
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2015-007 March 3, 2015

On the Formal Semantics of the Cognitive
Middleware AWDRAT
Muhammad Taimoor Khan , Dimitrios Serpanos,
and Howard Shrobe*

On the Formal Semantics of the Cognitive

Middleware AWDRAT

Muhammad Taimoor Khan†, Dimitrios Serpanos† and Howard
Shrobe*

†{mtkhan, dserpanos}@qf.org.qa
*hes@csail.mit.edu

†QCRI, Qatar
*CSAIL, MIT, USA

February 24, 2015

Abstract

The purpose of this work is two fold: on one hand we want to for-
malize the behavior of critical components of the self generating and
adapting cognitive middleware AWDRAT such that the formalism not
only helps to understand the semantics and technical details of the
middleware but also opens an opportunity to extend the middleware
to support other complex application domains of cybersecurity; on the
other hand, the formalism serves as a pre-requisite for our proof of the
behavioral correctness of the critical components to ensure the safety
of the middleware itself. However, here we focus only on the core and
critical component of the middleware, i.e. Execution Monitor which
is a part of the module “Architectural Differencer” of AWDRAT. The
role of the execution monitor is to identify inconsistencies between run-
time observations of the target system and predictions of the System
Architectural Model. Therefore, to achieve this goal, we first define the
formal (denotational) semantics of the observations (runtime events)
and predictions (executable specifications as of System Architectural
Model); then based on the aforementioned formal semantices, we for-
malize the behavior of the “Execution Monitor” of the middleware.

1

Contents

1 Calculus of AWDRAT 4

2 Syntax of System Architectural Model 5

3 Semantics of System Architectural Model 12
3.1 Semantic Algebras . 12

3.1.1 Truth Values . 12
3.1.2 Numeral Values . 12
3.1.3 Environment Values 12
3.1.4 State Values . 14
3.1.5 Semantic Values . 15
3.1.6 Character String Values 15
3.1.7 Lifted Values . 15
3.1.8 (Registered) Event Values 15
3.1.9 (Observed) Event Values 16
3.1.10 (Runtime) Event Values 16
3.1.11 Resource Values . 16
3.1.12 Function Values . 17
3.1.13 Component Values . 17
3.1.14 Split Values . 18
3.1.15 Attack Values . 18

3.2 Signatures of Valuation Functions 18
3.2.1 System Architectural Model 18
3.2.2 Behavioral Models . 18

3.3 Auxiliary Predicates and Functions 19
3.4 Definition of Valuation Functions 22

3.4.1 System Architectural Model 22
3.4.2 Register Model . 23
3.4.3 Register Model Sequence 24
3.4.4 Structural Model . 24
3.4.5 Structural Model Sequence 29
3.4.6 Behavioral Model . 30
3.4.7 Behavioral Model Sequence 31
3.4.8 Split Model . 32
3.4.9 Split Model Sequence 33
3.4.10 Attack Model . 33
3.4.11 Attack Model Sequence 35

4 Execution Monitor 35
4.1 Observation Model . 36

4.1.1 Observations . 37

2

5 Semantics of the Execution Monitor 37

6 Conclusions and Future Work 39

Appendices 42

A Formal Syntax of System Architectural Model 42
A.1 Declaration of Syntactic Domains 42
A.2 Grammar . 45

B An Example of a System Architectural Model 49
B.1 MAF Editor Model . 50

3

1 Calculus of AWDRAT

Defending systems against cyber attack requires us to be able to rapidly and
accurately detect that an attack has occurred. Today’s detection systems
are woefully inadequate suffering from both high false positive and false
negative rates. There are two key reasons for this: First, the systems do not
understand the complete behavior of the system they are protecting. The
second is that they do not understand what an attacker is trying to achieve.
Most such systems, in fact, are retrospective, that is they understand some
surface signatures of previous attacks and attempt to recognize the same
signature in current traffic. Furthermore, they are passive in character,
they sit back and wait for something similar to what has already happened
to recur. Attackers, of course, respond by varying their attacks so as to
avoid detection.

AWDRAT [5] is a representative of a new class of protection systems
that employ a different, active form of perception, one that is informed
both by knowledge of what the protected application is trying to do and
by knowledge of how attackers think. It employs both bottom-up reasoning
(going from sensors data to conclusions about what attacks might be in
progress) as well as top-down reasoning (given a set of hypotheses about
what attacks might be in progress, in focuses its attention to those events
most likely to significantly help in discerning the ground truth).

There are two dimensions along which detection systems can be char-
acterized. The first is the distinction between profile and model based
approaches. The other dimension is the distinction between looking for
matches to bad behavior or deviations from good. This gives four quad-
rants, each with unique strengths and weaknesses. For example, the bulk of
our sensors are model-based and look for matches to bad behavior; signature
based systems are in this category. The advantage is that when a match oc-
curs, you know what has happened; i.e. these systems have high diagnostic
resolution. But they also lack robustness; if they don’t have a model of an
attack, and there are always novel attacks, then they will fail to detect it.
On the other hand, there are a class of detectors that use employ machine
learning techniques on labeled training data to build statistical profiles of
attacks. These systems tend to be a bit more robust than model based
systems, since the machine learning techniques tend to generalize from the
data presented. However, they make up for this by a loss of diagnostic res-
olution. The third quadrant involves building a statistical profile of normal
behavior, detecting deviations from the profile. Such anomaly detectors are
yet more robust, since they don’t depend on prior knowledge of the form of
the attack, but they afford even less diagnostic resolution. When things go
wrong, all you know is that something out of the ordinary has happened;
whether that something is malicious or not isn’t known.

AWDRAT sits in the fourth quadrant: It has a model of normal be-

4

havior; when the application deviates from the behavior prescribed by that
model, it employs diagnostic reasoning techniques [6] to further isolate and
characterize the failure. It has both greater robustness and higher diagnostic
resolution. But it achieves this only through the construction of a far more
complex model.

AWDRAT has an active model of normal behavior, namely an executable
specification (aka System Architectural Model) of the application [5]. This
executable specification consists of a decomposition into sub-modules and
pre- and post-conditions for each sub-module. In addition, data-flow and
control-flow links connect the sub-modules, specifying the expected flow of
values and of control. The pre- and post-conditions are arbitrary first-order
statements about the set of data values that flow into and out of the sub-
modules.

AWDRAT runs this executable specification in parallel with the actual
application code, comparing their results at the granularity and abstraction
level of the executable specification. (This is therefore a special case of
the standard fault tolerance technique of running multiple versions of the
same code and comparing their results.) The executable specification is
hierarchical, allowing flexibility in the granularity of the monitoring. When
threats are not expected, the executable specification is run at a high level of
abstraction, incurring less overhead, but requiring more diagnostic reasoning
should the program diverge from the prescribed behavior of the executable
specification. In times of heightened threat, the executable specification can
be elaborated to a greater degree, incurring more overhead, but providing
more containment.

Optionally, the model can also include models for suspected incorrect
behaviors of a component, allowing the diagnostic reasoning to characterize
the way in which a component might have misbehaved. A diagnosis is then
a selection of behavioral modes for each component of the specification such
that the specification predicts the observed misbehavior of the system.

The rest of the paper is organized as follows: in Section 2 we discuss
syntax of the System Architectural Model followed by the formalization of
semantics of the critical syntactic domains model in Section 3. Section 5
formalizes the semantics of the execution monitor. Finally, we conclude in
Section 6. Appendices A and B give the formal syntactic grammar and an
example System Architectural Model respectively.

2 Syntax of System Architectural Model

An AWDRAT model is built from several related following forms which
represent corresponding high-level syntactical domains of the model. Note,
we only discuss selected domains here, for complete syntactic domains and
their elements, please see Appendix A.

5

1. A description of a component type consists of

(a) its interface

� a list of inputs
� a list of its outputs
� a list of the resources it uses (e.g. files it reads, the code in

memory that represents this component, etc)
� list of subcomponents required for the execution of the sub-

ject component
� a list of events that represent entry into the component (usu-

ally just one)
� a list of events that represent exit from the component (usu-

ally just one)
� a list of events that are allowed to occur during any execution

of this component
� a set of conditional probabilities between the possible modes

of the resources and the possible modes of the whole compo-
nent

� a list of known vulnerabilities occurred to the component

(b) and a structural model which is a list of sub-components some of
which might be splits or joins of

� data-flows between linking ports of the sub-components (out-
puts of one to inputs of another)

� control-flow links between cases of a branch and a component
that will be enabled if that branch is taken

The description of the component type is represented by syntactical
domain “StrMod” which is defined as follows:

StrMod ::= define-ensemble CompName
:entry-events :auto | (EvntSeq)
:exit-events (EvntSeq)
:allowable-events (EvntSeq)
:inputs (ObjNameSeq)
:outputs (ObjNameSeq)
:components (CompSeq)
:controlflows (CtrlFlowSeq)
:splits (SpltCFSeq)
:joins (JoinCFSeq)
:dataflows (DataFlowSeq)
:resources (ResSeq)
:resource-mapping (ResMapSeq)

6

:model-mappings (ModMapSeq)
:vulnerabilities (VulnrabltySeq)

Example 1: The specification of the component maf-editor is given
below. In detail, the specification says that the component

� is top level component and hence starts automatically and
thus requires no entry-event,

� requires no inputs

� results in the-model as an output
� has four subcomponents, i.e. startup, create-model, create-events

and save which have corresponding types and also have both
normal and compromised behaviors

� has control and data flows as described
� has an access to two resources, i.e. imagery and code-files

which have corresponding probabilities of being in a normal
and hacked mode

� has model mappings of the above resources to the subcom-
ponents as described in model-mappings and

� has two vulnerabilities, i.e. reads-complex-imagery and
loads-code for the resources imagery and code-files re-
spectively.

(define-ensemble maf-editor
:entry-events :auto
:inputs ()
:outputs (the-model)
:components
((startup :type maf-startup :models (normal compromised))
(create-model :type maf-create-model :models (normal compromised))
(create-events :type maf-create-events :models (normal compromised))
(save :type maf-save :models (normal compromised)))

:controlflows ((before maf-editor before startup)
(after startup before create-model))

:dataflows ((the-model create-model the-model create-events)
(the-model create-events the-model save)
(the-model save the-model maf-save-model))

:resources ((imagery image-file (normal .7) (hacked .3))
(code-files loadable-files (normal .8) (hacked .2)))

:resource-mappings ((startup imagery)

7

(create-model code-files)
(create-events code-files)
(save-model code-files))

:model-mappings ((startup normal ((imagery normal)) .99)
(startup compromised ((imagery normal)) .01)
(startup normal ((imagery hacked)) .9)
(startup compromised ((imagery hacked)) .1)

(create-model normal ((code-files normal)) .99)
(create-model compromised ((code-files normal)) .01)
(create-model normal ((code-files hacked)) .9)
(create-model compromised ((code-files hacked)) .1)

(create-events normal ((code-files normal)) .99)
(create-events compromised ((code-files normal)) .01)
(create-events normal ((code-files hacked)) .9)
(create-events compromised ((code-files hacked)) .1)

(save normal ((code-files normal)) .99)
(save compromised ((code-files normal)) .001)
(save normal ((code-files hacked)) .01)
(save compromised ((code-files hacked)) .999))

:vulnerabilities ((imagery reads-complex-imagery)
(code-files loads-code)
))

2. Behavioral specification of a component (a component type may have
one normal behavioral specification and many abnormal behavioral
specifications, each one representing some failure mode) which has

� inputs and outputs

� preconditions on the inputs (logical expressions involving one or
more of the inputs)

� postconditions (logical expressions involving one or more of the
outputs and the inputs)

� allowable events during the execution in this mode

The behavioral specification of a component is represented by a cor-
responding syntactical domain “BehMod” as follows:

BehMod ::= defbehavior-model (CompName normal | compromised)

8

:inputs (ObjNameSeq)
:outputs (ObjNameSeq)
:allowable-events (EvntSeq)
:prerequisites (BehCondSeq)
:post-conditions (BehCondSeq)

Example 2: In the following first we give the structure of a com-
ponent maf-create-model (which is one of the submodule as
stated in the previous specification example) and then give the
behavioral specification of the component. The structure of the
component is defined as follows:

(define-ensemble maf-create-model
:entry-events (create-mission-action-action-performed)
:exit-events (mission-builder-submit)
:allowable-events (create-mission-builder-with-client-panel

create-mission-builder
create-mission-builder-with-hash-table
mission-builder-submit
(set-initial-info exit (the-model nil))
create-mission-action-action-performed
retrieve-info
create-mission-action-action-performed
(set-initial-info entry)
)

:inputs ()
:outputs (the-model))

In the following we define the legal and illegal (compromised)
behaviors of the component. For example, the specification of a
legal (normal) behavior of the component says that as a normal
behavior the component

� requires no input as specified by the clause inputs

� has the-model output and also
� no prerequisite of the component but
� guarantees that the object mission-builder of the-model

are consistent.

