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ABSTRACT

Multiple scattering phenomena are of enormous interest in many disciplines,
especially nondestructive evaluation of materials. Starting from a single fiber scat-
tering model, a computational system is built for conducting full-scale deterministic
simulations of multiple scattering of elastic waves in fiber reinforced composites.

The computational system is based on two theoretical developments. The first is
the formulation of two-dimensional multiple scattering problems involving arbitrary
numbers of scatterers. The resulting solutions are analytically exact, for scatterers
that may be similar or dissimilar. The second theoretical development, which we
name scatterer polymerization, enables assemblages of arbitrary numbers of scat-
terers to be modeled as single scatterers in sequential analyses, while maintaining
analytically exact solutions.

Both the multiple scattering solutions and the scatterer polymerization method-
ology can be used as independent tools to analyze multiple scattering problems,
Each has been implemented and verified. By combining these tools, analytically
exact solutions have been obtained for multiple scattering phenomena in models of
composites containing thousands of fibers. The feasibility and the procedures for
such full-scale simulations are demonstrated.

Finally, as a comprehensive example, a ceramic-fiber reinforced metal-matrix
composite plate is modeled, and the effects on the scattered waves due to changing
microstructural parameters of the composite are examined.
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1-1 Introduction

Significant developments in engineering applications of fiber reinforced composite
materials have occurred during the past two decades. One of the advantages of fiber
reinforced composites over conventional materials is that, as micro-structurually
engineered materials, fiber reinforced composites allow engineers to design a spe-
cific material for a specific purpose by altering microscopic parameters. Designing
of materials requires knowledge relating the properties and parameters at the mi-
croscopic (fiber) scale and the macroscopic scale, Such knowledge are in general
acquired through experimental testings and measurements or analytical modelings
and simulations.

In many nondestructive evaluation (NDE) techniques, the procedure involves
sending energy into the material and measuring the corresponding response. Such
NDE techniques rely on understanding wave phenomena in composite materials since
interpretation of test data is frequently an inverse wave propagation problem. Thus,
a better understanding of the NDE of composites involves the analytical modeling
and simulation of wave phenomena in composites,

Traditionally, analytical predictions of macroscopic properties of composites us-
ing micromechanics models have been based on statistical or probabilistic assump-
tions. Such assumptions omit many microscopic parameters and localized variations.
Such assumptions frequently lead to “averaged” results in a statistical or probabilis-
tic sense, which are frequrently not sufficiently accurate for some applications. To
circumvent such assumptions, full-scale analyses or simulations of a particular com-
posite may be more desirable.

Recent developments in computer technologies provide computational powers
that are magnitudes greater than those of a decade ago. Such computation power
enables materials engineers to simulate some wave analyses of fiber reinforced com-
posites in full scale. This thesis is an attempt to develop a computational system —
via a sombination theoretical and computational tools—that would allow engineers
to deterministically perform simulations of the scattering of elastic waves within
fiber reinforced composites in full scale. The qualifying term “full-scale” means that
the computational model should contain a sufficiently large number of fibers such
that the full model is macroscopic in size.
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1-2 Approaches

1-2.1 Theoretical Aspects

Wave scattering phenomena in fiber reinforced composites involve both single
and multiple scattering of elastic waves. In general, scattering of a wave refers to
the phenomenon in which the wave changes its propagation direction or splits into
several waves upon encountering a physical boundary, which may be an anomoy,
along its propagation path. The abnomoly is referred to as a scatterer. Single
scattering and multiple scattering are the conventional terminologies to distinguish
the phenomena involving different numbers of scatterers.

Single scattering problems have been studied extensively during the past few
decades. Some of the classical theories have been summarized in the treatise by
Pao and Mow(!), and a more recent review has been written by Hackman(?), The
emphasize of this thesis is on multiple-scattering phenomena, and it is assumed that
single-scattering problems for the scatterers under consideration have been solved.

Several approaches for analyzing multiple-scattering problems exist. One ap-
proach is the eigenfunction expansion technique for variable-separable problems,
Within this approach, one of the solution procedures is to express the total wave
in the field in each scatterer’s local coordinate system, then to match the boundary
conditions for every scatterer. Following this line, Bose and Mal obtained solutions
for an arbitrary number of identical circular elastic cylinders, for anti-plane shear
(SH) waves'® and longitudinal (P) and in-plane shear (SV) waves(*). Sancar and
Pao®! obtained a solution for two cylindrical cavities of different radii subjected to
P/SV waves.

Another procedure in the eigenfunction expansion approach is “ordered scatter-
ing”, used by Twersky (6} for acoustic waves. This is an iterative procedure in which
the boundary-value problem is decomposed into different orders. Using ordered
scattering, Cheng!™ solved a problem involving an arbitrary number of identical
circular rigid cylinders subjected to elastic P/SV waves.

A second approach is the “T-matrix approach.” The T-matrix, introduced by
Waterman(®), represents a linear transformation between the wave expansion co-
efficients of the scattered and incident waves. Waterman used the integral equa-
tion method to obtain the T-matrix of a scatterer that could not be analyzed by
the separation-of-variables method. Directly applying Waterman’s approach for
multiple-scatterer problems to acoustic waves was accomplished by Peterson and
Strom!! and was extended to elastic waves by Bostrom(!0},

Realizing that the T-matrix for a scatterer remains the same in a multiple-
scatterer setting, Varadan et al. proposed a significantly simpler T-matrix formula-
tion for the case of an arbitrary number of identical elastic cylinders having arbitrary
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cross sections, for both SH waves!'! and P/SV waves"?.

In this thesis, the theoretical developments are centered around the T-matrix
concept,

In essence, a T-matrix represents the complete solution, in the form of a matrix,
to the single-scattering problem. Such a representation allows the mathematical
formulation of a multiple-scattering problem, such that a generally complicated
boundary-value problem of wave scattering is simplified into a combination of ele-
mentary matrix manipulations, where the final solution form remains the same for
all kinds of classical waves.

The theoretical developments in this thesis consist of three stages. In the first,
the concept of the T-matrix itself is clarified, and its properties are explored. In
the second, an analytically exact solution for a general two-dimensional multiple
scattering problem is derived, implemented and verified. Lastly, based on the solu-
tion found in the second stage, the concept of the T-matrix is extended to represent
an assemblage of physical scatterers. This extended representation of the T-matrix
overcomes a major numerical obstacle to full-scale simulation of multiple-scattering
in composites.

1-2.2 Computational Aspects

Numerical results on multiple-scattering problems in the literature are scarce,
but fall basically into two categories. In the first category, bulk properties of a ma-
terial that contains a large number of identical scatterers, such as fiber reinforced
composites, are evaluated in a probabilistic sense(>*1117]. In the second category,
spectra or scattering cross-sections for a deterministic assemblage of scatterers are
evaluated. For cylindrical scatterers, Olaofe!!%) calculated the electromagnetic scat-
tering cross section of two identical dielectric cylinders, Young and Bertrand !4
computed and measured backscattering of plane acoustic waves by two identical
rigid cylinders. Radlinski and Meyers!*3) computed the radiation of a larger cylin-
der surrounded by several smaller cylinders. Scharsteinf6] computed the acoustic
scattering by two cylinders of different radii, which is similar to the configuration
studied by Sancar and Paol®!,

The approach taken in this thesis falls into the second category. Unfortunately,
during the literature survey for this study, a closer look at the numerical results
in this category revealed that they either involve additional approximations in the
formulation or are presented for a particular parameter in a particular problem,
Hence no numerical results have been found to be directly comparable to those
in this thesis. For this reason, the computational aspect of this thesis emphasizes
the verification of numerical results based on physical principles or theorems. The
computer implementation of the theoretical developments in this thesis is aimed at
the best cross-platform portability.
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The computer codes for this thesis are primarily written in the C** programming
language. The well-organized object-oriented programming style embedded in the
Ct** language is well suited for representing each scatterer as a single object in
the computer program. This language also allows custom-defined data types such
as complex numbers and matrices such that the computer programs correspond
more directly to the represented mathematical equations. These benefits might
appear trivial as many other computer programming languages are similarly capable
of performing the same tasks of scientific computation, nevertheless they assist in
avoiding some potential coding errors, and in turn ensure their correctness. The
computer programs develpoed for this thesis have been tested on a Sun SPARC
5 workstation using Gnu and Cygnus C** compilers, a Silicon Graphics Indigo?
workstation using SGI's C** compiler, and a PC using Microsoft’s Visual Ct*
compiler.

1-2.3 Choice of Numerical Examples

In choosing the examples, it was noted that the fiber-matrix interface in compos-
ites possesses very distinctive physical properties from either of the two constituents,
due to either chemical interactions between the constituents or coating treatments
in the material processing to improve bonding. In some micromechanical models,
this distinctive layer at the interface is treated as a third phase of the material con-
stituents and is called the interphase. The interphase plays a pivotal roll in some of
the macroscopic properties of the composites, but characterizing its properties is a
challenging task. In fact, the ultimate goal of our current project, of which this the-
sis is a part, is to explore the possibilities of using ultrasonic waves to characterize
the interphase.

With this goal in mind, numerical examples throughout the thesis are variations
of such a micromechanical model, called the fiber-interphase-matriz model. This the-
sis concentrates on one particular common material system of known (fixed) proper-
ties of the fiber and the matrix. The characteristics of the interphase, geometric or
physical, are hypothesized. It is expected that by solving forward problems involv-
ing hypothetically varying characteristics of the interphase, better understanding of
the inverse problem can be achieved.

Neverhteless, the emphasis of this thesis is building the computational systems
for performing deterministic full-scale simulations.

1-3 Thesis Organization

This thesis contains nine chapters,
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Chapter 1 outlines the objectives of the research and the basic approaches to
the problem.

Chapter 2 serves as a reference in which the fundamentals of elastic wave scat-
tering are reviewed. The review also defines a set of mathematical notation to be
used throughout the thesis. The single-scattering problem for our particular model,
fiber-interphase-matriz model, is solved in this chapter. For brevity, no numerical
results are explored.

Chapter 3 reviews a central concept of the thesis: the T-matrix. Some ambigui-
ties in the literature are rectified, and some properties of the T-matrix, as imposed
by physical laws or by the geometry of the scatterer itself, are explored. These
properties effort the porpose of checking the accuracy of numerical computations in
later chapters.

Chapter 4 presents an analytically exact solution for a general two-dimensional
multiple-scattering problem. The solution is specifically formulated for the scatter-
ing of elastic waves, for both the SH and P/SV wave cases, The physical process
envisioned therein and followed by the solution procedure is equally applicable to
multiple-scattering problems of any other classical wave fields.

Chapter 5 discusses thie implementation of the multiple-scattering solution in
Chapter 4. The implimentation is limited to the case of SH waves. Various solution
forms are all implemented and verified, and their computational characteristics are
examined. Numerical examples are also presented.

Chapter 6 presents yet another theoretical development called the scatterer
polymerization methodology. This methodology further extends the power of the
multiple-scattering solution. It allows a multiple-scattering problem involving a
large number of scatterers to be decomposed into several multiple-scattering prob-
lems involving smaller numbers of scatterers. In essence, it folds the problem size
and makes it possible for a typical desk-top computer to analyze a large number
of scatterers. The implementation and verification of the methodology are also
discussed, as well as its computational characteristics.

Chapter 7 explores the procedure to perform a full-scale deterministic simulation
via the multiple-scattering solution and the scatterer polymerization methodology
developed in earlier chapters. It also establishes the relationships between the sim-
ulated field quantities and experimentally measurable parameters.

Chapter 8 is a comprehensive example of the full-scale deterministic simulation.
It explores, through simulations, the relations between several parameters of the mi-
cromechanics model of a composite plate and several characteristics of the response
spectra.

Chapter 9 summarizes the achievements in this thesis and discusses the directions
of future work.
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Wave Scattering

Abstract: The purposes of this chapter are to build a basic set of
vocabulary for the subject of elastic wave scattering and to serve as a
reference of useful formulas and equations. Basic concepts and equa-
tions are introduced. Some single scatterer problems, their solutions
and numerical results are presented.
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Nomenclature

General Conventions

= Matrices are denoted by bold-faced symbols; symbols for column matrices are enclosed by
flower brackets ({}); symbols for rectangular matrices are enclosed by square brackets ([]).

» When referring to a matrix entry, the entry’s indicial number is to appear as subscript(s)
outside the brackets, This distinguishes the indicial subscript(s) from the subscript(s), if
any, associated with the entire matrix.

Symbols

{A},{B},---
Ca(z)

Cp,Cs
€(r)

H (x), HP ()
{H(r,0)}
)

Im

Jn(z)
{J(r,0)}
K,k

R

Re

(T)

€ 9 €€ 5 ¥ HT

Superscripts
inc, total, s, r, i

P, S
*

Subscripts
m, f,i

Wave expansion coefficient (column) matrices.

Formal notation for cylindrical function at order n, which can be any one
of the followings: Jn(z), Yn(z), HY (x), or HY (z).

Wave speeds of the longitudinal and shear waves, respectively.
Differential wave expansion basis function, as defined in Appendix 2-C.
Hankel function of the first and second kinds, respectively, and order n.
Singular (Hankel) wave expansion basis matrix,

Unit of imaginary number, 7 = /=1,

Imaginary part of a complex number.

Bessel function of the first kind and order 7,

Regular wave expansion basis matrix, same as {RH(r,6)}.

Wave numbers, for longitudinal and shear waves, respectively.

Regular counterpart of a singular function or functional basis.

Real part of a complex number.

T-matrix for a scatterer.

Displacement of a field point. Its components are u, v and w.

Bessel function of the second kind and order n,

Kronecker delta: equals unity when 7 = j and equals 0 otherwise,
Strain tensor. Components of engineering shear strain are denoted as +.
Lamé constants of an elastic material.

Scalar displacement potential,

The z-component of vector displacement potential.

Spatial factor (complex magnitude) of displacement w for SH wave cases,
Spatial factor (complex magnitude) of ®, &(r,t) = p(r)e~it,

Spatial factor (complex magnitude) of ¥, ¥(r,t) = y(r)e~ ",

Stress tensor. Components of shear stress are denoted as 7.

Circular (angular) frequency of a time-harmonic wave.

Quantities that belong to the incident, total, scattered, refracted waves,
and the waves in the interphase, respectively.

Characteristic of or pertinent to P and S waves, respectively.
(M]T

Conjugate transpose of a matrix: [M]" = [Tl—]T =

Physical quantities that belong to the matrix, the fiber and the inter-
phase,
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2-1 Introduction

The scattering of an elastic wave is a process during which the wave interacts
with one or more discontinuities or boundaries and generates waves that contain
components that may propagate in all directions. The study of scattering phenom-
ena is a narrow branch of wave mechanics; any discussion of scattering phenomena
will inevitably involve a tremendous amount of terminologies of wave mechanics.
Therefore, the first objective of this chapter is to build a small set of vocabulary for
the subject. The selection of the topics is restricted to those that are specifically
related to scattering and are essential to the developments in later chapters.

As stated in Chapter 1, the emphasis of this entire thesis is on building a method-
ology to simulate multiple scattering of elastic waves in fiber reinforced composites.
In such a multiple-scattering analysis, one of the assumptions that might not be
emphasized sufficiently is that single-scatterer problems have been solved. There-
fore, the second objective of this chapter is to review some single-scatterer problems
for the models that will be used later. Such a review also serves as a reference for
related formulas, equations, and mathematical notation.

The structure of this chapter is as follows: Section 2-2 first introduces the basic
concepts, equations, notation and observations concerning the wave motion in elastic
solids; it then focuses on the steady-state governing equations and their complete
solutions in various forms. A collection of single-scatterer solutions is presented in
Section 2-3, along with some numerical results. Finally, in Section 2-4, the principles
of energy conservation and reciprocity for scattering problems are discussed.

2-2 Basics of Elastic Wave Motion

In this section, basic concepts and equations of the classical theory of elastody-
namics are briefly reviewed. Comprehensive theoretical presentations can be found
in many textbooks on elastic waves, such as [1] and [2].

2-2.1 Basic Equations for Elastic Solids

For a linearly elastic medium, the governing equations consist of the followingt!3,

in Einstein’s tensor notation,
Equations of motion: pi; = 045 + pfi (2-1)
Constitutive equations: 0y = Aegrdis + 20645 (2-2)

Geometry equations: €ij = 5 (i + uj4) (2-3)
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where p, A and p are the density and two Lamé constants of the n.edium, respec-
tively, o and € are the stress and strain tensors at a field point, respectively, u is
the displacement vector of a field point, f is the externally applied body force per
unit mass of the medium, and 4;; is the Kronecker delta which is defined as

1 when i =5
8ij = 2-4
Y { 0 when i # j )

In this thesis, only cases in which the body force vanishes are considered.

2-2.2 Wave Equations for Displacement Potentials

In terms of the displacement u, the equation of motion, known as Navier’s
equation, can be written ast!! (for the case in which the body force vanishes)
(A +p)VV - u + Viu = pit (2-5)

By recalling Helmholtz’s theorem for vector decomposition® in the field theory,
the displacement » can be written as
u=V®+VxH V-H=0 (2-6)

By substituting eqn. (2-6) into eqn. (2-5), Navier’s equation can be equivalently
written into the following set of two wave equations(!]
0%d

O*H
S = 2V H (2-8)
where
A+ 2p 7
2 2
= and cs == 2-9
- P s = (2-9)

Equations (2-7) and (2-8) imply that two types of waves can coexist in an elastic
medium. They propagate independently at different speeds. In general, upon en-
countering a material discontinuity or a boundary, one type of wave will generate
both types of waves, a phenomenon that is particular to elastic waves and is known
as mode conversion.

Due to eqn. (2-6), ® and H are called the scalar displacement potential and the
vector displacement potential, respectively.

The wave associated with the scalar potential ¢ propagates at the speed c,. This
wave is called by such names as dilatational wave, irrotational wave, pressure wave,
etc., and is referred to as the P wave throughout the thesis. It is also sometimes
called the primary wave as the P wave is the faster of the two waves.

The wave associated with the vector potential H propagates at the speed c;.
This wave is called by such names as equivoluminal wave, distortional wave, shear
wave, etc., and is referred to as the S wave throughout the thesis. It is also sometimes
called the secondary wave as the S wave is the slower of the two waves.
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It can be further shown[! that the P wave propagates along the same direction as
the displacement, and that the S wave propagates in a direction that is perpendicular
to the displacement. For this reason, the P wave is also called the longitudinal wave,
and the S wave is also called the transverse wave. The displacement direction of the
wave is called the polarization direction of the wave.

2-2.3 Problems in Two Dimensional Space

Problems modeled in a two-dimensional space are usually problems in which the
displacements are independent of one of the coordinates. Without loss of generality,
the z coordinate in a Cartesian coordinate system is conventionally chosen as the in-
dependent coordinate, such that the displacement can be expressed as u = u(z,y,t)
and that the wave propagates in the ry-plane. In most cases, it is also assumed that
the medium is of infinite extent in the z direction.

It can be shown(!) that a 2-D problem can be readily decomposed, due to the
linearity of the system, into two problems noted below.

Anti-Plane Problem — SH Waves

One of the problems is when the displacements conform to the following form:
u=v=0 w = w(z,y,t) (2-10)

That is, the only displacement component is the out-of-plane displacement; and the
wave propagates in a direction perpendicular to the displacement, a characteristic
of the S wave. Conventionally (in seismology), this type of wave is called the SH
wave where H stands for horizontally polarized when the zz-plane lies horizontally
and the y-axis points vertically. For 2-D SH wave problems, no mode conversions
occur during encountering with the interfaces or boundaries.

It can be shown!) that in such cases, the contributing displacement potentials
are the H, and H, components of the vector potential H. However, if the displace-
ments in eqn. (2-10) are substituted into eqn. (2-5), Navier's equation reduces to
the following single wave equation

2
66712” =2V (2-11)
Therefore, there is no need to solve the anti-plane problem via displacement poten-
tials, which would require solving two wave equations for H; and Hy,.

Plane-Strain Problem —P/SV Waves

Another problem is when the displacements conform to the following form:

u =u(z,y,t) v =v(z,y,t) w=0 (2-12)
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This is the case in which the displacement components are in the same plane, the
zy-plane, as the wave’s propagation, In general, both P and S waves may coexist.
Conventionally (in seismology), the S wave in this case is called the SV wave where
V stands for vertically polarized.

It can be shown!! that in such cases, only the scalar displacement potential ®
and the H, component of the vector displacement potential contribute to the wave
fields. By denoting the H, component of the vector potential as ¥, the problem is
usually formulated by solving the following set of two wave equations

2

=V (2-13)
2

%t—‘f A (2-14)

2-2.4 Steady State and Helmholtz Equations

Often, the steady-state response of a system due to a time harmonic input is
desired. More often, the steady-state response is first sought since it brings out
important physics of the system yet avoids the complexity introduced by the time
dependency. The scattering problems studied in this thesis are confined to steady-
state responses. Once the steady-state solution has been obtained, it is possible to
obtain the time-dependent transient solution by a Fourier transformation.

Analyses of the steady-state responses are often called the frequency domain
analyses since a major parameter characterizing the input is the frequency of the
time-harmonic input. In such analyses, complex notations of field quantities are
usually adopted.

Complex Notation

In general, a time-harmonic physical quantity can be expressed as
A(t) = Ag cos(wt + @) = Re{Be™!} (2-15)

where Ag > 0 is the (real) amplitude, w is the circular frequency or the angular
frequency, a is the phase, B is a complex number called the complez amplitude, and
i is the unit of imaginary numbers, £ = v/—1. Obviously,

Ag cosa = Re{B} Apsina = —Im{B} (2-16)
and
40 = |B] (2-17)

where Re and Im denote the real and imaginary parts of a complex number, respec-
tively, and | - | denotes the modulus of a complex number,
In the complez notation, the symbol “Re” is omitted in eqn. (2-15) to write

A(t) = Be~wt (2-18)
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with the understanding that only the real part is sought. In other words, when
the expression for any real field quantity is desired, it is necessary to convert the
complex notation back to the real form as in eqn. (2-15).

Helmholtz Equations

When the steady-state response to a time-harmonic wave is sought, in general,
the response, say, the displacement u, is assumed to be of the form

u =u(r,t) = U(r)e ™! (2-19)

And in writing eqn. (2-19), it is implied that all field quantities will be addressed in
complex notations. U(r) is sometimes called the spatial factor of u(r,t).

In fact, in the steady state, all field quantities such as the displacement poten-
tials possess the same temporal factor e~ That is, the potentials involved in
eqns. (2-11), (2-13) and (2-14) can be written as

w(r,t) = p(r)e (2-20)
®(r,t) = p(r)e " (2-21)
B(r,t) = P(r)e ™t (2-22)

and their governing equations, eqns.(2-11), (2-13) and (2-14), become the
Helmbholtz equations

V2 + k2 =0 (2-23)
V2 + K20 =0 (2-24)
V2 + k%) =0 (2-25)

where

N c=Y =w [P _
n—cp w Nt 2 and k o w\/; (2-26)

are the wave numbers of the longitudinal and shear waves, respectively.

2-2.5 General Solution of Helmholtz Equation

Without loss of generality, the general solution to eqn. (2-23) is derived in a polar
(cylindrical) coordinate system. In polar coordinates, ¢ = ¢(r,6), and eqn. (2-23)
can be written as

Py 10 18
26, 108 1 0%
or2  ror r? 00
Equation (2-27) can be solved via the classical separation of variables technique
in which the solution is assumed to be of the form

¢(r,0) = R(r)©(6) (2-28)

+k%p=0 (2-27)
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Substituting eqn. (2-28) into eqn, (2-27) and then multiplying both sides of the
resulting equation by T't%r;;.%O) give

Rll RI @”
oft” U9 20 _ -
rR+rR+e+kr 0 (2-29)
which can be separated, by noting that © depends only on 6 whereas R depends
only on 7, into the following two ordinary differential equations
"

5 T7=0 (2-30)

" /

2t At 202 -
rR.rR+kr =7 (2~-31)

where v is the separation constant. It is well known that eqn. (2-30) has eigenvalues
vn = n2, where n is an arbitrary integer, and the eigenfunctions are

O,(0) = Ay, sinnb + Agp cosnf = Cype'™ + Cope~in? (2-32)

where Aj,, A2,, Cin and Cy, are arbitrary constants. Substituting the eigenvalues
into eqn. (2-31) gives the following Bessel equation of order n

r?R"(r) + TR'(r) + (K*r? —n®)R(r) = 0 (2-33)
whose general solution can be written as
Rn(T) = A3an(k7‘) + A4nYn(k7‘) = CanH,(:)(kT) + C4nH,,(12)(k7’) (2—34)

where Asn, A4n, Cin and Cyp are arbitrary constants, J,(z) and Y, (z) are Bessel
functions of the first and the second kinds of order n, respectively, and H{"(kr) and
H?(kr) are Hankel functions of the first and the second kinds of order n, respec-
tively. Hankel functions are related to Bessel functions by the following relation

HO®(2) = Jo (2) £ i (2) (2-35)

Sometimes, Bessel functions and Hankel functions are collectively called the cylin-
drical functions. Hankel functions of both kinds are also known as Bessel functions
of the third kind, thus they can also be collectively called Bessel functions, or cylin-
drical Bessel functions to be more specific.

Therefore, the complete general solution for eqn. (2-27) is any one of the follow-
ing, which are generally called eigenfunction ezpansions,

¢(r,0) = Z [@nJn(kT) + by Yy (kr)] sinné

n=1
+ Z [endn(kr) + dp Yy (kr)] cosnf (2-36)
=0
wn
&(r,0) = > _ [an H (kr) + b H (kr)] sinnf
n=1
+ Y [chIn(kr) + dy HE (kr)] cosné (2-37)

n=0



29

7‘7 0) Z [A Jn kT) + BnYn(kr ]emo (2—38)
n=-o00

$(r,0) = > [ALH(kr) + B HP (kr)] @ind (2-39)
==-00

where an, bp, ¢n, dn, ah, b, ch, dn, Ap, Bn, A, and Bj are unknown com-
plez constants and are called wave ezpansion coefficients. Functions Jy,(kr) sin 9,

COS
Y, (kr) 2:,';710 HWO (kr) S ng, H (kr) S0 g, Jn(kr)e?, Yy (kr)e?, H (kr)e'™ and

cos Ccos
H?(kr)e'™® are called wave ezpansion basis functions, or simply wave ezpansion
bases. Sometimes, they are called the wave functions.

It is noted that all the above expressions are equivalent, and one can be eas-
ily converted to another. Each of these solutions has its own characteristics, and
the choice of any particular one can be made in accordance with the nature of the
problem under consideration. Equations (2-38) and (2-39) are concise since there
are only two series of unknowns involved in each solution. Equations (2-36) and
(2-37) have four series of unknowns but have the symmetric (about the z-axis) and
skew-symmetric terms clearly separated. For this reason, eqns. (2-36) and (2-37)
are called even-odd ezpansions, and eqns. (2-38) and (2-39) are called uniform ez-
pansions.

It is noted that in many cases some of the terms in the above equations are not
present. Some of the terms may be eliminated on the basis of physical ground, such
as the boundary conditions at the infinity, which is known as the radiation condi-
tion. For example, it is known that Hankel functions have the following asymptotic
behavior for large argument z:

HM®(2) — /%eii(z-”%‘") (2-40)

Physically, Hankel functions of the first and the second kinds, which correspond to
the plus and the minus signs in the above asymptotic expressions, respectively, rep-
resent outgoing and incoming waves', respectively. In most scattering problems,
the scattered wave is an outgoing wave as if it were originating from the scatterer and
thus expressible in H{"(kr). Also, it is known that J,(kr) is regular (non-singular)
in the entire plane, which is suitable for expressing sourceless waves, such as the
incident wave for a scattering problem, In contrast, a Bessel function of the second
kind is singular at the origin, as well as Hankel functions. Thus, if the problem
domain contains the origin, the solution should consist only of Ji,(kr) terms.

2-3 Some Basic Principles in Elastodynamics

In this section, two basic principles in elastodynamics and their implications in
scattering problems are explored.
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The first is the principle of energy conservation, One of the forms of this prin-
ciple that is frequently used in scattering problems, known as the energy balance
requirement, states that for any closed surface that encloses neither a source nor
a sink, the energy (power) transmitted into the surface equals the energy (power)
emitted from the surface.

The second is the reciprocity principle. One of the forms of this principle that
is frequently used in scattering problems is known as the Betti- Rayleigh reciprocal
theorem that relates two dynamic states of an elastic system, This theorem is the
elastodynamics equivalent of the Betti reciprocal theorem in elastostatics. It is also
called the Graffi elastodynamic reciprocal theorem!®, In essence, in two different
loading situations for the same elastic system, the reciprocity principle requires that
the work done by the first set of loading on the displacements caused by the second
set of loading equals the work done by the second set of loading on the displacements
caused by the first set of loading.

Since these principles hold for any situation, for a particular choice of wave
expansion form, they impose some restrictions on the elements of the corresponding
T-matrices. These properties are useful for ensuring the correctness of a numerical
computation.

2-3.1 Energy Balance Requirement

By definition, the energy flur is the energy flow rate (power) through a cross
section; that is

E=fv=f1u (2-41)

where f is the force exerted on the surface, and u and v are the displacement and
velocity, respectively, of the point where the force acts.

In an elastic solid, the surface traction can be obtained from the stress tensor by
the surface traction-stress relation. As the stress varies from one point to another,
the total energy flux across a finite area A is an integral as

E=- /:4(0' 'n) - wdA = — [AOijnjﬁidA (2-42)

where o is the stress tensor, n is the unit normal vector of the surface, and the
operator “:” denotes the inner product between a tensor and a vector, The minus
sign is added so that the power emitting from the closed surface is positive. Noting
that the stress tensor is symmetric, that is, g;; = 0;;, eqn, (2-42) can be written as

E=- /A (041t njd A = — fA (o :4) ndA (2-43)

where —(o : ¢) -n = —(0 : n) - @ is sometimes called the energy fluz density.



31

In problems concerning time-harmonic inputs, such as the scattering problems
discussed in §2-3, the time-averaged energy flur is often used and defined as

= TEd
-7 /0 ¢ (2-44)

where () denotes the average of the quantity (I over a complete period of O, T'.

Suppose a generic stress component and a generic displacement component, both
in complex notation, have been found and their complex amplitudes are ¥ and U,
respectively. Then, the real expressions for the stress, displacement and velocity are

o = Re{Se ™!} = - (Ze‘“"‘ + Ee“"‘) (2-45)
u = Re{Ue ™t} = = (Ue-fw‘ + Teit) (2-46)
Y = 19 —iwt fwt 1 a—iwt | TTaiwt

u=go (Ue +Ue ) 5 (—Ue + Ue ) (2-47)

where the overbar denotes a. complez conjugate and the following relations have been
used

z+Z=2Rez and z—zZ=2Imz (2-48)
Thus,
~ou= —EZ—’ (3T - TU - sUe %t + STe%et) (2-49)
and, in turn,
~(oi) = -2 o (57 - TU) = $1m {50 (2-50)
since
/ < ity / < g-ungy (2-51)

where 2:" is the period of the temporal factor e,

Therefore, the general expression for the time-averaged energy flux can be writ-
ten in terms of the spatial factors of the complex stress tensor X' and the complex
displacement vector U as

w

(E):E/A(Im{z::ﬁ}-n)dA=“§’/A1m{(2:U)-n}dA (2-52)

In particular, consider the energy balance requirement for a 2-D problem in
which a polar (cylindrical) coordinate system is used. In such problems, an integral
over a closed surface becomes an integral over a closed path in the problem plane,
The simplest path is a circle that is centered at the origin of the coordinate system,
If the radius of the circle is R, then,

n=e, dA = Rdf (2-53)
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where e; is the unit vector in the radial direction, and

. Lrr Zrg Lpz ?r Errg' + 27'0-@ + Erzgz
2:U=| %9 Zgp Zo: Upg ¢ =4 ZroUr + ZggUp + Zg,U, (2-54)
Erz 202 Zzz Uz ErzUr + 202U0 + EzzUz
Thus, along the circular integration path,
(2 M -[_]) n= zrrﬁr + Eram + ErzUz (2—55)
and the energy flux through such a closed path is
. wR r2n — — —
(B) = /0 ({20} + I {Selp} + Im (£, T.})| _ 40 (2-56)

For the case of SH waves, U, = Uy = 0, X, = ;9 = 0, the energy balance

requirement can be written as
. wR 27 —
(Bsn = = /0 (m {=..T.})| _ 46 =0 (2-57)

For the case of P/SV waves, U, = 0, £,, = 0, the energy balance requirement
can be written as

(E)pssy = % /0 - (1m {20} + Im {2,005 })| _ d8=0 (2-58)

2-3.2 Betti-Rayleigh Reciprocity Theorem

For steady-state problems in which all field quantities in both loading situations
possess the same temporal factor e~*¢, the Betti-Rayleigh reciprocal theorem can
be expressed as(®), which is a reduced form of Betti’s third identity,

/A(fl cug — forup)dA=0 (2-59)

where f and u are the force and displacement, respectively, for a field point, where
the subscripts 1 and 2 represent the first and the second loadings, respectively, and
A is a closed surface that encompasses the same material discontinuities, if any, in
both loadings.

By using the surface traction-stress relation and the symmetry of the stress
tensor, eqn. (2-59) can be written as

L(al tug —0o2:uy) ndd=0 (2-60)
In complex notation, it can be shown that
o : u = Re{XZUe %“} + Re{ XU} (2-61)

Since eqn. (2-60) holds for any time ¢ in the steady state, it follows that reciprocity
requires

/A (2,Us — 3,U,) -ndA =0 (2-62)
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and
/ARe{Elzﬁz—fzzUl}'nd.A=0 (2-63)

Similarly, the above expressions can be particularized to 2-D problems in which
a polar coordinate system is used and a circular integration path is taken,
For the case of SH waves, U, = Uy =0 and £, = ¥,¢ = 0, reciprocity gives

J R CRRCARCRNUAR TR 2-61)

and
2 — —
| Re {(Zrn @2 = (SredeUen )] _ d0 =0 (2-65)

For the case of P/SV waves, U, = 0 and %, = 0, reciprocity gives

/02"{ [(Br)1 ()2 + (Srol1(Ua)2] = [(Err)2(Un)s + (Ero)2(Uahi|}| _, d0 =0

(2-66)
and
/ Re {[(Zr1 @)z + (Sr0)1Ta)z] — [(Er)2 @)1 + (Bro)eoh] )], _ 48 = 0
(2-67)

2-4 Solutions to Some Single-Scatterer

Problems

In this section, solutions to some single-scatterer problems that are pertinent to
modeling of fiber reinforced composites are presented.

In all the problems to be discussed, it is assumed that a circular cylindrical
scatterer of radius a is located at the origin of the coordinate system and is sur-
rounded by a linearly elastic medium of infinite extent. All material properties are
assumed to be known. A time-harmonic incident wave impinges onto the scatterer,
as sketched in Fig. 2-1, The resulting waves in the steady state are sought.

Incident
wave

=1

Scatterer

Fig.2-1 Geometry of single scattering problem,

The configuration shown in Fig. 2-1 is often used to model, though in a highly
simplified way, fiber reinforced composites. In such a model, the scatterer represents
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a fiber and the infinite elastic medium represents the matrix. To extend the model,
the scatterer can be modified to be a layered scatterer such that the outer layer
represents an interphase®, which exists as a third phase between the fiber and the
matrix, or it represents a fiber having a layered structure, such as a SiC (Silicon
Carbide) fiber(?),

Throughout this section, when necessary, subscripts m, f and i are used to
designate physical quantities that belong to the matrix, the fiber and the interphase,
respectively. However, the subscripts are omitted for the cases of a void and a rigid
scatterer since no wave exists in such scatterers. The words “fiber” and “scatterer”
are often used interchangeably in the following discussions. For brevity, complex
notation is used, and the temporal factor e~** is suppressed for all field quantities.

2-4.1 SH Waves

For SH waves, the displacements are v = v = 0 and w = ¢(r, ). Stresses in
terms of displacements are

o¢ = 2100 -

and all other stress components vanish.

Trz = Tar = 24

For all the cases to be discussed, it is assumed that the incident wave is regular
throughout the entire plane and thus expressible as®

o0}
¢ = 3 AnJn(kr)en? (2-69)
n=-—o00
Although eqn. (2-69) is the expression for the incident wave to be used in order to
maintain the generality of the solution, one special case that is worth mentioning is
the planar wave of amplitude ¢g, propagating along the +z direction. The expression
for such a wave is
o0
¢ = ¢oeikz = ¢0eikrcosa = Z ian(k,’.)eino (2_70)
n=-o0o

The scattered wave is an outgoing wave and thus is expressible as Hankel func-

tions of the first kind; that is,

¢ = > BuH(kr)e (2-71)
n=-o0o

The total wave in the matrix is the sum of the incident wave and the scattered
wave; that is,

¢total = ¢inc + ¢s (2_72)
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Rigid Scatterer

The boundary condition for a rigid scatterer is that the displacement at the
interface r = a is zero. That is,

S inc — —
(447, =0 -
Substituting eqns. (2-69) and (2-71) into the boundary condition in eqn. (2-73) gives
Y [AnJn(ka) + BrH{"(ka)] e =0 (2-74)
n=-—-0o

Due to the orthogonality of the harmonic basis function e"¥ the boundary condition
is satisfied if and only if each term under the summation vanishes; that is, for every
n,
AnJn(ka) + BoH P (ka) =0 (2-75)
which gives
_ _ Jn(ka)
" _H,(,')(ka) "
Thus, substituting eqn. (2-76) into eqn. (2-71) gives

(2-76)

S = Jﬂ k 1 in
F=- > m,f(T“j)AnHw(kr)e : (2-77)

In all the cases that follow, the procedure of substituting the found wave expansion
coefficients into eqn. (2-71) will be skipped for brevity.

n=-oo

Void Scatterer

The boundary condition for a void scatterer is that the stress component 7,
vanishes at the interface r = a. That is,

a¢s a¢inc
2u | — =0 2-78
"(ar“Lar)m (2-78)
Substituting eqns. (2-69) and (2-71) into the boundary condition in eqn. (2-78) gives
Jn(ka)
=— 2-79
n H,(ll),(ka) n ( )

Elastic Scatterer

In this case, there exists a wave in the scatterer, called the refracted wave. Since
the elastic scatterer is located at the origin of the coordinate system, the refracted
wave contains only the regular components; that is,

(oo
¢r = Z Can(kfr)eino (2"80)
n=-o0o
It is noted that in the steady state, the refracted wave has the same frequency as
the incident wave. Since the wave speed in the fiber is different from that in the
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matrix, due to the differences in material properties, the wave number in the fiber,
kg, is also different from that in the matrix, knm.

The boundary conditions for this case are that the stress component 7, and the
displacement w are continuous across the interface r = a. That is,

(& +¢)|._, = ¢"lr=u (2-81)
a inc a S a T
2pm( ‘;r +a—‘¢) = 2 ad; B (2-82)

Substituting egns. (2-69), (2-71) and (2-80) into the boundary conditions in
eqns. (2-81) and (2-82) gives

~BoH{) (kma) + CpJn(ksa) = ApJp(kma) (2-83)
~pmkmBrHY (kma) + prksCnly(kpa) = pmkm Andy (kma) — (2-84)

Solving this set of equations gives

prkpJi(kpa) HS (kma) — pmbkmJn(kra) HSY' (kma)
 pmkm I, (k@) HO (kma) = pmkmJn(kma) HE' (kma)
prkyJt (ko) HS (kma) — pmbkmJn(ka) HS (kma)
= _.&. o BmAn . (2-86)
ma prkpdy(kga)Hn' (kma) — pmkmJn(kga)Hp” (kma)
where in writing the last equation, the following Wronskian relation(™ of Bessel
functions has been used

n

WIn(2), H(2)) = Jn(2) B (2) ~ Jo()HP(2) = = (2-81)

Layered Elastic Scatterer

In this case, a two-layer elastic cylinder is considered as the scatterer. The outer
layer is assumed to be linearly elastic and having an outer radius b (b > a).

The refracted wave within the inner layer of the scatterer (fiber) is still express-
ible as eqn. (2-80). Within the outer layer (interphase), the wave can be expressed,
using the general form of the solution of the Helmholtz equation, as

o0
> [DnHY(kir) + EnHY (kir)] & (2-88)
n=-o0

The boundary conditions for this case are that the stress component 7,, and the
displacement w are continuous across both interfaces at 7 = a and r = b. That is,

(¢inc + ¢s) r=b = ¢i r=b (2—89)
¢ _ =4 (2-90)

r=a

r=a
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6¢mc ¢S a¢l
2Hm (ar +a—,~) Fakar~ (2-51)
¢! _ a¢f _
2pi—— ar| Br _ (2-92)
T=a r=a

Substituting the wave expressions in eqns. (2-69), (2-71), (2-80) and (2-88) into
the boundary conditions in eqns. (2-89) through (2-92) gives the following linear
equation system, in matrix form,

~H (kmb) HO(k;b) H® (k;b) 0 B,
— ok HY (kb)) piki HY' (ki) pki HY (Kib) 0 D,
0 HM (k;a) H® (kia) —Jn(kga) E,
0 pikiHY (kia) paki HSY (kia) —pskypJi(kpa) | | Cn
Jn (kmb)
— Aumkmo (km ) An (2_93)
0

Solving this set of equations gives (see Appendix 2-A for a detailed derivation)

B, = — Ap 2-94
" pmkliH“) (kmb) pikiMoH ‘”(kmb) (2-94)
47 Hilkm
C, = A 2-95
" m20b ki My HSY (kmb) — pikiMaHS (kimb) (29
! (2) @) L.
D, = _Bm Pfkan(kfa)Hm(k ia) = #zszn(kﬂiZ)H (kia) A, (2-96)
mb Bmbkm M Hy (kmb) piki Mz Hy’ (Kmb)
! (1) (!
B, = PmiikrIn (kra) HiD (kia) — pakidn(kya) HYY (kia) , (2-97)

) pmkm M Hy, =Y (kmb) — pikiM2H “)(kmb)
where
= [ppky T (kga) Yo (kia) — pikidn(kga) Yo' (kia)] Jn (kib)
— [urksJp(kpa)Jn(kia) — pikidn(kya)Jn' (kia)] Ya(kib)  (2-98)
My = [pskpJy(ksa)Ya(kia) — pikiJn(ksa)Yn'(kia)] Jp (id)
— [psksJp(kpa)Jn(kia) — pikiJn(kfa)Jn'(kia)] Yo(kib)  (2-99)

2-4.2 P/SV Waves

Expressions for Displacements, Stresses, and Strains

For P/SV waves, the wave equations are set up for displacement potentials, while
the boundary conditions require expressions for stresses and displacements. Thus it
is necessary to derive the expressions for the displacements, strains and stresses in
terms of the displacement potentials ¢ and .
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Without loss of generality, the displacement potentials are assumed to be of the

following forms
o0

=Y anCy(sr)eln? (2-100)
b= 3 BuCalkr)en? (2-101)

where €,(z) is a formal notation for cylindrical functions, which can be either kind
of Bessel functions, J,(2) or Yy(z), or either kind of Hankel functions, H{"(z) or
H{?)(z), and it is noted that the wave numbers x and k are different, Then, the
expressions for the displacements, strains and stresses can be found (see Appendix
2-B for a detailed derivation) as

1
=7 Z [an€71n(r) + Bn Er2n ()] €° (2-102)
1 ey ,
up== > [anCain(r) + FnCan(r)) e’ (2-103)
T n=—o
1 & .
Err = ) Z [n Es1n(r) + BnEs2a ()] efn? (2-104)
n=-00
€o0 = 7'3 Z [an€617(r) + Bn Eo2n(r)] (2-105)
n=—00
1 & _
€ro = 3 Y [0nCain(r) + BaCazn(r)) &P (2-106)
n=-—o
o = 2 5 anCuin(r) + rCiza(r)] €™ (2-107)
2 n= ;m
o =3 Z [otn €210 (r) + B Con(r)) €™ (2-108)
LS onCyn(r)ei? (2-109)
n=-o00
% & :
076 = T—‘; Y [anCain(r) + B Cara(r)] € (2-110)
n=-000

where the functions € are called differential wave ezpansion bases which were orig-
inally introduced by Pao and Mow in [4], and the modified definitions, which are
used here, are given in Appendix 2-C. These functions are invoked in a form such
as @}{n(r) where the first two subscripts specify the functional form, and the third
subscript specifies the order of the involved cylindrical function(s). The first su-
perscript specifies the type of the cylindrical function to be used. It ranges from 1
to 4 and corresponds to J,(-), Ya(+), H{"(-} and H{?(-), respectively. The second
superscript, when it appears, specifies the medium in which the function is to be
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evaluated. In the event that no second superscript is specified, the function is to be
evaluated in the infinite host medium is assumed.

Wave Fields in the Matrix
For all the cases to be discussed, it is assumed that the incident waves are regular
throughout the entire plane and are expressible as4
m -
Y AnJn(kmr)e™ (2-111)
n=—oco
. w -
P = z: anJy (kmr)e™? (2-112)
n=-—0o

The scattered waves in the matrix contain both P and SV waves, and are ex-
pressible as

o0
> BnHY(kmr)e™? (2-113)
n=-—0oo
w -
Y=Y boHY (kmr)e™ (2-114)
n=—o0o

The total wave in the matrix is the sum of the incident waves and the scattered
waves. That is,

lpr.oml _ ‘pmc + ¢ (2-115)
,¢)total = ¢|nc + ¢s (2“116)
Thus, the following expressions for the displacements and stresses in the matrix
can be obtained as
1 [ o]
Urm = - > [AnG}'{;(r) + an €T (r) + Ba €T (r) +b,.@-,2n(r)] mé - (2-117)

n=-—00

= Z [A Cgin(r) + an €3 (r) + Ba€glh (r) + ba Can (v )] en?  (2-118)

n—--oo
2 R
4 S [AE () + anC () + BaCITa(r) + b E ()] 70 (2-119)
n=-—od
2
Orom = o3 S [AnCIT () + n €A () + B G (r) + bR ()] € (2-120)
n=-00
Rigid Scatterer

For this case, the boundary conditions are that the displacement components u,
and ug at the interface 7 = a vanish. That is,

Ur|,=q =0 ugl,—q =0 (2-121)
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Substituting eqns. (2-117) and (2~118) into eqn. (2-121) yields the following set of
linear equations, in matrix form,

€1n(e) @%n(a)] { By }= {enn( )An+enn(a>an} (2-122)
€Gin(@) €3n(a) ba €51n(a)An + Cgop(a)an

Solution of eqn. (2-122) is straightforward and is omitted for brevity.

Void Scatterer

For this case, the boundary conditions are that the radial and shear stresses at
the interface 7 = a vanish. That is,

UTIr:a =0 afelr:a =0 (2_123)
Substituting eqns. (2-119) and (2-120) into eqn. (2-123) yields

lln(a) Gm"(a) = Gun(a)A +G12n(a)an _
ln(a) e42,,( ) ]{ bn } { e‘ﬂn(a)A +E42n(a)an } (2 124)

Elastic Scatterer

In this case, the refracted waves have both P and SV components, and are
expressible as!

Y CnJn(sgr)e™® (2-125)
n=-—0oo

m -~

Z cnJn(ksr)ein? (2-126)
n=-—oo

The following expressions for the displacements and stresses in the scatterer (fiber)
can be obtained as

1 .
Urf =7 [Cn@nn r) + cn €l (r)] (2-127)
n=-o00
1 & .
uos =g > [C Cgla(r) +cn(‘332,,(r)] etnd (2-128)
n=-00
2 .
ory =2 Z [Cr€lf(r) + en €l (r)] & (2-129)
n=—oo
Iref = Z [Cn@41n(r)+cn€4zn(r)] et (2-130)
n=-—0o

The boundary conditions for this case are that all the displacements and the
radial and shear stresses are continuous across the interface r = a. That is,

urm|r=a = urf',-:a (2_131)
u"mlr:a = uﬂflr:a (2_132)
0rm|r=a = af‘flr:a (2-133)
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o'rﬂmlr:a = 070f|r=a (2_134)

Substituting eqns. (2-117) through (2-120) and egns. (2-127) through (2-130)
into eqns. (2-131) through (2-134) yields

enn( ) 72n(a) 7ln(a) 72n(a) By
G81n a) 82n(a) Gsln(a) @821:@)
"Pm@nn(a) /‘menn(a) i QEun(a) #f@mn(a) Chn
-pmeiﬁ( ) /"m€42n(a) P!G«un(a) P'fe42n( a) Cn
71n( )An +@72n(a)an
Bln(a)Aﬂ + Gazn(a)au
l‘m[elln(a)An + ¢12n(a )an]
l‘mleéﬁz(a)An + €35 (a)an)

o

n

(2-135)

Layered Elastic Scatterer

This case has been addressed in great detail in [8]. However, difficulties have
been encountered in the present research when attempting to numerically solve the
linear equation system contained therein. Thus, this case is reformulated here to
resolve the difficulties.

The refracted waves within the inner layer of the scatterer (fiber) are still ex-
pressible as in eqns. (2-125) and (2-126). Assume the waves in the outer layer
(interphase) are of the following forms

o = i [Dndn (ki) + EnYa(sir))e™? (2-136)
Y= i [dndn(kir) + enYn(kiT)]eino (2-137)

Thus the following expressions for the displacements and stresses in the interphase
can be obtained as

== Z [Da@Hia(r) + EaC3in(r) + dn€lin(r) + en€hpn(r)] ™0 (2-138)

6i =7 Z [DnGSIn(r + En €51, (r) + dnCgin(r) +en€§§n(r)] ein?  (2-139)
n——oo
Ori = '77 [Dn@un(r) + BaCh (1) + dnClon(r) + enChpn (7 )] ein? (2-140)
n=-o00

2 i oo i ] i
oroi= T3 D [DnClia (1) + EnC3ia(r) + dnCiba(r) + enCion(r)] ™ (2-141)

n=—oo
The boundary conditions for this case are that all the displacements and the
radial and shear stresses are continuous across both interfaces at r = a and r = b.
That is,

urmlr:b = u"ilr:b ufilr:a = quIr:a (2_142)
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Ugmlr=p = Ugilr=p Uilrza = U flroy (2-143)
Trmlr=b = Orilr=p Orilr=a = Or flr=a (2-144)
a'romlr_b Or6ilp=p Uroilr_—_-a = Urﬂfl,-:a (2-145)

Substituting eqns. (2-117) through (2-120), eqns. (2-127) through (2-130) and
eqns. (2-138) through (2-141) into eqns. (2-142) through (2-145) yields

7ln(b) ’?/g:z(b) "@71n( ) 71n(b) enn( ) @72:1( )
Lsm( ) 82n( ) 81n(b) QStsln( ) QS82n( ) QEszn( )
lln( ) 12n( ) — Hn(b) 11n(b) 12n(b) """emn(b)
41n(b 42n( ) 'F_G‘lln( ) 41n(b) 42n(b) Leﬂn(b)
0 0 71n( a) QEnn( ) 72n( a) Gnn( )
0 0 Bln( ) eBln( ) 8211(0') 82n( )
0 0 .Glln( ) 11n(a) 12n(a) l‘—@mn( a)
. 0 0 e41n( ) 4ln(a) Hm e42n( ) G42n( )
0 0 1 (Bn] 71n(b)An + G721'4(17)"% ]
0 0 bn GBln.( )A + G82n )a'n
0 g Dn lln(b)An + e12n( )
—Qi-l,?n(a) (Ei{n(a) ) 5: L 4ln(b)An 3‘ e4:zn(b)an , (2-146)
~Cla(a)  —Caln(a) | | en 0
—fLe (o) —LLe (o) | | Cn 0
—tLey (o) — 2L ()] | e ) \ 0 )

In [8], expressions similar to eqn. (2-39) were used for (' and ', which resulted
in a slightly different equation system. It is discovered in the present research that,
at a moderately high order n, which probably was not reached in the computations
in [8][10 the equation system becomes very ill-conditioned, rendering erroneous
results.

It is noted that eqn. (2-146) may also become ill-conditioned at high order n, but
the ill-conditioning is remediable. The ill-conditioning symptom is that the elements
of the third and fifth columns have very small magnitudes while those of the fourth
anu sixth columns have very large magnitudes. This is due to the fact that, at high
orders, J,(z) approaches 0, Y,(z) diverges, and yet J,(z)Y,(z) remains O(1). The
ill-conditioning problem can be remedied by a normalization procedure. Define a
series of normalized coefficients such as By, = Bp|Hp(xa)| and reorganize the system
matrix. It can be found that the system matrix is correspondingly normalized
if each column is divided by the corresponding normalizing factor. Denormalize
the solution to obtain the solution for the original equation system. A good set
of normalizing factors for eqn. (2-146) has been found as, from the first to eighth
colums, |Hn(kma)l, |Hn(kma)l, [n(kia)], [Ya(sia)l, [n(kia)], [Ya(kia)l, |Jn(ssa)
and |J,(ksa)|, respectively.
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2-4.3 Numerical Results and Discussions

The solutions and numerical results for P/SV wave scattering due to rigid, void
and elastic scatterers have been discussed extensively in Pao and Mow’s treatiset],
Some experimental results for the elastic scatterer case are reported in [13], P/SV
wave scattering due to a layered scatterer has been discussed in [8] and in greater
detail in [12], and some experimental results are reported in [14]. In this subsec-
tion, some numerical results for SH wave scattering problems solved in §2-4.1 are
presented, with an emphasis on the case of the layered scatterer, whose solution has
not yet appeared in the literature However, it must be noted that this is not in-
tended to be a comprehensive numerical analysis or comparison of the solved cases.
It is only intended to provide a glimpse into the main characteristics of single fiber
models.

