49423 2167 2167 Correct No Gen 162m 134m
libtiff-d13be-ccadf 39207 94 94 Gen 14717 68 68 Gen Gen Gen 46m 52m
libtiff-90d13-4c666 142938 5764 - Gen 50379 2070 - Gen No Gen 273m 133m
libtiff-5b021-3dfb3 85812 21 7526 Gen 62981 35 6894 Gen Gen Gen 6m 8m
libtiff-08603-1ba75 38812 46 - Gen 16415 80 - Gen Gen Gen 30m 30m
lighttpd-1794-1795 62517 37 - Gen No Gen Gen 84m >12h
lighttpd-1806-1807 5902 5 - Gen No Gen Gen 281m >12h
lighttpd-1913-1914 37783 69 - Gen 20363 5 - Gen Gen No 248m 298m
lighttpd-2661-2662 21539 47 81 Gen 14218 545 - Gen Gen Gen 55m 190m
php-307562-307561 10927 968 968 Correct 40419 1614 1614 Correct No No 32m 412m
php-307846-307853 51579 4842 4842 Correct 261609 1786 1786 Correct No No 132m 429m
php-307931-307934 25045 3 - Gen No Gen Gen 164m >12h
php-308262-308315 94127 36 12854 Gen No No No 152m >12h
php-308525-308529 7067 160 - Gen No No Gen 294m >12h
php-308734-308761 2886 252 252 Correct 8137 1920 1920 Correct No No 180m 385m
php-309111-309159 15867 66 5747 Gen 27262 101 8638 Gen No Correct 50m 83m
php-309516-309535 50522 3975 3975 Correct No No No 113m >12h
php-309579-309580 8451 11 11 Correct 218782 45 45 Correct No No 20m 81m
php-309688-309716 6962 462 534 Gen 40750 563 4383 Gen No No 18m 113m
php-309892-309910 12662 4 4 Correct 166491 56 56 Correct Correct Correct 37m 77m
php-309986-310009 10977 30 - Gen 54392 37 - Gen Gen Gen 85m 369m
php-310011-310050 2140 153 1252 Gen 39634 20 10773 Gen Gen Gen 429m 267m
php-310370-310389 3865 33 - Gen 45305 29 - Gen No No 91m 100m
php-310673-310681 16079 1215 - Gen 13859 312 - Gen Gen Gen 132m 56m
php-310991-310999 294623 127 127 Correct 133670 50 50 Correct No No 149m 107m
php-311346-311348 33620 22 22 Correct 18121 3 3 Correct No No 68m 45m
gmp-13420-13421 14744 2242 2242 Correct 19652 3088 3088 Correct No No 236m 363m
gmp-14166-14167 4581 9 - Gen 10217 13 - Gen Gen Gen 20m 23m
gzip-a1d3d4-f17cbd 46113 942 942 Correct 18106 260 260 Correct No Gen 38m 31m
gzip-3fe0ca-39a362 20522 60 - Gen 21353 3 - Gen Gen Gen 29m 28m
python-69223-69224 11955 794 - Gen 24113 77 - Gen No Gen 564m 238m
python-70098-70101 27674 46 - Gen 13238 899 - Gen No Gen 90m 172m
wshark-37112-37111 8820 80 - Gen 17704 41 - Gen Gen Gen 48m 36m
wshark-37172-37171 47406 223 - Gen 25531 153 - Gen No Gen 28m 38m
wshark-37172-37173 47406 175 - Gen 25531 270 - Gen No Gen 24m 40m
wshark-37284-37285 53196 313 - Gen 27723 345 - Gen No Gen 29m 47m
fbc-5458-5459 506 4 4 Gen 4611 6 54 Gen Gen Gen 15m 53m

lighttpd-2330-2331 24919 6 - Gen 21910 106 - Gen Gen Gen 51m 59m
php-311323-311300 32009 122 - Gen 211717 93 - Gen No No 666m 83m
python-69783-69784 12691 67 67 Correct 24331 58 58 Correct Correct Correct 59m 79m

Table 2: SPR Results for Each Generated Plausible Repair

SPR generates plausible repairs for 40 defects/changes in
our benchmark set. Table 2 presents detailed information
for each defect/change for which SPR generates a plausible
repair.5 The first 37 rows present results for defects, the last
3 rows present results for functionality changes. Column 1
(Defect/Change) is in the form of X-Y-Z, where X is the
name of the application that contains the defect/change,
Y is the defective version, and Z is the reference repaired
version. Columns 2-5 in Table 2 present results from the
SPR runs where we specified the target source file to repair
(as in the GenProg and AE runs). Columns 6-9 present
results from the SPR runs where we do not specify a source
code file to repair.
Search Space: Columns 2 and 6 (Search Space) in Table 2
present the total number of candidate repairs in the SPR
search space. A number X in Columns 3 and 7 (Gen At)
indicates that the first generated plausible patch is the Xth
candidate patch in SPR’s search space.

