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Abstract

Propagation of waves through heterogeneous structured materials has been the focus
of considerable research in recent years. These materials consist of quasi periodic
geometries combining two or more piecewise homogeneous component media. The
interest in these materials stems from the fact that when waves propagate through
them one can observe phenomena, such as bandgaps, which cannot be obtained with
any single homogeneous medium. The design of structured materials aims to identify
patterns which have desirable features regarding wave propagation applications.

The range of applications is very broad. In the context of electromagnetic waves,
governed by Maxwell's equations, one may be interested in the design of low-loss
waveguides, invisibility cloaks, superlenses or light frequency filters. For acoustic
applications one may consider the design of passive noise filters or sound beams.

The physics governing the propagation of waves is well understood and the ex-
isting mathematical models often provide excellent predictions. For this reason, the
design of structured materials can greatly benefit from the use of numerical simulation
and optimization techniques. Accurate numerical simulations can describe the prop-
agation of waves through heterogeneous materials once the geometry and material
properties are defined. Optimization methods can help determine arrangements of
component materials and their properties in order to optimally accomplish a desired
outcome.

The work presented in this thesis includes a collection of multiscale high order
accurate numerical simulation methods capable of simulating wave propagation in
piecewise homogeneous media for two types of problems of interest: the source and the
eigenvalue problems. In particular, we introduce the multiscale continuous Galerkin
and multiscale hybridizable discontinuous Galerkin methods which exploit the inher-
ent structure of the problem by reusing information from repeated subdomains. The
efficiency that these approaches provide (reducing degrees of freedom by a factor of
20 to 100) allows for the numerical solution of large acoustic and electromagnetic
wave problems, even in 3d, with a greatly reduced need for computational resources.
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Furthermore, a discrete topological optimization procedure enhanced with reduced
basis approximations is developed in order to facilitate the automated design of these
materials. The combination of both methods, simulation and optimization, yields en-
hanced capabilities for the design of optimal patterns for multiple applications. The
design of invisibility cloaks and high transmission waveguide bends in 2d and 3d are
considered.
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Thesis supervisor: Cuong N. Nguyen
Title: Research Scientist
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Chapter 1
Introduction

Cogito ergo sum.

-Rene Descartes

The design of materials that exhibit desirable features has always been of consid-

erable scientific interest. First, humans tried to understand and exploit properties

that materials found in nature could offer. Later on, we discovered that the mix-

ture of several natural materials could create new ones with improved capabilities,

such as alloys or steel. Nowadays, with the rapid pace of technological advances we

can manufacture materials with specific structures at the nanoscale to obtain useful

macroscopic properties, like Photonic Crystals. In fact, in the case of the recently

discovered metamaterials, some of their capabilities (e.g. invisibility [122]) cannot be

attained through any other known natural material that is homogeneous.

In order to illustrate how structure can provide materials with very particular

properties, we consider the one dimensional propagation of a linear wave through a

homogeneous medium. For this problem, we know the solution field, which consists

of a wave of constant shape that propagates at a speed determined by the medium,

as shown in figure 1.1-top. However, if in a region of the domain the host material

is replaced by a material with different wave propagation properties, the propagation

speed of the wave in the alternative medium becomes different. Moreover, at the
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interfaces, reflections will appear. In fact, for the case of only one interface, both the

reflected and the transmitted fields can be obtained analytically.

Similarly, if a second interface is introduced in the structure, a decaying but non

zero field keeps reflecting back and forth between the two interfaces. Every time this

bouncing wave reaches an interface, a fraction of it will be transmitted (constructively

-if in phase- or destructively -if out of phase- adding to the already existing waves in

that medium) and another portion will reflect back, as shown in the third scenario of

figure 1.1. Hence, the analytical expression for the resulting wave at every point of

the space can be expressed as an infinite sum of terms, or series.

If more interfaces are considered, it is then possible to create configurations in

which the total transmitted field is canceled, or viceversa, i.e. all the field is trans-

mitted and the internal reflections are canceled out. Moreover, if an infinitely periodic

material is considered, there will exist broad bands of frequencies for which wave prop-

agation is not allowed. This phenomenon is known as bandgap and was discovered

for electromagnetic waves by Lord Rayleigh [131] in the 19th century.
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Figure 1.1: Effect of structured materials for filtering wave propagation.

To sum up, figure 1.1 shows the propagation pattern of the incident (black),

reflected (red) and transmitted (blue) waves for several configurations of two materials

22

\6j 
j

A n



having different propagation speeds. Note that the total wave is obtained as the

addition of the incident, reflected and transmitted fields. The wave interactions can

change from being in phase to out of phase through small perturbations of the material

distributions. Furthermore, the effects that a small material inclusion can have are

global and thus it may affect the total wave field far away in the domain.

Wave equations also govern the propagation of electromagnetic, acoustic and elas-

tic waves in 2d and 3d. However, in multiple dimensions wave fronts interact with

material interfaces in a more complex and less intuitive manner. These ideas can

be exploited to manipulate electromagnetic, acoustic, elastic and surface waves. The

research presented in this thesis focuses on the design of structured materials for

applications in acoustics and electromagnetics.

1.1 Applications of interest

The problem of designing a material that can be used to coat an object in order to

render it invisible has received considerable attention in recent years. Back in 2006,

an exact solution to the cylindrical cloak was proposed by Pendry et al. in [122]. The

solution was based on transformation optics but presented two major obstacles: the

material properties of the resulting coating layer varied continuously, and singular val-

ues of such properties were attained at the inner surface of the cloak. An experimental

design of the transformation optics approach was then introduced in [142] for electro-

magnetic waves, where the inhomogeneous and anisotropic material properties were

manufactured through periodically arranged microstructures providing a reasonable

reduction of the scattered field. More recently, Landy and Smith [86] proposed and

built a low loss solution based on transformation optics, valid for one direction and

a single microwave frequency. For acoustic waves, the first approach to a theoretical

cloak was introduced in [130], improved in [48] and a practical multilayered solution

was proposed in [152]. The transformation optics theory has also been extended to

the problem of designing a carpet cloak in [87].

Further analysis and specific designs of the cylinder cloak problem are presented

in [64,80,101,104,136], based on the transformation optics approach. However, these
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solutions do not address the two main fabricability issues. More recently, different

alternatives have been introduced in order to obtain manufacturable cloaking devices:

replicating a unit cell with a host dielectric and a metal wire [25], or with a clever

array distribution of capacitors and inductors [164], depending on the regime of waves

to cloak.

Optimization techniques using genetic algorithms [163] or nonlinear optimization

methods [129] have also been used to determine the optimal permittivity values for

a collection of layers around the object to be cloaked. These theoretical cloaks show

good reductions of the scattered field in simulations, but their manufacturability is

questionable since the permittivity values for each layer might not be given by an

accessible homogeneous material. Furthermore, cloaking devices for broad bands

of frequencies are particularly desirable and some effective solutions are provided

in [57, 59, 145], although once more, they exhibit critical fabrication issues. Most

recently, topology optimization approaches have been successfully used to determine

graded [4] but also discrete [3] cylinder cloak patterns that work for a single frequency

and direction with over 95% of optimality.

In addition to invisibility cloaks, we are also interested in the design of waveguides.

The development of 3d optical waveguides has been crucial for telecommunications.

Optical fibers provide the ability of propagating confined light signals for long dis-

tances. The first fibers were based on the index guiding principle and thanks to total

internal reflection (TIR) most of the energy would never leave the higher refractive

index material core [137].

Later, ld multilayer structures (such as Bragg fibers [158]) and 2d Photonic Crys-

tal [78] fibers were developed. These are structures where a cladding surrounding the

core was designed with patterns for which the frequencies of interest fell inside one of

their bandgaps. In this way, most of the energy would be confined in the core.

More recently waveguides based on 2d Photonic Crystal structures have been

designed on slabs [62,75]. These particular type of waveguides, experimentally tested

in [22,30], offer some advantages with respect to fibers [137]: a higher quality factor [1]

and lower losses for sharp bends [31].
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The efficient design of sharp bends within all kinds of waveguides is of considerable

interest [60] since they account for the majority of the losses accumulated along large

distances. The local performance of sharp bends has been improved by the addition

of extra rods of various radii in the corner regions [8, 94] as well as using topology

optimization methods in [72,73].

Photonic Crystals waveguides can also be enhanced with optical nanocavities that

trap light in very small volumes for a long period of time and for a very narrow

frequency range. The strong confinement of electromagnetic waves in PC nanocavities

can dramatically increase light-matter and photon-photon interactions, which are

important for a wide range of applications including optical communications [74],

biosensing [157] and lasers [2,151].

Besides the design of cloaks and waveguides, there are many other potential appli-

cations for structured materials in photonics and optics. One example is the design of

flat superlenses [121,166], which are lenses that are able to capture arbitrarily small

(subwavelength) scale features without dissipation, in contrast to regular lenses. Ad-

ditionally, negative refraction objects [90,91,154] or energy harvesting devices [29,49]

can be designed. Moreover, non-intrusive damage detectors through electromagnetic

pulses and directional frequency filters have also been successfully designed in [138].

1.2 Problem Description

The numerical design of structured materials requires an efficient forward simulation

tool that accurately predicts wave fields. In addition, we also need an optimization

methodology that is able to identify effective material patterns. Solutions of equation

1.1 for given boundary conditions provide the spatial component u(x) of the total

wave field U(x, t) = u(x)ew. All in all, let Q C R' be a domain of interest. We seek

to study the steady behavior of the second order linear wave equation, which can be

seen as the solution of the Helmholtz equation:

V - (a(x)Vu) + k2 b(x)u = 0 in Q, (1.1)
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where k is the wavenumber and a(x), b(x) are functions of the material properties

that may vary spatially.

Alternatively, we are interested in frequency domain solutions of Maxwell's equa-

tions, which read:

V x H - (iwa(x) + b(x))E = J inQ, (1.2)

Vx E + ic(x)H = 0 in Q,

where E, H represent the electric and magnetic field, respectively, and J is the in-

put current. The material properties are denoted by a(x), b(x), c(x) (permittivity,

permeability and conductivity). Also, i = VZT and w corresponds to the frequency.

Solutions of equation 1.2 with the corresponding boundary conditions provide the

spatial component of the electric and magnetic fields.

We consider the following related problems:

1- Forward simulation problem: Given a(x), b(x), (c(x)), k, (w) and boundary

conditions, compute the solution fields u, (E, H). Here we seek to solve equations

1.1 or 1.2 in order to provide the solution field across the domain of interest Q.

Furthermore, additional outcomes of the simulation problem are the sensitivities of

the solution with respect to the design parameters (a, b, c). To this end, we will

develop a multiscale technique that exploits the repetition of geometry and structures

within the domain in order to avoid the redundant computational work.

2- Eigenvalue simulation problem: Given a(x), b(x), (c(x)) and boundary condi-

tion type, find ka, (w,) and un, (Es, Ha). In this case we look for eigenpairs (wave

eigenfield and eigenfrequency) as well as identifying band diagrams for structured

materials, also under periodicity assumptions. In addition, we are interested in their

sensitivities with respect to the design parameters (a, b, c). The multiscale technique

adapted to the eigenproblem results in a nonlinear eigenvalue formulation that can

still be efficiently solved, exploiting the geometric structure.

3- Design optimization problem: Find distributions a(x), b(x), (c(x)) that op-

timize a functional J. Typically, this functional depends on the state variables

u, (E, H), the parameters k, (w) and the design variables a, b, (c). In particular, we
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look at discrete distributions of materials since this is a rather common, yet complex,

manufacturing constraint. The choice of J as well as the set of constraints corre-

sponding to the governing equation will determine whether we design for a source

problem (1-) or an eigenvalue problem (2-).

Each of the three problems introduced above will be tackled separately. However,

combining either of the simulation problems with the optimization method results in

an approach for the design of materials for the control of wave propagation.

1.3 Main Challenges and Scope

The numerical design of structured materials presents several computational chal-

lenges. On the one hand, the simulation of the forward problem can already be

expensive to obtain, especially for large three dimensional settings. Some state-of-

the-art methodologies, such as MEEP [117] for PC simulations, have had a great

impact in their communities but they are developed for specific equations (Maxwell's

in case of MEEP) and require advanced computational resources and parallel imple-

mentations for large settings. On the other hand, when design is sought through

binary optimization, many forward solves are required, which very often leads to

intractable problems.

First, the wave equation is non coercive which means that it may lead to indefi-

nite systems of equations after the discretization process. The solution of indefinite

systems is difficult, especially for large problems. Moreover, wave phenomena in

structured materials are particularly challenging to resolve since problems often in-

volve complex geometries with details at very different scales. Furthermore, very high

material contrasts might be present.

Additionally, the numerical simulation of problems with high frequencies pose

serious difficulties. Over the last few years, efficient methodologies have been proposed

to simulate wave propagation at both ends of the frequency spectrum. At the low

end, the aforementioned methodologies already provide successful results. Similarly,

sophisticated solvers based on geometrical optics have been designed to deal with

problems at infinite frequencies [5,76]. However, direct numerical simulation remains
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difficult for high frequencies that are not infinite. The fundamental difficulty is the

fact that the required accuracy level is proportional to the wavelength. Typically

about ten degrees of freedom are required per wavelength and direction, so the size

of the problem scales poorly.

Boundary conditions for wave propagation problems are also complicated to han-

dle. Although most numerical methods require finite domains, wave problems are

often defined on open, unbounded regions. As a result, techniques to avoid reflec-

tions at far field boundaries need to be introduced. First order absorbing boundary

conditions work well for simple problems but if higher accuracy is sought, perfectly

matched layers (PMLs) need to be considered. The use of PMLs increases significantly

the size of the domain and thereby the computational cost of solving the problem of

interest.

Figure 1.2 shows the geometry (left) and wave field (right) on a two dimensional

waveguide. In this problem, a point source is placed at the beginning of the waveg-

uide. Furthermore, cylinder rods of a different material have been included in the

domain in a quasi-periodic arrangement. The propagation of waves with the fre-

quency considered is not allowed throughout the periodic arrangement of rods in any

direction, because of the bandgap phenomenon that will be later discussed. As a

result, wave propagation is only allowed within the line defect and outside the quasi

periodic distribution of rods. In addition, several PML layers are considered around

the domain of interest to artificially damp the solution without reflecting any energy

back into the domain.

This example already shows some of the challenges of numerically solving these

classes of problems, albeit small and 2d. A very fine discretization is required to

accurately capture the geometric details, leading to very large systems of equations

and thus higher costs both in terms of time and memory. Also, the computational

domain is significantly larger than the region of interest because of the boundary

conditions. In addition, besides all the preceding challenges, there is a need not only

for an accurate but also very efficient simulation capability since a large number of

numerical simulations will be required for design optimization purposes.
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Figure 1.2: Geometry (left) and Wave propagation (right) through a two dimensional
waveguide.

Although physical and mathematical intuition has been able to identify many

practical patterns for certain applications, it can be insufficient to design structured

materials, especially when trying to obtain manufacturable and realizable designs. As

a result, considering optimization-based approaches for the design process might be

helpful. However, the optimization problems that arise are often of a discrete nature,

leading to binary or mixed-integer optimization models. In our setting, we consider

the spatial domain discretized into pixels, and thus the design optimization problem

that we are interested in solving consists of choosing between two given materials for

each pixel, which leads to large binary optimization models.

In general, solving discrete optimization problems is NP hard. More specifically,

the set of design variables in our problems is large (in the order of 10') and the cost

of an NP hard algorithm is (in the worst case) exponential in the size of the vari-

able set, so deterministic branch and bound-like algorithms can be computationally

intractable. Moreover, objective functions will typically be nonlinear and nonconvex.

It is also observed that in many cases, continuous relaxations of discrete formulations

do not provide either binary solutions or close guesses.

For all these reasons, the numerical design of structured materials for wave propa-

gation problems is computationally challenging. Nevertheless, this is a field of active

research because of the relevance and practical impact of the potential applications

involved.
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1.4 Proposed approach

In this work we present multiscale high order finite element methods implemented on

unstructured meshes. Far field boundary conditions are represented through PMLs or

alternatively first-order absorbing characteristic methods. When solving Helmholtz's

equations, the multiscale MSCG method is presented as an extension of classical

continuous Galerkin (CG) for simplicity; however, when electromagnetic waves are

sought through solutions to Maxwell's equations, the multiscale MSHDG extends the

hybridized discontinuous Galerkin (HDG) method. More specifically, the extension

of the HDG method as a solver for the local problems in the multiscale setting for

Maxwell's equation becomes crucial since this method can capture the rotational

derivatives in a very natural way, without the consideration of H(curl)-elements as

other continuous FEM approaches would require [102]. This property, together with

a natural treatment of the boundary conditions, will simplify both the formulation

and the implementation. Additionally, the multiscale continuous Galerkin method is

extended for eigenvalue problems resulting in a nonlinear scheme (NMSCG).

These forward solvers are particularly suitable for the numerical simulation of

waves in structured materials since they take advantage of the geometric repetition.

In fact, after a judicious decomposition of the domain into subregions, only one repre-

sentative of each class of subproblems is solved (there are as many classes as different

sets of geometries). Then, local information is reused and assembled into a global

system of smaller size. This formulation helps decrease the computational cost of

the simulation problem but it also significantly reduces the cost of the optimization

process, even permitting the design of structures for large problems, as we shall see

later. Overall, the multiscale methodologies introduced in this thesis are especially

well suited for the resolution of relatively large wave problems with high frequencies

without the use of automated domain decomposition and parallelization techniques.

In particular, we are capable of solving tens to hundreds of wavelengths, even in 3d.

For the design optimization of discrete patterns we present a binary gradient

coordinate descent heuristic method. This approach considers only binary sensitivities
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and uses the numerical simulation tools to obtain estimates of the objective function

value. Although it is heuristic and computing a global optimum cannot be guaranteed,

we have been able to find binary patterns with the desired performance in practice.

This method also exploits the physics of the problem by introducing reduced basis

approximations for the forward solution of neighboring states. Actually, wave fields

corresponding to similar material states are close. As a result, one can use reduced

basis approximations to cheaply obtain solutions with a certain level of accuracy.

1.5 Literature Review

This section provides a summary of previous work relevant for the numerical design

of structured materials.

1.5.1 Forward wave simulation techniques

The simulation of wave phenomena in heterogeneous media has been a very active

field of research and therefore the range of available methods is very diverse. Most

of wave propagation problems of interest require unbounded domains. Boundary

Integral Methods are able to deal with open domains in a natural manner. They

were first used for the wave equation in [144]. The main disadvantage of Boundary

Integral Methods is that they lead to systems of equations which are dense. These

systems of equations are therefore hard to solve, especially for large problems.

Other methods such as finite difference or finite elements, discretize the differential

equations directly, and the unbounded domains are truncated by introducing artifi-

cial computational boundaries and imposing radiation (or non-reflecting) boundary

conditions. There is a number of ways in which radiation conditions can be imposed,

ranging from first order characteristic methods [53,112] to Perfectly Matched Layers

or PMLs [17,83]. More specifically, PMLs are a set of artificial layers that surround

the computational domain of interest. In these layers, the governing equations are

modified in order to numerically dissipate solutions that are supposed to leave the

domain without reflecting.

Finite difference methods using regular grids, although simple and cost efficient,
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are not well suited for the geometries of interest in this research. In order to adapt

these methods to problems involving irregular domains and complex geometries, some

ad-hoc modifications have been proposed which avoid the need for very fine discretiza-

tions [117]. These solutions however do not result in high order accurate methods.

Alternatively, Yu et al. [162] have introduced a method that modifies the governing

equations to smoothly handle the small geometric heterogeneities.

Often, the numerical simulation of large wave propagation problems requires ad-

vanced computational resources with parallel implementations and iterative solvers.

Sparse factorizations can be prohibitively expensive, algebraic preconditioners are also

expensive and do not generalize, and multigrid methods scale poorly. Nevertheless,

in the case of time domain wave equations, successful methodologies have been de-

vised including parallelized finite and spectral element methods (SPECFEM3d [82]),

which have been derived and implemented for elastic waves [81], seismic simula-

tions [11, 92,127], and waves in porous media [100]. Similarly, the FDTD method

has also been implemented in parallel using the MPI library in [66], allowing for

the simulation of wave propagation problems with scalability. None of this methods,

however, provides a practical paradigm for the design of structured materials, which

is the main objective of this thesis.

Finally, the use of unstructured meshes allows complex geometries to be rep-

resented accurately but when used with low order methods they lead to dispersion

errors. These numerical errors can be reduced through the use of high order methods.

Continuous and Discontinuous Galerkin Methods

The finite element method is a popular technique for the spatial discretization of

wave propagation problems due to its ability to handle complex geometries and inho-

mogeneous materials. It also provides high-order accuracy. There are several spatial

discretization strategies within the finite element method, which include continuous

Galerkin methods, spectral element methods, mixed finite element methods, and dis-

continuous Galerkin methods. Each of these methods has its own strengths and

weaknesses that make it ideally suited for specific applications.
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For instance, discontinuous Galerkin methods [10,13,14,44,45,50,51] work well on

arbitrary meshes, result in stable high-order accurate (low dispersion) discretizations

of hyperbolic systems, allow for a simple and unambiguous imposition of boundary

conditions, and are very flexible to parallelization and adaptivity. One major criticism

of many DG methods is that they have too many degrees of freedom due to nodal

duplication at the element boundary interfaces.

In order to overcome some of the drawbacks of DG methods, the Local and Com-

pact Discontinuous Galerkin (LDG, CDG) methods were introduced in [44,124], re-

spectively. The Hybridizable Discontinuous Galerkin (HDG) method was then intro-

duced for diffusion-reaction problems [36,43] and later analyzed in [33,37,40]. Several

HDG methods are subsequently developed for biharmonic equations [34], linear and

non-linear convection-diffusion problems [35,107,108], linear elasticity [147], Stokes

flows [39, 109, 110], incompressible Navier Stokes equations [111, 115], compressible

Euler and NavierStokes equations [113, 123] and continuum mechanics [106]. More

recently, the HDG method has been also developed for the time-harmonic Maxwell's

equations [114] and for the wave equation in acoustics and elastodynamics [112].

The HDG methods are fully implicit, unstructured, and high-order accurate in

both space and time; yet they are computationally attractive because the only globally

coupled unknown is the numerical trace of the solution field. Since the numerical

trace is only defined on the elemental faces and single-valued, the HDG methods may

have significantly less global degrees of freedom than other DG methods [70]. Another

attractive feature of the HDG methods is that they yield optimal convergence of order

k + 1 in the L2-norm for all the approximate variables and possess superconvergence

k + 2 properties for elliptic problems.

Note that the main advantage of hybridized methods lies on the organization of

the degrees of freedom and the sparsification of the system matrix for a reduction

of the globally coupled degrees of freedom. Actually, the larger the polynomial ap-

proximation order, the bigger the contrast of degrees of freedom between statically

condensed problems (like HDG or MSCG/MSHDG) and non-hybrid methods (like

CG), as shown in [70]. The simplified reason is that the traces are defined on 2d
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elements but the volumetric variables take values over entire volumes.

In particular, the HDG method has been here developed and implemented for

a multimaterial frequency domain wave simulation through Helmholtz's equation in

[139,140] as part of this thesis. This equation is solved using an HDG discretization

on an unstructured grid together with first order absorbing boundary conditions and

Perfectly Matched Layers.

Multiscale methods for the source problem

Most of the problems that we are interested in solving have geometric details and

solution patterns with different length scales. Moreover, geometries often appear re-

peatedly throughout the domain. In these cases, the efficiency of simulation methods

that use domain decompositions can be improved by reusing information correspond-

ing to subdomains with repeated patterns.

Our approaches, the multiscale continuous Galerkin (MSCG) and multiscale hy-

bridizable discontinuous Galerkin (MSHDG) methods, are an extension of the hy-

bridized continuous Galerkin (HCG) and hybridized DG (HDG) methods introduced

in [41] and [37] respectively, which in turn have their root in hybridized mixed finite

element methods [36]. The extension lies in the definition of the local subproblems:

while the HCG/HDG methods define the subproblems at the discretization element

level, the multiscale methods define the subproblems at a subdomain level. This sub-

tle extension is crucial because it provides further reduction in the global degrees of

freedom and better efficiency in parallelization. In fact, our approach is particularly

attractive for problems with repeated, piecewise-constant, or periodic coefficients,

since in such cases the number of local subproblems can be significantly reduced by

a judicious choice of subdomains and associated approximation spaces.

These multiscale methods also bear some similarity to the mortar element method

[18,19]. The underlying idea here is twofold. First, the original problem is broken

into several smaller subproblems which are formulated on subdomains and they are

less expensive to solve than the original problem. Second, a framework for stitching

together the solutions of the subproblems is carried out by relaxing the intersubdo-
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main continuity requirements and imposing it 'weakly' through the introduction of a

so-called flux Lagrange multiplier. However, different from our approach, the mor-

tar element method imposes weak continuity on the approximation to the solution

instead of enforcing the continuity of the approximation to the fluxes. As a result,

the two approaches differ from both the local subproblems and the final variational

formulation for the multiplier.