The corresponding normal behavior is defined as:

(defbehavior-model (maf-create-model normal)
:inputs ()
:outputs (the-model)
:prerequisites ()

9

:post-conditions ([dscs ?the-model mission-builder good])
)

(defbehavior-model (maf-create-model compromised)
:inputs ()
:outputs (the-model)
:prerequisites ()
:post-conditions ([not [dscs ?the-model mission-builder good]])
)

Similarly, the compromised behavior of the component is also de-
scribed above. For further details on the behavioral specification
of the other components, please see Appendix A.

3. Model of a resource type contains

� possible modes

� prior probabilities of being in each mode

� attack types to which it is vulnerable

The syntactical domain “ResModMap” represents the model of a re-
source type

ResModMap ::= ResName normal | hacked FVal
| ((ResName normal | hacked)) FVal

where “FVal” represents the float values for probabilities.

The trust model of the resources is specified in example 1 above by
the clauses :resources and :resource-mappings.

4. Attack Model

� a list of types of attacks that are being anticipated and the prior
probability of each

� a list describing how each attack type can effect that mode of a
resource

� a set of logical rules expressing the conditional probabilities be-
tween attack types and resource modes

The attack models are presented by the syntactic domain “AtkMod”
while the corresponding attack rules are specified by the syntactic
domain “AtkRule” as given below respectively:

10

AtkMod ::= define-attack-model AtkModName
:attack-types (AtkTypeSeq)
:vulnerability-mapping (AtkVulnrabltyMapSeq)

AtkRule ::= defrule AtkRulName (:forward)
if AtkCondSeq
then AtkConsSeq

Example 3: The example attack model maf-attacks specifies the
two attacks hacked-image-file-attack and hacked-code-file-attack
with some probabilities as specified in the following.

(define-attack-model maf-attacks
:attack-types ((hacked-image-file-attack .3)
(hacked-code-file-attack .5))

:vulnerability-mapping
((reads-complex-imagery hacked-image-file-attack)
(loads-code hacked-code-file-attack)))

Furthermore, the two attacks are mapped to the corresponding
vulnerabilities reads-complex-imagery and loads-code respec-
tively.
Additionally, the corresponding one attack rule bad-image-file-takeover
says that if we have the contextual resource ?ensemble and
type-of-resource is image-file and the resource-might-have-been-attacked
with hacked-image-file-attack then it is highly probable (.9)
that the resource has been hacked by hacked-image-file-attack
as given below:

(defrule bad-image-file-takeover (:forward)
if [and [resource ?ensemble ?resource-name ?resource]
[resource-type-of ?resource image-file]
[resource-might-have-been-attacked ?resource
hacked-image-file-attack]]

then [and [attack-implies-compromised-mode
hacked-image-file-attack ?resource hacked .9]
[attack-implies-compromised-mode
hacked-image-file-attack ?resource normal .1]])

Further details on the example of the model, please see Appendix B.
However, the corresponding syntactic details of the elements of the above
syntactic domains are explained in the corresponding subsections of the

11

next section. However, for the general syntax of the domain, please see
Appendix A.

3 Semantics of System Architectural Model

In this section, we first give the definition of semantic algebras and then
discuss informal description and the formal semantics of the core constructs
of the System Architectural Model.

3.1 Semantic Algebras

The definition of a formal denotational semantics is based on a collection
of data structures. Semantic domains represent set of elements that share
some common properties. A semantic domain is accompanied by a set of op-
erations as functions over the domain. A domain and its operations together
form a semantic algebra [4]. In the following we enlist the semantic domains
and their corresponding operations. Some operations are defined and some
are just declared for the purpose of completeness of this document.

3.1.1 Truth Values

The truth values are represented by the semantic domain “Bool” which is
defined as follows:

Domain: Bool
Operations:

� true: Bool

� false: Bool

� and: Bool × Bool → Bool

� or: Bool × Bool → Bool

� not: Bool × Bool → Bool

3.1.2 Numeral Values

Here we consider typical domains to represent integer and float values (e.g.
Q, N).

3.1.3 Environment Values

The domain Environment holds the environment values of the System Ar-
chitectural Model. Environment is formalized as a tuple of domains Context

12

and Space. The domain Context is a mapping of identifiers to the environ-
ment values (Variable, Component, Resource, RTEvent and Function), while
the domain Space models the memory space.

Domain: Environment
Environment := Context × Space
Context := Identifier → EnvValue

EnvValue := Variable + Component + Resource + RTEvent
+ Function + AtkModel

Space := P(Variable)
Variable := n, where n ∈ N represents locations
Operations:

� space: Environment → Space
space(<c,s>) = s

� context: Environment → Context
context(<c,s>) = c

� environment: Context × Space → Environment
environment(c,s) = <c, s>

� take: Space → Identifier × Space
take(s) = LET x = SUCH x: x ∈ s IN <x, s\{x}>

� push: Environment × Identifier → Environment

push(e, I) = LET <x, s’>= take(space(e)) IN
environment(context(e)[I 7→ inVariable(x)], s’)

� push: Environment × Identifier × Component → Environment

push(e, I, c) = LET <x, s’>= take(space(e)) IN
environment(context(e)[I 7→ inComponent(c)], s’)

� push: Environment × Identifier × AtkModel → Environment

push(e, I, m) = LET <x, s’>= take(space(e)) IN
environment(context(e)[I 7→ inAtkModel(m)], s’)

13

3.1.4 State Values

This section defines the domain for the State of the execution of program.
A Store is the most important part of the state and holds for every Variable
a Value. The value can be read and modified. The Data of the state is a
tuple of a Flag that represents the current status of the state and a Mode to
represent the current mode of execution of the state respectively component.

Domain: State
State := Store × Data
Store := Variable → Value
Data := Flag × Mode
Flag := {running, ready, completed}
Mode := {normal, compromised}
Operations:

� state: Store × Flag → State
state(s,f) = <s,f>

� store: State → Store
store(<s,f>) = s

� data: State → Data
data(<s,d>) = d

� flag: Data → Flag
flag(<f,m>) = f

� mode: Data → Mode
mode(<f,m>) = m

� setFlag: State × Flag → State
setFlag(s, f) = LET d = <f, mode(data(s))>IN <s, d>

� setMode: State × Mode → State
setMode(s, m) = LET d = <flag(data(s)), m>IN <s, d>

� eqFlag: State × Flag → Bool
eqFlag(s, f) = IF equals(flag(data(s)), f) THEN true ELSE false
END

� eqMode: State × Mode → Bool
eqMode(s, m) = IF equals(mode(data(s)), m) THEN true ELSE false
END

� update: State × Variable × Value → State
update(s, var, val) = state(store(s)[var 7→ val], flag(s))

14

3.1.5 Semantic Values

Value is a disjunctive union domain and note that the domain Value is a
recursive domain, e.g. List is defined by Value* as discussed in the next
section.

Domain: Value

Value := Event + ObsEvent + RTEvent + Function + Component + Split +
Resource + AtkModel + String + List + ... + Value∗

Operations:

� equals: Value × Value → Bool

3.1.6 Character String Values

Character strings are defined as a semantic domain String.

3.1.7 Lifted Values

The evaluation of some semantic domains might result as unsafe. To address
these unsafe evaluations we lifted the domains of State and Value to domains
State⊥ and Value⊥, which are disjoint sums of the basic domains and the
domain ⊥.

In order to capture different kind of events we need different semantic
domain to model each of them. The three kind of events are:

1. Registered Events are the events of interest for monitoring. These
events are defined by the user at the top of the System Architec-
tural Model by the syntactic domain “RegModSeq” as discussed in
Appendix A. AWDRAT register these events for the monitoring pur-
poses.

2. Observed Events are the entry, exit and allowable events as defined by
the syntactic domain “Event” of the System Architectural Model.

3. Run Time Events are the runtime events that are generated by the
monitor from the target system. These events are also called observa-
tions.

In the following, we give definitions of the corresponding semantic do-
mains respectively.

3.1.8 (Registered) Event Values

The semantics domain Event defines the registered events as a predicate
over a sequence of input values, sequence of output values, a pre-state and
a corresponding post-state as follows:

Event := P(Value∗ × Value∗ × State × State⊥)

15

3.1.9 (Observed) Event Values

The semantics domain ObsEvent formalizes the observed events of System
Architectural Model. An ObsEvent is defined as a predicate over a sequence
of input values, a pre-state and a post-state as follows:

ObsEvent := P(Value∗ × State × State⊥)

Note that the observed events do not capture output values because they
just work as placeholders for runtime and registered events.

3.1.10 (Runtime) Event Values

The runtime events of System Architectural Model are formalized with the
help of a semantic domain RTEvent. The semantic domain RTEvent is
defined as a predicate over a sequence of input values, sequence of output
values, a pre-state, post-state and event data as follows::

RTEvent := P(Value∗⊥ × Value∗ × State × State⊥ × EventData)

where
EventData := Tag × TimeStamp × ProcessID
Tag := {entry, exit}
TimeStamp := date and time of the event execution
ProcessID := operating system process id for the event

An EventData captures the type of an event, time of event generation
and an operating system level process id for this event. Note, process identi-
fication provides more low-level information about the event which is helpful
to detect any misbehavior of the event correspondingly component.

3.1.11 Resource Values

The semantic domain Resource is one of the complex domains because se-
mantically this domain depends on the runtime behavior of an associated
components as well. The semantics domain Resource formalizes different
kind of resources used by computational modules of System Architectural
Model and is also defined as a predicate over a

� map which is further a predicate over

– a mode,

– its likelihood value being in normal mode,

– corresponding likelihood being in hacked mode and

– an associated vulnerability,

� current mode of the resource,

16

� probability of the resource being in the current mode,

� name of the running component associated with the resource,

� mode of the running associated component,

� a pre-state and a post-state of the program.

The predicate Resource is mathematically defined as:

Resource := P(ModeMap × Mode × FVal × I × Mode × State × State⊥)

where
Mode := {normal, compromised}
ModeMap := P(Mode × Fval × FVal × Vulnerability)

3.1.12 Function Values

The semantics domain Function defines and formalizes a specification func-
tion of System Architectural Model and can be defined mathematically as:

Function =
⋃

n∈N Functionn

where

Functionn = V aluen → V alue

3.1.13 Component Values

The semantics domain Component formalizes the model of the components
of the target system which are specified by the corresponding behaviors in
the System Architectural Model. A Component is defined as a predicate over
a structural behavior of the component, a normal behavior of the component,
its corresponding compromised behavior, a pre-state and a post-state of the
program as follows:

Component = P(SBehavior × NBehavior × CBehavior × State × State⊥)

where

SBehavior := P(Value∗ × Value∗ × Value∗ × State × State⊥)
NBehavior = CBehavior := P(Value∗ × Value∗ × State × State⊥)

Furthermore, a structural behavior is defined as a predicate over a sequence
of input values, sequence of output value, sequence of allowable values (as
a consequence of allowable events), a pre-state and a post-state of the be-
havior. Also, a normal (functional) behavior and corresponding compro-
mised behavior are defined as a predicates NBehavior and CBehavior over
a sequence of input values, sequence of output values, a pre-state and a
corresponding post-state respectively. Note that the two predicates are the
valuation functions of corresponding syntactic domains.