Columns 4 and 8 (Correct At) present the rank of the
first correct repair in the SPR search space (if any). A “-”
indicates that there is no correct repair in the search space.

5This set is a superset of the set of defects/changes for which
GenProg/AE generate plausible patches.

Note that even if the correct repair is within the SPR
search space, SPR may not generate this correct repair —
the SPR search may time out before SPR encounters the cor-
rect repair, or SPR may encounter a plausible but incorrect
repair before it encounters the correct repair.
Comparison With GenProg and AE: Columns 5 and
9 (Result) present for each defect whether the SPR repair
is correct or not. Columns 10 and 11 present the status
of the GenProg and AE patches for each defect. “Correct”
in the columns indicates that the tool generated a correct
patch. “Gen” indicates that the tool generated a plausible
but incorrect patch. “No” indicates that the tool does not
generate a plausible patch for the corresponding defect.

Our experimental results show that whenever GenProg or
AE generates a plausible patch for a given defect, so does
SPR. For one defect, AE generates a correct patch when
SPR generates a plausible but incorrect repair. For this de-
fect, the SPR search space contains a correct repair, but
the SPR search algorithm encounters the plausible but in-
correct repair before it encounters the correct repair. For
the remaining defects for which GenProg or AE generate a
correct repair, so does SPR. SPR generates plausible repairs
for 21 more defects than GenProg and 12 more defects than

Defect/
Change

Repair Type
Condition

Value Search
On Off

php-307562-307561 Replace† 0/58 5.3X
php-307846-307853 Add Init† 0/198 2.5X
php-308734-308761 Guarded Control†‡ 8/44 5.7X
php-309516-309535 Add Init† 0/207 3.1X
php-309579-309580 Change Condition†‡ 1/24 15.6X
php-309892-309910 Delete 1/63 50X
php-310991-310999 Change Condition† 4/486 324.4X*
php-311346-311348 Redirect Branch† 2/283 141.2X*
libtiff-ee2ce5-b5691a Add Control†‡ 3/1099 8.9X*
gmp-13420-13421 Replace†‡ 0/339 5.1X*
gzip-a1d3d4-f17cbd Copy and Replace†‡ 0/269 11.7X
python-69783-69784 Delete 2/169 35.9X

php-308262-308315 Add Guard†‡ N/A 1.2X
php-309111-309159 Copy‡ N/A 5.2X
php-309688-309716 Change Condition†‡ N/A 7.2X
php-310011-310050 Copy and Replace†‡ N/A 3.2X
libtiff-d13be-ccadf Change Condition† N/A 211.1X
libtiff-5b021-3dfb3 Replace† N/A 3.1X
lighttpd-2661-2662 Guarded Control†‡ N/A 48.1X
fbc-5458-5459 Change Condition†‡ N/A 22.4X

Table 3: SPR Repair Type and Condition Synthesis
Results

AE. SPR generates correct repairs for 10 more defects than
GenProg and 9 more defects than AE.

4.4 Correct Repair Analysis
The SPR repair search space contains correct repairs for

20 defects/changes. Table 3 classifies these 20 correct re-
pairs. The first 12 of these 20 are the first plausible re-
pair that SPR encounters during the search. The classifica-
tion highlights the challenges that SPR must overcome to
generate these correct repairs. Column 1 (Defect/Change)
presents the defect/change.
Modification Operators: Column 2 (Repair Type)
presents the repair type of the correct repair for each de-
fect. “Add Control”indicates that the repair inserts a control
statement with no condition. “Guarded Control” indicates
that the repair inserts a guarded control statement with a
meaningful condition. “Replace” indicates that the repair
modifies an existing statement using value replacement to
replace an atom inside it. “Copy and Replace” indicates
that the repair copies a statement from somewhere else in
the application using value replacement to replace an atom
in the statement. “Add Init” indicates that the repair in-
serts a memory initialization statement. “Delete” indicates
that the repair simply removes statements (this is a special
case of the Conditional Guard modification in which the
guard condition is set to false). “Redirect Branch” indicates
that the repair removes one branch of an if statement and
redirects all executions to the other branch (by setting the
condition of the if statement to true or false). “Change Con-
dition” indicates that the repair changes a branch condition
in a non-trivial way (unlike“Delete”and“Redirect Branch”).
“Add Guard”indicates that the repair conditionally executes
an existing statement by adding an if statement to enclose
the existing statement.