Computations are performed for a ceramic-fiber reinforced metal-matrix com-
posite system whose constituents’ material properties are listed in Table 2-1. The
fiber radius can be taken as a = 10 um®!1, However, it is noted that, since a is a
characteristic length of the problem, and in all the following examples, the nondi-
mensionalized frequency kna is used, the particular value of a is not important. For
simplicity, @ can be assumed to be of unit length. Unless otherwise specified, the
outer radius of the interphase, when present, is assumed to be b = 1.1a, The inci-
dent wave is a planar wave of unit amplitude propagating along the +z direction,
whose expression is given in eqn. (2-70), with ¢ = 1.

The spectra shown in the following results correspond to the following measuring
points: the far-field forward and backward measuring points are (z,y) = (50e,0) and
(—50a,0), respectively; the near-field measuring points are (+5a,0), see Fig. 2-1.

Prior to computations, a criterion must be established to truncate the infi-
nite series that represent the various wave fields, such as the scattered wave in
eqn. (2-71) and the incident wave in eqn.(2-69). Consider first the scattered

Table 2-1: Constituent Material Properties for a Metal-Matrix Ceramic-
Fiber Composite System!!]

p ¢ Matrix Fiber Interphase
roperty (AA520 Aluminium) | (Alumina, Al;O3) | (Zirconia, ZrO,)

Density (kg/m®) 2600 3700 6300
Young's Modulus (GPa) 66 360 97

Poisson’s Ratio 0.31 0.25 0.33
Lamé Constant A\ (GPa) 411 144 71
Lamé Constant p (GPa) 25 144 37

P Wave Speed (m/s) 5930 10800 4780

S Wave Speed (m/s) 3110 6240 2400
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wave in eqn. (2-71). In general, such a series can be truncated at order N when
IBNH,‘J’ (kmr)l = IB_NHf}v(kmr) is smaller than a prescribed error tolerance ¢,
where to “truncate at order N” means using the partial sum of the series from term
n = —N up to term n = NN to approximate the infinite sum. Note that the scattered
wave is to be evaluated only outside the scatterer; that is r > a, and that, for a given
n, |H{" (kmr)| (the modulus of the Hankel function) is a monotonically decreasing

function of 7{7), Therefore, the criterion is simply to truncate the series at N when
|BNHR (kma)| < € (2-147)

More importantly, such a truncated expression is accurate enough everywhere the
scattered wave is to be evaluated. In the results presented, ¢ is taken as 1078,

On the other hand, when the series is truncated at order N as determined by
eqn. (2-147), the expression for the incident wave in eqn. (2-69) may not be accurate
for a large r. For example, according to egn. (2-70), the planar incident wave has
|An| = 1 for any n, but |J,(kr)| does not decrease as r increases. Thus, a significant
error could result from using the truncated series. The most convenient way to avoid
such a problem is to use the analytical expression ¢i"® = em® = etmrcosd for the
incident wave. That i3, the computational form of the total wave in the matrix is

N
¢total = ¢inc +¢s = gtkmrcosd + Z Ban(ka)ei"a (2-148)
n=—N
where in computing B,, A, = i" is used.

Figures 2-2 and 2-3 show the normalized far-field forward displacement response
spectra; that is, the normalized displacement amplitude |§'°'?!|/|¢i"| versus the
nondimensionalized frequency kna, for all four solved cases of SH wave scattering
in §2-4.1.