17

3.1.14 Split Values

The semantics domain Split formalizes the control flow behavior of a certain
unit of a computational module of System Architectural Model and is defined
as a predicate over a sequence of parameter values of the split as follows:

Split := P(Value∗)

3.1.15 Attack Values

The semantics domain AtkModel formalizes the attack model and is defined
as a predicate over an attack name, probability of the attack and the cor-
responding vulnerability causing the attack; the attack model is formulated
as follows:

AtkModel := P(Identifier × FVal × Vulnerability)

These values are the result of the valuation function for the corresponding
syntactic domain.

3.2 Signatures of Valuation Functions

A valuation function defines a mapping of a language’s abstract syntax
structures to its corresponding meanings (semantic algebras) [4]. A valu-
ation function VF for a syntax domain VF is usually formalized by a set of
equations, one per alternative in the corresponding BNF Register for each
syntactic domain of specification expression.

We define the result of valuation function as a predicate. In this section
we first give the definitions of various relations and functions that are used
in the definition of valuation functions. For example the behavioral relation
(BehRelation) is defined as a predicate over an environment, a pre-state and
a post-state. The corresponding relation is defined as follows:

BehRelation := P(Environment × State × State⊥)

3.2.1 System Architectural Model

The valuation function for the abstract syntax domain system architectural
model values of SAM is defined as follows:

[SAM℄: Environment → BehRelation

3.2.2 Behavioral Models

The valuation functions for abstract syntax domains of Register, structural,
behavioral and split model values (RuleMod, StrMod, BehMod and SpltMod
respectively) are the same and can be defined similarly; however in the
following we give only the signature of valuation function for the behavioral
model:

18

[BehMod℄: Environment → BehRelation

In the following section we define the auxiliary functions and predicates
used in the formal semantics of the specification language (and associated
domains).

3.3 Auxiliary Predicates and Functions

In the following subsections auxiliary functions and predicates for the use in
semantics definition of sequence, binding and special expressions are defined.

� monitors ⊂ N × RTEvent × Component × Environment∗ × Environment∗

× State∗ × State∗⊥
monitors(i, [rte℄, [c℄, e, e’, s, s’) ⇔
(eqMode(s(i), “running”) ∨ eqMode(s(i), “ready”)) ∧ [c℄(e(i))(e’(i), s(i), s’(i)) ∧
∃ oe ∈ ObEvent: equals(rte, store([name(rte)℄)(e(i))) ∧
IF entryEvent(oe, c) THEN

data(c, s(i), s’(i)) ∧
(preconditions(c, e(i), e’(i), s(i), s’(i), “compromised”) ⇒
equals(s(i+1), s(i)) ∧ equals(s’(i+1), s(i+1)) ∧
setFlag(inState(s’(i+1)), “compromised”)) ∨
(preconditions(c, e(i), e’(i), s(i), s’(i), “normal”)
⇒ setMode(s(i), “running”) ∧
LET cseq = components(c) IN

equals(s(i+1), s’(i)) ∧ equals(e(i+1), e’(i)) ∧
∀ c1 ∈ cseq, rte1 ∈ RTEvent:

arrives(rte1, s(i+1)) ∧
monitor(i+1, rte1, c1, e(i+1), e’(i+1), s(i+1), s’(i+1))

END)
ELSE IF exitEvent(oe, c) THEN

data(c, s(i), s’(i)) ∧ eqMode(inState(s’(i)), “completed”) ∧
(postconditions(c, e(i), e’(i), s(i), s’(i), “compromised”) ⇒
equals(s(i+1), s(i)) ∧ equals(s’(i+1), s(i+1)) ∧
setFlag(inState(s’(i+1)), “compromised”)) ∨
(postconditions(c, e(i), e’(i), s(i), s’(i), “normal”)

⇒ equals(s(i+1), s’(i)) ∧ equals(e(i+1), e’(i)) ∧
setMode(inState(s’(i+1), “completed”))

ELSE IF allowableEvent(oe, c) THEN
equals(s(i+1), s’(i)) ∧ equals(e(i+1), e’(i))

ELSE
equals(s(i+1), s(i)) ∧ equals(s’(i+1), s(i+1)) ∧
setFlag(inState(s’(i+1)), “compromised”)

END

The predicate “monitors” captures the core semantics of the monitor
which is defined as a relation on

19

– number of observation i with respect to iteration of a component,

– an observation (runtime event) rte,

– corresponding component c under observation,

– a sequence of pre-environments e,
– a sequence of post-environments e′,
– a sequence of pre-states s and

– a sequence of post-states s′.

The predicate monitors is defined such that, at any arbitrary obser-
vation if the current execution state s(i) of component c is “ready” or
“running” and behavior of component c has been evaluated and there
is a prediction oe which is semantically equal to an observation rte
and any of the following can happen:

– either the prediction respectively observation is an entry event of
the component c, then it waits until the complete data for the
component c arrives, if so, then

* either preconditions of “normal” behavior of the component
hold; if so then, the subnetwork of the component is initi-
ated and the components in the subnetwork are monitored
iteratively with the corresponding arrival of the observation

* or preconditions of “compromised” behavior of the compo-
nent hold, in this case the state is marked to “compromised”
and returns

– or the observation is an exit event and after the completion of
data arrival the postconditions hold and the resulting state is
marked as “completed”

– or the observation is an allowable event and just continues the
execution

– or the observation is an unexpected event (or any of the above
does not hold), then the state is marked as “compromised” and
returns.

The predicate monitors is used later in the semantics of the Execution
Monitor.

� entryEvent ⊂ ObEvent × Component: returns true only if the
given event is in a set of entry events of the given component.

� exitEvent ⊂ ObEvent × Component: returns true only if the
given event is in a set of exit events of the given component.

� allowableEvent ⊂ ObEvent × Component: returns true only if
the given event is in a set of allowable events of the given component.

20

� data ⊂ Component × State × State⊥: returns true only if all
the data for the given component is received by transforming a given
pre-state (former) into a corresponding given post-state (latter).

� arrives ⊂ RTEvent × State: returns true only if the given runtime
event (observation) arrives in a given state.

� preconditions ⊂ Component × Environment × Environment
× State × State⊥ × Mode

returns true only if all the preconditions of the given component hold
in a given pair of pre- and post-environments, a pair of pre- and post-
states and in a given mode.

� postconditions ⊂ Component × Environment × Environment
× State × State⊥ × Mode

returns true only if all the postconditions of the given component
hold in a given pair of pre- and post-environments, a pair of pre- and
post-states and in a given mode.

� startup ⊂ State × Target System: returns true only if the given
state is an initial state of the execution of the given target system.

� isTop ⊂ Component × (Environment → BehRelation): returns
true only if the given component is a top level component of the given
semantics of a System Architectural Model.

� enableDiagnosis: Environment → P(State × Value): results in
a given recovered state and a boolean value (true, if recovered safely,
false otherwise) from a given environment.

� respectsOrder ⊂ Identifier Sequence × Identifier Sequence

returns true only if the identifiers in the latter sequence has the same
order as the identifiers in the former sequence.

� buildEnv ⊂ Environment × List* × List* × List* × List*
→ Environment

builds the resulting environment by updating the given environment
with given sequences of values of

– resources

– resource mappings

– model mappings and

– vulnerabilities

respectively.

21

3.4 Definition of Valuation Functions

In this section we give the definition of the formal semantics of the interesting
syntactic domains (and associated domains) of the specification language,
e.g. system architectural model, Register mode, behavioral model and split
model. The semantics of other domains of the specification language are
very simple and can be easily rehearsed.

3.4.1 System Architectural Model

The System Architectural Model is give by the syntactic domain SAM such
that

� the Register model (syntactic domain RegModSeq) is defined at the top
of the System Architectural Model which gives the registered events
to be monitored at runtime

� followed by

– a hierarchical structural behavior (syntactic domain StrModSeq)
of components,

– a normal respectively compromised behavior (syntactic domain
BehModSeq) and

– corresponding split behaviors (syntactic domain SplModSeq) oc-
curring in any of the structural behavior of the components.

For further details on the syntax of the model, please see Appendix A.
Semantically, an overall (system architectural) model holds (true) in

a given environment e such that it produces a new environment e′ and a
post-state e′ when executed in a pre-state s as defined below.

[SAM℄(e)(e’, s, s’) ⇔
∀ e1, e2, e3 ∈ Environment, s1, s2, s3 ∈ State:
[RegModSeq℄(e)(e1 , s, inState⊥(s1)) ∧ [StrModSeq℄(e1)(e2, s1, inState⊥(s2)) ∧
[BehModSeq℄(e2) (e3, s2, inState⊥(s3)) ∧ [SpltModSeq℄(e3)(e’, s3, s’)

In detail, the semantics of the System Architectural Model SAM holds in
a given environment e resulting in an environment e′ by transforming a
pre-state s into post-state s′ and

� the evaluation of the registered events in a given environment e results
in environment e1 transforming a pre-state s into a post-state s1 and
in principle

– the structural behavior of components hold in environment e1

(with some auxiliary transformations) and

22

– the functional behavior of components hold in environment e2

(with some auxiliary transformations) and finally

– the split behavior of components hold in e3 resulting in given
environment s′ and transforming a pre-state s3 into a given post-
state s′.

In the following, first we define the semantics of unit elements RegMod,
StrMod, BehMod and SplModSeq and then define corresponding sequence
domains RegModSeq, StrModSeq, BehModSeq and SplModSeq respectively.

3.4.2 Register Model

The syntactic domain (RegMod) defines a registered event as follows:

RegMod ::= register-event ’EvntName JavClaName JavMetName ’(JavParamSeq)
[:static ObjName]
[:output-type JavParam]
[:bypass ObjNameStr]
[:EvntName ObjName]

Though the domain represents language independent event registration, in
this document we focus only on the the Java based target system. The
syntactic phrase RegMod states that a registered event can be represented
by a name (EvntName) whose source is a Java method (JavMetName) with
parameters (JavParmSeq) of corresponding class (JavClaName). The other
sub-clauses introduce further characterization of the method, e.g. the clause
:output-type represents the return type of the method.

A monitoring machinery of Architectural Differencer of the middleware
AWDRAT is based on these registered events.

In the following we define the semantics of a registered event such that
the evaluation of a registered event in a given environment e results in an
environment e′ transforming a pre-state s into a post-state s′.

[RegMod℄(e)(e’, s, s’) ⇔
∀ ej ∈ JTypeEnvironment, sj , sj ’ ∈ JState:

typeCheck(JavClaName)(ej)(sj , s′j) ∧ equals(s, sj) ∧ equals(e, ej)
∧ (∃ p ∈ JProcedure: equals(p(valseq, val), store(sj ’)([JavMetName℄(ej)))

∧ equals(valseq, store(sj ’)([JavParamSeq℄(ej)))
∧ equals(val, store(sj ’)([JavParam℄(ej))))

∧ isStatic(...) ∧ byPass(...) ∧ otherEvents(...)
∧ e’ = push(e, EvntName)
∧ LET ev(valseq, val, s, s’) ∈ Event IN

s’ = update(s, [EvntName℄(e’), ev)
END

23

In detail, semantically, the Java class (JavClaName) is well-defined respec-
tively type checked in an arbitrary environment ej transforming an arbitrary
pre-state sj into a corresponding arbitrary post-state sj’ while ej and sj are
semantically equivalent to s and e respectively and

� there is some Java procedure p(valseq, val) which we get by evaluating
“JavMetName” with given environment ej such that the sequence of
input values valseq equals the evaluation of “JavParamSeq” in given
environment ej and the return value val of procedure p equals the
evaluation of “JavParam” in environment ej and

� finally we get e′ by pushing “EvntName” in given environment e and

� s′ is produces by updating the value ev for an identifier “EvntName”
in the given pre-state s.