Our approach also has a variational multiscale interpretation since, instead of us-

ing conventional polynomial functions, it employs basis functions that are adaptive

to the local properties of the differential operator. We note that the idea of using

problem-specific basis has been widely applied to the numerical solution of PDEs with

multiple scales. Examples include the special finite element method [9], the multi-

scale finite element method [69], and reduced basis methods [105]. Our multiscale

methods differ from these alternatives in several important ways. The special finite

element method is based on the particular property of the harmonic average in one-

dimensional elliptic problems and thereby is restricted to problems with the coefficient

varying locally in one dimension. Like our approach, the multiscale FEM constructs

its basis functions by solving a number of local subproblems on subdomains. The

difference between the introduced methods and the multiscale FEM approach lies in

the boundary conditions for the local subproblems, as we shall see later.

Similarly to our proposed method, a hybridized multiscale DG method (HMDG)

was introduced in [103] for Eurler and Navier-Stokes equations. Also, a geometric

multiscale finite element method has been developed for structured materials in [28].

However, unlike the multiscale methods presented in this thesis, these approaches do

not reuse any information from repeated local subelements.

Multiscale methods for the eigenvalue problem

Analogously, the multiscale techniques are extended to eigenvalue formulations of the

wave equation. These problems are of high interest since they characterize physical

phenomena like photonic or phononic bandgaps. Hence, a thorough analysis of eigen-

modes allows for the design of waveguides, resonators and many more applications
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in acoustics and electromagnetics. In addition, geometric repetition is often present

and thus the use of multiscale techniques can also be helpful.

The use of Schur complement techniques for the eigenvalue Helmholtz's equa-

tion has been previously analyzed in [38], where the HDG method is extended to

Thomas-Raviart equations. Numerical schemes that exploit a dimensional reduction

for eigenvalue problems have also been developed in [26] for computational chemistry,

and more generally through mixed finite element methods in [99]. The result of static

condensation on linear source problems provide a reduced globally coupled yet still

linear system of equations. However, these family of techniques turn an eigenvalue

problem Au = yu into a formulation with nonlinear dependence on 7. Nevertheless,

the nonlinear nature of the eigenvalue reduced equations does not pose any computa-

tional issues. In fact, close approximations can be found through a natural eigenvalue

problem and convergence from them is guaranteed [38] through Newton's method.

1.5.2 Design Optimization

Physical and mathematical intuition have been used to successfully design many

structured materials. However, these approaches often lead to solutions that are

not fully optimal and/or not binary. As a result, several optimization techniques

have been developed and successfully applied for design problems. In particular,

semidefinite programming techniques characterized in [119,132] have been used with

a high degree of success for the design of materials under eigenvalue like governing

equations such as the maximization of photonic bandgaps [96, 97]. Furthermore,

convex optimization techniques introduced in [160, 161] as well as the use of the

adjoint method [27,54,139] to obtain information about the sensitivities have also

been used. Additionally, nonlinear optimization techniques have also led to cloaking

patterns [163] as well as to the design of microcavities [88]. One of the main drawbacks

of all these methods is the fact that they do not take into account manufacturability

constraints in the structured material design: in general, material properties cannot

attain a continuous distribution of values, but only discrete.

Some optimization methods that successfully address the discrete nature of the
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material properties can already be found in the literature. In fact, both topology

optimization through non integer penalization [16,60,62,67,72,73] and level set meth-

ods [143,167] have been applied to a broad range of problems with remarkable results.

These methods use information from continuous gradients: the former penalizes non-

integer values of new candidates and the latter continuously evolves the interfaces

between different materials.

Topology optimization can lead to quite suboptimal solutions since it is seldom the

case that the optimum under binary constraints lays close to the continuous optimum.

Moreover, topological optimization methods based on penalization often suffer from

numerical instabilities and extreme sensitivity to the penalization procedure consid-

ered. In addition, since problems modeled through the wave equation are typically

sensitive to material perturbations, convergence of topology optimization algorithms

to good and robust local optima can be hard.

On the other hand, the main problem with level set methods for the design of

structured materials is the high cost incurred in the presence of complex structures

involving multiple boundaries. These methods have been proven to work well for

shape optimization design problems, where the shape of a given material or compo-

nent needs to be identified. However, more general structured materials might not

have known boundaries to evolve or, even more challenging for level set methods,

the size of some connected components of the pattern might be on the order of the

numerical resolution.

Finally, genetic algorithms and simulated annealing are some of the heuristic meth-

ods that have been used for some applications, such as granular composite protec-

tors [61]. They have shown relatively good performance for small problems although

the main drawback is that these methods typically do not exploit the underlying

physics and therefore offer a poor scalability with respect to the size pixel set.

Reduced Basis methods

When we seek to design structured materials through optimization, many simulation

problems need to be solved. The resolution of each simulation problems is already
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computationally expensive and therefore there is the need for an alternative numerical

capability that is able to provide accurate enough solutions at a cheaper cost.

In this context, for the faster numerical resolution of the wave equation, a reduced

basis approach is introduced. Reduced basis methods were initially used with success

for incompressible viscous flow calculations in [128] and later analyzed more deeply

in [12]. Approximate solutions can be obtained at a cheaper cost since they are

expressed as linear combinations of orthogonalized solutions within the parametric

set. The accuracy of the approximations offered by the reduced basis relies on a good

choice of the basis as well as a smooth behavior of the solution field with respect to

small perturbations of the different parameters.

In contrast to Proper Orthogonal Decomposition methods (PODs) or other sin-

gular value decomposition based methods, the reduced basis approach just computes

a few (expensive) solutions that are all included in the basis after orthogonalization.

These alternative methods compute all possible solutions before orthonormalization

and then truncate the most relevant components to form the basis.

Reduced basis approximations work particularly well for elliptic equations that are

coercive and therefore dissipative. As it is well characterized in [12], the approxima-

tion error can be a priori accurately bounded and therefore the convergence and prac-

ticality of this approach is guaranteed. However, although the Helmholtz equation

is elliptic, it is non coercive and thus accurate bounds of reduced basis interpolation

errors are harder to determine or very conservative. Equivalently, Maxwell's equation

also describe waves and thus the sensitivities of the solution fields with respect to

changes on the geometry are large and not localized.

1.6 Thesis Objectives

The main objective of this thesis is to develop, implement and validate an efficient

methodology for numerically modeling, optimizing, and thereby designing structured

heterogeneous materials of practical use for wave applications. To that end, the

following objectives are to be pursued:

1. Develop a numerical simulation method for wave propagation problems in het-
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erogeneous media.

- Formulate and implement a multiscale CG method for the simulation of

structured materials under finite repetition of geometries for Helmholtz's

equation in 2d and 3d.

- Formulate and implement a multiscale HDG method for the simulation

of structured materials under finite repetition of geometries for Maxwell's

equation in 2d and 3d.

- Extend the formulation and implementation of the nonlinear multiscale CG

method for the numerical simulation of eigenvalue Helmholtz's problems

in heterogeneous media with repeated patterns in 2d and 3d.

- Assess the accuracy and efficiency of the previous methods and how they

compare to other state-of-the-art simulation tools in the field.

- Validate the numerical solutions provided by the multiscale methods with

experimental results reported in the literature.

Overall, the MSCG, MSHDG and NMSCG methods will be developed for the

simulation of wave propagation in heterogeneous media with repeated patterns.

A global, coarse and structured grid will split the physical domain into several

subproblems that will be solved through a CG/HDG discretization method on

unstructured meshes that accurately define the geometries. Weak continuity of

the fluxes will be imposed on the interelement boundary conditions and PMLs

or first-order absorbing conditions will be used for the exterior boundaries.

2. Investigate and implement a practical design optimization capability for struc-

tured materials.

- Develop a binary gradient coordinate descent optimization method.

- Develop a reduced basis approach for the faster computations of approxi-

mate solutions in a given neighborhood, ensuring a threshold of accuracy.

- Assess the quality of the optimal patterns obtained as well as their robust-

ness and manufacturability.
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All in all, we present here a binary descent algorithm [140] that, while heuristic,

exploits the physics of the wave equation. In addition, solutions will always

be feasible and sensitivities are obtained only from binary information, not

continuous.

We finally assess the performance of this methodology through the design of rel-

evant applications. In particular, invisibility cloaks and efficient waveguide and fiber

bends will be designed in 2d and also in 3d.

1.7 Outline

This thesis consists of seven chapters. This first chapter has motivated, introduced

and formulated the problem. We have also described the main challenges and objec-

tives of this research, carefully reviewing the previous and current work in these areas

of research. The second chapter introduces the multiscale CG method for wave prop-

agation problems modeled through Helnholtz's equation. The performance of this

method is shown through several acoustic and electromagnetic examples in 2d and

3d. Chapter 3 extends the methodology to a multiscale HDG method that can model

Maxwell's equation, also in 3d. Similarly, chapter 4 derives a nonlinear extension

of the multiscale methods for the numerical resolution of eigenvalue wave problems.

This capability is applied for 2d and 3d Helmholtz's eigenproblems and extended for

periodic settings. Chapter 5 presents a binary optimization heuristic algorithm for the

design of structured materials within the wave propagation context. Chapter 6 shows

the power of bringing together the simulation methods and the binary optimization

technique through the design of cloaks and low loss sharp bends in PC waveguides

and fibers. Finally, a summary of contributions and a thorough analysis of the future

work is provided in chapter 7.
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Chapter

Multiscale Continuous Galerkin Method for
Helmholtz's equation

Make everything as simple
as possible, but not simpler

-Albert Einstein

In this chapter we introduce a class of multiscale methods for the numerical simula-

tion of waves. Firstly, we develop a multiscale continuous Galerkin method (MSCG)

that will be used for problems governed by Helmholtz's equation in 2d and 3d. These

methodologies will be then extended in chapter 3 to solve general 3d problems gov-

erned by Maxwell's equations through a multiscale hybridized discontinuous Galerkin

method (MSHDG).

These multiscale methodologies become crucial for the efficient simulation of wave

propagation problems in heterogeneous media, especially for high frequencies and in

presence of geometric details with very different sizes. These methods first decompose

the governing equation on a bounded polygonal or polyhedral domain into a set of

local subproblems on non-overlapping polygonal or polyhedral subdomains. These

subproblems are then solved using either a continuous Galerkin or a hybridizable dis-

continuous Galerkin method and the boundary conditions are taken to be elements

of a traced continuous or discontinuous finite element space defined on the subdo-
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main boundaries. Solutions to these subproblems are then used as basis functions

in a variational formulation of the underlying equation in order to determine the

Lagrange multiplier that approximates the exact solution on the subdomain bound-

aries. Finally, the approximate solution can be post-processed from the solutions of

the subproblems and the Lagrange multiplier. For problems with piecewise-constant

coefficients and repeated patterns, the number of subproblems can be reduced signif-

icantly by a judicious choice of subdomains and associated approximation spaces.

2.1 Multiscale framework

Most of the problems we are interested in involve heterogeneous media with small-

scale features such as rods, fibers, stiffeners etc. It is therefore required that the

equations considered take into account these features. Let us then consider general

linear elliptic partial differential equations:

-V - (a(x)Vu) + k 2 b(x)u = f, in Q

u = 9D, On IFD

aVu n = gN, onL'N

Here Q C R d is the physical domain with boundary (9Q = 1 D rN, f E L 2 (Q), a(x)

and b(x) are functions defined on Q that determine the material distribution, and

k is the wavevector. We assume that a(x) and b(x) are bounded. The boundary

conditions are given by functions gD and gN on disjoint subsets FD and FN Of &Q.

Here n denotes the unit outward normal on the boundary of a given domain.

To model media with small-scale features, we assume that the material coefficients

a(x) and b(x) have the smallest scale of length, which is of course finite but very small

relative to the size of the total domain Q. A scale resolution of the smallest features

may require an enormous computational effort. It is therefore of considerable interest

to develop a numerical method that can allow for the scale resolution and at the same

time have the computational efficiency in terms of both memory storage and CPU

time.

The multiscale methods presented in this thesis provide a computationally efficient
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numerical scheme for the resolution of these kind of problems. The key concept

is to develop two levels of discretization: a highly parallelizable and reusable local

set of problems that are fine enough to capture all geometric details; and a global

system formed by assembling the local information on a higher order but much coarser

discretization that is just able to resolve the frequencies of interest accurately.

Figure 2.1: An illustration of a macro discretization with two families of subelements
micro discretized using CG.

In particular, let us discretize the domain Q into a macro decomposition {QMImM- 1 -

Each subdomain will then be micro discretized with a regular continuous Galerkin

(CG) method as shown in figure 2.1.

We then denote by T = {Qm, 1 < m < M} the macro decomposition of the

polygonal/polyhedral domain Q into non-overlapping polygonal/polyhedral subdo-

mains such that
M

(2.2)= U Q, and Qm n k 0 for m / k.
m=1

Let Tm denote a micro regular CG (or HDG in next chapter) triangulation of each
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subdomain Qm. We assume that
M

U n=7,
m=1

where Th is the fine triangulation of our physical domain Q. We next define

Eh = {e : e is an interface of K- E 7 and K+ E '77 for i / j}

(2.3)

(2.4)

which is the set of all interior edges or faces on the interfaces of the subdomains for

a 2d or 3d problem, respectively. We denote by Sho the set of edges or faces on the

boundary &Q. We then set

Eh = Eh U Eh.

(a)

7

/

/r

7
/
/4
7
7
7

7
/

/

/

/

7
(b) (c)

(2.5)

(d)

Figure 2.2: An illustration of a 2d multiscale CG discretization: (a) decomposition
Qm; (b) CG triangulations Thim; (c) set of edges 4h; and (d) approximation space V
for polynomial order p = 1.

Besides the geometrical decomposition, we also need to define the finite element

approximation spaces for both levels of discretization. At the local level, they will

depend on the discretization chosen therein and will thus be described later for each

case. For the global problem we will define a set of Lagrange multipliers A that will

take values on the approximation space V defined as follows:

Vh = {Ip E C(4S) : p1e E Pp(e),Ve E Sh}.

Furthermore, we set Vh(gD) =

the Dirichlet boundary conditions.

1 < m < M and also illustrates 4h
same example.

{p E Vh : A = PgD on FD} in order to meet

Figure 2.2 depicts an example of Qm and Tm,

and the approximation space Vh for p = 1 in the
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2.2 The multiscale CG method

In order to motivate the discussion of the multiscale CG technique, we firstly describe

the classical continuous Galerkin (CG) method for solving 2.1. Let Th denote a finite

element (FE) triangulation of the domain Q with a mesh size h. We then define the

space

Xh = {v E C(Q) : VIK E Pp(K) for K E Th}, (2.7)

where C0 (D) denotes the space of continuous functions on a domain D and Pp(K)

denotes the space of polynomials of order less than or equal to p on K. We then set

Xh(gD) = {v E Xh : V = PgD on FD}, (2.8)

where P represents the L2-projection into the space of traces on "D of functions in

Xh. The CG method provides an approximate solution Uh E Xh(gD) that satisfies

(aVuh, Vv)Q + (bk2 uh, v)Q = (f, v)Q + (gN, v)rN, Vv E Xh(0). (2.9)

Here, for W, v E L2(D) and r, t E L2(B), we define the finite element standard

Lebesgue inner products on a domain D or a boundary B as:

(wv)D=jwv dx; (rt)B=jrtds. (2.10)

Note that L2 (D) and L2 (B) are the spaces of square integrable functions on D C

Rd and B C Rd-1, respectively. We can assume that both the continuous problem

2.1 and the CG discretized counterpart 2.9 have a unique solution.

If small geometric features want to be captured in the CG discretization, the size

of the mesh elements has to be smaller than the size of such details and thus we require

at least Q(n-d) degrees of freedom for scale resolution, being K the size of the smallest

geometric features and d the dimension of the problem: 2 or 3. Since r, < 1, the

direct solution of the linear system of the CG method might be extremely expensive,

especially for large problems in 3d. As a consequence, we present an alternative

numerical methodology that will be efficient and will hold improved scalability: a

multiscale continuous Galerkin method, or MSCG.
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We thus structure this section in three parts: First, we introduce the required

additional notation and describe the formulation of the MSCG method for linear

elliptic PDEs. Then, a weak trace formulation is derived whereby the set of Lagrange

multipliers corresponds to the unique solution of the variational formulation on the

traced space Vh. In addition, we include an implementation guide of the algorithm.

2.2.1 Formulation of the MSCG

Let us first introduce the approximation space Yh where the solution field will lay.

Yh = {v E L2(Q) : v E CO(Q'), and VIK E P,(K),VK E T", 1 < m < M}, (2.11)

which consists of polynomials which are continuous in each subdomain but doubled-

valued at the subdomain interfaces. Note that Pp(K) is the space of polynomials of

order at most p on K.

One of the key features of the MSCG method is that we shall relax the continuity

restriction at the subdomain interfaces and impose it back through the Lagrange

multiplier A. To enforce the continuity of the approximate solution Uh E Y across

the subdomain interfaces we force the values of Uh corresponding to the degrees of

freedom on the boundary of each subdomain to be equal to the Lagrange multiplier A,

which we take in the traced approximation space Vh. This is equivalent to imposing

Dirichlet boundary conditions at every subdomain if A is known.

The continuity of the solution field U relies on the continuity of the Lagrange

multipliers. Note that if p E Vh is continuous over Eh, then any function w E Yh

where wrh = p, is continuous over Q.

We now introduce an auxiliary variable denoted by qh which approximates avu -n

on aQ'. This additional variable resides in the space

Wh = {w E L2({Wm : Qm E T}) : wlaom = vlaom for v E Yh}. (2.12)

Note that w E Wh is a function defined on the edges or faces of the subdomain

and thus will be double-valued in the interior boundaries of m C TE . Moreover, on

each subdomain Q" we will introduce local subproblems, in which the approximate

46



solutions (Uh, qh) belong to the following spaces, respectively:

X = {v E Co(Qm) : VIK E Pp(K) for K E Tm},

Wm= {w E Co(&(9m) : wlanm = vlanm for v E Xh,VK E Thm}.
(2.13)

Finally, we define Xj(7) = {v E Xh : v = q on a8m} for some 7 E Vh in order

to account for the Dirichlet boundary conditions.

We can now define the MSCG primal problem as seeking an approximation (Uh, A, qh) E

Yh x Vh(gD) x Wh such that:

M

(aVUh, Vv)n + (bk 2 Uh IV),, - E (qh, v),8 m V) Qfv~

M=1

Uh = A,

([q], 1) 0h = (9N, A) N

VV E Y,

on 4h,

VA E Vh(O).

Here [qh] is the jump of the normal component of the flux defined as

qh I am + qh I 7Qk

qh

on the interface OQm

on the interface o9Qm

We thus see that equation 2.14c enforces a weak continuity of the auxiliary variable

across the interfaces of the subdomains. In addition, it can be proved (see theorem

B.1 in appendix B) that the solution (Uh, A, qh) E Y X Vh(gD) x Wh exists and is

unique and also that U = Uh in 0 and A = uf on 4h, being Uh the solution of the

CG discretization obtained by 2.9. As a consequence, the approximate solution Uh

has the order of convergence of O(hP) in the energy norm and of O(hP+l) in the L2

norm under certain assumptions on the smoothness and regularity of the continuous

problem 2.1 according to the standard approximation result given in [32].

2.2.2 Weak trace formulation of the Lagrange multiplier

We now show how to eliminate the unknowns Uh and q to obtain a weak formulation

only for A. We begin by introducing two sets of local subproblems formulated at the

subdomain level. For each Qm the first local subproblem associates to the function
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f E L2 (Q) the pair of functions (Uf Im, qf Inm) E Xh x Wh' defined by

(aVUf, Vv) m + (bk 2 Uf, V) m - (qf, v) m = (fv)nm, Vv E X, (2.16a)

Uf = 0, on cQm . (2.16b)

It is clear that the pair (Uf IQm, qf n m) is the approximate solution of

-V - (aVuf) + bk2uf = f, in Qm , (2.17a)

uf = 0, on Qm . (2.17b)

Note that problems 2.16 and 2.17 are defined on the subdomains Qm , 1 < m < M.

In addition, the second local subproblem associates to each q E Vh the pair of functions

(UInm, q77Irm) E Xhm x W such that

(aVUs, Vv)nm + (bk2 U , V)"m - (q., v)anm = 0, Vv E Xjm, (2.18a)

U = q, on Qm. (2.18b)

The pair (UlVm, q,7 lom) is thus the approximate solution of

-V - (aVu) + bk2 u7 = 0, in Qm , (2.19a)

Un = , on Qm . (2.19b)

A key property of this decomposition lays on the fact that both continuous sub-

problems have the same differential operator despite the forcing term as well as the

Dirichlet boundary conditions being different. By linearity and superposition we can

claim (see theorem B.2) that Uf,7 := Uf + u. is the solution of

-V - (aVufn) + bk2 ufq = f, in "', (2.20a)

up, = i, on (2.20b)

As a result, U\ + Uf is nothing but an approximation to the solution of problem

2.1 for 7 = A, where the Lagrange multiplier A satisfies its weak formulation. More

formally, we can prove (see B.3 in appendix B) that for (Uh, A, qh) solution of the

primal problem 2.14, Uh = U\ + Uf and qh = q\ + qf. In addition, it can also be
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proved that A E Vh(gD) is the unique solution of the formulation:

(aVU, VU,,)Q + (bk 2 UA, U,1) = (f, Ut)D + (gN, I)rN, VA E Vh(O). (2.21)

As a consequence, the Lagrange multiplier A is determined as a solution of the weak

formulation 2.21. This characterization result allows for an efficient implementation

of the MSCG method, which we describe in detail in the next section.

2.2.3 Implementation

Let us now describe the steps for constructing a discrete algebraic system associ-

ated with the weak formulation for the Lagrange multiplier. Firstly, we show that

the MSCG has a variational multiscale interpretation which allows us to draw some

remarks on its connection with other methods.

We note from the weak formulation 2.21 that we do not need to compute the

auxiliary variable qh to construct the matrix equations for the multiplier A. Indeed,

it follows from the local subproblem 2.16 that UfIznm E Xg'(0) is the solution of

(aVUf,Vv)am + (bk2 Ufv)am = (fv)nm, Vv E X'(O). (2.22)

Similarly, we have from 2.18 that U,|Inm E X"'(7) for 7 E Vh is the solution of

(aVU., Vv) m + (bk2 U , v) m = 0, Vv E X"'(0). (2.23)

Clearly, the discrete subproblems 2.22 and 2.23 are the usual CG formulations of

2.17 and 2.19, respectively. Moreover, the two discrete subproblems differ from each

other only in the right-hand side.

We next consider solving for A. Let us assume that the space Vh is spanned by:

Vh = span {pj, 1 < i < N}, (2.24)

where pi, 1 < i < N, are the nodal basis functions on 8 h. These basis functions satisfy

pj(xj)= 6ij, where xj E 8 h, 1 < j 5 N, are the nodal points of Eh. By equation 2.21,

we have:
N

A(x) = Aj p(x), (2.25)
j=1
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where A E RN represents the degrees of freedom of A and provides the solution to

the following linear system of equations:

AA = F. (2.26)

Here A E RNXN and F E RN are given by

Aij = ah(Pi, Wj) = (aVUv, VU,)n + (bk 1 ij N, (2.27a)

Fj = bh(pi) = (f, Usi)Q + (9N, 'Pi)rN , 1 < i < N. (2.27b)

Of course, the Dirichlet boundary condition must also be enforced when solving

2.26 for A. Note that Uo is the solution of 2.23 for q = cpj and that to compute U,

we need to solve the local subproblem 2.23 only on the subdomains for which 'pi is

non-zero. We then compute UA from the definition of the first local subproblem and

apply superposition of the solutions to obtain the following decomposition:

N

U = Z A Us. (2.28)
j=1

If we now set

Hh = span {Us, 1 i < N}, (2.29)

then it follows from 2.26-2.29 that U, E Hh satisfies

(aVU), Vv)Q + (bk 2UA, v)Q = (f, v)Q + (gN, v)f, Vv E Hh. (2.30)

Note that this formulation is equivalent to the weak formulation 2.21 of the La-

grange multiplier A and therefore yields to the same algebraic system. However, this

variational formulation allows us to draw several important remarks detailed in the

next four paragraphs.

First of all, we can see that the approximate solution Uh = UX+Uf has a variational

multiscale interpretation in the sense that it is computed by introducing and solving

the local subproblems on the subdomains. We first construct the basis functions in

2.29 that capture the local properties of the differential operator at the fine scale.

Then, we solve formulation 2.30 using the newly constructed local basis functions

instead of conventional polynomial functions. The purpose of the subproblems is
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thus to eliminate the fine-scale degrees-of-freedom for Uh in favor of the coarse-scale

degrees-of-freedom for A. This concept can also be interpreted as a static condensation

of the many degrees of freedom inside each subdomain into the coarser set of degrees

of freedom on the interfaces. Furthermore, since A is the exact restriction of Uh on

Eh, the computation of only A may be sufficient for some applications that require

the knowledge of the solution on the boundaries or interfaces.