A “†” in Column 2 indicates that the SPR repair for this
defect is outside the search space of GenProg and AE (for
17 out of the 20 defects/changes, the SPR repair is outside
the GenProg and AE search space). A “‡” in the column
indicates that the SPR repair for this defect is outside the
search space of PAR with the eight templates from the PAR

paper [22]. For 11 of the 20 defects/changes, the SPR repair
is outside the PAR search space.

For php-307846-307853, php-308734-308761, php-309516-
309535, libtiff-ee2ce5b7-b5691a5a, and lighttpd-2661-2662,
the correct repairs insert control statements or initial-
ization statements that do not appear elsewhere in the
source file. For php-307562-307561, gmp-13420-13421,
gzip-a1d3d4-f17cbd, php-310011-310050, and libtiff-5b021-
3dfb3 the SPR repairs change expressions inside the copied
or replaced statements. For php-309579-309580, php-
310991-310999, php-311346-311348, php-308262-308315,
php-309688-309716, libtiff-d13be-ccadf, and fbc-5458-5459
the SPR generated repairs change the branch condition in
a way which is not equivalent to deleting the whole state-
ment. These repairs are therefore outside the search space of
GenProg and AE, which only copy and remove statements.

The SPR correct repairs for php-308734-308761 (add
“break”), libtiff-ee2ce5b7-b5691a5a (add “goto”), gzip-
a1d3d4-f17cbd (add “assignment”), php-309111-309159
(copy a statement block), and php-310011-310050 (add a
function call) are outside the PAR search space because no
template in PAR is able to add goto, break, assignment,
function call, or compound statements into the source code.
The SPR correct repair for gmp-13420-13421 is also outside
the PAR search space, because the repair replaces a subex-
pression inside an assignment statement and no template in
PAR supports such an operation. The SPR correct repair
for php-309579-309580 is outside the PAR search space be-
cause the repair changes a branch condition (See Section 2),
but the inserted clause “isostr” does not appear elsewhere
in branch conditions in the application. The PAR template
“Expression Adder” collects the added condition clause only
from other conditions in the program. The correct repairs
for php-308262-308315, php-309688-309716, lighttpd-2661-
2662, and fbc-5458-5459 are outside the PAR search space
because they require a condition that does not already exist
in the program.
Condition Synthesis: Each entry in Column 3 (Con-
dition Value Search On) is of the form X/Y. Here Y is
the total number of repair schema applications that con-
tain an abstract target condition. X is the number of these
schema applications for which SPR discovers a sequence of
abstract condition values that generate correct inputs for
all outputs. SPR performs the condition generation search
for only these X schema applications. These results high-
light the effectiveness of SPR’s staged condition synthesis
algorithm — over 99.4% of the schema applications are dis-
carded before SPR even attempts to find a condition that
will repair the program. We note that, for all defects except
php-310991-310999, SPR’s condition generation algorithm is
able to find an exact match for the recorded abstract condi-
tion values. For php-310991-310999, the correct generated
condition matches all except one of the recorded abstract
condition values. We attribute the discrepancy to the ability
of the program to generate a correct result for both branch
directions [36].

Column 4 (Condition Value Search Off) presents how
many times more candidate repairs SPR would need to con-
sider if SPR turned off condition value search and performed
condition synthesis by simply enumerating and testing all
conditions in the search space. These results show that
SPR’s staged condition synthesis algorithm significantly re-
duces the number of candidate repairs that SPR needs to

validate, in some cases by a factor of over two orders of mag-
nitude. Without staged condition synthesis, SPR would be
unable to generate repairs for 4 defects within 12 hours.