3.4.3 Register Model Sequence

The syntax of the syntactic domain RegModSeq is defined as follows:

RegModSeq := EMPTY | (RegMod) RegModSeq
Semantically, when an EMPTY sub-phrase is evaluated in a given envi-

ronment e then simply the resulting environment e′ equals e and a post-state
s′ equals the given pre-state s as defined below:

Case: EMPTY

[EMPTY℄(e)(e’, s, s’) ⇔ e’ = e ∧ s’ = inState⊥(s)

While in the second alternate of the domain “RegModSeq”, first seman-
tics of the phrase “RegMod” in a given environment e produce an environ-
ment e′′ transforming a pre-state s into a post-state s′′, then the evaluation
of the phrase “RegModSeq” in environment e′′ results in a given environment
e′ and transforms the pre-state s′′ into a given post-state s′. The semantics
of the second alternative is formalized as follows:

Case: (RegMod) RegModSeq

[(RegMod) RegModSeq℄(e)(e’, s, s’) ⇔
∀ e” ∈ Environment, s” ∈ State:
[RegMod℄(e)(e”, s, inState⊥(s”)) ∧ [RegModSeq℄(e”)(e’, s”, s’)

3.4.4 Structural Model

The structural behavior of the system is defined by the syntactic phrase
“StrMod” which represents a corresponding hierarchical model of the com-
ponents. The syntax for the overall structural behavior of the component

24

“CompName” is defined by the syntactic phrase “StrMod” where different
clauses define three logical parts of the behavior as follows:

1. signals specify global control behavior of the component, e.g.

� the clauses :entry-events and :exit-events models the entry
and exit events of the component respectively and

� the other allowable events (while execution of the component) are
modeled with the clause :allowable-events

2. signature of the component consists of

� the sequences of objects for the clauses :inputs and :outputs
respectively

3. body of the component is modeled as a sub-network which involves dif-
ferent components as represented by the :components clause. These
components are connected through various nodes and links as follows:

(a) the control flows :controlflows which further have corresponding
splits :splits and joins :joins and

(b) the propagation of data among the components (via control flows)
is represented by the clause :dataflows.

(c) while the execution of the body, various computing resources :re-
sources (each with a name, its type and its probabilities of being
in normal and hacked modes respectively) are involved which fur-
ther requires

(d) the resource mappings :resource-mappings (where each resource
is mapped to a component that uses it) in addition to

(e) the model mappings :model-mappings (where the conditional
probability between the compromises and misbehaviors for each
of the component is given) and

(f) the vulnerabilities :vulnerabilities such that each resource is
mapped to a corresponding (possible) vulnerability (which is as-
sumed to be defined as the part of an attack plan that is beyond
the scope of this document).

The syntactic domain of for the structural behavioral model (StrMod)
is defined as follows:

StrMod ::= define-ensemble CompName
:entry-events :auto | (EvntSeq1)
:exit-events (EvntSeq2)
:allowable-events (EvntSeq3)
:inputs (ObjNameSeq1)

25

:outputs (ObjNameSeq2)
:components (CompSeq)
:controlflows (CtrlFlowSeq)
:splits (SpltCFSeq)
:joins (JoinCFSeq)
:dataflows (DataFlowSeq)
:resources (ResSeq)
:resource-mapping (ResMapSeq)
:model-mappings (ModMapSeq)
:vulnerabilities (VulnrabltySeq)

The semantics of the structural behavioral model in a given environment
e results in an environment e′ transforming a pre-state s into a post-state s′

as defined below:

[StrMod℄(e)(e’, s, s’) ⇔
∀ e, e1, e2, e3, e4, e5, e6, e7, e8 ∈ Environment, s, s1, s2, s3, s4, s5, s6, s7, s8 ∈ State,

oeseq, oeseq1, aeseq ∈ ObsEvent*, anameseq, enameseq, enameseq1 ∈ EvntNameSeq:
(eqFlag(s, “running”) ∧
[EvntSeq3℄(e)(e1, s, inState⊥(s1), enameseq, oeseq) ∧
∀ ename ∈ enameseq:
∃ se ∈ Event, rte ∈ RTEvent, oe ∈ oeseq:
IF equals(se, oe) THEN

LET rte = store(s1)(ename) IN
IF equals(rte, se) THEN

true
ELSE

s1 = enableDiagnosis(e1)(s1, inBool(true))
END

END
ELSE

s1 = enableDiagnosis(e1)(s1, inBool(true))
END)

∨
(eqFlag(s, “running”) ∨ eqFlag(s, “ready”) ∧
[EvntSeq1℄(e)(e1, s, inState⊥(s1), enameseq, oeseq) ∧
∀ ename ∈ enameseq, oe ∈ oeseq:
∃ se ∈ Event, rte ∈ RTEvent:
equals(se, store(s1)(ename)) ∧ equals(se[1], oe[1]) ∧
LET rte = store(s1)(ename) IN

IF equals(rte[5][1], “entry”) THEN
equals(rte[1], se[1])

ELSE equals(rte[2], se[2])
END

26

END ∧
∀ inseq ∈ Value∗, c ∈ Component:
[ObjNameSeq1℄(e1)(inState⊥(s1), inseq) ∧ [CompName℄(e1)(inValue(c)) ∧
IF equals(c[2][1], inseq) THEN

eqMode(s1, “normal”)
ELSE

s1 = enableDiagnosis(e1)(s1, inBool(true))
END ∧
IF equals(c[3][1], inseq) THEN

eqMode(s1, “compromised”) ∧ s1 = enableDiagnosis(e1)(s1, inBool(true))
ELSE true
END)

⇒ eqFlag(s1, “running”) ∧
∀ compseq ∈ Component∗: [CompSeq℄(e2)(e3, s2, inState⊥(s3), compseq) ∧
∀ rmseq, crmapseq, cpmapseq, vbltyseq ∈ List∗:
[ResSeq℄(e3)(s3, inState⊥(s4), rmseq) ∧
[ResMapSeq℄(e3)(s3, inState⊥(s4), crmapseq) ∧
[ModMapSeq℄(e3)(s3, inState⊥(s4), cpmapseq) ∧
[VulnrabltySeq℄(e3)(s3, inState⊥(s4), vbltyseq) ∧
e4 = buildEnv(e3, rmseq, crmapseq, cpmapseq, vbltyseq) ∧
[CtrlFlowSeq℄(e4)(e5, s4, inState⊥(s5)) ∧
[SpltCFSeq℄(e5)(e6, s5, inState⊥(s6)) ∧
[JoinCFSeq℄(e6)(e7, s6, inState⊥(s7)) ∧
[DataFlowSeq℄(e7)(e8, s7, inState⊥(s8)) ∧
[EvntSeq2℄(e8)(e9, s8, s’, enameseq1, oeseq1) ∧
∀ ename ∈ enameseq, oe ∈ oeseq:
∃ se ∈ Event, rte ∈ RTEvent:
equals(se, store(inState(s’))(ename)) ∧ equals(se[1], oe[1]) ∧
LET rte = store(inState(s’))(ename) IN

IF equals(rte[5][1], “entry”) THEN
equals(rte[1], se[1])

ELSE equals(rte[2], se[2])
END

END
⇒
∀ outseq ∈ Value∗, c ∈ Component:
[ObjNameSeq2℄(e9)(s’, outseq) ∧ [CompName℄(e9)(inValue(c)) ∧
((IF equals(c[2][2], outseq) THEN

eqMode(inState(s’), “normal”)
ELSE

s’ = enableDiagnosis(e9)(inState(s’), inBool(true))
END) ∨
(IF equals(c[3][2], outseq) THEN

eqMode(inState(s’), “compromised”) ∧

27

s’ = enableDiagnosis(e9)(inState(s’), inBool(true))
END)) ∧
eqMode(inState(s’), “normal”) ∧
eqFlag(inState(s’), “completed”) ∧
LET sbeh = <inseq, outseq, s, s’>, nbeh = c[2], cbeh = c[3] IN

e’ = push(e9, store(inState(s’))([CompName℄(e9))
, c(sbeh, nbeh, cbeh, s, s’))

END

In general, the semantics is defined as a big logical implication, where
the premise is a disjunction of two formulas as explained below:

1. either the current state s of the component is “running” and it receives
allowable events “EvntSeq3” and for every event oe in the allowable
event sequence oeseq there is a corresponding equivalent registered
event se for which we receive an equivalent runtime event rte such
that rte is one of the under observation (legal) event se, if not then
the runtime event is a result of the misbehavior of the component
so the diagnosis component of AWDRAT is activated by calling “en-
ableDiagnosis(...)” which successfully recovers the compromised state
s1

2. or the current state s of the component is either “running” or “ready”
and it receives the entry events “EvntSeq1” (evaluating to oeseq) and
for every event oe in the sequence of entry events oeseq there is a
corresponding registered event se and the received runtime event rte
(equals se depending on its type “entry” or “exit”) is the monitored
event and

� if the sequence of input values inseq satisfies the pre-conditions
of the “normal” behavior (c[2][1])) of the component (c) then the
resulting state s1 is in “normal” mode

� otherwise (when pre-conditions are not satisfied) then the diagno-
sis component is activated which recovers the compromised state
s1 and

� if the sequence of input values inseq satisfies the pre-conditions of
the already “compromised” behavior (c[3][1]) of the component
(c) then the resulting state s1 is “compromised” state and we
restore it by enabling diagnostic engine

� otherwise the system is safe true to start executing component
respectively body/sub-network.

Semantically, if any of the above two holds then the

� the current state s1 is “running” and the components of the sub-
network evaluate to compseq and

28

� a new environment e4 is constructed based on the evaluation of the
resources, resource mappings, model mappings and vulnerabilities of
the sub-network to rmseq, crmapseq, cpmapseq, and vbltyseq respec-
tively (such that all the trust model of the components is known before
the actual execution of the body starts) in which

� the execution blocks are evaluated (such that the evaluation of the
control flows their respective splits and joins and associated data flows
results in an environment e8 and a post-state s8) to complete the
executional behavior and

� once all the sub-network is executed (recursively), then the receiving
exit events (EvntSeq2) evaluate to oeseq1 and if for every event oe in
oeseq1 there is an equivalent registered event se and a runtime event
rte then

– either the sequence of output values outseq satisfies the post-
conditions of the “normal” behavior (c[2][2]) of the component (c)
then the post-state s′ is in “normal” mode otherwise the diagnosis
component restores the post-state s′ and

– or the sequence of output values outseq satisfies the post-conditions
of the misbehavior (c[3][2]) of the component (c) then the post-
state must be in “compromised” mode and corresponding diag-
nosis component is enabled to recover the state back and

� the given and transformed final post-state s′ must be in “normal”
mode with “completed” flag and

� finally the resulting environment e′ is build with the evaluated behavior
of the component of the current component.

3.4.5 Structural Model Sequence

The syntactic domain StrModSeq is:

StrModSeq := EMPTY | (StrMod) StrModSeq

Case: EMPTY

[EMPTY℄(e)(e’, s, s’) ⇔ e’ = e ∧ s’ = inState⊥(s)

Case: (StrMod) StrModSeq

[(StrMod) StrModSeq℄(e)(e’, s, s’) ⇔
∀ e” ∈ Environment, s” ∈ State:
[StrMod℄(e)(e”, s, inState⊥(s”)) ∧ [StrModSeq℄(e”)(e’, s”, s’)

29

The semantics of the domain “StrModSeq” of structural model sequence are
similar to the semantics of the domain “RegModSeq” as discussed above in
the corresponding section. Similarly, the semantics of the syntactic domains
of “BehModSeq” and “SplModSeq” can be exercised which are discussed in
the corresponding sections later in this document.

3.4.6 Behavioral Model

The behavioral model represents the functional behavior of a component,
which can be either “normal” or known “compromised” one. The functional
behavior of the component “CompName” consists of the following elements:

1. the inputs of the component as given by the clause :inputs,

2. the outputs of the component as represented by the corresponding
clause :outputs,

3. the allowable events :allowable-events represents the auxiliary com-
munication of the component,

4. the pre-conditions of the component are specified in the clause :pre-
requisites while

5. the corresponding post-conditions are specified by the :postcondi-
tions clause.

Note that the “compromised” behavior is used to model already known
misbehaviors of the component (e.g. some attack) and needs corresponding
diagnosis which in this case is already known.