Secondly, we note that when the material coefficients a(x) and b(x) are distributed

in a repeated manner (say subelements j E J C {m}' 1 have the same geometry),

the approximation spaces are such that Xh = X 2 , Vji, j2 E J. That is, all sub-

domains that belong to a given class, have the same geometry, triangulation, and

polynomial basis. As a consequence, all subdomains in a given class provide the

same solution to problem 2.23 and therefore we need to solve the corresponding local

subproblem only once. For problems with piecewise-constant or periodic coefficients,

we can exploit this observation to greatly reduce the number of local subproblems

by a judicious choice of subdomains and associated approximation spaces. We shall

discuss this key advantage in greater detail in the examples presented later on.

It is also important to note that the weak formulation 2.30 reveals a connection

between the MSCG method and the multiscale FE method [69]. Indeed, we note that

when the subdomains are linear triangular or rectangular elements (in 3d, tetrahedra

or hexahedra) and Eh is redefined as the set of all edges or faces of the subdomains, we

recover the multiscale FE method with linear boundary conditions. However, in such

case, the crucial property Uh = Uh does not hold true except only when the micro

triangulation T"' coincides with the subdomain Q" for 1 < m < M. In general, the

multiscale FE method does not yield the same solution as the CG method, in contrast

to the MSCG.

Finally, the MSCG method can be extended to variable-degree approximation

spaces and meshes with hanging nodes by redefining the set of interface edges or faces

S and the approximation spaces Vh(g), XJ", and Wh" in a suitable way. We shall

discuss this extension in a future section. Moreover, the conservative approximation

Qh to the flux q = aVu can be efficiently constructed by a local element-by-element
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post-processing of the MSCG solution Uh. The implementation of such techniques is

discussed, for instance in [42].

At this stage, we are certainly able to describe the assembly of the global stiffness

matrix A and load vector F in equation 2.27. We begin by solving the subproblems

on the particular subdomain 0'. In the basis set {<p },N of 1 h there exists a subset

of Nm < N basis functions which have non-zero support on &Qm . Let {4i},N 1 be

such subset, which means that Om(,T) = ij, 1 < i, j N m , where sT, 1 < n < Nm,

are the nodal points of Eh on OQm.

Discretizing the first local subproblem 2.22 and applying the boundary conditions

we obtain the linear system of equations:

K m ujm = f", (2.31)

where Ufm is the vector of degrees of freedom for Uf Im. Similarly, discretizing the

second local subproblem 2.23 with r7 = Om and applying the boundary conditions we

obtain the linear system of equations:

K muV m = Gm do, 1 <j <Nm , (2.32)

where uopm and dOp are the vectors of degrees of freedom for UgP I Om and 4,m, respec-

tively. Note that equations 2.32 and 2.31 have the same left-hand-side matrix and

differ only in their right-hand-side vector.

The local stiffness matrix Am E RNm XNm and load vector Fm E RN' can then be

computed as

AT = UT Kmupm, 1 < i, j Nm , (2.33a)

Ftm = UT fm + gi, 1 < i < Nm , (2.33b)

where g ' = (gN, OPN , i = 1, . .. , Nm. Note that the specific forms for Km, G', fim,

and gm depend on the approximation spaces used in the discretization process. Fur-

thermore, the dimensions of these quantities as well as both Am and Fm vary from

subdomain to subdomain. Finally, the global stiffness matrix A and load vector F

are assembled through the standard assembly procedure. Table 2.1 summarizes the
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implementation steps.

Table 2.1: Implementation steps of MSCG method
1. For a representative of each subdomain Qm, 1 < m < M,

a. Compute the matrices Km, G', and vectors fm, gm
b. Solve for ufm from 2.31
c. Solve for up, , 1 < j < Nm , from 2.32
d. Compute the local stiffness matrix Am and load vector Fm from 2.33

2. Assemble A and F according to the standard assembly procedure
3. Solve AA = F considering A = PgD on 'D into account
4. Compute UX according to 2.28 and postprocess Uh = UX + Uf

Also note that in order to recover Uh after the global problem has been solved, the

local problems do not need to be resolved each one with different Dirichlet boundary

conditions corresponding to the values of A on their boundary degrees of freedom.

It is enough to use the decomposition Uh = Uf + U\ at each subdomain level where

U = j AU, so in terms of computational cost, we need to perform a matrix-

matrix multiplication for each subelement in contrast to a matrix inverse or a system

resolution.

2.3 Convergence test and cost analysis

We now perform a numerical test for which the exact solution is known to confirm

the convergence and accuracy of the method presented. We consider solving 2.1 in

2d on the regular square Q = (0, 1) x (0, 1) for the non-coercive elliptic (Helmholtz)

problem with homogeneous material properties a = b = 1. The force term f and

boundary data gD are chosen such that the exact solution is given by the function

u(x, y) = x 2 +y 2 + sin(k(x cos 9 + y sin 0))

This solution field represents a plane wave propagating in the 9-direction, where

k is the wavenumber and 9 is the streamline direction of the planar wave. Below we

report numerical results for 9 = 7r/4 and k = 8.

Let us now consider triangular meshes obtained by splitting a regular n x n Carte-

sian grid into a total of 2n2 triangles, with uniform element sizes of h = 1/n. The
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original domain is decomposed evenly into M = q x q rectangular subdomains so that

each subdomain has 2n2/q 2 elements. Note that q needs to be a divisor of n. On

these subdomains, we consider solutions of polynomial degree p represented using a

nodal basis within each triangle, with the nodes uniformly distributed.

We present L2 (Q) errors in the solution for both the MSCG method with q =

1, 2, 4,8 and the CG method on five different meshes n = 8,16, 32,64, 128 in table 2.2

for p = 1 and in table 2.3 for p = 2. As expected, the MSCG method yields exactly

the same L2 (Q) error in the solution as the CG method. Furthermore, a convergence

rate of O(hP+l) is expected for this example since the analytical solution is smooth.

Table 2.2: Convergence history of the MSCG method and the CG method for p = 1:
L2 (Q) error in the solution as a function of n.

Mesh MSCG CG
n q=1 q=2 q =4 1 q=8

error error I error error order
8 9.27- 10-1 9.27- 10-1 9.27- 10-1 9.27- 10- 9.27- 10-1 --
16 1.63 -10-1 1.63 -10-1 1.63 -10-1 1.63 -10-1 1.63- 10-1 2.51
32 4.00. 10-2 4.00. 10-2 4.00. 10-2 4.00. 10-2 4.00. 10-2 2.02
64 9.87. 10-3 9.87. 10-3 9.87. 10- 3 9.87. 10- 3 9.87. 10-3 2.02
128 2.44. 10-3 2.44. 10-3 2.44. 10-3 2.44. 10-3 2.44. 10-3 2.02

Table 2.3: Convergence history of the MSCG method and the CG method for p = 2:
L 2 (Q) error in the solution as a function of n.

Mesh MSCG CG
n q_=_ 1 q_=_2 qM=S4 q=_ e

error error [ error error order
8 2.37. 10-2 2.37 . 10-2 2.37. 10-2 2.37 -10-2 2.37. 10-2 --

16 1.70. 10-3 1.70. 10- 3 1.70. 10-3 1.70. 10-3 1.70. 10-3 3.80
32 1.63. 10-4 1.63. 10-4 1.63. 10-4 1.63. 10-4 1.63. 10-4 3.38
64 1.85. 10-5 1.85. 10-5 1.85. 10-5 1.85. 10-5 1.85- 10-5 3.14

128 2.23- 10-6 2.23. 10-6 2.23. 10-6 2.23. 10-6 2.23. 10-6 3.05

Note that not only the same convergence rate is obtained but also the exact same

error for equivalent discretizations. This is due to the fact that actually the MSCG

solution Uh and the CG solution Uh in 2.9 are the same: Uh = Uh, as proven in

theorem B.1.
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Finally, it is also relevant to compare the degrees of freedom for the MSCG and

CG methods. This analysis will focus on the 2d problem with structured meshes just

considered for simplicity. Unstructured discretizations as well as 3d problems could

be analyzed in an analogous fashion. In order assess the cost, let us note that the Th

has 2n2 uniform triangles and (np + 1)2 nodes. The total degrees of freedom for the

CG method is thus:

A/f = (np + 1)2. (2.34)

For the MSCG method, there are M = q2 micro triangulations Thi, 1 < m < M,

each of which has 2(n/q)2 uniform triangles and (np/q + 1)2 nodes. Hence, each

subproblem has 1"| unknowns with

K-"n'g = (np/q + 1)2. (2.35)

Moreover, since the Lagrange multiplier is defined only on the boundary interfaces

of the subdomains, it has Ardnscg degrees of freedom with

n scg = (q + 1)(2np - q + 1). (2.36)

We show in tables 2.4 and 2.5 the results for for p = 1 and p = 2, respectively. It

can be seen that for all choices of q, both )C"scg and Ng are significantly smaller

than XJd0 ,f. Moreover, the finer the discretization, the bigger the difference. In par-

ticular, /Cmscg = 1, 089, V"O = 4,545, and A/di = 66, 049 for the case p = 2 and

n = 128.

Table 2.4: Comparison of the degrees of freedom between the MSCG method and the
CG method using uniform meshes for p = 1.

I MSCG CG
n IM q= 2 q =4 q= 8

_ M Ka"" r 5o M AC"Qf . M q"| N c __

8 4 25 45 16 9 65 64 4 81 81
16 4 81 93 16 25 145 64 9 225 289
32 4 289 189 16 81 305 64 25 513 1,089
64 4 1,089 381 16 289 625 64 81 1,089 4,225
128 4 4,225 765 16 1,089 1,265 64 289 2,241 16,641
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Table 2.5: Comparison of the degrees of freedom between
('G method using uniform meshes for 9 = 2.

the MSCG method and the

It is important to point out that since the MSCG method solves a number of

subproblems with multiple right-hand sides, it may have the same or even more

computational cost than the CG method when the computation is carried out on

a serial computer and/or without reusing the information from the local problems.

However, if each subproblem is solved in parallel and we reuse information from every

subdomain given the pattern repetition, then the cost of the MSCG method can be

assumed to be proportional to solving only one of the local problems as well as the

global problem in serial, which is significantly less computationally demanding than

solving the system corresponding to the CG method.

2.4 Extension to non-conforming discretizations

The method presented so far assumes that the degrees of freedom on the boundaries

of the local subdomains coincide with the degrees of freedom for the Lagrange mul-

tipliers on the traced space. This assumption has considerable limitations if complex

geometries are sought to be represented across the subproblems. It also requires the

resolution of both local and global discretizations to be equivalent, although that

might lead to an excessive amount of degrees of freedom.

For all these reasons, we now extend the MSCG method to treat variable-degree

approximation spaces with hanging nodes. The extension provides more flexibility

for mesh generation and h/p adaptive refinement. Interestingly, the extension enables

further reduction in the global coupled unknowns of the Lagrange multiplier. The
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MSCG 1 CG
n q =2 q =4 q= 8

M M . M rC Mscg M Kg' .n" Cg

8 4 81 93 16 25 145 64 9 225 289
16 4 289 189 16 81 305 64 25 513 1,089
32 4 1089 381 16 289 625 64 81 1,089 4,225

64 4 4,225 765 16 1,089 1,265 64 289 2,241 16,641
128 4 16,641 1,533 16 4,225 2,545 64 1,089 4,545 66,049



following observations are key. First, since the local subproblem on one subdomain

is independent of the other subproblems on other subdomains, the approximation

space for that local subproblem may have a different polynomial degree with the

approximation spaces for the other subproblems. This will provide treatment of

meshes with hanging nodes and render h/p adaptive refinement easier. Second, since

the Lagrange multiplier is defined on the boundaries of the subdomains and serves

as gluing the solutions between the subdomains, we may use polynomials of higher

degrees to represent it and reduce the number of nodal points at the same time.

This non-conforming MSCG approach will reduce the density and size of the discrete

matrix of the global problem. Let us describe more specifically this approach.

We begin by introducing the notion of a minimal edge or face. An edge or face E

of a subdomain Qm is said to be a minimal edge or face of the macro decomposition

TQ if it coincides with either OQm n &Q or a2m n aQk, where Qk is any subdomain

other than Qm such that E nf 0Q has nonzero Lebesgue measure. Recall that the

macro decomposition TQ = {Qm , 1 < m < M} is the set of non-overlapping polygonal

subdomains which decompose the physical domain Q. We denote by

E = El E U(Qm : Et is a minimal edge of T, 1 < f < L (2.37)
M=1I

a collection of non-overlapping minimal edges or faces of To such that

M L

UOQ-m= UEi, and El nE = 0 for e =A k. (2.38)
m=1 f=1

Furthermore, we subdivide each edge Ee E Q- into nT microscopic (smaller) edges

ej, 1 i < ne; note that ne = Z ne is the total number of microscopic edges. We

then define

Se = fej, 1 < j f ne}. (2.39)

An illustration of En and Se is given figure 2.3-(a). In this figure, note that BE and

EG are minimal edges and thus belong to SQ; whereas BG of Oas does not belong to

En since it is not a minimal edge. The figure also shows that the edge CH of go is sub-

divided into two edges CI and IH to form e = {AB, BC, CI, IH, HG, GF, FD, DA,
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BE, EG, ED}.
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Figure 2.3: An illustration of (a) SQ and 4, (b) V,"' and X""'",
(c) basis functions of Pp(e)=6(er) on a reference edge er (-1, 1) w

We next introduce the approximation spaces as follows:

Yn" = {v E L2 ( Q)

V= {p E CO (Se)

1 < m < M, and
ith order 6.

W"= {W E L2 ({O"Qm : Qr" ET T}) : WIa8m = vIanm for v C Yh""},

(2.40)

where Pp(Qm) (K) is the space of polynomials of (low) degree at most p(Qm ) on K E T m

and Pp(e) (e) is the space of polynomials of (high) degree at most p(e) on e E 4. It is

important to note that p(Qm ) can vary with QM and that p(e) can vary with e. Next

let us define the traced space V "(gD):

V" =nPonnonD D}, (2.41)

where Pvhno" denotes the L2-projection into the space of functions in Vh"" on ]PD. Here

we consider spectral elements [120] for our traced approximation space Vh""".

Finally, on each subdomain Q' we introduce the approximation space for the

solution field:

X "''" ={v E CO(Qm) : V|K C P(O)(K) for K E T"7}, (2.42)

where, once more, the Dirichlet boundary conditions modify this space as Xh"''"*"(r) =
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{v E X"" : = Px"'n*7a on aQm} for some 77 E Vh, where PX'" denotes the

L2 -projection into the space of traces on &Qm of functions in X7'""".

Figure 2.3-(b) shows an example of h and Xh~non, 1 m<M for the domain

decomposition depicted subfigure (a). The larger nodes represent the degrees of

freedom of Vh and the smaller ones represent the degrees of freedom of X,non 1 <

m < M. We can also see that Xln"O (respectively, X,'"*" and X'non) is a linear

(respectively, quadratic) finite element approximation space and that there are many

hanging nodes along the interior minimal edges of Ee. Furthermore, for each e E Se

that Pp(e) (e) is the space of polynomials of degree p(e) = 6 as shown in subfigure (c),

which shows the Lagrange interpolation polynomials at the Chebyshev nodes [120].

Note how on any edge e E Se, the number of greater nodes is significantly smaller

than the number of interior nodes.

In addition, we can show that the approximate solution of the non-conforming

MSCG method is the same as that of a non-conforming CG method in a very similar

way to the conforming case. In this case, we seek an approximation (Uh*", Anon, qh*f) E
Ynon X Vnon (gD) X Wnon such that

(aVUng*, VV), + (bk2 U*", v)h -
M

- (qo", v)fm = (f,v), (V E Y243,
m=1 (2.43)

nn= hX ~0 Afl onE.

([q "t], p) C = (gN, A)rN , VpE Vnon(0).

And equivalently to the conforming case, we can prove (see theorem B.4 in ap-

pendix B) that there exists a unique set of functions (Uhon, A"*n, qh*") in the spaces

Yh"*o X V,"*n(gD) X W" satisfying the primal formulation 2.14 and also that UJ*" =

Uno on , Ano" = Uo" on 4, where Uh E Xh(gD) is the solution to the CG problem

2.9.

We now eliminate the unknowns Uh,*n and qng* to obtain a weak formulation only

for Anon. To this end, we introduce two local subproblems for each Qm E T. The

first local subproblem maps the function f E L2 (Q) to UyonIlr E Xhr'"*(0) defined
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by

(aVUy7", Vv)am + (bk2 Uf",V)om = (f, v) m, Vv E Xh'"*"(0). (2.44)

The second local subproblem maps 7 E V" to U" "m E X'non(y) that satisfies

(aVU,"n" VV)am + (bk2U" ", V)nm = 0, VV E X' (2.45)

Note once more that the two subproblems have the same bilinear form and only

the right hand sides are different. Analogously to the conforming case, a Lagrange

multiplier A"on can be introduced as the solution of a variational formulation. All in

all, it can be proved (see theorem B.5) that if (Uh*O, An*", qh**) is the solution of the

primal formulation 2.14, then U+o" = U non"+Uon. Moreover, the Lagrange multiplier

Anon E IVh(9D) is the unique solution of:

(aVU, VUan) + (bk 2 U, U,") + (gN, A)rN, Vpa E V

(2.46)

Once more, thanks to this trace characterization, the implementation of the non-

conforming MSCG method can be carried out efficiently. Indeed, it follows the same

steps as the implementation of the conforming MSCG method, which has already been

described in detail previously. The non-conforming MSCG can reduce the density and

size of the discrete global matrix since it allows for a flexible tuning of the subelement

meshes as well as the polynomial order used in the traced space. Furthermore, it

allows for an absolute geometric flexibility across subelements. For these reasons, all

the subsequent simulation examples will consider this approach.

2.5 Numerical results

In this section we present some physical applications where the proposed multiscale

CG methodology is particularly helpful and suitable. The objective is to show a set

of problems in the context of wave propagation that can be efficiently and accurately

solved with the MSCG method. We focus on the simulation of electromagnetic waves

in 2d and acoustic waves in 3d, which are all modeled by Helmholtz's equations and

suitable choices of the design parameters a(x) and b(x) in 2.1.
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2.5.1 Superlenses

Classical optical lenses use wave diffraction at a convex lens to focus a given image.

However, this approach has important limitations discovered by Ernst Abbe back

in 1873. Since evanescent subwavelength waves decay exponentially in a medium

with positive permittivity and permeability (like a lens), all the information that the

image contains at a subwavelength scale is lost, hence arbitrary sharpness of an image

cannot be obtained.

Because of this limitation, there is little room for improvement in classical lenses.

Nevertheless, Photonic Crystals (PC) and/or metamaterials open new possibilities.

J.B. Pendry introduced in [121] the concept of superlens: a slab that could provide

negative refraction index and thus preserve the evanescent subwavelength information.

The practical design of superlenses rose a lot of research interest and a first PC

solution that doesn't involve negative index materials but that already saves some

of the evanescent information for very thin ranges of frequencies was theoretically

introduced in [90] and later matched with experiments in [47]. Similarly, Fang et al.

designed a silver superlens that could capture subwavelength information in [56].

Figure 2.4: Geometry setting, MSCG discretization and numerical simulation of the

TM superlens in [90]. Frequency woa/27rc = 0.2, E = 12 and radius 0.45a.

In order to numerically simulate a Photonic Crystal superlens using MSCG we

consider a subdomain decomposition into hexagons. Seven layers of these hexagons

form the lens in the central vertical axis. Each hexagon has a rod centered in the
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subdomain. Furthermore, a point source is introduced at the left side of the superlens.

According to [90], this structure will create a superlens for TM modes (choose, a(x) =

e, b(x) = 1) around the frequency woa/27rc = 0.20, when rods of permittivity e = 12

and radius r = 0.45a are considered. The host material is chosen to be air (e = 1).

Note that a is the period of the hexagonally symmetric PC structure. Figure 2.4

shows the computational domain, the subdomain decomposition and discretization

around the rods as well as the solution field for wo.

2.5.2 2d Photonic Crystal waveguides with square symmetry

Photonic Crystals can be used for many applications. Here, we focus on PC waveg-

uides, which can be used for telecommunications and optical wave control. The MSCG

methodology introduced in this chapter works particularly well for structures with a

finite repetition of small patterns and will thus be suitable for the numerical simula-

tion of PC waveguides. The physical phenomenon that gives rise to PC waveguides

is the Photonic Bandgap. Certain periodic structures prevent propagation of given

ranges of frequencies in any direction, see for instance [74,96] for detailed descriptions.

In particular, when a collection of rods is distributed respecting the symmetries of

the square (place the center of the rods at every corner of a square grid) these gaps of

frequencies where transmission is prohibited are opened. Depending on the permit-

tivity contrast and thus the material of the rods as well as their radius, these ranges

are placed at different frequencies and have different widths. The extension of the

MSCG method to eigenvalue problems is carried out in chapter 4 and a methodology

to compute these band structures will be thereby provided.

Let us now focus on Transverse Magnetic (TM) modes for 2d Photonic Crystals.

In this case, if we consider rods made out of silicon (e = 11.8) and with a radius r =

0.2a, being a the periodicity, the lowest bandgap shows up for frequencies wa/27rc E

(0.27,0.41) and the second gap for wa/2nrc E (0.70,0.73). As a consequence, if we

define a material that is composed of this structure but one line of rods is removed,

a waveguide is created. Energy propagation is not permitted in any direction within

the PC structure and thus the wave only travels through the waveguide. Figure 2.5
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Figure 2.5: TM wave propagation field for a 2d PC with a planar incoming wave
from the left side for wa/27rc = 0.30 (top), wa/2wrc = 0.47 (center), Wa/27rc = 0.71
(bottom). Silicon rods (E = 11.8) with radius r = 0.2a.

shows the propagation patterns of the described PC waveguide for a frequency inside

the first gap, one between the two lowest bandgaps, and another one in the second

propagation prohibited range.

Similarly, Photonic Crystals can also be used to build optical nanocavities that

trap light in very small volumes for a long period of time and for very narrow frequency

ranges. These cavities can also be used as frequency filters when combined with a PC

waveguide as the one just presented. If the resonance frequency of the cavity is inside

one bandgap of the surrounding PC, the cavity will let it go through; however, if we

slightly modify the frequency, although still in the bandgap, the cavity will mostly
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reflect it back and the transmission will decrease significantly. These narrow band

filters can be very useful for optical communication [79], biosensing [157] and laser

design [2], among others.
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Figure 2.6: Waveguide-cavity-waveguide narrow filter for the TM wave field for. Pla-
nar wave incoming from the left side of the boundary. Frequencies are wa/2wc = 0.375
(top) and wa/27rc = 0.381 (bottom). Silicon rods (E = 11.8) with radius r = 0.2a.

For the same PC structure that produces the waveguide previously analyzed, a

nanocavity can be created by just removing one single rod and the corresponding

resonance frequency is wa/2wc = 0.38. So, if a waveguide-cavity-waveguide structure

is created, we can have very close frequencies providing different responses. Figure

2.6 shows the propagation patterns for frequencies wa/27rc = 0.375, which essentially

filters out all propagation within the waveguide, and wa/2,rc = 0.381, which mostly

preserves the propagation pattern of the original waveguide. Further details on this

specific waveguide-cavity-waveguide structure can be found in [74].

The main goal of waveguides is to transport electromagnetic energy for long dis-

tances. However, the paths that waveguides take are seldom straight and often have

to face bends, sometimes sharp. A desired feature of a waveguide is that it does not

have high losses when it suffers a bend. In particular, for the PC waveguide that we

have been analyzing so far, a 90 degrees bend can be created in a natural way given
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the square symmetry of the pattern. The effectiveness of this natural bend will be

assessed in section 6.2 as well as the design of optimal bends.

The bottom center of figure 2.7 shows the propagation pattern for a frequency

of wa/27rc = 0.34 obtained numerically using MSCG. Let us describe the simulation

procedure for this example and the preceding PC waveguide cases can be derived

similarly.

S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00

0 0 0 0 000
00000000000000000000 000 0 0o00 00 00 00 00 00o 0900 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 00 0 000 0 00 00 0 00 00 4 0 0 0

000000000000000006 00

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

00000000000000000.G~ 00

Figure 2.7: MSCG simulation of a TM 90 degrees waveguide
PC. Computational domain with subdomain decomposition
(bottom) and different subdomains with their discretization

I...'

[i-i-i]
I.'

bend on a square latticed
(top), numerical solution
(sides). PML regions are

not shown. Frequency wa/27rc = 0.34. Silicon rods (e = 11.8) with radius r = 0.2a.

First of all, the MSCG method requires the definition of the computational domain

as well as a clever choice of the subdomain decomposition. We want the subdomains

to be invariant with respect to translation and rotation, so that we can reduce the

number of subproblems to be solved. Furthermore, the size of the subdomains should

not be too small, because that would increase the size of the global problem; but it

should not be too big either, because that would make the local problem very large.
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The size of the subdomains together with the frequency of interest determine the

polynomial approximation order chosen at the macro discretization. Similarly, the

geometric detail and the frequency of interest will define the size of the micro mesh

as well as the local approximation order. Note that the levels of discretization and

the local polynomial orders may differ from one subelement to another. Moreover,

Perfectly Matched Layers (PML) need to be included in the computational domain

to avoid reflections.