1.2 I | |
Layered Elastic Scatterer
10155 .
~~~~~ ~——— Elastic Scatterer
Void Scatterer

0.8 - Rigid Scauerer
H
o 06

0.4

0.2 ‘

0.0 ‘

0 5 10 15 20 25 30 35 40 45 50

kna
Fig.2-2 Far-field forward response spectrum for a fiber-interphase-matrix
model (layered elastic scatterer), and some other models,
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Fig.2-3 Near-field forward résponse spectrum for a fiber-interphase-matrix
model (layered elastic Scatterer), and some other models,

Figures 2-4 and 2-5 show the normalized far-field backward response spectra for
the displacement amplitude of the scattered waves; that is, [#°]/1817] vs, kna,

0,4 1 |
‘ ‘ ‘ [ — Layered Elastic Scatierer
0.3 === Elastic Scauterer B
P I S A (Y A (R R Void Scauerer
o 02 T 1 I e Rigid Scatterer —
0.1 F7s T
0.0

25 35
kna

Fig.2-4 Far-field backward response spectrum for a fiber-interphase-matrix
model (layered elastic scatterer), and some other models,

In general, the total wave in the backward direction is highly oscillatory. This
is due to the interference of the two waves traveling in opposite directions; the
scattered wave travels in the backward direction whereas the incident wave travels
in the forward direction.

Recall the asymptotic expressions for Hankel functions in eqn. (2-40). In the
far-field (when k,,r is large), the total wave in the matrix can be written as

00
protal = eifmz | Z B, /ﬂ: rei(kmr—%ﬂeino (2-149)
m

n=-—oo

In the forward direction, # = 0 and z = T,

1 2 ad ~142n a
total — oikmr —jlt2n = aikmr . _
P lrorwara = © (1 ™V wor > Bre % ) = e 1+ fi(km)] (2-150)

n=-o0o
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Fig.2-5 Near-field backward response spectrum for a fiber-interphase-matrix
model (layered elastic scatterer), and some other models.

¢tota!

forward B Il + fl(km)l (2_151)

Whereas in the backward direction, § = 7 and £ = —r,

R . 2 b s2n—1
total — atkmT [ o—2ikinT B, et
¢ backward € (e * kmr n=z_:°° ne t )
= otkmr [e—‘.!ikmr + f2(km)] (2-152)
total — | a—2tkmr —
¢ backward - |e + f2(km)| (2 153)
Therefore, for a fixed r in the frequency domain, high oscillation of |¢tot! Ib“kwar 4

attributed to the term e=?%m" if the function fa(k;) is not highly oscillatory, or at
least oscillates at a far different “period” from Ak, = w/r, which is the “period” of
the oscillation e~2%m" in the frequency domain. In fact, this “period” can be used
to determine the measuring distance r from the spectrum,

Figure 2-6 shows both the scattered wave and the total wave for an enlarged
portion of the far-field backward displacement spectra for both the total wave and
the scattered wave for the case of a layered scatterer (fiber-interphase-matrix model).
In Fig.2-6, the total wave spectrum contains approximately 77.7 “periods” in a
range in which k,,a changes from 5 to 10. This information could be used to estimate

the distance between the scatterer and the measuring point as r = 1707_”; = 48.82a,

which is quite close to the exact value of 50a.

Since it is generally the case, at least in the far-field, that the function fa(ks,)
is not highly oscillatory compared with e~2#m" it follows that |1 + fa(kr,)| are the
envelopes of the backward spectrum of the total displacement, as shown in the dot-
dashed curve in Fig. 2-6. For this reason, the scattered wave, such as fa(kn) for the
displacement, generally suffices for the purpose of observing the main characteristics
of the backward scattering.

It is noted that the “period” of the total wave in the backward direction depends
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Fig.2-6 Far-field backward scattering spectra of the total wave and the scat-
tered wave, and the envelope of the total wave,

on the measuring distance r. Figure 2-7 shows the near-field backward displacement
spectra of the total and the scattered waves, and the envelopes of the total wave. It
is observed that the “period” increases as r decreases, and the curve for the total
wave does not exhibit as clear a periodicity as in the case of far-field, since the
“periods” of fy(km) and e~%*m" are closer than in the far-field case such that the
interference between them becomes severe.

1.2 T T —_ — T
R~ L T AN\ T o~ e im——
10 7\ AN //\ \ S 27N /|
/ —r —'S'J!— '''''''''' .\/ \\,4 ...... - ’\"‘ """" —A‘Z_,_
0.8 - ,
— Total Wave
o 06(—m—m—m 17— 777 ------- Scattered Wave —
--------- Envelope of Total Wave
0.4
O S A S R
ootmnn——nnt— 1 reed
5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10,0

Fig. 2-7 Near-field backward scattering spectra of the total wave and the scat-
tered wave, and the envelope of the total wave.

Comparing the spectra for the elastic scatterer with those for the rigid and
void scatterers in Figs.2-2 through 2-5, it is observed that a spectrum for the
elastic scatterer has an oscillatory structure whose “period” in the frequency domain
appears to be roughly a constant. On the other hand, the spectra for both the rigid
and void scatterers are almost monotonic, except in the low frequency range. As
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compared with the rigid and void scatterer cases, the difference in the case of an
elastic scatterer is that it has a refracted wave that resides within the scatterer,
Therefore the oscillatory structure can be attributed to the existence of the refracted
wave that resides within the scatterer.

Comparing the curves for the layered scatterer and the elastic scatterer in
Figs. 2-2 through 2-5, the most striking difference observed is that there appears
to be a secondary oscillatory structure in the spectra for the case of the layered
scatterer. At relatively low frequencies (from ka = 20 to 32), this secondary struc-
ture appears as a smooth oscillation that is superposed onto the main oscillatory
structure, but at relatively high frequencies (from ka = 42 to 45), the secondary
structure turns into sharp spikes. At even higher frequencies (ka > 45), the sec-
ondary structure tends to diminish. This secondary spectrum structure is believed
to be due to resonance, which is beyond the scope of this thesis. References [15]
and [16] provide detailed reviews of this subject matter.

Figure 2-8 shows the forward spectra for two degenerate cases of the layered
elastic scatterer (the fiber-interphase-matrix model): one is that the interphase has
the same properties as the matrix, which is designated as “Interphase = Matrix”,
and the other is that the interphase has the same properties as the fiber, which is
designated as “Interphase = Fiber”. Naturally the solution for the “Interphase =
Matrix” case should reduce to that of the elastic scatterer. Indeed, the curve for
this case in Fig. 2-8 matches exactly the curve for the case of the elastic scatterer
in Fig. 2-2,

1.0
08— £
\ 7/ \ o
7 0.6 \\V/ N vd EEN KNS AT
s ° S KA
F‘ Interphase=Matrix, r=50a T
04 ———- Interphase=Fiber, r=50a
e No Interphase, r=45,4545a
0.2 '
0 5 10 15 20 25 30 35 40 45 50

kna
Fig.2-8 Far-field forward spectra of the layered scatterer for two degenerated
cases, with comparion to the case of the elastic scatterer at equivalent
measuring location,

The “Interphase = Fiber” case is equivalent to the case of the elastic scatterer
(without the interphase) where the fiber has the radius of b = 1.1a. The following
equivalences between such a degenerated case and the case of the elastic scatterer can
be observed: the frequency k;, in the degenerated case is equivalent to the frequency

k, = aékm in the elastic case (such that kpnb = k,a); the measuring distance r in

the degenerated case is equivalent to a measuring distance of 7’ = %r in the elastic
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case (such that knp,7 = kJ,r'). These equivalences actually reflect a simple fact: there
is only a single characteristic length of the elastic scatterer problem — the radius
of the fiber. The dotted curve in Fig.2-8 is the spectrum for the elastic scatterer
at the measuring point (z,y) = (45.4545a,0). It can be verified that if the curve of
the degenerated case of “Interphase = Fiber”, the dot-dashed curve, is stretched by
a factor of 1.1 along the abscissa, the two curves will match exactly.

Figure 2-9 shows the far-field forward spectra of the layered elastic scatterer
for a series of different interphase thicknesses. The case b = 1.00a represents yet
another degenerater case in which the interphase simply vanishes, and again, it can
be verified that this curve matches exactly with the curve for the case of the elastic
scatterer in Fig. 2-2.
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Fig.2-9 Far-field forward spectra for a series of different interphase thicknesses.

It is observed from Fig.2-9 that the interphase thickness has a profound effect
on the secondary spectrum structure. When the interphase is very thin (less than
0.05a), the secondary structure does not appear for the frequencies up to k;a = 50.
In a separate computation for b = 1.02a, no secondary structure is observed for
frequencies up to kpa = 300. As the interphase becomes thicker, the secondary
structure begins to appear, judged by the appearance of the first secondary peak, at
lower frequencies. For interphase thicknesses of 0.05a, 0.10a and 0.20a (b = 1.05a,
1.10a and 1.20a, respectively), the secondary structures in the spectra begin to
appear near kpa = 43, 24 and 12, respectively.

For stress and strain fields, the expressions for the stresses are

o]
Orz = 2ukny (i cos Peikmrcosd Z BnH,‘,')'(kmr)ei"") (2-154)
n=-o00
. > in .
0p: = 2uky | —isinfeifmreosf 4 N — B HW (kpr)e™® | (2-155)
n=-o00 mT
Since the incident wave has unit amplitude, the stress fields are correspondingly
normalized by a factor of 2uk,, for both components; that is, . = or./(2uk) and
G, = 0¢2/(2pk). It is noted that such normalized stresses have identical expressions
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as the corresponding normalized strains, normalized by k,; that is, 7,; = &;, and
09z = €9z

Due to the symmetry of the problem, oy, = 0 along the z-axis. Figure 2-10
shows the far-field spectra of the normalized shear stress |G;,| in both forward and
backward directions. Again, the backward spectrum shows only the contribution
due to the scattered waves. It is observed that the stress spectra |7,.| in Fig. 2-10
resemble the corresponding displacement spectra in Figs. 2-2 and 2-4.
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Fig.2-10 Far-field spectra of the normalized shear stress |G| of the layered
elastic scatterer.

Finally, spatial distributions of various fields are given in Figs. 2-11 through 2-16.
Figures 2-11, 2-12 and 2-13 show the distributions of the displacement amplitude
|w|, and the normalized stresses |G| and |Gy,|, respectively, for the fiber-interphase-
matrix model at the frequency knpa = 1. Figures 2-14, 2-15 and 2-16 are the
corresponding snap shots of the displacement w, and the normalized stresses o,
and @y;, respectively, in the vicinity of the fiber at a particular instant ¢ such that
wt is an integer multiple of 27. “Snap shot” means that the real values of the
physical quantity are shown. For displacements, for example, from eqn. (2-15),

w= Re{¢totale—iut} (2—156)

When wt is an integer multiple of 21, w = Re{¢'***}. In Figs.2-11 through 2-16,
the fields inside the scatterer are not calculated and are set to zero. The curves
projected onto the bottom planes are contours of the surfaces with an arbitrarily
chosen contour value of 0.25.

To summarize, the following conclusions can be drawn from the numerical results
presented:

= As expected, the fiber-interphase-matrix model degenerates into the simpler fiber-
matrix model (elastic scatterer case) under several different situations. The fiber-
matrix model has only one characteristic length so problems for different fiber
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Fig.2-11 Spatial distribution of the displacement amplitude |w]| in the vicinity
of the fiber at the frequency kjha = 1.

Fig. 2-12 Spatial distribution of the magnitude of the normalized shear stress
|5,z| in the vicinity of the fiber at the frequency kpa = 1.
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Fig.2-13 Spatial distribution of the amplitude of the normalized shear stress
|Ge:| in the vicinity of the fiber at the frequency kma = 1.
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Fig.2-14 Snap shot of the displacement w in the vicinity of the fiber at the
frequency kma =1,
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Fig.2-15 Snap shot of the normalized shear stress @, in the vicinity of the
fiber at the frequency knpa = 1.
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Fig.2-16 Snap shot of the normalized shear stress . in the vicinity of the
fiber at the frequency kpa = 1,
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radii can be reduced into the same problem by proper scalings.

For any single scattering problem, the backward scattering spectrum of the total
wave is highly oscillatory, and its characteristic “period” in the frequency domain
Ak, is related to the measuring distance r by the relation Ak, = m/r. The
envelopes of the backward spectrum are given by |1 fa(ky,)| where fa(kp) is the
backward spectrum of the scattered wave.

The existence of the refracted wave inside the scatterer introduces the main os-
cillatory structure of the spectrum.

The presence of the interphase introduces a secondary oscillatory structure into
the spectrum, but there might exist a threshold thickness of the interphase, below
which no secondary structure would appear.

The interphase thickness affects the spectrum in two ways: first, the thicker the
interphase, the earlier (at lower frequencies) the secondary structure appears;
second, it shifts the peaks of the main oscillatory structure of the spectrum.

The results for the single layered scatterer in SH wave case suggest that the case

might be worth exploring further.
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Appendix

2-A Analytical Solution for Equation (2-93)

For a easy reference, eqn. (2-93) is repeated here, in the expanded form as

—HBmkm BnH (kmb) + piki Do HE (kib) + piki En HY' (kid) = pmbkm AnJy, (kmb) (2-A.2)
DpH\" (kia) + E,H{ (kia) — CpJn(ksa) =0 (2-A.3)
piki Do HY (kia) + piki EnH?' (kia) — prksCndy, (ksa) = 0 (2-A.4)
Solving eqns. (2-A.3) and (2-A.4) for C,, and Dy, in terms of E, gives
C, = _#ikiEn HY (kja) H® (kia) ~ HY (ki) H' (kia )] = By (2-A.5)
A wal
Dy = =2 [k Jaksa) HE (ki) ~ pikidn (kge) HE (ki) (2456)
where
A = gk T4 (ksa) HO (kia) ~ puikiJn(kya) HY (ki) (2-A.7)
and the following Wronskian relation for Hankel functions has been used
W(HD (2), HP(2)) = HY (2) HP' (2) = HY' (2)HP (2) = ”% (2-A.8)
Denote
Ar = uykyJl(kpa)Jn(kia) — pikidn(kra) Jo(kia) (2-A.9)
Az = p;k;],’,(k;a)yn(k.-a) - uik,-J"(kfa)Y,((k;a) (2-A.10)
then,
A=A +1A, (2~A.11)
_ 4ip; _ Ay — 1A,
O = = ala, + 1A Pr =% 7, B (2-4.12)
Substitute eqn. (2-A.12) into eqns. (2-A.1) and (2-A.2), and note that
( 1+ iAg)H"'"(k,- ) - (Al - iAQ)H,(.:)(’C,b) = 2iM, (2-A.13)
(A + i82)HP (ki) — (A — iA2)H (kib) = 2iM, (2-A.14)
where
M, = AaJp(kib) — A Y, (kib) (2-A.15)
My = AqJ; (kib) — ALY, (kib) (2-A.16)
Then, eqns. (2-A.1) and (2-A.2) become
~AH(kmb)By, + 2iMEp = AJn(kmb)A, (2-A.17)
~pmkm AHY (kmb) By, + 2ipikiMaEp = pmkmAJ) (kpb) Ay (2-A.18)
Solving these two equations gives
_M;M _ pm (A1 +iA,)
B, = —-N;A,. E, = T A, (2-A.19)
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where
N1 = pmkn My J) (kmb) — piki M2 Jy (kmb) (2-A.20)
Na = pnkn MyHS (k) — piki M2 HE (ki b) (2-A.21)
and the following Wronskian relation of Bessel functions
WIn(2), HY(2)) = Jn@)HY () - @) = = (2-A22)
has been used. Thus, from eqn, (2-A.12)
Cn= —:;’;b’;\';; An D, = —’:r—';————A‘ ;,:Az An (2-A.23)

Degenerated Cases

In the following, consider three degenerated cases in which the fiber-interphase-matrix
model degenerates to the simpler fiber-matrix model in different ways,

Case 1: “Interphase = Matrix”

For this case, u; = pm, ki = km; then,

Ay = prksJp(ksa)Jn(kma) — pmkmJn(ksa)Jy (kma) (2-A.24)
Ag = Mka,’,(k,a)Y,,(kma) - ymkan(k;a)Y,:(kma) (2—A.25)
M, = A2Jn(kmb) - Alyn(kmb) (2'A'26)
My = AgJ), (kmb) — ArY, (kmb) (2-A.27)
2umA 2
N, = _L;rn_b_l = %" (prkypdn(ksa)Jn(kia) — tmkmJn(ksa)Jp(kma)) (2-A.28)
2 iA
N, = Heml 8Lt B8a) _ B [ g1 (k) HE (k) = pimbim (K 0) B () 2-4.29)
where the following Wronskian relation
W(¥a(2), H () = Yal2) HY'(2) = Ya() B () = = (2-4.30)
and eqn. (2-A.22) have been used.
Therefore,
1 (I _ '
Bn - AIA.n —_ - I"fkf'jn(,"fa){ﬂ(kma) /‘mkm-]n(kfa)]?l()’fma) An (2-A.31)
Ay +i4; prkrJh(kra)Hy (kma) — pmkmJn(ksa)Hp' (kma)
Cp = — 2ipm , _A, (2-A.32)
na [urky I (ksa) HY (kma) ~ ki (K 0) HEY (kma)|
Furthermore,
1 Ay — 1A, _ 1
D, = 3, FiA, E, = 2A,, (2-A.33)
Substituting D,, and E, into eqn. (2-88) gives the wave in the “interphase” as
[o¢]
¢'= Y [DaH"(kmr) + E.H® (k)] i (2-A.34)
n=-oo
[ <]
= Y [(Dn+ En)Jn(kmr) + ¥(Dp = En)Yn(kmr)) e (2-A.35)

n=-—0o
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00 iA2An R AlAn o
= " - f—Y, in 2:A.
nr-z-:oo [Al +14s In(kmr) 1Al + i, n(kmr) € (2-A.36)
= 3" [AnJn(knr) + BaH (kmr)) €™ A7)
n=-00

which is the expression for the total wave in the field for the case of the elastic scatterer.

Case 2: “Interphase = Fiber”

For this case, u; = uy, ki = kg, and

2u 2 2u
Ay =0 Ap= Taj M, = %Jn(kfb) My = "—;J,’,(kfb) (2-A.38)
2
Ny = L gy 7, (k18 T (mb) = Pk S (k) (ki) (2-A.39)
2
No = 2L [k T4 (kgb) B (kmb) — b Jn (LY ()| (2-A.40)
where the following Wronskian relation
2
W(Jn(2), Ya(2)) = Jn(2)Y5(z) = Jo(2)¥n(2) = — (2-A.41)
has been used.
Therefore,
Bp = — prks Iy (kgb)In(kmb) = pmkm Jn (ks b) Iy (Kmb) (2-A.42)

prky T (k) HE (knb) = pronkim I (kB) HE' (ki)

C, = - 24t : An  (2-A.43)
mb [p;k;.],’,(k;b) O (kb)) — ptm ko o (k7 ) HS (kmb)]

which are identical to the case for the elastic scatterer, Furthermore,

D,=E, =5~ tmAn (2-A.44)

2 b (ks (e b HE (Emb) — pmfim Jn (kg 0) HE (k)]

Substituting D, and E, into eqn, (2-88) gives the wave in the “interphase” as

¢ = 3 Da[HY (kyr) + HE (k) = 3 CoJu(kyr)ei™ (2-A.45)
n=0

n=0
which is exactly the expression for the refracted wave in the fiber for the case of the elastic
scatterer of radius b,

Case 3: b=a

For this case,
Ar = gk T4 (ksa) Ja(kia) — pmbmJn(kga) Ty (kia) (2-A.46)
Az = prkyJy(kra)Yn(kia) — pmkmJn(kra)Yy (kia) (2-A.47)
Substituting eqns. (2-A.46) and (2-A.47) into eqns, (2-A.26) and (2-A.27) gives
21t
My = —pikidn(ksa) Un(kia)Ya(kia) ~ Ja(ki)Ya(kia)) = Elukja)  (2-448)

2urk
My = ~pgks I, (kya) lUn(kia)Y, (Kia) = Jo(kia)Ya(kia)] = ELL g (ksa)  (2-A09)
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where the following Wronskian relation in eqn, (2-A.41) has been used. Thus,

2414
Ny = =2 [ by 1 (1 @) T (k@) = b Jn (7). ()] (2-A.50)
D1;
Na = 22 (g 1 (ks ) HED (k) = ik Ju(ky@) HYY (kma)] - (2-A.81)
Therefore,
_ prkyJn(kga)Jn(kma) = pmbmJn(kra) Jy (kma)
n (1) (l)’ A" (2'A.52)
prksdh(kra) Hy (kma) — pmkm Jn(kra) Hn' (kma)
c, = 2 (2-A.53)

b [payky Ty (@) HE (i) = ik I (@) B (k)|
_ _m_prkyJy(kra) HE (kia) — pmbm Jn (kga) Hy (Kia)
26 pyky Iy (kg @) HS (km) — pmkmJn(ky@) HR (Fma)
_ pm_prksJy(kga) HE (kia) — pimkm In(kya) HE' (Kia)
204 kg 0 (ko) HS (kma) — prmkmJn(ky@) HSY (kma)
In this case, B, and Cy, are, again, identical to those in the case of the elastic scatterer, The

coefficients D, and E, are irrelevant since the thickness of the interphase vanishes, The
results ensure that no singularity occurs in the limiting case,

A (2-A.54)

(2-A.55)

2-B Some Basic Formulas for 2-D P/SV Wave

Scattering Problems

Displacements, Strains and Stresses in Terms of
Displacement Potentials

From the definition of the displacement potentials,

_Op 10y .

Up = r + T 50 (2-B.1)
_10p 0O¢

=15 " Br (2-B.2)

It is noted that the problem is a plane-strain problem, The expressions for strains and
stresses are

_ 8 10 10y

e =G 1506 72 06" (2B.3)
€22 = Yrz = Yar = Y92 = Y20 =0 (2-B.6)
arr = AV20 + 2u (‘227‘2‘0 + %aa:gg - lea—e) (2-B.7)

= A2 18 10p 1 16y
960 = AVIp+ 2p (r'—’ 56z " 7 or r8r80+r2 a6 (2-B.8)
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02 = AV (2-B.9)
28% 20p Oy 18 18y

Ore = (?_araa B R Br) (2-8.10)

Orz = 0zr = Yoz =029 =0 (2-B.11)

Displacements, Strains and Stresses Due to a Single Term of
Wave Expansions of Displacement Potentials

In the following, contributions to displacements, strains and stresses due to a single
term of the wave expansion for each displacement potential are derived. Without loss of
generality, the displacement potentials are assumed as

w = € (kr)e’™? and P = €, (kr)eln? (2-B.12)

where €, is a formal notation for cylindrical functions, which can be any one of the following:
Jn(+), Ya(:), HY(-) and H{P(-). Recall that ¢ and 9 must satisfy the following Helmholtz
equations

Vip+K2p=0 Vi +k*p =0 (2-B.13)
Furthermore, the wave numbers are related to each other by material properties as
K\2 7
=) = -B.14
(k) A+2u (2-B.14)

In addition, the following recursive relations of the cylindrical functions will be used during
the derivation

Co(2) = n_l(z) - —¢ﬂ(z) (2-B.15)
€ (z) = (n +n—2%) Co(z) - 2Cn_y (2)] (2-B.16)

Displacements

— Contributions Due to ¢

[vr]
g_‘P = k€, (k1) = [—nQ: (57) + sr€py (r7)] (2-B.17)

where eqn. (2-B.15) has been used.

184

10p _in (kr) = ; [inCp(kr)] (2-B.18)

— Contributions Due to 3

(] 10y

T o6 iTnQ:"(’") = % [in€n(kr)] (2-B.19)

- Z_'f = —kC, (kr) = % [(nCalkr) — kr&p_y (kr)] (2-B.20)
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Strain Components

—Contributions Due to ¢

Err
%j% = K€y (k) = ':—2 [(n? +n — £2r%) €y (sr) — K7Cpy(x7)] (2-B.21)
where eqn. (2-B.16) has been used.
€00
':?%Z_f }Z—‘;‘f = rlz' [(-nz) Ca(rr) + rch:'n(nr)]
= ,.lz [(=n* = n) €n(kr) + £rCqoy(kr)] (2-B.22)

where eqn. (2-B.15) has been used.
Yro
20% 20y

2
roro8 1280 12
2

[innr@fn(nr) - inC,,(nr)]
in [—(n + )€, (xr) + £r€hy (r7)] (2-B.23)

r

where eqn. (2-B.15) has been used.

— Contributions Due to 3

Err

18% 10y 1

~596 22 [iner:,(kr) - inQ:,.(kr)]

= 7.12' in [_(n + I)Q:n(kr) + krcn—L(kT)] (2-B.24)
where eqn. (2-B.15) has been used.
10y 18% 1
=90 ~ 75755 = ;2 (0 + DCalkr) = krCri(kr)] (2-B.25)

where it is noted that the left-hand side is the negation of the left-hand side of the €., term
in eqn. (2-B.24).

Tré
0% 10y  18*% _ ,an B n?
—'6? ;-5; + r—z-a_eg =k Cn(kr) + ;Qn(kr) - r_gﬁn(kr)
= _Tlg (n2 +n- k2r2) an(kr) + %kr@:n_l(kr)
2
+ an—l(kT) - g:—rcn(kr) - %Cn(kr)

= ;,2— [— (n2 +n - —;-km) €, (kr) + kr€,_,(kr)|(2-B.26)

where eqns. (2-B.15) and (2-B.16) have been used.
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Stress Components

— Contributions Due to ¢

Orr

0%y 8%y
2 — T — 2 —
AV tp+2par,l Ak 4,o-i~2,uar2

= —-A&?C, (k1) + 2—“ [(R* + n — £*r?)C, (k7)) — £rChy (r7)]

iﬂ (n +n-— fczrz At 2”) C.(kr) - nr(’:n_l(nr)]

2p
=2 nz+n—ll‘:2r2 Ca(kr) — k€ 2-B.27
== 5 r) = ir€n_1(xr) (2-B.27)
where eqns. (2-B.13) and (2-B.21) have been used.
T6p
o (180 100Y Lo (10 10
AV tp+2#( 2 862 +r8r = —AsTp + 2u r2 06? +r6r
2
= -75 (—nz —n— r?r? %) Cp(nr) + nr@,._l(nr)]

=2 (—n2 —n + £%r? k2 2) Co(rr) + wrC,_y nr)] (2-B.28)

where eqns. (2-B.13), (2-B.22) and (2-B.14) have been used.

2 .
AV2p = =Mk = — A2 €, (k1) = = [n2r2 - Ekgrz] Cp(kr) (2-B.29)
where eqns. (2-B.13) and (2-B.14) have been used.
= ou (100 _ 100 Ein [~(n + 1)Ca(sr) + xrCpy (1)) (2-B.30)
H\r8ro6 ~ r2 86 9 n-1 '

where eqn. (2-B.23) has been used.

— Contributions Due to v

16% 10y
e (ran;bo = ae) o7 in [~ (1 DCa(kr) + b€ (k)] (2-B.31)

where eqn. (2-B.24) has been used.

age

oy 18 2
2p (:2 a'ﬁ - ar;po) r" n [(n+1)€n(kr) = krCoy (kr)] (2-B.32)

where eqn. (2-B.25) has been used.

Org

2y 18y 18%\ 2 2 122
w(-aE ot ) = [ (1t ) Caten) ko o)
(2-B.33)

where eqn. (2-B.26) has been used.
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Displacements, Strains and Stresses in Terms of €-Functions

The contributions to any component of the displacement, stress and strain due to a
single term of a displacement potential, as derived in eqns. (2-B.17) through (2-B.33), are
complicated. To simplify the notation, a series of differential wave expansion basis functions,
the E-functions, are defined in Appendix 2-C. With these -functions, the expressions for
the displacements, strains and stresses can be recast. Assuming the displacement potentials
for the P and S waves are respectively expressible as

0= i AnC, (kr)eint (2-B.34)
Y= i B, (kr)e'"? (2-B.35)

the expressions for the resulting displacements, strains and stresses can be written as

uy = }ng:m (40 Crin(r) + BaCran(r)] (2-B.36)
ug = % i [AnCsin(r) + BnCs2n(r)] e (2-B.37)
= 3 [Anonlr) + Brona)] e (2-B.38)
£00 = rlz _i [AnCo1n(r) + BaCosn(r)] e (2-B.39)
o= 3 [Anun) + Buinn(] (2-B.40)
o = i [Anin(r) + BaCran(r)] €77 (2-B.41)
T = i—’; i [AnC21n(r) + BnCazn(r)] €™ (2-B.42)
e
e = i_g‘. i A Cyun(r)ein® (2-B.43)
grp = i—’; _f: [AnCa1n(7) + BpCazn(r)] e (2-B.44)

Note that the shear strain in eqn. (2-B.40) is given as a tensor component. In the engineering
form, the shear strain is

2 & i
Tre = 1_.5 n=z_°° [Aﬂ@aun(r) + B, G42n(7')] ein? (2-B.45)
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2-C e¢-Functions— Differential Wave Expansion

Bases

The contributions to any component of the displacement, stress and strain due to a single
term of a displacement potential, as eqns, (2-B.17) through (2-B.33) derived in Appendix
2-B, are complicated. Alternatively, they can be more concisely expressed in terms of a new
series of functions — €-functions.

These functions were first introduced by Pao and Mow ) and will be called differential
wave ezpansion basis functions in this study. Their definitions are as follows:

Ci1n(r) = (n® +n — 3k%r?) €, (k) - krCpoy(kr) (2-C.1)
Can(r) = (-n® = n + £?r? - 1k%r2) Cp(nr) + wr€ay (k) (2-C.2)
Cain(r) = (K*r® — 3k2r2) €, (kr) (2-C.3)
Cain(r) = in [~ (n + 1)Cp(kr) + £rCp_y (k7)) (2-C.4)
Csin(r) = (n® +n — £°r?) Co(rr) — wr€,_y (k1) (2-C.5)
Coin(r) = (—n® = n) Cu(kr) + £r€q_y (k) (2-C.6)
Crin(r) = —nCh(nr) + K€y (nr) (2-C.7)
€s1n(r) = inC,(kr) (2-C.8)
Cr2a(r) = in [—(n + 1)C(kr) + krC,_y (kr)] (2-C.9)
E22n(r) = in [(n + 1)Cpn(kr) — krCpo_y(kr)] (2-C.10)
Ca2n(r) =0 (2-C.11)
Cazn(r) = — (n® +n — 3k°77) Cu(kr) + kr€omy (kr) (2-C.12)
Es2n(r) = in [~ (n + 1)Ca(kr) + krCpn_ (kr)] (2-C.13)
Eo2n(r) = in [(n + 1)Ca(kr) — krCpy (k7)) (2-C.14)
€r2n(r) = inCp(kr) (2-C.15)
Ca2n(r) = nCph(kr) — kr€p_y (k) (2-C.16)

In the above functions, the first subscript represents the component index number which
is a little complicated as the result of attempting to scramble all the indices for displace-
ments, strains and stresses into a single digit. The first subscript of value 1 to 4 is the stress
index in the engineering (vector) notation; that is, ., 0gs, 0z, and a,¢, respectively, The
subscript of value 5 and 6 is the strain index for the first two strains in engineering nota-
tion; that is, €, and egg, respectively, and the rest of the strains share the same function
as the stresses. The subscript of value 7 and 8 is for the displacements; that is, u, and ug,
respectively,

The second subscript signifies the contributing wave: 1 for P wave and 2 for S wave, It
is noted that the functions having 1 as the second subscript always have kr as the arguments
for the cylindrical functions involved, while the functions having 2 as the second subscript
always have kr as the arguments.

These functions are invoked in a form such as @{{ n(r) where the third subscript specifies
tle order of the cylindrical functions involved, the first superscript specifies the type of the
cylindrical functions to be used, and the second superscript specifies the medium in which
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the function is evaluated. The first superscript propagates into the cylindrical functions €
involved in the definitions of &, and the following conventions are adopted

€, (2) = Jn(2) €l (2) = Yn(2) (2-C.17)

€ (2) = HY(2) Ch(2) = HP(2) (2-C.18)

Without the first superscript, the function is taken as a formal notation of the entire class
of the E-functions. When the second superscript is omitted, it is assumed that the medium

is the infinite elastic problem domain outside the scatterer.
The following relation between & functions can be observed

Ci2q(r) = —Caan(r) (2-C.19)

Cson(r) = €y20(7) (2-C.20)

Ce2n(r) = Ca2n(r) (2-C.21)

€11n(r) = Es1n(r) + Ea1n(r) (2-C.22)

€10 (r) = Coin(r) + Eain(r) (2-C.23)
and

Exx(-n)(r) = (=1)"Exxn(r) (2-C.24)

which is the direct consequence of the property of the cylindrical function €_,)(z) =
(-1)"C,(z), where X X is any of the appropriate subscripts.

There are cases when the following equivalent expressions for the €-functions are more
convenient:

C11a(r) = (n? - 3k?r?) Co(rr) — wr €, (s7) (2-C.25)
€ pon(r) = in [kr@:;,(kr) - Gﬂ(kr)] (2-C.26)
Cain(r) = in [rcr@'n(nr) - e:,.(nr)] (2-C.27)
Cazn(r) = (4k%r% — n?) Cu(kr) + kr€ (kr) (2-C.28)
Er1n(r) = &r€ (kT) (2-C.29)
Cr2n(r) = inCp(kr) (2-C.30)
€gin(r) = inCy(kr) (2-C.31)
Caan(r) = —kr&, (kr) (2-C.32)

Note that the definitions given here are slightly different from those originally defined in
[4]. The differences are due to the different wave expansion basis functions used, In [4],
the wave expansion bases are those having different forms for symmetric and anti-symmetric
waves, as in eqn. (2-37). The differences appear in the functions involving i: €2, €22, €4,
&, and Cg,. In [4], these functions do not include i in their definitions, but change signs
for symmetric and anti-symmetric displacement potentials.
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Concept of
T-Matrix

Abstract: The concept of the T-matrix is widely used in mathematical
treatments of scattering problems. It also plays a vital role throughout
this thesis, However, a simplistic definition given in the literature is
often ambiguous. In this chapter, a clear and precise definition of the
T-matrix is given, and its properties are examined in light of some
fundamental physical principles,
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Nomenclature

General Conventions
» Matrices are denoted by bold-faced symbols; symbols for column matrices are enclosed by
flower brackets ({}); symbols for rectangular matrices are enclosed by square brackets ([]).

» When referring to a matrix entry, the entry’s indicial number is to appear as subscript(s)
outside the brackets. This distinguishes the indicial subscript(s) from the subscript(s), if
any, associated with the entire matrix.

Symbols

{Aa},{B},--
Ca(z)

€(r)

H{(z), H? (z)
{H(r,0)}

)

Im

Jn(z)

{J(r,6)}

K,k

R

Re

=

EQ SR n e g

Superscripts
inc, total, s

PSS
*

Subscripts
m, f,i

Wave expansion coefficient (column) matrices.

Formal notation for cylindrical function at order n, which can be any one
of the followings: Jn(z), Ya(z), H(z), or H? (z).

Differential wave expansion basis function, as defined in Appendix 2-C.
Hankel function of the first and second kinds, respectively, and order n.
Singular (Hankel) wave expansion basis matrix,

Unit of imdginary number, i = v/—1.

Imaginary part of a complex number.

Bessel function of the first kind and order n.

Regular wave expansion basis matrix, same as {RH(r,8)}.

Wave numbers, for longitudinal and shear waves, respectively.

Regular counterpart of a singular function or functional basis. In this
chapter, this means replacing Hankel functions of the first kind by Bessel
functions of the first kind at the same order.

Real part of a complex number.

T-matrix for a scatterer.

Displacement of a field point. Its components are u, v and w.

Velocity of a field point.

Strain tensor. Components of engineering shear strain are denoted as 7.
Lamé constants of an elastic material.

Scalar displacement potential,

The z-component of vector displacement potential.

Spatial factor (complex amplitude) of displacement w for SH wave cases.
Spatial factor (complex amplitude) of &, ®(r,t) = p(r)e™ ",

Spatial factor (complex amplitude) of ¥, ¥(r,t) = y(r)e~ ",

Stress tensor. Components of shear stress are denoted as 7.

Circular (angular) frequency of a time-harmonic wave,

Quantities that belong to the incident, total and scattered waves, respec-
tively.
Characteristic of or pertinent to P and S waves, respectively.

Conjugate transpose of a matrix: [M]* = -[—M]-T = [M]T

Physical quantities that belong to the matrix, the fiber and the inter-
phase.
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3-1 Introduction

The concept of the T-matrix has been widely used in the mathematical treat-
ments of scattering problems of a variety of types of waves.

The definition of the T-matrix is quite simple and is often stated as the matrix
that relates the incident and the scattered waves. It represents the solution of the
scattered wave for a scatterer subjected to any incident wave. In essence, the T'-
matrix contains all the mechanics regarding the scatterer when only the scattered
waves are concerned.

The usefulness of the T-matrix lies in the fact that, once it is found, for any wave
that incidents upon the scatterer, the scattered wave can be readily found, without
the need of going back into detailed expressions for the displacements and stresses
and solving the boundary value problem again. The advantage will be demonstrated
to a larger extent in later chapters for problems involving multiple scatterers. In
fact, it is a central concept in the multiple-scattering formulations throughout this
thesis.

However, it has been found that a simplistic definition like the one above is often
ambiguous. There are some unstated implications in the definition of the T' matrix
that must be explicitly specified.

Thus the objective of this chapter is to give a clear and precise definition of the
T-matrix, to discuss these unstated implications of the definition, and to explore the
properties of the T-matrix imposed by some fundamental physical requirements,

In this chapter, the matrix notation to be used in this thesis is introduced first
in Section 3-2, then the definition for the T-matrix is followed in Section 3-3. Few
example of the T-matrix for some simple scatterers, whose single-scatterer provblems
have been solved in Chapter 2, are given in Section 3-4. The properties of T-matrix
imposed by some physical principles are explored in Section 3-5. And finally some
concluding remarks are noted Section 3-6.

3-2 Matrix Notation

As discussed in detail in Chapter 2, the complete solution for the Helmholtz
equation using a polar coordinate system consists of linear combinations of cylin-
drical wave functions which is composed of Bessel or Hankel functions of various
kinds as the radial factor and the simple harmonic as the azimuthal factor. Suppose,
without loss of geneality, a generic wave is expressible as

b= 3 ACa(kr)ein? (3-1)

n=-oco
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where €,(2) is a formal notation for cylindrical functions, which can be any of the
following: Jy(z), Ya(2), H{"(2) and H{?(2). In a matrix notation, ¢ is equivalently
expressible as

¢ = {A}7{€(r0)} (3-2)

where {A} and {€(r,0)} are two column matrices whose elements in the n-th row
are

{Aln=A4, and  {€(r,0)}, = Co(kr)e™ (3-3)

respectively. Obviously, the index n runs from —oo to oo.

In general, {A} is called the wave ezpansion coefficient matriz, and {€(r,8)} is
called the wave ezpansion basis matriz, or simply the wave ezpansion basis.

Two impcortant wave expansion bases that are used extensively in scattering
problems are:

{J(r,0)} with  {J(r,0)}n = Ja(kr)e® (3-4)
{H(r,0)} with  {H(r,0)}n = H{(kr)e' (3-5)

Since {H (r,6)} is singular at the origin, it is called the singular wave expansion
basis, whereas {J(r,0)} is called the regular (non-singular) wave expansion basis,
and the following notation is used

{J(r,6)} = R{H(r,0)} (3-6)

where the symbol R is read as the regular part of the associated function, and
denotes replacing the Hankel function of the first kind by the Bessel function of the
first kind of the same order and the same argument.

In P/SV wave scattering problems, due to the different wave numbers of the
two types of waves, it becomes necessary to include the wave number into the wave
expansion basis, such as {J(x;,0)}.

As seen in Chapter 2, there are other wave expansion bases, which can also be
written in a similar form of matrix notation.

When using matrix notation, the following notational conventions are adopted:
a bold-faced symbol, along with the appropriate brackets, denotes an entire matrix.
A column matrix is enclosed by a pair of flower brackets ({ }), and a rectangular
matrix by square brackets ([]). A super/subscript inside the brackets represents a
modifier to the entire matrix. A subscript outside the brackets represents an indicial
number for a matrix entry, which is denoted by the same but unbold symbol as the
matrix.
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3-3 Definition of T-'matrix

With matrix notation, wave fields can be written in a more compact manner. For
example, for SH wave singele-scatter problems, the incident wave can be expressed
as

o0
¢ = > Apdn(kr)e® (3-7)
n=-00

and the corresponding scattered wave can be expresssed as

o0
¢*= Y BoHY(kr)e™? (3-8)
n=—0o
where A, and B, are wave expansion coefficients for the incident and the scattered
waves, respectively. They can be equivalently expressed in matrix form as

¢" = {A}T{J(r,6)} (3-9)

and
¢* = (B} {H(r,0)} (3-10)

On the other hand, it is noted that the systems under consideration are linear,
Mathematically, linearity implies that there exists a linear transformation between
the inputs and the outputs in such a way that, for any input, applying the linear
transformation to the input gives the corresponding output. Such a transforma-
tion is a characteristic of the system. In many simple mechanical systems, such a
characteristic is also called the transfer function(s) of the system.

Specifically for scattering problems and using matrix notation, such a linear
transformation would appear as a matrix that linearly relates the wave expansion co-
efficient matrices of the incident and the scattered waves. That is, taking eqns, (3-9)
and (3-10) as an example, such a linear transformation appears to be

{B} = [T|{A} (3-11)

where [T'] represents the transformation. Equations (3-9), (3-10) and (3-11) com-
prise a complete mathematical definition of the T'-matriz, so named and denoted
by convention. In words, the definition of the T-matrix can be stated as: the ma-
triz in a matriz notation that represents the linear transformation between the wave
ezpansion coefficients of the incident and the scattered waves.

The definition given above is quite broad in the sense that it only specifies a
matrix notation. Other matrix notations, maybe along with other forms of wave
expansions, could be used, resulting in different expressions or even different forms
of the T-matrix for the same scatterer, Therefore, additional restrictions are needed
to confine the context in which the T-matrix is defined.
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Throughout this thesis, when the T-matrix for a scatterer is given or is said to
be known, the following restrictions are implied. First, the problem configuration is
that a single scatterer is embedded in an infinite medium. Second, a polar coordinate
system, including its location and orientation, has been defined, and the origin of the
coordinate system should fall within the region occupied by the scatterer. Third, the
matrix notation of the form of eqns. (3-9) through (3-11) is assumed. Fourth, the
incident wave is expressed in the regular wave expansion basis while the scattered
wave is expressed in the singular wave expansion basis,

It must be noted that any change to these parameters will the cause the T-matrix
to change. Thus it is necessary to have them explicitly specified.

3-4 T-Matrices of Some Simple Scatterers

For simple scatterers, the T-matrix can be obtained by solving the single-
scatterer problem analytically and then re-express the result in the matrix form.
In this section, expressions of T-matrices for several circular cylindrical scatterers,
whose single-scattter problems have been solved in Chapter 2, are presented.

3-4.1 SH Waves

In Chapter 2, several single-scatterer SH wave scattering problems have been
solved by assuming that the incident and the scattered waves are expressible as
eqns. (3~7) and (3-8).

In all the solutions found in §2-3.1, there is a one-to-one correspondence between
a pair of wave expansion coefficients A, and B,; that is, only the coefficients for the
incident and the scattered waves of the same subscript are related to each other.
This implies that, in all these cases, the T-matrices are diagonal, The element of
a T-matrix at the n-th row and the n-th column is denoted as [T],, where the
single subscript is purposefully used to signify that the matrix is diagonal. Then,
by definition,

By,
An

Specifically, for a circular rigid cylinder of radius a, from the solution found in

§2-3.1,

[T}, = (3-12)

Jn(ka)
Ty = ——y—— 3-13
[ ]11 H7(ll) (ka) ( )
For a circular cylindrical void of radius a, from the solution found in §2-3.1,
!
[T]n = Lka) (3_14)

- #”(ka)
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For a circular elastic cylinder of radius a, from the solution found in §2-3.1,
[T} = - prksJp(kra)Jn(kma) — pmkmJn(kra)Jh(kma)

T nrks (k@) HS (ki) — ki Jn (kya) HSY (kma)

where p is the Lamé constant of the material, and the subscripts m and f denote

the media of the matrix and the scatterer (fiber), respectively.
For a circular two-layer elastic cylinder, from the solution found in §2-3.1,

b MyHS (kmb) — ik Mo HE (Kipnb)

(3-15)

[T]n == (3-16)

where
My = [psksdy (kpa)Ya(kia) — pikiJn(kra)Yy' (kia)] Jp (Kib)
- [Pfkf']:z(kfa)*]n(kia) - PikiJn(kfa)Jn’(kia)] Ya(kib) (3-17)
Ma = [psksJ] (kfa)Yn(kia) — pikiJn (kra)Yy!(kia)] J) (kib)
— [arks Ta(ksa)Jn(kia) = pikidn(kga)Ju' (ia)) Yi(kib) ~ (3-18)
a and b are the radii of the inner and the outer layers of the scatterer, respec-

tively, and the subscript ¢ denotes the medium of the outer layer (interphase) of the
scatterer.

3-4.2 P/SV Waves

As discussed in Chapter 2, there are two types of waves could coexist in the case
of P/SV scatterering. In general, the incident waves are expressble as

[o <]

@ = > ApJy(kr)ein? (3-19)
n=-o0o

T 00 -

Pne = Z aan(k"')ema (3-20)
n=-—00

and the scattered waves are expressible as

[o ]
¢ = Y BnHM(kr)el™? (3-21)
n=-—00
m -
W= Y by H (kr)ein? (3-22)
n=-00

where ¢ and 1 are the displacement potential fuctions for the P and S waves,
respectively, and « and k are the wave nunmbers for the P and S waves, respectively,
Ap and a, are the wave expansion coefficients for the incident P and S waves,
respectively, and B, and by, are the expansion coefficients for the scattered P and S
waves, respectively.

Due to mode conversions, a 2-D P/SV wave scattering problem involves four
T-matrices: the scattered P wave due to a P incident wave, the scattered SV wave
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due to a P incident wave, the scattered P wave due to an SV incident wave, and the
scattered SV wave due to an SV incident wave; that is, two scattered waves due to an
incident P wave and two scattered waves due to an incident SV wave. Denote these
T-matrices as [T*?), [T'?%], [T°”] and [1'55), respectively, where the first superscript
denotes the type of incident wave and the second superscript denotes the type of
scattered wave.

For all the simple single-scatterer problems solved in §2-3.2, the T-matrices are
diagonal, and the expressions, by definition, are

B b
[T77)n = A_: [T7%]n = Ar:, (3-23)
when a, = 0, and
SP Bn 5SS bﬂ
Tl = — (7% = = (3-24)
n n

when A, =0.
Specifically, for a rigid circular cylinder of radius a, from the solution found in
2-3.2,
§ Gl G3 3 Gl
[TPP]n — 71n(2)€gn(a) — 72n(a) 81n(a

) 3-2
@371n(a)@3§zn(a) €Fan(a) €31 () (3720)
TPS n= ln (a)egln( ) eSln(“")esln(a') 3-26
™ QE711:( )@gzn(a) 72n(a)esln( ) ( )
€12(a) E3an(a) — €790 (a) Eaan(a)
TSP}, = 72 n n L 3-27
] e?ln( a) sz.n( ) — 72n(a)@gm(a) ( )
[Tss]n — 7lu(a)GB2n( ) G82n(a')egln(a') (3—28)

" 1n(0) € () — €120 (0) EF1a(a)
where &(z)’s are differential wave expansion basis functions defined in Appendix

2-C in Chapter 2.
For a circular cylindrical void of radius a, from the solution found in §2-3.2,

€l1n(a)Eionla) — 2n(a)e:ln(a) (3-29)

(77" = -
un(a)@nn(a) 2n(a)€4ln(a)

PS nn(a)@un() 0341n(a)@41n(a)

b = = & (@) (0) — € (@) Er(a) (3-30)

e, = — Eizn(@)Cinn(a) - em(a)eizn(a) (3-31)
11n(a)@42n(a) 2n(a) 4ln(a)

759}, = — Eiinl@)Cizn(@) = Cizn(@) a0 (3-32)
m( a)€ 42n( a) - 12n(a)@41n(a)

For the elastic and layered elastic cylinders, although no explicit analytical ex-
pressions are available, numerically solving the linear equation systems found in
§2-3.2 (in eqns. (2-135) and (2-146)) should be straightforward. To calculate the
T-matrices, first set A, = 1 and a, = 0 and solve the linear equation system; the
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solutions for B, and b, correspond to [T'¥*), and [T'#¥],, respectively. Then, set
A, =0 and a, = 1 and solve the system again, Now the solutions for B, and b,
correspond to [T'°"), and [T'°%),, respectively. The procedure must be repeated for
every n,

3-5 Coordinate Transformations for T-matrix

In this section, coordinate transformation relations for a T-matrix are presented.
In general for a two-dimensional problem, any coordinate transformation can be de-
composed into a pure rotation (without moving the origin) and a pure translation
(without changing the orientation). The two transformations are examined sepa-
rately.

In the following, quantities in the new coordinate system are signified by a prime,
such as (r',6") for the coordinates. For brevity, only the case of SH wave scattering
is considered. The extension to the case of P/SV wave scattering is straightforward.

3-5.1 Coordinate Rotation

Assume the new coordinate system is formed by rotating the original coordinate
system about its origin counterclockwisely by an angle ., That is, a counterclockwise
rotation is has a positive rotating angle. The relations between the new and the
original coordinate systems can be found as

r = r' 0=0 +a (3_33)
The incident wave in eqn, (3-9) can be written as
¢ = {A}T{J(r,0)} = (A} {J(r',6')} (3-34)

where {A’} denotes the wave expansion coefficient matrix for the incident wave in
the new coordinate system. The expanded form can be written as

P = Z AnJp(kr)e™ = Z Apeie J, (kr')ein? (3-35)

n=-—oo n=-oc

where eqns. (3-33) have been used. Comparing eqns. (3-34) and (3-35) gives
{A'}n = {A}neme (3-36)
Similarly, the scattered wave in eqn. (3-10) can be written as
¢ = {B}T{H(r,0)} = {B'YT{H(r',6')} (3-37)

with
{B'}n = {B}ne™ (3-38)
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The definition of the T-matrix in eqn. (3-11) gives

(e <]

{B}m = E [T]mn{A}n (3-39)

m=-—oo
Rewriting in terms of {B'} and {A'} by using eqns. (3-36) and (3-38) gives

oo

{B'}m = Z ei(m—n)a[T]mn{A’}n (3-40)

m=—00

Thus, if the T-matrix in the new coordinate system is denoted as [T"], then

[T")mn = ™™D (3-41)

3-5.2 Coordinate Translation

Assume the origin of the new coordinate system is located at point o whose
coordinates in the original coordinate system are (R, ©), as sketched in Fig.3-1. In

P
r v
R o
[7]
020710

Fig.3-1 The relation between the original and the new coordinate systems.

Fig.3-1, P is an arbitrary field point which can be located by either the original
coordinates (r,8) or the new coordinate (r',6’), and it can be found that

6 =0+ (3-42)
Recall Graf’s addition theorem of Bessel functions!?
o0
HY @) Cmp= Y Hn(Z2)(2) " na (3-43)
sin it sin
I (@) % mp = i Imin(Z)Im(z) < na (3-44)
sin oo sin

where m and n are integers, and the geometrical relations among other parameters
involved are sketched in Fig. 3-2. Equation (3-43) is valid only when |Z| > |ze*e|;

T
b
Z- /o

A /

z
Fig.3-2 Geometries of Graf’s addition theorem,
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whereas eqn. (3-44) is valid throughout the plane. For actual distances Z and z, the
validity condition for eqn. (3-43) becomes Z > z.
Comparing the geometries in Figs. 3-1 and 3-2, with the following substitutions

z—+kR w—okr' Z-okr a—0-0 pfoay=60-6
eqn. (3-43) can be written in complex notation as

HY (kr')e'm(O'=0) = Z H, (kr)Jn (kR)e™(6-©) (3-45)

n=-o00
With slight rearrangements, it can be further written as
HQ (kr')e eimd’ Z e~im-m® J . (kR)HS (kr)eir? (3-46)
n=0

where eqn. (3-42) and the following relation of Bessel functions(?!

Jn(2) = (=1)"Jn(2) (3-47)
have been used. In matrix form,
{H(r',0)} = [Q{H(r,0)} (3-48)
where the element of the matrix [@] at the m-th row and n-th column is
[Qlmn = e"Hm~™® J._,(kR) (3-49)

and matrix [Q)] is called the coordinate translation matriz.
By a similar procedure using eqn. (3-44), it can be shown that the coordinate
translation for the regular wave expansion basis is

{J(r',6} = [Q{J(r,6)} (3-50)

Furthermore, since eqn. (3-50) is valid throughout the entire plane, and the origin O
is located at the point (R, + ©) in the (r/,8') coordinate system, it can be readily
shown that the inverse transformation of eqn. (3-50) is

{J(r,0)} = QI {J(r',0')} (3-51)
where
([Q]—l)mn = (-1)"™"[Q)mn = €™ ™ Jp_n(kR) (3-52)
and ([Q)™!),,, denotes the m-th row and n-th column element of matrix [Q]7!; that
is, the inverse of matrix [Q].
Using coordination translation relations in eqns. (3-48) and (3-50), the incident
wave can be written as
e = {A}T{I(r,6)} = (A} [QI{I(r,0)} (3-53)

Similarly, the scattered wave can be written as

¢° = (B} [QUI(r,0)} (3-54)
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Thus, coordinate translations for the wave expansion coefficient matrices are

{A} =[QI"{A"} {B} =[QI"{B"} (3-55)
The definition of the T-matrix in eqn. (3-11) gives
[QI"{B'} = [T[QI"{A") (3-56)
Therefore,
[T = [QI"[TQ) (3-57)

However, it must be noted that the condition imposed by Graf’s addition theorem
now requires that 7 > R. In other words, the above translation is only valid for
expressing the scattered wave in the region r > R.

3-6 Properties of T-Matrix

In this section, some properties of T-matrices are examined. Known properties
of the T-matrix fall into 2 categories. The first category are universal properties
that must hold without exception is all cases, They are imposed by some basic
physical principles. The second category is inherent from the geometrical and phys-
ical symmetry of the scatterer, thus they are specific to scatterers that possess the
required symmetry.

3-6.1 Properties of T-Matrix Imposed By Physical
Principles

In this subsection, some properties of T-matrices imposed by some physical
principles of elastodynamics, specifically the principle of energy conservation and
the principle of reprocity, are explored. Due to a distinct difference in the forms
in which SH and P/SV scattering problems are formulated, these two cases are
discussed separately.

Mathematical Expressions of Physical Principles

Expressions for the principle of energy conservation and the principle of reci-
procity in general and the expressions particularized for the two-dimensional steady-
state scattering problems using a polar coordinate system have beed derived in §2-4
in Chapter 2. For an easy reference, the expressions for the 2-D steady-state scat-
tering problems are repeated here.



79

Principle of Energy Conservation

For the steady-state scattering problems in a two-dimensional space using a polar
coordinate system, energy balance requirement, which is an alternative form of the
principle of energy conservation, requires that the energy transmitted into a closed
surface equals the energy emitted out of the surface. For simplicity, the closed
surface is chosen as a circle of radius R centered at the origin of the coordinate
system.

For the case of SH wave scattering, U, = Uy =0, X, = L9 =0,

(B)su =R /o ” (m{=.T.})| _,d8=0 (3-58)

where U and X are the complex amplidutes of the displacement and stress compo-
nents, respectively; (-) denoted the time-average of a time-harmonic physical quan-
tity over a complete period.

For the case of P/SV wave scattering, U, =0, £,, =0, and

(E)essy =R [ 7 (1m {80} + Im { ST} )| _,d6 =0 (3-59)

Principle of Reciprocity

Similarly, for problems in a two-dimenstional space using a polar coordinate
system, the Betti-Rayleigh Reciprocity Theorem has been shown as, for the case
of SH wave scattering, U, = Up = 0, Z,; = £, = 0, and for any two sets of
time-harmonic loadings at the same frequency,

27
/o [(Zr1(Ua)z = (Er)2(Ua]| _ @6 =0 (3-60)

and ” ~ -
[ Re{(Zran @z - Erado@on}],_ a0 =0 (3-61)

where the subscripts 1 and 2 denote the quantities correspond to the first and second
sets of loadings.
For the case of P/SV wave scattering, U, =0, ¥;; =0,

[ {[En ) + (ol (U] = [(Era@hs + (Erala(oN ]} a0 =0
(3-62)
and

dd =0
=R

/ Re {[(Eer1 @2 + (Ze0)1 (To)e] = [(Er)2 U1 + Eroda(Uohi ]},
(3-63)
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SH Waves

For this case, the total wave in the matrix can be written as
$% = ¢ + ¢ = ()T (I (r,6)} + ((T){A})T (H(r,6)} (3-64)

where {A} is the wave expansion coefficients of the incident wave, Also,
a¢total

U, =¢*"  and 5,=2 =

(3-65)

where p is the Lamé constant for the matrix medium.

Energy Balance Requirement for SH Wave Scattering

Since the incident wave can be arbitrary, assume {A}n =1 and {A}, = 0 when
P #n. Then,

00
U, = ¢total — J,,(kr)ei"" + Z [T]pn H,g”(kr)ei”o (3-66)
=—00
1 a¢total , inf 0 (! 100
- = in iq -
2;,/;2" ) Jn(kr)e™ + 37 [T]nHY (kr)e (3-67)

g=-00

» erzU = Jn(kr) z (Tlon HY' (kr)elP=m)0 4 Jt (kr) z @1, H (kr)eitn=2)0

p=-o00 g=—o00

[o o] (o +]
Ha(kr)a(kr) + > ST [T)on [T HS"' (kr) HP (kr)eiP-9)6 (3-68)
p=—00g=-c0
where in writing U, it has been noted that

H{Y(z) = H® (2 and HY(2) =H®'(z 3-69)
n

In performing the integration over 0, it is noted that

2
/ "eitb-agg | O when pg (3-70)
()} 27 when p=gq,

Then,
ﬁ; 02" £r:0.d6 = Jy (kr) [Tl HS (kr) + J, (kr) [T, HS (k)
+J5, (k) Jp (kr) +Z [Tlpnl® HSY (kr)H® (kr)  (3-71)
p=—00
Noting that
Im{Jy(kr)Jn(kr)} =0 (3-72)
Im { Jn (kr) (Tlan HY (kr) + J1 (kr) T, H( kr)} = (T],m +T,,)  (3-73)

1 {|[Tpn* Y (kr) B (kr)} = — |[T]pnf? (3-74)
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where the following Wronskian relations for Bessel/Hankel functionsf!!

W(In(a), HE(2)) = () B (2) = Ja2) B z) = 2 (3-75)
WU (=), B (2)) = () B (2) = TP () =~ 22 (3qg)
WHL(2), B (=) = HYO(@)HE () ~ B () = -2 307

have been used. Thus, by using eqns, (3-71) through (3-74), eqn. (3-58) becomes
[o ]
(Estt = 4mp ( [Thon + T +2 3 ([Tlpuf? )=0 (3-78)
p=—00
Therefore, for any n,
(e o]
Re{[Tlan} = - Y |[T)pn)? (3-79)
=-o00
Furthermore, squaring both sides of eqn. (3~79) gives
= 2)? 2 - 2
(5 Il ) = (Re (T} S ITalt < 3 Tl (380
n=-o0o0 n=—o0o

which means -
2 [Tml* <1 (3-81)

n=-—o00

Combining this property with eqn. (3-79) gives
— 1 S R{[T]an} <0 (3-82)
For diagonal T-matrices, eqn. (3-79) becomes
Re{[T]n} = ~|[T})n/? (3-83)

It is observed that the expressions for T-matrices for various scatterers in §3-4.1

possess the form [T], = - where both a and b are real. It can be readily

a
a+1ib
verified that they satisfy eqn. (3-83).

Reciprocity for SH Wave Scattering

Assume that two sets of incident waves at the same frequency are represented
by their respective wave expansion coefficient matrices {A1} and {A,} such that:
{A1};n = A; and {A1}, = 0 when p # m; and {A2}, = A, and {A2}4 = 0 when
q # n, where A and A; are arbitrary (complex) numbers, Then,

(U1 = AvJm(kr)e™ + 4; 5 [T)om Hy" (kr)e?? (3-84)
=—00
1 . 0 L
2;7;(2”)‘ = A (kr)e™ + 4, S [T)pm H' (kr)eiP? (3-85)

p=—00
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o0
(Us)2 = AoJn(kr)e™ + Ay ) [T)gnH{" (kr)el?® (3-86)
q——oo
1
g (Zre)e = AzJy (kr)e™ + Ay EW[T],,,,H“)'(IW) ¢'? (3-87)
Thus,
47"/"‘7 rZ)l(U 2~ (Erz)2(U ) ]d0

= A1 A2 [Jm (kT) [T~ myn H 2 (k) — Jrlt(kr)[T](—n)mH(—lr)z(kr)]

+A)A; [Jn(kr)[T](—n)mH-(-lr)nl(kT) - Jm(kr)[T](—m)anr)n'(kr)]
= 2222 [ (T = (1™ (e (3-88)
2n — _
e R A R R ACAN K
= Ay Ay [ (kr)[T, g HR () — T4 (kr) [T HLP (k)|
+ A1 Ay [Jn (k) [Tlam HE' (k) = Jin (kr) (T HZY (k)|

+A14A; fj (T]om[T]pm [H,‘,"'(kr)H,‘,”(kr) —H;”(kr)Hf”(kr)]

p=—00

_ 2zA1A2 [ (T)om + T + 2 ): (T)om [ Tpn | (3-89)

p=—00

where eqn. (3-70), the Wronskians in eqns. (3-75) through (3-77), and the following
property of the cylindrical function €_p(2) = (—1)"C,(z) have been used.
From eqns. (3-60) and (3-88), it can be concluded

[Tlmn = (=1)" " [T)(=n)(=m) (3-90)

For eqn. (3-89), since both A; and A, are arbitrary complex numbers, it follows
that reciprocity requires

T+ Thom +2 3> TlplT],p = 0 (3-91)

p=—-00
or, in matrix form,

3((T)* +(T)) = ~[T]*([T] (3-92)
where * denotes the conjugate transpose of a matrix; that is, [T']* = [T_]T = m’f
It is noted that eqn. (3-79) is a special case of eqn. (3-92).

Conclusions for SH Wave Case

In conclusion, properties of a T-matrix for SH wave scattering imposed by the
energy principle and the reciprocity principle are given in eqns. (3-90) and (3-92).
Other properties can be derived from them and are summarized as follows:
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» The magnitude of any element of a T-matrix is no larger than unity.

« The real part of any diagonal element of a T-matrix is always non-positive (neg-
ative or zero) but no smaller than —1.

» The sum of the magnitude squares of any entire column of a T-matrix is no larger
than unity.

P/SV Waves
For P/SV wave scattering, the total displacement potential functions in the
matrix can be written as
¢t = (AY (T (s;7,0)} + (IT7FH{A} + [T7){a})” {H(x;7,0)}  (3-93)
g = {a) (I (ki 0)} + (IT7°H{A} + [T*{a})" {H(kir,6)}  (3-94)
where {A} and {a} are the wave expansion coefficients for the incident P and SV

waves, respectively. The resulting complex amplitudes of displacement and stress
components can be written as

U, = {A)T{€L} + (T""{ANT (€7} + ((T°F){a})" {€F}  (3-95)

Up = {A)T{€}4} + (T {ANT {€3,} + (T57){a})" {€F}  (3-96)

e = {A)T{€L} + (T HADT (€]} + (T°7Na})" (€} (3-97)

Ure = {A}T{€L} + (T HANT (€4} + (T ){a})T {€h}  (3-98)

where {&% } are various differential wave expansion basis functions, whose elements
in the n-th row is

{€xy}n = Exy(r)e™ (3-99)
and functions Gf\-y are defined in Appendix 2-C in Chapter 2.

Energy Balance Requirement for P/SV Wave Scattering

Since the incident waves can be arbitrary, it is assumed that {A}, = A and
{A}, = 0 when p # n, and {a}m = @ and {a}, = 0 when ¢ # m, and A and a are
arbitrary (complex) numbers, and m and n are arbitrary integers.

The complex amplidutes of displacement and stress components in the matrix
are expressible as

[e o]
U, = A€ e + Z (A[TPP]pn + a[T*F|pm) G?lpeipo

p=—00

oo
+aChyne™ 4+ S (A[T75)pn + a[T]pm) €7pe™®  (3-100)

p=-0c0

o0
TUp = Aeélneino + (A[TPP]pn + a[TSP]pm) Ggl e'rf
P

p=-00

o0
+aChme™ + 3 (A[T™%]pn + a[T|pm) Egape™  (3-101)

p=-00



84

,,.2

-27)3,., = A@}lnemo + Z A[TPP] + a[TSP]prn ellpe ré

p=—00

00
+aClome™ + 3" (A[T"|pn + a[T)pm) Eype™®  (3-102)

p——oo

—#Era—A@‘u e + Z (A[T""}pn + a[T*]pm) e41P

p=-00

oQ
+a@;2meimo+ Z (A[Tpslpn’f‘a[TSS]pm)ngpeiPa (3-103)

p=-00

where it must be noted that vhe argument (r) for the €-functions has been sup-
pressed for simplicity. Thus, constructing the energy flux density and performing
the integration over 6, in which process eqn. (3-70) is used to reduce the expressions
of energy flux density to a form that contains at most one summation, gives

3

r o . N
4—Im { / (20T, + 2ol d0}
mz 0

= 851!';1. ./(;217 [(ErrUr + 2rGUl?) - (_z—)rrUr + Erl?Uli)] aé

= AP fi(n;1,1) + |af* fa(m; 1,1) + AGOmn fa(n; 1,1) — Aadmn fa(n; 1,1)
+ X(A[TPP]nn + G[TSP]nm)fl (n;3,1) + A(K[TPP]nn + G[T]nm)fl (n; 1,3)
+ A(z[ﬁlnn + E[ﬁ]nm)h(n; 1,3) - Z(A[TPP]rm + a[TSP]nm)f2(n; 1,3)
+@(A[T ) mn + [T ) mm ) f2(n; 3, 1) + a(A[TPPlmn + &[T )mm) f2(n; 1,3)
+ B(A[T")mn + a[T° lmm) f3(n; 3, 1) + a(A[TP%)pn + AT mm) fa(n; 1, 3)

im AT+ Tl 1139+ 5 AT+ o7l fl33,)

+pim(A[T”]pﬁa[T”]pm)(A[T”]pn+5[T”]pm)fz(p;3,3)

—piw(A[T"l,,,,w[T”]pm)(A[T"*'1pn+a[T”1pm)m (3-104)
where

fi(n;i, ) = lun 710 T G‘un@sm Gun 71n G“nQEém (3-105)
fa(n;4,4) = e1111957% + @un@szn Gl2n 7n ~ @427; €s1n (3-106)
fa(n;4,5) = el2n€72n + G42n€82n G12n 7on — QE42neazn (3-107)

and 7 and j can be either 1 or 3.

Substituting the expressions for E-functions in Appendix 2-C into eqns, (3-105)
through (3-107) and using the Wronskian relations for cylindrical functions in
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eqns. (3-75) through (3-77) give

0 (i=1,j= 1)

Pmid) =0 A(mig) = fmig) = TO0 E=1hi=9)
n;i,5) = n;4,7) = fa(n;d,j) = 7

2 J 1547 KAOIRTW) ;’;k2r2 (Z'=3,j=1)

R (i=3,j=3)

Therefore, combining eqns, (3--104) and (3-108

), the energy balance requirement
in eqn. (3-59) becomes

Re {.42[TPP]nn +2aA ([Tsp]nm + [Tps]mn) + ag[Tss]mm}

[o 0]

+ 2 (,A[TPP]pn + a[T")pm | + [A[T"]pn + a[Tss]pmlz) =0(3-109)
=-00

Since the incident waves are arbitrary,

consider the following two special cases,
In the first, let A=1 and ¢ =

0. Equation (3-109) gives

[oe]
Re{lT™wn} + 32 (" lonl® + [2")pnf?) = 0 (3-110)
P=—00
Next, let A=0and @ = 1. Equation (3-109) gives
ReAlTlmm}+ 3 (I Joml? + (75 ]pmf?) = 0 (3-111)
p=-2

Also note that
,A[Tpplpn + a[TSP]pm, i
= LAPIT Jonf” + lof? (T + 2Re { AT Jpn [T b (3-112)
,A[Tpslpn + a[Tss]pm‘ ’
= AP IIT"*}on|? + [a[2 |75 ]pm® + 2Re {4a(r*2) 5,0} (3-11)
By using eqns. (3-110) through (3-113), eqn. (3-109)
Re {43 (157 + (179}, }

can be written as

p=—00

0
+2 37 Re{4a (1752 1o [T + [TPS],,,,[TSSJ,,m)} =0 (3-114)
Since both A and ¢ are arbitrary complex numbers, it follows that

[TSP]nm + [Tps]mn +2 i ([TPP]pn[TSIP]pm + [TPs]pnﬁ-fs_s]

p=-00

,,T,,) =0 (3-115)

Or, in matrix form,

~ 3 ([T57°) + [TP9)) = [TFI[TPP) + [T55)[Ps) (3-116)
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Reciprocity for P/SV Wave Scattering

Consider three cases. In the first, assume the two sets of incident waves are all
P waves and their respective wave expansion coefficient matrices are

{A1}: {Ai}m = A1, {A1}p=0whenp#m;  {a1}=0  (3-117)
{A2}: {A2}n = As, {A2}y =0 when g # n; {a2} =0 (3-118)

where A; and Aj are arbitrary (complex) numbers. The displacements and stresses
due to {A;} are

,~(U,)1=A,os;lme"""+Al ([TPP],,mosnp [T75)pm €3,y ) €7° (3-119)

T(Uo)l = A1 @élmeimﬁ + Al

)¢
([TPP],,,,, Chip + [T lpmClp ) €7 (3-120)
2
)

IIIM8 IIIMS IIIMS llIMS

r .

z(zrr)l = Al@%lmetmo + A ([TPP]Pm@llp [TPS]PmGIZp e'rf (3-121)
2

T s N

ﬂ(zrﬂ)l = Al@ilmetmo + A ([TPP]pm QE41p + [Tps]pm@22p) e'r? (3-122)

The displacements and stresses due to {A3} are identical to those for {A4,} except
that A, is replaced by A2 and that m is replaced by n. It can be found that, for
this case,

,’.3 27

7 fy U@+ (Er)i@ok] = |Ber)a(Ur)s + (Sro)a(Uoh]} a6
= Ay {bmn fu(3 1, 1) + 7] 115 1,3) o [T o f1 (33, 1)
+ T f2(31,3) = [T fo(;1,3)
+ Z ([TPP]Pmenfl (p; 37 3) + [TPP]PT"[T_Ps]pan(p; 3: 3)
p=—00

— [T )om [T L 2 Pi3,3) + [T lpm TP ], f3(p33,3)) ) (3-123)

Noting that both A} and A; are arbitrary complex numbers, A; A, can be purely
real, purely imaginary or complex. Thus making the real part of the right-hand side
of eqn. (3-123) vanish for any A, and A requires the quantities in the flower brackets
to vanish. Thus, the reciprocity requirement in eqn. (3-63) can be written for this
case as

TP+ [T + 2 i (177 pm TP + [T ]m[T75],,,) =0 (3-124)

p=—00

where eqn. (3-108) has been used. Or, in matrix form,

= 3([T77]" + (T°F]) = [TP7)[T7F) + [TPe) [T (3-125)
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Like SH wave scattering case, eqn. (3-125) is a more general form than the one
concluded from the energy balance requirement, eqn. (3-110).
In the second case, consider two SV incident waves as

{A1}=0; {a1}:{a1};n =01, {a1}p =0 whenp#m (3-126)
{a2} =0; {a2}:{a2}, =a2, {02}y =0wheng#n (3-127)

where a) and a3 are arbitrary (complex) numbers. The displacements and stresses
due to {a,} are

[o o]
(U = a1€hpme™™ + a) Z (75 lpm @y + [T55)pm €y ) €70 (3-128)
1 i _oo ]
r(Us)1 = a1 Ehyme™ + ay Z (75" lom Ry + [T Tpm CRp ) €70 (3-129)
<zrr)1—alemm ™ 1ay Y ([T lom @y + [T pm €, €7 (3-130)
p=-—00
7"2 1 _imd o SP ss ip0