The syntactic domain “BehMod” for the behavioral model is defined as
follows:

BehMod ::= defbehavior-model (CompName normal | compromised)
:inputs (ObjNameSeq1)
:outputs (ObjNameSeq2)
:allowable-events (EvntSeq)
:prerequisites (BehCondSeq1)
:postconditions (BehCondSeq2)

Semantically, normal and compromised behavioral models results in mod-
ifying the corresponding elements of the environment value “Component”
as defined below:

[BehMod℄(e)(e’, s, s’) ⇔
∀ e1 ∈ Environment, nseq ∈ EvntNameSeq, eseq ∈ ObsEvent*, inseq, outseq ∈ Value∗:
[ObjNameSeq1℄(e)(inState⊥(s), inseq) ∧ [BehCondSeq1℄(e) (inState⊥(s)) ∧
[EvntSeq℄(e) (e1, s, s’, nseq, eseq)

30

[ObjNameSeq2℄(e1)(s’, outseq) ∧ [BehCondSeq2℄(e1) (s’) ∧
∃ c ∈ Component: [CompName℄(e1)(inValue(c)) ∧
IF eqMode(inState⊥(s’), “normal”) THEN

LET sbeh = c[1], nbeh = <inseq, outseq, s, s’>, cbeh = c[3] IN
e’ = push(e1, store(inState(s’))([CompName℄(e1))

, c(sbeh, nbeh, cbeh, s, s’))
END

ELSE
LET sbeh = c[1], nbeh = c[2], cbeh = <inseq, outseq, s, s’> IN

e’ = push(e1, store(inState(s’))([CompName℄(e1))
, c(sbeh, nbeh, cbeh, s, s’))

END
END

In detail, if the semantics of of syntactic domain “BehMod” holds in a
given environment e resulting in environment e′ and transforming a pre-state
s into corresponding post-state s′ then

� the inputs “ObjNameSeq1” evaluates to a sequence of values inseq in
a given environment e and a given state s which satisfies the corre-
sponding pre-conditions “BehCondSeq1” in the same e and s and

� the allowable events happens whose evaluation results in new environ-
ment e1 and given post-state s′ with some auxiliary sequences nseq
and eseq and

� the outputs “ObjNameSeq2” evaluates to a sequence of values outseq
in an environment e1 and given post-state s′ which satisfies the cor-
responding post-conditions “BehCondSeq2” in the same environment
e1 and state s′ and the given environment e′ can be constructed such
that

– if the post-state is “normal” then e′ is an update to the normal
behavior “nbeh” of the component “CompName” in environment
e1

– otherwise e′ is an update to the compromised behavior “cbeh” of
the component.

In the construction of the environment e′ the rest of the semantics of the
component do not change as represented in the corresponding LET-IN con-
structs.

3.4.7 Behavioral Model Sequence

The syntactic domain BehModSeq is:

BehModSeq := EMPTY | (BehMod) BehModSeq

31

Case: EMPTY

[EMPTY℄(e)(e’, s, s’) ⇔ e’ = e ∧ s’ = inState⊥(s)

Case: (BehMod) BehModSeq

[(BehMod) BehModSeq℄(e)(e’, s, s’) ⇔
∀ e” ∈ Environment, s” ∈ State:
[BehMod℄(e)(e”, s, inState⊥(s”)) ∧ [BehModSeq℄(e”)(e’, s”, s’)

3.4.8 Split Model

Though the splits of control flows are declared in the “StrBeh” domain
but their corresponding definitions are given with the help of the domain
“SplMod” which consists of its

� name “SpltModName”,

� required sequence of parameters “SpltParamSeq” which are used by
the various branches of the split as defined in

� the split condition branches “SpltCondSeq”.

The syntax of the domain “SplMod” is given as follow:

SplMod ::= defsplit SpltModName? (SpltParamSeq) SpltCondSeq)

If the semantics of the split model “SplMod” in a given environment e
results in environment e′ and transforms a pre-state s into post-state s′ then

� first the parameters are evaluated in a given environment e which
results in an environment e1 and sequence of values vseq transforming
a given pre-state s into post-state s1 and

� the split conditions “SpltCondSeq” hold in environment e1 producing
environment e2 and given post-state s′ and finally

� given environment e′ is a result of a push operation on environment
e2 updating the value of the split “SpltModName” with the one con-
structed by the computed values vseq.

The semantics of the split behavior is formalized as follows:

[SplMod℄(e)(e’, s, s’) ⇔
∀ e1, e2 ∈ Environment, s1 ∈ State, vseq ∈ Value∗:
[SpltParamSeq℄(e)(e1, s, inState⊥(s1), vseq) ∧
[SpltCondSeq℄(e1) (e2, s1, s’) ∧
LET s ∈ Split IN

e’ = push(e2, store(inState(s’))([SpltModName℄(e2)), s(vseq))
END

32

3.4.9 Split Model Sequence

The syntactic domain SplModSeq is:

SplModSeq := EMPTY | (SplMod) SplModSeq

Case: EMPTY

[EMPTY℄(e)(e’, s, s’) ⇔ e’ = e ∧ s’ = inState⊥(s)

Case: (SplMod) SplModSeq

[(SplMod) SplModSeq℄(e)(e’, s, s’) ⇔
∀ e” ∈ Environment, s” ∈ State:
[SplMod℄(e)(e”, s, inState⊥(s”)) ∧ [SplModSeq℄(e”)(e’, s”, s’)

3.4.10 Attack Model

The attack model represents the different types of known/hypothetical at-
tack, their corresponding probabilities and the respective vulnerabilities
causing the attack types. The attack model “AtkModName” has:

1. types of attack and their conditional probabilities as specified by the
clause :attack-types and

2. mapping between the types of attack and vulnerabilities as described
by the corresponding clause :vulnerability-mapping.

Additionally, the attack model is extended by the rules which map con-
ditional probabilities of the attacks and vulnerabilities. The attack rule
“AtkRulName” has

1. a sequence of attack conditions which describe the attack situation as
specified by the clause if

2. and the attack consequences which map the probabilities of attacks
and vulnerabilities; the maps are represented by the clause then.

Note that the attack models can be used in the following ways:

� the models are already known attacks and thus already know the cor-
responding diagnosis

� or the models can be hypothetical attacks which can be used to gen-
erate rigorous monitors for the system.

The syntactic domain “AtkMod” for the attack model is defined as fol-
lows:

33

AtkMod ::= define-attack-model AtkModName
:attack-types (AtkTypeSeq)
:vulnerability-mapping (AtkVulnrabltyMapSeq)

While the syntactic domain “AtkRule” for defining attack rules is defined
as follows:

AtkRule ::= defrule AtkRulName (:forward)
if AtkCondSeq
then AtkConsSeq

Semantically, an attack model results in the environment value “Atk-
Model” as defined below:

[AtkMod℄(e)(e’, s, s’) ⇔
∀ s” ∈ State, aseq, aseq’, vnseq ∈ ISeq, apseq ∈ Value∗:
[AtkTypeSeq℄(e)(s, inState⊥(s”), aseq, apseq) ∧
[AtkVulnrabltyMapSeq℄(e) (s”, s’, aseq’, vnseq) ∧ respectsOrder(aseq, aseq’) ∧
LET amod ∈ AtkModel IN

e’ = push(e, store(inState(s’))([AtkModName℄(e)), amod(aseq, apseq, vnseq)))
END

In detail, the semantics of the syntactic domain “AtkMod” updates the
environment e with a attack semantic value amod such that

� in a given environment e and state s, the evaluation of “AtkType-
Seq” results in a post-state s′′, a sequence of attack types aseq and a
sequence of values (conditional probabilities) apseq and

� in a given environment e and state s, the evaluation of “AtkVul-
nrabltyMapSeq” results in post-state s′, a sequence of attack types
aseq′ and a sequence of vulnerabilities vnseq and

� the environment e′ is an update of environment e with the semantic
value amod which is a triple of

1. a sequence of attack types,

2. a sequence of corresponding probabilities and

3. a sequence of vulnerabilities causing the attack types, respec-
tively.

However, if the semantics of the syntactic domain “AtkRule” holds in
an environment e, then

� there is some resource r such that (as given in “AtkCondSeq” respec-
tive “AtkCond”)

1. the resource name is “?resource-name” and

34

2. the resource type is “ResType” and

3. if the resource has been compromised by an attack “AtkType-
Name”, then

� the resource r (and its associated component c) has behavior as speci-
fied by the evaluation of consequences “AtkCodSeq” in an environment
e and state s.

Formally, the semantics of the syntactic domain “AtkRule” is defined as:

[AtkRule℄(e)(e’, s, s’) ⇔
∃ r ∈ Resource, c ∈ Component: [AtkCondSeq℄(e)(s, s’, r, c) ∧
[AtkConsSeq℄(e) (s, s’, r, c) ∧ e’ = e

3.4.11 Attack Model Sequence

The syntactic domain AtkModSeq is:

AtkModSeq := EMPTY | (AtkMod) AtkModSeq

Case: EMPTY

[EMPTY℄(e)(e’, s, s’) ⇔ e’ = e ∧ s’ = inState⊥(s)

Case: (AtkMod) AtkModSeq

[(AtkMod) AtkModSeq℄(e)(e’, s, s’) ⇔
∀ e” ∈ Environment, s” ∈ State:
[AtkMod℄(e)(e”, s, inState⊥(s”)) ∧ [AtkModSeq℄(e”)(e’, s”, s’)

4 Execution Monitor

In principle, Architectural Differencer synthesizes both the wrappers and
the execution monitor where the wrappers traces the execution of the target
system by creating an event stream (these traces are also called observa-
tions); while the role of an execution monitor is to interpret the stream
against the system (Architectural Model) specification (the execution of the
specification is also called predictions) by detecting inconsistencies between
observations and the predictions, if there are any.

We have already discussed the formal syntax and semantics of the pre-
dictions in the previous sections, now we first give the formal syntax of the
observations in this section and the corresponding formal semantics in the
following section.

35

4.1 Observation Model

Each runtime event (observation) consists of

� a name “EvntName”,

� its type, i.e. entry or exit,

� depending on the type of event

– either sequence of event parameters (if entry event)
– or a parameter representing return value of the event (if exit

event)

� a numeric value “Numeral” representing an operating system level
process id, which can be used later to get more information about the
event to detect any system level threats and other technical dependen-
cies and

� a time “TimeStamp” of the event which later can be used to detect
inconsistencies in the sequence of events.

The syntax of the runtime event is defined by the syntactic domain
“Obsrv” as follow:

Obsrv := EvntName entry | exit
EvntParamSeq
Numeral
TimeStamp

If the semantics of an observation “Obsrv” in a given environment e
results in environment e′ and transforms a pre-state s into post-state s′

then

� first the parameters are evaluated in a given environment e which
results in an environment e1 and sequence of values pseq transforming
a given pre-state s into post-state s1 and

� evaluation of the numeric value “Numeral” results in a value n in
environment e1 and state s1 and

� also time stamp “TimeStamp” evaluates to a value t in environment
e1 and state s1 and finally

– if the observation is “entry” event the resulting environment e′

is a result of a push operation on environment e2 updating the
value of the observation “EvntName” with the semantic value
of the observation, i.e. of type “RTEvent” which is constructed
with the help of computed input values pseq, process id n and
time value t and

36

– if the observation is “exit” event the resulting environment e′ is a
result of a push operation on environment e2 updating the value
of the observation “EvntName” with the semantic value of the
observation, i.e. of type “RTEvent” which is constructed with
the help of computed output values pseq (sequence with a single
value), process id n and time value t.

The semantics of the observation is formalized as follows:

[Obsrv℄(e)(e’, s, s’) ⇔
∀ e1, e2 ∈ Environment, s1 ∈ State, pseq ∈ Value∗, n, t ∈ Value:
[EvntParamSeq℄(e)(e1 , s, inState⊥(s’), pseq) ∧
[Numeral℄(e1) (inState(s’), n) ∧ [TimeStamp℄(e1) (inState(s’), t) ∧
LET rte ∈ RTEvent IN

IF isEntry(Obsrv) THEN
e’ = push(e2, store(inState(s’))([EvntName℄(e2))

, rte(pseq, EMPTY, s, s’, <“entry”, t, n>))
ELSE

e’ = push(e2, store(inState(s’))([EvntName℄(e2))
, rte(EMPTY, pseq, s, s’, <“exit”, t, n>))

END
END

4.1.1 Observations

The event respectively observation stream is a sequence of observations,
which is modeled by corresponding syntactic domain ObsrvSeq as follows:

ObsrvSeq := EMPTY | (Obsrv) ObsrvSeq
The semantics of the observation sequence are similar to the other syn-

tactic sequences discussed earlier in this document.