In particular, for the waveguide bend that is shown in figure 2.7 we have chosen a

subdomain discretization that contains sets of 3 x 3 rods. In this way, there are only

four different subdomain types (plus those for the PML) as shown on both sides of

the figure with their corresponding local discretizations. In this case, we want every

subdomain to be able to accurately solve problems where they contain up to two

wavelengths so we use polynomial order of 20. The local polynomial order is 2 and

the local meshes are quite fine because they approximate the geometry linearly.

Note that in terms of computational cost, the most limiting part of the algorithm

is the resolution of the global system hence the local problem should never be jeopar-

dizing the overall accuracy. This typically implies that the local problem is designed

to resolve higher frequencies than the global.

Table 2.6 summarizes the degrees of freedom of the different discretizations for

the numerical simulation of the waveguide bend shown in figure 2.7. Note that if this

problem was solved using a classic CG approach, the total system of equations would

have around 500K degrees of freedom.

Table 2.6: Degrees of freedom count for 2d PC waveguide bend
problem elements order #DOF
subdomain #1 7,817 2 20K
subdomain #2 5,396 2 15K
subdomain #3 5,375 2 15K
subdomain #4 5,375 2 15K
homogeneous 800 2 2K
Global MSCG 96 20 5K
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2.5.3 2d Photonic Crystal waveguides with hexagonal sym-
metry

Triangular PC lattices can be designed using the symmetries of a hexagon. The prac-

tical implementation of the MSCG method for these lattices is slightly different and

the main point of these lines is to describe the procedure. Note that the symmetries

of the hexagon lead to a positioning of the rods at the vertices of a grid built of

equilateral triangles.

We now focus on a particular example and compute the wave propagation pattern

using MSCG. Let us choose the rods to be made of silicon (e = 11.8) and with radius

r = 0.2a, being a the periodicity of the Photonic Crystal. For this specific structure,

the band diagram is computed in chapter 4 and shown in figure 4.6. A bandgap is

opened for frequencies within the range wa/27rc E (0.29,0.44), hence no propagation

in any direction will be allowed within the crystal for these frequencies. However,

if a linear defect is opened by removing one row of rods, the energy will only travel

throughout it. In fact, a waveguide can be split in two channels and later reunified

in a very natural way through Y shaped bends as shown in figure 2.8.

Figure 2.8: TM wave propagation pattern for wa/2rc 0.36 through a double Y
shaped hexagonal lattice waveguide. Silicon rods (E = 11.8) with radius r = 0.2a.
PML is not shown.

In order to maximize the benefit of using the MSCG method for this particular

application we want to choose the subdomain decomposition cleverly. We need to
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decide what shapes are given to different subdomains in order to be able to identify

repeated patterns. Given the hexagonal symmetry, one could choose an equilateral

triangle as a unit cell, as well as a hexagon or a rhombus.

After we have the whole computational domain decomposed into rhombi we still

need to decide how many rods we include in each rhombus. Similarly to the square

lattice case, a balance needs to be found between too small subdomains or too big

ones. Once more, a 3 x 3 array of rods in each subdomain seems to provide a good

equilibrium between the density of the global problem and its size. Figure 2.9 shows a

schematic description of the geometry and the discretization. It shows the discretiza-

tion of each subdomain, how it fits the geometry and some of the rods removed to

form the first Y bend.

Figure 2.9: Schematic description of the geometry and its MSCG discretization.

Table 2.7: Degrees of freedom count for 2d PC Y waveguide bend
problem elements order #DOF
subdomains with rods 8, 121 2 23K
homogeneous subdomains 800 2 2K
Global MSCG 105 20 6K

Equivalently to the case of the square lattice, the use of MSCG drastically re-

duces the total computational cost of the problem due to the reuse of information

and condensation of it into the subelement skeleton level. For this specific problem

and discretization, the count of degrees of freedom of the different problems are sum-

marized in table 2.7. Note that if we were to solve this problem using classic CG, the

size of the global system of equations to solve would be 740K x 740K. Figure 2.10

shows the solution pattern for wa/27rc = 0.41, including the solution in the PML.
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Figure 2.10: TM wave propagation pattern for wa/27rc = 0.41 through a double Y
shaped hexagonal lattice waveguide. Silicon rods (e = 11.8) with radius r = 0.2a.

Equivalently, TE polarized modes can be simulated with the MSCG method in

order to obtain the H field. For this case, the material parameters are specified

as a(x) = 1/E and b(x) = 1, where e is the permittivity of each piece of material.

Structures that provide broad bandgaps for the H field under a TE polarization are,

for instance, hexagonally periodically air holes drilled on a higher index material, as

discussed in the following analysis.

The state-of-the-art numerical methodology for electromagnetic waves simulation

on Photonic Crystals is a Finite Difference Time Domain (FDTD) software [117]. In

order to validate the results given by the MSCG method we will compare the results

from both methodologies.

In particular, let us consider a 2d PC with a host material of e = 11.8 and air

holes of radii r = 0.3a drilled respecting a triangular symmetry of period a. For this

geometry, a TE bandgap shows up for frequencies wa/27rc E (0.20,0.28). In addition,

we consider a waveguide obtained by line defects that shape a Y bend/splitter. Figure

2.11 shows the H, transmission fields for two different frequencies in the gap. If we

now compute the transmission fractions for each frequency using both methodologies,

we observe a match up to the accuracy considered in each case as shown in figure

2.12.

More specifically, the top subfigures in 2.11 show the H_ field obtained using the

FDTD method whereas the bottom ones present their corresponding MSCG simula-

tion. The FDTD simulation is time dependent and therefore the results shown are
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obtained after several periods, once we do not observe any change from period to

period. The solution obtained with the MSCG method is frequency domain and thus

provides the final solution (up to e') directly.

********........ ................
,***o***ooeooooEe P*********0000*Ee

****0 00H 0000004

0 00 0 00 4 t
60*6w*000001

@00000 0 0 0 0 00 0 0 0 0 .* ....
*00000000i, 0000 *, , 00 0

0000000 V... ee *..,0 0,e

Figure 2.11: H_, propagation fields obtained using FDTD (top) and MSCG (bottom).
Y bend on a E = 11.8 slab with air holes of radii r = 0.3a -in green- for frequencies
in the bandgap: wa/2wrc = 0.26 (left) and wa/2wrc = 0.225 (right).

We now show in figure 2.12 the convergence of the transmission fraction value for

the geometry given above and frequency wa/27rc = 0.225 (adding the contributions

from both channels it adds up to around T = 0.94). Particularly, we show how

the value of such fraction converges as the discretization is refined from h = a/5

to h = a/20, where h is the size of the elements and a the period of the structure.

The figure shows the convergence curves for the FDTD method (dashed) as well as

the MSCG method with different choices of polynomial approximation order at the

macro discretization level. The results are compared to the solution obtained using

the MSCG method for k = 30 and also 30 local elements per period and direction.

First of all, we note how the numerical results obtained with both methods are

matched, validating the MSCG method. Secondly, we see that if the resolution of the
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Figure 2.12: Grid convergence of the transmission fraction (error of T vs. a/h) for
different macro discretization approximation orders of MSCG and FDTD.

global levcl and the local lcvel are very different, the accuracy is limited by the least

resolved mesh. In fact, we see how the accuracy of the solution for k = 5 does not

improve after h = a/10 but it actually makes sense to go slightly beyond a/h = 5

since the global variables are of higher order. Equivalently, we see how for local

discretizations of a/h = 5 or a/h = 10 there is almost no difference in the accuracy

among the cases k= 5 to k = 20 because the solution is limited by the local solver.

Given that only a few local problems are solved and they are totally parallelizable

(the computational cost is limited by the global problem), we see that the best result

is typically obtained by picking macro discretization order k that is enough for the

frequencies of interest and then choosing a finer local grid size h to exploit all the

power of k. Finally, figure 2.12 also shows that the MSCG method provides more

accurate solutions for the same level of discretization and with a faster convergence

rate, given the higher order. Moreover, in terms of wall-clock time, FDTD and MSCG

discretizations of the same order take similar times in 2d.
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2.5.4 3-dimensional waves

One of the most attractive properties of the multiscale methodology is its high ef-

ficiency for solving problems that can be decomposed into subdomains with only a

few of them being geometrically different. The notable condensation of degrees of

freedom provides this method with the capability of solving very large problems. In

particular, some 3d applications become numerically tractable without the need of

very advanced computational resources.

In order to show the computational power of the multiscale method, the numerical

solution of a very large problem is now sought. More specifically, figure 2.13 shows the

wave propagation pattern of a 3d vibration wave in a domain of size 10A x 10A x 100A,

being A the wavelength. The simulation of high frequency waves (or lower frequency

in large domains) is computationally challenging because it requires a large number

of degrees of freedom given that these scale with the wavelengths per dimension.

Particularly, this problem has been divided into 10 x 10 x 100 local subelements, each

one of which has 6K order 2 local elements that perfectly capture one wavelength.

All in all, the total number of degrees of freedom exceeds 200m for a CG approach.

Nevertheless, we only solve for the condensed global system of equations, which has

= 1, 572,900, since a polynomial approximation order of 6 has been chosen on

the faces. Note that this global system of equations, equivalent to up to 200m degrees

of freedom, has been solved without the consideration of iterative solvers nor any sort

of parallelization technique. Once more, first-order absorbing boundary conditions

have been used and the solution is converged to machine precision.

Figure 2.13: Acoustic wave propagation pattern for a 3d homogeneous rectangular
prism. The domain size is 10 x 10 x 100 wavelengths.
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2.6 Concluding Remarks

In this chapter we have presented the first member of a set of multiscale methods

for the simulation of wave propagation problems: the multiscale continuous Galerkin

method. The MSCG takes advantage of hybridization beyond the fact that the local

problems can be solved in parallel. All subelements are chosen such that there are

only a handful of different classes. Then, only one representative of each class is

solved, in parallel. Finally, the global system of equations is assembled and solved,

but it is much smaller -yet denser- than the original.

All in all, we are able to solve problems, the CG discretization of which would

require up to several hundred million degrees of freedom in 3d. This is especially

encouraging since a single 8 core machine has been used with a sparse direct solver.

In particular, we have used the MSCG method for the forward direct simulation of

electromagnetic problems in 2d (since Maxwell's equations for TE/TM modes can be

reduced to Helmholtz's equation) as well as acoustic wave problems both in 2d and

3d.
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Chapter3

Multiscale Hybridizable DG method for
the time-harmonic Maxwell's equations

Through science we prove, but
we discover through intuition

-Henri Poincare

Helmholtz's equation can model in 2d both acoustic and TM/TE modes of electro-

magnetic waves. Nevertheless, Maxwell's equations modeling EM in 3d can not be

reduced to Helmholtz's since the polarizations are coupled. It is therefore desirable

to extend the multiscale method introduced in the previous section to Maxwell's

equations in 3d.

We consider the time-harmonic Maxwell's equations as:

V x H - (iwa(x) + b(x))E = J, in Q

V x E + ic(x)H = 0, inQ (3.1)

n x E = gD, On FD

n x H = gN, On JN

Note that a(x), b(x) and c(x) are parameters that will be determined by the

material at each point of the domain. More specifically, a = e is the permittivity of

the material, b = - is the conductivity of the medium (considered 0 for simplicity)
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and c = p corresponds to the permeability, considered to be 1, since most materials

of interest show such value. J is the impressed current density, E, H correspond to

the frequency domain electric and magnetic fields respectively, and w corresponds to

the frequency. Boundary conditions are considered in the last two equations. These

formulations model a wide range of problems of interest within electromagnetics.

Computational electromagnetics in 3d brings up several additional challenges.

Firstly, there is a poor scalability of the degrees of freedom since the TE/TM modes

are now coupled and we need to simultaneously solve for E and H. In addition, vector

field solutions to Maxwell's equations satisfy a divergence free condition leading to the

consideration of H 1 approximation spaces [52]. The finite element implementation

of these spaces is challenging for classic CG methods but becomes more natural if a

hybridizable discontinuous Galerkin (HDG) discretization is used.

Figure 3.1: An illustration of a MSHDG macro discretization with subelements dis-
cretized using HDG.

In this chapter we first adapt the HDG methods presented in [114] for 3d prob-

lems. Then, we extend the multiscale methodology with global discontinuous spaces
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using HDG as a solver for the subelement problems, providing a guide for the imple-

mentation and a convergence-cost analysis. Finally, simulation results are provided.

3.1 The HDG method for Maxwell's equations

The set of equations 3.1 provide the frequency domain solutions for an electromag-

netics problem. Let us first introduce the additional notation required, describe the

HDG discretization procedure and define the approximation spaces.

We denote by Th a collection of disjoint regular elements K that partition the

domain Q c Rd, d E {2, 3}. The set Th := {OK; K E Th} is then a collection of

boundaries of the discretization elements. For a given element K E Th, F = OK n iO9

is a boundary face if the d Lebesgue measure of F is zero but the d - 1 measure is not.

For two elements K+ and K- of the collection Th, F = aK+n f K- is the interior

face between K+ and K- again if the d Lebesgue measure is zero but the d - 1 is

not. If d = 2, such faces will be called edges. Equivalently to the notation introduced

for the MSCG method, we denote by h and by .E the set of interior and boundary

edges/faces respectively. And we finally set Sh = Ehi U Sh.

Let now n+ and n- be the outward unit normal vectors on two neighboring el-

ements K+ and K-, respectively. We use vi to denote the trace of v on F from

the interior of K', where v E L2(Q) = [L 2 (Q)]d . Then, we define the jumps [-H as

follows: for F E 'h we set

[v O n] = v+ D n+ + v D n-. (3.2)

Here 0 is either - or x, depending on which is required for each equation. For

F E EhO, the set of boundary edges on which v is single valued, we set

[v D n] = v O n, (3.3)

where n is the unit outward normal to aQ. We further set

vt := n x (v x n), v" := n(v -n), (3.4)

where v' and v" represent the tangential and normal components of v, respectively.
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Note that the total vector field can be obtained as v = vt + v".

After the additional notation has been introduced, we are ready to define the

particular approximation spaces that will be required for the HDG formulation. Also,

since Maxwell's equations in 2d can be decomposed into TE or TM polarized modes

and modeled through Helmholtz's equation, we will now focus only on 3d problems.

Let D be an open domain in R3 . We introduce the following curl-conforming space:

Hcu"(D) = {v E L2 (D) : V x v E [L 2 (D)] 3 }. (3.5)

Recall that L2 (D) is the space of square integrable functions on D. The Hcu_

norm associated with this space is then defined as:

1/2

IVIHcurL(D) = (j12 + IV X V12 (3.6)

Let Pm(D) denote the space of complex-valued polynomials of degree at most m

on D. We also introduce the following approximation spaces Xh and Mh for the

solution fields and the traces respectively.

Xh = {v E L2 h) : VIK E [Pk(K)]d, VK c Th}, (3.7)
Mh = {2 E L2 (f) : ?IF E M(F),VF E E,},

where the local space is defined as M(F) = {i E [Pk(F)]d : q - nIF = 0}- In order

to naturally include the H"'' nature of the solutions let us define t, and t2 as the

tangent vectors on face F. We then have,

M(F) = Pk(F)tl E Pk(F)t2  (3.8)

and thus M(F) consists of functions, the normal component of which vanishes on F.

Finally, we define various hermitian products for the previously introduced finite

element spaces. Let q, be scalar functions defined on a given volume D C R3 and

(77, ')D denote the integral of 77* over such domain. We then define the volumetric

hermitian products. Note that the asterisk represents the complex conjugate.

3

(77, T) := (n, ()K and (O,i) := (i, i).Th (3.9)
KE7=h
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Analogously, if (7, )D denotes the 2d integral of q * over a domain D C R2 , the

hermitian products on the faces are defined as:

3

() KT, (q Z=)K and (1,7)aTh Z7rh, )Th
KETh

(3.10)

3.1.1 Formulation

At this stage we can introduce the HDG method formulation for the 3d Maxwell's

equations. This method will seek a solution (Eh, Hh, Eh) E Xh x Xh x Mh such that

the following discretized system holds for all (R, W, 8) E Xh x Xh x Mh:

(iwcHh R)T+EhVR)h+nER =0
(H,+ (EV, VxR) W) + n x E,

(Hh, V X W) + fn x Hh, ,, + ((iwa + b)Eh, W)h = (J, W)h (3.11)

hg r -
r

(n XHh, 8)9-~D+((Eh - D)xfn,OE) rD= 0

The number of degrees of freedom on the faces will determine the computational

cost of the global system of equations. In order to reduce them, we consider the traces

for the magnetic field as a stabilized combination of the other variables.

Hh= Hh +T(Eh- Eh) x n (3.12)

Note that Eh is an approximation to the tangential electric field El = n x Eh X

n that is single-valued across inter-element boundaries and satisfies the boundary

conditions imposed through the last equation. If we now substitute 3.12 into 3.11,

we obtain the final HDG discretization for Maxwell's equations:

(iwcH, R)T+ (Eh, VxR) Th+KnxER = 0

(V x Hh, W)h + Krn x E x n - Eh), w + ((iwa + b)Eh, W)Th = (J, W)Th

(n x Hh+ r(n x Eh x n - Eh),) + E - gD) x n,8 = (gN,0 )FPN

(3.13)

Note how the first two equations correspond to the weak formulation of the gov-

erning equations 3.1. The third one enforces continuity of the tangential component

of Hh across the inter-element faces and also imposes the boundary conditions weakly.
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3.1.2 Implementation

Let us now describe the implementation steps of this method. First, we write system

3.13 in terms of bilinear and linear forms. The HDG for Maxwell's equation finds

(Eh, Hh, Eh) E Xh x Xh x Mh such that:

iwcA(Hh, R) + B(Eh, R) +

B(HhW) + [DA](EhW) -

-C(Hh, e) + T71(Eh, e) +

for all (R, W, E) E Xh x Xh x Mh. Note

bilinear forms A - I as well as the linear

(E, H, T) E Xh x Xh X Mh as follows:

A(H, R) = (H, R), B(E, R)

C(T, R) = (n x T, R)ar D(E, W

F(T, W) = (T, W)ar 7(E, 8)

I(Te) = (T x n, 8 )a F1(R)

.T2(W) = (J,W)h -F3 () 

C(Eh, R) = F1(R)

TF(Eh, W) = F2 (W) (3.14)

(1 - T)I(Eh, 8) = F3(8)

that [DA](-) := [rD + (iwa + b)A](.). The

forms Fj for j = {1, 2, 3} are defined, for

= (E, V x R)Th

= ((n x E x n), W)ah

= ((n x E x n, )ah\an

0

(-gn x n, E)rD + (gN, E)rN

(3.15)

For the implementation of the HDG method we need to discretize the formulation

just introduced. To that end, let us first define 'pn, 1 < n < N to be the basis functions

of Pk(K). Similarly, let <Om, 1 < m < M be the basis functions of {Pk(F), VF E &K}.

The following matrices Ak to Rk represent the discretization of the corresponding

bilinear forms.

Mk

0

0

(Cki

C21

C1 k

0

M k

0

C12

22

C32

01

0 ]3k-

Bk k

Mk

I I =

0

12

13 

Dk11

12

-Di k

B1 2

0

-iak 23

-D2 k12

-22

23

-B 1 3
3

l23

0

-iDk-13

-iD 3

(3.16)
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Fk Fk - - -
11 12 H k H k H kk Rk

F F ] Hkk - HI HIk112 13 1 k 1[M 12 (3.17)

Fk F 2 kH21 H22 H32  L21 12 

where the different blocks of each elemental matrix can be obtained according to the

following rules. Firstly, for 1 < i, j 5 N, 1 < r, s < M and 1 < 1 < 3, we obtain

the mass matrices as Mk = (vi, Wj)K; the different components of convection curl-

like matrices as 1B2,ij = (X3i, Pj)K, 13,ij = (X 2 i, pj)K and '23,ij = (Oipil sj)K;

and the matrices for the traces corresponding to the first equation as Ck',, = ((n x

ti)pi, ',)aK and C .ir = ((n X t2 )APi, q r)8K. The tangent vectors are defined in terms

of the normal vector n = (ni, n2, n3 ) such that the if ni is the largest component, then

ti = (-n 2 /ni, 1, 0) and t2 = (-n3 /ni, 0, 1). If n2 or n3 are the largest components

the tangent vectors are obtained analogously.

Similarly, we obtain the submatrices for D as DI4 = ((n2+nr)Pi, Pj)K, kD2,ij

((ni+ns)Pi, Wj)K, 3  = ((' + n)Pi, Pj)K, and D = ((nanl)Pi, 'j)K for ab E

{12,13, 23}. Then, F,,ir = ((ti)cp, 4 r)aK and 1i = ((t 2)1pi, qr)OK. Also, for the

H components, H = (abPi, /r)8K, where the values of aab are:

al= (n2 + n)ti - nin2 t12 - nin3 t13 , a12 = (n2 + n )t12 - nin2tu - n2n3 t13

013 = (n2 + n)ti3 - nin3 t11 - n2n3t12 , a21 = (n2 + n )t2 1 - nin2 t 22 -

e22 = (n2 + ns)t22 - nin2 t 21 - n 2n3 t 23, a 23 = (n2 + n )t2 3 - nin3 t 21 - n 2 n3 t 22

(3.18)

Finally, the submatrices for I can be obtained as Ifb,, = (/abr, #k)eK, where lab

are given by:

31 = (t 11t11 + t 12t12 + t13t13 ), 012 = (t 11t2 1 + t12 t 22 + t 13t2 3 ) (3.19)

,321 = (t11t2 1 + t12 t22 + t13t 23), /322 = (t21t21 + t22 t 22 + t 23 t23 )

As for the linear forms T, i = 1, 2, 3, their corresponding discretization can be

written as Fk = 0, FFk = [F;F2;F ] and 3F = 2], where the component
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vectors are respectively:

F21 j = (J, Wp) F31, = (git1i + g2 t 2 + g0t 1 3 , #r) (3.20)

with (91, g2, 93) = g x n. All in all, if we drag into the matrices the constants in

front, i.e. A <- iwcA, {D, F, HI} -- T{D, F, H}, E +- (iwa+b)A and R 1 - (1 -)J,

the HDG system of equations can be written as:

A B C H F,

13 D+E F E F2 (3.21)

-Ct H R T F3

where E, H represent the value of the electric and magnetic fields at the degrees of

freedom defined in each discretization element, whereas T corresponds to the traces

on the degrees of freedom on the interfaces.

After the discretized system of equations is formed, it is now time to solve it.

However, instead of directly solving 3.21, we will take advantage of its sparsity pat-

tern. Note that the upper left 2 x 2 submatrix formed by A, B and D + E is block

diagonal since the information from each element K only has nonzero entries for the

local degrees of freedom of the same element K. Hence, using the Schur complement,

one can easily write H = H(T) and E = E(T) and finally use the last equation to

solve the system for T. After the fact, if the local solution is desired, it can be again

recovered in a fully parallel way, element by element. We can write,

H A B F, C
- T (3.22)

E Bt ID + E F2 IF Y)(.2

where the inverse can be computed very efficiently since it is block diagonal and each

block can be inverted separately. Then we solve the global system KT = T, where:

K = F 3I - [-Ct [+E]B C
K = R~ - .

( t HB + ( 3 .2 3 )

T=F3 - -_Ct H A F,

13t ID+ E F2_
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3.2 Multiscale HDG formulation

For the efficient simulation of electromagnetic wave propagation problems in 3d, we

want to extend the multiscale method presented in chapter 2 to Maxwell's equations

using the HDG method just presented at the local problem level and discontinuous

spaces at the global multiscale level in order to impose the tangential nature of the

solutions easily. As a result, in this section we will present the multiscale hybrid

discontinuous Galerkin method (MSHDG) as the merge of the HDG solver locally

together with the multiscale global decomposition presented in the previous chapter.

Let us first introduce the additional approximation spaces that will be required

for the formulation. First of all, we need to introduce the spaces for each one of the

subdomains Qm , 1 < m < M. To that end, X' and M', Vm = l..M are defined as

follows for the volumetric variables and the HDG traces respectively as follows:

X = {R E L2 (hm) : RIK E [Pk(K)]dVK E T , (3.24)

)= { E L2 : EF E M(F),VF E }.

In addition, the union of all them together will form the approximation space for

the solution fields Eh and Hh. Spaces Yh and Nh are the global extension by union

of Xm and Mm, respectively. Finally, at a global level an approximation space for

the multiscale traces is also required:

Yh = {r E [L2 h)]d : rKm E XW,VKm E T7m,1 < m < M},

Nh = {6 E L2 (h) :Fm E Mm,VF m E E6hm, 1 < m < M}, (3.25)

Vh = {l E L2 ( ) il! E V(f),Vf E 9hg

where Eh is formed by all the interfaces at the multiscale level, i.e. the union of all the

boundary faces of each subdomain. Furthermore, V(f) = { E [P(f)]d : t - n = 0}.