E(Era)1=01@42me +a ) ([T lm € + (T ]pquzp)e” (3-131)
p=-00

The displacements and stresses due to {a2} are identical to those due to {a;} except
that a, is replaced by as and that m is replaced by n, Then,

7,.I‘l

i), T E Oz + (Bra) )] - [(Eer)a(Us + (Bra)a(Voh]} o
= a,09 {Jmnfa(n; 1,1) — [T'SP],,.. fa(m; 3, 1) + [T'55],, . fa(m;1,3)
+ [TSP]nmf2("; 3, 1) + [Tss]nme(ni 3, 1)
+ 3 [T o Tl f1(233,3) + (T lpmlT5],, fa(pi3,3)

p=—00

— [T [T57],, 223 3,3) + [T°%)om[T=51,,,, f3(p3 3, 3)] } (3-132)

Since both a; and a3 are arbitrary complex numbers, the reciprocity requirement
in eqn. (3-63) can be written for this case as

(e o]
T + TN 42 3 (% lpmTpn + [T }plT],) =0 (3-133)
p=-00
where eqn, (3-108) has been used, Or, in matrix form,
= 3 ((T%°)" + [T5°)) = [T5°)°[T%°) + [T°F)"[T°7) (3-134)

Again, eqn. (3-134) is a more general form than the similar one concluded from
the energy balance requirement, eqn, (3-111).
In the third case, consider one P incident wave and one SV incident wave as

{A1}: {Ai}m = A1, {A1}p =0 when p # m; {a1}=0 (3-135)
{A} = 0; {a2}: {a2}n = a2, {a2}g =0 wheng#n (3-136)
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where A; and ay are arbitrary (complex) numbers. The displacements and stresses
due to {A;} are given in eqns. (3-119) through (3-122), and the displacements and
stresses due to {az} are given in eqns. (3-128) through (3-131), except that m is
replaced by n, and the subscript 1 is replaced by 2,

It then follows that

3 fid _ — _ —_
rem / B2 + (a1 Tole] - [Eor)o@s + (Sra)a(Uoh]} 80
= Az {Sun fo(mi 1,1) + T f1(m31,3) o+ [T5%] 1, fa(m; 1,3)
+ [TPP]nme(n; 3,1) + [TPS]nmf3('n5 3,1)

[o o]
+ 3 (177l T T f1(P33,3) + [T 1o [T, f2(p; 3, 3)
p=—00
~ [ Lo, 2 (Pi3,3) + (1% )om[T5, fo(233,3)) }  (3-137)
Since both A; and a; are arbitrary complex numbers, the reciprocity requirement
in eqn. (3-63) can be written for this case as

T + TN +2 3. (T lpm[ T + [T ]pm[T%,,) =0 (3-138)

p=—00

where eqn. (3-108) has been used. Or, in matrix form,
= 5((T57] + [T79)) = [T 7] [T7F) + [T5°)*[T°7) (3-139)

This time, eqn. (3-139) is identical to eqn. (3-116), the conclusion from the en-
ergy balance requirement. Taking the conjugate transpose of eqn. (3-139) gives

- %([TPS]U + [TSP]) — [TPP]-[TPS] + [TSP]t[TSS] (3_140)

Unfortunately, equations similar to eqn. (3-90) in the SH wave case were unable
to be derived for the P/SV case.

Conclusions for P/SV Wave Case

In conclusion, eqns. (3-125), (3-134), (3-139) and (3-140) are the properties
imposed by the reciprocity principle for the T-matrices of P/SV wave scattering,
Other conclusion can be derived from these equations in a similar way as in the SH
wave case, and can be summarized as follows:

= The magnitude of any element of any T-matrix is no larger than unity.

= The real part of any diagonal element of the [T'"”] and [T'°*] is non-positive but
not smaller than —1.

= The sum of the magnitude squares of any entire column of any T-matrix is no
larger than unity.

» The sum of the magnitude squares of any column of [T'""] plus the sum of the
same column of [T'"®] is no larger than unity.
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+ The sum of the magnitude squares of any column of [T°°] plus the sum of the
same column of [T'*#] is no larger than unity.

« For any column of the [T'7”] matrix, the real part of the diagonal term equals the
negation of the total sum of the magnitude squares of the elements in the entire
column and of the elements in the same column of the [T'"°] matrix,

» For any column of the [T'°5] matrix, the real part of the diagonal term equals the

negation of the total sum of the magnitude squares of the elements in the entire
column and of the elements in the same column of the [T'**] matrix.

It is interesting to observe that, if the four T-matrices for P/SV scattering are
assembled into the following T'-supermatriz
TPP TSP
= {gro (2o
(T7%] [T°7)

then eqns. (3-125), (3-134), (3-139) and (3-140) can be combined to give

KT + (%) = ~(S](T] (3-142)

which is identical in form to eqn. (3-92) in the SH wave case, and thus the properties
concluded from eqn. (3-92) also hold for [¥]. Furthermore, with similar construction
of wave expansion coefficient supermatrices for various waves, such as the incident
and the scattered waves as follows

(3-141)

_ [t _[B) ]
a={ - {0 (3-143)
Then,
(8} = [T)(2) (3-141)

That is, the T-matrix relation for the P/SV wave scattering is also identical in form
to that of the SH wave case in eqn. (3-11).

3-6.2 Properties of T-Matrix Due to Scatterer
Symmetries

In this subsection, the properties of the T-matrix imposed by scatterer symme-
tries are explored, By a symmetry, it is implied that both the geometry and relevant
physical properties of the scatterer are symmetric, For brevity, considerations are
restricted to the case of SH wave scattering. The extension to the case of P/SV
wave scattering is straightforward.

Symmetry About 6 = 0 (x-Axis)

If the scatterer is symmetric about 6 = 0 (the z-axis), then for any incident
wave that is symmetric about this axis, the resulting scattered wave must also be
symmetric about this axis.
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For an incident wave to be symmetric about 8 = 0 (the z-axis), the necessary
and sufficient condition is ¢"(r,8) = ¢'"(r, —6); that is, for any r and 0,

P = Z ApJn(kr)eint = Z ApJy(kr)e=ind (3-145)
n=-—00 n=-—00
which requires, for any n > 0,
Ju(kr)ei"o + (—1)"A_,,J,,(kr)e"i"0
= ApJn(kr)e™™0 (—1)"A_,,J,,(kr)ei"0 (3-146)

where eqn. (3-47) has been used. Since both 7 and 0 are arbitrary, eqn. (3-146) gives
to

Similarly, the scattered wave is symmetric about § = 0 (the z-axis), and hence
B, =(-1)"B_, (3-148)

From the definition of the T-matrix in egn. (3-11),

{B}m = [T]mO{A}O + _ [[T]mn l)n[T]m(-n)] {A}n (3"149)

{B}-m = [T)mpo{A}o + z_j [T)emyn + (DT myom| {A}n (3-150)

where notational identities {A}, = A, and {B}, = B, and eqn. (3-147) has been
used.
If {A}o # 0 and all other {A}, =0, according to eqn. (3-148),

[T)mo = (=1)"[T](=m)o (3-151)
If {A}, # 0 and all other {A}, = 0, according to eqn. (3-148),
[T]mn + (_l)n[T]m(—n) = (_l)m [[T](—m).l + (—l)n[T](—m)(—n)] (3_152)

It is noted that eqn. (3-152) is inclusive of eqn. (3-151).
Thus, it can be concluded that, if the scatterer is symmetric about @ = 0 (the
z-axis), then, for any m and n,

[Tlmn + (=1)"[Tlm(-n) = (D)™ T)=mjn + (D)™ [T)-m)(—n) ~ (3-153)

Symmetry About 6 = 7/3 (y-Axis)

If the scatterer is symmetric about § = 7/ (the y-Axis), then, by performing
a coordinate rotation of +7/y, the scatterer would become symmetric about ' =0
(the z'-axis) in the new (primed) coordinate system.

Using eqn. (3-41), the T-matrix in the rotated coordinate system is [T"] with

[TI]mn — e:ti(m—n)lzr‘[T]mn = (:ti)m_"[T]mn (3_154)
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and since the scatterer is symmetric about 6 = 0 (the z'-axis), eqn. ( 31-153) gives
[T,]mn + ("l)n[TI]m(-n) = (—l)m[T'](--mJn + (—1)m+n[T’](—rn)(—") (3“155)
Combining eqns. (3-154) and (3-155) gives
)™ (Thmn + (= 1) (Z3)™ Ty
= (D™ Ty + (~1)™ )T (3-156)
which can be readily reduced to

[Thmn + [Tlm(-ny = [T)(=mjn + (T)(~m)(~n) (3-157)

Symmetries About Both 6 = 0 (z-Axis) And 8 = T/2 (y-Axis)

If the scatterer is symmetric about both § = 0 (the z-axis) and § = /o (the y-
axis), the identical T-matrix should result if the coordinate system is rotated about
its origin by an angle of 7/ or by an angle of — T/o. Thus, according to eqn, (3-41),

ei(m—n)ﬂT]mn = eﬁi(m—n)%[T]mn (3‘158)
which gives
[Thnn = e~Hm=mr (] = (—1)ym= (700 (3-159)
Therefore,
[Tl =0 when (m-n) is odd (3-160)

On the other hand, eqns. (3-153) and (3-157) hold simutaneously, Consider
only the case when (m—n) is even. For the case when both m and n are even,
eqns. (3-153) and (3-157) become identical. For the case when both m and n are
odd, eqn. (3-153) becomes

[T]mn - [T]m(—n) = _[T](—m)n + [T](—m)(—n) (3'161)
Combining eqns. (3-162) and (3-157) gives
(Tlmn = [T](“m)("") and [TJM(—n) = [T](—m)n (3-162)

Note that the two equations in eqns. (3-162) is inclusive to each other of both m
and n can be negative, any one suffices.
Therefore, properties of the T-matrix for this case can be concluded as follow:

* When (m-n) is odd, [T}, =0;
* When both m and n are odd, [Tmn = [T](__m)(_n);

* When both m and n are even,

[T]mn + [T]m(—-n) = [TI(—-m)n + [T](—mj(—n)' (3“163)
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Symmetries About Both 6§ = =

If the scatterer is symmetric about § = +7/4, then, by rotating the coordinate
system about its origin by the angle £ /4, the scatterer would become symmetric
about the ' = 0 (the z'-axis) and ¢’ = /o (the y'-axis) in the new (primed) coor-
dinate system, and the appropriate properties for these symmetries are applicable,
Hence, from eqn. (3-160), [T},nn = 0 when (m—n) is odd.

When both m and n are odd, using eqn. (3-41) to apply the afore-mentioned
coordinate rotation to eqn. (3-162) gives

em=-m3(T),, = T[T _my(om (3-164)
or,
[T]mn = (;i)m_n[T](—m)(—n) = im—n[T](—m)(—n) (3'165)
where the F sign has become immaterial as (m—n) is even.
When both m and n are even, applying the coordinate transformation,
eqn. (3-163) gives
eFim-mF () | oEi(min)F (T)m(-ny
= eFMH) L)y + eFHm-m)% [T)(-m)(-n) (3-166)
or,
[Tlmn + [Ty = T T) gy + Em—T) (T)(-m)(=n) (3-167)
Therefore, the properties of the T-matrix for this case can be concluded as follow:
* When (m—n) is odd, [T)mn = 0;
* When when both m and n are odd, [T]rn = ( —1)?[T](-m)(_n);

» When when both m and n are even,

[Tln + (=D E Ty = (=1) F[T]_pn + (=D)*Z* [T} omy(—n).  (3-168)

Symmetries About 0 = 0 ( z-Axis), 0 = T/y (y-Axis) And 0 = + T/4

If the scatterer is symmetric about all the 4 axis, rotating the coordinate system
about its origia by an angle of either T/4 or —T/4 generates the same T-matrix,
although different from the original T-matrix. Thus, from eqn. (3-41),

ei(m——n)-}[T]mn = e—i(m-n)ﬁ"[T]mn (3-169)
which gives
P T (1~ M) = I (1 - (<)mr =0 (3-170)

Thus, [T]mp # 0 when (m—n) is a multiple of 4, and [T}, = 0 for all other cases,
On the other hand, properties of the T-matrix for the symmetries about 8 =
+7/4 and for the symmetries about § = 0 and 8 = 7o must hold simultaneously,
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When both m and n are odd, and (m—n) is a multiple of 4, eqns. (3-162) and
(3-165) identically give

[Tlmn = [T)=m)(-n)  and  [Tlm(=n) = [Tl-m)n (3-171)
When both m and n are even, eqn. (3-163) gives
(T)mn + [Tln(=n) = [Tl(=m)n + [T)(=m)(-n) (3-172)
and eqn. (3-168) gives

[T)mn + (_1)%[T]m(—-n) = (—1)%[T](—m)n + (—1)_;"-[T](—m)("") (3-173)

There are only two cases when when (m—n) is a multiple of 4: when both m and
n are multiples of 4, and when both m and n are multiples of 2 but not multiples 4.
For the first case, eqns. (3-172) and (3-173) become identical. For the second case,
eqn. (3-173) becomes

[T]mn - [T]m(—n) = "[T](-m)n + [T](—m)(—n) (3‘174)
Combining eqns. (3-174) and (3-172) gives
[Tlmn = [Tl(-m)(-n)  and  [Thn(=a) = [T)(-m)n (3-175)

Therefore, the properties of the T-matrix for this case can be concluded as follow:
= when (m—n) is not a multiple of 4, [T]mn =0;

« when both m and n are multiples of 4,

[T)nn + [Tlm(=n) = [T)=mn + [T)(=m)(~n) (3-176)

» For all other cases, [T, = [T)(—m)(-n)-

Axial Symmetry

If the scatterer is axially symmetric, then, by any amount of rotation, the T-
matrix for the scatterer remains the same. Applying the coordinate transformation
for a rotation of an arbitrary angle «, then,

T)mn = ef(m-n)a [T]mn (3-177)

Since a is arbitrary, it can be concluded that [T]mn # 0 only when m = n, This
implies, the T-matrix for an axially symmetric scatterer is a diagonal matrix.
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3-7 Concluding Remarks

In the literature (e.g., [3-51), two widely known properties of the T-matrix,
namely, the symmetry ([T)7 = (T']) and the unitarity (Re{[T]} = —(T)*[T)), are
the conclusions drawn from these physical principles: the symmetry is derived from
the reciprocity principle and the unitarity is derived from the energy balance re-
quirement.

However, it is shown here that properties such as symmetry and unitarity do
not necessarily hold in all cases, and more importantly, that such properties are
particular to a specific context in which the T-matrix is defined. It can be further
shown that egn. (3-90) corresponds to the symmetry property in the literature, and
that eqn. (3-92) corresponds to the unitarity property in the literature, had the wave
expansion bases been chosen accordingly. In this sense, the properties for T-matrix
in eqns. (3-90) and (3-92) are not new findings in this study.

The differences in the properties of T-matrices lie in the different choices of the
wave expansion bases. The derivations in the literature are all based, although not
explicitly stated, on the wave expansion basis that satisfies R{Singular Basis} =
Re{Singular Basis}, where R means replacing the singular basis function by the
corresponding regular basis function. In a 2-D problem using polar coordinates,
the singular bases that satisfy such a requirement are H{’(kr)3"n6. The basis
{H(r,0)} used in §2-3 and §2-4 (the definition of T-matrix used in this thesis) does
not satisfy this requirement.

On the other hand, the choice of any particular wave expansion basis should not
be substantial, and the conversion from one basis to another is straightforward.

The choice of the uniform expansion is based solely on the consideration of the
notational simplicity. With the choice of even-odd expansion, a simple SH scattering
problem needs four T-matrices in order to completely relate the even (symmetric)
and odd (skew-symmetric) waves, as the pairings in the P/SV wave case; and a
P/SV scattering problem needs sixteen T-matrices. Such a form would make the
multiple-scattering formulation much more intimidatingly complicated, which not
only obscures the physics but also hinders the comprehension, On the other hand,
it is noted that both expansions require the same number of unknowns and result
in the same number of elements in the T-matrices if the same error tolerance is
specified. That is, the choice of a particular wave expansion form simplifies only the
notation, but not the numerical computation.

As far as the numerical computation is concerned, the uniform expansion form
does have some minor advantages. For example, when the even-odd expansion is
used, the wave expansion coefficient for the n = 0 term needs some special treatment.
Typically a symbol €, called the Neumann factor, is introduced with the definition
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€n = 1 when n = 0 and €, = 2 otherwise. Also, some of the €-functions change
signs for even and odd bases, as noted in Appendix 2-C in Chapter 2. These are
minor differences, but could become potential sources of coding errors, and in some
high-performance computer architectures, such special treatments could degrade the
computer performace.

Historically, the term T-matrix is primarily due to Waterman’s work [3] in
which a new approach of solving scattering problems via integral equations was
proposed. The approach is often arguably called the T-matriz approach. (Other
names that do not bear the phrase T-matrix are probably more appropriate, such
as the eztended boundary condition method and the null-field approach, as it has
been called.) There is extensive literature on the so-called T-matrix approach as
exemplified by symposium proceedings [6].

It must be noted that the present work is not related to that approach. Only the
concept of the T-matrix is used, and given a clarified definition. Such a clarification
is necessary, as evidenced by the fact that different properties of T-matrices are
concluded from the same physical principles.
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Multiple Scattering
Solution

Abstract: A solution for the two-dimensional multiple-scattering prob-
lem of elastic wave is presented. The solution follows the physical
process envisioned as “ordered scattering” and arrives at a recursive
solution procedure. Alternative forms are then derived. Using a matrix
notation, the solution for the cases of SH waves and P/SV waves re-
mains the same form. This solution is analytically exact and is capable
of handling an arbitrary number of similar and/or dissimilar scatter-
ers. Expressions for exterior and interior wave fields and for the stress
and strain fields are given, and the validity condition of the solution is

discussed.
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Nomenclature

General Conventions

* Matrices are denoted by bold-faced symbols; symbols for column matrices are enclosed by
flower brackets ({}); symbols for rectangular matrices are enclosed by square brackets ([ ).

» When referring to a matrix entry, the entry’s indicial number is to appear as subscript(s)
outside the brackets. This distinguishes the indicial subscript(s) from the subscript(s), if
any, associated with the entire matrix,

» Super-matrices are denoted by the same symbols as those for the corresponding matrices,
but set in a calligraphic font.

Symbols

a;

{Ai}, {Bi}, -
(dij, 6i5)

Hp(z)
{H(r:,6:)}
{H:(-)} {Hs(")}
{Hgy(r:,6:)}
Jn(z)
{J(r:,6:)}
&,k

(K]

(L]

N

R

(Rij)
(T3]
o)
¢,
v,y

Superscripts
(1),(2),+(p)
P,S

88

T

Subscripts
i,j
m,n

The radius of Scatterer #; that is, the radius of the smallest circumscribing
circle of Scatterer ¢ centered at the origin of local coordinate system.

Wave expansion coefficient (column) matrices for Scatterer i

Coordinates of the origin of Scatterer j’s local polar coordinate system
in Scatterer i’s local polar coordinate system.,

Hankel function of the first kind and n-th order.

Singular (Hankel) wave expansion basis of Scatterer 3.

Singular differential wave expansion bases of Scatterer i for SH waves,
Singular differential wave expansion bases of Scatterer i for P/SV waves,
Unit of imaginary number, 7 = /=1,

Bessel function of the first kind and n-th order,

Regular wave expansion basis for Scatterer i, same as {RH (ry,6;)}.
Wave numbers, for longitudinal and shear waves, respectively.

The p-th order scattering kernel of Scatterer 1.

Inductance matrix of Scatterer i on Scatterer j.

Total number of scatterers.

Regular counterpart of a singular function or functional basis. In this
chapter, this always implies replacing Hankel functions of the first kind
by Bessel functions of the first kind at the same order.

Singular coordinate translation matrix,

T-matrix of Scatterer 1.

Complex amplitude of displacement w for SH waves,
Scalar displacement potential and its complex amplitude,

The z-component of vector displacement potential and its complex am-
plitude.

Order of the wave; step number in an repetitive procedure
Characteristic of or pertinent to P and S waves, respectively.
Scattered wave for the single-scatterer problem,

Matrix transposition,

Scatterer identifier,
Indicial number for a matrix entry,
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4-1 Introduction

In general, the multiple scattering is referred to the process in which a scattered
wave is subjected to further scattering by interfaces and/or boundaries,

In this thesis, considerations are restricted to situations in which no physical
boundary present; that is, scatterers are embedded in an infinite medium, which is
referred to as the matriz. Within such a context, there are at least two classes of
situations in which the multiple scattering occurs.

The first class of situations is that the scatterer has some infra-structures, such as
the layered cylindrical elastic scatterer considered in §2-3., Within such a scatterer,
the wave scattered by the inner layer of the scatterer will be further scattered when
it encounters the interface between the outer layer of the scatterer and the matrix.
That is, the multiple scattering may occur in a single-scatterer problern.

The second class is the case when more than one scatterers are situated in
the infinite medium. In such cases, the wave scattered by one scatterer will be
further scattered by other scatterers. This is the situation with which this thesis
is concerned. Unless otherwise noted, this is also the case the phrase “multiple
scattering” in referred to.

In this chapter, a solution for the multiple scattering problem in a general
multiple-scatterer situation is presented. The physical process is envisioned as the
“ordered scattering” in which an observer follows a wave through its course of prop-
agation. Then, following this process the solution is derived as a recursive solution
procedure. Slight variations of the solution process lead to other more convenient
solution forms. The solution thus obtained is analytically exact. It is further shown
that the formal solution remains its form for both cases of SH and P/SV wave
scattering.

In the remaining part of this section, a mathematical description of the problem
is presented, followed by an examination of the physical process of multiple scat-
tering in Section 4-2. The physical process leads to the mathematical structure of
the solution procedure, which is derived in Sections 4-3 and 4-4 for SH and P/SV
wave scattering problems, respectively. Finally, comparisons with other solutions
that bear close resemblances to the present solution are made in Section 4-5.

4-1.1 Problem Specifications

The problem under consideration can be stated as follow:

Consider an arbitrary number of scatterers N situated in a host medium
of infinite extent. The scatterers are not necessarily identical but are all
infinitely long cylinders having known arbitrary cross sections. They are so
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arranged that their azes are parallel to each other, and their locations are
known deterministically. A time-harmonic incident wave propagates in a
plane that is perpendicular to the azes of the scatterers. The steady-state
responses at any location within the medium are sought.

Sets of local and global coordinate systems are defined, as sketched in Fig. 4-1.
The global Cartesian coordinate system, whose coordinates are referred to as (z, y),

Scatterer /

(o5

Scatferer m

Scatterer j

Fig.4-1 Local and global coordinate systems.

is defined in such a way that the XY-plane is perpendicular to the axes of the
scatterers. The problem is two-dimensional in the XY -plane.

One local polar coordinate system is fixed in each scatterer. Local coordinates
are referred to as (r;,6;) for scatterer ¢ (i = 1,2,---,N). The origin of scatterer i's
local coordinate system, which in general is located within the region occupied by
the scatterer, is located at point (X;,Y;) in the global coordinate system. All 8;’s
are measured from the X-axis.

4-1.2 Assumptions

The problem statement given above represents a mathematical model for the
physical situation. Several idealization assumptions lead to such a model. One of
the assumptions is that, as mentioned earlier, there is no physical boundaries, This
idealization eliminates the interactions of waves with physical boundaries. Thus
the phenomena observed are entirely due to the scattering and multiple scattering
effects. The mathematical model is built in a two-dimensional space by assuming
that all scatterers are of infinite length and aligned parallelly with each other, and
waves propagate within the plane normal to the axes of the scatterers.
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These assumptions are essentially in the geometrical aspect of the problem. The
following assumptions in the physical aspect, of the problem are necessary for solving
the problem.

First, it is assumed that the host medium is isotropic linearly elastic; the scat-
terers can be voids, or rigid and isotropic linearly elastic inclusions. In other words,
the wave amplitude is very small compare with the linearity limit of elasticity of
both the host medium and the scatterers,

Second, it is assumed that all relevant material properties are known, These
properties include all mechanical, physical and geometrical properties of both the
host medium and the scatterers that are necessary for solving the problem.

Third, it is assumed that the solution for the single-scatterer problem of every
scatterer in the host medium is known for any time-harmonic incident wave. The
single-scatterer problem is the problem in which a single scatterer is located at the
origin of a coordinate system and is surrounded by the identical host medium of
infinite extent. Each scatterer has an associated single-scatterer problem, and its
solution is assumed to be known; that is, the T-matrix for every scatterer is known.
As discussed in Chapter 3, the definition of a T-matrix specifies a problem, including
its wave expansion bases.

As discussed in Chapter 3, the definition of a T-matrix specifies a problem,
including its wave expansion bases. In the problem statement, it states that the
locations of the scatterers are known. A clearer definition can be made by the
following amendment: the location of a scatterer is represented by the location
of the origin of the coordinate system within which the single-scatterer problem
is solved, and the scatterer is oriented such that the & = 0 direction of its local
coordinate system is in the +X direction of the global coordinate system,

4-2 Physics of Multiple Scattering

In this section, the physical process of multiple scattering is presented. In this
process, it is imagined that an observer follows an incident wave and traverses
through the material as the incident wave encounters and interacts with the scat-
terers in the field.

Although the scope of consideration is restricted to SH waves in two dimensions,
the process described herein is, in principle, applicable to all types of classical waves.
In order to preserve this generality, generic mathematical notation is used. Waves
are denoted by a generic symbol ¢.

Suppose an incident wave ¢'™°, originated at infinity, propagates towards the
scatterers. Upon impinging a scatterer, say Scatterer j, and immediately after-
wards, the incident wave is scattered by Scatterer j as if there were no other scat-
terer present. This scattered wave is called the first order scattered wave, or more
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specifically, the first order scattered wave scattered by Scatterer j to signify the scat-
terer that causes the scattering. Every scatterer in the host medium generates a
first order scattered wave. The excitation source of first order scattering is always
the incident wave, The first order scattered wave scattered by Scatterer j is denoted
as g0,

Figure 4-2 depicts the incident wave and scattering at Scatterer j. The first

Scatterer i

. Higher order
' scattered waves

Incident
Scatterer j

Fig.4-2 Multiple scattering of a single wave between two scatterers.

order scattered wave qb_sl), denoted as wave (1), subsequently impinges a nearby
Scatterer 4, and then a second order scattered wave, denoted as wave (2, is generated.
The scattered wave, scattered by Scatterer i with ¢§-1) as the excitation source,
is called the second order scattered wave, or more specifically, the second order
scattered wave scattered by Scatterer i due to ¢§l), The second order scattered wave

scattered by Scatterer ¢ due to ¢§1) is denoted as ¢:23 This process is

(1°
ue to ¢J.
second order scattering. The term order signifies how many times an incident wave

has encountered and been scattered by individual scatterers, Table 4-1 summarizes
some of the terminologies involved in Fig, 4-2.

In the steady state, all the first order scattered waves, except the one scattered
by Scatterer 7 itself, impinge upon Scatterer i. Figure 4-3 presents a global view
of the first two orders of scattering. Therefore, in the steady state, it is possible to

Table 4-1 Summary of Some Terminologies in Fig, 4-2.

Wave Order Scattered by Notation
Incident — - 4""0
) First order Scatterer j ¢§-1)
. (2)
® Second order Scatterer i ¢‘. due to i)
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sum all the second order waves scattered by Scatterer 7 as
T (1)

i due to ¢(1)
J#z

which is called the (total) second order scattered wave,

Scatterer /

weemee incident
~—mo o first order
second order

Scatterer j

Fig.4-3 The process of second order scattering, All the first order scattered
waves, except the one scattered by Scatterer i itself, impinge onto
Scatterer 7. Each impinging first order wave generates a partial second
order scattered wave.

Higher order scattered waves are generated in the same manner. Specifically, if
,(2) is treated as a single wave, the process depicted in Fig.4-3 also describes the
third order scattering. Generalization to any higher order is straightforward, and

the total p-th order scattered wave scattered by Scatterer i can be found as

gp) Z ¢fpc)lue to ¢(.”") (4—2)
17
The process described above is inherently recursive. Physically, the higher the
order of the scattered wave, the smaller the amplitude, Eventually, it dies out as
the order becomes higher and higher.
The total wave in the host medium is the sum of the incident wave plus all the
orders of the scattered waves;

¢t0tal — ¢inc + L Z ¢(P) (4_3)

i=1 p=1



104

Alternatively, denote
o <]
#i=3 4" (4-4)
p=1

as the total scattered wave scattered by Scatterer 7. Thus, the total wave in the host
medium is
N
¢total = ¢inc + Z¢1 (4_5)
i=1
It is noted that the process described above is applicable only in the steady
state. In a transient state, all the partial waves at all orders are not present in the
medium since scattered waves of different orders will not have been generated at an
arbitrary time.

4-3 Mathematics of Multiple Scattering—SH
Waves

For a two-dimensional SH wave scattering problem, only the out-of-plane dis-
placement w pertains and the governing equation is

1 0%w
2

== — 4-6

Vew 2 o (4-6)
where ¢; = \/p/p is the speed of the shear wave in the host medium, and p and p
are Lameé constant and the density, respectively, of the host medium. In the steady

state, the governing equation becomes the following Helmholtz equation
V2 + k2 =0 (4-7)

where
w=w(z,y,t) = ¢(z,y) et (4_8)

w is the circular frequency of the time-harmonic input, & is the wave number k& =
w/es = wy/p/u,  is the unit of imaginary numbers, i = /=1, and ¢ is the spatial
distribution of the displacement w. Note that ¢ in the above equations is in general
a complex quantity called the complez amplitude of w. The physical displacement w
corresponds to the real part of the product of the spatial factor ¢ and the temporal
factor e ¢,

As shown in Chapter 2, the general solution for eqn. (4-7) in a polar coordinates
is a linear combination of the so-called cylindrical wave functions, or the cylindrical
wave ezpansion basis functions. Each of the wave expansion basis functions is com-
prised of a Bessel function of various kinds (including Hankel functions) of order n
as the radial factor and the simple harmonic e*? as the azimuthal factor, where n
is an integer from —oo to oo.
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Furthermore, the incident wave is expressible, in matrix notation and Scatterer
i's local polar coordinate system, as

$"e = {Ai}T{I (14, 0:)} (4-9)
where {J(r;,6;)} is a column matrix whose n-th row entry (n = —oo,+++,00) is
{J(r:,6:)}n = Jn(kri)etn? (4-10)

and Jp(+) is a Bessel function of the first kind. The matrix {J(r;,6;)} is called the
regular wave expansion basis matriz of Scatterer ¢, and {A;} is the wave expansion
coefficient matrix of the incident wave. Although the incident wave is the same wave
for all scatterers, it is expressed differently in different local coordinate systems.

The notation {A;} does NOT refer to the i-th entry of a column matrix {A}.
Instead, here and henceforth, a bold-faced symbol, along with the appropriate brack-
ets, signifies an entire matrix, such as {A}. A subscript within the brackets is a
modifier to the entire matrix. For this particular case, the subscript i signifies
that the quantity belongs to Scatterer i. For clarity, the following conventions are
adopted: A column matrix is always enclosed by a pair of curl brackets, and a
rectangular/square matrix is enclosed by square brackets. When a specific matrix
entry is referred to, it is denoted by the unbold-faced corresponding symbol, along
with the accompanying super-/sub- scripts, if any, and the brackets, and the indicial
number for the entry is placed outside the right bracket. For example, {A;}, is the
n-th entry (the entry at the n-th row) of column matrix {A4;}.

4-3.1 Waves At Various Orders
First Order Waves

From the description of the physical process in the previous section, it is recog-
nized that the first order scattered waves are the same as the scattered waves in the
corresponding single-scatterer problem for each scatterer.

In a single-scatterer problem, for any incident wave, the scattered wave can be
found from the T-matrix of the scatterer. According to the definition of the T-matrix
in Chapter 3, the scattered wave is expressed in a singular wave expansion basis.
For Scatterer %, the singular wave ezpansion basis matriz is denoted as {H(r;,6;)}
whose n-th row entry is

{H(ri,0:)}n = H (kr;)e (4-11)

where H{(-) is a Hankel function of the first kind.
Denonte the first order scattered wave scattered by Scatterer ¢ as

8" = (Y {H(ri, 0} (4-12)
Then, the T-matrix for Scatterer 7 gives
{ciV} =[ri){4) (4-13)
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Second Order Waves

Without loss of generality, consider first the expression for ¢(2 the

due to ¢{!’
second order scattered wave scattered by Scatterer 5 due to ¢§1).

In general, as discussed in Chapter 2, an outgoing scattered wave is expressible
in the singular wave expansion basis. Thus it can be assumed that

B e 1o g0 = (O YT {E(r5,69)) (4-14)

Then, the fotal second order wave scattered by Scatterer j can be expressed as,
according to eqn. (4-1),

& = f; ({CSY (H (r;,09)}) = {CP Y {H (r;,8;)} (4-15)
i#]
where
{c?y = 2{0‘2’ (4-16)
1#.1

Recall that in the single-scatterer case, a scattered wave is the effect that is
caused by an incident wave, and this causality is embodied in the T-matrix. For a
linear time-invariant system, a causality such as the T-matrix is a characteristic of
the system. It specifies an incident wave expressed in the regular wave expansion
basis as the “cause,” and the corresponding scattered wave expressed in the sin-

gular wave expansion basis as the “effect.” The generation of (,15(2‘)j .
j due to

) is the “effect”, due

o0 can be
rephrased in light of such a “cause-effect” relation: ¢( ) e to g0
to the impingement of the “cause” ¢( ), and this “cause—eﬁ'ect” relation is described
by Scatterer j’s T-matrix [T';].

In a causal relation such as eqn. (4-13), both “cause” and “effect” waves are
expressed in the same coordinate system that is local to the scatterer to which the
T-matrix belongs. This necessitates a coordinate transformation in order to express

( ) in eqn. (4-13) in terms of Scatterer j's local polar coordinates (r;, 6;).

Recall Graf’s addition theorem of Bessel and Hankel functionst? as

HY(@) 2 np= S HO(2)dn(x) < ma (4-17)
me—oo sin
and
COS
Jn(@) Z Jn+m(2) ,,,(z) (4-18)
sin m=—o0

where both n and m are integers. Equation (4-17) is valid only when |Z| > |ze*ie|;
whereas eqn. (4-18) is valid throughout the plane. When Z, z and w are real and
positive, the geometric relations of the parameters are as sketched in Fig. 4-4.
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Fig.4-4 Geometries of Graf's addition theorem,

Typical geometrical relations between two local coordinate systems are sketched
in Fig.4-5. An arbitrary field point P can be located by either (r;,6;) or (r;,6;), and
(dij, 0i5) is the location of o; with respect to the coordinate system originating at o;,
and (dji, 0;:) is the location of o; with respect to the coordinate system originating
at o;. From Fig.4-5,

dij = dj; and 0ij = m+65; (4-19)

J
Scatterer j

Fig.4-5 Geometry for Graf's addition theorem adapted for a multiple-
scattering problem setting.

Comparing the geometries in Figs.4-4 and 4-5, after the following parameter
substitutions

zZ =T w =Ty, Z — dj;, a — 05 — 0, and B — 6; — 6,

eqn. (4-17) can be written as

H(ry) sin M0 — 0i3) = Z ﬁ'lm(dn)Jm(rJ) m(6ji — 65) (4-20)

m=—00

Or, in a more compact form using complex notations,

H,(,')( ) m(o. 6ij) — Z Hr(zl-i)-m d]i)Jm(rj)eim(aji—aj) (4_21)
m=-oo
With somne rearrangement, it can be further reduce to
oo

H'(ll)(ri)einoi = Z ei(n—m)o,-_, Hy(;llm(dij)‘]m("'j)eimoj (4_22)

m=-—00
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where the following relation of Bessel functions!??
Jom(ri) = (=1)"Jm(r;) = eEm7 I () (4-23)

and the relation between 6;; and 6;; in eqns. (4-19) have been used. By a similar
procedure, eqn. (4-18) can be reduced to

[o 0]
Ja(ri)ei® = N eln=mis g, (di) T (r5) et (4-24)

m=-—0oo

Using the matrix notation, eqns. (4-22) and (4-24) can be rewritten as

{H (ri,6:)} = [Ri;|{ I (r5,05)} (4-25)

{J(ri 0:)} = [RRy;){ T (rj, 0;)} (4-26)

where the entries of matrices [R;;] and [RR;;] at the n-th row and the m-th column
are

[Rijlnm = e¥=m0 HE) | (kdyj) (4-27)
[RRij],,, = =™ J,_(kdy;) (4-28)

and both n and m range from —oo to oc. In writing eqns.(4-25) and (4-26),
arguments for Bessel and Hankel functions have been scaled by a factor k, and the
validity condition for eqn. (4-25) is d;; > r;j. Matrices [R;;] and [RR;;] are called
the singular and regular coordinate translation matrices, respectively.

One useful property of [RR;;] can be obtained from the general validity of the
eqn. (4-26). By switching the subscripts i and j, eqn. (4-26) can be written as

{J(rj,65)} = RR;[{J (ri, 0:)} (4-29)
Replacing {J(r;,6;)} on the right-hand side of eqn. (4-29) by the right-hand side of
eqn. (4-26) leads to N
{J(rj,05)} = [RR;i|[RR;]{J(r;,6;)} (4-30)

which implies
[RR;i][RRy| =[I] or [RRj]=[RRy)™ (4-31)

where [I] is the identity matrix. It can be further verified that eqn.(4-31) is a
special case of the following Neumann’s addition theorem!?]

Ba-y)= Y Jpqle) o) (4-32)
q=—00
where z and y are any real numbers, and p and q are integers. Equations (4-31)
and (4-32) become identical for the special case when z = y = kd;;, and 6;; is
immaterial in such a special case.
With Graf’s addition theorem, waves emanating from Scatterer ¢ can be ex-
pressed in terms of Scatterer j's local coordinates. Specifically, substituting
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eqn. (4-25) into eqn. (4-12) gives
&V = (Y R} (I (r5,67)) (4-33)

Note that the “cause” wave as expressed in eqn. (4-33) is in terms of the regular wave
expansion basis, while the “effect” wave in eqn. (4-14) is in terms of the singular
wave expansion basis, and both are expressed in Scatterer j’s local polar coordinate
system. These expressions now conform to the causality embodied in [T'5], the
T-matrix of Scatterer j where the scattering occurs. Thus,

(C2) = [T,)[RyIT(CY} = (TR, (Til{Ai} (4-34)
where eqn. (4-13) has been used.
Denote
(Lij} = [T)(Ris)" (4-35)
and call it the inductance matriz of Scatterer j on Scatterer i, eqn. (4-34) can be

further written as

(€D = [LyH{CP} = [L)ITi{As} (4-36)

Next, recal! that the incident wave is expressed differently in different local
coordinate systems, i.e.,

#me = {A)T{T(ri, 6} = {45} {I (3,6} (4-37)
and since {J(rj,0;)} can be transformed into {J (r,6;)} via Graf’s addition theorem
in eqn. (4-29), the incident wave can also be written as

¢ = {A;} [RR;:[{J(r:,6:)} (4-38)
Comparing qns. (4-37) and (4-38) gives
{4:} = [RR;]" {45} (4-39)
Substituting eqn. (4-39) into eqn. (4-36) gives
(€D} = (Lyl{CP} = [Eyl(TIRRI {As} (4-40)

Therefore, from eqn. (4-16), the coefficient matrix for the total second order
scattered wave scattered by Scatterer § can be written as

N N
(0P} = YIL(CL") = LIEIITIRRA {45} (4-41)
7 i)
Denote N
(K?) = YLl RR) (4-42)
z
then,

(€} = (KP){4;5) (4-43)
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and [K;-z)] is called the second order multiple-scattering kernel matriz of Scatterer
J.

Third Order Waves

From the inherent recursive nature of the multiple scattering process, it is ex-
pected that the solution for a multiple-scatterer problem is also recursive. This is
indeed true, as it can be seen by proceeding to derive the expressions for higher
order waves in the same manner. In fact, the expressions for the third order waves
have already shown clearly such a recursive structure. As the process is the same
as for the second order waves, the derivation is opted to be brief.

Denote the third order scattered wave scattered by Scatterer j due to ¢$2) as

B e o o = (O {H(r3,0))) (4-44)
and ¢,(-2) can be obtained simply by changing the subscript from j to ¢ in eqn. (4-15)
and then being re-expressed in Scatterer j’s local coordinate system via a coordinate
transformation of eqn. (4-25) as

@ = (P {J(r,6)} = {COVT(R){I (r5,65)} (4-45)
Using the T-matrix relation of Scatterer j gives
(€0} = (15 {{CP)T(Ry]} = [TRT(CP) = [L5){CP}  (4-46)

where eqn. (4-35) has been used. Writing eqn. (4-43) for Scatterer i, and substitut-
ing the resulting expression for {C’Ez)} into eqn. (4-46) gives

(€5} = EHOP} = [LylK PN A} = (L4l RRLT( 4} (4-47)

where eqn. (4-39) has been used.
Sum all the third order partial waves emanating from Scatterer j, and denote

) = (CO Y H(r;,07)) (4-48)
then,
(¢} = f:[Li,-l{cS"”} = [K{1{4;} (4-49)
b
where
(&) = itm,-ux?’][mﬁ? (4-50)
i=1
1#]

and (K 5-3)] is the third order multiple-scattering kernel matriz of Scatterer j.
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General p-th Order Waves

Assume the (p — 1)-st order (p > 1) waves scattered by every scatterer has been
found, and denote the total p-th order wave scattered by Scatterer j as

¥ = (CPY(H (r;,0)} (4-51)
Then, it can be shown that
N
(€)=Y lLyl{oP ") = [KP1{4;} (4-52)
%
where N
: (KP) = S IL KPR (4-53)
i=1
i#]

and [K ;-p )] is the p-th order multiple-scattering kernel matrix of Scatterer j.

4-3.2 Solution Structures

In this subsection, expressions obtained thus far are collected and summarized
into several compact and self-contained forms, and their comparative advantages and
disadvantages are observed. The following solutiou structures are self-contained ex-
cept the following common definitions: the singular wave expansion basis { H(r;,6;)}
defined in eqn. (4-11), the inductance matrix [L;;] defined in eqn. (4-35), and the
coordinate translation matrices [R;;] and [RR;;] defined in eqns. (4-27) and (4-28),
respectively. The T-matrix of each scatterer is assumed to be known externally.

Recursive Form I

Observing the first equalities in eqns, (4-41), (4-49) and (4-52), the following
simple recursive form for the wave expansion coeflicient matrices of the total p-th

order scattered wave scattered by Scatterer j (j = 1,2,.--, N) can be obtained
N
(€} = Y [Lyl{cP™) (4-54)
—
i#]

with the initialization condition
1
(C5"} = (Ti){4;) (4-55)
Collecting eqns. (4-15), (4-48) and (4-51), the total wave in the host medium,

according to eqn. (4-3), is

N o
port = g+ 3" S {CPHH(r;,6))) (4-56)

j=1p=1
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This form of the formal solution is the simplest and most straightforward. But
the shortcoming is that the solution obtained is particularized to a specific incident
wave, i.e., a particular set of {A;}.

Recursive Form II

Observing eqn. (4-43) and the last equalities in eqns. (4-49) and (4-52), the fol-
lowing recursive relation for Scatterer j’s multiple-scattering kernel becomes obvious

N
(K = YLy (KRR (for p > 1) (4-57)
e .
i#i
with the following initialization condition
K5V} = [T5) (4-58)
The total wave in the host medium, according to egn. (4-5), is
. N
¢total — ¢II'IC + Z¢]7 (4_59)
ji=1
where
o 4(7)
¢ =Y ¢7 = {C;} {H(r;,0;)} (4-60)
p=1
{C;} = [K;]{A;} (4-61)
LYEDII Y (4-62)
p=1

(K] is called the multiple-scattering kernel matriz' of Scatterer j, and {C},} is the
wave expansion coefficient matrix of the total scattered wave scattered by Scatterer
j.

Equations (4-58), (4-57) and (4-62) comprise the complete solution for the
multiple-scattering kernel matrices. For a given incident wave, eqns, (4-59) through
(4-61) complement to complete the solution,

In this solution form, the process of finding each scatterer’s multiple-scattering
kernel matrix does not require any knowledge of the incident wave, The incident
wave is involved only when the scattered waves are to be calculated for a particular
incident wave. In fact, these scattering kernel matrices characterize the multiple-
scatterer system, just as the T-matrix characterizes a single-scatterer system, Once
these matrices have been obtained, the system’s response to any incident wave can
be readily found by using eqns. (4-59) through (4-61).

! It is sometimes called the multiple scattering T-matriz of Scatterer i in observing the form of
eqn, (4-61). However, to avoid possible confusion with another system characteristic matrix called
T-matriz for an assembly of scatterer, to be introduced in Chapter 5, this name is avoided,
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Implicit Form I

Denote »
{C)}? = 3 (cf") (4-63)
q=1

where, as part of the notational convention in this thesis, the superscript (p) appear-
ing outside the brackets on the left-hand side of eqn. (4-63) represents the partial
sum of all the first p orders of the scattered waves; whereas the superscript (q) ap-
pearing inside the brackets on the right-hand side of eqn. (4-63) represents the g-th
order scattered wave,

Making an exhaustive listing of all the first p orders of the scattered waves found
via Recursive Form I gives

{cPy = f?[mﬂ{c?"”}
i=1

i
(p-1) > (r-2)
{7y =X [Ls){C™)
i=1
i#]
(r-2) > (p-3)
{ij } = Z[L,-,-]{Cip }
‘=
i#j
(€} = [T;){4;) (4-64)
Summing up each side of the above equations respectively gives
N
{C;}P) = [T){A;} + X [Ly){Ci}) (4-65)
i=1
i#j

where eqn. (4-63) has been used.
Since the solution is to converge in theory; that is,

i AP = )4 (-1 = (. -
pll,"go{CJ} P = pll,'g_,{CJ} P70 ={C;} (4-66)
eqn. (4-65) effectively represents the following implicit equation system
N
{Cj} = [T;){A;} + Y _[Ly){Ci} (4-67)
—
i)

and the total wave in the host medium, according to eqn. (4-5), is

N
¢ = ¢ + 3 {C;}T{H(r;,8;)} (4-68)
j=1
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It is noted that eqn.(4-65) can be viewed as an iterative solution procedure of
prediction-correction type for eqn. (4-67).

In an iterative procedure, the choice for the initialization condition, which is also
called the initial guessed solution, does not necessary conform with eqn. (4-64). In
many cases, this extra freedom allows a better choice of initialization condition to
achieve a converged solution in fewer iteration steps. When eqn. (4-64) is used as
the initialization condition, the p-th approximation gives the partial sum of the first
p orders of the scattered waves. However, when the chosen initialization condition is
different from eqn. (4-64), the intermediate solution {C’J-}(P) no longer possess any
physical meaning other than being an approximate solution. l

When eqn. (4-65) is viewed as an iterative procedure for eqn.(4-67), and
compared with eqn. (4-63), it noted that the meanings of the superscript (p) in
eqn. (4-63) appearing outside the brackets are two-fold: the first is, as in eqn. (4-63),
the partial sum of the first p orders of the scattered waves; and the second is, as in
eqn. (4-65), the approximate solution at the p-th iteration,

It must also be noted that the words “recursive” and “iterative” are used for
completely different meanings in this thesis: in a recursive process, the solution
obtained in each step is a portion of the total solution; whereas in an iterative
process, the solution obtained in each step is an approximation of the total solution.

Implicit Form II

Applying a similar procedure to the Recursive Form II gives the following implicit
form for the multiple scattering kernel matrices

N
(K] = [T5] + D [Lij][KG)RRz:]" (4-69)
—t
i#i
and the following associated iterative solution procedure
N
(K = (T3] + 3 (Lyj] (K P D[RR (4-70)
i=1
i#]

For a given incident wave, the total wave in the host medium is, according to
eqn. (4-5),

N
gl = ¢ + 3 {C;)}T {H (r;,6)} (4-71)
j=1
with
{C;} = [K;]{A;} (4-72)

The advantage of this form is the extra freedom to choose the initialization
solution, and that the solution is characteristic of the system which does not depend
on the particularity of the incident wave.
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Supermatrix Form

Define the following supermatrices:

{Ci1} [T1]{ A1}
€)= {032} (A) = [TzlfAz} (4-73)
(n) Tx){Ax)
0 [Lau] -+ [Lm]
o= | e 0 (10
L] oo [Egv-yn] 0
Then, Implicit Form I can be equivalently written as
{c} ={A4} +[c){c} (4-75)
or
(Z - £l{C} = {A} (4-76)

where [Z] is the identity supermatrix. Equation (4-76) is a typical linear equation
system.

The advantage of this form is that there are numerous well-established solution
procedures and even computer program readily available for solving the linear equa-
tion system, which has been subjected to an extremely extensive study in the past
few decades.

It is noted that none of the of the repetitive forms, either recursive of iterative,
of the solution has been shown to have a guaranteed convergence. In such cases, the
computation process has to be monitored closely. This Supermatrix Form can be
directly solved thus avoids such problems in one hand, But on the hand, the solution
obtained must be subjected to a further scrutiny in case the linear equation system
is ill-conditioned.

Finally, it is noted that it is also possible to obtain a similar supermatrix form
for Implicit Form II. However this case is not to be elaborated in this chapter,

4-3.3 Strains and Stresses

Since the out-of-plane w is the only non-vanishing displacement component, only
the components of the shear strain and shear stress involving the z-coordinate exist.
Furthermore, they are simply the sums of respective contributions from all waves in
the medium. Without loss of generality, eqns. (4-59) and (4-60) can be used as the
final form of the solution for ¢*°*2!, In eqn. (4-59), the total wave can be viewed as
the incident wave plus N scattered waves, one emanating from each scatterer,
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For the incident wave, in general, its expression in the global coordinate system is
known, and its contribution to the strains can be readily obtained from the geometry

relation as

. - dopinc . dine
e = i = 28 e = iy = 2 (4-T7)

where '"°’s are the complex amplitudes of shear strain components coatributed by
the incident wave. All other strain components vanish.

For the scattered wave emanating from each scatterer, since it is much easier to
express strains as polar components in each local coordinate system, the procedure
taken here is to express the contributions from each scatterer in polar components
in its own local polar coordinate system, and then transform them into the global
Cartesian coordinate system. The coordinate transformations between a polar and
a Cartesian coordinate systems for displacements, strains and stresses are given in
Appendix 4-A.

Expressions for strain components for a point (z,y) in the global Cartesian
coordinate system can thus be found as

a¢inc N
Yz = Yzz = oz + Z ('Yi rizCOs0; — 7Yi6;z Sin 6;) (4-78)

i=1

6¢inc N
Vyz = Yay = 6y + Z ('Yi iz sin@; + i 6;z COS 0,') (4—79)

i=1

h
. L= o= 108 (4-50)
Yiriz = Br; Yi6;z = r; 06;

are the complex amplitudes of respective shear strain components contributed by
the scattered wave emanating from Scatterer 3.

The local polar coordinates (r;, 6;) are related to the global Cartesian coordinates
(z,y) by the following relations

z = X; + r; cos 6; y=Y; +r;sinb; (4-81)
and
T = \/(a: - Xi)?+ (y-Yi)? (4-82)
( a1 y-Yi
tan™" —— for y>Yiand z#X;
I — X,' Y,
g, ={7+ tan™! %——X: for y<Y;andz# X; (4-83)
Ly for y>Y,and z = X;
| =7/ for y<Yandz=X;

Introduce two column matrices {H(r;,6;)} and {Hg(r;,0;)}, called singular
differential wave ezpansion bases, whose entries at the n-th row are

{Ho(ri, 6} = 2H (Bl

— ! Nainb; -
Ore kH, (kr;)e (4-84)
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1 O{H(r;, 6; i o
(Holri, 0} = = AHEGuln _ By ine (4-85)

1

respectively. Then, eqn. (4-80) can be written as

Yiriz = {Ci} {H(ri,6:)} Yioiz = {Ci}T {Ho(ri,0:)} (4-86)

where eqn. (4-60) has been used.

Therefore, the expressions for the strains in the global Cartesian coordinate
system are, from eqns. (4-78) and (4-79),

inc N
Yoz = Yoz = ‘9;‘:: + Y {C:YT [{H(r:,6:)} cos 6; — {Hp(r:,60;)} sin6;]  (4-87)
=1

inc N
e = vy = 2o S (YT B 00} sind + (Lo B} contl]  (4-8)

i=1

In the event that a global polar coordinate system, whose coordinates are referred
to as (7, 6), has also been built such that § = 0 corresponds to the +X direction and
it shares the same origin as the global Cartesian coordinate system, and the strains
in this coordinate system are desired, it can be found that, for a generic point (r,8)
in the global polar coordinate system,

inc N
7rz=63r + D _{C}" [{H(ri,8:)} cos(6; — 6) — {Ho(rs, 6:)} sin(6; — 6)] (4-89)
i=1

inc N
Yor = a:;g + Z{Ci}T [({H(r,6:)}sin(6; — ) + {Hg(ry,6;)} cos(6; — 6)] (4-90)
i=1

where the global polar coordinates (r,8) are related to the global Cartesian coordi-
nates (z,y) by

z =rcosf y =rsinf (4-91)

which can be further related to the local coordinates (r;,6;) by eqns. (4-81) through
(4-83).
Finally, the calculation of the stress components has become trivial since
Ozz = UYzz Oyz = UYyz (4—92)
and
Orz = UYrz 09z = K62 (4.-93)

All other stress components vanish.
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4-3.4 Discussions

Boundary Conditions

It is well known that a steady-state scattering problem in an infinite domain is a
boundary-value problem for the governing partial differential equation(s). However,
no boundary condition has ever been mentioned in the above exposition of the
multiple-scattering solution. What happened to the boundary conditions?

In a strict sense, an application of a T-matrix relation is a process of applying the
appropriate boundary condition(s), although this is not so obvious in the derivation
process.

Recall that [T;] matrix is obtained by applying the boundary condition(s) at
the perimeter of Scatterer i and solving the associated single-scatterer problem.
Examples of such processes are shown in Chapter 2. In the solution for a multiple-
scatterer problem, at any order p, Graf’s addition theorem is used to transform the
wave emanating from Scatterer j, ;p ) , into Scatterer i’s local coordinate system.
The T-matrix relation for Scatterer 7 is then applied to obtain the wave expan-
sion coefficient matrix of the resulting scattered wave. This effectively applies the
boundary condition(s) at the perimeter of Scatterer i.

This is to say, as soon as the T-matrix is known, the boundary conditions have
been taken care of. In fact, the disappearance of explicitly fixing the boundary
conditions in the solution process is considered as one of the greatest advantages of
the present formulation over many others. This formulation has exploited the fact
that the T-matrix essentially contains all the mechanics of the scatterer when only
the scattered waves are concerned.

In complementary to the present formulation, a similar multiple-scatterer prob-
lem is solved by Twersky(® via the “ordered scattering” approach but the problem
is treated strictly as a boundary-value problem. The similarity and the differences
between the present formulation and that of Twersky’s will be discussed in a greater
detail later in §4-5.

Validity Condition

To facilitate discussions, it might be useful to define the territory of a scatterer.
The territory of a scatterer is the smallest circle that is centered at the origin of
the scatterer’s local coordinate system and circumscribes the scatterer, as sketched
in Fig.4-6. The radius of the circumscribing circle, such as ¢; and e; in Fig.4-6,
is defined as the radius of the scatterer. These definitions are generalized from the
case of circular scatterers.

Graf’s addition theorem requires d;; > ri when the wave expansion basis
{H(ri,6;)} is expressed in terms of Scatterer j's local coordinates (r;,8;). That
is, the transformed expression is valid only within a circular region of radius d;;
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N
-

Fig.4-6 Territories and radii of two neighboring scatterers. This is an example
of overlapping territories that satisfy the validity condition,

centered at the origin of Scatterer j's local polar coordinate system, as illustrated
by the shaded circular region, excluding the circle, in Fig. 4-7.

Scatterer i

~——— —_—

Fig. 4-7 The region shown as the shaded circular region, excluding the circle,

is the validity region in which expression for wave expansion basis
{H(r;,0;)} in terms of (r;,0;) is valid.

In the solution process, after the coordinate transformation, the T-matrix rela-
tion of Scatterer j is then applied to obtain the resulting scattered wave scattered by
Scatterer j. As applying the T-matrix relation is equivalently applying the bound-
ary conditions at the interface between the scatterer and the matrix; that is, 7; runs
through the entire perimeter of Scatterer j, the restriction of Graf’s addition theo-
rem requires that the entire Scatterer j remains within this shaded validity region
in Fig. 4-7.

Since a similar restriction exists mutually between every pair of scatterers, the



120

overall validity condition for the present formal solution can be stated as: for every
scatterer, its territory should not enclose the origin of any other scatterer’s local
coordinate system. For circular scatterers, this condition is naturally satisfied, But
for scatterers of general cross-sectional geometries, this condition must be strictly
observed.

In some literaturel*%), the validity condition is often stated as: the smallest
circles that circumscribe individual scatterers (territories) should not overlap. This
is simply an overstatement. For example, in Fig. 4-6 and assuming that there is no
any other scatterers in the field, the territories of the two scatterers overlap, but
they still satisfy the restriction condition since each territory does not enclose the
other’s origin. Also noted, in some literaturel®7), no such restriction was mentioned
at all.

Interior Fields

The present formal solution assumes that every scatterer is composed of linearly
elastic material(s), and the material properties are known. This allows the scatterers
to have infra-structures such as cores, liners, etc. Therefore the wave fields inside a
scatterer depends on the infra-structures of the scatterer and no general expression
can be written. On the other hand, as long as the single-scatterer solution gives the
interior fields, the interior fields in the multiple-scatterer setting can be obtained in
a straightforward manner.

To illustrate the procedure, assume, as an example, that Scatterer 7 is homoge-
neous, and the single-scatterer solution gives the interior wave field as

ss interior _ {Bi_merior}T{J(,’., 0)} (4_94)
1 i LR

Since the system is linear, the wave expansion coefficients of the interior wave can
be related to the wave expansion coefficients of the incident wave by a characteristic
matrix such that

{Birenor} = [Fy){A:} (4-95)
The characteristic matrix [F;] is conceptually similar to the T-matrix and generally
exist for a linear system, although the determination of such a matrix is beyond
the scope of the multiple-scatterer solution. The wave expansion coefficients of the
interior wave can be further related to the scattered wave as

{Byer'} = [Fi)[T:] " {B:} (4-96)

where the T-matrix relation has been used,

For the multiple-scatterer problem under consideration, the interior wave field
inside Scatterer 7 is still expressible by the same wave expansion basis as in the
single-scatterer case in eqn.(4-94), and its coefficient matrix is denoted as {D;};
that is,
interior _ {Di}T{J("'i,ai)} (4_97)

]
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Then, since matrix [F;][T;]™! is the characteristic m..trix that relates the wave ex-
pansion coefficients of the interior wave and the scattered wave, and in the multiple-
scatterer problem, the coefficients of the scattered wave is {C;}, which can be ob-
tained either directly or from the multiple scattering kernel matrix via eqn. (4-61),
it follows that

{D;} = [Fi)[T:]"{C:} = [Fi][T:] " [K]{ Ai} (4-98)

In fact, as long as the single-scatterer problem has been fully solved, for any inte-
rior field of interest, the characteristic matrix that relates the wave expansion coef-
ficients of the wave of interest and the scattered wave, such as the [G;] = [F;][T;])™?
matrix, can be found directly without going through the matrix inversion, and be
treated as a single matrix.

4-4 Formal Mathematics of Multiple Scattering
—P/SV Waves

The case involving P and SV waves is much more complicated than the SH wave
case due to mode conversions occurring at the material discontinuities and physical
boundaries of the problem. For a two dimensional problem, coupling only occurs
between P waves and the type of S waves that are polarized in the plane of the
wave’s propagation, known as SV waves. In general, at every interface/boundary,
every impinging wave, containing either a purely P wave or a purely SV wave or the
combined, generates two scattered waves, one P wave and one SV wave.

Despite this complication, the essence of the multiple scattering process in a
multiple-scatterer situation as detailed in §4-2 is still the same, with the understand-
ing that each imaginary wave depicted therein actually contains two components:
one P wave and one SV wave.

Having explored the mathematical structure of the simpler SH wave case, this
section deals with this more complicated case, and it is shown that, with some
extensions and modifications, all the solution forms presented in the previous section
still hold.

4-4.1 Basic Equations and Single-Scatterer Case

In terms of displacement potentials, the governing equations for elastic waves

are
1 89 1 OH
29 = ——— 2 = —_—— -
Ve = 35 ViH = 550 (4-99)
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where ¢, and ¢, are the speeds of the longitudinal and shear waves, respectively,

A42u 7
= / S i = 4-100
Cp P C ( )

A and p are Lame constants, p is the density, of the host medium, ® is the scalar
displacement potential, and H is the vector displacement potential which must satisfy
an additional gauge condition

V-H=0 (4-101)
The relation between the displacement « and the displacement potentials is
u=V®é+4+VxH (4-102)

As discussed in Chapter 2, for a two-dimensional plane-strain problem, such
as a P/SV wave scattering problem, in the zy-plane, only the scalar displacement
potential ® and the z-component of the vector displacement potential H, denoted
as P, contribute to the wave fields. The P and SV waves are solely associated with
® and ¥, respectively. In the steady state, the governing equations can be reduced
to the following pair of Helmholtz equations

V26 + K24 =0 Vi + k%) =0 (4-103)
where o and 1) are the complex amplitudes of ® and ¥, respectively, i.e.,
® = p(z, y)e it ¥ = (z, y)e (4-104)

and « and k are wave numbers of the P and SV waves in the medium, respectively,
whose relations with the circular frequency w are

=Y o /P =Y _, /2 -
H.—cp w o and k& o w\/; (4-105)

As shown in Chapter 2, the complete general solution for the scattered waves in a
2-D problem using a polar coordinate system is a linear combination of the so-called
wave functions or the wave expansion basis functions. For different types of waves,
these wave expansion bases are different since the wave numbers are different. The
incident waves are expressible as

o = (AT {J (w73, 6:)} "¢ = {a}T{J (k;mi, 6:)} (4-106)