Case: EMPTY

[EMPTY℄(e)(e’, s, s’) ⇔ e’ = e ∧ s’ = inState⊥(s)

Case: (Obsrv) ObsrvSeq

[(Obsrv) ObsrvSeq℄(e)(e’, s, s’) ⇔
∀ e” ∈ Environment, s” ∈ State:
[Obsrv℄(e)(e”, s, inState⊥(s”)) ∧ [ObsrvSeq℄(e”)(e’, s”, s’)

5 Semantics of the Execution Monitor

Though the technical details of the operation of the execution monitor are
discussed in [5], in the following we give their informal semantics.

37

We presume that a reasonable fine grained level behavior of the target
system is specified in the corresponding System Architectural Model. When
the target system starts execution, an initial “startup” event is generated
and dispatched to the top level component (module) of the system which
transforms the execution state of the component into “running” mode. The
component instantiates its subnetwork (of components, if there is one) and
also propagates the data along its data links by enabling the corresponding
control links (if involved). When the data arrives on the input port of
the component, the execution monitor checks if it is complete; if so, the
execution monitor checks the preconditions of the component for the data
and if they succeed, it transform the state of the component into “ready”
mode. In case, any of the preconditions fails, it enables diagnosis engine.

After the above startup of the target system, the execution monitor starts
monitoring the arrival of every observation (runtime event) as follows:

1. If the event is a “method entry”, then the execution monitor checks if
this is one of the “entry events” of the corresponding component in the
“ready” state; if so, then after receiving the data and the respective
preconditions are checked; if they succeed, then the data is applied on
the input port of the component and the mode of the execution state
is changed to “running”.

2. If the event is a “method exit”, then the execution monitor checks
if this one of the “exit events” of the component in the “running”
state; if so, it changes its state into “completed” mode and collects
the data from the output port of the component and checks for the
corresponding postconditions. Should the checks fail, the execution
monitor enables the diagnosis engine.

3. If the event is one of the “allowable events” of the component, it
continues execution and finally

4. if the event is an unexpected event, i.e. it is neither an “entry event”,
nor an “exit event” and also not in “allowable events”, then the exe-
cution monitor starts diagnosis.

Based on the above behavioral description of the execution monitor, we
have formalized the corresponding semantics of the execution monitor by a
relation monitor which has signatures as follows:

monitor ⊂ Target System × System Architectural Model
→ Environment → State × State⊥

and which is defined as follows:

monitor(app, sam)(e)(s, s′) ⇔

38

∀ c ∈ Component, t, t’ ∈ States, d, d’ ∈ Environments, e’ ∈ Environment, rte ∈ RTEvent:
[sam℄(d)(d’, t, t’) ∧ [app℄(e)(e’, s, s’) ∧ startup(s, app) ∧ isTop(c, [app℄(e)(e’, s, s’)) ∧
setMode(s, “running”) ∧ arrives(rte, s) ∧ equals(t, s) ∧ equals(d, e)
⇒
∀ p, p’ ∈ Environment∗, m, n ∈ State∗⊥:

equals(m(0), s) ∧ equals(p(0), e)
⇒
∃ k ∈ N:
∀ i ∈ Nk : monitors(i, rte, c, p, p’, m, n) ∧

(eqMode(n(k), “completed”) ∧ eqFlag(n(k), “normal”) ∧ equals(s’, n(k))
∨
eqFlag(n(k), “compromised”)
⇒

enableDiagnosis(p’(k))(n(k), inBool(true)) ∧ ¬ equals(s’, n(k)))

In detail, given a target system “app” and its specification“sam” and
their semantices are defined such that their corresponding pre-states are
equivalent. Furthermore, if the application starts “startup(...)”, and an
arbitrary c is a top-level component “isTop(...)”, then the current state of the
component is marked as “running” and when an observation “rte” arrives in
this state, then the monitor starts monitoring the event stream/sequence and
thus, here, we have formalized the corresponding semantics of the monitor by
the two sequences of pre- and post-states [3] and their respective sequences
of the pre- and post-environments. Both the former and later sequences
are constructed from their corresponding pre- and post objects. The arrival
and monitoring of the ith observation (event) transforms state pre(i) into
state post(i + 1) from which the state pre(i + 1) is constructed and the
same repeats for the construction of the corresponding environments. No
event can be accepted in an Error state and the corresponding monitoring
terminates either when the application has terminated with “normal” mode
or when there is some misbehavior is detected as indicated by the respective
“compromised” state. This semantics is formalized with the help of predicate
“monitor”, for details please see Subsection 3.3.

Finally, when there are sequences of states and environments for which
the predicate “monitor” holds, then either the given post-state s′ is equal
to the “monitor”ed post-state “n(k)” which is in “completed” mode and
has a “normal” flag or post-state “n(k)” is “compromised” and in this case
diagnosis is enabled which successfully transforms the compromised state
into a normal state which results in the given post-state s′.

6 Conclusions and Future Work

In this report, we gave the formal definition of the syntax and semantices of
the System Architectural Model and the Execution Monitor of AWDRAT.

39

These definitions help to understand internal behavior of the corresponding
components on one hand, and also serves as a formal basis for ADWRAT to
extend the current system on the other hand. Based on this formalism, we
are currently working on the formal reliability (soundness) analysis of the
Execution Monitor of AWDRAT.

In future, we plan to extend AWDRAT such that a target system be-
havior is specified using Abstract State Machine (ASM) [1] based formalism
which then will automatically translate into a semantically equivalent Sys-
tem Architectural Model. This will allow to already check the inconsistencies
in the system behavior with existing ASM supported tools [2].

Acknowledgment

The authors cordially thank Adam Chilpala for his valuable and constructive
remarks and suggestions.

40

References

[1] E. Borger and Robert F. Stark. Abstract State Machines: A Method
for High-Level System Design and Analysis. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2003.

[2] Jean-Baptiste Jeannin, Guido de Caso, Juan Chen, Yuri Gurevich,
Prasad Naldurg, and Nikhil Swamy. Dkal*: Constructing executable
specifications of authorization protocols. Technical Report MSR-TR-
2013-19, March 2013.

[3] Muhammad Taimoor Khan. On the Formal Semantics of MiniMaple and
Its Specification Language. In Proceedings of the 2012 10th International
Conference on Frontiers of Information Technology, FIT ’12, pages 169–
174, Washington, DC, USA, 2012. IEEE Computer Society.

[4] Schmidt, David A. Denotational Semantics: a methodology for language
development. William C. Brown Publishers, Dubuque, IA, USA, 1986.

[5] Howard Shrobe, Robert Laddaga, Bob Balzer, Neil Goldman, Dave Wile,
Marcelo Tallis, Tim Hollebeek, and Alexander Egyed. AWDRAT: A Cog-
nitive Middleware System for Information Survivability’. In Proceedings
of the 18th Conference on Innovative Applications of Artificial Intelli-
gence - Volume 2, IAAI’06, pages 1836–1843. AAAI Press, 2006.

[6] Shrobe, Howard E. Dependency Directed Reasoning for Complex Pro-
gram Understanding. Technical report, 1979.

41

Appendices

Appendix A gives the formal abstract syntax (language grammar) for the
specification language “system architectural model” of AWDRAT.

A Formal Syntax of System Architectural Model

A.1 Declaration of Syntactic Domains

/* top level syntactic domains */
SAM ∈ System Architectural Model
RegModSeq ∈ Register Model Sequence
StrModSeq ∈ Structural Model Sequence
BehModSeq ∈ Behavioral Model Sequence
SplModSeq ∈ Split Model Sequence
AtkModSeq ∈ Attack Model Sequence
AtkRuleSeq ∈ Attack Rule Sequence

/* top level syntactic sub-domains */
RegMod ∈ Register Model
StrMod ∈ Structural Model
BehMod ∈ Behavioral Model
SplMod ∈ Split Model
AtkMod ∈ Attack Model
AtkRule ∈ Attack Rule

/* event related syntactic domains */
Evnt ∈ Event
EvntSeq ∈ Event Sequence
EvntName ∈ Event Name
EvntNameSeq ∈ Event Name Sequence
EvntParamSeq ∈ Event Parameter Sequence

/* java related syntactic domains */
JavClaName ∈ Java Class Name
JavMetName ∈ Java Method Name
JavParam ∈ Java Parameter
JavParamSeq ∈ Java Parameter Sequence
JavParamName ∈ Java Parameter Name
JavParamType ∈ Java Parameter Type

/* object related syntactic domains */
ObjName ∈ Object Name
ObjtNameStr ∈ Object Name String
ObjNameSeq ∈ Object Name Sequence

42

ObjType ∈ Object Type
ObjComp ∈ Object Component
ObjCompSeq ∈ Object Component Sequence

/* behavioral condition, parameter and situation related syntactic domains
*/
BehCond ∈ Behavioral Condition
BehCondSeq ∈ Behavioral Condition Sequence
BehCondMode ∈ Behavioral Condition Mode
BehParam ∈ Behavioral Parameter
BehParamSeq ∈ Behavioral Parameter Sequence
BehSit ∈ Behavioral Situation

/* branch related syntactic domains */
BrnchName ∈ Branch Name
BrnchNameSeq ∈ Branch Name Sequence
BrnchCond ∈ Branch Condition

/* component related syntactic domains */
Comp ∈ Component
CompSeq ∈ Component Sequence
CompName ∈ Component Name
CompType ∈ Component Type

/* control flow related syntactic domains */
CtrlFlow ∈ Control Flow
CtrlFlowSeq ∈ Control Flow Sequence

/* function related syntactic domains */
FuncName ∈ Function Name
FuncParam ∈ Function Parameter
FuncParamSeq ∈ Function Parameter Sequence

/* split related syntactic domains */
SpltCF ∈ Split
SpltCFSeq ∈ Split Sequence
SpltName ∈ Split Name
SpltModName ∈ Split Model Name
SpltParamSeq ∈ Split Parameter Sequence
SpltCond ∈ Split Condition
SpltCondSeq ∈ Split Condition Sequence

/* join related syntactic domains */
JoinCF ∈ Join
JoinCFSeq ∈ Join Sequence
JoinName ∈ Join Name

43

JoinParamSeq ∈ Join Parameter Sequence

/* data flow related syntactic domains */
DataFlow ∈ Data Flow
DataFlowSeq ∈ Data Flow Sequence

/* resource related syntactic domains */
Res ∈ Resource
ResSeq ∈ Resource Sequence
ResName ∈ Resource Name
ResType ∈ Resource Type
ResMap ∈ Resource Mapping
ResMapSeq ∈ Resource Mapping Sequence
ResModMap ∈ Resource Model Mapping

/* model mapping syntactic domains */
ModMap ∈ Model Mapping
ModMapSeq ∈ Model Mapping Sequence

/* vulnerability related syntactic domains */
Vulnrablty ∈ Vulnerability
VulnrabltyName ∈ Vulnerability Name
VulnrabltySeq ∈ Vulnerability Sequence

/* attack related syntactic domains */
AtkType ∈ Attack Type
AtkTypeSeq ∈ Attack Type Sequence
AtkModName ∈ Attack Model Name
AtkCond ∈ Attack Condition
AtkCondSeq ∈ Attack Condition Sequence
AtkCons ∈ Attack Consequence
AtkConsSeq ∈ Attack Consequence Sequence
AtkTypeName ∈ Attack Type Name
AtkRulName ∈ Attack Rule Name
AtkVulnrabltyMap ∈ Attack Vulnerability Mapping
AtkVulnrabltyMapSeq ∈ Attack Vulnerability Mapping Sequence

/* other syntactic domains */
MembName ∈ Member Name
ParamName ∈ Parameter Name
DSCond ∈ Data Structure Condition
ISeq ∈ Identifier Sequence

44

A.2 Grammar

Based on the declarations of various syntactic domains, in this section we
discuss the grammar rules for the domains.