4.5 Search Space Extensions
The current SPR repair space contains repairs for 19 of

the 69 defects. Extending the SPR condition space to in-
clude comparison operations (<,≤,≥, >) would bring re-
pairs for an additional two defects into the repair space
(lighttpd-1913-1914 and python-70056-70059). Extending
the repair space to include repairs that apply two trans-
formation schemas (instead of only one as in the cur-
rent SPR implementation) would bring repairs for another
two defects into the space (php-308525-308529 and gzip-
3fe0ca-39a362). Extending the Copy and Replace schema
instantiation space to include more sophisticated replace-
ment expressions would bring repairs for six more de-
fects into the search space (php-307914-307915, php-311164-
311141, libtiff-806c4c9-366216b, gmp-14166-14167, python-
69934-69935, and fbc-5556-5557). Combining all three of
these extensions would bring an additional six more de-
fects into the search space (php-307687-307688, php-308523-
308525, php-309453-309456, php-310108-310109, lighttpd-
1948-1949, and gzip-3eb609-884ef6). Repairs for the remain-
ing 34 defects require changes to or insertions of at least
three statements.

All of these extensions come with potential costs. The
most obvious cost is the difficulty of searching a larger re-
pair space. A more subtle cost is that increasing the search
space may increase the number of plausible but incorrect
repairs and make it harder to find the correct repair. It is
straightforward to extend SPR to include comparison oper-
ators. The feasibility of supporting the other extensions is
less clear.

5. LIMITATIONS
The data set considered in this paper was selected not

by us, but by the GenProg developers in an attempt to
obtain a large, unbiased, and realistic benchmark set [24].
The authors represent the study based on this data set as a
“Systematic Study of Automated Program Repair”and iden-
tify one of the three main contributions of the paper as a
“systematic evaluation” that “includes two orders of magni-
tude more”source code, test cases, and defects than previous
studies [24]. Moreover, the benchmark set was specifically
constructed to “help address generalizability concerns” [24].
Nevertheless, one potential threat to validity is that our re-
sults may not generalize to other applications, defects, and
test suites.

SPR only applies one transformation at each time it gen-
erates a candidate repair. Repairs that modify two or more
statements are not in SPR’s search space. It is unclear how
to combine multiple transformations and still efficiently ex-
plore the enlarged search space. We note that previous
tools [24, 32] that apply multiple mutations produce only
semantically simple patches. The overwhelming majority of
the patches are incorrect and equivalent to simply deleting
functionality [33].

6. RELATED WORK
ClearView: ClearView is a generate-and-validate system
that observes normal executions to learn invariants that

characterize safe behavior [31]. It deploys monitors that de-
tect crashes, illegal control transfers and out of bounds write
defects. In response, it selects a nearby invariant that the in-
put that triggered the defect violates, and generates patches
that take a repair action when the invariant is violated. Sub-
sequent executions enable ClearView to determine if 1) the
patch eliminates the defect while 2) preserving desired be-
nign behavior. ClearView generates patches that can be
applied directly to a running program without requiring a
restart.

ClearView was evaluated by a hostile Red Team attempt-
ing to exploit security vulnerabilities in Firefox [31]. The
Red Team developed attacks that targeted 10 Firefox vul-
nerabilities and evaluated the ability of ClearView to auto-
matically generate patches that eliminated the vulnerability.
For 9 of these 10 vulnerabilities, ClearView is able to gen-
erate patches that eliminate the vulnerability and enable
Firefox to continue successful execution [31].

SPR differs from ClearView in both its goal and its tech-
nique. SPR targets software defects that can be exposed by
supplied negative test cases, which are not limited to just
security vulnerabilities. SPR operates on a search space de-
rived from its modification operators to generate candidate
patches, while ClearView generates patches to enforce vio-
lated invariants.
GenProg, RSRepair, and AE: GenProg [40, 24] uses a
genetic programming algorithm to search a space of patches,
with the goal of enabling the application to pass all consid-
ered test cases. RSRepair [32] changes the GenProg algo-
rithm to use random modification instead. AE [39] uses a de-
terministic patch search algorithm and uses program equiv-
alence relations to prune equivalent patches during testing.

Previous work shows that, contrary to the design principle
of GenProg, RSRepair, and AE, the majority of the reported
patches of these three systems are implausible due to errors
in the patch validation [33]. Further semantic analysis on the
remaining plausible patches reveals that despite the surface
complexity of these patches, an overwhelming majority of
these patches are equivalent to functionality elimination [33].
The Kali patch generation system, which only eliminates
functionality, can do as well [33].