where {J(x;7i,0;)} and {J(k;ri,6;)} are called the reqular wave expansion bases for
the P and SV waves, respectively, in Scatterer i’s local polar coordinate system, and
their elements at the n-th row are

{J(5;73,6:) }n = Jp(rr;)ein {J(k;7i,0:)}n = Jn(kr;)ei™o (4-107)

respectively. For the single-scatterer problem associated with Scatterer i, the scat-
tered waves are expressible as

03* = {Bi}T{H (k;7:,6;)} {* = {b}T{H (k;7:,6;)} (4-108)



123

where {H (k;7;,0;)} and {H (k;r;,6;)} are called the singular wave ezpansion bases
for the P and SV waves, respectively, in Scatterer i's local polar coordinate system,
and their elements at the n-th row are

H(k;7i,0i; ) }n = HY (kri)eind {H(k;ri,0:)}n = HY (kry)e™®  (4-109
n n

respectively.

It is noted that, as part of the notational conventions in this thesis, an upper
case denomination of a wave expansion coefficient matrix such as {A;} signifies a P
wave, whereas a lower case denomination such as {a;} signifies an SV wave.

For a single-scatterer P/SV wave scattering problem, the scattered waves are
completely related to the incident waves by a set of four T-matrices, representing
the scattered P waves due to a P incident wave, the scattered P wave due to an S
incident wave, the scattered S wave due to a P incident wave and the scattered S
wave due to an S incident wave, respectively. These T-matrices are denoted as [T'*7),
[T5F), [T*°] and [T°°), respectively, where the first superscript signifies the type
of the incident wave and the second superscript signifies the type of the scattered
waves. Furthermore, the T'-supermatriz of Scatterer ¢ can be constructed as

[TFF] (T3] ]

=] e e

(4-110)

and similarly the wave ezpansion coefficient supermatrices as

y={ B an 3= Al i}
{8} { (b} } d {3} { {ag) } (4-111)

Then, the T-matrix relation for the case of P/SV wave scattering for Scatterer i can
be written as

{B:} = [T {A:} (4-112)

This relation resembles in form the T-matrix relation for the case of SH wave scat-
tering in eqn. (4-13).

Note that a wave expansion coefficient supermatrix is nothing more than a con-
catenation of the wave expansion coefficient matrices for a pair of P and SV waves
and is used for formal simplicity. The convention for the concatenation is to place
the P wave’s expansion coefficient matrix first (on the top) and followed by the
SV wave's. As such, when the wave expansion coefficient supermatrix for a pair
of P and SV waves is known, the associated displacement potentials ¢ and % can
be computed by splitting the supermatrix into two halves and performing an inner
product for each half with the corresponding wave expansion basis.
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4-4.2 Solution Structure of Multiple Scattering

Since the physical process of the multiple scattering for the multiple-scatterer
setting described in §4-2 remains valid for the case of P/SV wave scattering, it is
expected that the solution structures will be the same. The analogy can be readily
found by finding the corresponding expressions for any of the second order scattered
wave.

Without lost of generality, first, the expressions for the second order scattered
waves scattered by Scatterer j due to the first order scattered waves scattered by
Scatterer i are sought.

The waves that cause this scattering are

) = (BT {(H (s;7:,0:)) (4-113)
¥ = (b} {H(k;1,6:)) (4-114)

In performing the coordinate transformation to express the wave expansion bases
{H (r;7i,0;)} and {H (k;r;,6;)} in Scatterer j’s local coordinate system, it is noted
that, in writing eqns. (4-25) and (4-26), the geometric distances shown in Fig. 4-5
are scaled by a factor k, the only wave number in the SH wave case. For the two
different wave numbers « and k in P/SV case, relations equivalent to eqns. (4-25)
and (4-26) can be written as

{H (ri,6:;5)} = [Rij(x){J (5;75,05)} (4-115)
{H (k;7i,0:)} = [Rij(k)[{J (k;75,65)} (4-116)
{J(k;74,6:)} = [RRy;(5)}{ T (5375, 05)} (4-117)
{J(k;7i,6:)} = [RRy;(K)){T (K;75,065)} (4-118)

where the entries at the n-th row and the m-th column of the singular coordinate
translation matrices [R;;(x)] and [R;;(k)] are
[Riy (%)lnm = elln=m)s; H{Y (rdyj) (4-119)
[Rij (k)] = €5P~™053 HED (kdi;) (4-120)
and the entries of regular coordinate translation matrices [RR;;(x)] and [RR;;(k))
are identical to those of [R;j(x)] and [R;j(k)], respectively, except that Hankel
functions of the first kind are replaced by Bessel functions of the first kind at the

same order. Thus, performing the coordinate transformation, eqns. (4-113) and
(4-114) can be rewritten as

#Y = (RN (Bi}) (I (m;rs,6)} (4-121)
O = (R M7 8)" (05,05 ) (4-122)

Denote the wave expansion coefficient supermatrix for these causing waves as
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{2}, then,

v T :
where
[9"%;] = [ [R%(h)] [R,:([g)] ] (4-124)

Thus, as implied by eqn. (4-112), the wave expansion coefficient supermatrix for the
second order scattered waves scattered by Scatterer j due to the first order scattered

waves scattered by Scatterer i, denoted as {Q:ﬁ)}, is related to {9[;2) } as
(€} = [Z,{AP} = [%,)[R:)7 (B} (4-125)
Or
(€} = [T;)BR417 (€} = [T,](0%) (T2} (4-126)

where a notational convention {¢B;} = {CSI)} and the T-supermatrix relation for
Scatterer 7 in eqn. (4-112) have been used. Performing another coordinate transfor-
mation to relate {2;} to {¥(;} leads to

(€} = (TR (€} = (L)1 [TARRT () (4-127)
Define the inductance supermatriz of Scatterer ¢z on Scatterer j as

[P R (R)] (T7°)[Rii ()]

] = , AT =
[£45] = [F][R4) [T57)[Ri; (k)T (T35 Ris (k)T

(4-128)

then, eqn. (4-127) becomes
(€} = 251} = (L4l TARRL (25 (4-129)
which resembles eqn. (4-40) in form.

Summing up the contributions from all scatterers, except Scatterer j itself, for
the total second order scattered waves scattered by Scatterer j gives

N N
(€} = YIeuHe} = ILoITARR,IT (W) = RPN} (4-130)

i=1 i=1

i#j i#j
where v
(RP] = S(L,)IRM)mR)T (4-131)
%
and
(&) = %] (4-132)

[ﬁ?)] is the second order multiple-scattering kernel supermatriz of Scatterer j.
Expressions for higher order waves can be obtained by following the same proce-

dure and can be verified that they are all identical in form to those for the SH wave

case in the previous section, except that matrices are replaced by the corresponding
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Table 4-2 Analogy Between the Formulations for P/SV Wave Scatter-
ing and SH Wave Scattering Problems

SH Wave Formulation P/SV Wave Formulation
(45) ) = { o) }
{Ci} {€}= { {{Zj}} }
| e[
(R, PRy = [[R"’(',(")] [Rif(k)]]
(RE] RR,] = [[RR}',"(“” — (k]]
(- [l Er

(Cy) = lK;){45) (€)) = 18,12}

supermatrices. For brevity, those derivations are not to be repeated. The analogy
between the formulations for P/SV wave case and SH wave case is summarized in
Table 4-2.

The total waves in the host medium can be written as, according to -eqn. (4-5),

. N N

P = 4 Yy = "+ S ACHTH (iry 0)) (4-133)
j=1 j=1
) N ] N

wtotal = ¢|nc + Z W = ,lpmc + Z{Cj}T{H(k; T'j,oj)} (4_134)
j=1 j=1

where {C;} and {c;} are obtained from the following wave expansion coefficient
supermatrix

. 0 @
@={ ) -Sem-2{ )} ew
{cJ} p=1 }
which, when necessary, can be related to the multiple scattering kernel supermatrix
[R] as
(€} =(&){A;}  and  {€P) = (KP){A;} (4-136)

and

(/] = i[ﬁﬁ-”’] (4-137)
p=1
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Corresponding to the solution structures in the SH wave case, the following
solution structures can be obtained, for either the wave expansion coefficient super-
matrices or the multiple scattering kenncl supermatrices:

Recursive Form 1

(€} = i[::.-jl{e:f—"'”} (4-138)
i
with
(€} = [T;){2;} (4-139)
Recursive Form I
g =f:[£ijllﬁ§”"’1[mmjilT (4-140)
=
with
(8] = (%)) (4-141)
Implicit Form I
N
{€;} = [F;]{U;} + Z['Sij]T{¢i} (4-142)
=
Implicit Form I
N
[R] = [T5] + Z[ﬁij][ﬁi][?ﬁmji]T (4-143)
7
Supermatrix Form
[T - c){c} = {A} (4-144)
where
{€1} [F1]){R:}
€)= {C:z} (A} = [‘32]{912} (4-145)

(€n) (Tn]{2n)
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0 [£€g] e (€]
R s (4-146)
(€iv] o [Ew-nn] O

4-4.3 Displacements, Strains and Stresses

As discussed in Chapter 2, a two-dimensional problem involving P and SV waves
is a plain-strain problem, and the displacements, strains and stresses are expressible
in terms of the €-functions defined in Appendix 2-C of Chapter 2.

From the formal solution in eqns. (4-133) and (4-134), the total wave field con-
sists of the incident waves plus N pairs of scattered waves, with one pair emanating
from each scatterer. Each pair consists of one P wave and one SV wave and their
wave expansion coefficient matrices are {C;} and {c;}, respectively, as expressed in
eqns. (4-135) and (4-136). As the system is linear, the total displacements, strains
and stresses are simply the sums of the respective contributions from each wave.

For the incident waves, in general their expressions are known, and their contri-
butions to the displacements, strains and stresses can be directly written as, from
the relation between the displacements, strains and stresses and the displacement
potentials in Appendix 2-B in Chapter 2,

. 3(Pinc 3¢inc
inc _ _ _

U = - 3y (4-147)
. inc inc

yine = 007 O (4-148)

y Oy oz
inc _ 32(pi"° a¢inc

€% = 5a? "~ Bty (4-149)
gine — 523(5; + gf;: (4-150)
ot = —ArZpi" + 24 ( aZfznc - gf;:) (4-152)
o = _\kZpi"C 4 2y (azzi:c . gf“;‘;) (4-153)
oint = —\k2pinc (4-154)
7ine = 4 (2‘?:;";: + 3;/2 - a;/: :c) (4-155)

where the quantities on the left-hand sides are the complez amplitudes of the cor-
responding physical quantities, and the superscript “inc” denotes the contributions
from the incident waves.
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Introduce the following set of singular differential wave ezpansion basis matrices
{an(ritoi)} with {Hfﬂ(ri:ei)}n = egqn(ri)emo‘ (4"156)

where £ ranges from 1 to 8 and 7 ranges from 1 to 2, such that the subscripts of
these differential wave expansion bases correspond to the first two subscripts of their
respective E-functions.

Then, for any point (z,y) in the global Cartesian coordinate system, the contri-
butions to the displacements, strains and stresses from each pair of scattered waves
can be expressed in each scatterers’s local polar coordinate system. For Scatterer %,
they are

wire = - [(COT BN (o 00} + (™ (Hnalra8))] (ae150)
uio, = = [{C {(Hu(rs, 00} + () (Ha(ry6))]  (-158)
Eirr = % [{Ci}T{HSI(Ti;oi)} +{e} {Hse(ri,6)}]  (4-159)
Eigio, = % {CiY {Hai(ri, 8} + {e:i}T {Hea(ri, 6:)}] (4-160)
Wt = 3 [(COT (Hu(, 00} + (T Hara0))] (a6
oiris = o [{CHTHu(ra 00} + () (B, 0)]  (a-162)
igi6; = 3—2‘ [{Ci}T{Hﬁ(Ti,ei)} +{ei}" {Han(ri, 6} (4-163)
s = 2 [(CUT (Hn(rs00) + ()™ (Haa(r0)]  (a-164
Tirse; = .fg [(CH (Haa(ri, 00} + (e (Haa(ri,00)]  (4-165)

where the relations between (z,y) and (ry,6;) are given in eqns. (4-81) through
(4-83).

Using the coordinate transformation relation between a polar and a Carte-
sian coordinate system given in Appendix 4-A to transform all the expressions in
eqns. (4-157) through (4-165) into the global Cartesian coordinate system, the total
displacement, strains and stresses can be expressed as the

N
uz = ul" Z (uir; cos6; — u;g, sinb;) (4-166)
i=1
' N
uy = u,' + Z (Uir, sinb; + u; g, cos6;) (4-167)
i=1
N
€2z = €35 + 9 Eiryr; €082 0; — Lo, g 5in 26; + Eig,6; Sin® 6; (4-168)
i=l
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Eyy = Ep + Zfzr.r. sin® 6; + §7ir,6; $in 20; + €:5,0, c0s” 0; (4-169)
t=1
72;;: + Z [(€irir; — €i0j0;) 5in 26; + Yir;6; cOS 26] (4-170)

Ozz = OIS 4 Z (a, rirs €OS% 0; — O r,0, Sin 26; + 04,4, in’ 0i) (4-171)
i=1
N

Oyy = '“° + Z (Uznr sin® 8; + 0,6, 5in 26; + 04,9, cos* b; ) (4-172)

N

Ozz = Ulzr;c + Z Oizz (4-173)
i—l

oine 4 Z [3 (@iriri = 0i0,0,) Sin20; + Oirig, cos 26;] (4-174)

In the event that a global polar coordinate system, whose coordinates are referred
to as (r,0), is also define such that § = 0 corresponds to the +z direction and it
shares the same origin as the global Cartesian coordinate system, it can be found
that the total displacements, strains and stresses in this coordinate system for a
generic field point (r, ) are

mc ¢mc .

Ur = ar + 90 + ; ['Uir,- 005(0;' —_ 0) — Ujg; Sln(o,' - 0)] (4—175)
3 6(pinc awinc N )

W= " "o T > [Un‘ ri 8in(0; — 6) + uig, cos(d; — 0)] (4-176)

i=1
_ athinc aZ,lpinc B 3¢inc
Err = 87'2 r0ro0 206

+ Z [€:riri cos(8: — 8) — 4¥iria, sin2(6; — 6) + eigy0, sin*(6; ~6)] (4-177)

32 _mc a(pmc 32¢'"° { )wmc
€0 = 2562 ¥ 7ar  rord6 | r°00

N
+ Z [Ei riTi sin2(0i - 9) + ';"Yir.ﬂ; sin 2(0,‘ - 0) + €i6,6; COS2(0,' - 9)] (4—178)
i=1
3290"“: a(pinc 62’41"": 32'([)"“: ¢mc
e = 2r6r80 -2 r200  0Or? + 72002 + rOr

N
+ 3 [(€irir — €:0,0,) 5in 2(6: = 6) + iryo, cos 2(6 - 0)] (4-179)

=1
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. 82pinc  H2yinc a¢inc
o _)\,.2,inc P v
Orr = ~ARTPT 4 2u ( a2 75ro6 r2ae)

N
+ Y [Giriri c0s?(6; — 6) = Gir0; sin2(6: — 6) + ;0,0 sin(6; — 6)] (4-180)

i=1

) §2pinc Hpinc 32¢inc 3¢inc
— )\ 42, qinC L4 L -

Ogs = — A" + 2 (,.2392 tar Tdrdd = r206

N
+ Z [a,- riri sin®(6; — 8) + 0y .6, sin 2(6; — ) + 06,6, c0s*(6; — 0)] (4-181)

i=1

N
azz = _A,CZCPIHC + z 0'1 zz (4_182)
i=1

aleinc 6(,0““: 62¢inc 02¢inc 3¢i"°
oo = H (21*261‘60 =2 r200  or? + 7200? + TOr;

N
+ 3 [3 (Girirs — Gi0:0,) 50 2(6; — 0) + Giryp, cOs2(8; — )] (4-183)

i=1

4-5 Comparison with Other Formalisms and

Concluding Remarks

In the past few decades, several multiple-scatterer formulations have been de-
veloped, and all lead to the ezact solution.

The idea of “ordered scattering” is probably due to Twersky (3] when a multiple-
scatterer solution was given for scalar wave fields such as acoustic waves. Extension
to the elastic wave was followed up by Chengt®.

In this formulation, the multiple-scatterer problem is mathematically decom-
posed into different orders from the “boundary-value problem” point of view. In
each order, the wave that excites one scatterer and the scattered wave due to that
excitation form a boundary-values problem which is in turn solved. In this approach,
the boundary value problems must be solved for every order of the scattering, and
the solutions preserted in both [3] and [8] are particularized to the case of identi-
cal rigid circular cylindrical scatterers subjected to a planar incident wave. Although
the term “order” was not clearly defined or explained in [3], it essentially has the
same meaning as the present formulation.

Compared with the present formulation, the formulation in [3] lacks the insight
of the physical happenings at every order.

Another multiple-scatterer formulation that bears a close resemblance to the
present one was developed by Varadan, Varadan and Pao!¥). This formulation
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represents a different interpretation of the physical process of multiple scattering
and yet gives the same solution as Implicit Form I.

The basic idea underlies [4] can be summarized as following. In a single-
scatterer case, the scatterer is ezcited by the incident wave, and the scattered wave
is then generated. The total wave in the field is the sum of the incident wave and
the scattered wave. The coefficient matrices of the incident and the scattered waves
are related by the T-matrix. In the multiple-scatterer case, each scatterer is ezcited
by the incident wave plus the waves scattered by all other scatterers in the field. As
such, the total wave in the field is the sum of the exciting wave and the scattered
wave, from the point of view of any individual scatterer, and more importantly, the
coefficient matrices of the exciting and the scattered waves are related by the same
T-matrix of the scatterer in question. The analysis arrives at the same result as
eqn. (4-67).

As the identical results are obtained both by the present formulation and that in
[4], they can be regarded as complementary to each other. The present formulation
gives a few more alternatives of obtaining the final result. Furthermore, the present
formulation make it possible to track the detailed physics at each order of scattering.
The detailed anatomy of the orders of scattering can be useful in the process of
devising an approximate solution or investigating the influence of one scatterer on
another.

In the past, the approach used in [4] and the approach of “ordered scattering”
(or “orders of scattering”, as sometimes being referred to in the literature) have been
regarded as two different approaches. The present formulation not only bridges the
two approaches, but also shows that results obtained are indeed identical, and the
approach in [4] is one of the approaches to the final solution.

Not long after the so-called T-matrix appioach, an integral equation approach
for solving scattering problems, was proposed by Waterman® in 1969, Peterson
and Strém% applied the approach to some multiple-scatterer problems in 1974,
A two-scatterer problem is first solved by the T-matrix approach, which gives the
total T-matrix for the assemblage. From this total T-matrix, contributions from
each scatterer are then identified and interpreted in a way that is similar to the
“orders of scattering” in the present formulation. Extension to the case of arbitrary
number of scatterers then follows, and the explicit result is given only for the case
of 3 scatterers, which is already quite mathematically involved.

Another approach was used by Bose and Mall'}}2, In this approach, all the
wave fields are expressed in every scatterer’s local coordinate system, and the direct
application of the boundary conditions to the perimeter of every scatterer yields
a system of equations for the wave expansion coefficients which is then solved to
obtain the final results. This approach is purely mathematical.

The limitation which makes the multiple-scattering solutions in [3], [10] and
[11, 12] difficult to extend to large numbers and dissimilar scatterers is the fact
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that some kind of boundary value problems have to be solved, either at every order
of scattering as in [31], or for the entire assemblage as in [10] and [11, 12], In
comparison, one of the clear advantages of the present formulation and of [4] is
that the solution for the single-scatterer problem and the solution for the multiple-
scatterer problem are cleanly separated as two problems. The use of the T-matrix
notation lifts the burden of carrying out the mathematical manipulations in order
to satisfy the boundary conditions, thus makes the formulation concise and yet
versatile.

With the concept of the T-matrix, the present formulation can even be extended
to consider abstract scatterers which may not be easily represented by a simple
set of boundary conditions, as demonstrated by the developments in Chapter 6.
This is the reason the current formulation is called a formal solution; it is not
a complete solution without the single-scatterer solution; yet it remains the same
form for different scatterers.

Another demonstrated advantage of the present formulation is that the solution
forms remain unchanged for both the SH wave case and P/SV wave case. This
greatly eases the implementation of the solution.
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Appendix

4-A Coordinate Transformation for

Displacements, Stresses and Strains

Consider first a general coordinate transformation between two Cartesian coordinate
systems Ozyz and Oz'y’'z’', The coordinate system Oz'y'z' is generated by rotating the
Ozyz frame about the z axis counterclockwise by an angle a.

It can be found that such a coordinate transformation is represented by the following
coordinate transformation matrix [a):

cosa —sina 0
[@)=] sina cosa 0 and [o] ! =[a]T (4-A.1)
0 0 1

such that any vector {v} in the Ozyz is transformed into {v'} in in the Oz'y'z' coordinate
system by

{v}=[a]{v'} and {v'}=[a]" {v} (4-A.2)
In such a context, a transformation means the relation between different expressions for the
same physical quantity (vector). It can also be found that any tensor of second rank [t] ,
such as stress and strain tensors, in the Ozyz frame is transformed into [t'] in the Oz'y'z’
frame according to

[t] = [a]it)l]" and [t = [e)"[t][c] (4-A.3)

Next, consider the coordinate transformation for displacements, stresses and strains

between a polar coordinate system and a Cartesian coordinate system, whose coordinates
are denoted as (r,6) and (z,y), respectively. Assume the two coordinate systems shares the
same origin, and 6 = 0 is along the +z direction, as sketched in Fig.4-8.

Fig.4-8 Transformation between a Cartesian coordinate system and a polar
coordinate system.

By definition, in a Cartesian coordinate system, the components of a displacement
vector, u;, u, and u., represent the displacements at a point along the z, y and z axes,
respectively. In a polar coordinate system, the displacement components u,, ug and u, are
displacements along the radial, azimuthal and the z directions, respectively.

Note that the coordinate system is only referred for its directions in the definition for
the displacement vector. The same is true for the definitions of the stress and the strain
tensors,

Also note that polar coordinate system is a curvillinear coordinate system; that is, at
every point (r,8), unit vectors for each coordinate, such as e, and ey in Fig. 4-8 represent-
ing the radial and the azimuthal directions, respectively, are perpendicular to each other.
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When only the directions of the coordinates are concerned, in fact, the directions of the unit
vectors of the polar coordinate system at point (r,8) are the same as those of a Cartesian
coordinate system, denoted as Oz'y’z’ in Fig.4-8, which is formed by rotating the Ozyz
frame counterclockwise by an angle 8, the azimuthal coordinate. Furthermore, the transfor-
mations between the Cartesian coordinate system Ozyz and the polar coordinate system for
the point (r,0) is represented by the matrix given in eqn. (4-A.1), except that « is replaced
by 6.

Therefor, the following coordinate transformation relations for displacement, stresses
and strains can be obtained, in analogy to eqns. (4-A.2) and (4-A.3):

Uz (cosf —sind 0 | u,
uy ¢ = |siné cos® 0 ug (4-A.4)
Uy 0 0 1 U
Ozz Tzy Tzz ] [ cos§ —sinf 0 (a,,. Trg Trz cosf sinf 0
Tyz Oyy Ty: | = | sin@ cos@ 0O Tor Opg To: | | —sinf cosfd 0 (4-A.5)
Tzz Tzy Ozz | | 0 0 1 _j | Tzr 720 Ozz 0 0 1
Exz Ezy eu- [ cosf —sinf O | (e" Erg Erz cosf sinf 0
Eyr Eyy Eyz | = | sin@ cos@ O | |eo, €99 €6 | | —Sinf cosb O (4-A.6)
Ezz Ezy E:z:z | 0 0 1| |€zrez€z 0 0 1

The expanded form of these transformations are

Uy = U, cOSO — upsinf (4-A.7)

uy = U, Sin@ + ug cosf (4-A.8)

Ozz = Opp COS> 0 — Tpg 5in 20 + ggg sin® 0 (4-A.9)

Oyy = OrpSin® 8 + 7, 5in 26 + 049 cos® 6 (4-A.10)

022 =03 (4-A.11)

Tay = Tyz = § (Orr — Tog) Sin 20 + 74 cos 20 (4-A.12)
Te: = Tex = Tp2 COSO — 79, sinf (4-A13)
Tyz = Tzy = TrzSiné 4 75, cosf (4-A.14)
€2z = Epr COS° 0 — £,6 5in 20 + €49 sin? @ (4-A.15)

Eyy = ErrSin® 6 + £,9 5in 26 + £4g cos’ 0 (4-A.16)

€22 = €2z (4-A.17)

Ezy = Eyz = 5 (Err — €6) 5in 20 + £,4 cos 26 (4-A.18)
Ezz = Ezx = EpzCOSH — €9 5in b (4-A.19)
Ey: = E:y = Epz SN0 + €5, cos b (4-A.20)

For strains, sometimes engineering strains are used. These two set of strains differ at the
shear strain components, with the engineering shear strains being twice the corresponding
shear strain components of the tensor strain. Conventionally, the engineering shear strains
are denoted by v while the components of the strain tensor are denoted as &, Engineering
strain is not a tensor and thus cannot be transformed using the relation is eqn. (4-A.6). But
the transformation can be derived from the transform.ation relation for the strain tensor as
following:

Ezz = Er;r €OS” 0 — Ly55in20 + £gpsin’ 0 (4-A.21)
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Eyy = ErrSin® 0 + 3yrg 5in 20 + £gg cos? 6 (4-A.22)

€7z = €22 (4-A.23)

Yzy = Yyz = (Err — €06) Sin 28 + 7y, cos 20 (4-A.24)
Vzz = Yzz = Yrz:COSO — 79, 5in b (4-A.25)
Ve = Yy = Yrz5in0 + 75 cosd (4-A.26)

The inverse transformations are

Up = Uz €050 + uysinf (4-A.27)

ug = —uz sinf + u, cosd (4-A.28)

Ory = 0z €082 0 + Tzy 5in 20 + oy, sin? 8 (4-A.29)

099 = Ozzsin’ 6 — 7, sin 20 + oy cos® 6 (4-A.30)

O:: = 0;: (4-A.31)

Tro = Tor = 3 (Oyy — Uzz)sin 20 + 74, cos 20 (4-A.32)
Trz = Tzr = T2z €088 + Ty sind (4-A.33)
T9: = Tz9 = —Tzz5in0 + 7,; cos b (4-A.34)
Err = €27 €052 0 + €2, 5in 20 + €, 5in @ (4-A.35)

€06 = €22 5in* 0 — £, 5in 20 + £, cos® 0 (4-A.36)

€2z = Eaz (4-A.37)

€r0 = Egr = 3 (Eyy — €22) 5in 20 + &5y cos 20 (4-A.38)
Erz = Ezr = €2,€080 + €,,5inf (4-A.39)
€9z = E:9 = —Ez- SN0 + €y cosd (4-A 40)
Err = €22 €05% 0 + 52y 5in 20 + €y, sin’ § (4-A.41)

€99 = EzzSin’° 0 — Lz, sin20 + €y, cos? 6 (4-A.42)

€2z = E:xz (4-A.43)

Yro = Yor = (Eyy — Ezz)Sin 20 + v, cos 260 (4-A.44)

Yrz = Yzr = Yzz €058 + 7y, Sinb (4-A.45)

Yo: = Yz0 = —7VzzSinf + . cosd (4-A.46)

Next, consider the coordinate transformation between a Cartesian coordinate system
and a polar coordinate system, but the two do not share the same origin. The origin of the
polar coordinate system is located at point (X,Y) in the cartesian coordinate system, as
sketched in Fig.4-9. It can be observed from Fig.4-9, as long @ is measured from the +z
direction, the location of the origin of the polar coordinate system actually does not matter.
Therefore, the coordinate transformations given in eqns, (4-A.4) through (4-A.46) are still
valid for such case,

Lastly, consider the coordinate transformation for two polar coordinate systems that
do not share the same origin, as sketched in Fig.4-10. The coordinates for the two polar
coordinate systems are denoted as (r,,6,) and (r2,62). Denote the origin of the coordinate
system (r2,62) is located at point (R,©) in the coordinate system (r},6,).

For this case, it can be observed from Fig.4-10 that the angle between e,, and e,, is
62 — 6,. More precisely, rotating e, in the counterclockwise direction by the amount 6, — 6,
gives the direction of e,,. Therefore, the coordinate transformation between these two polar
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Fig.4-9 Relation between a Cartesian coordinate system and a polar coordi-
nate system that do not share the same origin.

Fig.4-10 Relation between two polar coordinate systems that do not share
the same origin.

coordinate systems is obtained by replacing 8 with 8, — 6, for the previous cases and taking
the polar coordinate system (r;,6;) as an analogy to the Ozyz frame in the previous case.
That is, for the displacement, for example, the relation is

Up, cos(f, — 6,) —sin(62—6,) O Ur,
ug, ¢ = | sin(62—-61) cos(@2—6,) O ug, (4-A.47)
U 0 0 1 Uz

Transformations for the stress and strain tensors, which are similar to eqns. (4¢-A.5) and
(4-A.6), respectively, and are omitted for brevity.
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Abstract: The implementation of the multiple-scattering solution is dis-
cussed in detail. Error estimates, truncation and convergence criteria
are established, implementation strategies are devised, computer pro-
grams are developed, and computational characteristics are examined,
Computer programs are then verified via the physical requirement of
energy balance.
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Nomenclature

General Conventions

» Matrices are denoted by bold-faced symbols; symbols for column matrices are enclosed by
flower brackets ({}); symbols for rectangular matrices are enclosed by square brackets ([]).

» When referring to a matrix entry, the entry's indicial number is to appear as subscript(s)

outside the brackets. This distinguishes the indicial subscript(s) from the subscript(s), if
any, associated with the entire matrix.

= Super-matrices are denoted by the same symbols as those for the corresponding matrices,
but set in a calligraphic font.

Symbols
a;

{A:}, {Bi},
d,'j

H{(z)
{H(Tiyei)}.
Jn(z)
{J(riv 01)}
k

Ledl
(Lij)

M

N

[Ris]

(T]
(X‘ir Yl)
0,']'

Superscripts

(1),(2),- - (p)

P
S

ss
T

Subscrepts
i,j
m,n

The radius of Scatterer i; that is, the radius of the smallest circumscribing
circle of Scatterer i centered at the origin of local coordinate system.

Wave expansion coefficient (column) matrices for Scatterer i
Distance between Scatterers i and j.

Hankel function of the first kind and n-th order.

Singular (Hankel) wave expansion basis of Scatterer i.

Unit of imaginary number, 7 = /-1,

Bessel function of the first kind and n-th order,

Regular wave expansion basis for Scatterer ¢, same as {RH (r;,6;)}.
Wave number for the shear wave.

The p-th order scattering kernel of Scatterer i,

Inductance matrix of Scatterer i on Scatterer j.

Truncation term of wave expansions.

Total number of scatterers.

Coordinate transformation matrix for expressing { H(r;,6;)} in Scatterer
i’s local coordinate system.

“T-matrix” of Scatterer z,
Global coordinates of the origin of Scatterer i’s local coordinate system.

Azimuthal coordinate of 0; measured in the polar coordinate system local
to Scatterer i (d;; is the corresponding radial coordinate).

Order of the wave; step number of iteration for a variable solved by an
iterative procedure

Characteristic of or pertinent to a longitudinal wave,
Characteristic of or pertinent to a shear wave,
Scattered wave for the single scatterer case,

Matrix transposition.

Scatterer identifier,
Indicial number for a matrix entry,
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5-1 Introduction

Beginning with this chapter, the considerations of this thesis are restricted to
the case of SH wave scattering due to its simplicity. The case of SH wave scattering
is simpler than the P/SV wave case the physical processes do not involve mode con-
versions and because the wave field ¢ that enters the multiple-scattering formulation
is directly related to the displacement field.

This simplicity, however, does not trivialize the SH wave scattering problem,
SH wave scattering is appropriate for modeling anti-plane wave scattering in solids;
and the wave equation that describes SH wave scattering is mathematically iden-
tical to that for acoustic waves, which by themselves constitute an active area of
research. In addition, as the formulations for SH and P/SV waves are almost iden-
tical, it is expected that once the computational structure for this simpler case has
been explored, the close resemblance between the two formulations will be directly
beneficial in establishing the computational structure of the P/SV wave case.

In this chapter, issues concerning the computer implementation of the multiple-
scattering solution are addressed and some numerical examples are presented.

In the first part of this chapter, truncation errors of various solution components
are estimated in Section 5-2, which leads to the establishment of the truncation and
convergence criteria for the implementation. Some computational characteristics of
the various solution forms presented in Chapter 4 are examined in Section 5-3. The
programs implementing these solution forms are verified in Section 5-4. Verifications
are based on the fundamental physical principle of energy conservation. Numerical
examples are presented in the second part of this chapter. In Section 5-5, two
approximate solutions are derived and numerical results are compared with exact
solutions. In Section 5-6, a series of examples is used to demonstrate an interesting
geometrical resonance phenomenon due to multiple-scatterering effects.

5-2 Error Analyses

In this section, order-of-magnitude estimates for errors incurred by truncating
various matrices of infinite dimension are established. For brevity, mathematical
notations defined in Chapter 4 are used without repeating their definitions. Based
on these estimates, the truncation and the convergence criteria are then derived.

In the following error analyses, the O-notation is used in which O(¢) denotes the
order of magnitude of the quantity ¢. The O-notation allows replacing a complicated
expression by a simpler one but having the same order of magnitude.
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5-2.1 Truncation Errors

Definition and Assumptions

In the form of wave expansion, wave fields are expressed as infinite series, In
order to perform a numerical computation, these series have to be truncated to a
finite number of terms, thus truncation errors occur. Suppose a wave expansion is
expressed as

(2.0}
p= Y ay (5-1)
n=-oo
then, a truncation at the M-th term means using the partial sum from n = —M up
to M to approximate the exact value; that is,
M
¢ D ap (5-2)
n=-—M

and M is called the truncation term. A generally accepted order-of-magnitude esti-
mate of the truncation error is

5(¢;M)=0(

£(¢, M) =0 (IQ—M;II +aM+ll) (5_3)
Izn=—M Qn
where £(¢; M) denotes the order of magnitude of the truncation error incurred in
computing the field quantity ¢ by truncating its wave expansion at the M-th term.
If O(¢) = 1, the above definition can be simplified as
E(¢; M) = O (Ja—pm-1 + ap+1) (5-4)
With the matrix notation used in the solution, it is necessary to extend the
above definition as follow: for a wave field ¢ having O(¢) <1,
Result obtained with Result obtained with
[matrices truncated at] - [matrices truncated at] ) (6-5)
size M + 1 size M
where a maltriz truncated at size M means that, for a square matrix, both row and
column indices run from —M to M, and for a column matrix, the row index runs
from —M to M.

In general, the field quantity ¢ varies from point to point throughout the plane,
and so does £(¢; M). It is assumed that the cross-sectional dimension of a scatterer
does not vary significantly in any direction in the plane. Hence, the value of ¢ and
its error evaluated at a scatterer’s perimeter have the same order of magnitude as
their corresponding values evaluated at the perimeter of the scatterer’s territory
(defined in Chapter 4). Furthermore, since the amplitude of a scattered wave in
general decreases with distance from the scatterer, it suffices to estimate the error
of a scattered wave at the perimeter of the territory of the scatterer, That is, if ¢;
is a wave scattered by Scatterer i of radius a;, it is assumed that at any field point,

O(¢i(ri)) < O(¢i(a;))  and  E(di(ri)i M) < E(¢i(a:); M) (5-6)
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where the field point is located at (r,6) in the matrix medium.

Another necessary assumption concerns with the incident wave. For the plane
incident wave of unit amplitude, the wave expansion is{!]

oo
¢ = eikT — gikrcosd _ Z ian(kr)eino (5_7)
n=-—0o

which satidifes |{A;}n| = 1. For a general case, it is assumed that the incident wave
can always be normalized such that

O(l{Ai}al) <1 (5-8)

Error of First Order Wave

The expression for the first order wave scattered by Scatterer 7 has been derived
in Chapter 4 as

¢ = (CYT{H(ri,6:)} = (T{ADT {H (r:,6:)} (5-9)

This is the same as the single-scattering problem associated with Scatterer 3.

Consider first a special case of the single-scatterer problem in which the wave
expansion coefficients of the incident wave are: {A}, = 1 and {A},;, = 0 when
m # n, where n is an arbitrary integer; that is,

$0 10 = Jo(ka;)e™d (5-10)

1

where the superscript ss denotes the single-scatterer case. The corresponding scat-

tered wave is
o

P78 = Z [Ti)mn {H(ri,6:)}m (5-11)

m=-00
Since the amplitude of the scattered wave generally does not exceed that of the
incident wave,
(e}
o) ( Z [Ti]mn{H(aiaoi)}m) < Jn(ka;) (5-12)
m=—00
Next, consider the scatterer subjected to a general incident wave. By the defini-
tion in eqn. (5-5), the truncation error in computing the first order scattered wave
as given in eqn. (5-9) is

M+1 M+1
> > [Tme{H(ai,6:)}m

m=~(M+1) n=—(M+1)
) (5-13)

where eqn. (5-8) has been used. Combining eqns. (6-12) and (5-13) gives
(@ (ai); M) < O (Jarsa(kay) (5-14)

£V (ai); M) < O (

M M
- Y Y DlnalH(@:,6)}m

m=-Mn=—-M
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However, this estimate cannot be accurate when ka; is near one of the zero points
of the Bessel function Jp41(2). It is known (see, e.g., [26] or [10]) that, for a
fixed argument 2z, as the order n increases and exceeds the value of its argument
(n > z), Ju(2) approaches zero rapidly, and Y, (z) diverges at essentially the same
rate such that O(Jy(2)Yn(z)) = 1. This means, for a broad range of values of z,

0 () =0 (375) (5-15)

where M, (z) is the modulus of the Hankel function H{"(z) defined as

My (z) = [HP(2)| = \/J3(2) + Y2(2) (5-16)

and it is known that M;,(z) has no zero point. Thus, combining eqns. (5-6), (5-14)
and (5-15) gives

M. b1y < (;) ;
E(¢; M) <0 Mogz1(kad) (5-17)
Error of Second Order Wave
Consider the truncation error in computing ¢§ Lue o gV’ whose expression is
given in Chapter 4 as
B e w0 g = (LalTHANT (B (75,6:)) (5-18)

M+1 M+1

By the definition of truncation error in egn. (5-5),
£ (¢, o qo@)iM) =0 ( S Y ()T ma{Ada(H(a,0)}m
m=—(M+1) n=—(M+1)
M M
Yo Y (LT mn{Ai}n{H(a;j,0;)}m| | (5-19)
m=—Mn=-M
In the order-of-magnitude sense, each term under the sumnmation can be replaced
by its respective modilus, and due to egn. (5-8),

) M+1 M+1
£ (¢ (a,-);M)=0( > Ll lmn Mo (k)

due to o'V
7 due to & m=—(M+1) n=—(M+1)

M M
- Z Z l[Lij][n]Iman(kaj)) (5-20)
m=-Mn=—-M

where M (z) is the modulus of the Hankel function H{"(z).
Define the following operator S;([P); M) for Scatterer j as

M+1
SPEM) = Y [IPIacsrynl + I[P)=nr-1ynl] Mars: (kay)
n——(M-H)

+ Z [I[P]n(M+l)|+|[P]n( M- 1)I]M (kaj) (5-21)

n=-M
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Then eqn. (5-20) becomes

£ (#1001 M) < O (ST M) (5-22)
According to Chapter 4, the total second order wave scattered by Scatterer j is

(2) _ 5 4@
A E ¢j due to ¢§1) (5-23)

J#
Thus, from eqn. (5-22)

N
E(9{5 M) < (N = 1) tax O (S([Lis )T M) (5-24)

J#i

Error of Incident Wave via Graf’s Addition Theorem

Form I of the solution involves an additional operation using Graf’s addition
theorem to transform {A;} into Scatterer i’s coordinates, such as

¢" = {A;}7(H(r;,6)} = (RRy[{A:})T {H(ri,6:)} (6-25)

where the elements of [RR;;] are, according to Chapter 4,
[RRijlnm = e'*=™0% J,_ 1, (kdij) (5-26)
According to eqn. (5-5), the truncation error for this operation can be written,

for any incident wave that satisfies eqn. (5-8), as

M+1 M+1

£(¢inc(ai)§M) =0 ( Z Z [RRij)mn Jn(ka;)

m=—(M+1) n=—(M+1)
M M
- z Z [(RRij]mn Jn(kai) (5-27)
m=-Mn=-M

Since |J,(2)| never exceeds unity and decreases as n increases, in an order-of-
magnitude sense, the leading term of the difference of the sumations in eqn. (5-27)
is

E(¢""(a:); M) = O ([RRijlom Jo(kas)) = O (Iu(kdij)) (5-28)
where eqn. (5-26) has been used. Combining eqns. (6-15) and (5-28) gives

8(¢inC;M) =0 (m) (5—29)
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5-2.2 Truncation Criteria

In Chapter 4, two solution forms have been given that are referred to as Form I
and Form II. Within each form, a recursive form and an implicit form are given, with
the addition of a supermatriz form in Form I. A recursive form follows the physical
process of “ordered scattering”. Implicit forms of the solution can be implemented
as iterative solution procedures of the prediction-correction type.

Form I

Define the error tolerance for the total scattered wave in each order of the scat-
tering as €. Then, for each of the first two orders of waves not to exceed the error
tolerance, from eqns. (6-17) and (5-24), the following respective conditions must be
satisfied:

N N .
max m <e€ (First Order) (5-30)
and
N(N —1) nglc S; ([Li)IT:); M) < e (Second Order) (5-31)
1,]=
i

Physically, since there are N scatterers and thus N first order scattered waves,
the sum of all the first order scattered waves should not have an error that exceeds
the error tolerance, and thus eqn. (5-30). Since there are N(N — 1) second order
scattered waves such as ¢;231 we to g1 eqn. (5-31) guarantees that the total second
order scattered wave will not exceed the error tolerance.

Furthermore, recall that the generation of the second order waves is by the
excitation of all first order waves, and the generation of all the higher order waves
is by the same mechanism. Equation (5-31) also effectively ensures that, as long as
the error in the excitation wave does not exceed the error tolerance, the error in the
resulting higher order waves will not exceed the error tolerance.

Therefore, egns. (56-30) and (5-31) comprise the truncation criteria for the re-
cursive Form I of the solution. The implicit and the supermatrix forms of Form I
are simply rearrangements of the recursive form, hence the same truncation criteria

apply.

Form II

Form II of the solution involves an additional step to express the incident wave
in different local coordinate systems via Graf’s addition theorem, in which instance
a truncation error is introduced. For the error not to exceed the error tolerance,
according to the error estimate in eqn. (5-29), it is necessary that

N 1

lrgz;.)lc ———MM(kdij) <e€ (5-32)
FE
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Therefore, eqns. (5-30), (5-31) and (5-32) comprise the truncation criteria for
Form II of the solution, either recursive or implicit.

Supermatrix Form

The Supermatrix Form is simply a rearrangement of Implicit Form I, thus
eqns. (5-30) and (5-31) are its truncation criteria.

5-2.3 Convergence Criteria

There are two types of convergence behaviors for repetitive solution forms, In a
recursive solution procedure, waves in each order of scattering are calculated until
at some order the amplitudes of the waves are less than the pre-established error
tolerance. In an iterative procedure, the total wave is repeatedly calculated until
the difference between two successive calculations is less then the pre-established
error tolerance. Correspondingly, there are two types of convergence criteria.

Recursive Form I

If a recursive solution procedure is terminated at step P, the “ordered scattering”
process is truncated at the P-th order of scattering. For N scatterers, the recursion
can be said to have converged at the P-th step if the amplitude of the P-th order
scattered wave scattered by any scatterer, say Scatterer j, is negligible; that is,

o(#”) so((C"¥ H @0} < (5-33)

Since the clements of the singular wave expansion basis { H(a;,6;)}, are of order
unity for small n, and diverge as n increases and exceeds ka;, assuming the wave
expansion converges, the following is used as an order-of-magnitude estimate of this
wave:

0(#7) =I5, (5-34)
where || - ||cc denotes the infinite norm of a vector, which is the maximum modulus
among all its elements (see, e.g., SCHEID, 1968). Therefore, the convergence criterion

for this solution form is
(P)
N”{C’j }” <e¢ (5-35)

Recursive Form I1

In this form, the computation is performed over multiple-scattering kernel ma-
trices of various orders, from which the wave expansion coefficients can be obtained
as

(o} = (K{)4;} (5-36)



148

for any given incident wave. If the incident wave can be normalized to satisfy
eqn. (5-8), according to eqn. (5-36), the convergence criterion for this solution form
is

w7, < o)
where the infinite norm for a matrix is defined as (see, e.g., [7]) the maxmium
value of the sum of the modulus of all the elements in any single row of the matrix.

Implicit Forms

For the implicit forms of the solution, the difference between the solutions at the
P-th and the (P — 1)-st steps essentially represents the P-th order scattering. Thus
this difference can be used in place of the corresponding P-th order quantities for
the respective recursive procedures. Specifically, for Implicit Form I,

N||te® = {c;3 || <e (5-38)
and for Implicit Form II,

N (i1 - (B <e (5-39)

5-3 Computational Characteristics of Solutions

All the various solution forms presented in Chapter 4 are implemented, Programs
 are designed for computing a segment of the response spectrum, with a user-specified
but presumed small frequency interval. In an iterative solution procedure (for an
implicit solution form), the solution for the previous frequency is used as the initial
prediction. In the event there is no previous result, the first order scattering is used
as the initial prediction, in which case, an iterative solution procedure is effectively
the same as a recursive procedure.

Algorithms for the current implementation are given in Appendix 5-A. Programs
are written in C*% programming language. One of the advantages of this particular
programming language is that two basic classes (data types), representing complex
numbers and matrices, respectively, along with a large assortment of arithmetic
operators for each class, can be built to facilitate the implementation,.

Computations are performed on a Sun Microsystem Inc.’s SparcStation 5, with
a 115 MHz CPU and an on-board memory size of 64 M (megabytes). Programs are
compiled by Free Software Foundation’s Gnu g** compiler. The entire implemen-
tation is then ported to a Silicon Graphics Inc.’s (SGI's) Indigo® WorkStation, with
a 150 MHz CPU and 64 M on-board memory, using SGI's standard C** compiler.

In this section, some basic computational characteristics are examined through
numerical examples. Since modeling fiber reinforced composites is the focus of this
series, only cases involving identical scatterers are considered.
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In particular, consider the two configurations that are the most commonly used
micromechanics models for fiber reinforced composites — the 4-fiber square ar-
rangement and the 7-fiber hexagonal arrangement, as shq¥n in Figs.5-1. Both

(a) Four-fiber square arrangement. (b) Seven-fiber hexagonal arrangement,

Fig.5-1 Two types of arrangements to be considered in the following numerical
results.

arrangements require only one parameter d, called the fiber spacing, to characterize
their respective configuration.

The fibers are modeled as layered circular elastic cylinders in which the inner core
represents the fiber and the outer layer represents the interphase between the fiber
and the matrix. The single-scatterer problem for such a scatterer has been studied
Chapter 2 in which a closed form analytical solution has been found. This solution,
with minor rearrangements, gives the expression for the T-matrix according to the
definition given in Chapter 3.

In the numerical examples, the same material properties as in Chapter 2, which
correspond to a ceramic-fiber reinforced metal-matrix composite system, are used.
For convenience, these data, as listed in Table 2-1, are repeated here in Table 5-
1. Similar to Chapter 2, the fiber radius can be assumed as a = 10um®) when
a specific value is desired. The correspondence between frequency, nondimensional
frequency ka and wave lengths in different media is listed in Table 5-2, The fiber

Table 5-1: Constituent Material Properties for a Metal-Matrix Ceramic-
Fiber Composite System!

Property Matrix Fiber Interphase
(AA520 Aluminium) | (Alumina, Al;O3) | (Zirconia, ZrO,)

Density (kg/m?) 2600 3700 6300
Young’s Modulus (GPa) 66 360 97

Poisson’s Ratio 0.31 0.25 0.33
Lamé Constant A (GPa) 41 144 71
Lamé Constant px (GPa) 25 144 37

P Wave Speed (m/s) 5920 10800 4800

S Wave Speed (m/s) 3100 6240 2420




150

Table 5-2: Correspondence Between Frequency, Nondimensional Frequency
and Wavelengths for Composite System in Table 5-1 (a = 10pm),

ka Frequency (MHz) Wavelength A(um) Aa  Af/a /e

1 49.35 62.83 6.283 12,64 3.838

98.70 31.42 3.142 6320 1.919

5 246.8 12,67 1.257 2,528 0.7675

10 493.5 6.283 0.6283 1264 0.3838
20 987.0 3.142 0.3142 0.6320 0.1919

radius is denoted as a, the outer radius of the interphase is assumed as b = 1.1aq,
and the nondimensionalized frequency ka is used throughout.

The incident wave is assumed as a plane wave of unit magnitude traveling in
the +X direction. The expression for the incident wave is given in eqn. (5-7). By
writing the incident wave in the nondimensional form of eqn. (5-7), it is implied
that all the field quantities ¢ have been normalized by the amplitude of the incident
wave.

5-3.1 Truncation Term

Due to the difference in the truncation criteria, the truncation size M is different
for Form I and Form Il. They are denoted as M; and M|, respectively.

Figures 5-2 and 5-3 show the truncation terms M and My, respectively, for the
4-fiber square arrangement for various fiber spacings in the frequency range from
ka = 0.05 to 10 with an interval of 0.05. The goal error tolerance is set as ¢ = 1073,
Figures 5-4 and 5-5 show simlar data for the 7-fiber hexagonal arrangement.

30
20 | — =7 I
g o L_l_'—"m“' ._‘“.'

10 ,_rT_C: S ' — d=3a |_
/—’_./;r..v—"""’ i O Y (R TR bt d=5a
A e e SR RSO d=10a

0 ! T
0 1 2 3 4 5 6 7 8 9 10

Fig.5-2 Truncation term for Form I's, M/, for the 4-fiber square arrangement
at three different fiber spacings.

It is observed from Figs.5-2 through 5-5 that, for a given problem configuration,
the truncation size M for either Form I or Form II increases monotonically with
increasing frequency.

The computations for the truncation sinzes M in Figs. 5-2 through 5-5 is slightly
different from what has been described in the algorithms. In these computations,
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Fig.5-3 Truncation term for Form II's, My, for the 4-fiber square arrangement
at three different fiber spacings,

30
20 - P oy
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Fig.5-4 Truncation term for Form I's, M;, for the 7-fiber hexagonal arrange-
ment at three different fiber spacings.

a small preset value of M is given for every frequency. The results in all cases
show that, for a given problem configuration, the truncation term M increases
monotonically as the frequency increases monotonically. This observation has been
incorporated into the algorithms in the previous section, in which the value of M
for the previous computation is taken as the preset value for the next computation.

For Form I, the normalized frequency ka plays the dominant role. Figures 5-2
and 5-4 show that the truncation size M| increases almost linearly as the frequency
increases in the range shown, and

M; =8+ 1.4ka (6-40)

appears to be a good approximation, except in the low frequency range ka < 1. The
effects of both the fiber spacing d and the number of fibers in the assemblage N
are minimal. An increase in fiber spacing results in a slight decrease in Mj; and an
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Fig.5-5 Truncation term for Form I's, My, for the 7-fiber hexagonal arrange-
ment at three different fiber spacings.

increase in the number of scatterers results in a slight increase in Mj.

The truncation sizes for Form I in Figs.5-3 and 5-5 are substantially different
from those for Form I in Figs.5-2 and 5-4. This indicates that eqn. (5-32) solely
determines the truncation size for Form I, with the possible exception in the low
frequency range.

Equation (5-32) requires that Myy, (kD) be sufficiently large at the truncation
size My, where D is the maximum distance between any two fibers throughout the
configuration, It is known that, for a fixed argument z, when n < z, O(M,(z)) = 1.
As n increases and exceeds its argument (n > z), M,(z) diverges rapidly. The
curves in Figs, 5-3 and 5-5 agree with this behavior: the values of My, are always
slightly larger than kD, namely

M~ 10+ kD (6-41)

9-3.2 Error Behaviors

There are two types of errors involved in most solution forms. One is associated
with the truncation criteria and is thus referred to as the truncation error. The other
is associated with the convergence criteria and is thus referred to as the convergence-
truncation error.
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Accurate Solutions

Since there are no exact numerical results available for the problems under
consideration, prior to assessing any type of computational error, a set of accu-
rate results must be established against which others are compared. Results ob-
tained by the Supermatrix Form are chosen as candidates since they do not contain
convergence-truncation errors.

In the Supermatrix Form, the following linear equation system

(7] - [£D{c} = {A} (5-42)

is solved by some well established solvers, where {.A}, {C} and [L] are the superma-
trices defined in Chapter 4. The following solvers have been implemented: Gaussian
elimination solver, fully pivoted Gaussian elimination solver, LU-decomposition
solver, and fully pivoted LU-decomposition solver (also called LUP-decomposition
solverf"). All these solvers belong to a class in which errors are entirely due to
the computer’s round-off errors. Note that all these solvers belong to a class of di-
rect method in which the errors are entirely due to the computer’s round-off errors.
Among these solvers, pivoting is a technique to control and miniinize the computer’s
round-off errors™,

Table 1 lists the computed amplitudes of the total wave |¢'°*?!| at an arbitrarily
chosen point (z,y) = (—1.5d,0) and the associated errors, for both the 4-fiber and
the 7-fiber configurations at ka = 3 for various fiber spacings. Errors are computed
according to

Error = |{A} - (1Z) - [£D{c}| (5-43)

where || - ||2 denotes the 2-norm (or length) of a vector, which is defined as the
square root of the sum of the squares of the moduli of all its elements (see, e.g.,
SCHEID, 1968).

Table 5-3 lists the computed amplitudes of the total wave |#'°!| at an arbitrarily
chosen point (z,y) = (—1.5d,0) and the associated errors, for both the 4-fiber and
the 7-fiber configurations at ka = 3 for various fiber spacings, Errors are computed
according to

Error = ”{A} - [T - L]{(l'}”2 (5-44)

where || - ||2 denotes the second norm of a matrix, which is defined as, for a column
matrix {v}, the square root of the sum of the squares of the moduli of all its elements

(see, e.g., R5:FS68):
M

{eYlla= > Ho}al’ (5-45)

n=—M
It is observed from Table 5-3 that in every case, the results obtained by using
different solvers are identical for all 6 significant figures. The errors are of order
10~'4 to 10715, which are satisfactorily small, considering that the computer used
in these computations is capable of producing only 15 significant figures.
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Table 5-3: Comparison of Results Obtained by Using Different Linear Equa-
tion System Solvers in Supermatrix Form at ka = 3

Fiber 4-Fiber Arrangement 7-Fiber Arrangement
Solver® | spacing | |¢t°%] Error |ptotel| Error
d=3a | 0799039 | 4.85335x10~° | 0.888485 | 1.86652x10~ 4
GE d=5a | 0965366 | 2.26681x10~'5 | 0.885394 | 6.23928x10~ !5
d =10a | 0995827 | 2.55399x10~15 | 0,867470 | 5.69610x10~15
d=3a | 0,799039 | 4.45122x10~1% | 0,888485 | 1.36505x10~*4
PGE d=>5a | 0.965366 | 1.82491x10~"5 | 0.885394 | 5.16508x10~ 13
d =10a | 0.995827 | 1.41674x10~!% | 0,867470 | 6.75156x10~!6
d=3a | 0.799039 | 2.75933x10~1% | 0.888485 | 6.69867x10~!°
LU d=5a | 0.965366 | 1.82500x10~*% | 0.885394 | 5.39283x10~13
d = 10a | 0.995827 | 2.31243x1075 | 0.867470 | 5.42291x10~*3
d=3a | 0.799039 | 4.25540x10~1% | 0.888485 | 1.50270x10~14
LUP d=>5a | 0.965366 | 1.82500x10~!> | 0.885394 | 5.39283x10~15
d =10a | 0995827 | 2.31243x105 | 0.867470 | 5.42291x10~!6

%) GE: Gaussian elimination solver; PGE: fully pivoted Gaussian elimination solver;
LU: LU-decomposition solver; LUP: fully pivoted LU-decomposition solver,

Therefore, with a sufficiently large truncation size, the results obtained via the
Supermatrix Form can be considered as the accurate results for the resulting linear
equation system, and contain only truncation errors.

It is often stated that Gaussian elimination and LU-decomposition methods
should never be used without pivoting™?). However, the results in Table 5-3, as well
as the results from extensive computations performed for this study, demonstrated
that the linear equation system in the Supermatrix Form, eqn. (5-42), in general
is very well-behaved, as non-pivoted solvers do not degrade the solution accuracy
in any significant way. In fact, for the cases of d = 5a and d = 10a solved by the
LU-solver and the pivoted LU-solver, Table 5-3 lists not only identical results, but
also identical errors for both solvers, suggesting that no benefit is obtained in the
fully pivoted solution process. Since pivoting may significantly increase the time
needed to solve an equation system, pivoting appears not to be necessary for such
well-behaved systems.

Truncation Errors and Convergence-Truncation Errors

Suppose the truncation criteria require a truncation size of M for a given fre-
quency and problem configuration, then three computations are performed that
correspond to truncation sizes of M/2, M and 2M. It is assumed that the wave
expansions converge, and the larger the truncation size, the smaller the truncation
error.

Tables 5-4 and 5-5 list the computed total wave field |¢''#!| at the point
(—=1.5d,0) for the 4-fiber and the 7-fiber configurations, respectively, for various
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Table 5—4: Comparison of Results Computed at Different Truncation Terms for
Four-Fiber Square Arrangements at Different Fiber Spacings.

Solution Fiber | Value | Computed |¢t°ta!(—1,5d, 0)|

Form Spacing | of M M/2 M 2M
Recursive Form I 12 | 0.799003 | 0.799004 | 0.799004
Recursive Form I 21 0.912510 | 0.798868 | 0,798871
Implicit Form I d=3a 12 0.799007 | 0,799008 | 0.799008
Implicit Form II 21 0.912566 | 0.798952 | 0.798955
Supermatrix Form 12 0.799037 | 0,799039 | 0.799039
Recursive Form I 10 0.965208 | 0,965372 | 0.965372
Recursive Form II 31 0,966133 | 0.965379 | 0.965372
Implicit Form I d=5a 10 | 0.965202 | 0,965366 | 0.965366
Implicit Form I 31 0.966115 | 0.965361 | 0,965355
Supermatrix Form 10 ] 0.965202 | 0.965366 | 0,965366

Table 5-5: Comparison of Results Computed At Different Truncation Terms for
Seven-Fiber Hexagonal Arrangements at Different Fiber Spacings.

Solution Fiber | Value [ Computed |¢*°*2!(~1.5d,0)|

Form Spacing | of M M/2 M 2M
Recursive Form I 14 | 0.888351 | 0.888490 | 0.888490
Recursive Form I 30 | 0.865142 | 0.888498 | 0.888493
Implicit Form I d=3a 14 0.888342 | 0.888481 | 0.888481
Implicit Form I 30 | 0.865161 | 0.888524 | 0.888518
Supermatrix Form 14 | 0.888346 | 0.888485 | 0.888485
Recursive Form I 11 0.884871 | 0.885393 { 0.885393
Recursive Form II 42 | 0.954015 | 0.885392 | 0.885393
Implicit Form I d=b5a 11 0.884874 | 0.885391 | 0,885391
Implicit Form I 42 | 0.954025 | 0.885395 | 0.885396
Supermatrix Form 11 | 0.884873 | 0.885394 | 0.885394

fiber spacings at the frequency ka = 3. Results for implicit forms are obtained by
computing a small segment of a spectrum, from ka = 2.95 to 3 with an interval
of 0.05, in which the result for ka = 2.95 is used as the initial prediction for the
computation for ka = 3.

Tables 5-4 and 5-5 can be interpreted as follows, Results obtained by the Super-
matrix Form with truncation size 2M are taken as the accurate results. For Form I,
the two types of errors can be separated. Truncation errors are represented by the
differences between the results obtained by the Supermatrix Form and the accurate
results. The differences between the results of Form I and those of the Supermatrix
Form using the same truncation sizes represent the convergence-truncation errors,
For Form II, the two types of errors cannot be easily separated. But since the con-
vergence criteria are the same for different truncation sizes, the differences between
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Table 5-6: Memory Usages by Major Constituents in Different Solution Forms
(Unit: size of a complex number in computer representation)

Form I's Form WI's
] NN -1)@M;+1)7 NN = 1)2My + 1)
®R,;] N/A N(N = 1)(2My + 1)?
(T] N(2M; + 1)? N(@2My +1)*
{A;} N(2M; +1) —
(C,) NMr+ 1) -
Other Intermediate Variables 2N(2My +1) 3N(2Mpy +1)?
Total (Approximate) ~4N2 M} ~8N(N + 1)M}

N/A: The variable is not used in the solution form,
—: The variable is only need when some other variables that overall take a larger
amount of memory can be freed, therefore the variable does not contribute
the calculation of the problem size.

the results obtained by Form II at truncation size 2M and the accurate results rep-
resent the convergence-truncation errors. Thus, the differences between the results
obtained by Form T and those of the Supermatrix Form using the same truncation
sizes are primarily the truncation errors,

Tables 5-4 and 5-5 show that the truncation criteria for both Form I and Form
I are sufficiently accurate. For Form I, results obtained by halving the truncation
size are in general still accurate to the specified error tolerance. For Form I, re-
sults obtained by halving the truncation size do not always yield results that are
satisfactorily accurate.

The convergence-truncation errors for all three truncation sizes are within the
error tolerance. Therefore, the established convergence criteria for both Form I and
Form II are adequate.

5-3.3 Problem Size and Solution Time

The problem size refers to the size of the computer memory required to solve the
problem. Table 5-6 lists the sizes of the primary computer program constituents in
each solution procedure. They represent the leading factors of the memory usage in
the programs.

In Table 5-6, the “other intermediate variables” are those temporary matrices
used in the core solution procedure. Specifically, for recursive forms, they include
{C*"} and {C?ld}, and for implicit forms, they include [K;], [K}®"] and [K ?'d].
The table lists the cases in which the T-matrices ares square matrices (not diagonal).
In the summations to calculate the “total” line, smaller terms are dropped, and
(2M + 1) is approximated as 2M. Also note that, in terms of memory usage, the
Supermatrix Form is a mere rearranged Recursive Form I and hence not listed.
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Table 5—7: Problem Size for Four-Fiber Square Arrangement at ka = 2 and
d = 3a (Unit: size of a complex number in computer representation)

Four-Fiber Square Seven-Fiber Square
Arrangement Arrangement
Form I's | Form II's | Form I's | Form II's
Truncation Term | M; =12 | My =21 | My =14 | My =30
(Ly;) 7,500 22,188 35,322 156,282
[RRy;] N/A 22,188 N/A 156,282
(T;] 2,500 7,396 5,887 26,047
{A;} 100 — 203 —
{C;} 100 — 203 —
Other 200 22,188 406 78,141
Total 10,400 73,960 42,021 416,752

Table 5-7 lists the numerical values corresponding to Table 5-6 for both the
4-fiber and the 7-fiber arrangements at ka = 3 and d = 3a.

The truncation sizes M; and Mj; can be related to the problem parameters as,
according to eqns. (5-40) and (5-41),

M~k My ~ kD (5-46)

where “~” denotes the rate of growth when k or kD is very large. If the scatter-
ers are clustered uniformaly in a region around the origin of the global coordinate
system, then D ~ dv'N where d represents the average distance between two neigh-
boring scatterers. For such cases, according to Table 5-6, the problem sizes can be
approximated as ~k2N? for Form I, and ~k2N?3 for Form I
For the solution time, since there are many influencing variables, it is only fair
to compare the net CPU time needed to perform one single step of the repetitive
solution procedures. From the algorithms, within each repetitive step, Form I's
only need to perform N(N — 1) products of a square matrix with a column matrix;
whereas Form II’s need to perform 2N(NN — 1) products of two square matrices.
Denote the time for an elementary manipulation, such as an addition or a multi-
plication, of real numbers as 7. A product of a square matrix with a column matrix
requires (2M + 1)? additions and (2M + 1)? multiplications of complex numbers,
It is estimated that a multiplication of two complex numbers takes about 67 time
and an addition of two complex numbers takes about 27. Thus, the total time for a
product of a square matrix with a column matrix is roughly 8(2My +1)%7 &~ 32M?r.
Similarly, a product of two square matrices requires (2M + 1) multiplications and
(2M +1)* additions of complex numbers; that is, roughly 8(2Mj; + 1)37 ~ 64 M7,
This implies that the computation time for each step in the Form I's and Form