/* top level syntactic domains */
SAM ::= RegModSeq StrModSeq BehModSeq SplModSeq
RegModSeq ::= EMPTY

| (RegMod) RegModSeq
StrModSeq ::= EMPTY

| (StrMod) StrModSeq
BehModSeq ::= EMPTY

| (BehMod) BehModSeq
SplModSeq ::= EMPTY

| (SplMod) SplModSeq
AtkModSeq ::= EMPTY

| (AtkMod) AtkModSeq
AtkRuleSeq ::= EMPTY

| (AtkRule) AtkRuleSeq

/* top level syntactic sub-domains */
RegMod ::= register-event ’EvntName JavClaName JavMetName ’(JavParamSeq)

[:static ObjName]
[:output-type JavParam]
[:bypass ObjNameStr]
[:EvntName ObjName]

StrMod ::= define-ensemble CompName
:entry-events :auto | (EvntSeq)
:exit-events (EvntSeq)
:allowable-events (EvntSeq)
:inputs (ObjNameSeq)
:outputs (ObjNameSeq)
:components (CompSeq)
:controlflows (CtrlFlowSeq)
:splits (SpltCFSeq)
:joins (JoinCFSeq)
:dataflows (DataFlowSeq)
:resources (ResSeq)
:resource-mapping (ResMapSeq)
:model-mappings (ModMapSeq)
:vulnerabilities (VulnrabltySeq)

BehMod ::= defbehavior-model (CompName normal | compromised)
:inputs (ObjNameSeq)
:outputs (ObjNameSeq)
:allowable-events (EvntSeq)

45

:prerequisites (BehCondSeq)
:postconditions (BehCondSeq)

SplMod ::= defsplit SpltModName? (SpltParamSeq) SpltCondSeq)
AtkMod ::= define-attack-model AtkModName

:attack-types (AtkTypeSeq)
:vulnerability-mapping (AtkVulnrabltyMapSeq)

AtkRule ::= defrule AtkRulName (:forward)
if AtkCondSeq
then AtkConsSeq

/* event related syntactic domains */
Evnt ::= EvntName | (EvntName [entry | exit] (EvntParamSeq))
EvntSeq ::= EMPTY

| Evnt EvntSeq
EvntParam ::= I Iseq

| nil I Iseq
| I ISeq nil

EvntParamSeq ::= EMPTY
| EvntParam EvntParamSeq

/* java related syntactic domains */
JavClaName ::= ”I”
JavMetName ::= ”ID” | ”<I>“
JavParam ::= (JavParamType JavParamName)
JavParamSeq ::= EMPTY

| JavParam JavaParamSeq
JavParamName ::= ”I“
JavParamType ::= ”ID“ | ”ID[]”

/* object related syntactic domains */
ObjComp ::= (ObjName CompName?)
ObjCompSeq ::= EMPTY

| ObjComp ObjCompSeq
ObjNameStr ::= ObjName | ”ObjName“

/* behavioral condition related syntactic domains */
BehCond ::= [DSCond ObjName ObjType BehCondMode]

| [and BehCond]
| [or BehCond]
| [not BehCond]
| [SpecFuncName BehParamSeq BehSit]

BehCondSeq ::= EMPTY
| BehCond BehCondSeq

BehCondMode ::= EMPTY | good
BehParam ::= ?ObjName | (MembName ?ObjName)

46

BehParamSeq ::= EMPTY
| BehParam BehParamSeq

BehSit ::= ?before-CompName | ?after-CompName

/* branch condition syntactic domain */
BrnchCond ::= FuncName FuncParamSeq

/* component related syntactic domains */
Comp ::= (CompName :type CompType :models (normal [compromised]))
CompSeq ::= EMPTY

| Comp CompSeq

/* control flow related syntactic domains */
CtrlFlow ::= (before | after CompName[?-BrnchName])
CtrlFlowSeq ::= EMPTY

| CtrlFlow CtrlFlowSeq

/* function related syntactic domains */
FuncParam ::= ?ParamName | ’ParamName | ParamName? | not (ParamName)
FuncParamSeq ::= EMPTY

| FuncParam FuncParamSeq

/* split of control flow related syntactic domains */
SpltCF ::= (SpltName? SpltModName? [(SpltParamSeq)] (BrnchNameSeq))
SpltCFSeq ::= EMPTY

| SpltCF SpltCFSeq
SpltCondSeq ::= EMPTY

| SpltCond SplitCondSeq
SpltCond ::= (BrnchName (BrnchCond))

/* join of control flow related syntactic domains */
JoinCF ::= (JoinName? [(JoinParamSeq)] (BrnchNameSeq))
JoinCFSeq ::= EMPTY

| JoinCF JoinCFSeq

/* data flow related syntactic domains */
DataFlow ::= (ObjCompSeq)
DataFlowSeq ::= EMPTY

| DataFlow DataFlowSeq

/* resource related syntactic domains */
Res ::= (ResName ResType [(normal | hacked FVal)]+)
ResSeq ::= EMPTY

| Res ResSeq
ResType ::= File | Port | Mem

47

ResMap ::= (CompName ResName)
ResMapSeq ::= EMPTY

| ResMap ResMapSeq
ResModMap ::= ResName normal | hacked FVal

| ((ResName normal | hacked)) FVal

/* model mapping related syntactic domains */
ModMap ::= (CompName noromal | compromised ResModMap)
ModMapSeq ::= EMPTY

| ModMap ModMapSeq

/* vulnerability related syntactic domains */
Vulnrablty ::= (ResName VulnrabltyName)
VulnrabltySeq ::= EMPTY

| Vulnrablty VulnrabltySeq

/* attack related syntactic domains */
AtkType ::= (AtkTypeName FVal)
AtkTypeSeq ::= EMPTY

| AtkType AtkTypeSeq
AtkCond ::= [resource ?ensemble ?ResName ?Res]

[resource-type-of ?Res ResType]
[resource-might-have-been-attacked ?Res AtkTypeName]
| [and AtkCond]
| [or AtkCond]
| [not AtkCond]

AtkCondSeq ::= EMPTY
| AtkCond AtkCondSeq

AtkCons ::= [attack-implies-compromised-mode AtkTypeName ?Res
normal | compromised FVal]

| [and AtkCons]
| [or AtkCons]
| [not AtkCons]

AtkConsSeq ::= EMPTY
| AtkCons AtkConsSeq

AtkVulnrabltyMap ::= (VulnrabltyName AtkTypeName)
AtkVulnrabltyMapSeq ::= EMPTY

| AtkVulnrabltyMap AtkVulnrabltyMapSeq

/* syntactic domains of various names and types */
CompName, CompType, FuncName, ObjName, ObjType,

EvntName, SpltName, SpltModName ::= I
JoinName, ResName, BrnchName, VulnrabltyName, SpecFuncName

, ParamName, MembName ::= I
AtkModName, AtkTypeName, AtkRulName ::= I

48

/* syntactic domains of various sequences */
ObjNameSeq, SpltParamSeq, JoinParamSeq, BrnchNameSeq ::= ISeq

/* other syntactic domains */
DSCond ::= EMPTY | dscs
ISeq :: = EMPTY

| I ISeq
I ::= any valid LISP system name
FVal ::= a sequence of decimal digits prefixed by a period (valid float value)

B An Example of a System Architectural Model

In this section, we give the syntax of an example System Architectural Model
of MAF editor system which is discussed in detail in [5]. In the following,
we give a brief detail on how to read the example, i.e. maf-editor is the
top level component of the application whose structural behavior is specified
at first. Every sentence of the specification is self-explanatory. In principle,
the behavior of every component in the subnetwork of a parent component
has to be specified separately with two corresponding parts, e.g. a compo-
nent maf-startup (which is in the subnetwork of top-level component as
mentioned in :components clause) has

1. structural behavior as specified by clause

define-ensemble maf-startup

2. normal behavior as specified by the clause

defbehavior-model (maf-startup norml)

3. and a corresponding compromised behavior is specified by the clause

defbehavior-model (maf-startup compromised)

The former part corresponds to the control level of the specification while
the latter two corresponds to the behavioral level of the specification of the
component.

Furthermore, as explained in Section 2, the split behavior of the compo-
nent maf-create-events is further specified with the corresponding clauses,
e.g.

defsplit maf-more-events?

Also, any pre/postcondition that is followed by the dscs specifies the data
structure consistency property.

49

B.1 MAF Editor Model

(define-ensemble maf-editor
:entry-events :auto
:inputs ()
:outputs (the-model)
:components ((startup :type maf-startup :models (normal compromised))
(create-model :type maf-create-model :models (normal compromised))
(create-events :type maf-create-events :models (normal compromised))
(save :type maf-save :models (normal compromised)))

:controlflows ((before maf-editor before startup)
(after startup before create-model))

:dataflows ((the-model create-model the-model create-events)
(the-model create-events the-model save)
(the-model save the-model maf-save-model))

:resources ((imagery image-file (normal .7) (hacked .3))
(code-files loadable-files (normal .8) (hacked .2)))

:resource-mappings ((startup imagery)
(create-model code-files)
(create-events code-files)
(save-model code-files))

:model-mappings ((startup normal ((imagery normal)) .99)
(startup compromised ((imagery normal)) .01)
(startup normal ((imagery hacked)) .9)
(startup compromised ((imagery hacked)) .1)

(create-model normal ((code-files normal)) .99)
(create-model compromised ((code-files normal)) .01)
(create-model normal ((code-files hacked)) .9)
(create-model compromised ((code-files hacked)) .1)

(create-events normal ((code-files normal)) .99)
(create-events compromised ((code-files normal)) .01)
(create-events normal ((code-files hacked)) .9)
(create-events compromised ((code-files hacked)) .1)

(save normal ((code-files normal)) .99)
(save compromised ((code-files normal)) .001)

50

(save normal ((code-files hacked)) .01)
(save compromised ((code-files hacked)) .999))

:vulnerabilities ((imagery reads-complex-imagery)
(code-files loads-code)
))

(define-ensemble maf-startup
:entry-events (startup)
:exit-events (startup)
:allowable-events (post-validate create-client-frame
center-action load-image)

:inputs ()
:outputs ())

(defbehavior-model (maf-startup normal)
:inputs ()
:outputs ()
:prerequisites ()
:post-conditions ())

(defbehavior-model (maf-startup compromised)
:inputs ()
:outputs ()
:prerequisites ()
:post-conditions ())

;;; Need defbehaviors for each of these even if its empty

(define-ensemble maf-create-model
:entry-events (create-mission-action-action-performed)
:exit-events (mission-builder-submit)
:allowable-events (create-mission-builder-with-client-panel

create-mission-builder
create-mission-builder-with-hash-table
mission-builder-submit
(set-initial-info exit (the-model nil))
create-mission-action-action-performed
retrieve-info
create-mission-action-action-performed
(set-initial-info entry)
)

:inputs ()
:outputs (the-model))

51

(defbehavior-model (maf-create-model normal)
:inputs ()
:outputs (the-model)
:prerequisites ()
:post-conditions ([dscs ?the-model mission-builder good])
)

(defbehavior-model (maf-create-model compromised)
:inputs ()
:outputs (the-model)
:prerequisites ()
:post-conditions ([not [dscs ?the-model mission-builder good]])
)

(define-ensemble maf-create-events
:entry-events :auto
:exit-events ()
:allowable-events ()
:inputs (the-model)
:outputs (the-model)
:components ((get-next-cmd :type maf-get-next-cmd :models (normal))

(get-event-info :type maf-get-event-info :models (normal compromised))
(add-event-to-model :type maf-add-event-to-model :models
(normal compromised))
(get-leg :type maf-get-leg :models (normal compromised))
(get-movement :type maf-get-movement :models (normal compromised))
(get-sortie :type maf-get-sortie :models (normal compromised))
(add-additional-info-to-model :type maf-add-additional-info :models
(normal compromised))
(continue :type maf-create-events :models (normal compromised)))