Unlike GenProg [24], RSRepair [32], and AE [39], which
only copy statements from elsewhere in the program, SPR
defines a set of novel modification operators that enables
SPR to operate on a search space which contains meaningful
and useful repairs. SPR then uses its condition synthesis
technique to efficiently explore the search space. Our results
show that SPR significantly outperforms GenProg and AE
in the same benchmark set. The majority of the correct
repairs SPR generates in our experiments are outside the
search space of GenProg, RSRepair, and AE.
PAR: PAR [22] is another prominent automatic patch gen-
eration system. PAR is based on a set of predefined human-
provided patch templates. We are unable to directly com-
pare PAR with SPR because, despite repeated requests to
the authors of the PAR paper over the course of 11 months,
the authors never provided us with the patches that PAR
was reported to have generated [22]. Monperrus found that
PAR fixes the majority of its benchmark defects with only
two templates (“Null Pointer Checker” and “Condition Ex-
pression Adder/Remover/Replacer”) [28].

In general, PAR avoids the search space explosion prob-
lem because its human supplied templates restrict its search

space. However, the PAR search space (with the eight tem-
plates in the PAR paper [22]) is in fact a subset of the SPR
search space. Moreover, the difference is meaningful — the
SPR correct patches for at least 11 of our benchmark de-
fects are outside the PAR search space (see Section 4.4).
This result illustrates the fragility and unpredictability of
using fixed patch templates.
SemFix and MintHint: SemFix [29] and MintHint [19]
replace the potential faulty expression with a symbolic value
and use symbolic execution techniques [10] and SMT solvers
to find a replacement expression that enables the program to
pass all test cases. SemFix and MintHint are evaluated only
on applications with less than 10000 lines of code. In addi-
tion, these techniques cannot generate fixes for statements
with side effects.
Debroy and Wong: Debroy and Wong [11] present a
mutation-based patch generation technique. This technique
either replaces an existing arithmetic operator with another
operator or negates the condition of an if or while statement.
In contrast, SPR uses more sophisticated and effective mod-
ification operators and search algorithms. In fact, none of
the correct repairs in SPR’ search space for the 19 defects
are within the Debroy and Wong search space.
NOPOL: NOPOL [12] is an automatic repair tool focus-
ing on branch conditions. It identifies branch statement
directions that can pass negative test cases and then uses
SMT solvers to generate repairs for the branch condition. A
key difference between SPR and NOPOL is that SPR intro-
duces abstract condition semantics and uses target condition
value search to determine the value sequence of an abstract
condition, while NOPOL simply assumes that the modified
branch statement will always take the same direction dur-
ing an execution. In fact, this assumption is often not true
when the branch condition is executed multiple times for a
test case (e.g., php-308734-308761 and php-310991-310999),
and NOPOL will fail to generate a correct patch.

SPR also differs from NOPOL in the two following ways.
1) NOPOL focuses only on patches that change condi-
tions, while SPR can generate repairs for a broader class
of defects (php-307562-307561, php-307846-307853, php-
309516-309535, libtiff-ee2ce-b5691, gmp-13420-13421, and
gzip-a1d3d-f17cb). 2) NOPOL was evaluated on two small
Java programs (each with less than 5000 lines of code) and
two artificial examples in [12], while we evaluate SPR on
105 real world defects in seven C applications with more
than one million lines in total.
Fix Safety-Policy Violation: Weimer [38] proposes a
patch generation technique for safety policy violation errors.
This technique takes a DFA-like specification that describes
the safety policy. For an execution trace that violates the
policy, it finds a nearest accepting trace from the offending
execution trace for the DFA specification. It then generates
a patch that forces the program to produce the identified
accepting trace instead of the trace that violates the policy.
The goal is not to obtain a correct patch — the goal is in-
stead to produce a patch that helps give a human developer
insight into the nature of the defect.

In contrast, SPR does not require human-supplied speci-
fications and can work with any defect (not just safety pol-
icy violations) that can be exposed by negative test cases.
Unlike SPR, Weimer’s technique does not attempt to re-
pair branch conditions and simply uses path constraints as

branch conditions to guard its modifications to minimize the
patch impact on normal traces.
Domain Specific Repair Generation: Other pro-
gram repair systems include VEJOVIS [30] and Gopinath
et al. [18], which applies domain specific techniques to re-
pair DOM-related faults in JavaScript and selection state-
ments in database programs respectively. AutoFix-E [37]
repairs program faults with human-supplied specifications
called contracts. SPR differs from all of this previous re-
search in that it focuses on generating fixes for general pur-
pose applications without human-supplied specifications.