I's are ~N2M? and ~N2M3,, respectively. Again, in terms of the apparent physical
parameters of the problem, they are roughly ~k?N? and ~k3N*5, respectively.
For the Supermatrix Form, the resulting linear equation system is of the size
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Table 5-9: CPU Time for Every Step of Repetitive Solution Procedure for
ka = 2 and d = 3a for Different Fiber Arrangement (Unit: second)

. Four-Fiber Square Seven-Fiber Hexagonal
Solution Form
Arrangement Arrangement

Recursive Form I 0.007 0.018

Implicit Form I 0.007 0.018
Recursive Form I 0.917 13,708

Implicit Form II 0.936 14,849
Supermatrix Form 0.760 2,970

N(2M[ + 1) x N(2M; + 1) and the typical solution time is ~N3M3}. In terms of
apparent physical parameters, the solution time is ~k3N3,

Table 5-9 lists the time needed to perform one step of the repetitive solution
procedure for various solution forms. The data shown are the computer’'s CPU time
on the SGI's Indigo® averaged over 20 repetitive steps.

For comparison, the CPU time for the Supermatrix Form is also listed in Table
5-9. It is noted the times listed for this case have different meanings: they are the
total times required to solve the linear equation system; whereas for all other cases,
the times listed are for each step of repetition, and a typical computation may take
from 10 to 200 repetitions.

Due to the structural similarity between two Form I's, the times for Form I's
are identical. The times for the two Form II's are also very close. The difference
is due to the fact that the Implicit Form I takes a little extra effort to perform a
matrix subtraction in order to check the convergence criterion. Although a similar
operation is also necessary for Implicit Form I, the difference between Implicit Form
I and Recursive Form I is not observable.

In general, from Table 5-9 and from extensive computations performed for this
study, differences in the CPU times between the Form I's and Form I’s are huge.
Overall, the times for the Supermatrix Form is comparable with the Form I’s.

5-3.4 Convergence Behavior

Figures 5-6 and 5-7 show the numbers of steps needed for various repetitive so-
lution procedures to achieve a converged solution for the 4-fiber square arrangement
at d = 3a and 5a, respectively. The computations are performed at a frequency
interval of 0.05. Figures 5-8 and 5-9 show the similar data for the 7-fiber hexagonal
arrangement for the cases d = 3a and 5a, respectively,

Figures 5-6 and 5-7 show the numbers of steps needed for various repetitive
solution procedures to achieve a converged solution for the 4-fiber configuration
at d = 3a and d = 5a, respectively. The computations are performed with a ka
interval of 0.05. Figures 5-8 and 5-9 show the corresponding data for the 7-fiber
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Fig.5-9 Numbers of steps needed in repetitive solution procedures to achieve a
converged solution for the case of 7-fiber hexagonal arrangement with
fiber spacing d = 5a.

configuration for d = 3a and d = 5a, respectively. It can be observed from Figs. 5-6
through 5--9 that the two recursive forms converge in nearly the same numbers
of steps, and so do the two implicit forms. Also, in all repetitive solution forms,
convergence is reached in fewer steps when the scatterers are located farther apart.

Unfortunately, it is also observed, for example, in Fig.5-8 for the 7-fiber con-
figuration with d = 3a, that there are ranges of frequencies in which repetitive
procedures diverge. For Form I, the recursive form diverges in the frequency range
ka = 0.9 to 2.05. The implicit form also diverges in this range, and additionally at
ka = 4.35. For Form II, both recursive and implicit forms diverge in exactly the
same ranges, ka = 0.9 to 2.7, and ke = 3.95 to 4.8.

Recall that the Supermatrix Form is obtained by a rearrangement of Implicit
Form I. Hence, Implicit Form I as well as Recursive Form I, since they are struc-
turally similar, are variants of the following iterative solution procedure:

{c}? = (A} +[c){c)Y (5-47)

Equation (5-47) is the Jacobi method (see, e.g., (1) for solving the linear equation
system in eqn. (5-42). The necessary and sufficient condition for the Jacobi method
to converge is that the modulus of the dominant eigenvalue of the (super)matrix [L]
must be smaller than unity.

The dominant eigenvalue A, the eigenvalue of the largest modulus, and its asso-
ciated eigenvector {A} of matrix [£] can be determined by the power method(™. In
this method, for an almost arbitrary vector {v} and a sufficiently large p, the vector
{A}P) as calculated according to

{4} = [£P{v}) (5-48)

gives an approximation for { A}, and an approximation for ) is given by the following
Rayleigh’s quotient:
) = (A} 7 [2){ A}
{(A}PT (A}
The approximations become exact in the limit p — oo.

(5-49)
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The power method can be implemented as following[). Select an arbitrary
vector {v} such that the largest modulus of its elements equals unity, Let {A}(!) =
{v}. Repeat the following computations

{y}t) = [£]{A}P) (6-50)
(p+1)
(1) _ _ (Y} _
U e o
In the limit,
el et e

and ) is given by the element of {y}P+1) that is of the largest moduluse. The com-
putation can be terminated when the computed |A| converges within the prescribed
error tolerance.

Although the choice for the starting vector {v} is not completely arbitrary, this
method almost always yields the correct dominant eigenvalue. The restriction for
the choice of {v} is that it should not be orthogonal to {A}. However, in most cases,
even with an unfortunate choice of {w} such that it is orthogonal to {A}, in the com-
putation process, the computer’s round-off errors will provide the non-orthogonal
components that are vital for the computation to converge to the dominant eigen-
value. On the other hand, for a successful computation, a small error tolerance
must be specified, since the convergence rate might be very slow, especially when
the next-dominant eigenvalue has a very close modulus to the dominant eigenvalue.

Figures 5-10 and 5-11 show the modulus of the computed dominant eigenvalues
|A] for the 4-fiber and the 7-fiber configurations, respectively. In the computa-
tions, the computation is terminated when the difference between ||{y}®*!)||o, and
I{y}®||o is smaller than 2 x 10~5. It is observed that the computed dominant
eigenvalues seem to be unaffected by the change of the truncation term M, as long
as the truncation is accurate enough.

1.0
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Fig.5-10 Modulus of the computed dominant eigenvalue of the system matrix
[£] for the 4-fiber square arrangement.

Comparing Figs. 5-8 and 5-11, a clear correlation between the condition |A| > 1
and the divergence of Form Il can be observed. The frequency ranges in which
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Fig.5-11 Modulus of the computed dominant eigenvalue of the system matrix

[£] for the 7-fiber hexagonal arrangement.

Form I diverges fall within the ranges in which |A| > 1. But, interestingly, in some
ranges, Form I converges though |A\| > 1. Comparing Figs.5-6 through 5-9 and
Figs. 5-10 and 5-11 shows that there is a clear correspondence between the number
of repetitive steps needed to achieve convergence and the modulus of the dominant
eigenvalue.

5-3.5 Summary

The characteristics of the computational structures observed in this section can

be summarized as following;:

= For a given problem configuration, the truncation size for Form I increases

monotonically as the frequency increases and can be approximated as M; ~
8 + 1.4ka when ka > 1. The truncation size for Form I also increases
monotonically as the frequency increases, and can be approximated as M ~
10 + kD when ka > 1, where D is the maximum distance between any two
scatterers in the configuration.

The truncation and convergence criteria established are adequate.,

The growth rate of the problem size is ~N2M? where N is the number
of scatterers and M is the truncation size. For a cluster of uniformly dis-
tributed scatterers, the problem size can be approximated as ~k2N? for
Form I, and ~k2N?3 for Form II.

For all the repetitive solution procedures, a converged solution is reached

in fewer steps when the scatterers are located further apart. Unfortunately
there are cases where repetitive solution procedures diverge.
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= In general, the Supermatrix Form can be used even when all the repetitive
solution forms fail. The linear equation system of the Supermatrix Form is
generally well-behaved and can be solved by many well-established solvers,
In many cases, pivoting can be avoided without significant errors.

5-4 Program Verifications

In this section, the computer programs for implementing the multiple-scattering
solution are verified by performing various computations of energy conservation.

One of forms of the energy conservation principle that is frequently used in
scattering problems is called the energy balance requirement. It requires that, for
a closed surface (a closed path for a 2-dimensional problem) that encloses neither
a source nor a sink, the total energy transmitted into the surface equals the total
energy emitted from the surface. The mathematical expression for this requirement
has been derived in Chapter 2. For a circular integration path of radius R centered
at the origin of the global polar coordinate system, the energy balance requires

. 27 —
/A (E)dA = 925 [ m(z..0.) _ =0 (5-53)

where ¥;; and U, are the complex amplitudes of the stress component and the
displacement component, respectively, the overbar denotes a complex conjugate,

and (E) is the time-averaged energy flux density function. Furthermore,
U, = g2 Yz = Orz = MYrz (5-54)

where expressions for ¢! and 7r. have been derived in Chapter 4.
Since the incident wave is given in normalized form in eqn. (5-7), the following
normalized time-averaged energy flux density function

_ B _ 1
i |¢inc|2 '¢inc|2

is defined. Then, the energy balance requirement becomes

/0‘27r (e)

where eqns. (5-54) and (5-55) have been used.

The integration is performed numerically as follows. The entire circular path is
divided into a predetermined number of subdivisions S. Within each subdivision, it
is assumed that both 7,, and ¢'°**! are constant, and the values at the center of the
subdivision are taken as the respective average values for that subdivision. Thus,

(e Im{’)'rz-‘-#o_ta]} (5-55)

d9 =0 (5-56)

r=R



164

the integration process is conducted in accordance with

I(R,0) = |¢_‘1"°—| /O 01m{7,,¢_zai} do

r=R
= 5o [gl tm (., (, 222 Gt (g, BT | 5-57)

from 6 = 0 toward 2. The energy balance requires J(R, 27) = 0. The final non-zero
value of I(R,2m) represents the cumulative error of the entire computation, from
solving the multiple-scattering problem to the numerical integration.

Consider 4 examples. Unless otherwise noted, the multiple-scattering problem
is solved via the Supermatrix Form, in which the linear equation system is solved
by the LU-decomposition solver. The integration of eqn. (5-57) is performed over
720 intervals unless otherwise specified.

First, consider the 4-fiber configuration with a fiber spacing d = 3a at the
frequency ka = 2. Three integration paths, of radii R = e, 10a and 50a, are
chosen, as sketched in Fig.5-12. The path with R = a falls entirely within an area
surrounded by the fibers. The paths with radii 10a and 50a represent the near-field
and the far-field, respectively.

Fig.5-12 Energy integration paths for the 4-fiber square arrangement.

Figure 5-13a shows the normalized time-averaged energy flux density function
(é) along the three integration paths, called the angular distributions of (¢). Figure
5-13b shows the corresponding integration processes along these paths. Since the
problem is symmetric about the X-axis, only the results for the upper half plane,
from @ = 0 to m, are shown.

The computed final values of |I(R, 27)| are 1.76248x 10715, 1.44624x 10~ and
1.51355%10~!5 for the paths of radii R = a, 10a and 50a, respectively. Since
the computer used in this computation has only 15 significant figures, the small
magnitudes of |I(R,2w)| mean that the errors are at the level of the computer’s
round-off errors. In other words, these computations are as accurate as the computer
is capable of obtaining,.

Table 5-10 shows the numerical values of |I(R,2r)| at the end of integration as
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(b) Numerical integration progresses.

Fig.5-13 Energy integration for 4-fiber square arrangement at frequency ka =
2 along three paths, of radii: R = a, 10a and 50e, respectively.

compared to the maximum value of |I(R, 8)| reached during the integration process,
|I(R,6)|max, for various numbers of subdivisions.

Since the computer used in this computation has only 15 significant figures, the
small magnitudes of |I(R, 27)| mean that the errors are at the level of the computer’s
round-off errors. In other words, these computations are as accurate as the computer
is capable of obtaining.

The error (|I(R,27)|) for R = 50a computed by 180 subdivisions is large com-
pared to other cases. Note that the energy balance computation is performed along
different paths for different number of subdivisions based on the same set of {C;}'s.
The error dramatically decreases as the number of subdivisions is increased to 360.

This means that the large error is caused by using 180 subdivisions and can be
further attributed to the assumption that both ¢**** and ,, are constant within
each subdivision. At larger radii, wave field changes significantly in a 2° arc angle
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Table 5-10: Comparison of Energy Integrations at Different Numbers of Sub-
divisions for 4-Fiber Square Arrangement at d = 3a and ka = 3

Integration Path | Subdivision | |I(R,8)|max |[I(R,2m)]|

180 4.34233 | 6.60583x10~!5

R=a 360 4.34220 | 3.66374x10~!4

720 4.34220 | 1.76248x10~1'5

180 2.90034 | 4.88956x10~1!3

R = 10a 360 2.89893 | 3.39805x10~!3
720 2,98056 | 1.44624x10~!4

180 2.99020 7.98483x10~6

R = 50a 360 2.89944 | 2.42882x10-!3
720 2.97982 1.51355x10"1®

Fig.5-14 Energy integration paths for 7-fiber hexagonal arrangement.,

(the angle of one subdivision when the entire circle of 360° is divided by 180). In
such cases, it is necessary to have finer angular subdivisions.

Second, consider the 7-fiber hexagonal configuration with d = 3a, at the fre-
quency ka = 2. This is the case in which all the repetitive solution procedures have
failed. Similarly, three integration paths are chosen, of radii R = 1.5a, 10a and
50a, respectively, as sketched in Fig.5-14. Again, the path of radius R = 1.5 falls
entirely within an area surrounded by the fibers, and the paths of radii 10a and 50a
represent the near-field and the far-field, respectively.

Pigure 5-15a shows angular distributions of the normalized time-averaged energy
flux density function (€) along the three integration paths. Figure 5-15b shows the
corresponding integration processes along these paths.

The computation using 720 subdivisions gives the final errors |I(R,2r)| as
1.24623 x 10~4, 1.04951 x 10~ and 6.43582 x 103 for the paths of radii R = 1.5a,
10a and 50a. All these results are at the level of the computer’s round-off errors.

Third, again consider the 7-fiber hexagonal configuraion with fiber spacing d =
da, but at the frequency ka = 4.3. As seen in Figs. 5-8 and 5-11, this is the case in
which the computed dominant eigenvalue has a modulus larger than unity and yet
the repetitive (recursive and implicit) solution procedures of Form I converge.
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(b) Numerical integration progresses,

Fig.5-15 Energy integration for 7-fiber hexagonal arrangement at frequency
ka = 2 along three paths, of radii: R = 1.5a, 10a and 50a, respec-
tively.

For this case, the multiple-scattering problem is solved twice: by Recursive Form
I and by the Supermatrix Form, Then energy computations are performed based
on these two sets of solutions. For each set of solutions, three integration paths,
of radii R = 1.5a, 10a and 50a, are chosen. Table 5-11 lists the numerical results
of the final errors of |I(R,27)|, as compared with the largest modulus of |I(R,8)|
during the process, |I(R,8)|max-

Results in Table 5-11 indicate that both solutions are correct. The solution
obtained by the Supermatrix Form is accurate to the accuracy capability of the
computer; and the converged solution obtained by Recursive Form I is accurate to
the desired accuracy, notwithstanding the fact that the dominant eigenvalue of the
system is larger than unity, which generally results in divergence.

So far, all problem confignrations considered are symmetric about the X-axis.
As the last example, consider a non-symmetric 4-fiber problem configuration as
shown in Fig. 5-16. This is part of the 7-fiber hexagonal configuration with 3 fibers
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Table 5—-11: Comparison of Final Errors During Energy Integrations Based
on Different Multiple-Scattering Solutions for 7-Fiber Hexagonal
Arrangement at d = 3a and ka = 4.3

Path Supermatrix Form Recursive Form I
radius | |[I(R,6)|max [I(R,2m)]| [I(R,0)|max [I(R,2m)|
R =1.5a 1.71527 9,21138 x 10716 1.71529 1,00230 x 10~5
R = 10a 3.70991 7.49574 x 10~18 3.70992 4,47507 x 10~°
R = 50a 4.17806 1,68737 x 10~ 4,17806 8,95014 x 10-6

removed.

The same three integration paths as for the case of 7-fiber arrangement are cho-
sen. The angular distributions of the normalized time-averaged energy flux density
function (€) along these integration paths are shown in Fig, 5-17a, and the integra-
tion processes are shown in Fig. 5-17b.

Fig.5-16 Geometry of a non-symmetric 4-fiber problem configuration, and
energy integration paths,

Using 720 subdivisions, the computed final errors |I(R, 27)| are 1,02570 x 10714,
1,72223 x 10714, and 4.68375 x 1076 for the paths of radii R = 1.5a, 10a and 50a,
respectively.

For this non-symmetric case, it is observed that the upper half plane of the an-
gular distributions of the normalized time-averaged energy flux density function (€)
are very similar to the corresponding distribution for the 7-fiber hexagonal distri-
bution at the same frequency, in Fig. 5-15. Distributions in the lower half plane are
quite different, but the asymmetry tends to diminish as the radius increases.

In conclusion, for all the four examples, when using 720 subdivisions, the fi-
nal errors |I(R,2r)| are all within the order of 10~'* when the multiple-scattering
problems is solved via Supermatrix Form. These examples verify that the programs
used for all the computations, from solving the multiple-scattering problem via the
Supermatrix Form to computing the total wave and the resulting displacements
and stains, are correct. Furthermore, even if the resulting system is theoretically
unstable when using the repetitive solution procedures, if the computation yields a
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(a) Angular distributions of normalized time-averaged energy flux density
function (é).
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6
(b) Numerical integration progresses.

Fig.5-17 Energy integration for non-symmetric 4-fiber configuration at fre-
quency ka = 2 along three paths, of radii; R = 1.5a, 10a and 50a,

respectively.
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converged solution, the solution will satisfy the energy balance requirement, and is
further verified to be accurate to the desired accuracy.

5-5 Concluding Remarks

In this chapter, details concerning the implementation of the various forms of the
the multiple-scattering solution given in Chapter 4 are discussed, and the computer
programs developed for this study are verified. The computational structures and
the characteristics of the various forms are discussed in great detail and summarized
in §5-3.5.

In the numerical computation aspect, at some particular frequencies or a range
of frequencies, various repetitive solution procedures may fail. But no particular
numerical difficulties has been encountered using the Supermatrix Form. Therefore
this form is suitable for computing a response spectrum of a multiple-scattering
system,

These examples show that the multiple-scattering solution is capable of handling
large numbers of scatterers. The limitation of its capability is set by the amount
of available computer memory, which unfortunately grows at a rate of ~N2M? as
the number of scatterers N increases, where M is truncation size which. With this
growth rate, increasing the memory size is not the way to realize the goal of “full-
scale” simulation. This necessitates the developments of the next chapter which
seeks to reduces the growth rate of the problem size so to extend the computability
of the multiple-scattering solution.
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Appendix

5-A Algorithms

In this appendix, algorithms for implementing the multiple-scattering solution are given
in a form of pseudo-codes. The style for the pseudo-codes essentially follows that in [9],
with some modifications. The main stylistic conventions include:

= A routine/function name is denoted by small-capitals, and a multi-word name is
hyphenated between words, such as FUNCTION-NAME;

= A keyword in a computational structure is emphasized by a bold typeface;

= A variable name is denoted by an italic typeface, and a multi-word name is connected
by underscore(s), such as variable_name;

= A block structure is indicated by an appropriate amount of indentation and the
cumulative amount of the indentation indicates the level of nesting of blocks;

= An assignment is indicated by an arrow (¢+);

= An entry of an array is denoted by the index number placed in a pair of sqare
brackets ([]).

These pseudo-codes do not specify variables for a routine, It is up to the programmer
to decide the types and scopes of necessary variables., Instead, the symbols used in the
mathematical formulation are used in these pseudo-codes. Minor procedures are described
only literally without further elaboration in order to keep the pseudo-codes concise and yet
self-explanatory.

The present implementation is designed for computating a segment of a response spec-
trum of the system. Routine MAIN-PROGRAM represents the main computational structure,

The central task in Routine MAIN-PROGRAM (Routine 5-A.1) is the determination of
the truncation term M by a trial-and-error approach. The procedure starts with a preset
trial value of M. It first checks whether the first truncation criterion in eqn. (5-30) is
satisfied; adjust M by increasing it by one at a time until this criterion is satisfied, or the
preset Mpax is reached. Mpax is the maximum value of M beyond which the problem cannot.
be handled by the computer. The routine then proceeds to satisfy the second truncation
criterion in eqn. (5-31) in the same manner,

It is noted that a complete evaluation of eqn.(5-31) involves a significant amount of
computation, and yet at this stage of computation, only a rough order-of-magnitude esti-
mates suffices. Reduction is achieved by estimating only the pair of i and j that gives the
largest error during the first trial. In Routine 5-A.1, this pair is identified as I and J. In
later trials within the while loop, only this particular pair is checked against eqn, (5-31).
Satisfying the third criterion in eqn, (5-32) is left out of this routine since it is not necessary
for some of the solution forms.

In the entire computation for a response spectrum, the preset M value is specified only
once, before entering the loop over the wave number k. In the computations that follow, M
determined for the previous k value is used as the preset value. This design is based on the
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observation (see §5-3.1) that, for a given problem configuration, M increases monotonically
as k increases monotonically.

Whenever M is increased during the trial-and-error, it is necessary to augment [L;;]
matrices, To augment a matrix means to enlarge its size, and fill the newly created elements
with appropriate values by performing necessary computations,

It may be argued that it is computationally efficient to initialize [L;;] to a large enough
size at the beginning and then reduce their size in later steps. But the disadvantage of
this approach is that, since [L;;] take a dominant portion of computer memory for the
computation, a large size would exceed the memory capacity of the computer for a problem
which may otherwise be accommodated.

On the other hand, T-matrices are indeed initialized to a large size, based on the effi-
ciency consideration. Since the computations for the T-matrices are outside of the multiple-
scattering solution, and there may not exist convenient formulas that can be used for the
computation.

The core of the multiple-scattering computation is done in the routine represented by
CORE-SOLUTION-PROCEDURE, This is a collective name for routines that correspond to
various solution forms. The name for each of these routines corresponds to one of the
solution forms; namely, RECURSIVE-FORM-I (Routine 5-A.2), RECURSIVE-FORM-II (Rou-
tine 5-A.3), IMPLICIT-FORM-I (Routine 5-A.4), IMPLICIT-FORM-I (Routine 5-A.5), and

Routine 5-A.1: Main Program Structure for the Multiple-Scattering Solution for Com-
putation of a Response Spectrum

MAIN-PROGRAM
setup geometry of problem
preset a truncation term M, and its upper limit My
for every frequency k (k increases monotonically)
build T-matrix for each scatterer at size Myax
e + from left-hand side of eqn, (5-30)
while ( e > tolerance )
M-M+1
if M > Mmax
then terminate computation
else e — from left-hand side eqn. (5-30)
build [L;;] matrices at size M
e+ 0
for everyi and j from 1 to N
e' + from left-hand side eqn. (5-31) for i and j
ife >e
thene«+ e, I i, J¢+j
while ( e > tolerance )
MeM+1
if M > Mpyax
then terminate computation
else augment [L;;] matrices
e + from left-hand side eqn. (5-31) fori =1 and j = J
CORE-SOLUTION-PROCEDURE (various)
if {C;} exist
then compute field quantities as desired



175

Routine 5—~A.2: Core Solution Procedure for Recursive Form I

RECURSIVE-FORM-1
for every j from 1to N
initialize {A;} to size M
resize [T';] to size M
{CJ) + (C)} + [T){A;}
e + a large value
while e > tolerance
e+ 0
for every j from 1 to NV
{C}™} «0
for every i from 1to N
ifi#j
then {C}*"} « {C}*"} + [L;;){C}"}
{Cj} + {Cj} +{C7™}
e + THE-LARGER-OF (e, |[[{C7*"}||c)
if e > preset large value (diverges}’
then erase all {C;} and EXIT
else for every j from 1 to N
(e} 1)

SUPERMATRIX-FORM (Routine 5-A.6). Such a routine performs the designated solution
procedure, and, unless the procedure fails, computes the wave expansion coefficients matri-
ces of the scattered waves {C;} as the final results.

In Routine RECURSIVE-FORM-I, the variables {C}**} and {C5"%} store the scattered
wave coefficients of the present and the previous order, respectively, and {C;} store the
summation of all orders of the scattered waves.

The function THE-LARGER-OF() takes two arguments and returns the larger as the
result. The function EXIT simply terminates the execution of the routine and returns to
the main program, which is what naturally happens at the end of any routine, To resize a
matrix means to change its size, and fill the newly created elements with zeros if the new
size is larger then the original.

In the event that the recursive procedure diverges, all the computed {C} are destroyed.
This is the mechanism to notify MAIN-PROGRAM not to compute any wave fields for a
diverged case, and for the next frequency in the computation, everything is started anew.

The first portion of RECURSIVE-FORM-II is to continue the task of determining the
truncation term M by the third criterion, eqn. (6-32). Again, this is done by the trial-and-
error approach while increasing M by one at a time. Afterwards, the structure of Routine
RECURSIVE-FORM-II is very similar to RECURSIVE-FORM-I. At the end, if a converged re-
sult is reached, RECURSIVE-FORM-II also computes the wave expansion coefficient matrices
of the scattered waves {C;} before it exits.

Routines IMPLICIT-FORM-I and IMPLICIT-FORM-II are similar to routines RECURSIVE-
ForM-I and RECURSIVE-FORM-II, respectively, Besides the obvious, there is a subtle dif-
ference in the initialization process. In the implicit routines, the results of the previous
computation, {C;} for IMPLICIT-FORM-I and [K ;] for IMPLICIT-FORM-II, are inherited as
the initial guessed solution for the present computation unless there is no previous solution
available, which can happen in two situations. One is during the first loop over k, and the
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Routine 5-A.3: Core Solution Procedure for Recursive Form II

RECURSIVE-FORM-1I
e « from left-hand side of eqn. (5-32)
while e > criterion
MeM+1
augment [L;;] matrices
e + from left-hand side of eqn, (5-32)
build [RR;;] matrices at size M
for every j from 1to N
resize [T';] to size M
(K] & [K5] + [T}]
e « a large value
while e > tolerance
e« 0
for every j from 1to N
[K3Y] «0
for every i from 1to N
ifi#j
then [K7°"] (K] + (L, |[K )RR, ]
(K] « [K;] + [K5™]
e + THE-LARGER-OF(e, ||[K}°"]|c)
if e > preset large value (diverges)
then destroy all [Kj] and ExIT
else for every j from 1 to N
[KCSH) & (K3
for every j from 1to N
initialize {A;} at size M
(C)} « IK;]{4;)

other is when the previous computation fails (diverges). In such cases, the initial guessed
solution is assumed as that of the first order scattering,

Routine SUPERMATRIX-FORM is straightforward. After the determination of the trun-
cation term M, all the matrices are assembled into supermatrices. The resulting linear
equation system can then be solved by many well-established solution algorithms, and many
of them are readily available. Numerous computations performed for this study have not
encountered any particular numerical difficulties, and virtually any established algorithm
for the linear equation system can be used.

Finally, it is noted that the computation for a 2-D multiple-scattering problem requires
a reliable and highly accurate numerical library for Bessel functions of various kinds. Com-
putation for high accuracy Bessel functions is not trivial, In this study, such a set of high
accuracy Bessel functions has been built; algorithms and other related issues are documented
in Appendix 5-B.
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Routine 5—-A.4: Core Solution Procedure for Implicit Form I

IMPLICIT-FORM-I
for every j from 1to N
resize [T';] to size M
initialize {A;} to size M
if {C;} exists
then resize {C;} to size M
else (C;)  [T;](4;}
{C{} « {Cj}
error e +— a large value
while e > tolerance
e+ 0
for every j from 1 to N
{C7*™} « [T){A,}
for every i from 1to N
ifi#j
then {C]*"} + {C3™} + [Ly){C3)
e + THE-LARGER-OF (e, ||{C7*} — {C3}||co)
if e > preset large value (diverges)
then destroy all {C;} and EXIT
else for every j from 1 to N
(c54} = (cp*)

5-B On Computation of Bessel Functions of

Real Arguments and Integer Orders

Bessel functions of various kinds, especially the first and the second kinds with real
arguments and integer order, are primitive in some engineering applications such as wave
motions and mechanical vibrations. From an engineering perspective, the “number of sig-
nificant figures” is one of the most important measures on the accuracy of a numerical
evaluation. However, computations for Bessel functions with such a relative accuracy have
never been easy, The difficulties are mostly due to the fact that Bessel functions are not an-
alytic functions and there is no single all-purpose formula readily available, although there
is an astonishingly large number of related formulas can be used. A naive endeavor will
likely see the failures of those formulas one after another, for the reasons ranging from lost
of accuracy to numerical over- and/or under-flows,

This appendix summarizes the efforts in the present study to build such routines, The
goal of the present implementation is to obtain Bessel functions as accurate as the hardware
is capable of giving, for orders no larger than 1000, or whatever restricted by the computer
(due to underflows and overflows).
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Routine 5-A.5: Core Solution Procedure for Implicit Form I

IMpPLICIT-FORM-I1
e « from left-hand side of eqn. (5-32)
while e > criterion
MeM+1
augment [L;;] matrices
e « from left-hand side of eqn. (5-32)
build [RR;;] matrices at size M
for every j from 1to N
resize [T';] to size M
if [K ;] exists
then resize [K ;] to size M
else (K ;] « [T]
(K39 + (K;)
e + a large value
while e > tolerance
e« 0
for every j from I to N
(K5 + [T5]
for every i from 1to N
ifi#j
then [K7°] + (K] + (Lol K3 “IRR;)
¢ « THE-LARGER-OF (e, [|[[K1*"] = [K3Nlo)
if e > preset large value (diverges)
then destroy all (K ;] and EXIT
else for every j from 1to N
(K5 = (K5]
for every j from 1to N
initialize { A;} at size M
{C;} « K {45}

Routine 5—A.6: Core Solution Procedure for Supermatrix Form

SUPERMATRIX-FORM
for every j from 1to N
resize [T';] to size M
initialize {A;} to size M
construct supermatrix {A}
construct supermatrix [Z — L]
solve the linear system [T — £]{C} = {A}
for every j from 1to N
extract {C;} from {C}



179

Brief Summary of Some Available Routines*

Classical computational methods for Bessel functions have been summarized in [10].
Some of currently available computer programs are briefly summarized in the following.

Specrun{! is a special function package which contains several routines for Bessel
functions. It has separate routines for the zero, first and arbitrary integer orders. The
routines for the zero and first orders are based on the author’s unpublished minimax rational
approximations for z < 8 and the approximation given in [12] for z > 8, The routine for
the arbitrary integer order is based on a general three-term recurrence algorithm discovered
by Olver and Sooknel!3-13), The routine for Y;(z) is adapted from those by Campbell[16]
and Temmel!7), Unlike routines for the first kind, this routine is for real orders. The entire
SPECFUN package is publicly available in NetLib?,

FNLiB(!8) is also a special function package which is also available in NetLib., The
limitation of this package is that it has only the zero and first orders of Bessel functions.
It uses truncated Chebyshev series, generated by other routines in the same package, to
interpolate some precalculated highly accurate values at several points. VFNLIB{!9 is the
vectorized version of FNLIB and is also available on NetLib,

Reference [20] and [4] also have routines for computing Bessel functions of various
kinds. However, both provide no error information.

Several Bessel function routines are available in the Association for Computer Machinery
(ACM) Algorithm Collection, also obtainable from NetLib. Algorithm 511(2!] js for Bessel
function of the first kind, with real argument and real order. Algorithm 64422 is another
complete set of Bessel functions, which is capable of computing Bessel functions of various
kinds with complex arguments and real orders with absolute accuracy. Algorithm 713[19]
is the same as VFNLIB, Algorithm 715{!1 is a duplication of SPECFUN.

For commercial mathematical software packages, IMSL’s routines{23] are essentially the
same as those in SPECFUN, but no specific accuracy information is given; NAG's routines[24]
are based on ACM’s Algorithm 6440222, MATLAB routines{25} use a similar strategy.

Fundamental Formulas

The series expressions for Bessel function of both the first and second kinds with real

arguments and integer orders are(10]
oo (-I-I) n+2k
- k\2
Jn(I) - "Zo(—l) k!(n + k)! (S'B.l)

! Sincere thanks to the following individuals who have pointed out some of available routines and
algorithms: Brent Carruth of University of Louisville, Kentucky, Stan Kerr of University of Illinois
at Urbana-Champaign, Dave Cawlfield of National Supercomputing Center for Energy and the
Environment at University of Nevada, Las Vegas, Robert S, Cargill Il of University of Pennsylvania
and Herman Rubin of Purdue University,

% NetLib is a repository of a large pool of high-quality mathematical softwares, The main pur-
pose of its establishment, sponsored by several academic institutions, is to electronically distribute
those public-domain softwares in an automated, fast, easy and efficient way on an as-needed basis.
NetLib is acessable via “anonymous ftp" from the following sites: research.att.com (AT&T Bell
Laboratory, Murray Hill, New Jersey) and netlib@ornl,gov (Oak Ridge National Laboratory, Oak
Ridge, Tennessee).
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S m—k-1)!,, \-n
wYa(e) = = Y BRI (g
k=0

=) -l-:t n+2k

+ Z(—l)"% [2In (3z) —o(k+1) —¥(n+k+1)] (5-B.2)
k=0

where

1 1
Y+ =-y+1+g+-+¢ (5-B.3)

and v = 0.577215664901532860606512 - - - is the Fuler constant. When n = 0, the first
summation in eqn. (5-B.2) should not appear. Equations (5-B.1) and (5-B.2) are sometimes
called the ascending series.

When z is large and much greater than n, the following asymptotic expansionst1% can
be used

Jn(z) \/wlepn(z) c0s§n(z) — Qn(z)sin&n ()], (5-B.4)
Ya(z) ~ \/;l':[Pn(x) sinén(z) + @n(z) cosén(z)], (5-B.5)
where
b(z) =z - T - %, (5-B.6)
2 _ 2 _ 2 _ 2 _ 2 _ 2 _
Poz)=1- 47 2!1()8(:)1; 9) , (4n*~1)(4n Z)((B?)‘ 2)4n’=49) o pn
2 __ 2 _ 2 _ 2 _
Qn(z) = (4n8x 1) (4n 1)(4;(8z)2)(4n 25) N (5-B.5)

Equations (5-B.4) and (5-B.5) are often called the Hankel uniform asymptotic ezpansions
or the descending series.

The following properties of Bessel functions, known as the recurrence relations, are often
used in computations of Bessel functions{10J;

2
Crta() = —-Ca(2) = Cami (), (5-B.9)
which can also be written in backward direction as
2
Ca-1(2) = ZCn(2) = Copa (2), (5-B.10)

where Cy,(z) can be either J,(z) or Y, (z). They are called the forward recurrence and the
backward recurrence, respectively,

Observations

Equation (5-B.1) is theoretically accurate for any n and = but only computationally
works well when both z and n are small or when n is very large, and it fails in other regions.

The main reason for the failure of eqn. (5-B.1) is the so-called cancellation error, which
occurs when a subtraction of two numbers cancels the first several significant figures. When
(/2 )*> > n + 1, the magnitude of each term under the summation in eqn, (5-B.1) grows by

(x/2)?

k(k +n)
are called ascending series.) Then, the magnitude of each term decreases as k increases.
The increase of the magnitude indicates a possible loss of significant figures during the
summation. If the maximum magnitude of some term in the series is ~ 10, while the final

a factor of

until some value of k is reached. (This is probably the reason the series
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result of Jp(z) is ~ 109 (¢ < 0), then, p — g — 1 significant figures may have been eventually
lost. At this point, eqn. (5-B.1) fails due to the loss of too many significant figures.

If after losing those significant figures, the result may still be possibly acceptable, suf-
ficiently large k should be taken to ensure that the truncation error does not contribute to
any further loss of significant figures. However, when n is large, an underflow often occurs
before such a term is reached.

The behavior of eqn. (5-B.2) is very similar to that of egn.(5-B.1). In addition, it is
observed that, for a small z, say z < 50, the computation for Yy (z) with various n using
eqn, (5-B.2) retains the largest number of significant figures when n is roughly around [1.2z],
where the square brackets denote the largest integer no larger than the number enclosed.

Equations (5-B.4) and (5-B.5) are valid only for large z and comparatively small n, Al-
though no particular numerical difficulty is expected, and the asymptotic theory guarantees
that if the approximations are accurate enough for argument X, they should be accurate
enough for any z > X, quantifying the validity region, such as the minimum X for a given
n, or the maximum n for a given z, has to be done with great care,

Using recurrence relations is a way to span the computability over the gap. It is gener-
ally regarded that, for computation of J,(z), the forward recurrence is unstable while the
backward recurrence is stable. For computation of Y, (z), the forward recurrence is stable
while the backward is not.

Extensive observatiors in this study have concluded that the stability of a recurrence
formula depends very little on the formula itself but largely on the property of Bessel
function. If the value of Bessel function outgrows, or at least grows at a same rate as,
the error, the recurrence is stable, otherwise it is unstable,

Furthermore, a generally stable recurrence does not guarantee a desired accuracy, since
the error still grows as it recurses. It has been encountered such a case in which the computed
J100(70) and Jgg(70), via eqn. (5-B,1), had 14 significant figures, Jo(70) computed by the
backward recurrence retained only 2 significant figures. This catastrophic case occurred
because at a few occasions in the course of recurrence, the cancellation errors are significant,
and these errors then propagate and may even be magnified to the end.

To suppress the propagation of such cancellation errors, an alternative two-step back-
ward recurrence formulaf27] can be used

4n(n - 1)
2

2(n~-1
Cn-2(z) = [ - l] Cn(z) - %C,ﬂ.l(z) (5-B.11)
when it is suspected that the cancelation error in the computed C,,—(z) using eqn. (5-B.10)

is severe, Similarly, the two-step forward recurrence is
dn(n+1 2(n+1
riate) = [P a0 - Kot e, o (5-B.12)

Since severe cancellation error tends to occur when z is close to one of the zeros of Bessel
functions, and it is known that the zeros of Bessel function are interlaced [28); that is, J,4, (z)
and Jn(2) do not reach their zeros at the same time, the use of these alternative recurrence
formulas substantially reduces the chance a severe cancellation error being propagated to
the very end of a recurrence.

It is also observed that when using the backward recurrence, say, starting with Jy(z)
and Jp—1(z), the larger the M is, the more accurate the Jo(z) will be.
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Implementation Considerations

The present implementation is aimed at the application in solving problems of multiple-
scattering of elastic waves. In such a problem, Bessel functions of all orders up to some
predetermined maximum order Nyayx are all need for a given argument. For such a problems
nature, the use of the recurrence formulas is generally preferred,

Since each of J,(z) and Y,(z) takes a considerable amount of effort to compute, in
which process all J,(z) and Y, (z) from n = 0 to Nyax are likely to have been computed, it
is computationally efficient to keep the entire series in the compute’s memory for possible
later uses. In fact, several such series should be kept since in an application program, there
might be a simultaneous need for Bessel functions of a few different arguments,

In the present implementation, two parameters are configurable by the users: the maxi-
mum order of Bessel functions needed, Nyax, and the number of series of Bessel functions to
be kept in the memory simultaneously. In the following discussions, such a series of Bessel
functions is called a table. That is, a table contains Bessel functions for the same argument
from orders from n = 0 up to Npax.

The infra-structure of the present implementation of Bessel functions consists of three
levels of routines. The top level is an administrative routine which actually only manages a
number of tables of Bessel functions. This is also the front-end routine to be called by the
user. The next level is a table-generation routine which generates table entries as directed
by the administrative routine. The bottom level is the routines that actuall; implement
eqns, (5-B.1) and (5-B.4) or eqns. (5-B.2) and (5-B.5) and to be called by the generation
routine to generate the seeds for a recurrence,

Routines 5-B.1 (Routines J(n,z)/Y(n,z)) represent such a infra-structure, Note that
Routines 5-B.1 contain two routines, J(n,z) and Y(n,z) for Bessel functions of the first
and the second kinds, respectively. When the user invokes the function, by providing the
values of z and n, the administrative routine first checks if the requested argument has been
computed previously. If the table for this argument has been computed, it simply looks up
the table and returns the value at the requested order. If the requested argument is a new
one, it then calls the appropriate generation routine to gerierate a new table, and finally the
administrative routine looks up the table and returns the value,

An administrative routine manages two lists: argument_list, which is an array that
contains the arguments of the Bessel function that have been previously computed, and
table_list, which locates the tables of Bessel functions for the arguments in the argument_list,

An administrative routine also dispatches two subroutines, as shown in Routine 5-
B.2, Subroutine LooK-UP-ENTRY(z) searches the argument_list for a specified argument
z, and returns the corresponding table. Subroutine CREATE-NEW-TABLE(z) creates a new

Routine 5-B.1 Top Level Administrative Routines for Bessel Functions
3(n,z)/Y (n, )

table + LOOK-Up-ENTRY(z)
if ( not found )

then table <~ CREATE-NEW-TABLE(Z)

GENERATE-J-TABLL(z, table) /GENERATE-Y-TABLE(z, table)

if(n<0)

then return (—1)" x table [|n|]

else return table [n]
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Routine 5-B.2 Administrative Subroutines
Look-UP-ENTRY(z)
for every i from Npax to 1 in descending order
if ( £ = argument_list [i] )
then return table_list [i]
return not found

CREATE-NEW-TABLE(z)
count + 0
for every i from 1 to Nyax
if ( table_list[i] is occupied )
then count « count + 1
if ( count = Npax )
then for every i from 2 to Nyax
argument_listi — 1] « argument_list(]
table_list[i — 1] « table_list ]
else table_list [count] « allocate memory
argument_list [count) + z
return table_list[count]

table for the specified argument. This subroutine also performs the house-cleaning for the
administrative routine. When CREATE-NEW-TABLE(z) is called, it first counts the number
of arguments enlisted in the argument_list. When it locates the first vacant table slot, the
table slot is returned to the administrative routine. If all the configured table slots have
been occupied, it then discards the oldest table to make room for the new one.

The administrative routine then r..ses the table slot to the second level routine to
generate Bessel functions to fill in the assigned table slot. Generations of Bessel functions
are different for the first and the second kinds, They are discussed separately in the following
two subsections.

Generation of J,(z)

For a very large z (z > 1000), only the forward recurrence is used to compute all orders
up to the highest desired order, with seeds being Jo(z) and J) (z) computed by eqn. (5-B.1).

For a small to moderately large argument, the backward recurrence is used. However, a
direct use of eqn. (5-B.10) requires accurate seeds, which many not be readily computable to
the desired accuracy by using eqn. (5-B.1). Sookne’s three-term recurrence algorithm [13-141
avoids the needs for accurate seeds, and thus is adopted.

Theoretically, Sookne’s algorithm can be used to obtain Besse! function of the first kind
of virtually any accuracy!'4), The algorithm works as follow. For a given argument z,
choose a high enough order M, and set jpr41(z) = 0 and jm(z) = 1. Repeatedly use the
backward recurrence to compute jp(z) until n = 0, Then normalizing the entire series j,(z)
by a normalizing factor A gives a series of Bessel functions of the first kind. That is

(M/2)

Jn(.’l) = jnﬁ” A=2 Z jzn(l) - ]‘o(ﬂ!) (5-B.13)

n=0
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This algorithm is based on the following identity of Bessel functions{!® of the first kind

[e o]
Jo(z) +2) " Jan(z) =1 (5-B.14)
n=1

Sooknel!4) has described a method to choose the particular value of M for a desired
accuracy. Since the higher the starting order M, the more accurate the results, for simplicity,
in the present implementation, M is chosen as large as possible with the only criterion that
no overflow should occur.

Furthermore, in order to take full advantage of computer’s capability, Sookne’s original
algorithm is slightly modified as follow: suppose the smallest positive floating number (in
double precision) can be represented by the implementing computer is 10~X, then the seeds
for the recurrence are set as jpr+1(z) = 0 and jpr(z) = 10~K, This modification allows a
larger M to be used to achieve a higher accuracy.

The starting order M is determined such that during the course of the recurrence, the
maximum value of A is about 10%, which is the largest positive floating number (in double
precision) can be represented by the implementing computer, This way, after the normal-
ization, O(Jp(z)) = 107X, An underflow will certainly occur in such a normalization
process, which need to be watched for. On the other hand, this also ensures that for all
the computed J,(z) before the underflow occurs, the values are accurate to the best of the
computers capability,

Since in general M >> z, the leading term in the ascending series expression gives a
very good order-of-magnitude approximation of Jp(z). Thus, let 102X equal the leading
term approximation for Jjs(z), that is

()" 3~ v (s) " = o1

where Sterling formula for large M,
M!=V2rMMMe-M (5-B.16)

has been used. As only a rough estimate of M is needed, the factor V27 M can be simply
ignored, and the approximation can be written as an equation. Taking the logarithms of
base 10 on both sides of eqn. (5-B.15) gives

M [1og (%) ~ log M] +2K =0 (5-B.17)

Next, Newton's iteration is used to obtain an approximation for M, which gives
? 1) g

MM+ 0.4343M (™) 4 2K
~ log M(™ —logz +0.30103

where the superscript (m) denotes the iteration step. In the present implementation, the
initial value M(?) is empirically chosen as z + K, and Newton’s iteration is performed only
once.

Since no-overflow is a crucial condition to ensure the accuracy, the computation process
has to be closely monitored for overflows. When the recursion reaches an order n’ such that
the summation A is very close to 10¥, the recurrence is terminated, and M is decreased by
n' and the entire process is restarted over,

For further reduction of possible errors, especially the propagation of cancellation errors,
during the recurrence, the result of each recurrence step is compared with J,(z) and Jp 4.1 (z).

(5-B.18)
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If the result is small compare with either of the two, which predicts a severe cancellation
error, this result will not be used in the next recurrence, the alternative two-step recurrence
relation in eqn. (5-B.11) is used instead.

Routine GENERATE-J-TABLE(z, table) summarizes the above process, In this routine,
when the argument z is large, it calls the third level routines to compute the seeds a and b,
and then dispatches Subroutine FORWARD-RECURRENGE(a, b, start_n, z, table) to perform
the recurrence. When the argument is small, it first estimates M and dispatches Subrou-
tine BACKWARD-RECURRENCE(a, b, start_n, z, table) to perform the recurrence. Since it is
known that |Jo(z)| < 1, when the recurrence fails (overflow occurs), the table entry that
corresponds to Jo(z) records n' + 2 where n' is the order at which the overflow occurs, then
M is reduced by this number and the recurrence subroutine called again. The process is
repeated until no overflow occurs. Note that recording the overflow is done in the recurrence
subroutine.

Both Subroutines FORWARD-RECURRENCE(a, b, start_n, z, table) and BACKWARD-RE-
CURRENCE(a, b, start_n, z, table) have the same invocation form, in which a and b are the
recurrence seeds, start.n is the starting order, z is the argument of the Bessel functions to
be generated, and table is the assigned table slot to store the results.

Within both recurrence routines, detecting a severe cancellation error is performed in
each step. Whenever it is suspected that the cancellation may be large, the alternative
two-step recursions is performed. However, two-step recurrence is only used as a temporary
substitute. For the next step, the normal single-step recurrence is resumed,

At the end of Subroutine BACKWARD-RECURRENCE, the normalization is performed
if the recurrence is successful. Otherwise, the subroutine records the order at which the
overflow occurs and exits. Also note t} ~t the normalization is only performed when the
starting order start_n is greater than 40, This is a mechanism to enable the routine to be
used as a regular recurrence for use in generating Bessel functions of the second kind, which
will be discussed later.

Subroutine STORE(v, n, table) checks if the order n is within the desired range. If it is,
the value v is stored in to the assigned table. The value v is discarded if it is not within
the desired orders. Thus it is necessary to compute A within Subroutine BACKWARD-
RECURRENCE.

Generation of Y, (x)

Computation for Bessel functions of the second kind is much simpler. As mentioned
before, forward recurrence is stable for computation of Y,(z). However, as a precautionary

Routine 5-B.3 Routine for Generating Bessel Function of the First Kind

GENERATE-J-TABLE(z, table)
if (z <1000 )
then a + Jo(z) according to eqn. (5-B.1)
b + Ji(z) according to eqn. (5-B.1)
FORWARD-RECURRENCE(a, b, 1, z, table)
else M ¢ according to eqn. (5-B.18)
BACKWARD-RECURRENCE(0, 10~K | M, z, table)
while ( table[0] > 1)
M — M — table[0]
BACKWARD-RECURRENCE(0, 10~K, M, z, table)
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Routine 5—-B.4 Subroutine for Forward Recurrence

FORWARD-RECURRENCE(a, b, start_n, z, table)
STORE(a, start_n — 1, table)
STORE(b, start_n, table)
n + start_n
while (7 < Npax )
ce2h-a
STORE(c,n + 1, table)
if(c<0laorc<0.1b)
then d « 22l 2ntl),
STORE(d, n + 2, table)
a¢+c¢ bed, nen+2
elsea+b; bc nen+1l

Routine 5-B.5 Subroutine for Backward Recurrence

BACKWARD-RECURRENCE(a, b, start_n, z, table)
A+0
n ¢ start_n
while (n<0)
ce2p—q
STORE(c,n — 1, table)
if (n isodd)
then A «+ A +¢
if (c<0laorc<0.1b)
then d + 4"‘:{”b - 2(";"a
STORE(d, n — 2, table)
if (n is even)
then A « A +d
a¢+c bed nen-2
elsea<b; bec nen-1
if (A >10%)
then table[0] < n + 2
ExiT
if (start.n >40)  bfthen A + 2A — table 0]
for every n from 0 to Ny ,x
table [n] + table [n]/A

Routine 5-B.6 Subroutine for Storing Computed Results
STORE(v, n, table)
if (0<n < Npax )
then table [n] + v
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Routine 5-B.7 Routine for Generating Bessel Function Of The Second Kind
GENERATE-Y-TABLE(z, table)
if (r<30)

then n « [1.2z]
a + Y,(z) according to eqn. (5-B.2)
b «— Yn11(z) according to eqn. (5-B.2)
BACKWARD-RECURRENCE(b, «,n — 1, z, table)
FORWARD-RECURRENCE(a, b, n, z, table)

else a + Yo(z) according to eqn. (5-B.2)
b « Yi(z) according to eqn. (5-B.2)
FORWARD-RECURRENCE(a, b, 0, z, table)

measure, when the argument is small, backward recurrence is used to take the advantage
that the largest number of significant figures are retained at orders roughly (1.2z].

In the present implementation, when z is small, (z < 30), the seeds are chosen as
Yn(z) and Y41 (z) and generated by eqn. (5-B.2), where N = [1.2z]. Then, the backward
recurrence is used to span to the orders from 0 to /N — 1 and the forward recurrence is used
in the range from NV + 2 to Npax. When z is large (z > 30) the seeds are Yp(z) and Y;(z)
generated by eqn. (5-B.5), and only the forward recurrence is used. Accordingly, Routine
GENERATE-Y-TABLE(z, table) is straightforward.

In order to maintain the best efficiency of the computer programs, many of the sub-
routines and the third level routines (whose algorithms are not given since they simply
implement the designated equations) are shared by GENERATE-J-TABLE and GENERATE-
Y-TABLE. A minor problem arises in the backward recurrence routine: Routine GENERATE-
Y-TABLE does not need a normalization to be performed, whereas Routine GENERATE-J-
TABLE does. In GENERATE-Y-TABLE, the backward recurrence is only used when z < 30,
in which range the starting order is [1.2z]. On the other hand, the backward recurrence used
in GENERATE-J-TABLE has a starting order of roughly K, which is usually about 300 in
most computers. Therefore, a mechanism is set up in Subroutine BACKWARD-RECURRENCE
such that the normalization will be performed only when the starting order start.n is larger
than 40,

Verification

The computed Bessel functions have been verified by computing the following Wronskian
relation (10 0
Jn+1(2)Yn(z) — Jn(2) Yot (z) = v (5-B.19)

The verification is based on the assumption that if the result of the left-hand side of
eqn, (5-B.19) has S significant, figures that match those in the result in the right-hand side
of eqn. (5-B.19), then all values involved in the left-hand side are said to have at least S
significant figures,

All the integer values of both n and z in the range 1 < z < 100 and 0 < n < 100 have
been tested. The verification shows that the largest and the smallest number of significant
figures among the computer Bessel functions are 15 and 11 respectively, and the number of
significant figures averaged over all 10100 results is 14,51.
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Scatterer
Polymerization

Abstract: The methodology of scatterer polymerization is proposed,
implemented and verified, This is a scatterer-building process that
constructs abstract scatterers to be used in general multiple-scattering
solution. The purpose of building such an abstract scatterer is to reduce
the number of scatterers that enters the multiple-scattering solution
while maintaining a large number of actual scatterers, This is a way
to expand the computability of the multiple-scattering solution,
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Nomenclature

General Conventions
= Matrices are denoted by bold-faced symbols; symbols for column matrices are enclosed by

flower brackets ({}); symbols for rectangular matrices are enclosed by square brackets ([}).

» When referring to a matrix entry, the entry’s indicial number is to appear as subscript(s)
outside the brackets. This distinguishes the indicial subscript(s) from the subscript(s), if
any, associated with the entire matrix,

Symbols
ac

a,

{Al'}l {Bi}i tre
b

(di, 0:0)

€1,€2
{H(r,6)}
{H(I',’, 0!)}
HiY(2)

1

{J(r,0)}
{J(ri,6:)}
Jn(2)

k

(K]

M

N

N

Q4]

[Ti]

[TtotaI]

¢

¥
Superscripts
T

*

Subscripts
i,j
m,n

Radius of the fiber in the fiber-interphase-matrix micromechanics model
for fiber reinforced composites.

Core radius of a molecule; that is, the radius of the circle that passes
through the origin of the local coordinate systems farthest away from
the origin of the global coordinate system,

Radius of a scatterer: the radius of the smallest circle that circumscribes
the entire scatterer or all scatterers that make up the molecule.

Wave expansion coefficient (column) matrices for Scatterer ¢

Outer radius of the interphase in a fiber-interphase-matrix micromechan-
ics model for fiber reinforced composites.

Global polar coordinates of the origin of Scatterer i's local coordinate
system.

T-matrix comformity errors.

Singular wave expansion basis in the global coordinate system,
Singular wave expansion basis of Scatterer i,

Hankel function of the first kind and the n-th order.

Unit of imaginary numbers, i = /=1,

Regular wave expansion basis in global coordinate system,
Regular wave expansion basis for Scatterer i.

Bessel function of the first kind and the n-th order,

Wave number of SH waves.

The multiple-scattering kernel matrix of Scatterer 1,
Truncation term (truncation size) for infinite series and matrices.
Total number of elements in a multiple-scatterer configuration.

Total number of scatterers in a multiple-scatterer configuration. A scat-
terer can be an element or a molecule.

Global coordinate translation matrix for Scatterer 1.
T-matrix of Scatterer 1,

T-matrix of an assemblage of scatterers.

Complex amplitude of displacement w for SH waves,
The first norm of matrix [T*°**!], & = J[T***¥]].

Matrix transposition.
Matrix conjugate transposition,

Scatterer identifier.
Indicial number for a matrix entry,
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6-1 Introduction

In Chapter 4, a formal solution for general multiple-scattering problems is formu-
lated. The formal solution is analytically exact and in theory is capable of handling
arbitrary numbers of similar or dissimilar scatterers. However, in Chapter 5, it
is observed that the main limitation of its capability is the amount of computer
memory available for the computation. The examples in Chapter 5 indicate that
the computer used in the present study can only accommodate problems having
roughly 30 fibers.

Furthermore, it is shown in Chapter 5 that even in an optimal situation in which
scatterers are evenly distributed around a clustered area, the problem size, the size
of computer memory required to solve the problem, grows at least at a rate of
~N?, With such a high growth rate, even if the computer memory were doubled,
the computer could only accommodate a problem having about 45 fibers. These
numbers of fibers are far too limiting for the goal of “full-scale simulation” of this
thesis.

Simply expanding the computer memory is not an economical way, if feasible
at all, to expand the computability of the multiple-scattering solution, Alternative
ways must be sought. A computational methodology called the scatterer polymer-
ization is developed in this chapter as an attempt to reduce the growth rate of the
problem size.

The central concept in the multiple-scattering formulation is the T-matrix. The
T-matrix of a scatterer is the transformation matrix that relates the wave expansion
coefficients of the scattered and the incident waves. The complete definition of the
T-matrix is given in Chapter 3. In essence, T-matrices of all the scatterers involved
are all that are necessary for solving a multiple-scattering problem,

The basic idea of the scatterer polymerization methodology is to exploit this fact
further to represent an assemblage of a number of scatterers by a single T-matrix,
thus effectively reduce the entire assemblage to a single but abstract scatterer. This
way, an assemblage of a large number of scatterers can be treated as consisting
only a few abstract scatterers but each abstract scatterer contains of a fair number
of actual scatterers. The effect is that the number of scatterers involved in the
multiple-scattering formulation is significantly reduced, thus the problem size.

In Section 6-2, this idea is explained in detail, including examples illustrating
the reduction of the problem size growth rate. A full mathematical formulation
for the methodology of scatterer polymerization is presented in Section 6-3, and
verifications through numerical examples are presented in Section 6-4. Finally, some
computational behaviors of the methodology are explored via numerical examples
in Section 6-5.
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6-2 Idea of Scatterer Polymerization

In this section, the idea of scattered polymerization is explained with the postu-
lation that it is possible to treat an assemblage of scatterers as a single but somewhat
abstract scatterer. To treat an assemblage as a single scatterer means the T-matriz
for the assemblage can be found. This postulation will be proved, by providing the
mathematical formulation for the T-matrix for the assemblage, in the next section,

Consider, for example, the consecutive computations depicted in Fig.6-1 in