Note that each subdomain will be solved using the HDG method presented previ-

ously with an approximation order k according to the inherent definition of Xm and

Mm. Similarly, the macro discretization for multiscale purposes will use a polynomial

approximation order p as given by Vh. This traced space is defined over the faces

of the macro discretization and hence it is discontinuous. All in all, the degrees of
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freedom on the vertices (in 2d) and on the vertices and edges (in 3d) are duplicated.

We now consider the numerical multiscale global trace A E Vh which is an ap-

proximation to the tangential electric field Et (two linearly independent components)

on the set of faces of the macro discretization. These are the only globally coupled

degrees of freedom and will thus ultimately form the global system. In addition, for

each subelement Qm E T with discretization Tm we need to define a corresponding

local problem, for which we use the HDG method presented in the previous section

only with Dirichlet boundary conditions imposed by A. For the local problems we

seek an approximation (E, Hg, Em) E Xm x X' x Mm such that the following

system of equations holds for all (R, W, 8) E Xm x Xm x Mm:

(iwcHm, R)rm + (Em, V x R)Tg + (n x Em, R = 0,h h h h a7M

(H, V x W>rn + (n x HN, W + ((iwa + b)Em, W)> = (J, W)Tg,

n x Hm, e) + (Er - A) x n,8) = 0.a h-\anmaan
(3.26)

Note that the above problem can be solved at the subelement level whenever

the global numerical trace A is known. In other words, the local problem defines

(EM, H , E) as a function of A. Also, note that this problem is nothing but the

HDG discretization -given by equations 3.13- of each of the subproblems defined by

TQ with a Dirichlet boundary condition Em = Alaam imposed on &Qm .

The numerical flux Hm still needs to be defined in a way that it guarantees the

stability of the local problem. Similarly to [103], where a multiscale HDG method is

introduced for Euler and Navier-Stokes equations, the numerical flux can be chosen

as Hm = Hm + r(Em - Em) x n, where T represents the stabilization parameter. Note

that the actual value of the numerical flux HN is coupled and intrinsically depends

on A through the last equation in 3.26.

Finally, the global problem needs to be defined in order to determine A. This is

done by requiring an extra equation that imposes the full problem boundary condi-

tions on the global numerical traces. We seek an approximation trace A E Vh such
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that:

n X (A), A +b (A),, = 0, VA E Vh (3.27)

Here, b(A) is the boundary flux, the precise definition of which depends on the

Neumann or Robin boundary conditions. Also, hh E Yh is formed by the union of

all H' and is thus equivalently defined. Note that this equation is only defined for

the degrees of freedom on the macro discretization faces.

Finally, when equations 3.26 and 3.27 are considered together and the numerical

flux is inserted in the equations, we obtain the formulation of the MSHDG method.

In conclusion, we seek a solution (eh, hh, 'h, A) E Yh x Yh x Nh x Vh such that:

(iwchhr)Th + (eh, V x r)Th + (n x eh, r)a- = 0,

(V x hh, w)Th + (T(n x eh x n - eh), w)aTh + ((iwa + b)eh, w)Th = (J, w)Th,

(n x hh + T(n x eh x n - eh), 0)er\U afm + ((eh - A) X , U anm = 0,

m 
m

(n x hh + r(n x eh x n - eh), O)aTh\a + =0,
(3.28)

holds for all (r, w, 6, t) E Yh x Yh x Nh x Vh-

The two levels of hybridization that this method uses will be exploited in the actual

implementation of the MSHDG. Note that the degrees of freedom corresponding to

eh E Yh and hh E Yh are only coupled within each micro discretization element.

Furthermore, the HDG traces eh are only coupled within a given subdomain. The

only globally coupled degrees of freedom are those related to A.

3.3 Implementation

The purpose of this section is to present a guide for the implementation of the MSHDG

method, exploiting the structure of this discretization. The efficient implementation

of the MSCG method introduced in the previous chapter relied on breaking down

the local solver into a collection of Dirichlet problems at each representative of the

subdomains, so that we were able to reuse information. In the MSHDG case and

given the linear nature of Maxwell's equations, the very same technique can be used.

Let us begin by considering (Em, H, Em) E Xm x Xm x Mm to be the solution
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of the following HDG system of equations:

(iwcH', R)h + (E', V x R)Th + (n x Ej, R) Oh

(V x Hm, W)h + KT(n x ET x n - iy), W) + ((iwa + b)Em, W)Th

n x Hm+T(n x Em x n - E), 8) + KET x n, E)

for all (R, W, E) E Xm x Xm x Mm. These equations correspond

Dirichlet Maxwell's problem given by:

= 0,

= (J,W)h,

= 0,

(3.29)

to the homogeneous

V x Hm - (iwa(x) + b(x))Em

V x Em + iwc(x)Hm

n x ET

Similarly, we consider (Em, Hm, Em) E Xm X

following HDG system of equations:

=J,)

=0,

=0,

in Q m

in Q m

on B9m
I. (3.30)

Xm x Mm to be the solution of the

(iwcHm, R) + (Em, V x R)-r + (n x , R

(V x Hm, W)Th + (T(n x Em x n - Eq), W) + ((iwa + b)Em, W) h

K x Hm + T(n x Em x n - E), 8) + (Eg -17) x n, E)

for all (R, W, 8) E Xm x Xm x Mm. These equations correspond

problem with inhomogeneous gD = i Dirichlet boundary conditions

term given by:

V x Hm - (iwa(x) + b(x))Em

V x Em + iwc(x)Hm

n x Em

=0,

=0,

=7,

in Q m

in Q m

on OQ m I.
(3.31)

to a Maxwell's

without source

(3.32)

Now, we proceed equivalently to the MSCG method. Hence, consider the space

for the multiscale traces as Vh = V where 4/ = spat{pi, 1 i < Nt},

being cpj each of the Nf nodal basis functions on face f E Ch. Then we can write each

component of A as some linear combination of the basis functions pi. This decompo-

sition will let us also write the solution fields (Em, Hm, Em) as a linear combination of

the fields (Em, Hm , Em ) for each of the {pi }f1. Note that the discontinuous nature
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of the macro scale space leads to a definition of the global degrees of freedom face by

face. All in all, a given subelement 1 < m < M will only communicate with 6 faces

fm and thus with the degrees of freedom therein.

According to the HDG decomposition described in the previous section, we can

solve each collection of subproblems (3.30 and 3.32) at a given subdomain for the

local traces ET as:

Km Tm = Tm, (3.33)

where TW represents the degrees of freedom for ET with 1 < m < M. Equivalently,

the local HDG discretization for each one of the {{pi} I'} problems yields to the
i= =1

following algebraic system of equations:

Km Tm =T , 1 i < Nfm  (3.34)

where similarly, T represents the value of the HDG solution on the degrees of

freedom of the local traces for the Dirichlet problem with boundary condition Wp.

Note that the system matrix K' required for all of the N + 1 HDG problems at

every subdomain is the same. When considering the problem for J as well as each

one corresponding to a given {.}Nf, the only changes in 3.21 correspond to the

right hand side terms F2 and F3. This means that only T" in equations 3.23 will

take different values for each problem, denoted by T' and T', leading to different

solutions TT and TZ, respectively.

This decomposition, together with the HDG static condensation provided by 3.23,

gives us a way to compute all the matrix inversions at the local HDG level as well as

at the subelement level in a very efficient manner -the local ones (A, B, D and E) as

given by 3.22; as well as the subdomain ones (K) as just explained-.

Finally, let us algebraically write the the global problem given by the last equation

in 3.28, as:

LH+ME+NT+OA=F 4 , (3.35)

where H and E provide values for the magnetic and electric fields respectively at the

degrees of freedom defined by Yh; T corresponds to ehE Nh and A takes values on
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the multiscale interfaces, where A E Vh is defined. In addition, matrices L, M and N

are obtained equivalently to C, H and I in 3.16 but where the shape functions <0, are

chosen in the macro discretization interfaces instead of the local faces.

We now want to write equation 3.35 only in terms of A as we have already argued

that all the other degrees of freedom can be statically condensed in two steps: first

using HDG to go from H', E' to T' and then the multiscale decomposition to

take these three subelement by subelement into A. Let us recall that the latter

decomposition is such that HI = H' + H1, E' = E' + E' and T' = T' + T'

where:
Nm  Nm  Nm

Hm=Z AiHm., Em =Z AiE., Tm =ZAiTm. (3.36)
i=1 i=1 i=1

All in all, we first use 3.22 to write (H , Em) and (Hm , Em), for 1 < i < Nm as

a function of TW and TM, respectively. In other words, we write:

Hm A"m B"M F"m C"M
T M (3.37)

Em (B"')t D"m + E"m F2'(a) F"M

for a representative of each element 1 < m < M and a E {J, {jp}}iNm}. Note that

the inverse involved is cheap since the matrix is block diagonal at the discretization

element level.

Now we use 3.37 to obtain K"m as well as the right hand sides Tjm and Tm as:

Km = M (-Cm)t Hm [ Am  M
(Bm)t D" + E" F

(3.38)

Tm= F()-(-") " A"m IB"M F,
Ci 3 a) -C M~ H M (IB" )t D " + E"m F 2 (a)

If we now bring together all the preceding decompositions we end up firstly with a

system of equations for the degrees of freedom on the HDG and global traces (T, A)

that can be expressed as:

Nm M

P T + T, m Am + OA=Q (3.39)
i=1/ m=1
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where P and Q are given by:

P rLM A B C

Bt D+E F

(3.40)

Q=F4- FL M][ F
Bt D +E F2 (J)

Note that only F2 (J) is required since F2 (pi) = 0, Vi. To conclude, we use the

subelement information Km Tj = T' and Km TO = T1 together with T m = TY +

TmA to obtain the final system of equations only for A as ZA = W, where:

Z= 0 - PK- 1T (3.41)
W = Q - PK-'Ti

where K-T and K- 1Tj represent the assembly of the subdomain terms (Km)-lTm

and (Km)-lTm, for 1 < m < M, respectively.

Let us also make some important remarks about the MSHDG .implementation.

Firstly, the use of Schur's complement leads to an efficient computation of all inverses

except for Z-1, which is the global reduced problem and therefore should be the

bottleneck of the algorithm. Furthermore, all local subelements can not only be

parallelized but also classified in a way where only a very few of them (< M) are

solved and then stored and reused. In particular, this storage is not expensive since

although Nfm + 1 different right hand side vectors Tm are required, only one single

matrix Km is inverted and stored per class of subelements. Table 3.1 summarizes the

implementation steps.

3.4 Convergence test and cost analysis

In this section, a numerical experiment is presented in order to assess the performance

and accuracy of the MSHDG method. To that end, we will solve 3.1 in a 3d cubic

domain Q = (-1, 1)3 with a(x) = c(x) = 1, and b(x) = J = 0. Furthermore, we will

89



Table 3.1: Implementation steps of MSCG method
1. For a representative of each subdomain Qm, 1 < m < M,

a. Compute local matrices matrices Am to RIm and vectors Fim(a)
b. Solve for Hj, E, Em

c. Solve for Hm, E , E, 1 < i < N
d. Compute the subdomain global matrix Km and load vectors Tm'

2. Derive and assemble Z and W according to the described procedure
3. Solve ZA = W
4. Compute (eh, hh,eh) E Yh x Yh x Nh using 3.36

choose the boundary data g such that the exact solution is given by:

E(x, y, z) = (sin(wy), sin(wx), 0). (3.42)

Here, results for w = 1 are analyzed. We also consider a 3d tetrahedral mesh obtained

by splitting a regular n x n x n Cartesian 3d grid (h = 1/n). Once more, the original

subdomain is split into M = q x q x q cubic subdomains. The polynomial degree

considered inside each subdomain is k. Table 3.2 shows the L 2 errors of the solution

for both the MSHDG method as well as equivalent HDG discretization for k = 1 while

table 3.3 shows the same errors for k = 2. As expected, a convergence of 0(hP+l) is

obtained and both methods provide errors of the same order.

Table 3.2: Convergence history of the MSHDG method and the HDG method for
k = 1: L2(Q) error in the solution as a function of n, q.

Mesh MSHDG HDG
n q =1 q =2 q =4 q= 8

error error error error error order

8 6.48 -10-1 6.48- 10-1 6.48 -10-1 6.48 -10-1 6.48 -10-1 -
16 9.42 -10-1 9.42- 10-1 9.42- 10-1 9.42 -10-1 9.42 -10-1 2.79
32 2.25- 10-2 2.25- 10-2 2.25- 10-2 2.25- 10-2 2.25. 10-2 2.06
64 5.51. 10-3 5.51- 10-3 5.51. 10-3 5.51. 10-3 5.51. 10-3 2.00
128 1.37. 10-3 1.37. 10-31 1.37. 10-3 1.37. 10-3 1.37. 10-3 2.01

Like the MSCG method, not only do we we get the same convergence order

for all equivalent discretizations with different choices of q, but we also obtain ex-

actly the same error. Given the choice of a discontinuous space for the multi-

scale interfaces, all discretizations are equivalent and provide the same solution:
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Table 3.3: Convergence history of the MSHDG method and the HDG method for
k = 2: L2 (Q) error in the solution as a function of n, q.

Mesh MSHDG HDG
n q=1 q=2 q=4 q=8

1 error error error error error order

8 5.03. 10-2 5.03- 10-2 5.03- 10-2 5.03 -10-2 5.03. 10-2 --

16 6.21. 10-3 6.21. 10-3 6.21 _ 10-3 6.21. 10-3 6.21- 10-3 3.04
32 7.76- 10-4 7.76. 10-4 7.76. 10- 4 7.76. 10-4 7.76- 10-4 3.01
64 9.72- 10-5 9.72. 10-5 9.72. 10-5 9.72- 10-, 9.72 -10-- 2.99

128 1.25 - 10-5 1.25 -10-5 1.25 - 10-5 1.25 - 10-' 1.25 -10-1 3.00

(hh,eh)mshd9 = (Hh,Eh )hd.

It is also relevant to compare the degrees of freedom for the MSHDG and HDG

methods. To that end, we focus on a uniform discretization of the 3d Maxwell's

case (for more general analysis on the cost of HDG, see [70]). Let us assume that a

total of 6n 3 elements are present in the total discretization (that is, n subdivisions in

each dimension times 6 tetrahedra per cube). For k = 1, the HDG method provides

4 degrees of freedom per element for each of the six components of (Hh, Eh) and

3 degrees of freedom per face, for each component of Eh. When p = 2, the HDG

method uses 10 instead of 4 degrees of freedom per element and 6 instead 3 per face.

These same numbers also apply to the local MSHDG discretization considering

that there are 6n3/p 3 elements per subdomain. Then, for the global traces considered

of order p = n/q when k = 1 or p = 2n/q when k = 2 we obtain (p + 1)2 degrees

of freedom per interface, of which there are 3(q + 1)q 2 . Tables 3.4 and 3.5 provide

the total numbers of degrees of freedom for the HDG discretization as well as the

MSHDG for k = 1 and k = 2, respectively.

Note that the set of global degrees of freedom for the MSHDG method is always

of smaller size when compared to the HDG method. Particularly, a good balance

between the size of the local and global problem is sought in order to maximize the

efficiency of the method. So, for instance, if we look at the last row of table 3.5,

we would prefer to partition the domain in 8 subelements per direction and obtain a

total of 1m degrees of freedom for eh than to partition it only into 2 per direction,
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Table 3.4: Comparison of the degrees of freedom between the MSHDG method and
the HDG method using uniform meshes for k = 1.

MSHDG HDG
n q= 2  q =8

M K ms mshdg M Kmshdg shdg gdgg,al Ad,trace
dof "i' "dof sVdof dMIf dof

8 11.5K 1.8K 512 180 3.4K 91.5K 30.6K
16 8 91.5K 5.8K 512 1.4K 31K 740K 246K
32 8 740K 20.8K 512 11.5K 86.4K 3.9m 1.9m
64 8 3.9m 78K 512 91.5K 280K 47m 15m

Table 3.5: Comparison of the degrees of freedom between the MSHDG method and
the HDG method using uniform meshes for k = 2.

MSHDG HDG
n q =2 q= 8

mIIdg A/qnshdg msdg hdg /h,all d,tde

8 8 27K 5.8K 512 420 31K 215K 62K
16 8 215K 20.8K 512 3.4K 86.4K 1.7m 492K
32 8 1.7m 78K 512 27K 280K 9.8m 3.8m
64 8 9.8m 304K 512 215K 1m 110m 30m

where the local subproblems would we too large.

Furthermore, AC,,hdg represents the total number of local degrees of freedom for

each of the HDG subproblems. Let us note that in fact, the actual size of the local

systems of equations is smaller since we use static condensation to solve only for the

HDG traces. Overall, there is a reduction of a factor equivalent to the one given

between the last two columns (from all the HDG degrees of freedom to only those on

the traces, Eh).

Finally, we note that this comparison of degrees of freedom is for a uniform

discretization where the subdomain decomposition and the global mesh have been

matched to provide solutions of the same accuracy. However, for most of the prob-

lems of interest, the local meshes will be finer in order to capture the geometry. In

these problems, the global discretization will be only determined by the frequencies

of interest. The difference of degrees of freedom between MSHDG and HDG will be

even greater.

92



3.5 Numerical results

In this section we present a collection of forward direct simulations obtained using the

multiscale HDG method introduced in this chapter. The main objective is to show

how the method allows for the accurate solution of large electromagnetic problems.

Firstly, we obtain the numerical solutions for 3d fibers that use either the con-

cept of index guiding or, alternatively, that are made of a Photonic Crystal cross

section. Then, we obtain the electric and/or magnetic field patterns for waveguides

on Photonic Crystal slabs. For all these cases, a particular multiscale decomposition

is described as well as the set of parameters a(x), b(x) and c(x) defining the material

properties.

3.5.1 Optical Fibers

Optical fibers have been a key development for telecommunications. They are long

structures that have the ability of conducting electromagnetic energy with minimal

losses. Typically, the cross section defines each fiber since they are then extended

cylindrically in the longitudinal component. Such cross section traps the waves in the

core region, around which there is a cladding that avoids energy losses.

The design of such cladding becomes crucial when it comes to assess the effective-

ness of an optical fiber. Often, the core is just designed with a higher index material

than the cladding so that the energy is confined by index guiding or total internal

reflection [74]. More recently, Photonic Crystal fibers were formally introduced in [78]

and have proven a better performance than index guiding fibers when other aspects

besides optical communications -such as carrying more power, having multiple cores,

dealing with higher nonlinearities...- are taken into account [137].

Firstly, we consider an optical fiber with a homogeneous core made of silicon

(e = 11.8). In this case and because of the total internal reflection phenomenon,

when a planar wave is sent from one end of the fiber, all the energy is confined within

the higher index material region and propagates along the fiber with very little losses.

Figure 3.2 shows the longitudinal component of the magnetic field Hz, which is the

most relevant for this scenario, for a wavelength considered to be 1.4 times the radius
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of the optical fiber.

Figure 3.2: H_ wave field and geometry of a homogeneous Emax = 11.8 cylindrical
index guiding fiber. For a fiber with radius r the wavelength is A = 1.4r.

Similarly, figure 3.3 shows the H field for an index guiding based optical fiber

where the higher index material is distributed on a ring. By total internal reflection

the propagated magnetic field is confined only to the ring. In this particular case, the

internal radius corresponds to 0.8r where r is the external radius and the wavelength

is 1.4r.

Figure 3.3: H wave field and geometry of a homogeneous 6 max = 11.8 ring index
guiding fiber. For a fiber with internal radius 0.8r being r the external one. The
wavelength is A = 1.4r.

For the MSHDG simulation of the two preceding examples we have decomposed

the domain into 5 x 5 x 25 subdomains of size 2r x 2r x 2r. Each of the subdomains that

satisfies (3, 3, i), Vi E [4, 22] n Z is heterogeneous and contains a fine discretization to

capture the geometry of the cylinder or the ring (about 60K discretization elements

per subdomain). The surrounding subdomains (a, b, i), for a E {2, 4}, b E {2, 4} and

i E [4, 22] nZ are homogeneous and consider discretizations with about 5K elements.

All the subdomains that lay on the boundary are considered as PML regions (plus all
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those with i = {2, 3, 23, 24}) and have the same discretizations as the homogeneous

ones. As a result, around 4m of elements are considered of polynomial approximation

order of 2. The total number of HDG degrees of freedom for the Maxwell's forward

simulation problem is around 40m for each of the 6 volumetric components of the

fields E, H and around 50m for the traces. (for order 2, the components defined on

the traces have 6 degrees of freedom per face and those on the volumes have 10 degrees

of freedom per element), so about 340m total degrees of freedom. Neglecting the local

problem given the parallelization of HDG we would end up with a global system of

100m degrees of freedom for the traces. However, when using MSHDG we only solve

on the interfaces of the subdomains where a polynomial approximation order of 10

has been considered and thus the total size of the vector A is around 300K. The

system for A is denser but given its size it will be easily solved by a sparse direct

solver. Note that this particular scalings work for a polynomial approximation order

of 2 locally and 10 globally but the contrast of degrees of freedom between statically

condensed problems (like HDG or MSCG/MSHDG) and globally coupled methods

(like CG) increases as the order grows, as shown in [70], since the traces are defined

on 2d elements while the other variables over entire 3d volumes.

Let us consider the numerical simulation of a PC fiber. One class of Photonic

Crystal fibers work as an extension of id Photonic bandgap structures. In this case,

one dimensional multilayered structures are bended around a circular core to form

the cladding. These type of fibers work well for the range of frequencies for which the

multilayered structure offered a bandgap in Id. In particular, the extensively used

Bragg fibers [158] fall into this category.

More sophisticated PC fibers use the results from 2d Photonic Crystal structures

to design the cladding. In particular, when squared or hexagonally symmetric lattices

are considered, one can obtain wide ranges of frequencies for which the energy does

not propagate. As a result, confinement can be obtained by considering a defect in

the structure. Figure 3.4 shows the zoomed geometry and the longitudinal component

of the magnetic field for a PC fiber obtained by using a frequency (wa/27rc = 0.23)

that is inside the first (TE) gap of a hexagonally a-symmetric 2d Photonic Crystal
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with holes of radius 0.3a drilled on a silicon core (E = 11.8). The energy travels only

through the homogeneous core in the center of the structure. The PC cladding avoids

transverse losses.

Figure 3.4: H, wave field of a Emax = 11.8 fiber with a core that is a hexagonally sym-
metric (period a) Photonic Crystal. Radius of the holes is r = 0.3a and a frequency
of wa/27rc = 0.23. In green is shown the zoomed geometry of the cross section.

This PC fiber has also been numerically solved using the MSHDG method. In

this case, the domain has been decomposed into 9 x 9 x 35 subdomains with regular

cylindric extensions of 2d rhombi. The central layer of subdomains is homogeneous

and with e = 11.8. All surrounding subelements up to distance 3 have a cylindrical

air hole drilled in the center of the subdomain and the rest of the elements are

again discretized like the central ones (some are homogeneous with silicon, some

are homogeneous with air and some correspond to the PMLs). Thus, about 1K

subelements have holes and thus need around 5K HDG discretization elements of

order 2 inside whereas the remaining 1.8K subelements will contain 1K order 2

elements. In total, if we considered an HDG discretization of the whole problem

we would have around 70m degrees of freedom for each volumetric component of the

solution vector and 82m for the traces, leading to 580m degrees of freedom, 160m of

which correspond to the global unknowns T. When using the MSHDG with interfaces

of order 6 we end up with a global system of equations of only about 450K degrees

of freedom for A.
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3.5.2 Waveguides on 3d Photonic Crystal slabs

2d Photonic Crystal structures have already been numerically simulated in chapter 2.

These are structures that when considered infinitely periodic offer frequency ranges

or gaps for which propagation is not allowed. As a result, when linear defects are

considered, one can obtain waveguides. However, when -the problems are considered

in 2d, they are equivalent to assuming that the third component is constant and

infinite.

These 2d Photonic Crystals can be of great use for real applications if considered in

3d with a finite thickness. PC slabs can be used as waveguides that tend to offer higher

effectiveness under sharp bends than index guiding based fibers [1,31]. We are thus

interested in being able to find the EM wave solutions for two dimensional periodic

structures cylindrically extended in the third dimension on a slab with thickness d,

typically of the order of a, the 2d period.

First, let us consider 2d structures that led to bandgaps in the TM polarization

modes. If we consider a pattern with the symmetries of a square that contains higher

index material rods on air, we obtained a 2d frequency gap for wa/27rc E {0.27, 0.41}

if the higher index material was considered silicon e = 11.8 and r = 0.2a. A similar

TM-like gap will be obtained if considered on a 3d slab (gap size depends on the

thickness d - optimal for d - 2a [74,75]).

Then, when a linear defect is considered in this fully periodic structure, the prop-

agation of electromagnetic waves will only be allowed through it. Note however that

the waves will propagate through the air region (e = 1) and since we now have fi-

nite thickness, there will not be confinement on the third dimension and most of the

energy will scape from above and below. In order to address this, one can include

several layers of a higher index material in the vertical direction such that the fre-

quencies of interest (those in the bandgap of the 2d PC slab) also fall in the gap of

the multilayered pattern. Figure 3.5 shows the geometric description of such a slab.