:dataflows ((the-model maf-create-events the-model join-exit-exit)
(the-model maf-create-events the-model add-event-to-model)
(the-cmd get-next-cmd cmd more-events?)
(the-event get-event-info the-event add-event-to-model)
(the-model add-event-to-model the-model join-events-non-take-off)
(the-event get-event-info event takeoff?)
(the-leg get-leg the-leg add-additional-info-to-model)
(lms-event-counter get-leg event-number add-additional-info-to-model)
(the-movement get-movement the-movement add-additional-info-to-model)
(the-sortie get-sortie the-sortie add-additional-info-to-model)
(the-model add-event-to-model the-model add-additional-info-to-model)
(the-model add-additional-info-to-model the-model join-events-take-off)

52

(the-model join-events the-model continue)
(the-model continue the-model join-exit-recur)
(the-model join-exit the-model maf-create-events)
)

:controlflows ((after more-events?-build-event before add-event-to-model)
(after more-events?-exit before join-exit-exit)
(after takeoff?-get-additional-info before get-leg)
(after takeoff?-get-additional-info before get-movement)
(after takeoff?-get-additional-info before get-sortie)
(after takeoff?-exit before join-events-non-take-off))

:splits ((more-events? maf-more-events? (cmd) (build-event exit))
(takeoff? maf-takeoff? (event) (get-additional-info exit)))

:joins ((join-events (the-model) (take-off non-take-off))
(join-exit (the-model) (recur exit)))

:resources ((code-files loadable-files (normal .8) (hacked .2)))

:resource-mappings ((get-event-info code-files)
(add-event-to-model code-files)
(get-leg code-files)
(get-movement code-files)
(get-sortie code-files)
(add-additional-info-to-model code-files)
(continue code-files))

:model-mappings ((get-event-info normal code-files normal .99)
(get-event-info compromised code-files normal .01)
(get-event-info normal code-files hacked .9)
(get-event-info compromised code-files hacked .1)

(add-event-to-model normal code-files normal .99)
(add-event-to-model compromised code-files normal .01)
(add-event-to-model normal code-files hacked .9)
(add-event-to-model compromised code-files hacked .1)

(get-leg normal code-files normal .99)
(get-leg compromised code-files normal .001)
(get-leg normal code-files hacked .01)
(get-leg compromised code-files hacked .999)

(get-movement normal code-files normal .99)

53

(get-movement compromised code-files normal .001)
(get-movement normal code-files hacked .01)
(get-movement compromised code-files hacked .999)

(get-sortie normal code-files normal .99)
(get-sortie compromised code-files normal .001)
(get-sortie normal code-files hacked .01)
(get-sortie compromised code-files hacked .999)

(add-additional-info-to-model normal code-files normal .99)
(add-additional-info-to-model compromised code-files normal .001)
(add-additional-info-to-model normal code-files hacked .01)
(add-additional-info-to-model compromised code-files hacked .999)

(continue normal code-files normal .99)
(continue compromised code-files normal .001)
(continue normal code-files hacked .01)
(continue compromised code-files hacked .999))

:vulnerabilities ((code-files loads-code))
)

(defbehavior-model (maf-create-events normal)
:inputs (the-model)
:outputs (the-model)
:prerequisites ([dscs ?the-model mission-builder good])
:post-conditions ([dscs ?the-model mission-builder good])
)

(defbehavior-model (maf-create-events compromised)
:inputs (the-model)
:outputs (the-model)
:prerequisites ([dscs ?the-model mission-builder good])
:post-conditions ([not [dscs ?the-model mission-builder good]])
)

(define-ensemble maf-get-next-cmd
:entry-events (next-cmd)
:exit-events ((next-cmd exit (the-cmd)))
:inputs ()
:outputs (the-cmd))

(defbehavior-model (maf-get-next-cmd normal)
:inputs ()

54

:outputs (the-cmd)
:prerequisites ()
:post-conditions ())

(define-ensemble maf-get-event-info
:entry-events (create-mission-event-point)
:allowable-events (set-current-point

(create-mission-event-point exit)
create-mission-event-object
meo-set-information
mpl-action-performed
close-form
add-new-event-internal)

:exit-events ((got-event-info exit (the-event)))
:inputs ()
:outputs (the-event))

(defbehavior-model (maf-get-event-info normal)
:inputs ()
:outputs (the-event)
:prerequisites ()
:post-conditions ([dscs ?the-event event good]))

(defbehavior-model (maf-get-event-info compromised)
:inputs ()
:outputs (the-event)
:prerequisites ()
:post-conditions ([not [dscs ?the-event event good]]))

(define-ensemble maf-add-event-to-model
:entry-events (update-msn-evt)
:allowable-events
((update-msn-evt exit (mb event-number event))
add-new-event-internal
create-new-additional-mission-info-panel
)

:exit-events (mpl-action-performed)
:inputs (the-event the-model)
:outputs (the-model event-number))

(defbehavior-model (maf-add-event-to-model normal)
:inputs (the-event the-model)
:outputs (the-model event-number)
:prerequisites ([dscs ?the-event event good]

55

[dscs ?the-model mission-builder good])
:post-conditions
([add-to-map (events ?the-model)?event-number ?the-event

?before-maf-add-event-to-model]
[dscs ?the-model mission-builder good]))

(defbehavior-model (maf-add-event-to-model compromised)
:inputs (the-event the-model)
:outputs (the-model event-number)
:prerequisites ([not [dscs ?the-event event good]]
[not [dscs ?the-model mission-builder good]])
:post-conditions
([dscs ?the-model mission-builder good]))

(define-ensemble maf-get-leg
:entry-events (retrieve-leg)
:exit-events ((retrieve-leg exit (nil the-leg lms-event-counter)))
:allowable-events (create-mission-leg-object mlo-set-information)
:inputs ()
:outputs (the-leg lms-event-counter))

(defbehavior-model (maf-get-leg normal)
:inputs ()
:outputs (the-leg lms-event-counter)
:prerequisites ()
:post-conditions ([dscs ?the-leg leg good]))

(defbehavior-model (maf-get-leg compromised)
:inputs ()
:outputs (the-leg lms-event-counter)
:prerequisites ()
:post-conditions ([not [dscs ?the-leg leg good]]))

(define-ensemble maf-get-movement
:entry-events (retrieve-movement)
:exit-events ((retrieve-movement exit (nil the-movement)))
:allowable-events
(create-mission-movement-object mmo-set-information)
:inputs ()
:outputs (the-movement))

(defbehavior-model (maf-get-movement normal)
:inputs ()
:outputs (the-movement)

56

:prerequisites ()
:post-conditions ([dscs ?the-movement movement good]))

(defbehavior-model (maf-get-movement compromised)
:inputs ()
:outputs (the-movement)
:prerequisites ()
:post-conditions ([not [dscs ?the-movement movement good]]))

(define-ensemble maf-get-sortie
:entry-events (retrieve-sortie)
:exit-events ((retrieve-sortie exit (nil the-sortie)))
:allowable-events
(create-mission-sortie-object mso-set-information)
:inputs ()
:outputs (the-sortie))

(defbehavior-model (maf-get-sortie normal)
:inputs ()
:outputs (the-sortie)
:prerequisites ()
:post-conditions ([dscs ?the-sortie sortie good]))

(defbehavior-model (maf-get-sortie compromised)
:inputs ()
:outputs (the-sortie)
:prerequisites ()
:post-conditions ([not [dscs ?the-sortie sortie good]]))

(define-ensemble maf-add-additional-info
:entry-events ((retrieve-sortie exit))
:exit-events (Mission-builder-add-info)
:inputs (the-model the-leg the-movement the-sortie event-number)
:outputs (the-model))

(defbehavior-model (maf-add-additional-info normal)
:inputs (the-model the-leg the-movement the-sortie event-number)
:outputs (the-model)
:prerequisites ([dscs ?the-leg leg good]
[dscs ?the-movement movement good]
[dscs ?the-sortie sortie good]
[dscs ?the-model mission-builder good])

:post-conditions ([add-to-map (legs ?the-model) ?event-number ?the-leg
?before-maf-add-additional-info]

57

[add-to-map (sorties ?the-model) ?event-number ?the-sortie
?before-maf-add-additional-info]

[add-to-map (movements ?the-model) ?event-number ?the-movement
?before-maf-add-additional-info]

[dscs ?the-model mission-builder good]))

(defbehavior-model (maf-add-additional-info compromised)
:inputs (the-model the-leg the-movement the-sortie event-number)
:outputs (the-model)
:prerequisites ([dscs ?the-leg leg good]
[dscs ?the-movement movement good]
[dscs ?the-sortie sortie good]
[dscs ?the-model mission-builder good])

:post-conditions ([not [dscs ?the-model mission-builder good]]))

(defsplit maf-more-events? (cmd)
(build-event (equal ?cmd ’new-event))
(exit (equal ?cmd ’save-mission)))

(defsplit maf-takeoff? (event)
(get-additional-info (take-off-event? ?event))
(exit (not (take-off-event? ?event))))

(define-ensemble maf-save
:inputs (the-model)
:outputs ())

(defbehavior-model (maf-save normal)
:inputs (the-model)
:outputs ()
:prerequisites ([dscs ?the-model mission-builder good])
:post-conditions ([dscs ?the-model mission-builder good]))

(defbehavior-model (maf-save compromised)
:inputs (the-model)
:outputs ()
:prerequisites ([dscs ?the-model mission-builder good])
:post-conditions ([not [dscs ?the-model mission-builder good]]))

;;
;;;
;;; attack models
;;;
;;

58

(define-attack-model maf-attacks
:attack-types ((hacked-image-file-attack .3) (hacked-code-file-attack .5))
:vulnerability-mapping ((reads-complex-imagery hacked-image-file-attack)
(loads-code hacked-code-file-attack)))

;;; rules mapping conditional probabilities of vulnerability and attacks

(defrule bad-image-file-takeover (:forward)
if [and [resource ?ensemble ?resource-name ?resource]
[resource-type-of ?resource image-file]
[resource-might-have-been-attacked ?resource hacked-image-file-attack]]
then [and [attack-implies-compromised-mode hacked-image-file-attack
?resource hacked .9]
[attack-implies-compromised-mode hacked-image-file-attack
?resource normal .1]])

(defrule bad-image-file-takeover-2 (:forward)
if [and [resource ?ensemble ?resource-name ?resource]
[resource-type-of ?resource code-memory-image]
[resource-might-have-been-attacked ?resource hacked-image-file-attack]]
then [and [attack-implies-compromised-mode hacked-image-file-attack
?resource hacked .9]
[attack-implies-compromised-mode hacked-image-file-attack
?resource normal .1]])

(defrule hacked-code-file-takeover (:forward)
if [and [resource ?ensemble ?resource-name ?resource]
[resource-type-of ?resource loadable-files]
[resource-might-have-been-attacked ?resource hacked-code-file-attack]]
then [and [attack-implies-compromised-mode hacked-code-file-attack
?resource hacked .9]
[attack-implies-compromised-mode hacked-code-file-attack
?resource normal .1]])

(defrule hacked-code-file-takeover-2 (:forward)
if [and [resource ?ensemble ?resource-name ?resource]
[resource-type-of ?resource loadable-files]
[resource-might-have-been-attacked ?resource hacked-code-file-attack]]
then [and [attack-implies-compromised-mode hacked-code-file-attack
?resource hacked .9]
[attack-implies-compromised-mode hacked-code-file-attack
?resource normal .1]])

59

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;
;;;;; Hacked Code file attacks
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(defrule bad-code-file-takeover (:forward)
if [and [resource ?ensemble ?resource-name ?resource]
[resource-type-of ?resource code-file]
[resource-might-have-been-attacked ?resource hacked-code-file-attack]]
then [and [attack-implies-compromised-mode hacked-code-file-attack
?resource hacked .9]
[attack-implies-compromised-mode hacked-code-file-attack
?resource normal .1]])

(defrule bad-code-file-takeover-2 (:forward)
if [and [resource ?ensemble ?resource-name ?resource]
[resource-type-of ?resource code-memory-image]
[resource-might-have-been-attacked ?resource hacked-code-file-attack]]
then [and [attack-implies-compromised-mode hacked-code-file-attack
?resource hacked .9]
[attack-implies-compromised-mode hacked-code-file-attack
?resource normal .1]])

60