which different numbers of fibers are assembled during different stages of the com-
putation.

Fig.6-1 An example of scatterer polymerization,

In the first stage as indicated by the left-most hollow arrow, 4 individual scat-
terers, single fibers as shown to the left of the arrow, are used in the assemblage, as
shown to the right of the arrow. The multiple-scattering solution can be applied to
the assemblage. Instead of finding the response in the steady state, the T-matrix for
the 4-fiber assemblage is found. In this process, a single fiber is called an element
and the assemblage is called a molecule.

In the second stage as indicated by the center hollow arrow, 4 individual scatter-
ers, molecules generated from the previous stage as shown to the left of the arrow,
are used in the assemblage, as shown to the right of the arrow. Since the T-matrix
for an individual scatterer (molecule) has been found in the previous stage, the
multiple-scattering solution can be applied to the assemblage and the T-matrix for
the 16-fiber assemblage is found. The assemblage is called a polymerized molecule.

Similarly, in .the third stage as indicated by the right-most hollow arrow, the
individual scatterers in this stage are polymerized molecules whose T-matrix has
been found the the previous stage. The assemblage is yet another polymerized
molecule, whose T-matrix is to be found in this stage.

The entire process, or any stage of it, is called the scatterer polymerization in
analogy to common material structures, Briefly, it can be summarized as that the
scatterer polymerization is a scatterer-building process in which a number of scatter-
ers are assembled and analyzed; and as the result, the T-matrix for the assemblage
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Table 6-1: Comparison of Problem Sizes of Scatterer Polymerization
Methodology and Multiple-Scattering Solution

Scatterer Polymerization | Multiple-Scattering

N | N | Size (~N2M?) | N | Size (~N?M?)
Stage 1 | 4 | 4 ~16 M2 4 ~16M*
Stage 2 | 4 | 16 ~16 M2 16 ~256 M*
Stage 3 | 4 [ 64 ~16M* 64 ~4096 M*

is found, which can be used to represent the assemblage as a single scatterer in later
computations,

In future discussions, it might be beneficial to make several terminological dis-
tinctions. The term scatterer is used to inclusively refer to either an actual scatterer
or an abstract scatterer built by a scatterer polymerization process. The abstract
scatterer built by a scatterer polymerization process is called a molecule. A poly-
merized molecule is also called a molecule for simplicity. A single actual scatterer
is an element, and for the particular considerations in this thesis, it is more often
called a fiber. For example in Fig. 6-1, there are 4 scatterers in every stage; the as-
semblage consists of 4 fibers in the first stage, 4 molecules or 16 fibers in the second
stage and 4 molecules or 64 fibers in the third stage.

Recall briefly the analysis of the problem size in §5-4.3 in Chapter 5. In the
formal multiple-scattering solution, the problem size growth rate is ~N2M?2, where
N is the number of fibers, M is the truncation size of the problem, and ~ denotes
the asymptotic behavior when all other problem parameters remain the same.

By using the scatterer polymerization methodology, the problem size now can
be denoted as ~N2M? where N is the number of scatterers. Although both N
and N denote the number of scatterers, they have different meanings where lies the
difference in problem sizes. More precisely, /N denotes the number of fibers; whereas
N denotes the number of molecules,

Assume that the configurations shown in Fig. 6-1 are to be analyzed side-by-side
by using the scatterer polymerization and by directly using the multiple-scattering
solution, and assume that the same truncation size M is used in both approaches,
Table 6-1 lists the corresponding memory requirements in each stage. From Table
6-1, it becomes obvious that the problem size is tremendously reduced by using the
scatterer polymerization process.

It must be noted that Fig.6-1 is merely an example which happens to have
the same number of identical scatterers in each stage. There is no such limitation
inherent of the scatterer polymerization methodology, as with the formal multiple-
scattering solution. In fact, even molecules of different degrees of polymerization
can be combined, which entails great flexibilities to tailor the polymerization process
at will.
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6-3 Mathematics of Scatterer Polymerization

As stated earlier, to treat an assemblage of scatterers as a single scatterer is to
represent the assemblage, in analogy to a single scatterer, by a single T-matrix for the
assemblage for later computations. Thus it is necessary to begin the mathematical
formulation for the scatterer polymerization with a brief review of the definition of
the T-matrix for a scatterer, which has been discussed in great detail in Chapter 3.
Considerations are restricted to the case of SH wave (horizontally polarized shear
wave) scattering problems.

6-3.1 T-Matrix for Single Scatterer

As discussed in Chapter 3, the T-matrix for a scatterer specifies a single-scatterer
problem configuration, a coordinate system and a set of wave expansion bases. In
the single-scatterer problem configuration, a single scatterer is located at the origin
of a coordinate system, and throughout this thesis, a polar coordinate system is
used, whose coordinates are denoted as (r,6).

Within the definition of the T-matrix, the incident wave is expressed as, in
matrix notation,

¢ = {A}T{J(r,0)} (6-1)
where {A} is the wave expansion coefficient matrix for the incident wave, and
{J(r,0)} is the regular wave expansion basis, whose element in the n-th column
(n= —00,-++,—=1,0,1,-- ,OO) is

{J(r,0)}n = Jn(kr)e™? (6-2)
where k is the wave number, J,(2) is the Bessel function of the first kind at order

n, and ¢ denotes the unit of imaginary numbers, i = /—1.
The scattered wave is expressed as

¢ = {B}T{H(r,0)} (6-3)
where {B} is the wave expansion coefficient matrix for the scattered wave, and
{H(r,8)} is the singular wave expansion basis, whose element in the n-th column
(n= —(XJ,---,—].,O,].,"-,OO) is

{H(r,0)}n = H (kr)ein? (6-4)
where H{"(z) is the Hankel function of the first kind at order n.
The total wave in the host medium can be written as

gt = ¢ + ¢* = {AYT{J(r,6)} + {B}T (H(r,6)} (6-5)
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In other words, the total wave consists of two wave: the incident wave expressed in
the regular wave expansion basis and the scattered wave expressed in the singular
wave expansion basis,

The T-matrix for the scatterer relates the wave expansion coefhcients of the
scattered and the incident waves such that

{B} = [T|{A}. (6-6)

6-3.2 T-Matrix for Assemblage

Recall the formal solution for a multiple-scattering problem involving N scat-
terers. The solution gives the total wave in the host medium as

N N
gt = ¢+ Y i = ¢+ _{Ci} {H(r1,6:)} (6-7)

i=1 i=1
where ¢; is the total scattered wave scattered by Scatterer 4, (i, 6;) denotes Scatterer
i's local polar coordinate system, and {C;} is the wave expansion coefficient matrix
for ¢;, which can be solved according to the following

N

{C;} =I[T;}{A4;} + Z[Lij]{Ci} (6-8)
=

[Lij] = [T5][Ri;]" (6-9)

where [T';] is the T-matrix of Scatterer j, [R;;] is the coordinate translation matriz
between Scatterers 7 and j and

[Rijlmn = &lm™% HE) | (kdy;) (6-10)

and (d;j, 6;;) is the coordinates of the origin of Scatterer i’s local coordinate system
in Scatterer j’s local coordinate system.,

Assume a global polar coordinate system has been built, whose coordinates are
referred to as (r,6). The geometrical relation between the global coordinate system
and Scatterer i's local coordinate system is depicted in Fig. 6-2.

P
r i
6,0 0
4 0
[ i
0 L

Fig.6—-2 Geometries of local and global polar oordinate systems,

In Fig. 6-2, P is an arbitrary field point which can be located by either the global
polar coordinates (r,60) or Scatterers i's local polar coordinates (r;,6;). The global
coordinates (d;, 0;0) locate the origin of Scatterer i's local coordinate system o;, The
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coordinates (d;,@p;) in Scatterer 7’s local coordinate system locate the origin of the
global coordinate system O. It can be found that
Ooi =00 —7 (6-11)

Also, recall Graf’s addition theorem of Bessel functions!!?

H“’(w ¢in ® mp = Z H{ 0 (2) J(z) na (6-12)
Jm(w) mﬂ— _2: Jm+n(Z)Jm(Z) (6-13)

where mm and n are integers. Equation (6-12) is valid only when |Z| > |ze*®|;
whereas eqn. (6-13) is valid throughout the plane. For actual distances (meaning Z,
z and w are real and positive), the geometrical relations of the parameters involved
are sketched in Fig. 6-3, and the validity condition for eqn, (6-12) reduces to Z > .

Fig.6-3 Geometries of Graf’s addition theorem.

Comparing the geometries in Figs. 6-2 and 6-3, with the [ollowing substitutions
z — kd; w — kr; Z = kr a— 0 —6p; B—0,—-0

eqn. (6-12) can be written in complex notation as

o0
H (kri)e™ =0 = 5 7 Hppl o (k) Jn (kd;)e™ (=001 (6-14)

n=-—oo

With slight rearrangements, it can be further written as

oo
H (kr;)eimbi = 3" ellm=nlbio J_ (kd;) HY" (kr)e™d (6-15)

n=—oo

where the following relation of Bessel functions!?]

Jon(2) = (~1)"Jn(2) = 6" Jn(2) (6-16)
and the relation between 6;0 and 8p; in eqn. (6-11) have been used. In matrix form,
{H(r:,6:)} = [Q;]{ ¥ (r,6)} (6-17)

where the element of matrix [@Q;] at the m-th row and the n-th column is
[Qi)mn = elm=mbio g (kd,) (6-18)

and [Q;] is called the global coordinate translation matriz of Scatterer i,
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By a similar procedure using eqn. (6-13), it can be shown that the transformation
for the regular wave expansion basis is

[e,)

Jm(kr,-)ei'“"" — Z ei(m—-n)ﬂ.-oJm_n(kdi)Jn(kr)einB (6—19)
or, in matrix form
{J(ri,6:)} = [Q:{J (r,6)} (6-20)

Note that eqn. (6-19) is valid throughout the plane, and can be interpreted as
translating the coordinate system to the one that is originated at point (di,6;0). The
same relation can be applied to translate the global coordinate system to scatterer
i's local coordinate system by nothing that the new origin is at (di,00i). That is,

[0 )
Tm(kr)ei™ = 3" eim=mloi . (kd;)J,(kri)ei™? (6-21)

n=-o00

On the other hand, eqn. (6-20) can be rewritten as

{(J(r,0)} = (@i {J(r, 6)} (6-22)
Comparing eqns. (6-21) and (6-22) gives
(1Q47Y) = eitm=mfoig,_p (kd) (6-23)

where ([Qi]™!),,, denotes the m-th row and the n-th column element of [Q;]7}; that
is, the inverse of [Q;]. Combining eqns. (3-49), (6-23) and (6-11), it can be further
shown that

(IQd™) = (=)™ "Qilmn (6-24)
which can alternatively be derived from the following Neumann’s addition theorem
of Bessel functions®

Im(z —y) = 2 Im+n(Z)JIn(y) (6-25)

n=—oo
by letting z = y = kd;.
With the coordinate transformation, all the scattered waves can be re-expressed
in the global coordinate system. The total wave in the host medium then becomes

N
grotel = gine + 5 {Ci}T(Qi){ H (r,60)} (6-26)
i=1
Denote N
{B*=l} = 3[Q.)"{Ci} (6-27)
i=1

then, eqn. (6-26) becomes
o = {AT{I(r,0)} + {B}{H(r,0)} (6-28)

where the incident wave has been written in its wave expansion form as in eqn. (6-1).
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Comparing eqns. (6-5) and (6-28), it is noted that the two equations are in the
identical form: the total wave in the host medium consists of the incident wave plus
the scattered wave. Since the system under consideration is linear, in analogy to
eqn. (6-6), the T-matriz for the assemblage can be defined such that

(B} = (1] 4} (6-29)

That is, the T-matrix for the assemblage is the matrix that relates the wave expan-
sion coefficients of the incident and the total scattered wave of the assemblage of
scatterers expressed in a common polar coordinate system,

6-3.3 Computation of T-Matrix for Assemblage

Recall that there are two forms of formal solutions for the multiple-scattering
problems presented in Chapter 4. Correspondingly, there are two forms of compu-
tational methods for the T-matrix for the assemblage.

Form I

This is the form in which the definition of the T-matrix for the assemblage
is given in §6-3.1. There is no readily available analytical expressions for [T"°'2!],
Rather, a computational method is described below.

Note that, from eqn. (6-29), if {A} is set up in such a way that only one element
of {A}, say {A}, is non-zero and all the others are zero, the resulting {B'°‘2}
equals a column of [T"°*?!] multiplied by the common factor {A},. This suggests
the following computational method:

For every value of n, set {A}, = 1 and all other elements of {A} to zero,
From this, compute a set of {4;}, and solve the multiple-scattering problem of the
assemblage subjected to the hypothetical incident wave represented by this set of
{A;}. This multiple-scattering solution gives a set of wave expansion coefficient
matrices of the scattered waves {C;}. Assemble this set of matrices according to
eqn, (6-27), then the resulting matrix {B''3'} is the n-th column of [T****'], The
complete matrix [T'***!] is obtained after n has run through the desired index range.

In computing {A;} from {A}, it is noted that they represent the same incident
wave expressed in different coordinate systems. That is

¢ = {AYT{J(r,0)} = {A}T{J (r:,6:)} (6-30)

By using the coordinate transformation in eqn.(6-20), the last equation can be
rewritten as

{4} {J(ri,6:)} = {A}T[QNI (r, 6)} (6-31)
which gives

{Ai} = (Q]7T{A} (6-32)
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Routine 6-1: Routine for Computing T-Matrix for an Assemblage

ComMPUTE-T-TOTAL

setup multiple-scattering problem geometry

preset truncation term M

for every n from —M to M
{A}n 1, {A}n 0 whenm #n
for every i from 1 to N

compute {A;} from {A} according to eqn. (6-32)

solve multiple-scattering problem with {A;} as incident
assemble { B****'} according to eqn, (6-27)
put {B***} as n-th column of [T****!]

where [Q;]"T = ([Q;]™!)T and the expression for elements of [@;]~! has been given
in egn. (6-23).

The computational procedure described above resembles a direct matrix inver-
sion algorithm[3]. This procedure is summarized as the pseudo-code in Routine 6-1.

Form II

Recall Form II's of the multiple-scattering solution in Chapter 4. In these solu-
tion forms, a multiple-scatiering system’s characteristic matrix, called the multiple-
scattering kernel matriz is found such that

{Ci} = [K:i){Ai} (6-33)
Thus, eqn. (6-27) can be written as
{B*} = i_v;[Q,-]T{Ci} = é[Qi]T[K il{Ai} (6-34)
Substituting eqns. (6-34) a:d (6-32) into e;—n. (6-27) gives
{B*l} = ﬁ;[Qi]T[K JQ1T{A} (6-35)
Comparing eqns. (6-27) and (6—35)‘;ives
[Tt = é[Qi]TlK JQgr (6-36)

However, since it has been observed in Chapter 5 that the repetitive solution
forms can be problematic, due to resonance of the system, the application of Form
I for computing [T°*?!] is not to be discussed further.
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6-3.4 Discussions

Core Region and Territory of Molecule

The validity condition for transforming Scatterer i’s local singular wave expan-
sion basis { H(r;,6;)} to the global singular wave expansion basis { H(r,0)} isr > d;.
That is, the transformed expression is valid outside a circular region of radius d;
and centered at the origin of the global coordinate system,

In deriving [T"'°"?], such a transformation is applied to every scatterer in the
assemblage. Thus, the total scattered wave scattered by the assemblage as expressed
in eqn. (6-28) is only valid outside a circle region centered at the origin of the global
coordinate system and having the radius that equals the largest d;, i.e., the farthest
distance from the origin of the global coordinate system to the origins of the local

coordinate systems. Define
a = max (d) (6-37)

then, eqn. (6-28) is valid in the region r > a.. The region r < a, is called the core
of a molecule in which egn. (6-28) becomes invalid, and a. is called the core radius
of a molecule. In essence, the core of a molecule becomes a part of the molecule and
distinghushes itself from being the host medium.

When the assemblage, or the molecule, is treated as a single scatterers, the
definitions of its territory and radius, which have been given in Chapter 4 for an
element, still apply and it is worth repeating here with the adaption for the concept
of a molecule. The territory of a molecule is the smallest circle that circumscribes
all the elements that make up the molecule. The radius of its territory is called the
radius of the molecule,

Figure 6-4 illustrates the core region and the territory of a molecule consisting
of three elements. In Fig.6-4, o;, 0; and of denote the origins of local coordinate
systems, and O denotes the origin of the global coordinate system. Among all the
origins of local coordinate systems, o is located the farthest away from O and thus
determines the core radius of the molecule a,. However, a portion of Scatterer j
is the farthest away from O and thus determines the radius of the molecule a;. In
general, a; > ac.

The same definitions of the core, the territory and their radii apply to poly-
merized molecules. Figure 6-5 shows such an example. In Fig. 6-5, the assemblage
consists of 3 molecules shown in Fig. 6-4, o;, 0; and o, are the origins of local coor-
dinate systems and O is the origin of the global coordinate system. The core region
is represented by the gridded circular region, which is dictated by the location of
ok. The territory is marked by the outer-most circle, which is dictated by one of the
elements in molecule k.

In the multiple-scattering solution, Graf’s addition theorem requires that the
territory of a scatterer should not enclose the origin of any other scatterer’s locai
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Fig.6—4 The core, defined as the shaded circular region of radius a., of a
molecule made up of 3 elements. The territory of the molecule is
marked by the outer-most circle of radius a,.

Fig.6-5 Polymerized molecule made up of 3 molecules shown in Fig. 6-4. Its
core is marked by the gridded circular region of radius a., and its
territory is marked by the outer-most circle of radius a,.

coordinate system. For a molecule or a polymerized molecule, the definition of its
territory conforms with that for a scatterer. The core region of a molecule is smaller
than its territory in general. Therefore, no additional restriction is introduced by
the scatterer polymerization regarding the arrangements of the scatterers,

Interior Fields

Unfortunately, some information is lost in the scatterer polymerization process.
For example, there are no longer readily available formulas for the wave fields interior
of each element. And so are the wave fields within the core region of each molecule,
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In theory, those lost information can all be recovered, For example, it is possi-
ble to track the interior fields. For Form I, the recovery requires maintaining the
multiple-scattering solution {C;} for every set of hypothetical incident wave {A}.
These solutions, if properly arranged, are in fact the same as the multiple-scattering
kernel matrix [K;] used in Form II. However, such a recovering process would soon
become extremely tedious within just a few stages of polymerization.

Implementation Considerations

The implementation of Routine 6-1 is straightforward. Recall that in imple-
menting the multiple-scattering solutions, truncation and convergence criteria must
be established prior to the implementation. For a scatterer polymerization process,
such criteria become unnecessary.

The ultimate goal of scatterer polymerization is to construct a molecule and and
to find its T-matrix. The thus-found T-matrix will be used in later computations,
such as further polymerization or used to find a particular solution of the molecule,
either in a single- or multiple-scatterer configuration. The truncation size is only
need to be determined in the latter case. During a scatterer polymerization process,
the truncation size is simply determined a prior:.

In a computation, the multiple-scattering problem is solved by using Supermatrix
Form. As shown in Chapter 5, this solution form can be used as an all-around form
which has not encountered any particular numerical difficulty so far, and virtually
any established solvers for linear equation system can be used to solve the resulting
linear equation system. Whereas other repetitive sclution forms have failed to reach
converged solutions under some circumstances. Furthermore, in computing [T"°*?!],
tke multiple-scattering problem for the same configuration is solved multiple times,
with a different incident wave each time but the system matrix for the resulting
linear equation system remains the same. For such computations, L.U-decomposition
solver is efficient for solving the resulting linear equation system since the LU-
decomposition only need to be performed once.

6-4 Verifications

In this section, a small-scale example is studies numerically to verify that both
the formulation and the computer implementation of the scatterer polymerization
methodology are correct. The example is chosen such that the problem configu-
ration is also computable by directly using the multiple-scattering solution, whose
computer programs have been verified in Chapter 5. Three independent verifications
will be performed.
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6-4.1 Verification Methods

The first verification is the T'-matriz property conformity verification. It has
been shown in Chapter 3 that some properties inherent of a T-matrix are imposed
by some basic physical principles. In particular, for SH wave scattering, any T-
matrix should possess the following properties:

[Tlmn = (=1)™ " [T)(=n)(-m) (6-38)
3 ([T) +(T)) = —[T)*[T] (6-39)

where * denotes the conjugate transpose of a matrix; that is, [T)* = [T)T = [T]7,
and the overbar denotes the complex conjugate. Without exception, any T-matrix
for an assemblage of scatterers as computed by the scatterer polymerization process
should possess the above properties.

Define the following error measurements, called T'-matriz property conformity
errors:

M M
e = Z=o n=Z—M |[T‘°"‘"]mn _ (_l)m—n[Ttotal](_n)(_m)l (6-40)
M M
e=|r] = X X Irlml (6-41)

m=—Mn=—M

where [ - |, denotes the first norm of a matrix, and
[r] = % ([Ttota.l]q; + [Ttotal]) + [Ttotal]-[Ttotal] (6-42)

According to eqns. (6-38) and (6-39), if the T-matrix for the assemblage is exact, e
vanishes, and e, represents a truncation error. Non-vanishing e, represents other er-
rors incurred during the computation. Relative errors can be observed by comparing
the errors e; and ey against the first norm of the T-matrix denoted as & = |[T***]{,.

Since eqns. (6-38) and (6-39) are derived from the energy conservation principle
and the reciprocity principle of elastodynamics, this verification is equivalent of
performing verifications for the requirements set forth by these principles.

The second verification is the wave field computation verification in which the
wave fields at some arbitrarily chosen points are checked. In the first, the assemblage
of scatterers is treated as a single scatterer, and the T-matrix for the assemblage is
used to compute the wave fields in the host medium according to egn. (6-28). Next,
as a comparison, the same wave fields are computed by directly using the multiple-
scattering solution. In both cases, the incident wave is assumed as a plane wave of
unit amplitude propagating along 6 = 0 direction, whose expressions is known as*

o o]
¢inc = eikrcosd _ Z i"Jn(kr)e‘"" (6—43)

n=-—oo



204

Note that by assuming a unit-amplitude incident wave in the nondimensional form as
in eqn. (6-43), it is equivalent of assuming that the wave field ¢ has been normalized
and nondimensionalized by the amplitude of the incident wave.

The third verification is the consistency verification in which the same assem-
blage is polymerized differently in the intermediate stage(s) of the computation, and
the consistency of the resulting T-matrix for the assemblage is checked. Theoreti-
cally, as long as the final configuration remains the same, different polymerization
processes should yield the same results.

6-4.2 Example of Four-Fiber Configuration

Consider a configuration consisting of 4 identical 2-layer circular cylinders in
a square arrangement as sketched in Fig.6-6. The origin of the global coordinate
system is located at the geometrical center of the configuration.

————

Fig.6-6 Configuration of a molecule consisting of 4 fibers arranges in square,
Dashed circle shows the territory of the molecule. Dotted circle shows
its core region.

This configuration is an extension of a fiber-interphase-matrix micromechanics
model for fiber reinforced composites, in which the inner layer of the cylinder repre-
sents a fiber and the outer layer represents the interphase between the fiber and the
matrix. The single-scatterer case for such a fiber-inter hase-matrix model has been
studies in [6] for P/SV wave scattering and in Charter 2 for SH wave scattering,
Some SH wave multiple-scattering examples have becn presented in Chapter 5.

The constituent materials in the configuration correspond to a ceramic-fiber
reinforced metal-matrix composite system. Material properties, taken from [6],
are listed in Table 6-2. The fiber radius can be assumed as a = 10 um6! when
specific values are desired. More often, a is taken as a unit of length, and the non-
dimensionalized frequency ka is used. For all the cases considered, the outer radius
of the interphase is assumed to be b = 1.1a, and the fiber spacing is d = 3a.

In the first two verifications, the entire 4-fiber assemblage is considered, and the
T-matrix of the assemblage is computed at various frequencies. Truncation term is
chosen a priori as M = 25.

Figure 6-7 shows the prcfiles of the T-matrix for the assemblage at various
frequencies. In these figures, each block represents an element of the [T"°*?!] matrix,
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Table 6—2: Constituent Material Properties for a Metal-Matrix Ceramic-Fiber
Composite System [®)

Property (A.Aﬁzlt}d zf;ginium) (Alum?;:? fugoa) (Zilrlég?:rig,h %?82)
Density (kg/m3) 2600 3700 6300
Young’s Modulus (GPa) 66 360 97
Poisson’s Ratio 0.31 0.25 0.33
Lamé Constant A (GPa) 41 144 71
Lamé Constant u (GPa) 25 144 37
P Wave Speed (m/s) 5920 10800 4800
S Wave Speed (m/s) 3100 6240 2420

Table 6-3: T'-Matrix Property Conformity Errors

ka P e; e

1 | 4.03127 | 2.74607x10" ™ | 4.27984x10~1°
2 | 15.8350 | 1.49163x10~!4 | 3.45528 1014
3 | 24.8127 | 4.39922x10~!4 | 1.69416x10~13
4 | 37.0132 | 8.56002x10~!4 | 3,16655x10~13
5 | 46.0868 | 1.37187»10~'3 | 2.55943x10~°
6 | 60.5736 | 1.85996x10~!3 | 9,28128x108

with the upper-left corner being [T°°‘a‘](_ M)(-m) 2nd the lower-right corner being
[T*°*3"prpr. The height of each block represents the modulus of the element.

From these figures, it is observed that blocks of substantial moduli (observable
heights) are concentrated around the central element [T"°“"]oo. As the frequency ka
increases, the size of the concentration area increases accordingly. The size of the
area essentially represents the necessary truncation sizes for the multiple-scattering
computations.

It is also observed that, in all the profiles of the T-matrix for the assemblage
in Fig. 6-7, only the elements located on the lines parallel to the major diagonal of
the matrix and at distances of multiples of 4 have observable heights. This agrees
with the properties of T-matrix imposed by scatterer symmetries. The molecule
is symmetric about the axes of § = 0, +7/4 and 7/9. From Chapter 3, these
symmetries require [T]mn = 0 if (m—n) is not a multiple of 4. These symmetry
properties are not used in the verification since they are not common features for a
general molecule.

Table 6-3 lists the numerical values of T-matrix property conformity errors e;
and ey, as compared with the first norm of [T"°*?!], £. Noting that the computer
used in the computation, a Silicon Graphics Inc.’s Indigo? workstation with an R4400
CPU and 64 M core memory, has 15 significant figures, the error e; is comparable
with the computer’s round-off errors.

The error e; is in the same order as e; at low frequencies, but increases signifi-
cantly at higher frequencies. This is primarily due to insufficient truncation terms,
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Fig.6-7 Profiles of the T-matrix for the assemblage of 4 fibers shown in Fig. 6-6
at various frequencies.

as can be observed from the T-matrix profiles in Fig. 6-7. For instance in Fig.6-7f,
the area where blocks of observable heights concentrate has almost reached the
boundary of the matrix, suggesting too small an M has been used in the computa-
tion, In a separate computation for the case of ka = 6 with M = 50, the computed
errors e; and e, are 1.84170x 10713 and 7.05534 x 10~!3, respectively.

As the second verification, Table 6-4 lists the amplitudes of the scattered wave
|¢*(r, 8)] at various field points, compared with the same quantities computed by di-
rectly using the multiple-scattering solution. Results obtained by multiple-scattering
solution are assumed to be accurate for all the significant figures shown since exactly
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Table 6-4: Comparison of Amplitudes of Scattered Wave |¢°(r, §)| Computed
by Scatterer Polymerization Process (SPP) and Multiple-Scattering
Solution (MSS)

ka | Metbod | [¢°(20a, 0)] | |#°(20a, m)| | |¢°(200a,0)] | [#*(200a, 7)|
SPP | 0.360118 | 0.456544 | 0117171 | 0.143859
1 MSS 0.360118 0.456544 0.117171 0.143859
SPP | 0917414 | 0.282906 | 0.304424 | 0.0845778
2 [TMSS | 0917414 | 0.282006 | 0.304424 | 0.0845778
SPP | 124655 | 0.115426 | 0.421966 | 0.0357060
3 MSS 1.24655 0.115426 0.421966 0.0357060
SPP | 1.34055 | 0.143800 | 0.465138 | 0.0440317
4 TMSS | 1.34055 | 0.143890 | 0.465138 | 0.0440317
SPP | 141403 | 0202894 | 0.499946 | 0.0658883
o MSS 1.41402 0.202893 0.499945 0.0658877
SPP | 1.30483 | 0.246864 | 0.478956 | 0.0757723
6 [TMSS | 1.30456 | 0.246089 | 0.478968 | 0.0758204

the same configuration has been studied and verified extensively in Chapter 5.

Table 6-5 shows that both methods yield almost identical results. Results for
frequencies up to ka = 4 are identical up to all 6 significant figures shown. At
ka = 5, discrepancies appear at the order of 1—°%; and at ka = 6, discrepancies are
relatively large, but still acceptably small at the order of 10~4.

Again, these ervors are primarily due to insufficient truncation terms used in the
scatterer polymerization process. In the computation for the case of ka = 6 and
using M = 50, the rosults are identical, up to all 6 significant figures shown, to the
corresponding values obtained by directly using the multiple-scattering solution.

As the third verification, the same configuration is computed by 3 different poly-
merization procedures referred to as Procedures A, B and C. In Procedure A, the
entire assemblage is treated in unity, as in the previous two verifications. In Proce-
dure 3, two fibers are assembled first and the T-matrix for the 2-fiber assemblage is
found; then two such molecules are assembled to form the (2x2)-fiber configuration,
as shown in Fig.6-8a. Procedure C is similar to Procedure B except that the 2-fiber
assemblage has a different orientation, as shown in Fig. 6-8b.

Computations are performed for the case of ka = 3 using a truncation size M =
25, Table 6-5 compares the numerical values of various elements of the resulting
matrix [T°*¥'] for the final 4-fiber assemblage. These elements are chosen such that
they are non-zero elements having moduli that are representative of the elements
of substantial moduli of the T-matrix. Table 6-6 compares the T-matrix property
conformity errors e; and ez during the computation for the 4-fiber assemblage (the
second stage for Procedures B and C), along with amplitudes of the scattered wave
|¢(r, 8)| at various field points for the 4-fiber assemblage subjected to the incident
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(b) Procedure C.

Fig. 6-8 Two alternative procedures for forming an assemblage of 4-fiber square
arrangement. Dashed circles represent the territories of molecules;
dotted circles represent their core regions.

wave in eqn. (6-43).

From Tables 6-5 and 6-6, it is observed that the three procedures yield essen-
tially the same numerical results with numerical errors in an acceptable level. More
detailed analyses of the error behaviors of the scatterer polymerization process are
deferred until next section.

At this point, it can be concluded that the 3 verifications performed so far
are all successful. Therefore, both the mathematical formulatior and implemented
computer programs for the scatterer polymerization methodology are correct.

6-5 Error Behaviors

The verifications in the previous section, although successful, indicate that some
errors incurred in computations could be noticeably large, such as the errors during
the second stage of computations in Procedures B and C. In this section, error
behaviors of the scatterer polymerization process are examined systematically via
numerical examples.

6-5.1 Error Measurements

Beside providing a numerical proof that both the formulation and the computer
program of scatterer polymerization are theoretically correct, the examples in the
previous section also provide opportunities to observed the sensitivities of the error
measurements e; and ez defined therein.



Table 6-5: Computed Values of Various T-Matrix Elements at ka = 3.

Element Part | Procedure A | Procedure B | Procedure C
T Re | —0.055658 | —0.955703 | —0,955623
Tm | 0.0511260 | 0,0511070 | 0.0510387
Ton Re | —0.00132178 | —0.0012663 | —0,00180594
Tm | —0.139746 | —0.139455 | —0.139838
Re | 0.0162467 | 0.0160304 | 0.0162237
[Tos Tm | —0.00610270 | —0.00600950 | —0,00661598
To Re | —0.00132178 | —0.00122970 | —0.00127159
Tm | 0139746 | —0.139680 | —0.139721
- Re | —0.894429 | —0.894643 | —0.894767
Tm | 0.158467 0.158066 0.158320
Re | 0.0456451 | 0.0458015 | 0.0455413
[T)ss Tm | —0.0574435 | —0.057638 | —0.0575182
The Re | 0.0162467 | 00162527 | 0.0163504
Tm | —0.00610270 | —0,00606144 | —0.00607827
T Re | 00456451 | 0.0458528 | 0.0454153
Tm | —0.0574435 | —0.0575032 | —0.0580142
Re | —0360752 | —0.360459 | —0.360294
[T)ss Tm | —0.470712 | —0.470555 | —0.471042
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Table 6—6: T-Matrix Property Conformity Errors and Amplitudes of Scat-
tered Waves at ka = 3. (Truncation Term M = 25.)

Procedure A

Procedure B

Procedure C

3 24,8127 24.8873 24.9387

e 4.30922x10~ 1% | 0.0457748 | 0.116856

€2 1.60416x10-° | 0.0579395 | 0.116067

&° at (20a,0) 1.24655 1.24646 1.24652
¢°| at (20a, 1) 0.115426 0.115355 0.115484
[#°] at (2002,0) | 0.421966 0.421804 0.421949
|¢°] at (200a,7) | 0.0357060 0.0356756 | 0.0357218

From Tables 6-3 and 6-4, it is observed that in most cases, e; and e; are in the
same order, with e being slightly larger. When they are not in the same order,
usually e, is larger than e;, and this happens only when the truncation size M is
too small. This indicates that the error es is more sensitive to the truncation size.

Errors e; and ez, when they are in the same order, appear as a good measures of
the overall error level of the computation. More specifically, the ratios €1/s; and €2/y
accurately describe the relative errors of individual elements of the T-matrix for the
assemblage. For instance, in Table 6-5, both €1/s and €2/s, in both Procedures
B and C are of the order of O(1073). Relative errors in individual elements of
T-matrix ranges from 2x10™% to 2x10~3 for Procedure B, and from 4x10~5 to
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5x10~3 for Procedure C. Furthermore, it is comforting to observe that the errors in
the computed amplitudes of the scattered wave are much smaller than these ratios,
as seen from the data in Table 6-6.

From definitions of e; and ey in eqns. (6-40) and (6-41), the computation of
e1 only involves direct comparisons of individual elements of the T-matrix for the
assemblage. The type of symmetry embodied in egn, (6-40) is inherent, regardless
of truncation size, of the formulation, which is primarily due to the symmetry of
the wave expansion basis; that is |{H(r,0)}n| = |{H(r,0)}-r|, and the satisfac-
tion of eqn. (6-38) by the T-matrix of each element. Therefore, e, is primarily a
measurement of computer’s round-off errors incurred during the computation,

On the other hand, the computation of e; involves a matrix product, which essen-
tially represents the energy in the wave field. Physically, the property in eqn. (6-39)
is derived from both the energy balance requirement and the reciprocity principle,
Therefore, ey is primarily a measurement for the overall accuracy of the T-matrix
for the assemblage. This is also the reason that ep is more sensitive to the truncation
errors, and that ez is in general larger than e;, since the computer’s round-off errors
are also compounded into es.

With this understanding, e; and ez can be effectively and almost exclusively used
in the following observations of various error behaviors of the scatterer polymeriza-
tion process. They can also be used to determine whether a computed T-matrix for
an assemblage is accurate enough. Numerical values of e; and e; can be interpreted
as follows: if both are in the same order, they represent the overall level of error
incurred in the computations. If they are in the different order, ez should in general
be larger then e;. In such cases, e; represent the computer’s round-off errors, and
ez represents the truncation errors.

6-5.2 Generational Errors

One of the most striking observations can be made from Tables 6-5 and 6-6 is
that the numerical accuracy deteriorates drastically in 2-stage procedures. In both
Procedures B and C, errors e; and e; jumps from O(1074) to O(1072) or even
O(1071).

To further investigate the behaviors of error deterioration between generations
(stages of scatterer polymerization computations), another 2-stage scatterer poly-
merization example is studied. In this example, 4 molecules generated by Procedure
A in the previous section are assembled to form a (4x4)-fiber assemblage, as shown
in Fig. 6-9, In the computation, the truncation size is set a priori at M = 50, The
T-matrix for the (2x2)-fiber molecule is also re-generated using this truncation size.
Table 6-7 lists the T-matrix conformity errors e, and e;, along with X, at several
frequencies.

In Table 6-7, both e; and e, remains the same order in each stage, except the
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Fig.6-9 Configuration of (4x4)-fiber molecule comprised of 4 (2x2)-fiber
molecules. Dashed circles represent the territories of molecules; dotted
circles represent their core regions.

Table 6—7: T-Matrix Property Conformity Errors for 2-Stage Computation of
(4x4)-Fiber Molecule

ka | Stage z e; e
1 | 4.03127 | 3.51166x10~15 | 3.91165x 10713
1 2 | 14.1960 | 2.58391x 10" 1% | 3.56165x 10~
1 15.8350 | 1.36037x10~'* | 2.86093x 10~14
2 2 | 46.4477 | 1.31330x10" 1 | 3.35293x 10~ 13
1 | 24.8127 | 4.15652x10~14 | 1.43479x 1013
3 2 [71.4637 | 3.53276x 10~ | 1.11999x 1012
1 37.0132 | 7.98726x10~14 | 2.81336x10~13
4 2 | 113.578 | 5.84423x 10~ 13 | 2.12677x 1012
1 46.0870 | 1.03914x10~!3 | 4.11462x 10713
5 T | 158815 | 7.87252x10- 1% | 4.58478x10-7

case of ka = 5. From the first stage to the second stage, they increase by an order
of 10, but the relative errors €15y and €1/5; only increase by a smaller scale, since
¥ also increases in the second stage about 3 times. At ka = 5, ey is significantly
larger than e;, suggesting insufficient truncation terms,

The error levels of e; and ep in the second stage suggest that the errors simply
accumulate across generations in this example. That is, the errors in the previous
stage are simply carried on to the next stage of computation without being magnified
to a scale that could drastically change the error level in the next stage.

This generational error behavior is very different from that in Table 6-3 and
6-4. The different error behaviors are primarily due to the difference in scatterer
configurations, which should not be counted as generational errors. The errors due
to scatterer locations are categorized as the scatterer prozimity errors, which will
be examined later.
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Table 6—8: T-Matrix Property Conformity Errors for Different First-Stage
Truncation Size M; (Second-Stage Truncation Size My = 50)

Stage 1 Stage 2

M1 €1 €2 €1 €2

10 | 2.94867x10~'4 0.0537945 2.40010x10~ 13 0.685969
15 | 3.89561x10~'4 | 1.05044x10~% | 2.75591x10~13 | 1.06892x10~°
20 | 4.05413x10~'% | 4.95397x10~"3 | 2.97937x10~'% | 5.15507x 10~ 1%
25 | 4.09423x10~' [ 1.45060x10~1° | 3.22177x10~ 5 | 1,10949x 10~ 12
30 [ 4.15652x 1074 | 1.43479x10~13 | 3.21505%x 10~ | 1,10017x 10~ 12
35 | 4.15652x1071% | 1.43479x10~13 | 3.25946x10~13 | 1.10750x 10~ 12
40 | 4.15652x107'% [ 1.43479x10~13 | 3.48436x10~1° | 1.13027x10~12
45 | 4.15652x10714 | 1.43479x10~13 | 3.52628 x10~13 | 1.13254x 1012
50 | 4.15652x1071* | 1.43479x10~13 | 3.53276x10~13 | 1.11999x10~12

6-5.3 Truncation Errors

From the examples so far, it has seen that the larger the number of fibers in
the assemblage, as well as the higher the frequency, the larger a truncation size is
needed. This trend agrees with that of the multiple-scattering solution as observed
in Chapter 5.

Since the scatterer polymerization is intended for producing ever larger assem-
blages of scatterers, there is naturally a truncation size problem. If in the final stage
scatterers span a large area, a large number of truncation terms would be needed.
But a large truncation size could cause numerical underflow or overflow in the initial
stages of computations in which scatterers span a relatively small area.

From the computational efficiency point of view, it is desirable to have smaller
truncation size in the early stages when the radius of the resulting molecule is
relatively small, and use larger truncation sizes when the radius becomes larger.
During the computations, when the size of a T-matrix for the assemblage is to be
enlarged, the newly created T-matrix elements are set to zero.

To observe the error behaviors of using different truncation sizes in different
stages, the 16-fiber configuration shown in Fig. 6-9 is recomputed for the case ka =
3. In this computation, the truncation size in the second stage is maintained at
My = 50, which has shown in Table 6-7 to be sufficient for the case. The truncation
size in the first stage M, is varied from 10 to 50. Table 6-8 lists the 7T-matrix
property conformity errors in both stages of the computation.

From Table 6-8, it is observed that the when truncation size is small in the first
stage, such as M; = 10 and 15, ey are much larger than e; in both stages. In such
cases, from the first stage to the second stage, e, grows by an order of 10, which
is the usual growth rate of generational error. The difference in the orders of e,
and ey diminishes as the truncation size increases. The first stage errors e; and e
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Table 6-9: T-Matrix Property Conformity Errors for Different Second-Stage

Truncation Size M, (First-Stage Truncation Size M) = 50)

M, e e

20 | 2.78428x10~"3 2.03958

. 30 | 3.22026x10~ 13 | 2.50841x107°
35 | 3.25946x 10~ 1% | 5.62521x 10~
40 | 3.48436x10~13 | 1.13031x 10~ 1%
50 | 3.53276x10~ 1% [ 1.11999x10~'*
60 | 3.53276x10~ 1% | 1.11999x 10~ 1%
70 | 3.53276 10713 | 1.11999x 10~ **

reach the same orders of their respective converged values around M; = 20, and
eventually stabilize around M; = 30.

The errors in the second stage does not reach a stabilization. This is because the
truncation size Mo, although large enough for both e; and e to reach the same order,
is not large enough to reach the stablization. To verify this, another computation is
performed. In this computation, M; = 50, which gives stabilized errors for the frist
stage, is used, but the truncation size in the second stage is varied from 20 to 70.
Computational resuts are listed in Table 6-9.

Table 6-9 shows the similar trend as Table 6-8: ey is significantly larger than
e; when the truncation size M, is too small; it reaches the same order as e; around
M, = 35, and stabilizes around M, = 50.

In this example, the largest distance among all scatterers D is 3v2a = 4.2426a
and 6v/2a = 8.4853a for the first and the second stages, respectively. The truncation
sizes at which both e; and ej reach the same order (20 and 35, respectively) is called
necessary truncation size, and the truncation size at which both e; and e, stabilize
is called the stabilization truncation size. It is found that the necessary truncation
sizes in this example, denoted as Mj, roughly fit the following relation

My~ 8+ kD (6-44)

Note that exactly the same empirical formula as eqn. (6-44) is concluded from
the examples in Chapter 5 as the necessary truncation size for Form I's of multiple-
scattering solution. Interestingly, despite the identicalness in formulas, the meanings
of D in the two methodologies are different. If the 16-fiber configuration is to be
analyzed by directly using the multiple-scattering solution (of Form II), the corre-
sponding D would be 9v/2a = 12.7279a, which would require a larger necessary
truncation size.

6-5.4 Scatterer Proximity Errors

Graf’s addition theorem requires that any scatterer’s territory should not en-
close the origin of any other scatterer’s local coordinate system. Since all functions
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involved in Graf’s addition theorem are continuous, before reaching the theoretical
limit, the numerical accuracy deteriorates significantly if the locations of scatterers
are close to violating the requirement. This type if error is called the scatterer proz-
imity error, which explains the large errors incurred during the second stages in the
verification examples in the previous section.

Consider another example first, as shown in Fig. 6-10. In this example, a 4-fiber
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Fig.6-10 Scatterer polymerization for constructing a 8-fiber assemblage from
2 (2x2)-fiber molecules.

molecule is built first with a fiber spacing d = 3a. The core radius of the 4-fiber
molecule is 4.5a and the radius of its territory is 5.6a. Then two such molecules are
arranged to form an 8-fiber assemblage. The distance between the two molecules is
denoted as D, and various values of D are considered.

Since it is expected that errors may be very significant in some cases, in order to
provide a reference as the “accurate results”, for every value of D considered, the 8-
fiber configuration is also analyzed by using a single-stage scatterer polymerization
process, which resembles the Procedure A in the previous section, and is also referred
to as Procedure A. The 2-stage scatterer polymerization process described above is
referred to as Procedure B.

Computations are performed for ka = 3. In the computation, when using pro-
cedure A, the truncation size is 10 plus the necessary truncation size determine by
eqn. (6-44). The extra terms are added to insure a sufficient accuracy of the re-
sults. In Procedure B, the truncation size for the first stage (building the 4-fiber
molecule) is chosen as M) = 40, which has been numerically verified to have reached
the converged results for e; and ey for this stage of computation, which are found
as e; = 5.21282x107' and e, = 7.44451x10~!. In the second stage of Proce-
dure B, wide ranges of truncation sizes are computed in order to provide a more
comprehensive observation.

Table 6-10 lists the computation results. In Table 6-10, M denotes the trunca-
tion size for Procedure A and the truncation size in the second stage of Procedure
B. Errors e; and ez of Procedure B are for the second stage of the computation, The
amplitude of the scattered wave at the filed point (r,8) = (20a, 0) is also calculated
to illustrate the overall errors.
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Table 6-10: Comparison of Computation Results at Different Truncation Size
in the Second Stage of 2-Stage Scatterer Polymerization

D | Procedure | M ) e e |#°(20a, 0)|
A 57 | 99.1574 | 1.84205x10~ % | 1,02080x10~** | 1.90252

25 | 98.9739 | 2.42294x10"° 0.0206505 1.89275

30 | 99.3731 | 4.73631x10~*“ | 4.56848x10~° 1.90473

9a 35 | 99.3253 | 5,14522x10~10 | 5.18121x10~10 [ 1,90503
B 40 [ 99.2290 [ 1.71060x10~° | 1,48076x10~7 1.90329

45 [99.2290 | 1.71063x10~° | 1.48079x 10~ 1.90329

50 | 99.2290 | 1.71063x10~° | 1.48079x 107 1.90329

A 55 | 93.1428 | 1.69865x10~ "3 | 1.40359x 102 | 1.91590

28 | 93.1630 | 1.28425x10~7 | 2.07864x10~° 1.91693

30 [ 93.1823 | 2.66497x10~° | 3.53808x10° 1.91722

8a 32 | 93.1911 | 3.25579x10~° | 5.93221x 1075 1.91654
B 34 193.2333 | 0.00130105 0.00179885 1.91432

36 | 98.9948 2.01957 0.547526 1,87294

38 | 94.1896 1.44630 1.45488 1.91973

A 53 | 88.9730 | 1.10787x10~13 | 1.10787x10~1% | 1.95986

24 | 88.4921 | 3.50406x107° 0.00375492 1.97779

Ta 26 | 89.8418 0.0109754 0.0134365 1.90812
B 28 | 88.7245 0.398662 0.450806 1.94864

30 | 96.6037 9.83633 12.1374 1.99583

A 51 | 85.0747 | 1.53928x10~ "% | 8.53552x10~1° | 2.02700

20 | 82.4380 | 0.00322202 0.143604 1.97641

6a B 22 | 82,1802 0.284854 0.284685 1.97700
24 | 87.6741 7.27119 7.52665 1.94625

A 49 | 80.9953 | 1.44632x10~ "3 | 6.36177x10"*% | 2.13086

17 | 68.5117 | 0.00176916 0.68684 1.88078

Sa B 18 | 74.2682 0.139311 0.554905 1.96621
19 | 74.4003 3.76302 3.89791 1.87010

A 46 | 75.8386 | 1.47448x10~*° | 6.98084x10~'* 2.2239

4a 15 | 60.7276 0.0389878 1.68797 1.79168
B 16 | 62.9206 2.20478 2.04475 1.75541

From Table 6-10, it is observed that the case of D = 9a is the only case in
which the errors e; and e in the second stage of Procedure B reach a stabilization.
Even in this case, the errors of O(10~°) are significantly larger than those of the
first stage of O(10~'). This indicates that, since e; is the measurement for the
overall computaional errors, a new type of error has occured during this stage of

computation.

When the distance between the two 4-fiber molecules is reduced, increasing the
truncation size in the second stage does not lead to a stabilization. Instead, there
is only a small window for the values of M; within which results with acceptable
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error levels can be achieved. When M) is too small, e; is much larger than e,
suggesting insufficient truncation size. When M; is too large, both e; and e; become
unacceptably large. Furthermore, the window range decreases as D decreases, and
the window completely disappears when D < 5a.

The theoretical limit set forth by Graf’s addition theorem is D > 5.6a for the
particular configuration in Fig. 6-10, and it is expected that the numerical accuracy
deteriorates when the distance between scatterers approaches this limit. This sug-
gests that the new type of error is caused by the fact that scatterers are too closely
situated. This type of error is called the scatterer prorimity error. It appears that,
for the particular configuration, somewhere between D = 9a and 8a is the closest
the two molecules can be practically arranged, which corresponds to D/a, between
1.6 and 1.4. '

Graf’s addition theorem used in the multiple-scattering solution is the same as
eqn. (6-12) except the difference in parameter substitutions. The requirement is
imposed for the series expression to converge, When the distance is very close to
violating the requirement, the convergence rate decreases, and a larger truncation
size would be required. On the other hand, a large truncation size means that the
difference between the elements of {A;} as computed according to eqn. (6-32) in
the scatterer polymerization process could span a large range of magnitudes, and in
solving the linear equation system resulted in the multiple-scattering formulation,
the numerical accuracy is limited by the number of number significant figures the
computer can furnish. The two competing mechanisms set the practical limit as
observed above. This also explains why, when proximity errors present, e, and e
may not reach a stabilization, and even grow as the truncation size increases.

With this understanding of the nature and the behavior of the proximity er-
rors, in the next, the verification example considered in the previous section is
re-examined, to observe the effects of the proximity errors in successive stages of a
scatterer polymerization process.

In these computations, a 3-stage polymerization is performed. The first two
stages are the same as in Procedure B in Fig.6-8b in the previous section, and in
the third stage, 4 (2x2)-fiber molecules are assembles as shown Fig. 6-9. Note that
in the second stage the two molecules are very closely situated, with the ratio of the
inter-molecule distance D to the radius of the molecule a5 being 3/ 6 ~ 1.15.

In the first two stages, computations are performed for different choices of the
truncation sizes, denoted as M) and Mjy, respectively. Trial first-stage-only compu-
tations performed a priori show that T-matrix property conformity errors e; and e
reach the same order around M) = 18 and stabilize around M; = 30. Thus, trunca-
tion sizes in the first stage are chosen to correspond to an insufficient truncation size
(M1=10), the necessary truncation size (M;=20), the stabilization truncation size
(M1=30) and an excessively large truncation size (M;=50). In the second stage, a
wide range of truncation sizes are computed in order to locate the window of M in



Table 6-11: T-Matrix Property Conformity Errors During Second Stage in 3-
Stage Polymerization for 4x4 Fiber Square Arrangement at ka = 3
M1 M2 P ey €2 ]¢>"‘|(20a, 0)
10 | 26.3465 | 1.44729x10~*¢ 0.154814 1.22392
14 | 26.2049 | 6.44736x10~*" | 4.46694x10~° 1.21670
12 | 18 | 26.2343 | 6.55558x 10~ % | 3.79903x 10~° 1.21681
22 | 26.2343 | 6.55966x 10" | 3.75826x10~° 1.21681
26 | 26.2343 | 6.55967x10~ ! | 3.75827x10~° 1.21681
10 | 26.3465 | 1.57758x10~1% 0.154814 1.22392
14 | 25.3255 | 1.43612x107° | 2.36793x10~° 1.23176
16 | 25.0785 | 9.79468x10~° | 2.53018x 10~ 1.23176
20 | 18 [ 25.0490 | 2.13811x107° | 2.07082x10~° 1.24317
20 { 24.8907 0.00111257 0.00124126 1,24584
30 | 24.8903 | 0.000340499 0.000397853 1.24584
40 | 24.8903 | 0.000340499 0.000397853 1.24584
10 | 26.3465 | 1.75667x10~'° 0.154814 1.22392
14 | 25.3255 | 2.35347x10~° | 2.36801x10~° 1.23176
18 | 25.0490 | 9.35854x10~° | 9.48552x10~° 1.24317
30 | 22 | 24,8846 0.0188650 0.0220535 1.24510
26 | 24.8925 0.0778614 0.0724316 1.24692
30 | 24.9688 0.150925 0.143635 1.24645
40 | 24.9688 0.150925 0.143635 1.24645
10 | 26.3465 | 1.75667x 10~ 1% 0.154814 1.22392
14 | 25.3255 | 1.84734x10~° | 2.36792x107° 1.23176
18 | 25.0490 | 2.18565x10~° | 2.20134x107°> | 1.24317
50 { 22 { 24.9174 0.0930882 0.0725059 1.24552
26 | 25.0166 0.178316 0.184298 1.24704
30 [ 24.9811 0.169402 0.164201 1.24642
40 | 32,9632 8.18193 8.22188 1.17687

which both e; and e are in the acceptable level.

Table 6-11 lists the T-matrix conformity errors for the second stage of the com-
putation. From Table 6-11, it is observed that if the truncation size in either stage
is too small, ez > e; no mater how large the truncation size is used in the other
stage, even when the errors stabilize.

When M, is an appropriate size (ranges from the necessary truncation size to
stabilization size truncation), errors in the second stage stabilize at sufficiently large
M, and the stabilized values indicate the presence of the scatterer proximity errors.
When excessively large M; (50) is used, the windowing appears. Errors increase
when Mj is too large, This indicates that the errors in the first stage of computation
are magnified for such an excessively larger truncation size in the presence of the
scatterer proximity errors.

For sufficiently large M) (M; > 20), the smallest error level is achieved when M,
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Table 6-12: T-Matrix Property Conformity Errors During Third Stage in 3-
Stage Polymerization for 4x4 Fiber Square Arrangement at ka = 3

M3 z e ) |¢°1(20a, 0)
20 | 62.0004 | 0.00355963 [ 2.06999 0.651491
23 | 69.8021 | 0.00428327 [ 0.146171 0.521875
25 | 71.3057 | 0.00454446 | 0.00454446 | 0.555812
27 | 71.7275 | 0.00465042 | 0.00504224 | 0.558189
30 | 71.8246 | 0.00468508 | 0.00477444 | 0.558900
35 | 71.8314 | 0.00468913 | 0.00477852 | 0.558747
40 | 71.8315 | 0.00468916 | 0.00477855 | 0.568747
45 | 71.8315 | 0.00468916 | 0.00477855 | 0.558747
50 | 71.8315 | 0.00468916 | 0.00477855 | 0.558747

is about 18, which roughly fits the empirical expression for the necessary truncation
size given in eqn. (6-44) by noting that D = 3a in this stage.

In the third stage of the computation, the truncation size for the first 2 stages
are chosen as M, = M, = 20, which is slightly larger than the necessary truncation
size. Again, a wide range of truncation sizes are computed in the third stage. Table
6-12 shows the similar computational results.

From Table 6-12, the same trend is observed: e; > e; when Mj is small, and
they reach the same order around M = 25, and stabilize around M = 40. An
important observation can be made from Table 6-12 is that the stabilized errors in
this stage are in the same order as in the second stage (5 x 1073 vs, 1 x 1073). Note
that, in this stage, the radius of the molecules is (1.5\/§ + 1.1)a = 2.6a while the
smallest distance between molecules is 6a. That is, the D/as ratio is significantly
larger than the practical limit of between 1.6 and 1.4. This indicates that, despite
the noticeable scatterer proximity errors in the second stage, the errors are not
substantially magnified if there are no sever errors occurred in later stages.

6-6 Conclusions

In this chapter, the methodology of scatterer polymerization is proposed, formu-
lated and implemented. Computer program has been verified to give correct results.
The error behaviors are systematically examined and can be summarized as follow:

» Generational errors, truncation errors and scatterer proximity errors are the 3
main types of errors involved in a scatterer polymerization computation. The
scatterer proximity error is the error due to the fact that scatterers are situate
too close to each other and are close to violating the equirement set forth by
Graf’s addition theorem.
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» The T-matrix conformity errors e; and ep as defined in equs. (6-40) and (6-41) are
excellent measurements of the errors in the resulting T-matrix for the assemblage.
When both in the same order and in general e, > e;, they represent the error
level of the overall computation. When ep > e, they indicate that insufficient
truncation size has been used. When both are large and in the same order, they
indicate the presence of scatterer proximity errors.

= When the scatterers are located sufficiently far away from each other, the neces-
sary truncation size is given in eqn. (6-44), and a larger truncation size will lead
to stabilized results.

= In a multiple-stage scatterer polymerization process, if the truncation size is suf-
ficiently large and no noticeable scatterer proximity errors involved, the errors
inherited from the previous stage is only magnified by roughly 10. A substan-
tially large magnification ratio suggests the presence of the scatterer proximity
€rrors.

= In the event that scatterer proximity errors are noticeably present, the smallest
error is achieved by selecting a truncation size that is near the necessary truncation
size as given in eqn. (6-44). Otherwise, either the errors in the T-matrix from the
previous stage of computation due to excessively large truncation size will be
enlarged or the accuracy in the present stage deteriorates significantly due to
insufficient truncation size.

The error behaviors suggest that the practical scatterer proximity limit is the
main limitation for the largest number of scatterers can be computed. This practical
limit is prompted from the theoretical limit set forth by Graf's addition theorem
in the multiple-scattering solution, but it is mainly determined by the numerical
accuracy of the computer used in the computation. For the computer used in this
study, which has 15 significant figures in its native double-precision floating number
representation, and for an assemblage consisting of identical molecules, the practical
limit is that ratio of the smallest inter-molecule distance to the molecular radius is
about 1.5.

Despite this limitation, the methodology of scatterer polymerization drastically
reduces the problem size such that the computer’s available amount of memory
could no longer be a limiting factor if the scatterer configuration in each stage of
a scatterer polymerization process is designed with great care. Furthermore, it is
possible to trade, via software approach (see, e.g., [7]), the computer memory for
an increase of the number of significant figures such as implementing a data type
that represents floating numbers in the quadruple-precision thus to overcome the
practical limit of the computer’s native double-precision. However, this endeavor is
left as a future project.
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Full-Scale
Simulations

Abstract: In this chapter, full-scale simulations of the multiple scat-
tering of elastic waves in fiber reinforced composite materials are per-
formed, using the analytical and computational tools developed in the
previous chapters. The corr.nutational procedure is outlined. Simula-
tion results are analytically exact and numerically verified. Simulated
fields are examined, and relationships between the simulation results
and some experimentally measurable parameters are established.
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Nomenclature

General Conventions

= Matrices are denoted by bold-faced symbols; symbols for column matrices are enclosed by
flower brackets ({}); symbols for rectangular matrices are enclosed by square brackets ([]).

» When referring to a matrix entry, the entry’s indicial number is to appear as subscript(s)
outside the brackets. This distinguishes the indicial subscript(s) from the subscript(s), if
any, associated with the entire matrix.

Symbols

a,

€1,€2

Z 2R o ow o~

(r,6)
[Ttotal]
u

(z,9)
¢

W

z

Amplitude (real) of the out-of-plane displacement u.

Radius of the fiber in the fiber-interphase-matrix micromechanics model
for fiber reinforced composites.

Radius of a scatterer: the radius of the smallest circle that circumscribes
the entire scatterer or all scatterers that make up the molecule.

Outer radius of the interphase in a fiber-interphase-matrix micromechan-
ics model for fiber reinforced composites.

Edge length of a square molecule.

fiber spacing: the distance between two adjacent fibers in the same row
or column in a square fiber arrangement.

Energy flux function.

Normalized energy flux function.,

T-matrix conformity errors.

The range over which an averaged filed quantity is computed.
Cumulative normalized energy flux function.

Unit of imaginary numbers, i = /=1,

Wave number of SH waves.

Truncation term (truncation size) for infinite series and matrices.
Total number of elements in a multiple-scatterer configuration.

Total number of scatterers in a multiple-scatterer configuration. A scat-
terer can be an element cr a molecule.

Global polar coordinates

T-matrix of an assemblage of scatterers,

Out-of-plane displacement,.

Global Cartesian coordinates

Complex amplitude of Out-of-plane displacement u for SH waves.
Circular frequency of incident wave,

The first norm of matrix [T°*!], & = J[T****]}.