6.1 Targeted Repair Systems
Researchers have developed a variety of repair systems

that are targeted at specific classes of errors.
Failure-Oblivous Computing: Failure-oblivious comput-
ing [34] checks for out of bounds reads and writes. It dis-
cards out of bounds writes and manufactures values for out
of bounds reads. This eliminates data corruption from out
of bounds writes, eliminates crashes from out of bounds ac-
cesses, and enables the program to continue execution along
its normal execution path.

Failure-oblivious computing was evaluated on five errors
in five server applications. The goal was to enable servers
to survive inputs that trigger the errors and continue on to
successfully process other inputs. For all five systems, the
implemented system realized this goal. For two of the five
errors, failure-oblivious computing completely eliminates the
error and, on all inputs, delivers the same output as the
official developer patch that corrects the error (we believe
these patches are correct).
Bolt: Bolt [23] attaches to a running application, deter-
mines if the application is in an infinite loop, and, if so, ex-
its the loop. A user can also use Bolt to exit a long-running
loop. In both cases the goal is to enable the application to
continue useful execution. Bolt was evaluated on 13 infinite
and 2 long-running loops in 12 applications. For 14 of the
15 loops Bolt delivered a result that was the same or better
than terminating the application. For 7 of the 15 loops, Bolt
completely eliminates the error and, on all inputs, delivers
the same output as the official developer patch that corrects
the error (we believe these patches are correct).
RCV: RCV [26] enables applications to survive null deref-
erence and divide by zero errors. It discards writes via null
references, returns zero for reads via null references, and
returns zero as the result of divides by zero. Execution con-
tinues along the normal execution path.

RCV was evaluated on 18 errors in 7 applications. For 17
of these 18 errors, RCV enables the application to survive
the error and continue on successfully process the remaining
input. For 11 of the 18 errors, RCV completely eliminates
the error and, on all inputs, delivers either identical (9 of 11
errors) or equivalent (2 of 11 errors) outputs as the official
developer patch that corrects the error (we believe these
patches are correct).
APPEND: APPEND [15] proposes to eliminate null
pointer exceptions in Java by applying recovery techniques
such as replacing the null pointer with a pointer to an ini-
tialized instance of the appropriate class. The presented
examples illustrate how this technique can effectively elimi-
nate null pointer exceptions and enhance program survival.
Data Structure Repair: Data structure repair enables
applications to recover from data structure corruption er-

rors [14]. Data structure repair enforces a data structure
consistency specification. This specification can be provided
by a human developer or automatically inferred from correct
program executions [13].
Self-Stabilizing Java: Self-Stabilizing Java uses a type
system to ensure that the impact of any errors are even-
tually flushed from the system, returning the system back
to a consistent state and promoting successful future execu-
tion [16].

6.2 Horizontal Code Transfer
Horizontal code transfer automatically locates correct

code in one application, then transfers that code into an-
other application [35]. This technique has been applied to
eliminate otherwise fatal integer overflow, buffer overflow,
and divide by zero errors and shows enormous potential for
leveraging the combined talents and labor of software de-
velopment efforts worldwide, not just for eliminating errors
but for (potentially automatically) combining and improv-
ing software in a broad range of ways.

Horizontal gene transfer is the transfer of genetic mate-
rial between individual cells [21, 8]. Examples include plas-
mid transfer (which plays a major role in acquired antibiotic
resistance [8]), virally-mediated gene therapy [20], and the
transfer of insect toxin genes from bacteria to fungal sym-
bionts of grasses [7]. There are strong analogies between
horizontal code transfer and horizontal gene transfer — in
both cases functionality is transferred from a donor to a re-
cipient, with significant potential benefits to the recipient.
The fact that horizontal gene transfer is recognized as sig-
nificant factor in the evolution of many forms of life hints
at the potential that horizontal code transfer may offer for
software systems.

7. CONCLUSION
The difficulty of generating a search space rich enough

to correct defects while still supporting an acceptably effi-
cient search algorithm has significantly limited the ability
of previous automatic patch generation systems to gener-
ate successful patches [24, 39]. SPR’s novel combination of
staged program repair, transformation schemas, and condi-
tion synthesis highlight how a rich program repair search
space coupled with an efficient search algorithm can enable
successful automatic program repair.

8. REFERENCES
[1] clang: a C language family frontend for LLVM.

http://clang.llvm.org/.

[2] GenProg | Evolutionary Program Repair - Univeristy
of Virginia.
http://dijkstra.cs.virginia.edu/genprog/.

[3] Home - Lighttpd - fly light.
http://www.lighttpd.net/.

[4] LibTIFF - TIFF library and utilities.
http://www.libtiff.org/.