Alternatively, confinement could be obtained for specific frequencies if a line of rods

of different radius was considered, as in [22].
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Figure 3.5: Geometric setting of a TM-like PC slab with a higher index material
(green) squared lattice rodded structure and vertical confinement through a multi-
layered pattern.

We can now use the MSHDG method to obtain the solution fields to Maxwell's

equations for this configuration. Let us consider the geometry described in figure

3.5 surrounded by PMLs, where the material different to air is silicon. If one line of

vertical rods is removed and a planar wave is sent from one end of the linear defect,

we obtain the pattern shown in figure 3.6 for the relevant component E,. We can

see how surface losses show up in contrast to the 2d counterpart shown in figure 2.5.

For this simulation, a unitary frequency of wa/27rc = 0.35 has been considered; the

radius of the rods corresponds to 0.2a being a the periodicity of the 2d PC as well as

the distance between centers of consecutive rods. The multilayered structure contains

5 layers of thickness 0.2a and periodicity or separation between centers of layers of

0.5a. The bandgap of the Id multilayered structure contains inside the bandgap of

the 2d periodic Photonic Crystal.

Specifically, the computational domain has been decomposed into 11 x 7 x 22

cubic subregions. Each of the subelements that satisfies (i, 4, k), Vk E [3, 20] l Z is

heterogeneous and contains a fine discretization to capture the cylindrical rod for i E

{2, 3, 4, 5, 7, 8, 9, 10} (about 60K discretization elements) and is homogeneous through

the line defect, i.e. for i = 6. All elements of the form (i, j, k), Vk E [3, 20] f Z, i E

[2, 10]l Z and j E {2, 3, 5, 6} are heterogeneous to capture the multilayered structure.

The rest of the surrounding elements correspond to the PML region. Except for
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E7 Field
1-0

Figure 3.6: Ez wave field for a TM-like PC slab. Frequency wa/27rc = 0.35,
Ehigh = 11-8. Rod radius and multilayer thickness 0.2a, multilayer period 0.5a. The
multilayered structure in the vertical component is not shown.

those containing a rod, all subdomains have a local discretization of 3K elements.

In conclusion, an HDG equivalent discretization for the full problem would have

around 6.2m elements of order 2, leading to 124m degrees of freedom per volumetric

component of the solution and 148m for the traces. That means about lb total degrees

of freedom for the system of equations. Exploiting the structure of the HDG method

we would actually only solve globally for the two traced components and thus about

300m degrees of freedom. Instead, the MSHDG method will solve only for A which

is only defined on the interfaces of the subelements. There are 5, 500 such interfaces

with polynomial approximation order of 10 leading to a total number of degrees of

freedom of 1.4m.

More interestingly we can consider slabs for hexagonally symmetric 2d Photonic

Crystals. These periodic structures in 2d show wide bandgaps for TE modes and

confine the energy in the higher index material rather than in air. Figure 3.7 shows the

H wave propagation fields on a silicon PC slab with hexagonally drilled air holes of

radius r = 0.3a. The thickness of the slab has been considered d = a and the frequency

shown in the figure is wa/27rc = 0.23, which falls into the corresponding bandgap.
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The losses are minimal, even considering the finite thickness of the slab, which is

surrounded by air and then PMLs. This figure shows both the total domain and

geometry considered for computational purposes (including PMLs) and the magnetic

field inside the real domain (removed inside the PMLs).

I

Figure 3.7: H, wave field for a TE-like PC slab. Frequency wa/27rc
radius 0.3a, slab thickness a. Green for 6 high = 11.8.

= 0.23. Hole

When actually solving the problem shown in figure 3.7 using the MSHDG method,

we have defined a 21 x 5 x 45 decomposition into cylindrical extensions of 2d rhombi

that contain one cylindrical hole. The slab is surrounded by one layer of air (as thick

as the slab itself) and then PMLs. Once more, if we count all the degrees of freedom

for this problem corresponding to the full HDG discretization we end up with 620m

that are statically condensed to around 150m through HDG only or further into 1. im

when solving the global problem of the MSHDG formulation.

Finally, in order to validate the numerical results given by the simulation scheme

presented in this chapter we try to numerically reproduce some of the experimental

results that have been reported in the literature. To that end, we will try to compare

our simulation results to the experiments by Chow et al. in [30]. In particular, holes

of r = 0.3a are drilled on a GaAs slab of thickness d = 0.5a. Some frequencies that

fall in the bandgap wa/21rc c (0.26 - 0.32) are imposed on the right hand side and

the transmission fraction for each tested frequency is represented through circles and
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squares in figure 3.8.
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Figure 3.8: Experimental match of 2d and 3d multiscale simulations with respect to
results reported in [30]. 3d slice of propagation patterns for w = 0.278 (top right)
and w = 0.30 (bottom right).

In order to test our numerical approach we first perform 2d simulations of this

scenario where the thickness of the slab is considered infinite. The values of the

transmission fraction are shown in figure 3.8 through a solid line. Finally, a full 3d

simulation is set up with the realistic slab thickness (note that a substrate of Al,O

present in the experiments is ignored for simplicity of the simulations). In this case,

the transmission fraction, shown through a dashed line in the same figure, decreases

from the 2d overestimate since we account for 3d effects and the planar losses above

and below the slab.

3.6 Concluding Remarks

This chapter presents the MSHDG method for Maxwell's equations and thereby com-

pletes the set of multiscale methods for the simulation of wave propagation source

problems in finite domains. Together with the MSCG method for Helmholtz's equa-

tions we have developed a collection of simulation tools that are able to provide
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accurate numerical representations of wave solutions within acoustics and electro-

magnetics. In the case of 3d electromagnetics, the overall reduction of degrees of

freedom by this two stage hybridization process results in a global system of equa-

tions of significantly smaller size than its CG or HDG counterpart. We only solve

for two components (A) on the 2d coarse (chosen for w) interfaces in contrast to six

(E, H) components on the 3d fine volumes (chosen for the geometry). Furthermore,

and as an advantage to an HDG approach, the definition and identification of classes

of subdomains at the macro discretization level, allows the method to only solve a

few subproblems (also efficiently using HDG) and then reutilize the information many

times.

We also present several examples where this methodology has been used to effi-

ciently and accurately obtain the wave propagation fields. In particular, index guiding

and Photonic Crystal fibers have been analyzed in 3d as well as both TE and TM

based waveguides on PC slabs.
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Chapter4

Multiscale CG method for Eigenvalue
Helmholtz's problems

Somewhere, something incred-
ible is waiting to be known

-Carl Sagan

So far we have introduced multiscale techniques for the direct forward simulation of

source problems for a specific frequency. However, waves can often be characterized

through an eigenvalue analysis. In particular, a direct inspection of the eigenmodes

in elasticity and acoustics provides information about vibrating resonance modes.

Similarly, band diagrams in electromagnetics are obtained as solutions to eigenprob-

lems. In this chapter we present an extension of the MSCG method for Helmholtz's

equation to eigenvalue problems.

From a numerical linear algebra perspective, there are two classes of problems:

solving systems of equations {x E R' : Ax = f}, and finding eigenvalues and eigen-

vectors {(7, x) E R x R" : Ax = -yx}. The former is covered in chapters 2, 3 and albeit

challenging for large problems (and thus our work on reducing the size of the problem

exploiting the physics), there exist many algorithms that can find exact solutions in

a finite number of steps [153]. The latter is inherently complex since it is as hard as

finding roots of polynomials, and thus requires an iterative procedure in general for

103



sizes strictly larger than 4. As a result, we will develop a multiscale technique that

can improve the scalability of eigenproblems so that larger, even 3d, problems can be

efficiently solved.

We are interested in finding eigenvalues y E R that depend on the wavevector k

and satisfy the following equation for some nonzero eigenfunction u.

-V - (a(x)Vu) = y(k)b(x)u, in (4.1)

U = gD, on Q9

As for Helmholtz's equation in chapter 2, here Q C Rd is the physical domain with

boundary 9Q where the problem is defined. The function gD defines the Dirichlet

boundary conditions, either taken as homogeneous (gD = 0) or, as we shall ana-

lyze later, imposing periodicity. Furthermore, a(x) and b(x) are piecewise constant

functions that define the material properties.

Let us first solve this eigenvalue problem through a traditional CG approach. To

that end, we need to introduce a discretization Th of the computational domain Q

and the approximation space given in 2.8. Then, solutions to problem 4.1 can be

obtained as (Uh, -yh) E Xh x R such that

-(aVuh, VV)Q = yh(bUh,V), Vv E Xh(0). (4.2)

The algebraic description of this set of equations is given by Auh = 'yhMuh, where

A and M are the CG diffusion and mass matrices, respectively. Furthermore, (Wh, Uh)

are a pair of eigenfrequency and eigenwave, being w2  'Y.

The numerical resolution of this problem has been extensively studied for instance

in [23,99]. Here, we develop a multiscale approach whereby the final eigenvalue prob-

lem is of much smaller size at the price of turning 4.1 into a nonlinear eigenvalue

formulation. A similar technique was introduced in [38] where a hybridized repre-

sentation of 4.1 is introduced. Nevertheless, this HDG-like discretization reduces the

size of the final eigenproblem, but it does not exploit the physics of the problem nor

reuses the local solutions.
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4.1 Multiscale CG method

The main motivation of the multiscale CG method (NMSCG) for eigenvalues is shared

with the introduction of this method for the source problem through Helmholtz's

equation. We are particularly interested in the simulation of wave phenomena under

the presence of discrete heterogeneities. In particular, it is often the case that certain

patterns appear repeatedly in the physical domain. It is therefore desirable to have a

numerical capability, like the MSCG method, that is able to reuse local substructure

of the problem. This will significantly improve scalability and larger problems will be

able to be solved for given computational resources.

Through the process of statically condensing all local subdomains (most of them

reused) and thus reducing drastically the size of the global system of equations to

solve, we traded-off density of the reduced system. However, in the case of eigen-

value problems, there is yet another price to pay: the original eigenvalue problem is

transformed into a much smaller one that has a nonlinear dependence on the eigen-

values. As it has been shown in [38] for a similar HDG hybridization of the eigenvalue

problem, the resulting nonlinear eigenproblem is guaranteed to converge to the right

eigenmodes when the Newton process is started from the linearly approximated eigen-

modes.

We now describe both the formulation and the implementation of the NMSCG

method for finding eigensolutions of Helmholtz's equation.

4.1.1 Problem Formulation

First of all, let us note that if we write f = -yb(x)u, equation 4.1 can be written as:

-V - (a(x)Vu) = f, (n.3
u =gD, on (.

which is a particular case of 2.1 for k = 0. This is a key observation since we will use

the same derivations that we used in chapter 2 and later replace f = -yb(x)u. Let us

define a collection of triangulations T"h with mesh size h at each subdomain Q" such

that Q is the union of all subdomains where the intersection of different subdomains
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is a set of zero Lebesgue measure. Let us also introduce the space for the solution

field and the flux at each subdomain as:

= {v E C0(Q) : V|K E P(K) for K e Th},

W"= {w E C0 (OQm) : wlaom = vlam for v E XmVK ET"}.

so that the total solution will be defined in Yh as follows:

Yh = {v E L2 (Q) : v E CO(Qm), and vIK E 7p(K),VK E 7T"',1 <m < M}, (4.5)

and the global traces will lie on Vh = {p E 00(S) : pe E P,(e),Ve E h}.

Note that, again, Xh( 7 ) = {v E : v = 77 on Qm}. The set of equations

that defines 4.3 can be formulated in a discrete fashion as seeking an approximation

(Uh, A, qh) E Yh x Vh(gD) x Wh that satisfies:

M

(aVUh, Vv)a - 1 (qh, v)a = (f, v)Q, Vv E Yh, (4.6a)
m=1

Uh = A, on eh, (4.6b)

qh], A)eO = (9N,P)r>N , Vp E V(O). (4.6c)

Recall that this problem can be locally split into a set of Dirichlet problems in

the subdomains if A E Vh is known. Such A is then obtained through the assembly

of the local solutions into the global system. Similar to the multiscale CG method

for the source problem presented (see theorem B.3), we arrive at the solution to the

discretized formulation: (Uh, A) E Yh x Vh satisfies

ah(A, p) = bh([) Vp E Vh(O), (47)

Uh= UA+Uf.

Here, ah(, q) = (aVU,, VU7)Th and bh(P) = (f, U,)Th, for A,ij E Vh. Recall also

that U, is the solution to the homogeneous source problem with Dirichlet boundary

conditions gD = M on aQ" at each subdoinain while Uf is the solution to the f-source

problem with homogeneous Dirichlet boundary conditions. In addition, note that

since f E L2 (Q) we can write Uf = Uwf, where Uw : L2 ( 2) -+ Yh is obtained like

Uf but for the basis functions describing L 2(Q). In other words, instead of directly
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obtaining Uf in every subdomain as a solution to

(aVUf,Vv)m - (qf,v),nm = (fv)rn, VvE m (4.8)

Uf = 0, on af m ,

we define PW f as the orthogonal projection of f into Yh and then obtain Uwf as

(aVUwf, Vv)nm - (qwf, v),m = (P'f, v)om, Vv E Xh, (49)

Uwf = 0, on a0m.

At this point we wonder whether replacing back f = 7b(x)u will provide the expected

solutions of the eigenproblem. We know that ah(A, IL) = (f, U)Th, Vp E V provides

the solution field on the condensed degrees of freedom for the source problem. One

can thus think that the global multiscale formulation for the eigenvalue problem given

by

ah( ,p) =yh(Uf , Up)h, (4.10)

provides the eigenmodes on the reduced degrees of freedom. Note that the eigenvalue

Yh lies on R. Let us now compare the solutions given by 4.2 and 4.10. Firstly, both Yh

and Yh belong to R. Also as expected, Uh E Xh and Lh E Yh lie on different spaces, but

they can be identified. Another difference appears when looking how many pairs of

eigensolutions are given by each problem. The CG discretization provides significantly

more pairs than the MSCG given its larger dimension. However, we will see that the

multiscale solutions provide the pairs corresponding to the lowest frequency, which

are always the meaningful ones.

Last but most important, formulation 4.10 is nonlinear given the fact that Uf

depends on f(y, Uh). If this dependence is ignored (assume f = 0 only therein) we

will obtain some linearized pairs (^h, Uh) that will not necessarily coincide with the

actual eigenpairs, but they will be used as initial guesses for the nonlinear problem

that we now introduce.

Let us now deal with the nonlinearities of the multiscale eigenvalue problem. Note

that UAf = Uo + Uwf, but f needs to be replaced according to f = 'YhbUh. We end

up with a nonlinear eigenvalue problem (NMSCG) that provides the same lowest

frequency pairs (-yh, Uh) E R x Yh as problem 4.2, through a much smaller set of
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equations. These equations are given by (see theorem B.6 in appendix B for the

derivations):

ah(A, p) = yh((I - bUw)-'U,U,) Vp Eh (411

Uh = (I - IbUw)-'UA

Note that the dependence on -yh is nonlinear and therefore the resolution of this set of

equations is not trivial. However, as it is proved in [38] for the HDG approach of the

eigenvalue problem, the approximation obtained from solving the linear multiscale

eigenvalue formulation 7h provides a good approximation to the actual eigenvalue Yh,

i.e. VIh - -yh I is bounded. In particular, ^n will be used as initial guess for the Newton

process to solve 4.11.

4.1.2 Implementation

In this section we provide an implementation guide of the NMSCG method for the

eigenvalue Helmholtz's equation. As we have discussed before, the problem formula-

tion 4.11 includes a nonlinear eigenvalue equation. However, we have accurate approx-

imations to the eigenmodes provided by the linear eigenproblem 4.10. It is therefore

viable to use standard locally convergent methods, such as Newton's method, in order

to solve 4.11. Here, we describe the algebraic formulation of the NMSCG as well as

the algorithmic approach.

Let us start by denoting with A the discretization of the bilinear form ah(p, r7) =

(aVU,, VU,)Q, where g, ,q E Vh and by B(y) the matrix corresponding to the right

hand side in 4.11 for a given -y. Thus, if {<pio}' denotes the basis functions defining

the space Vh, we write:

Aij= (aVUw, VUpo)n, 1 < ij 5 N' (4.12)
]Bij(y) = ((I - ybUw)' Up, Uj)n, 1 i, j N.

Note that if (7,) E R x Vh is a pair of functions defining an eigensolution of

ah(A, A) = Th - %hbUw)-1 U, U,,) for all p E Vh, then the following equality also

holds:

AA = 77B(;7)A (4.13)
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We will add the condition that the norm of the eigenmodes needs to be one in

order to reduce the number of eigenvectors for each eigenvalue from infinity to one. In

conclusion, if M denotes the mass matrix, we can formulate the nonlinear eigenvalue

problem as seeking a pair (y, A) E R x Vh such that

F(7, A) = = -) 0. (4.14)
AMA - 1

If we now consider that we are at a given state (yo, AO), we can find the next

iterate (-y, A) using Newton's method as

(A - yo]B(yo)(A - Ao) - (-y -yo)C(-yo)A -F(yo,(A AM(A- A)= -F( 0 ), (4.15)
2AoM(A - Ao)

where C(7) = B(-y) + ydB(y)/d-y, which can also be described through:

C (-y) = ((I - -ybUw) 2 Us, Uj), 1 < ij :! N. (4.16)

Finally, if we assume that the initial iterate satisfies AMA = 1 (if it doesn't, it can

be normalized), we can obtain the next iterate (y, A) in 4.15 as:

(A - yoB(-yo))A = (y - yo)C(yo)Ao, (4.17)

AoMA = 1.

This is the basis of the algorithm. Note that in the first equation above, we see a

linear dependence between A and y and thus we can decouple both equations, which

will simplify the methodology as shown in table 4.1. Note that Newton's method has

a quadratic convergence rate provided that we are close enough to the zero sought.

Therefore, given the quality of the initial guess, we will get to the correct pair (7, A)

within a few iterations of the step 3 of the algorithm.

This algorithm provides the eigenpair (7, A) around a given initial guess (Yo, AO).

Therefore, one needs to apply algorithm 4.1 for every desired mode given by the linear

problem 4.10. In order to ensure that all the obtained modes are right, and especially

for those that share the eigenvalue (multiplicity larger than 1), it is important to

compute the eigenmodes in increasing order (starting from the lowest frequency), and
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Table 4.1: Implementation steps of NMSCG method
1. Form and store the matrices A and M and get B(0)
2. Get the initial approximation (-yo, Ao) from 4.10 as:

AAO = -yoB(0)Ao
3. For n = 0, 1, 2,3... until convergence, do:

(a) Form the matrices B(yn) and C(-yn)

(b) Compute A by solving the top equation in 4.17 as:

(A - -yn]B(-y))A = C(Yn)An
(c) Set 65 = 1/(AMAn)
(d) Update the eigenvalue as 7yn+1 = 7yn + J7
(e) Update the eigenfunction as An+1 = JyA

check two things after every solution: (a) the obtained eigenvalue is larger or equal to

the previous one y" ;> -ynl and the distance to the initial guess is small, and (b) the

eigenmode is orthogonal to every other previous eigenmode, i.e. unMuk = 0, Vk < n.

4.2 Numerical examples

This section aims to illustrate how the multiscale CG method works for several homo-

geneous and heterogeneous examples in 2d and 3d. The convergence and accuracy of

the method is verified after it has been applied to a homogeneous square Q = (0, 1)2

with Dirichlet boundary conditions 9D = 0 for which the eigenpairs y"n = 7r2 (m2 +n2 )

and Umn = sin(mirx) sin(n7ry) are analytically known.

Let us look now at the performance of this algorithm for some examples in 2d. In

particular, we first look at the solutions to problem 4.1 for Q = (0, 1)2 \ (0.4, 1)2 and

9D= 0. Figure 4.1 shows some lowest frequency modes obtained using algorithm 4.1.

The color map shows the value +1 of the solution field U" with dark blue and -1 with

dark red. Note how all the modes are perpendicular and with increasing frequency,

as expected. In fact, as it can be found in the literature, e.g. [74], the eigenproblem

4.1 can also be formulated as the minimization of the Rayleigh quotient, whereby one

seeks the smallest resonance frequency such that it is orthogonal to all the existing

modes.

This eigenproblem has been solved using the NMSCG method with 5 square sub-

domains of equal geometry and material properties. Each of this subregions has been-
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Figure 4.1: Eigenmodes [2, 3, 4,5; 6, 7,8, 9] of an homogeneous L shaped domain.

discretized through a structured triangular mesh with 200 elements of order 2. For the

traces at the macro discretization level, we have used polynomial approximations of

order 10. Newton's method reduces the error to machine precision in 3 to 4 iterations

for all the 8 eigenpairs computed.

Similarly, in figure 4.2 we show the 8 lowest frequency modes on a square domain

Q = (0, 1)2. Here, we have considered a heterogeneous medium formed after including

a higher propagation speed material in a squared ring inside the domain. In particular

a(x)high = 20 has been chosen for the ring inside a lower speed material a(x),,, = 1.

The energy thus tends to concentrate inside the intermediate region.

Note how all eigenmodes are perpendicular to each other and they go from low

(mode 1) to higher frequency (mode 8). Also, given the symmetry of the domain,

we obtain the same eigenvalue or frequency for those modes with multiplicity. In

particular, modes 2 and 3 are equivalent and correspond to a 90 degrees shift. Either

of them can be considered the second or the third eigenmodes because the frequency

is the same. They are clearly orthogonal between them so both are valid eigenmodes.

The same thing happens for modes 7 and 8.

The example shown in figure 4.2 has been obtained through the NMSCG method

with a 5 x 5 subdomain decomposition. All subelements are discretized with a struc-

tured triangular mesh with 200 elements of order 2. The global traces A E Vh consider
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4

Figure 4.2: Geometry and lowest frequency eigenmodes [1, 2; 3, 4, 5; 6, 7, 8] for the
heterogeneous square in square in square 2d eigenvalue problem. Black has higher
index a(x)high = 20a(x)j,.

a polynomial approximation order of 10. Overall, the total degrees of freedom are

reduced from over 10K with a classic CG approach to 660 with NMSCG.

Let us now move forward and use the NMSCG method for 3d problems. The

subdomains are cubes discretized into tetrahedra, while the macro mesh considers the

faces between subelements as squares that are characterized by 2d shape functions.

The first 3d example is a homogeneous cube Q = (0, 1)' with homogeneous

Dirichlet boundary conditions. The eigenfunctions and eigenvalues for this prob-

lem are known analytically and correspond to ulmn = sin(lirx) sin(m7ry) sin(n7rz) and

Imn = 7r 2 (12 + m 2 + n2 ), respectively. As a result, the convergence of all eigenmodes

can be trivially checked. Figure 4.3 shows several of the lowest (and not so low)
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frequency modes obtained using the NMSCG method introduced in this chapter.

Figure 4.3: Eigenfunctions corresponding to modes [1, 2, 6; 10, 13, 24; 36, 45, 50] on a
homogeneous cube. Red/blue contours show the level sets +0.5/ - 0.5, respectively.

In this example, we have considered a macro discretization of the domain Q with

5 x 5 x 5 subdomains, each of which considers a local discretization of 103 hexahedra

with six tetrahedra per hexahedron. Every subdomain consists of 6K elements of

order 2 while the global level considers 450 faces of order 10, leading to 55K condensed

degrees of freedom. Additionally, Newton's method converges quadratically and thus

reduces the error of the eigenmodes down to machine precision within only 4 iterations

of step 3 in algorithm 4.1.
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Finally, we consider an example in 3d with heterogeneous materials. More specif-

ically, let us include a hollow cube of higher propagation speed a(x) = 20 in the host

material a(x) = 1 . The exact structure is of following form: insert a 1 x 1 x 1 host

material cube in a 3 x 3 x 3 higher propagation speed material, which at the same

time is fit inside a 5 x 5 x 5 host material cube. It actually corresponds to the natural

3d extension of the problem shown in figure 4.2.

This example is then solved using the NMSCG method with the exact same dis-

cretization as the (0, 1)3 homogeneous cube of the previous example. However, two

different representatives of local problems need to be solved and stored: an homoge-

neous a(x) = 1 subelement as well as an homogeneous a(x) = 20 subdomain. After

assembling them accordingly and solving equations 4.11 with the NMSCG method,

we obtain the resonance modes for the 12 lowest frequencies that are shown in fig-

ure 4.3. Note how the eigenfunctions concentrate in the higher propagation speed

material since it requires less energy than expanding into the host material.

4.3 Eigenvalues for periodic problems

Another eigenvalue problem of significant interest for the acoustics and electromag-

netics community involves considering a periodic setting. In particular, heterogeneous

geometries that show discrete translational symmetries offer remarkable capabilities,

such as bandgaps, or ranges of frequencies that do not allow transmission. More

specifically, if a(x) is the inhomogeneous material property of interest, we will say

that the geometry offers discrete translational symmetry in direction & if there exists

a E R such that a(x) = a(x + na), for all n E Z where a = aa.