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7-1 Introduction

The emphases in the previous chapters have been on developing the necessary
analytical and computational tools that can be used to perform full-scale simulations
of elastic wave scattering in fiber reinforced composites. With those tools, it is pos-
sible to simulate the multiple-scattering phenomenon in fiber reinforced composites
in full scale using a typical desk-top computer.

In this chapter, it is demonstrated that a combined use of these analytical and
computational tools is capable of performing full-scale deterministic simulations
using a typical desk-top computer. Considerations in this chapter are limited to the
case of anti-plane shear (SH) waves.

A model of a plate structure is selected for analysis. Considerations are limited to
square arrangements of fibers. Fibers are centrally located within square grids that
are confined to a rectangular region, as sketched in Fig. 7-1. The entire assemblage

00 06

0@ 90|
|00 @8
|80 @8]
Jee e
@ - 100
B (CHS LS )
®6 100

Fig.7-1 Model for fiber reinforced composite plate; solid line represents bound-
ary of model plate,

of fibers is embedded in an elastic matrix of infinite extent. In Fig.7-1, the solid
line enclosing the fibers is the boundary of the plate; fibers located along a grid line
parallel to the longer side of the rectangle comprise a layer of fibers; and the shorter
side of the rectangle is called the thickness direction,

The qualifying phrase full-scale implies that the region occupied by the deter-
ministic model is of macroscopic dimension. As in previous chapters, assume the
radius of a typical fiber is 10um (after [1]), and the fiber spacing between two
adjacent fibers, which is the same as the grid size, is three times the fiber radius.
With the fiber arrangement sketched in Fig. 7-1, a model consisting of 20 layers of
fibers is equivalent to a composite plate of thickness 0.6 mm, which can be consid-
ered macroscopic. Therefore, in the thickness direction, the minimum number of
fibers considered is 20.
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7-2 Review of Computational Tools

Two computational tools, namely, the multiple-scattering solution for elastic
waves in two dimensions and the methodology of scatterer polymerization, have
been developed, implemented and verified in Chapters 4 through 6. Both tools are
analytically exact and can be used to analyze arbitrary numbers of scatterers. In
this section, their relative advantages and disadvantages are reviewed and compared
in the context of a full-scale simulation. :

Various forms of multiple-scattering solutions for elastic waves in two dimensions
have been presented in Chapter 4 for both the cases involving anti-plane shear (SH)
waves and in-plane (P/SV) waves. Implementations and computational character-
istics of all these forms for the case of SH waves have been discussed in detail in
Chapter 5.

The multiple-scattering solution is capable of computing all wave fields in the
entire problem domain, including waves interior to fibers, This solution is presented
in two forms, Form I directly computes the wave fields due to a given incident wave.
Form Il produces a multiple-scatterer system’s characteristic matrix, from which
responses to any incident wave can be subsequently computed in a straightforward
manner.

In Form I, it is assumed that the wave expansion coefficients of the incident wave
are known exactly in each scatterer’s local coordinate system. This assumption
reduces a level of coordinate transformation, as compared to Form II, making it
possible to use a smaller truncation size to achieve the same accuracy for a given
configuration.

The limitation of the multiple-scattering solution is that, regardless of the solu-
tion form used, the size of the computer memory required to solve the problem grows
at a rate of at least ~N2, where N is the number of fibers. This limitation prevents
this solution from being used solely for a full-scale simulation, as the computer used
in this study can analyze an assemblage up to about 30 fibers, and increasing the
computer’s memory does not appear to be a feasible option.

The scatterer polymerization methodology has been presented in Chapter 6.
This methodology allows the problem to be folded by using a multiple-stage proce-
dure, thus dramatically reducing the required computer memory. This methodology
produces a T-matrix representing the entire assemblage of actual scatterers, which
can thus be treated as a single abstract scatterer, called a molecule, in subsequent
computations, The T-matrix conformity errors defined in Chapter 6 quantitatively
describes the error level of the resulting T-matrix for the assemblage.

In any multiple-scattering analysis, a certain minimum distance between scat-
terers must be maintained. When using the scatterer polymerization methodology,
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this requirement becomes the primary limitation, and it has been shown in Chapter
6 that the practical limit for the minimum scatterer separation is significantly larger
than the theoretical limit.

Consider the arrangement of a square molecule in which the number of scatterers
along each side of a square region is the same and denoted as n, as sketched in
Fig. 7-2. This is a useful configuration for multiple-stage scatterer polymerization

n fibers {

- -~

®
@ .
®
®
~r

~
-~ -
----------

n fibers
Fig.7-2 Representative geometry of square molecule,

analyses for fibers in square arrangements. In Fig.7-2, a, is the radius of the
resulting abstract scatterer, and D is the edge-length of the molecule. For the fibers
arranged as in Fig. 7-2, the edge-length to radius ratios is
D 2nd
as 2a +v2(n — 1)d
where a is the radius of each individual fiber and d is the fiber spacing between two
adjacent fibers along a row or a column.

In each subsequent stage of computation when several identical molecules as
shown in Fig.7-2 are assembled, D is the minimum scatterer separation, whose
theoretical limit is, according to Chapter 6, D/a, > 1. As observed in Chapter
6, the practical limit for the D/a, ratio is between 1.6 and 1.4. Figure 7-3 shows
the D/, versus n curve for the case d = 3a. Also, in the limit as n — oo is
D/as — /2. That is, the molecule shown in Fig. 7-2 always satisfies the theoretical
limit of minimum scatterer separation no matter how large is n. Unfortunately, the
practical limit of D/, is reached when n is fairly small, and usually in only a few
stages of scatterer polymerization.

(7-1)

7-3 Computational Strategy for Full-Scale

Simulation

Assessing the available tools, a tentative plan is formed as follow: the scatterer
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Fig. 7-3 Decrease of D/a‘ ratio as number of fibers n increases, as described
by eqn. (7-1) when d = 3a.,

polymerization methodology is first used to build an abstract scatterer that contains
as large a number of fibers as the practical limit of minimum scatterer separation
permits; then the multiple-scattering solution is used to analyze an assemblage of
such abstract scatterers, which are arranged to simulate a model plate.

As in the previous chapters, a fiber-interphase-matrix model is considered for
a metal-matrix ceramic fiber composite system. The single scattering problem for
this 3-phase model has been studied in Chapter 3 for the SH wave case, by Yim
and Williams for the P/SV wave case in [2-1], and numerous multiple-scattering
examples have been presented in Chapter 5. For completeness, the material proper-
ties, after [11, are listed in Table 7-1. Unless otherwise specified, the outer radius
of the interphase is b = 1.1a.

Table 7-1: Constituent Material Properties for a Metal-Matrix Ceramic-Fiber

Composite System(!?,
Property Matrix Fiber Interphase
(AA520 Aluminium) | (Alumina, Al,O3) | (Zirconia, ZrO3)
Density (kg/m?) 2600 3700 6300
Young’s Modulus (GPa) 66 360 97
Poisson’s Ratio 0.31 0.25 0.33
Lamé Constant A (GPa) 41 144 71
Lamé Constant p (GPa) 25 144 37
P Wave Speed (m/s) 5920 10800 4800
S Wave Speed (m/s) 3100 6240 2420
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Table 7—2: Configurations of Various Scatterer Polymerization Procedures.

Procedure Fiber Configuration n | N=n?
® (2x2)=(2x2) 4| 16
) (3x3)=(2x2) 6 36
® (2%2)=(3x3) 6 36
® (3x3)=>(3x3) 9 81
® (2x2)=>(2x2)=>(2x2) 8 64
® (3x3)=(2x2)=(2x2) 12| 144
@ (2x2)=(3x3)=>(2x2) 12 | 144
(2%2)=(2x2)=>(3x3) 12| 144
©) (3x3)=(3x3)=>(2x2) 18| 324
(2x2)=>(2x2)=>(2%2)=>(2x2) | 16 | 256

7-3.1 Fiber Configurations

In Table 7-2, the configurations to be analyzed are listed. For example,
(3x3)=>(2x2) represents a two-stage polymerization procedure: in the first stage, 9
fibers are assembled as a (3x3) square arrangement; in the second stage, 4 identi-
cal scatterers built in the first stage are assembled in a (2x2) square arrangement,
which contains 36 fibers with 6 fibers along each edge.

In the computations, the truncation size M is determined a priori by the fol-
lowing empirical expression found in Chapter 6:

M = 8 + kdpmax (7-2)

where k is the wave number, and dp,, is the largest distance among scatterers. Note
that eqn. (7-2) does not necessarily give the optimal truncation size that yields the
smallest computational errors, but as it is desirable to perform the sirnulation in an
automated manner with minimal human intervention, this empirical formula is used
for its simplicity.

The computation for the T-matrix for the assemblage in each stage of a scatterer
polymerization follows the procedure detailed in Chapter 6. Then, the T-matriz
conformity errors of the resulting T-matrix are calculated.

The T-matrix conformity errors are defined, according to Chapter 6, as

M M
=3 > [T n = (-1 T o] (7-3)
m=0n=—-M
M M
=[], = X ¥ Il (7-4)
m=—Mn=—-M

where [T°'!] is the resulting T-matrix for the assemblage, | - |, denotes the I-norm
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Table 7-3: T-Matrix Conformity Errors at Final Stage of Various Scatterer
Polymerization Procedures Listed in Table 2.
ka=1 ka =2
b e 2 P el e2

@ | 14.1962 | 4.30632x10~1% | 9.21536x10™*% | 46,4482 | 2.00149x10~'% | 3.98988x 10~ "3
@ | 28.6239 | 1.56354x10~!* | 3.69056x10~!! | 83,1530 | 1,13101x10~'* | 1.56932x10~°
@ | 28.6381 | 1.44691x10~** | 3.04362x10™'* | 83,1069 | 6.78859x10~'* | 2,51099x10~*3
@ | 55.3384 | 4.97691x107** | 9.93173x 10~ | 163,755 | 2.60739x10~'3 | 9,26272x 10~ '3
® | 45.4106 | 3.78836x10~1% | 1.22926x10~° | 137,259 | 1.07988x10~'! | 6.89448x10~8
® | 85.0370 | 1.87264x107'° | 2,90541x10~° | 239.611 | 5.54093x10°® | 6.9955x105
@ | 83.6609 | 2,18835x10~° | 1.41833x107% | 241,588 0.558468 0.824674
83.1948 | 2.60668x 1073 | 1.82767x107'% | 242,377 | 2.07932x107*° | 4.60262x10°
© | 145.957 | 0.00508786 0.00690847 | 1771.47 1238.47 23601.0

@ | 125.895 | 7.28824x10"% | 1.0801x10"% | 373.607 0.0903401 0.0952106

of a matrix (see, e.g., SCHEID, 1968), and
[T] — % ([Ttota.l]-o + [Ttotal]) + [Ttotal]u[Ttota.l] (7_5)

If [T*°*?)] is exact, e, vanishes, and e, represents the truncation error. Nonvanishing
values of e; and e, represent errors due to various sources in the process, as detailed
in Chapter 6. Relative errors can be observed by comparing e; and e; with the
1-norm of the T-matrix, denoted as £ = |[T*']|,.

Table 7-3 lists the T-matrix conformity errors of T-matrices for the resulting
molecule using the scatterer polymerization procedures listed in Table 7-2 at fre-
quencies ka = 1 and ka = 2. Note that the nondimensionalized frequency ka = 2
corresponds to a frequency of about 100 MHz for this particular material system.

Table 7-3 shows that, among the procedures listed in Table 7-2, either Proce-
dures () or ® can be used since they contain the largest number of fibers in the
final configuration and yet maintain an acceptable error level. Both are 3-stage
procedures and produce the same final abstract scatterer. From a computational
efficiency perspective, Procedure (§) is preferred since it has a larger number of scat-
terers in the early stage of computation which has smaller truncation sizes. The
preparatory computations that produce Table 7-3 show that the overall computer
time needed for a 3-stage computation using Procedure (§) is a magnitude longer
than that of Procedure ). Therefore, Procedure ) is chosen.

7-3.2 Configurations of Model Plates

Several model plates are constructed from a number of identical molecules gener-
ated by Procedure (§). Molecules are arranged in 2x4, 2x6, 2x8 and 2x10 arrays to
represent model plates of the same thickness but different lengths, Model plates are
referred to by their molecular configuration. For instance, the model plate consisting
of 2x4 molecules is referred to as the 2x4 model plate.
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These model plates all consist of 24 layers of fibers, corresponding to a thickness
of 0.72mm. They contain different numbers of fibers ranging from 1152 to 2880.
Fiber configurations in each stage of the scatterer polymerization, as well as the final
configuration of the 2x4 model plate, are shown in Fig. 7-4. In Fig. 7-4, dashed lines

depict the arrangements of filers and molecules.
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Third Stage Model Composite Plate

Fig.7-4 Configurations of various stages of constructing a model fiber rein-
forced composite plate. (Dashed lines indicate arrangements of fibers
and molecules.)

7-3.3 Verifications

For the analysis of the model plates using the multiple-scattering solution, the
Cartesian coordinate system OXY is defined as shown in Fig. 7-5, where the 2 x 4
model plate is shown. A generic field point can be referenced by its Cartesian
coordinates (z,y) or its polar coordinates (r,8), where z = rcos@ and y = rsiné.
The incident wave is a plane wave of unit amplitude propagating along the +X
direction, whose expression is (see, e.g., [3])

¢inc = eikz — gikrcosd (7-6)
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Fig.7-5 Coordinate system for model composite plate, and boundary of energy
balance computations,

By writing the incident wave in nondimensional form in eqn. (7-6), it is implied
that all displacement fields are normalized by the amplitude of the incident wave.
In the computations, the truncation size of the T-matrix obtained via scatterer
polymerization is taken as the same truncation size as for the multiple-scattering
analysis.

Figure 7-5 also shows the closed path used for energy balance verification, which
is a complete circle of radius R = 240a, centered at the origin. The energy balance
verification is based on the fundamental physical principle of energy conservation.
For such a model subjected to a sourceless incident wave, a form of this principle,
known as the energy belance requirement, dictates that, for any closed path that
encloses neither a source nor a sink, the energy transmitted across the path must
be zero.

The expression for the energy balance requirement for two-dimensional steady-
state SH wave scattering has been derived in Chapter 3. In particular, for a circular
path of radius R centered at the origin of the global polar coordinate system,

/A(E)dA =R /02" Im {Z‘,ZU,}r:Rdo =0 (7-7)
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where Z,,(r,0) and U, (r,6) are the complex amplitudes of the stress component and
the displacement component, respectively, where the overbar denotes the complex
conjugate, and (E(r, 0)) = Im{Brzﬁz} is the time-averaged energy fluz density
function. Furthermore,

U.=¢ rz = pYre and Yrz = 'g_f‘ (7-8)
where ¢ is the complex amplitude of the z-component displacement given by the
multiple-scattering solution, u is a Lamé constant of the material, and v, is the
complex amplitude of the engineering shear strain component.

The energy balance verification follows the procedure in Chapter 5. By intro-
ducing the normalized time-averaged energy flur density function

oy _ (B ) 1
o0 = "pignel = g

and the cumulative normalized energy fluz function

Im{%ﬁ} (7-9)

0
I(R,6) = / (é(R, 0))do’ (7-10)
0
the energy balance requirement becomes, by combining eqns. (7-7) through (7-10),
I(R,21) =0 (7-11)

where any nonvanishing value of I(R,2w) represents the cumulative error of the
entire computation. In preforming the intergration of eqn. (7-10) numerically, the
entire circle is divided into 2880 subdivisions and (é(R, #)) within each subdivivion is
taken as a constant. Table 7-4 lists the computed values of |I(R,27)|, as compared
to the maximum values of I(R,6) during the integration process, |I(R,#)|max-

Table 7-4 shows that the overall computational error generally becomes more
severe as the frequency increases. For the case of ka = 1.7, energy balance verifi-
cation fails completely as |I(R,2x)| is identical |I(R,6)|max for most model plates.
For all other frequencies, errors are acceptably small, remaining within a level of
0.1% at ka = 1.6.

Figures 7-6 through 7-8 show the angular distributions of the normalized
time-averaged energy flux density function (¢(R,0)) and the numerical integration
progress using eqgn. (7-10) for the 2 x 4 model plate at the frequencies ka = 0.5,
1.0 and 1.5. Since the configuration is symmetric about the X-axis, distributions of
(é(R,0)) are shown only for the upper-half plane (0 < 8 < ).

7-3.4 Summary of Simulation Procedure

The verifications above are in fact examples of full-scale simulations. The com-
plete procedure for a simulation computation can be summarized as follows:
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Table 7—4: Results of Energy Balance Computations for Model Plates.

2 x 4 Model Plate 2 x 6 Model Plate

ko TR O lmas | H(R20] | TR, O)lmas | (1R, 20)]
0.1 [ 0.0998013 | 5.83029x10~16 | 0.0998225 | 4.95106x10~'7
0.2 | 0.190027 | 1.41994x10~*3 | 0.191978 | 5.53549x10~!5
0.3 | 0.297361 | 8.36357x10715 [ 0,296273 | 4,57884x10~!4
0.4 | 0.388274 | 1.00813x10~4 | 0.381587 | 1.42185x10"!3
0.5 | 0.484011 | 1.13912x10~'2 | 0.479637 | 1.59492x10~1!
0.6 | 0.430621 | 1.87752x10~'' | 0.342374 | 6.19969x10~ 1!
0.7 | 0.676042 | 6.54799x10~ | 0.662474 | 6.19969x10~}!
0.8 | 0.762003 | 1.32767x10~° | 0.741450 | 1.46818x10~10
0.9 | 0.831010 | 2.03354x10~1° | 0.789542 | 3.00779x10~1°
1.0 | 0.722319 | 3.67241x10"7 0.587337 1.65053x10~7
1.1 | 0.771428 | 3.00399x10-7 | 0.611481 | 1.41855x10~7
1.2 | 0.845215 | 3.01117x10~% | 0.669234 | 1.33219x10°6
1.3 0911875 | 1.88263x10~% | 0.720437 | 4.19407x10~5
1.4 | 0984537 | 5.51489x10~% | 0.774842 0.000379386
1.5 [ 1.05939 0.00151839 0.835629 0.000770001
1.6 | 1.14479 0.00339199 0.906330 0.00678579
1.7 | 2.66588 2.66588 1.97532 1.62603

2 x 8 Model Plate 2 x 10 Model Plate

ke TR, O)lmax | (R, 20| (R O)lman | (R, 20)]
0.1 | 0.0987802 | 2.60924x10~'6 | 0.0999517 | 5.88622x10-16
0.2 [ 0.184172 | 2.10456x10~12 | 0.186904 | 2.32806x10~!'3
0.3 0.295023 | 4.64799%10~'4 | 0.294434 [ 7.60901x10~!5
0.4 | 0.374518 [ 5.46021x10~'3 [ 0.369031 | 1.4854x10-!2
0.5 | 0.473937 | 2.16084x10~!2 [ 0.467537 | 2.67436x10~!2
0.6 | 0.253416 [ 3.07382x10~*! | 0.165692 | 1.84166x10~!
0.7 0.650913 | 1.23074x10~%9 | 0.638777 | 4.3206x10~'0
0.8 0.720658 | 1.49923x10-1 | 0.700319 | 2.20162x10~10
0.9 | 0748229 | 1.37767x10~° | 0.706714 | 3.53859x10~°
1.0 | 0.455144 | 1.08980x10-7 | 0.323115 [ 1.55120x10~7
1.1 | 0.448683 | 9.62562x10~8 | 0.287590 [ 4.11506x10~7
1.2 | 0.492328 | 3.84080x10-7 | 0.316300 | 1.76724x10~7
1.3 | 0529113 | 2.72702x10~° | 0.337657 | 8.88051x10~°
14 | 0.564594 0.000131655 0.354404 | 1.22721x10-5
15| 0.611071 0.000410107 0.386254 0.000750319
1.6 | 0.667320 0.000536321 0.429543 0.00019588
1.7 | 14.4508 14.4508 3.26076 3.26076
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Fig.7-6 Energy balance computation for 2 x 4 model plate when ka = 0.5.

» The simulation starts with the solution for the single-fiber model. For the fiber-
interphase-matrix model, a closed form analytical solution has been derived in
Chapter 2.

= The scatterer polymerization methodology is used for a three-stage procedure
denoted as Procedure (§ in Table 7-2. The fiber configuration in each stage is
shown in Fig. 7-4.

» Several identical molecules, generated by scatterer polymerization, are used to
construct a plate model, such as the one shown in Fig. 7-4.

= A plate model is then analyzed using the multiple-scattering solution. The co-
ordinate system is shown in Fig.7-5. Plate models are subjected to a planar
incident wave of unit amplitude propagating in the +X direction. Form I of the
multiple-scattering solution (Chapter 4) is used.

» The simulation is limited to incident waves within the frequency range from ka = 0
to ka = 1.5.

= Finally, filed quantities of interest can be computed in accordance with expressions
given in Chapter 4.
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Fig.7-7 Energy balance computation for 2 x 4 model plate when ka = 1.0.

7-4 Simulation Results

The success of the energy balance verification has confirmed that a combined use
of the multiple-scattering solution and the scatterer polymerization methodology is
capable of performing full-scale simulations for models containing several thousand
fibers.

In this section, computations for models having several lengths are conducted,
with an emphasis on observing some of the output wave’s field characteristics and
on transforming the simulation results into experimentally measurable parameters.

7-4.1 Displacement Fields

The multiple-scattering solution gives the complez amplitude of the displace-
ment, denoted as ¢, in the steady-state for each model subjected to a monotonic
incident wave. The physical displacement, denoted as u, is obtained by multiplying
the complex amplitude by the temporal term e~ and then taking the real part of
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Fig.7-8 Energy balance computation for 2 x 4 model plate when ka = 1.5.

the product. That is,
u = Re{ge~"'} = Acos(wt + a) (7-12)

where A is the displacement amplitude given by A = |¢|; that is, the amplitude of
the physical displacement equals the modulus of the complex amplitude.

Figures 7-9 through 7-12 show the distributions of the displacement amplitudes
in the vicinity of the fiber clusters for the 2 x 4, 2 x 6, 2 x 8 and 2 x 10 plate models,
respectively, at various frequencies ranging from ka = 0.1 to ka = 0.6. The regions
shown in these figures are bounded by z = +250e and y = +250a.

In these figures, the displacements in the regions occupied by the fibers, as well
as the regions in close proximity to the fiber clusters, are not computed. When using
the methodology of scatterer polymerization, the radius of the resulting molecule
is the radius of the smallest circle that circumscribes all the fibers (see Chapter 6),
which is 5.5v/2d +b for the molecule that is used to construct the plate models under
consideration. Wave fields within this radius cannot be computed.

The displacement amplitude distribution is very uniform in the region directly
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behind the fibers, called the shadow region, despite some smaller-scale wiggles. In
the illuminated region, the region opposite the shadow region, periodic peaks appear
as ridges that are primarily parallel to the plate’s vertical boundary, provided that
either the plate is long enough or the frequency is high enough. The spacing between
ridges clearly corresponds to the incident wavelength, which decreases as the linear
reciprocal of the frequency. For example, at the frequencies ka = 0.2, 0.4 and 0.6,
there are approximately 13, 26 and 39 ridges, respectively, in the illuminated region
shown (—250a < z < 43.5a). The smaller-scale wiggles (see, for example, Fig. 7-12
when ka = 0.4 or 0.5) appear in both the shadow region and the illuminated region
as straight lines that are angled with respect to the direction of the incident ave.
As the frequency increases, as well the length if the plate increases, these wiggles
extend farther from the plate in both the illuminated and the shadow regions.

At most frequencies, as the plate length increases, the distribution pattern within
the illuminated and the shadow regions appear to be expanded self-similarly, while
the transition regions at eh upper and lower edges remain essentially identical. This
suggests that waves in the illuminated and shadow regions consist almost exclusively
of the waves reflected from and transmitted through the plates. The exceptions are
at lower frequencies and short plate lengths; in which case, the diffracted waves —
waves that propagate around the edge into these regions—are substantial.

Finally, Fig. 7-13 shows the distributions of the displacement amplitudes for the
2 x 4 plate model at higher frequencies ranging from ka = 0.7 to ka = 1.4. The
region shown is bounded by z = £250a and y = +150a. The general characteristics
observed earlier remain the same here.

7-4.2 Averaged Displacement Fields

In experimental NDE ultrasonics, the response of the interrogated body is usu-
ally detected by one or more transducers placed on or near its surface. In most
applications, the transducer’s size and the region of averaged interrogation are large
compared to the diameter of a fiber in a fiber reinforced composite. Therefore, the
response measured experimentally is the average of a field quantity over a region
of fibers. In the following, the amplitude of the averaged displacement over an ex-
tended region of y is analyzed for a plate that is macroscopically symmetric about
the X-axis.

Consider a spatially-varying displacement field u(z,y) being averaged over a
range 0 < y < H. Denote this averaged displacement over the range 0 <y < H as
U(z, H), so

i(z, H) = A(z, H)(cos wt + &) (7-13)

where ]f(z, H) is called the averaged displacement amplitude over the range 0 < y <
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H. Then, from eqn. (7-12),

a(z, H) = % /0 "y = —;;Re { /o § ¢e-fwtdy} = Re{@(z, H)e™™}  (7-14)

Also,
A(z,H) = | §(z, H)| (7-15)

that is, the averaged displacement amplitude equals the modulus of the averaged
complex amplitude of the displacement.

Figures 7-14 through 7-18 show the change of averaged displacement amplitudes
A(z, H) with H at several discrete constant-z lines, and the comparison to the
distribution of the displacement amplitude A along the same lines, for the 2 x 4
model plate at frequencies ka = 0.3, 0.6, 0.9, 1.2 and 1.5. For all these cases,
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Fig.7-14 Averaged displacement amplitudes as function of H, as compared
to distribution of displacement amplitude, for 2 x 4 model plate at
frequency ka = 0.3.

the averaged displacement amplitude starts at its limiting value as  — 0 as the
same as the displacement amplitude. As H increases, the averaged displacement
amplitudes soon stabilizes; that is, the fluctuation of the displacement amplitude
does not change the averaged results noticeably. Then, the edge effect starts to
affect the averaged values, which occurs roughly after H > 50a.

Figures 7-19 through 7-23 show the distribution of the averaged displacement
amplitude of the 2 x 4 model plate along the X-axis at frequencies ka = 0.3, 0.6, 0.9,
1.2 and 1.5, In these figures, the averaging range is 0 < y < 48a (two-thirds of the
plate’s half-length) and the region occupied by the molecules, —43.5a < = < 43.5a,
is not computed.

From Figs. 7-19 through 7-23, it is observed that the distribution of the averaged
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displacement amplitude (solid curve) in the forward direction does not change sig-
nificantly throughout the region shown. This implies that the choice of a particular
measuring point for such a computational model plate is not critical.

In the backward direction, the averaged displacement amplitude is highly os-
cillatory along the X-axis. In essence, the averaging process eliminates small-scale
fluctuations of the displacement amplitude along a constant-z line. The averaged
displacement in the backward direction can be viewed as a planar wave traveling in
the —X direction, which can be expressed as

al = efk= + Be~ikz = gikT(] 4 Be—2ik:) (7-16)
I
where B represents the amplitude of the scattered wave, Thus

1Bl], o = 11+ Be =] (7-17)
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Equation (7-17) indicates that both the spatial distribution (for a fixed k) and
the spectrum (for a fixed z) in the backward direction are highly oscillatory, with
envelopes given by (1 & B).

Hence, in general, the scattered wave suffices to describe the main characteristics
of the backward scattering. In fact, in some ultrasonic NDE techniques, such as
the pulse-echo technique, in the backward direction, only the reflected wave (i.e.,
the scattered wave) is of interest. The dashed curves in Figs.7-19 through 7-23
correspond to the averaged displacement amplitudes due to the scattered wave only.
They all appear uniform similar to those in the forward direction, This implies that
the choice of a particular measuring point in the backward direction is not critical,

7-4.3 Plate-Averaged Wave Fields

For the displacement fields, the forward and backward spectra of the averaged
displacement amplitude for all four models plate are computed for the frequency
range ka = 0.0025 to 1.5 with an increment of 0.0025. The measuring points are
at £ = £60a. Displacement amplitudes are averaged over two-thirds of the plate’s
half-length for all models. The spectra are shown in Figs. 7-44 and 7-25. Note that
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Fig.7-24 Forward spectra of averaged diaplacement amplitude for various
model plates.

Discussions and analyses of the physical characteristics of the spectra are re-
served for future more comprehensive studies. The emphasis here is to note an
important relationship among the spectra obtained for the four model plates. These
spectra are essentially identical: the oscillatory patterns are almost the same and
the amplitude deviation of one spectrum from any other is generally, with exceptions
at a few discrete frequencies, within 2%.

The similarity among the spectra shown in Figs.7-24 and 7-25 suggests that,
beyond some low frequency regime, the displacement amplitude wave field, averaged
over a central portion of a model plate, is independent of the plate length, provided



2563

1.0 i
0.9 | [\a TR, ‘s'm::-
0.8 ™
0.7 '
0.6 N
< 05 A
04 A —— 2x10Plate |
TR IYR VAT R VA mamtim 1 pore |
S %6 Plate [

g'i Jj , ‘ L“ \r .......... 2x4 Plate
! [ T

Ry i e e

0.0
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
ka
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tered waves for various model plates.

the averaging range is sufficiently large, compared to both the wavelength and the
fiber radius, and remains entirely within either the shadow or the illuminated re-
gions. Such an averaged wave field that is independent of the plate length is called
a plate-averaged wave field.

Furthermore, reviewing the results obtained so far leads to the following proposi-
tion: for a model plate involving a macroscopically uniform fiber distribution, if the
ridges of amplitude in of the wave field in the illuminated region are predominantly
straight lines parallel to the plate’s boundary, the plate is adequately long for the
frequency and the averaged wave field can be taken as the plate-averaged wave field.

The significance of the concept of plate-averaged wave field is that, in an aver-
aged sense, 2 model plate of finite length can be used to obtain results for a plate
of infinite length, such as one generated by self-similarly repeating the model shown
in Fig. 7-5 along the Y-axis from —oco to co, From a numerical computation per-
spective, using longer plates in general ensures that the averaged wave field is closer
to its asymptotic value, especially in the low frequency regime, but at a cost of
computation time, which grows at least at the same rate of the required computer
memory size: ~N? where N is the number of molecules in the model plate.

On the other hand, there are exceptions to the proposition. For example, at
ka = 0.2, the distribution for the 2 x 4 model plate is distinctive from other model
plates, These exceptions could be due to some other physical phenomena yet to be
explored. However, these exceptions appear to occur rarely.

It is also observed that, for each model plate, there are small ranges of frequency
along the forward spectrum in which the averaged displacement amplitude exceeds
unity, which is the amplitude of the incident wave, Despite that fact that the excess
amount is extremely small, this violates the physical principle of energy conservation
if the amplitude is taken as the exact plate-averaged amplitude. This implies that,
although the computed results are analytically exact and numerically correct, the
plate-averaged wave field must be regarded as an approximate numerical result that
contains errors, where the errors are introduced in the averaging process when the
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results from a finite-length model plate are extrapolated to an infinite-length plate,

7-5 Conclusions

In this chapter, complete simulations are performed to demonstrate that a com-
bined use of the computational tools developed previously, namely the multiple-
scattering solutions (Chapters 4 and 5) and the scatterer polymerization methodol-
ogy (Chapter 6), is capable of performing full-scale simulations.

Through numerical examples, the complete procedure of such a simulation is
explored in detail and summarized at the end of Section 3. The examples consists of
a series of model fiber reinforced composite plates of thickness 0.72 mm but of differ-
ent lengths. By exploring various characteristics of the full-scale simulations for this
series of examples, the concept of plate-averaged wave fields is established. This con-
cept relates the simulation results for a finite-length model plate to experimentally
measurable responses of a composite plate of infinite length.

Finally, the simulation results are analytically exact and the simulation imple-
mentation has been numerically verified.
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Application
Example

Abstract: In this chapter, a comprehensive example of full-scale sim-
ulations of a fiber reinforced composite system is presented. Based on
the numerical procedures developed in the previous chapters, the simu-
lations are conducted to observe the effects on the cut-off and recovery
frequencies of a stop band in the response spectra of a composite plate
due to changes of its micro-structural parameters.
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Nomenclature
Symbols
A Plate-averaged amplitude of the out-of-plane displacement.
a Radius of the fiber in the fiber-interphase-matrix micromechanics model.
b Outer radius of the interphase in a fiber-interphase-matrix micromechan-

o8

v £t 2T a0

Subscripts
fii

ics model for fiber reinforced composites,
Fiber spacing: the distance between two adjacent fibers in the same row
or column in a square fiber arrangement.

Frequency of the incident wave.

Unit of imaginary numbers, i = /=1,

Wave number in the matrix.

Wave number corresponding to the cut-off frequency.
Wave number corresponding to the recovery frequency.
Wavelength in the matrix.

Lamé constant of the matrix.

Complex amplitude of out-of-plane displacement,
Circular frequency of the incident wave,

Density of the matrix.

Physical quantities that belong to the fiber and the interphase, respec-
tively. (The same denotation without the subscript signifies that the
quantity belongs to the matrix.)
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8-1 Introduction

In previous chapters, a computational approach for full-scale simulation of scat-
tering of elastic waves in fiber reinforced composites has been established, imple-
mented and verified. The approach involves two theoretical developments: solu-
tions for multiple-scattering problems of elastic waves in Chapters 4 and 5, and the
methodology of scatterer polymerization in Chapter 6. In Chapter 7, the combined
use of these theoretical tools is demonstrated to be capable of performing full-scale
simulations for model composite plates containing thousands of fibers.

In this chapter, a more comprehensive deterministic full-scale simulation is pre-
sented, with an attempt to observe the effects on the macroscopic response character-
istics of a composite plate due to changes in some parameters of its microstructure.
The example is aimed at gaining insights into the nondestructive evaluation (NDE)
of composites.

In a fiber reinforced composite, the fiber-matrix interface may possess physical
properties that are distinctive from either of the two constituents, due to either
chemical interactions between the constituents or coating treatments in the material
processing to improve bonding. In some micromechanical models, this distinctive
layer at the interface is treated as a third phase of material constituents and is
called the interphase. The interphase plays a pivotal roll in some of the macroscopic
properties of the composites.

The example chosen for study is a composite plate consisting of identical fibers
that incorporate the interphase, called the fiber-interphase-matriz model. The fiber-
interphase-matrix model for fibers in composite has been considered previously.
Yim and Williams!!~?) studied the single-scattering problem of such a fiber model
subjected to in-plane shear (SV) and pressure (P) waves. The single-scattering
problem of anti-plane shear (SH) waves has been studied in Chapter 2, and some
multiple-scattering problems of SH waves have been studied throughout this thesis,
including an example of full-scale simulation in Chapter 7.

8-2 Numerical Procedure

Deterministic full-scale simulations involve computing the response spectra for
various combinations of parameters of the microstructure. The computation for the
response spectrum for each set of parameters follows that in Chapter 7. The model
plate is constructed in four stages, using a square arrangement of fibers.

In the first three stages, the scatterer polymerization methodology is used to
construct molecules of abstract scatterers. Figure 8-1 shows the fiber configuration
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in the first stage, which also defines the microstructural parameters in this study:
the distance d between two adjacent fibers located along the same row or column,
referred to as the fiber spacing; and the outer radius of the interphase b. Both
parameters d and b are normalized by the fiber radius a, which remains constant,
Figure 8-2 shows the configurations of the second and the third stages of scatterer
polymerization.
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Fig.8-1 Configuration of first stage for constructing fiber reinforced composite
plate model, showing microstructural parameters,
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Fig. 8-2 Configurations of second and third stages for constructing fiber rein-
forced composite plate model. (Dashed lines indicate demarcations of
molecules.)

In the fourth stage, the multiple-scattering solution is used to solve a model
plate constructed from 8 molecules, built in the third stage. The configuration of
the final model plate, containing 1152 fibers, as well as the coordinate system used
in the analysis, are shown in Fig, 8-3.

Before computing the response spectra, an energy balance computation is per-
formed. For each set of microstructural parameters, when the frequency is higher
than a certain value, numerical errors become too severe and the computational
results become erroneous. Energy balance computations compute the total energy
transmitted across a closed circular boundary of radius 80d, as sketched in Fig. 8-3,
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Fig.8-3 Configuration and coordinate system for composite plate model, and
hypothetical boundary for energy balance computations.

when the model plate is subject to a planar incident wave of unit amplitude propa-
gating along the +X-axis, whose expression is(3!

¢inc — e—ik:: (8_1)

where ¢ is the out-of-plane displacement component in complex notation, and k is
the wave number in the matrix. When the numerical errors are small, the total en-
ergy transmitted across the boundary should balance. This computation determines
the computable range of frequencies. The computation uses a coarse frequency step-
size (Aka = 0.05), and follows the same procedure as described in Chapter 5, where
mathematical expressions for the energy balance computation are also given,
Afterwards, a finer step-size (Aka = 0.0025) is used to compute both the forward
and the backward spectra of the plate-averaged displacement amplitude, denoted
as A, due to the incident wave in eqn. (8-1), over the entire computable frequency
range. The concept of a plate-averaged field quantity has been defined and discussed
in Chapter 7. In essence, this is the equivalent averaged response of a plate of infinite
length extrapolated from the computed results for a model plate of finite length.
In general, a longer model plate would ensure a more accurate extrapolation. But
it has been shown in Chapter 7 that a model plate such as the one in Fig.8-3 is
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capable of generating such extrapolations with errors generally no larger than 2%.

In the computation, the plate-averaged displacement amplitudes are computed
as the averaged displacement amplitude, whose expression is given in Chapter 7,
along the line z = +20d over the range 0 < y < 16d, which is 2/3 of the half-length
of the model plate. It has been observed in Chapter 7 that such a computed plate-
averaged displacement amplitude does not vary noticeably in an extended range of
z in both the forward and backward directions.

Table 8-1 lists the material properties of the constituents that correspond to a
metal-matrix ceramic-fiber reinforced composite system, after [2]. A typical radius
of the fiber is @ = 10 um?. In the computations, the physical properties of all three
constituents are fixed.

In the following discussions, the normalized frequency kn is used, The rela-
tions between the normalized frequency ka, the frequency f, the wavelength A, and
material properties are

(8-2)

where p and p are the density and Lamé constant, respectively, of the matrix. The
relations of these parameters among the constituents are

ki A Pip

Mo_ 2 [BE 9795 8-3

kA PHi (53
kr A [PiE _ (49705 (8-4)
k  Ag PHf

where the subscript f signifies that the quantity belongs to the fiber, and the sub-
script ¢ signifies the interphase. The correspondence between these parameters at
several frequencies is listed in Table 8-2.

Table 8-1: Constituent Material Properties for Metal-Matrix Ceramic-Fiber
Composite System!?,

Property Matrix Fiber Interphase
(AA520 Aluminium) | (Alumina, Al2O3) | (Zirconia, ZrO,)

Density (kg/m?) 2600 3700 6300
Young’s Modulus (GPa) 66 360 97
Poisson’s Ratio 0.31 0.25 0.33
Lamé Constant A (GPa) 41 144 71
Lamé Constant p (GPa) 25 144 37

P Wave Speed (m/s) 5920 10800 4800

S Wave Speed (m/s) 3100 6240 2420
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Table 8—2: Correspondence Between Frequency, Nondimensional Frequency
and Wavelength for Composite System in Table 8-1 (e = 10um).

ka f(MHz) kia kra  AJa  Afja  Aj/a
0.25 12,34 0.3199 0.1243 25.13 50.56 19.64
0.5 2468 0.6398 0.2485 12,67 25.28 9.821
0.75 37.01 09597 0.3729 8.378 16.85 6.547
1 49.35 1.280 0.4971 6.283 12.64 4911
1.25 61.69 1.599 0.6212 5.027 10.11 3.928
1.5 70.03 1.919 0.7456 4.189 8,427 3.274
1.75 86.37 2.239 0.8698 3.590 7.223 2.806

8-3 Simulation Results

Two sets of computations are performed. In the first, the fiber spacing d is kept
constant, and the spectra, for various interphase thicknesses ranging from b = a (no
interphase) to b = 1.3a, at an interval of Ab = 0.0la, are computed for 3 fixed fiber
spacing values: d = 3a, 4a and ba.

A set of typical plate-averaged response spectra of the displacement amplitude
is shown in Fig. 8-4, for the case when b = 1.1a and d = 3a. As observed in Chapter
7, the total wave in the backward direction is highly oscillatory and the scattered
wave suffices to describe the main characteristics of the scattering. Thus, in all the
spectra to be presented, only the scattered wave is shown for the backward direction.

In order to observe the effects of continuously varying parameters, the spectra
for a same value of d but different values of b are converted and assembled into a
colorized spectrum map, as shown in Fig. 8-5 for the case of d = 3a. The conversion
is based on a pre-defined one-to-one correspondence between a color and a value of
displacement amplitude. This one-to-one correspondence is shown as a color scale
(also called a color palette) accompanying each spectrum map. In a spectrum map,
one image line parallel to the ka-axis corresponds to the spectrum for a particular
b/a value. Similarly, Figs.8-6 and 8-7 are spectrum maps for the cases of d = 4a
and d = 5a, respectively.

In the second set of computations, the interphase thickness is fixed while the
fiber spacing d is varied, Two interphase thicknesses are considered. For b = 1.1a,
the fiber spacing d is varied from d = 2.25a to d = 5a with an interval of Ad = 0.05a.
For b = 1.2a, d is varied from d = 2.4a to d = 5a with the same interval. Computed
spectra are similarly converted into spectrum maps, as shown Figs. 8-8 and 8-9 for
the cases of b = 1.1a and b = 1.2a, respectively.

From the spectrum maps in Figs. 8-5 through 8-9, the most striking character-
istic is that there is a range of frequency in which the displacement amplitude in
the forward direction essentially vanishes. This means that waves whose frequency
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Fig.8-4 Spectra of plate-averaged displacement amplitude when d = 3a and
b=1.1a.

falls within this range cannot propagate through the model plate, and the plate
effectively becomes a stop-band filter. This frequency range changes smoothly as
one of the parameters changes, and in most cases, the ends of the range are clearly
defined.

Other secondary effects can also be observed from these spectrum maps. For a
fixed fiber spacing d, in Figs. 8-5 through 8-7, there are numerous streaks along lines
at ka equals a constant that appear throughout the frequency range, and are most
clearly visible within the stop band. These streaks correspond to small spikes in the
spectra, such as the one shown in Figs. 8-4a and b. Outside the stop band, colors in a
spectrum map show less variation as the fiber spacing increases, indicating that the
difference between peaks and valleys in a spectrum decreases. In all these spectrum
maps, there are patches of features that do not exhibit a pattern of appearance, such
as the dip in the forward spectrum in Fig. 8-4a around ka = 0.6. Another interesting
observation is that the number of peaks in these spectra, both the forward and the
backward, in the range from ka = 0 to the lower edge of the stop band is always 24,
the number of fibers in the z-direction, although smaller spikes sometimes interfere
with these peaks and valleys to make accounting them from within each spectrum
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Fig. 8—-5 Spectrum maps of plate-averaged displacement amplitude when o = 3«,
(Blocked discrete texture is due to numerical steps, )
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Fig. 8—6 Spectrum maps of plate-averaged displacement amplitude when o = 44,
(Blocked discrete texture is due to numerical steps.)
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Fig. 8=7 Spectrum maps of plate-averaged displacement amplitude when o = a
(Blocked discrete texture is due 1o numerical steps.)
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Fig, 8=9  Spectrum maps of plate-averaged displacement umplitude when h=1,24.
(Blocked discrete texture is due to numerical steps,)
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difficult.

8-4 Data Analyses

Now, relating the characteristics of the stop band with microstructural parame-
ters is attempted. The stop band is the most observable characteristic of the spectra
and varies smoothly and monotonically with several parameters. Such characteris-
tics are of significance for material characterization. In these discussions, the lower
end frequency of the stop band is referred to as the cut-off frequency and the higher
end frequency is referred to as the recovery frequency. They are collectively called
the critical frequencies.

8-4.1 A Hypothesis

One of the possible explanations for the appearance of the stop-band is that,
at some particular frequency as the wavelength matches one of the structural di-
mensions, the wave either causes a resonance or is trapped within certain regions
of the structure. For the plate model under consideration, Figs.8-5 through 8-9
indicate that variations in the stop band are more dependent on the parameter d,
the fiber spacing, and less so on the parameter b, Therefore, it is likely that the
space between the fibers acts as a wave-trapping mechanism, and the regularity of
the fiber configuration enhances this wave-trapping effect to form a clearly defined
stop band.

Consider a representative element of the model plate as sketched in Fig. 8-10.
In accordance with the aforementioned wave-trapping mechanism, it is hypothe-
sized that wave trapping will initiate when the wavelength matches the diagonal
dimension along the line AC, the longest dimension of the representative element.
Furthermore, waves of shorter wavelength would also be trapped within this space
until the wavelength is shorter than the dimension along the line AB, the shortest
dimension,

To determine the cut-off frequency, the following relation is proposed:

2 2(b — -
(_a+ ( a)+\/§d 2b)
A A; A

(8-5)

1
2

cut-off

where each term on the left-hand side of eqn. (8-5) represents the ratio of the di-
menson of one of the constituents to its respective wavelength. In other words, the
cut-off occurs when the dimension AC equals one half of the proportioned wave-
length. Using the relations in eqns. (8-3) and (8-4), and denoting the normalized
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Fig.8-10 Representative element of microstructure of composite plate model.

cut-off frequency as k.a, then, eqn. (8-5) can be written as
s a

kca = = p
@+2 (E _ 1) g+2 (L_, B E) V2d + 0.5590b — 1.565a

(8-6)
k k

where, in writing the last equality, material properties in Table 8-1 have been used.
Similarly, the normalized recovery frequency, denoted as ka, can be determined

by the dimension of line AB as
™ _ Ta
)b (k_f_g) ~ d+0.55906 — 1.565a

(8-7)

—+2(2 -1
a+ k

kra =
d k;
( T T

8-4.2 Data Fitting

The smooth and monotonic changes of both critical frequencies can be explored
using classical data analysis tools. It is noted that the k.a and kra curves in Figs. 8-8
and 8-9 bear a strong resemblance to a curve segment represented by the function
/4. And, to take into account the effect of b exhibited in Figs.8-5 through 8-7,

data fitting with the following function is attempted:
™

= Az +By+C
where z = d/,, y = b/;, and z can be either k.a or kra. In fact, eqn. (8-8) is of the

(8-8)

same functional form as eqns. (8-6) and (8-7).
As eqn. (8-8) is a nonlinear equation, an alternative functional form

§=Az+By+C' (8-9)

is used in conjunction with the method of the least squares error scheme for the data
fitting, leading to the following linear equations system:

N 2?2 SNy SNn]( A4 Ly I
Ylimy TNy SNiw |[{ B =g SK (8-10)

Zih;l T; Eilil Yi N c Zilil zll
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where (z;, yi, zi) are individual data points, and N is the total number of data points.
In fitting the data, the entire data set, collected from 5 spectrum maps, is placed

in a data pool, and only 1/4 of randomly chosen data is used in a fitting; and the

error according to eqn. (8-8) is computed over the entire data set. Such a data

fitting process is repeated 50 times, and at the end, the fitted functions, giving the

smallest errors, have been found to be

a

ke@ = 17575634 + 1.0177350 — 1.617357

(8-11)

and
Ta

kra = 7375264 —0.2820065 — 1.080639

(8-12)

8-4.3 Discussions

Figure 8-11 shows the hypothesized formula for the cut-off frequency in
eqn. (8-6) and the data-fiting eqn. (8-11), plotted for several fixed d values, as com-
pared with the cut-off frequencies from the spectrum maps in Figs. 8-5 through 8-7,
Figure 8-12 shows eqns. (8-6) and (8-11) plotted for several fixed b values, as com-
pared with the cut-off frequencies from the spectrum maps in Figs.8-8 and 8-9.
Figures 8-13 and 8-14 compare the recovery frequency egns. (8-7) and (8-12) with
similar data.
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Fig.8-11 Comparisons of cut-off frequencies according to eqns,(8-6) and
(8-11), with simulations from spectrum maps in Figs,8-5 through
8-7.
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Fig.8-12 Comparisons of cut-off frequencies according to eqns.(8-6) and
(8-11), with simulations from spectrum maps in Figs. 8-8 and 8-9.

From Figs.8-11 through 8-14, it is observed that the hypothesized formulas
predict both the cut-off and the recovery frequencies to a close approximation of
the data. Both equations predict the correct functional trends as the parameter d
changes. Data in these figures show that parameter b has a lesser effect on both
critical frequencies as compared to parameter d. Equation (8-6) predicts the correct
trend for the cut-off frequency as the parameter b changes, but eqn. (8-7) predicts
an incorrect trend for the recovery frequency.

The data-fitted functions, eqns. (8-11) and (8-12), match the data trends very
well. But, in some regions, they do not fit the data as closely as desired. For
example, in Fig.8-11, the curve given by eqn. (8-11) is consistently below or above
the data in some cases; in Fig. 8-12, eqn. (8-11) deviates significantly from the data
for small d values.

Besides predicting the critical frequencies to a first-order approximation,
eqns. (8-6) and (8-7) also incorporate other physical properties of the composite
system that are embedded in ks and k;. For this reason, such an equation is more
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Fig.8-13 Comparisons of recovery frequencies according to eqns. (8-7) and
(8-12), with simulations from spectrum maps in Figs.8-5 through
8-T7.

useful than a data-fitted function since it can be verified by or used for other mate-
rial systems. In particular, note that the coefficient in front of b/, in these equations
is (kify — 1). This causes the formulas to predit different functional trends due to
changes of parameter b. As b increases, the predicted critical frequencies decrease
for an interphase that is softer than the matrix ( ki/x > 1); and decrease for a harder
interphase (kifg < 1).

For the composite system under consideration, the coefficient in front of b/, in
eqn. (8-6) is positive and the data show that eqn.(8-6) predicts the correct func-
tional trend of cut-off frequency as b changes, and that eqn. (8-7) predicts an incor-
rect trend for the recovery frequency. For verification purposes, consider a different
composite system — a glass fiber reinforced composite system, The constituents’
material properties, after [4], are listed in Table 8-3. For this composite system,

Table 8-3: Constituent Material Properties for a Glass-Fiber Reinforced Epoxy
Composite System[4],

Property Matrix (Epoxy) Fiber (Glass) Interphase
Density (kg/m3) 1250 2560 1905
Young’s Modulus (GPa) 4.5 76 40.2
Poisson’s Ratio 0.39 0.20 0.33
Lamé Constant u (GPa) 1.62 31.7 16.6
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Fig.8-14 Comparisons of recovery frequencies according to eqns. (8-7) and
(8-12), simulation results from spectrum maps in Figs. 8-8 and 8-9.

the properties of the interphase are hypothesized as shown, and kify, = 0.38565 < 1
and Frf = 0.32351. The cut-off frequency, according to eqn. (8-5), can be written

as
Ta

cd =

V2d — 1.2287b — 0.12428
Full-scale simulations for this system are also performed, for the case d = 3a at
various b values, The resulting cut-off frequencies as compared to eqn. (8-13) are
given in Fig. 8-15. Figure 8-15 shows that the hypothesized formula, eqn, (8-13),
again predicts the correct trend due to the change of b, although the data for this
case possess a different trend than in the previous case (Figure 8-11). But, the
predicted frequencies deviate from the data greater than the previous case.

The inaccuracy of the hypothesized formulas (eqns. (8-6) and (8-7)) and the
discrepancy between the data-fitted functions (egns.(8-11) and (8-12)) and the
data suggest a deficiency in this functional form that fails to reflect some secondary
effects due to changes of the parameters. These secondary effects may also include

k

(8-13)



275

1.3
]

1.2 S

-
-
o

—_—— | Im|
.

1.0

0.9

0.8

0.7

kea

0.6

05

0.4

03

0.2

0.1

0.0
1.0 1.05 1.1 1.15 1.2 1.25 13
b/a

Fig.8-15 Comparison of cut-off frequencies according to eqn. (8-13) with sim-
ulation results for the glass-epoxy composite system,

some other mechanisms that induce the stop-band phenomenon, such as the trapping
or the resonance of the waves that reside within the interphase and the fiber.

It is also noted that there are subtle trends in the data that the current func-
tional form, both hypothesized formulas and the data-fitted functions, has failed to
capture. For two different b values, as d increases, the difference in their respective
cut-off frequencies increases and the difference in their respective recovery frequen-
cies decreases, For the recovery frequency, the curves for different b values cross at a
certain d value. These two observations indicate that the functional form, denoted
as f(b,d), must have a provision, although very small, such that Offgp x d+ D
where D is a constant or be a function of other physical properties.

The simplistic hypothesis proposed in this study is shown to be correct to a
first-order approximation, and even correct in the functional trends. Still, a more
elaborate model to explain the stop band phenomenon is needed for better accuracy.
In exploring a corrected or improved functional form or hypothesis, further trial-
and-error data fitting could be helpful.
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8-5 Concluding Remarks

In this chapter, more comprehensive deterministic full-scale simulations are per-
formed for the same composite model plate that has been studied in Chapter 6.
The simulations are more comprehensive in the sense that two microstructural pa-
rameters, the fiber spacing and the outer radius of the interphase, are continuously
varied for a wide range in order to examine the effects of their changes.

For the model plate under consideration in which fibers are in a square arrange-
ment, the most striking observation in the simulation response spectra is a feature
called the stop band. The stop band is a range of frequency within which waves
cannot propagate through the model plate. An explanation for the formation of the
stop band is hypothesized and a formula is proposed. It is further shown that the
proposed formula predicts the critical frequencies of the stop band to a first-order
approximation.

Since this chapter is intended only as a comprehensive example of the application
of the approach developed in this thesis towards performing full-scale simulations,
in-depth study of the stop-band phenomenon and more comprehensive parametric
studies of the current model plate are left for future endeavors.
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Conclusions

Abstract: In this chapter, the achievements of this thesis and prospec-
tive future work are summarized.
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9-1 Summary of Achievements

In this thesis, starting from the very basic equations governing the wave fields in
elastic media, and classical solutions for a single scatterer problem, a computational
system that is capable of obtaining analytically exact solutions for assemblages of
thousands of scatterers is built and proved. The achievements of the thesis can be
summarized as follows:

= An analytically exact closed-form solution for the single scattering problem in-
volving a layered circular cylindrical scatterer subjected to SH waves is derived.
Numerical results are presented for a fiber-interphase-matrix model that is used
as a micromechanics model for a ceramic-fiber reinforced metal-matrix composite
system.

= The concept of the T-matrix is clarified, and several universal properties of the
T-matrix imposed by physical principles and by scatterer geometrical symmetries
are derived.

= Analytically exact solutions for multiple scattering of elastic waves in two-
dimensions are cerived for both the SH and the P/SV wave cases. The solutions
are capable of handling an arbitrary number of similar or dissimilar scatterers.

= The multiple-scattering solution is implemented and verified for the SH wave
case, and its computational characteristics are observed. Numerical examples for
the fiber-interphase-matrix model are presented, and several interesting physical
phenomena are noted.

= The methodology of scatterer polymerization is proposed, implemented and veri-
fied. Its computational characteristics are discussed.

= Through numerical examples, it is shown that the combined use of the multiple-
scattering solution and the scatterer polymerization methodology is capable of
performing simulations of fiber-reinforced composites in full scale. Numerical
examples are presented to demonstrate the procedure of such a simulation. Rela-
tionships between simulation results and experimentally measurable parameters
are established, and several interesting physical phenomena are observed.

9-2 Future Work

This thesis explores an approach — theoretical tools and computations proce-
dures — to perform full-scale deterministic simulations of elastic wave scattering in
fiber reinforced composites. The emphasis is restricted to formulating, implementing
and demonstrating the capability of this approach.
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This demonstrated capability opens a new arena for computer simulation of the
mechanics of composite materials, Therefore, in the immediate future, compre-
hensive simulations can be performed to observe the relation between micro-scale
parameters and macro-scale properties of composites, Such simulations would en-
hance the understanding of composite materials, and ultimately assist in relating
the parameters in these two scales.

Some interesting physical phenomena have been noted from the limited numer-
ical examples. For example, the appearance of the stop-band characteristics in the
spectra of various square fiber arrangements could be explored further. Through
more comprehensive numerical examples, further examination of stop-bands and
their relations with scatterer properties and configuration should be informative.

There are, however, limitations in this simulation approach. Most noticeably, the
methodology of scatterer polymerization is severely restricted by the practical limit
of minimum scatterer separation, which is significantly larger than the theoretical
limit. It is suspected that this limitation comes from the number of significant
figures can be furnished by the native data types of a typical desk-top computer.
The possibility of expanding the computation accuracy and decreasing the practical
limit of scatterer separation could be explored to extend this approach.

Finally, it is noted that the current implementation was limited to the SH wave
cases. Having explored various computational aspects of the SH wave case, it is
expected that implementing the P/SV wave case will be straightforward since the
two solution forms resemble each other.