[5] PHP: DatePeriod:: construct - Manual. http:
//php.net/manual/en/dateperiod.construct.php.

[6] PHP: Hypertext Preprocessor. http://php.net/.

[7] K. Ambrose, A. Koppenhofer, and F. Belanger.
Horizontal gene transfer of a bacterial insect toxin
gene into the epichloe fungal symbionts of grasses.
Scientific Reports, 4, July 2014.

[8] M. Barlow. What Antimicrobial Resistance Has
Taught Us About Horizontal Gene Transfer. Methods
in Molecular Biology, 532:397–411, 2009.

[9] E. T. Barr, Y. Brun, P. Devanbu, M. Harman, and
F. Sarro. The Plastic Surgery Hypothesis. In
Proceedings of the 22nd ACM SIGSOFT Symposium
on the Foundations of Software Engineering (FSE),
pages 306–317, Hong Kong, China, November 2014.

[10] C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted
and automatic generation of high-coverage tests for
complex systems programs. In Proceedings of the 8th
USENIX Conference on Operating Systems Design
and Implementation, OSDI’08, pages 209–224,
Berkeley, CA, USA, 2008. USENIX Association.

[11] V. Debroy and W. E. Wong. Using mutation to
automatically suggest fixes for faulty programs. In
Software Testing, Verification and Validation (ICST),
2010 Third International Conference on, pages 65–74.
IEEE, 2010.

[12] F. DeMarco, J. Xuan, D. Le Berre, and M. Monperrus.
Automatic repair of buggy if conditions and missing
preconditions with smt. In Proceedings of the 6th
International Workshop on Constraints in Software
Testing, Verification, and Analysis, CSTVA 2014,
pages 30–39, New York, NY, USA, 2014. ACM.

[13] B. Demsky, M. D. Ernst, P. J. Guo, S. McCamant,
J. H. Perkins, and M. C. Rinard. Inference and
enforcement of data structure consistency
specifications. In Proceedings of the ACM/SIGSOFT
International Symposium on Software Testing and
Analysis, ISSTA 2006, Portland, Maine, USA, July
17-20, 2006, pages 233–244, 2006.

[14] B. Demsky and M. C. Rinard. Goal-directed reasoning
for specification-based data structure repair. IEEE
Trans. Software Eng., 32(12):931–951, 2006.

[15] K. Dobolyi and W. Weimer. Changing java’s
semantics for handling null pointer exceptions. In 19th
International Symposium on Software Reliability
Engineering (ISSRE 2008), 11-14 November 2008,
Seattle/Redmond, WA, USA, pages 47–56, 2008.

[16] Y. H. Eom and B. Demsky. Self-stabilizing java. In
ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’12,
Beijing, China - June 11 - 16, 2012, pages 287–298,
2012.

[17] M. Gabel and Z. Su. A study of the uniqueness of
source code. In Proceedings of the Eighteenth ACM
SIGSOFT International Symposium on Foundations
of Software Engineering, FSE ’10’, pages 147–156,
New York, NY, USA, 2010. ACM.

[18] D. Gopinath, S. Khurshid, D. Saha, and S. Chandra.
Data-guided repair of selection statements. In
Proceedings of the 36th International Conference on
Software Engineering, ICSE 2014, pages 243–253, New
York, NY, USA, 2014. ACM.

[19] S. Kaleeswaran, V. Tulsian, A. Kanade, and A. Orso.
Minthint: Automated synthesis of repair hints. In
Proceedings of the 36th International Conference on
Software Engineering, ICSE 2014, pages 266–276, New
York, NY, USA, 2014. ACM.

[20] M. A. Kay, J. C. Glorioso, and L. Naldini. Viral
vectors for gene therapy: the art of turning infectious

agents into vehicles of therapeutics. Nat Med,
7(1):33–40, Jan. 2001.

[21] P. J. Keeling and J. D. Palmer. Horizontal gene
transfer in eukaryotic evolution. Nature Reviews
Genetics, 9(8), 8 2008.

[22] D. Kim, J. Nam, J. Song, and S. Kim. Automatic
patch generation learned from human-written patches.
In Proceedings of the 2013 International Conference
on Software Engineering, ICSE ’13’, pages 802–811.
IEEE Press, 2013.

[23] M. Kling, S. Misailovic, M. Carbin, and M. Rinard.
Bolt: on-demand infinite loop escape in unmodified
binaries. In Proceedings of the ACM international
conference on Object oriented programming systems
languages and applications, OOPSLA ’12’, pages
431–450. ACM, 2012.