Under these circumstances, one can use Bloch's theorem to reduce the solution

waves of interest to a segment in direction & representative of all the space, i.e.

essentially all points in a segment of length a in direction a. Equivalently, one

can define the reciprocal lattice to be the reduced set of wavevectors k that provide

different Bloch states. Note that whenever equation 4.1 is solved for wavevectors

k1, k2 that satisfy ki -& = k2 - + m(27r/a), for m E Z, we obtain the same solutions.

In addition, when rotational and mirror symmetries are considered, one can further
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Figure 4.4: Eigenfunctions corresponding to modes [1, 2, 3; 4, 5, 6; 7, 8, 9; 10, 11, 12] on
a heterogeneous cube (cube in a(x) = 20 cube in cube). Red/blue contours show the
level sets +0.5/ - 0.5, respectively.
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reduce the reciprocal lattice to what is called the irreducible Brillouin zone, which is

the only region where solutions are different. Any other reciprocal lattice point k can

be then trivially derived. Finally, it has been shown that obtaining the solutions for

lattice points k that lay on the boundary of the irreducible Brillouin zone is enough

to characterize all solutions, see for instance [74].

In order to solve equation 4.1 for different values of the wavevector k in the

reciprocal lattice, we use the Bloch's wave decomposition u(x) = eik-xuk(r) and solve

for Uk instead. When plugging this identity in equation 4.1 one obtains a new PDE

that can be written as

-(V + ik) - (a(x)(V + ik)uk) = -ykb(x)Uk. (4.18)

We thus observe that solving for each Bloch's state Uk is equivalent to solving for

the original field u provided that the PDE operator V is switched for the k dependent

operator V + ik. In order to show how the actual implementation changes, let us first

note that 4.18 can also be written as:

-V - (a(x)Vuk) + 2ika(x)Vuk - k2a(x)uk = yk(k)b(X)Uk (4.19)

where k = Ikl. Then, after considering the multiscale discretization procedure we

obtain 4.7 where ah(P, q) now takes the following expression:

ah (A, 77) = (a(x)VUj, VU)Tr + 2i(a(x)VU, U)T - k - k2 (a(x)U,., Un) T. (4.20)

As a result, the matrix Aij previously introduced will now consider the extra

terms derived from the discrete translational symmetry. If we denote by Ki =

(VUwi, VUp,)n the diffusion matrix, by Tij = (VUsp, U, )n the convection matrix

and by Mij = (Uw, Uso3)n the mass matrix, for all 1 < i, j N, we can obtain

Ak = a(x)[K + 2iT -k - k2M] and thus the eigenvalue problem can be again written

as:

Akuk = -YkMUk. (4.21)

After fixing a given k on the boundary of the irreducible Brillouin zone, we form

the previous equation and proceed with algorithm 4.1 to find the eigenpair Yk, Uk
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corresponding to the Bloch's states.

Let us now show some 2d examples of band diagrams obtained with NMSCG for

periodic settings. In particular, we have obtained the dispersion relations for two cases

that are well known in the literature: rods on a square and on a hexagonally symmetric

lattice. More specifically, figure 4.5 shows the dispersion relation as well as some TM

polarized lower resonance modes in the case of a e = 8.9 rods on air distributed

according to the symmetries of the square. Analogously, figure 4.6 shows again some

TM lower eigenmodes together with the dispersion relation of the a hexagonally

symmetric distribution of rods.

Am"._ .6
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1111F X M F
Figure 4.5: Left: some low frequency eigenmodes at M and X. Right: band diagram
of a periodic structure with aluminum rods of radius 0.2a on a square lattice. E field
for TM polarized modes. Inset shows the IBZ and corner points IF, M, X.

4.4 Concluding Remarks

In this chapter we have extended the multiscale CG methodology for the numerical

solution of eigenvalue problems. In particular, we have seen how the same numerical

technique that in chapter 2 has been introduced for the source problem, provides

a nonlinear eigenvalue formulation. The size of the eigenproblem is significantly

reduced due to the static condensation technique presented at a price of turning the

eigenproblem nonlinear. However, since good initial guesses are obtained through the

linearized eigenvalue formulation 4.10, the nonlinear problem in 4.11 can be efficiently
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Figure 4.6: Left: some low frequency eigenmodes at M and K. Right: band diagram
of a periodic structure with aluminum rods of radius 0.2a on a hexagonal lattice. E
field for TM polarized modes. Inset shows the IBZ and corner points F, K, M.

solved using just a few iterations of Newton's method.

Note that the cost of algorithm 4.1 is determined by (a) solving the linear eigen-

problem, which is computationally cheaper than the original CG eigenvalue formu-

lation 4.2 given its reduced size, and (b) performing a few Newton iterations where

the inverse of (I - 7bUw) as well as a system resolution are required every time. In

particular, we can see how the inverse can be computed efficiency given the block

structure of Uw, which is independent for each subdomain. In addition, the system

resolution is only defined on the degrees of freedom on the macro discretization traces

Vh and hence can be solved efficiently for relatively large problems.

Furthermore, the NMSCG method has also been extended for eigenvalue formu-

lations that consider periodic boundary conditions and thus use Bloch's theorem. In

this case, the derivative operator is changed according to V +- (V + ik), where k is

the wavevector, and eigenpairs can be found for all values of k in a given irreducible

Brillouin zone. This analysis allows us to obtain band diagrams for different het-

erogeneous periodic settings and thereby numerically estimate photonic or phononic

bandgaps. Similarly, we could obtain band diagrams for 3d Photonic Crystals but

Maxwell's equations in 3d cannot be reduced to Helmholtz. The nonlinear multiscale

methodology could be extended for these problems using the multiscale HDG method

presented in chapter 3, but this work is beyond the scope of this thesis.

118



Finally, we have shown the performance of this methodology through the simula-

tion of an homogeneous L shape in 3d and a cube in 3d, where some low frequency

modes (and not so low) have been accurately found. Similarly, the eigensolutions on

a 2d square in a 3d cube with heterogeneous inclusions have also been analyzed. The

NMSCG for a 2d periodic setting has been considered in order to obtain the disper-

sion relations of TM polarized structures with rods in both square and hexagonal

symmetries.

119



120



Chapter5

Binary Optimization for Wave Propagation

Tell me, and I'll forget. Show
me, and I may remember. In-
volve me, and I'll understand.

-Chinese Proverb

Wave phenomena in acoustics, elastodynamics and electromagnetics have been widely

studied in the last two decades. These phenomena have found numerous applications

in many domains of engineering. The family of problems related to wave propagation

has lately increased due to the growing interest in metamaterial design. However,

when trying to design manufacturable and realizable metamaterials and other struc-

tured materials, physical and mathematical intuition are insufficient by themselves.

One is therefore led to consider optimization-based approaches to design. Very often,

the optimization problems that arise are of a discrete nature, leading to binary or

mixed-integer optimization models. Indeed, in considering design variables that cor-

respond to a finite set of pixels, the optimization problem is to choose between two

given materials for each pixel, hence the typical application problem results in the

need to solve discrete optimization models. In this chapter, a binary optimization

model that combines local search approximations with reduced basis is presented. So-

lutions obtained using this methodology tend to produce local optima that improve

the objective function value at least two orders of magnitude. Our approach utilizes
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a reduced basis projected problem [12] and binary generalized gradients to ensure

feasibility of all solutions.

This chapter is organized as follows. First, we describe the optimization proce-

dure as a coordinate descent method where the computation of the binary gradient

is discussed. Then, a reduced basis method is introduced in order to increase the

efficiency of the algorithm while ensuring a satisfactory level of accuracy. Finally,

two illustrative examples are shown: a id frequency filter and an optimal 2d heat

exchanger.

5.1 Coordinate Descent method

Let us consider e to be the property defining each material. Since the problem will be

governed by a Partial Differential Equation of the form F(u(&), e) = 0, the discretized

PDE (with Nei discretized elements) can be expressed as a system of the form A(e)u =

f in the linear case. Moreover, using the multiscale numerical methodology, the system

matrix can be written as A(e) = Ze e'Aq. More generally, if at the subdomain

level the material distribution is still heterogeneous, then the terms e Aq become

Aq (.eS). In any case, e is piecewise constant and the local discretization (CG or

HDG) will therein use an equivalent linear decomposition. Let J(u(e), e) be the

objective function measuring the deviation to a desired and known solution -often

just J(u(e), e) = n, I lu(e) - uol II and denoted by J(u(e)); U.,o, is the indicator

function-, then the structured material design optimization problem can be written

in the following general form:

min J(u(e), e)
eNu

s.t. e EAq U = f (5.1)
(q=1

E {$min, Emax} Ne

Problem 5.1 arises in many areas of applied engineering such as inverse problems,

shape optimization, topology optimization, optimal design and optimal control. How-

ever, the PDE constraints and the nature of the design variables often pose several
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significant challenges for contemporary optimization methods. First, the problem is

nonlinear and non-convex due to the dependence of the objective function on the de-

sign variables through the underlying PDEs. Second, the problem is large-scale since

the discretization of the PDEs leads to a large system of equations, which often in-

volves up to several hundreds of millions of degrees of freedom for some 3d problems.

And third, if some (or all) design variables can only take on integer or discrete values

then problem 5.1 becomes a mixed-integer nonlinear optimization problem. Unfor-

tunately, while discrete variables are common in practice, their presence causes the

optimization problem to be NP-hard in general. It is therefore necessary to develop a

suitable approximation of the problem in order to achieve computational tractability

in practice.

In the context of developing an approximation and in order to solve the opti-

mization problem stated in 5.1 we first need to devise an optimization method that

ensures that the binary constraints C E {e1 min, Emax}Nel are satisfied. To that end, we

introduce the notion of binary gradient.

5.1.1 Computation of the Binary Gradient

Gradients are crucial for optimization purposes since they provide information about

sensitivities or variations in the objective function when arbitrarily small changes in

each of the design variables are taken. Nevertheless, since we want to maintain binary

solutions throughout the optimization process, we will only allow directional changes

that leave a current pixel as is, or that flip componentwise Emin to Emax or viceversa.

This can be done by defining the sensitivities of our objective function according to

unitary changes instead of differential changes. To accomplish this we introduce the

following binary generalized gradient:

AJ(u(e)) _ J(u(xm)) - J(u(e)) (5.2)
AE emax - emin

for m = 1,... , Nei, where Xm just changes the mth component of e from Emin to Emax

or vice versa. We then choose the descent direction that provides the smallest value

of G(e) and advance in that descent direction iteratively, as in any steepest descent
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algorithm for continuous optimization. This amounts to changing one pixel at a time.

This binary notion of a gradient differs from the natural one in the sense that

infinitesimal perturbations are no longer considered. The smallest change considered

for the design variables is already Jel E 0(1), and therefore, there are no analytic

guarantees that, unless Gm = 0 for every direction, there exists a direction for which

Gm < 0 and thus the objective function value can be locally decreased. However,

if the size of the pixels could be arbitrarily small, we recover a differential defini-

tion of the topological gradient as discussed in [67]. All in all, we can rely on this

gradient providing an improvement direction when it exists for the resolution of the

pixelization. As a result, different pixel discretizations may lead to totally different

directions.

5.1.2 Coordinate Descent Binary Optimization Algorithm

To sum up the foregoing, table 5.1 provides the optimization algorithm. Let p be the

number of pixels considered, e(i) represent the ith state of the optimal design and u

the solution for the current design variable state e(i) changing its jt h coordinate from

Emax to 6 min or viceversa.

Table 5.1: Flowchart of the binary optimization algorithm

1- Start with an initial guess e(0),
2- Obtain the objective function value J(u(e(O))),
3- Compute the solutions ui ... up exactly,
4- Compute the binary sensitivities Gm using 5.2,
5- If Gm > 0, Vm, end.

Else, pick fn = arg minm Gm and set e(0) +- X'm ,
6- Go to2,

Note that this algorithm is actually a local search approach to the binary opti-

mization problem 5.1. The complexity of binary optimization problems is in general

NP-hard, which implies that whenever the variable set is large, the problem is in-

tractable. In our case, the parameter space is very large, typically about 500 for 2d

problems and over a thousand for 3d problems, so branch and bound or branch and

cut algorithms would have a computational cost of 0(21 000s) ~ 0(1030's), where
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O(s) is the cost of a single simulation. Local search methods are approximation al-

gorithms that are commonly used to solve these problems for the balance they offer

between cost and optimality. However, they are only able to guarantee local min-

ima, the quality of which really depend on the size and quality of the neighborhoods

considered.

Material design optimization is yet harder, since unless the local search neighbor-

hoods are very small, the computational burden of the local search methodology itself

is excessive. Note that p full numerical simulation problems need to be solved every

time step 3 of algorithm 5.1 is reached. In developing an approximation to the prob-

lem 5.1, we want to be able to efficiently compute the true objective function value at

neighboring states. That is, for a given value of the design variables e' that is close

to already known states e, we want to compute u(e') inexpensively and then obtain

J(u(e')). To that end, we will solve the PDE through a reduced basis approach, as

introduced in section 5.2.

5.1.3 Exploiting the Multiscale simulations

The constraint defining the physics of the problem through a PDE becomes a large

system of equations that needs to be satisfied for every parameter state e. This PDE

is enforced through a discretization using the multiscale methods described in chapter

2. Note that every time that a solution u(c) is calculated, the discretized system needs

to be formed, assembled and solved for the corresponding e. This set of operations

can require significant resources, both in memory and time. As a consequence, a

clever organization and storage of data becomes crucial.

The multiscale discretization methods previously presented offer the possibility

of computing and storing solutions to one representative of each local problem class.

Moreover, e is piecewise constant and thus it can be pulled out from the local con-

tributions to the assembled global matrix. Since most of the time we are interested

in solving problems corresponding to neighboring solutions, only a handful of com-

ponents of e will change to form c', say that subdomain q* changes from el to E2. In

this way, forming A(e') only requires considering the local subproblem that changes,
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and then performing the following operation:

A(e') = A(e) + (e2 - ei)Aq*, (5.3)

in contrast to recomputing all of the local matrices and assembling A(C') from scratch.

This approach will thus reduce significantly the computational work for the local

problem solution and global system assembly; the solution of the global system of

equations is still required.

Similarly, other optimization problems will focus on one subelement as a design

region (say q*) and the pixelization will be therein. For these problems, computing

the solution at a neighbor requires changing e inside the local problem, either the CG

or HDG solver. In this case, we can formulate the global assembly as:

Nei

A(e) = 1:Aq (Eq) + Aq (E*) = + Aq.(E*) (5.4)
q=1,q:q*

In this manner, the first term (A) is always the same for all possible problems

considered in the simulation and we thus store X once. Then, for every neighbor

solution, the corresponding Aq* (eq*) needs to be obtained and added to X in order to

get the global assembled matrix. Obtaining Aq* (Eq*) can be done inexpensively, since

the same trick applies at the CG/HDG level given that Eq* will also be elementwise

constant there. Once more, the global system needs to be solved.

5.2 A Reduced Basis method

The reduced basis (RB) method can be used to provide an accurate, reliable and

efficient solution of parametrized PDEs, see [6, 24] and further references therein.

Material design or optimal control problems involve large numbers of parameters,

and thus computing sensitivities or solutions for the entire family of parameters is

seldom achievable.

Let n < p 5 Nei be the number of regions where a material parameter needs

to be chosen and k < n be a certain positive integer corresponding to the reduced

basis size. For a given feasible pattern e E {6min, Emax I, let U,1 = u(e), and define
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k - 1 neighbors ei by just perturbing a small number of pixels from either emin to

Emax or vice versa, and then compute their corresponding solutions Uj = u(eJ) for

j = 2, .. ., k. We now define the reduced basis as T = span[U1, U2, ... , Uk] E RNeIxk,

so that we can then obtain an approximate version of any given u(e) as fi(e) through:

k

()= (a (e)Uk = Ia(e). (5.5)
j=1

The discretized system can now be approximately solved as VEA(e)Fa(e) = Vf

Finally, let us define Aq = VtAq E Rkxk, for 1 <q : n and also f = P E Rk. We

will be able to approximately solve the governing system as:

( Z&q(eq) = (5.6)
\q=1 /

which is a k x k system in contrast to the original Nei x Nei system. We finally recover

6(C) = Tt(E).

Once the RB-approximations are computed for all neighbors, we can compute Om
as a computationally less expensive approximation of Gm as follows:

~ AJ(ii(e)) J(ii(xm)) - J(u(e))Gm(e) = = max - 6 min(5.7)

The quality of the reduced basis approximation is defined by the error indicator

iu - iij||. However, the analytic bounds available for this class of problems are

often very conservative [12]. For the equations of interest in this thesis, we will rely

on approximating parameter states that are very close in order to keep the error

indicator as low as possible. In addition, the quality of the approximation will be

checked at each iteration and, if not sufficient, the basis will be enhanced with more

empirical solution states.

5.2.1 Optimization Algorithm with Reduced Basis

Now that reduced basis approximations have been introduced, we can use this method

to help improve the efficiency of algorithm 5.1 by computing the binary gradient using

a RB-approximate solution instead of full size simulations. Table 5.2 summarizes the

127



optimization algorithm based on the ideas described above. Let 1 < k be the size

of the initial basis computed around a starting guess e(0) and let the subindex of e

denote the vector position in the basis 4.

Table 5.2: Binary Optimization algorithm with Reduced Basis

1- Start with an initial guess e(0),
2- Obtain the objective function value J(u(e(O))),
3- Pick ei, 62, ... , el neighbors of e(0) randomly,
4- Compute solutions u1 - - -ul for el ... e exactly,
5- Form D(e(0)) = [u(ei) ... u(ej))] and obtain ii(e(O)),
6- If size{(e(0))} = p > k, remove the m = p - k

elements with smallest values of am(e(O)),
7- Orthonormalize D using Gram-Schmidt,
8- If Iii(e(0)) - u(e(0)) 11> 10-2

Replace r basis elements with smallest a,(e),
Go to 5,

9- Compute binary sensitivities Gm using 5.7,
10- If Gm ;> 0, Vm, end.

Else, pick i - = arg minm Cm and set e(0) <- X',
11- Compute 1o random neighbors and update

(D(O)) +- ['(e(O)) U(ei) . - 0)],
Go to 6,

Note that in contrast to algorithm 5.1, in algorithm 5.2 G is computed through

approximate values of the objective function J(fi(e)). Sensitivity information in the

binary gradient will be reliable provided the quality of the basis is acceptable, which

is checked at step 8. We expect the reduced basis to work well for neighbors e' that

only differ from the current state e in one single pixel if it provides accurate approx-

imations for that state itself. In addition, note that step 6 removes the least relevant

components of the basis to keep its size constant, and step 7 uses a Gram-Schmidt

orthonormalization process to improve the quality of the basis, or equivalently, to

reduce the condition number of P, which will help obtain ii through 5.6. In addition,

r is a small number (typically less than the number of cores available, so that the cost

is equivalent to only one simulation given the trivial parallelization) that corresponds

to the exact solutions computed every time the basis needs to be updated.

By joining together the multiscale simulation properties and the reduced basis
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theory, we seek a balance wherein the approximate local search algorithm will find

local optima of quality with tractable computational cost. Several starting guesses,

as well as further enhancements - like letting the solution worsen slightly to avoid

getting stuck at a bad local optima - might be required for some applications. It is

also important to point out that stages 4,9 and 11 of algorithm 5.2 are completely

parallelizable.

5.2.2 Eigenvalue Optimization algorithm

In chapter 4 the multiscale techniques have been extended to a nonlinear solver of

Helmholtz's eigenvalue formulation. This equation governs the same family of prob-

lems but now considers the frequency as unknown and looks for the resonance modes

or eigenmodes. Many desired materials within the wave propagation context may also

be designed for a certain behavior or properties of their eigenmodes and eigenvalues.

This is the case of PC bandgap optimization [96], among many others.

The binary optimization algorithm introduced herein can easily be extended to

problems governed by the eigenvalue Helmholtz equation, provided an efficient solver

is available. Given the parallelisms of the multiscale techniques for force and eigen-

value problems, all the discussed methodologies (binary gradient and reduced basis)

can be trivially extended. All in all, we now seek to solve:

min J(u(e), A(e), e)
e'U'A

N.1 N.1

s.t. Aq(.F) u = A EM(eq) u (5.8)
(q=1 (q=1

e E {emin, emax NeL

Once more, the subdomain decomposition will let us write A(e) = Aq(eq), where

Eq could be a single value if the entire subdomain is homogeneous, or, equivalently

to the previous case, a piecewise constant function if the pixels are considered inside

each subelement. In addition, for these kind of design optimization problems, the

objective function will typically seek to maximize or minimize certain eigenvalues or

combinations of them, thereby resulting in the dependence of J on A.
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The implementation of the binary eigenvalue optimization algorithm is equivalent

to table 5.1 if reduced basis are not used or to table 5.2 if they are used. Note

however, that step 3 of the former and 4 of the latter will now require the resolution

of a nonlinear eigenvalue problem using the methodology introduced in chapter 4.

5.3 Examples

The full power of this methodology shows up especially when combined with the

simulation methods introduced in chapters 2, 3, and 4, since structured materials

for large wave propagation problems can be designed. Some of them are analyzed

deeply in chapter 6. However, in order to show the effectiveness of the reduced basis

coordinate descent optimization procedure we show two illustrative examples. First,

we have applied the methodology described herein to the design of one-dimensional

frequency filters. In particular, we have succeeded in designing a binary material that

is able to totally reflect a given frequency considering the finiteness of the domain.

This phenomenon is well-known if the pattern is considered periodic and therefore

infinite but is not so well-known for finite structures. And second, we apply the same

optimization procedure to a 2-dimensional problem governed by the heat transfer

equation.

5.3.1 id Frequency Filter

Frequency filters are devices that, when set for a given specific frequency or range

of frequencies, are able to completely reflect the incoming waves (prohibiting propa-

gation) while not affecting (or just allowing some propagation for) other frequencies.

These devices are well known within the electromagnetics community. They have

been of crucial use for the design of important novel devices and applications such

as waveguides, switches, fibers and optical buffers, see for instance [97]. However,

most of the results reported in the literature so far have ignored the discrete nature

of the the design variables, thereby often leading to either suboptimal or impractical

designs.

For the case of PC, frequency filters are a particular case of photonic bandgap
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problems. Luckily, when seeking materials that show photonic bandgaps, optimal

solutions assuming infinite periodicity turn out to be binary, as observed by Lord

Rayleigh as early as 1888 [131]. Nevertheless, if we are interested in extending the

conceptual ideas introduced by the photonic bandgap to other wave phenomena or

want to consider finite domains, we need to mitigate the non-binary nature of the

continuously relaxed optimal solution. Consequently, if we want to obtain satisfactory

solutions -especially fabricability-, we must effectively constrain solutions to be

binary.

C B
Incident wave Design regionTagtrgn

Figure 5.1: Frequency filter geometry in 1d. C is the pixelized design region and B
is the objective subdomain.

Figure 5.1 outlines the id frequency filter application. We focus here on the case

of electromagnetic waves, for which the governing equation in the frequency domain

is exactly the Helmholtz equation. Furthermore, E-1 is the inverse permittivity or

the square of the speed of light for TM modes. Equivalently, if we were to consider

TE modes in electromagnetics or acoustic problems, the definition of E would have

another meaning. The formulation of the optimization problem can be written as

follows:
min J(u(e), e)e,U

Net

s.t. ( E Aq) U = f (5.9)
(q=1

6 E {EminEmax}

where J(u(e), e) = BJIU(C)|12. The first set of constraints corresponds to the numer-

ical discretization using the multiscale CG method of Helmholtz's equation governing

the TM modes of electromagnetic waves:

V -EVu + k2U = 0 in Q (510)

Vu -n - iku = Vui" . n - ikuinc on &Q

and the two chosen materials have permittivities Emin = 1 and Emax = 13. In addition,
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the incident frequency corresponds to a wavelength of 1/3 the width of the design

region. Note that here, for simplicity, first-order absorbing boundary conditions have

been considered where ufl corresponds to the incident wave.

Figure 5.2: 1-dimensional frequency filter. Right-propagating wave color coded in
blue, reflecting left-propagating wave in red. Top: continuous optimum; Center:
Discrete projection; Bottom: binary optimum. Frequency corresponding to 3 wave-
lengths fitting the design region.

Figure 5.2 shows the optimized structures obtained with (top) the standard adjoint

method with relaxation of the integer constraints, see [139] for the full derivations

regarding the adjoint method for this particular example, (center) the adjoint method

with enforcement of the integer constraints via projection into the closest binary value,
and (bottom) our proposed method. Our method produces exactly (up to machine

precision error) an optimal binary solution within only six iterations, whereas the

standard adjoint method computes an optimal solution which is not binary (and thus

not fabricable nor acceptable) and the projected adjoint method produces a binary

solution which is not optimal (and thus is an inferior design).

The multiscale discretization considered for this problem has 500 high order ele-

ments (order 3 providing 15 inner and boundary degrees of freedom per element) of
which the central 100 constitute the 50 pixels we seek to design (each subelement is

the rectangle formed by combining two discretization triangles). All possible combi-

nations of solutions would lead to 25 > 1013 problems and thus would be intractable

to solve. In spite of the high material and solution field contrasts, grid convergence
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of the discretization has been achieved thanks to the high order used in the MSCG

method.