[24] C. Le Goues, M. Dewey-Vogt, S. Forrest, and
W. Weimer. A systematic study of automated
program repair: Fixing 55 out of 105 bugs for $8 each.
In Proceedings of the 2012 International Conference
on Software Engineering, ICSE 2012, pages 3–13.
IEEE Press, 2012.

[25] F. Long and M. Rinard. Staged Program Repair in
SPR (Supplementary Material).
http://hdl.handle.net/1721.1/95963.

[26] F. Long, S. Sidiroglou-Douskos, and M. Rinard.
Automatic runtime error repair and containment via
recovery shepherding. In Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’14’, pages
227–238, New York, NY, USA, 2014. ACM.

[27] M. Martinez, W. Weimer, and M. Monperrus. Do the
fix ingredients already exist? an empirical inquiry into
the redundancy assumptions of program repair
approaches. In Companion Proceedings of the 36th
International Conference on Software Engineering,
ICSE Companion 2014, pages 492–495, New York,
NY, USA, 2014. ACM.

[28] M. Monperrus. A critical review of ”automatic patch
generation learned from human-written patches”:
Essay on the problem statement and the evaluation of
automatic software repair. In Proceedings of the 36th
International Conference on Software Engineering,
ICSE 2014, pages 234–242, New York, NY, USA,
2014. ACM.

[29] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and
S. Chandra. Semfix: Program repair via semantic
analysis. In Proceedings of the 2013 International
Conference on Software Engineering, ICSE ’13’, pages
772–781, Piscataway, NJ, USA, 2013. IEEE Press.

[30] F. S. Ocariza, Jr., K. Pattabiraman, and A. Mesbah.
Vejovis: Suggesting fixes for javascript faults. In
Proceedings of the 36th International Conference on
Software Engineering, ICSE 2014, pages 837–847, New
York, NY, USA, 2014. ACM.

[31] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe,
J. Bachrach, M. Carbin, C. Pacheco, F. Sherwood,
S. Sidiroglou, G. Sullivan, W.-F. Wong, Y. Zibin,
M. D. Ernst, and M. Rinard. Automatically patching
errors in deployed software. In Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems
principles, SOSP ’09, pages 87–102. ACM, 2009.

[32] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang. The
strength of random search on automated program
repair. In Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014,
pages 254–265, New York, NY, USA, 2014. ACM.

[33] Z. Qi, F. Long, S. Achour, and M. Rinard. An anlysis
of patch plausibility and correctness for
generate-and-validate patch generation systems.
MIT-CSAIL-TR-2015-003.

[34] M. Rinard, C. Cadar, D. Dumitran, D. M. Roy,
T. Leu, and W. S. Beebee. Enhancing server
availability and security through failure-oblivious
computing. In OSDI, pages 303–316, 2004.

[35] S. Sidiroglou-Douskos, E. Lahtinen, F. Long,
P. Piselli, and M. Rinard. Automatic error elimination
by multi-application code transfer. Technical Report
MIT-CSAIL-TR-2014-024, 2014.

[36] N. Wang, M. Fertig, and S. Patel. Y-branches: When
you come to a fork in the road, take it. In Proceedings
of the 12th International Conference on Parallel
Architectures and Compilation Techniques, PACT ’03’,
pages 56–, Washington, DC, USA, 2003. IEEE
Computer Society.

[37] Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz,
B. Meyer, and A. Zeller. Automated fixing of
programs with contracts. In Proceedings of the 19th
International Symposium on Software Testing and
Analysis, ISSTA ’10’, pages 61–72, New York, NY,
USA, 2010. ACM.

[38] W. Weimer. Patches as better bug reports. In
Proceedings of the 5th International Conference on
Generative Programming and Component Engineering,
GPCE ’06’, pages 181–190, New York, NY, USA,
2006. ACM.

[39] W. Weimer, Z. P. Fry, and S. Forrest. Leveraging
program equivalence for adaptive program repair:
Models and first results. In ASE’13, pages 356–366,
2013.

[40] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest.
Automatically finding patches using genetic
programming. In Proceedings of the 31st International
Conference on Software Engineering, ICSE ’09’, pages
364–374. IEEE Computer Society, 2009.

[41] A. Zeller and R. Hildebrandt. Simplifying and
isolating failure-inducing input. IEEE Trans. Softw.
Eng., 28(2):183–200, Feb. 2002.