This computational result is especially encouraging since the basis need only con-

tain about 10 solution vectors to guarantee a very good approximation of the exact

solutions. As a result, the systems of equations used to compute the binary gradient

never exceeded a 10 x 10 system. Furthermore the binary gradient computation which

is of order O(n) (recall n is the number of pixels or more generally the parameter

space size) took less time than one single MSCG computation took. It is also encour-

aging that the binary gradient computations are extremely accurate, with values of

the error indicator |G - G Ei E (10~-7).

5.3.2 Heat transfer problem

In a similar setting but in a 2-dimensional context we consider a heat transfer prob-

lem. In this case, the governing equation is not Helmholtz's or Maxwell's and does not

represent a hyperbolic solution or a wave. However, this elliptic and coercive equation

provides useful insights on the optimization procedure since solutions are smoother

and less sensitive to parameter changes. Easily, we can just adapt Helmholtz's equa-

tion's formulation by removing the term -k 2u. The problem we want to solve can be

written as:

-V.eVu=f inQ= [0,1] 2  (5.11)

u=0 on& .

where e represents the thermal conductivity of the material and f is the source

term, which has been chosen to be f = 27r 2 sin(irx) sin(7ry). We seek a 2-dimensional

pattern maximizing the heat transferred from the Dirichlet boundaries of a square

plate into the center point. Note that if we do not include an extra volume constraint,

the optimum will be obtained when the material used everywhere corresponds to

the one holding a larger thermal conductivity. Therefore the overall setting of the

optimization problem for this case will be slightly modified by the volume constraint.

If we choose 0 < 3 1 as the volume fraction that we are allowed to change, the

problem can be written as:
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min J(u(e), e)
e'u

Nei

s.t. eAq U = f
(q=1 (5.12)

1 Ne q - Emin
Nei E Emax - 6min

C EI Emin, Emax IN

A square domain with a 20 by 20 pixelization has been considered with Emin =

1 and Emax = 2. Firstly, the problem has been solved considering the continuous

relaxation e E [Emin, Emax]Nei through the Adjoint method. In a very similar way to

the frequency filter problem and analogously derived as in [139], the Adjoint method

provides us with the sensitivities and thus the direction to take at each iterate. We can

then pick a small enough step size (using a line search), take the step, and iterate until

we reach the final optimal and feasible solution determined by the volume constraint.

Such a constraint can also be dualized into the objective function and one can instead

solve the new optimization problem with the modified objective:

)112 + Nei q emn O

J(u(e), 6) = Iu(e)||+ A I -Ne) (5.13)
q,=1 6max - Emin

and the original set of constraints. If the value of A is chosen large enough, both

strategies lead to the same solutions since the volume constraint (or dualized penal-

ization) is satisfied with equality (or becomes zero, respectively).

Note that for the homogeneous case with 6 = 1 the analytical solution u =

sin(irx) sin(7ry) to 5.11 provides a squared volume of J(u(1)) = 0.5, whereas if we

pick the homogeneous material with e = 2 the objective drops down to the value

J(u(2)) = 0.0625, which would be the optimal solution had not we considered the

volume constraints.

Results have been computed for 3 = 0.44 and / = 0.58 and are shown in Figure

5.3. We can observe how the continuous optimal solutions provide a non-binary

solution that after projection into e E {1, 2 }Nei and respecting the volume constraint,

the resulting solution is suboptimal. In fact, for the case 0 = 0.44 the optimal
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Figure 5.3: 2-dimensional heat transfer problem. Top figures correspond to 3 0.44

and bottom figures to 0 = 0.58. Left figures show the continuous solutions obtained

through the Adjoint method, middle figures the projected binary solutions, and right

figures show the binary solutions after using our proposed method.

objective value is J(u(ecost)) = I||UI12 = 0.0973 in the continuous case, and once

projected it increases to J(u(Epjg)) = 0.1020. We can do better, as our binary

optimum demonstrates, obtaining J(Cbein)) = 0.0991. Table 5.3 summarizes the

different values obtained for each case. Note how our methodology decreases the

solution gap with respect to the continuous optima [21] from 4.83% to 1.85% when

# = 0.44 and from 6.06% to 1.08% for # = 0.56. However, since the lowest solution

gap or integrality gap is unknown for this problem, we do not know if there exist

solutions that could yet reduce the gap further with this pixelization.

Table 5.3: Results for the Heat transfer problem

0 Jco.t J,,oy Gap Jbi,, Gap
0% 0.5 0.5 0% 0.5 0%
44% 0.0973 0.1020 4.83% 0.0991 1.85%
58% 0.0825 0.0875 6.06% 0.0834 1.08%

100% 0.0625 0.0625 0% 0.0625 0%

Note how the binary optimum is more than 2.5 times closer to the continuous
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optima than the projected binary solution for 3 = 0.44 and more than 5.5 times

closer for 3 0.58. With a given material allowance we have thus been able to

provide a binary pattern, easily fabricable, which is very close to the non-fabricable

continuous optimum for the same volume of material.

Moreover, regarding this last example, the computational cost is O(k-m-sa), where

k is the number of iterations, m the size of the neighborhood and 0(s.) is the cost

of solving the numerical problem for a given combination of the n pixels. In contrast,

the theoretical complexity of this problem is NP hard and the computational cost is

given by O(exp(sn)), if the complete binary search/enumeration is performed. More

specifically the number of pixels can be reduced to n = 50 exploiting the symmetries

of the problem. The proposed algorithm provides the reported binary solutions after

k ~ 20 iterations. In addition, for every single system resolution (there are m = O(n)

of those) the computational complexity of a classic FE method is O(sn) = O(n2 ) while

the proposed reduced basis approach reduces the total cost from O(m - sn) = O(n3 )

to a few resolutions (r << n) of the exact system O(r - n2 ) plus m solutions of the

reduced r x r system, so O(m - r2 ). As a result, since r = 0(1) the RB method

computational cost is O(n2 ). To sum up, table 5.4 summarizes the computational

costs and properties of the different optimization algorithms.

Table 5.4: Summary of optimization algorithms

Algorithm Cost Comments
Branch and Bound O(exp(sn)) global optimum but totally intractable
Local Search w/o RB O(k - n -s) deterministic local optimum, often intractable
Local Search w/ RB O(k- s) randomized local optimum, typically tractable

Heat transfer as an eigenvalue problem

This same problem can also be formulated in terms of eigenvalues. In this way, we

will also illustrate how the binary optimization algorithm works for eigenproblems.

Note that minimizing I u(e) 1 is equivalent to maximizing the heat that gets trans-

ferred through a square domain, from the center out or vice versa. In conclusion,

maximizing all the eigenvalues of the heat equation 5.11 will equivalently maximize
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the transmission of heat or also minimize the value of u(c) I' in the domain for a

given initial Dirichlet source.

All in all, let us first organize the eigenvalues of the heat equation in increasing

order:

n-1 Wn-2 >_ >- - W-2 > W01 >0 (5.14)

and define an auxiliary variable A such that 0 < A < w1 . In this way, increasing A will

push the smallest eigenvalue up, and subsequently all of them. Now we can formulate

the optimization problem as:

max A

s.t. A(e)u = AMu

1N. Eq _ E (5.15)

Ne Emax - Emin

E {min, emaxNe.

Problem 5.15 can now be solved using the binary eigenvalue optimization al-

gorithm and the solution obtained matches exactly those obtained when solving

5.12. Similarly, the linear relaxation (that is replacing the binary constraints by

Emin < 6q < Ema, for all q) can be solved using SDP techniques, see [119], and the

the same continuous optima have been obtained for each value of 0, as expected.

When the binary optimization methodology has been used in the heat transfer

problem, both for the source problem formulation as well as the dual eigenvalue

formulation, the same optimal pattern has always been obtained, independently of

the starting guess. This indicates two things: first, that the local optimum obtained

for each # value is likely to be the binary global optimum (note that this is not

guaranteed since the optimization problem is not necessarily convex); and second,

that coercive dissipative problems such as those governed by Poisson's equation work

very well and robustly with reduced basis and local search algorithms, as already

expected [12]. When these methodologies are applied to wave equations, obtaining

optimal patterns with this level of quality and robustness will not be easy, but this

is precisely what will make the contributions more relevant.
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5.4 Concluding Remarks

This chapter provides a practical optimization technique for the design of materials

under wave propagation scenarios. The design of such materials poses several chal-

lenges mostly regarding computational complexity. For manufacturing reasons, it is

often the case that gray solutions are not realizable and thus black/white distributions

need to be found. However, global optimization algorithms for discrete programming

are seldom practical because the problems are typically large and formulations the-

oretically NP hard. Generic heuristic methods, like genetic algorithms or simulated

annealing, are some of the few approaches that can actually perform some sort of

optimization in order to find improved solutions. Nevertheless, they do not use any

knowledge of the physics inherent to the problem.

The methodology introduced in this chapter combines the notion of topology

optimization through a binary gradient calculation, with the use of reduced basis,

which takes advantage of the physics of the problem (close configurations provide

similar enough solutions). Overall, a practical iterative algorithm has been presented,

whereby until convergence is reached, every iteration tries to identify the direction of

largest improvement at a cost on the order of solving only one full simulation problem.

In addition to its practicality, the inherent randomness of the algorithm provided

by the choice of elements for the reduced basis is also helpful. Note that different

local optima are reached, even starting from the same initial guess. This property

helps the algorithm avoid getting stuck at poor local optima. Moreover, after several

different local optima have been found and given that they are all feasible, the best

of all is chosen.
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Chapter6

Applications

Let there be light:
and there was light.

-Genesis 1:3

So far we have focused the efforts on introducing a numerical simulation technique

and a topological optimization tool for the design of structured materials. As a

consequence, we now seek to show how this new paradigm actually provides some new,

effective and unintuitive patterns for several relevant wave propagation applications.

Firstly, we try to find discrete patterns that can hide an object and thereby provide

a solution for the cloaking problem. Next, we focus on the design of highly efficient

sharp bends for electromagnetic and acoustic waveguides, both in 2d and 3d.

6.1 Designing an invisibility Cloak

Electromagnetic cloaks are devices that render an object, illuminated by electromag-

netic or acoustic waves of certain frequencies, invisible to an observer. In order to

develop cloaking devices, it is necessary to design their material properties and be able

to fabricate these properties. The distribution of the material properties of cloaks can

be theoretically derived by transformation optics [122]. However, since these patterns

possess continuous, anisotropic, and extreme (even infinite) material properties, the

practical realization of such cloaks is not possible. In this section we show the design

139



results of applying the optimization methodology introduced in chapter 5.

6.1.1 Problem description and formulation

Let us first discuss the formulation of the problem. The performance of a cloak is

typically measured by the amplitude or intensity of the scattered wave field from a

given object surrounded by the cloak after it is illuminated by electromagnetic or

acoustic waves of certain wavelengths. A cloak performs perfectly if it can produce a

scattered field with zero amplitude (equivalently, zero intensity) in a given target re-

gion around the cloak (ideally, the entire space). The problem of designing the layout

of a perfect cloak can be rigorously addressed by formulating a discrete optimization

problem for the parameters that represent the material properties and geometry of

the cloak.

Consider the design of a cloak device as shown in figure 6.1. The circular cylin-

der at the center (D) represents an ideal metallic structure that contains an object

to be made invisible by the cloak. The ring structure in light gray color represents

the cloak (namely, the design domain C) which is composed of m pixels of dielectric

material with relative permittivity emin or Cmax. The whole structure is illuminated

by an incident plane wave uO = eikx propagating in the positive x direction, where

k is the free space wave number and i = vy . Furthermore, the infinite domain is

truncated by using first-order absorbing boundary conditions as an approximation to

the Sommerfeld radiation condition on the outer boundary F0Iou, see appendix A for

further details. A perfect electric conducting condition is applied on the inner bound-

ary ]I = 9D. Due to the invariance of the electromagnetic or acoustic properties

along the out-of-plane direction, the problem can be formulated in two dimensions. If

we consider optics in two dimensions, there are also two possible polarizations of the

magnetic and electric fields, namely, transverse electric (TE) polarization and trans-

verse magnetic (TM) polarization. We assume that the optical cloak operates in the

TM mode and that the materials are nonmagnetic (their relative permeability equals

one). The extension of the proposed method to design an optical cloak operating in

the TE case is straightforward. For the acoustic case, e2 represents the inverse of the
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speed of sound of medium j.

Figure 6.1: Geometric description of the cylinder cloaking problem.

In order to render the circular cylinder invisible to an observer, the optical cloak

device should be designed to minimize the amplitude of the scattered field us in

region B surrounding the observer. Therefore, the discrete optimization problem for

the optical cloak design is formulated as follows:

min IUu - U 2 (Uuo)*(u _ uo)dxdy
6eU J B

s.t. V 2 u + k2 e(x, y)u = 0, in Q\D

Vu n - iku = Vu0 - n - iku0  on 9Q (6.1)
Vu n =0, on D

e(x, y) E {Emin, Emax}, V(x, y) E C

E(x, y) = Emin, V(x, y) E Q\(C U D)

Note that the total solution field corresponds to the addition of the scattered and

incident fields: u = u' + u0 . In addition, * denotes the complex conjugate. Problem

6.1 corresponds to the continuous formulation (in terms of the objective and the PDE

constraint) of the design optimization problem.

Similarly, we also consider the design of a carpet cloak such as the one in figure 6.2.

An object in region D is sought to be hidden underneath the carpet that needs to be

designed for region C such that the scattering of the oblique (45 degrees) illumination

coming from the top left corner is minimized in region B.

In practice, the above discrete optimization problem is solved by discretizing the

full domain Q\D into finite elements (here a MSCG discretization with only one

subelement is used since the problem is computationally tractable) and then nu-
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Figure 6.2: Geometric description of the carpet cloaking problem.

merically solving the Helmholtz equation. The relative permittivity function e(x, y)
will be piecewise constant defined as a given value Ei in each discretization element

(j = 1 ... Ne). We then assume that the design domain C consists of m pixels

on which the relative permittivity function E(x, y) takes the values from the set

{ 6 min, Emax}. Note that each pixel will consider several discretization elements to-
gether. All in all, the discrete version of 6.1 can be written as:

min (u - uo)*MIIB(u - u0 )eNu

s.t. EEqAq U = f,

(q=j m (6.2)
Eq = Emin + 1(PP - Emin) [, Vq = 1 ... Ne

p=1

pP E {Emin, Emax}, P = 1 ... m

where M is the mass matrix obtained through the MSCG discretization derived in
chapter 2, Aq represents the local contributions to the discretized matrix from each
subelement q, f contains information from the boundary conditions, p defines the
permittivity of each pixel and e represents the permittivity at each discretization

element. In addition, 1 B is an indicator function of region B and PJ will be one if the
discretization element q belongs to pixel p or zero otherwise. Note that u E CAdf,

being ANdf the total number of degrees of freedom.

This optimization problem is highly non-convex and nonlinear. Furthermore, what
makes the problem extremely difficult is the presence of the discrete constraints, for
which there are no known efficient and rigorous optimization algorithms for solving

any problem of this kind.
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6.1.2 Design results for 2d cylindrical cloaks

First, we tackle the problem of designing a cylindrical cloak. In this case, when we

illuminate a circular (in 2d) object with a planar wave coming from the left side of

the domain, the total and scattered wave fields are as shown in figure 6.3. In this

particular case, the interference of the wave with the object creates a shadow behind

the cylinder that hides the original acoustic or electromagnetic signal. Note how the

scattered field corresponds to the subtraction of the total field from the incident field,

which in this case is a collection of vertical stripes alternating +1 and -1, represented

by red and blue, respectively.

Figure 6.3: Total (left) and scattered (right) wave field in the absence of a cloak.

Let us for this example focus on electromagnetic waves with TM polarization and

choose a material that is rather common when manufacturing this sort of devices:

Polyimide (PI), with 6ma = 3.4Emzn, where 6 min is the permittivity of air, namely

emin = 1. Also, denote the radius of the object to cloak by R, and let us pick a

wavelength that corresponds to 2R. We also define a rectangular domain that is

large enough to fit all the features of the problem and a radius of the cloak that is

2.5R.

In terms of the design discretization, we will choose a set of pixels {pi }T without

intersection and covering the entire cloak design region. Given the symmetry of the

problem (horizontal axis along the center of the domain) only half of the pixels are

chosen independently. In order to minimize potential manufacturing limitations, the

design space has been discretized into circular segments of 7r/20 radians and 0.1R.
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We can now numerically design a cloak defined by problem 6.2 using the simulation

technique in chapter 2 and the optimization methodology introduced in chapter 5.

After considering several initial guesses and optimization procedures, we obtain a

collection of locally optimal patterns. First, note that every single state of materials

in the optimization procedure is feasible. This is actually a very important property

and thus we will save the best-so-far solution, since the procedure might allow for local

increases of the objective function to avoid getting stuck at suboptimal local minima.

Furthermore, it is also important to note the randomized nature of the optimization

algorithm 5.2: the choice of the members of the reduced basis is random, potentially

leading to different descent directions. Finally, the optimization procedure assumes

a given starting guess and therefore the method will compute different local optima

when starting from alternative states. The same problem will be solved several times

being led to different local minima. After the fact, the best-of-all minima will be

chosen.

Figure 6.4 shows two different local optima for the cylinder cloaking problem. In

the first case, shown in the left side figures, the pattern obtained is able to decrease

the objective function value by 99.92%. In other words, this pattern reduces the wave

field scattered by the cylindrical object by a factor of 1, 300. The objective region, in

this case, is shown through a black rectangle and it is centered behind the object, at a

distance of 7R, with a width of 2R and a height of 4R. If we now seek a pattern that

is able to hide the same frequency on a larger target domain, the right side figures

show another pattern obtained with the same method. In this latter case, the target

domain has doubled in each direction, so it has increased the area by a factor of 4

and the objective function value has still been reduced by a 99.5%, i.e., a factor 200.

This second solution might seem less optimal but is also a lot more practical, since it

is able to cloak the object, essentially everywhere behind it.

Ideally, we would want to have the cloak to be as thin as possible; however, for a

successful cloak such thickness depends on the contrast of the materials as well as the

size of the pixels. If we fix the materials to be PI and air and the size of the pixels the

same as above, figure 6.5 shows how the quality of the pattern improves as we increase
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Figure 6.4: Material distribution (top); total (center) and scattered (bottom) wave
field patterns in presence of a cloak. Left: optimality of 99.92%, right: optimality of
99.5% for a larger target region.

the size of the cloak. For wavelengths that are of the order of the object, typically

a cloak of 2.5R to 3R obtained through our methodology is enough for reductions

above 99% of the scattered field for a given frequency. In optimization terms, when

we increase the size of the feasible region, the objective function can only improve.

Indeed, for the four cases below, their feasible sets satisfy F C F2 C F3 C F4 and

therefore it is clear that the objective function values satisfy Z1 > Z2 > Z3 > Z4 . In

fact, IFiT = 0, IF2I = 100, F31 = 200 and 1F41 = 300. The results shown in this figure

correspond to the same frequency and materials previously analyzed.

Validation of the Reduced Basis

The binary gradient used within the optimization algorithm relies on the accuracy of

the Reduced Basis approximations for the solution field. The error bounds that the

literature provides for RB approximations under non coercive elliptic operators are
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Figure 6.5: Optimality of different cloak patterns as the size of the cloak is increased.

very conservative. However, since we are only interested in computing the solution

field at close-by neighbors (they only differ by one single pixel from a given state),

the approximations are typically accurate.

Figure 6.6 illustrates the use of reduced basis in the cylinder cloaking setting. Let

us assume that we want to form a basis around the pattern in subfigure (j). First, we

randomly pick 30 neighbors by replacing one single pixel of the pattern -a subset (8)

of them are shown in (a) to (h)- and we then compute the corresponding solution

fields to form the basis. If we now want to approximate the solution to pattern (i),

the errors are of order 1; however, when comparing the accuracy of the full simulation

for (j) with the corresponding RB approximation, the error is of order 10-5.

Similarly, we can compute the approximate solutions to the remaining neighbors

(a total of 270 for the chosen pixelization) with acceptable accuracy levels. Figure

6.7 shows the approximation error value when changing each pixel from state (j) in

figure 6.6. Note that for the elements in the basis, the error is exactly zero (color

coded with dark blue). In this case, the neighbors that are worst approximated still

have an L2 approximation error of around 10- (color coded in dark red) with respect

to the solution provided by the full size simulation.

In terms of computational effort, when using RB approximations, only around five

full simulations are computed and added to update the basis; then, 300 very small
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Figure 6.6: Permittivity states for the cloaking region. Subfigures (a)-(h) show pat-
terns the solutions to which form the basis around state (j). The solution to pattern
(i) is poorly approximated by this basis.

le-3

0

Figure 6.7: Error value of the RB approximate solution using basis in figure 6.6 with
respect to the full simulation when changing each pixel.

systems of 30 x 30 are solved. If RB approximations were not used, the full size

simulations of the 300 neighbors would be required at each iteration. Moreover, the

randomized nature of the basis together with these tolerable approximation errors

might lead the algorithm to pick a descent direction that might not actually be

the same as if the basis was different. This behavior in fact improves the quality

of heuristic binary optimization methods [46] since it avoids systematically getting

stuck at poor local optima.
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6.1.3 Design results of 2d carpet cloaks

Similarly to the previous section, in this one we discuss the design of a carpet cloak.

When illuminating a solid wall that is totally reflective, the wave fronts reflect with

the same angle as the incident wave with respect to the surface, according to Snell's

law. However, in the presence of an object on the surface, the resultant reflected wave

will be altered.

If we consider the binary optimization previously introduced, we seek a material

distribution around the scattering object laying on the solid wall such that the re-

flected wave is minimized inside some target region of interest. Firstly, a Cartesian

discretization of the parametric space has been considered, therefore the solution is

always the union of square pixels, which are easily manufacturable. Figure 6.8 shows

the total and scattered fields for the homogeneous case without a cloak as well as the

optimal design for a frequency corresponding to 15 wavelengths per unit of length

(the domain size is [-1, 1] x [0, 1]). The alternative material to air 6 m"i = 1 that has

been considered in this case is aluminum, emax = 8.9. An overall reduction of the

scattered field of 96% has been achieved for this frequency and this set of materials.

Figure 6.8: Carpet cloaking. Top figures show solutions without a cloak whereas in
the bottom an optimal cloak case is shown. Left: material patterns; center: total
wave field; right: scattered wave field

Overall, the binary optimization method has been effectively used to devise pat-

terns that provide desired cloaking properties while addressing the main difficulties
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that arise when designing cloaks: continuous distributions of materials and singular

values of the material properties. We are able to provide designs that can cloak a

wavelength of the order of the object through material patterns that are described

by a set of pixel inclusions of a prescribed isotropic material on air. Moreover, these

patterns are discrete and thus address one of the main manufacturing requirements.

6.2 Optimization of Helmholtz waveguide bends

Waveguides are devices that allow the controlled propagation of waves for very long

distances (from tens to millions of wavelengths). Fibers are a particular case of

waveguides that offer a cross sectional id or 2d geometry that is able to trap a given

frequency, or a range, in the inner core. Thus, when these geometries are extended

cylindrically in the third dimension, the energy will mainly (except from undesired

losses) travel along the center of the fiber.

In the case of optics, general waveguides as well as fibers are typically designed

based on two phenomena: index guiding or Photonic Crystals. The equivalent physics

for acoustics produces sound waveguides. The first phenomenon is explained as fol-

lows: when a high index material is surrounded by a lower index material, and the

wave hits the boundary between the two with a large enough angle, then from Snell's

law there will be total internal reflection (TIR) and the energy will stay in the higher

index material. For this reason, a simple homogeneous cylindrical piece of higher in-

dex material will serve as the simplest fiber. The latter will use the idea of Photonic

(or Phononic for acoustics) bandgap, which does not allow propagation of energy

within a certain range of frequencies for a given periodic geometry. If a linear defect

is included in this geometry, then energy propagation is only allowed through such a

defect. Figure 6.9 shows a PC and an index guiding waveguide.

High quality waveguides and fibers are those that have minimal losses and thus

allow waves to travel long distances without jeopardizing the quality of the signal.

However, when these waveguides or fibers are long, bends (sometimes sharp) are often

required and such bends typically become a source of high losses for existing designs.

In this section we address this issue and try to find designs that minimize losses on
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Figure 6.9: Example geometries of a Photonic/Phononic Crystal waveguide (left) and
an index guiding fiber (right).

waveguide and fiber bends, both in 2d and also 3d.

6.2.1 Problem description

In order to design waveguides or fibers with highly efficient sharp bends we will apply

the aforementioned binary optimization methodology to the corner object together

with the multiscale simulation procedure. Note that for the particular example of

Photonic Crystals, the multiscale simulation methods introduced in chapters 2 and 3

become crucial given the multiple repetition of highly detailed patterns.

The main aim of this section is to formulate the optimization problem that will

then be applied to the design of a 90 degree Photonic Crystal bend in 2d in section

6.2.2 and to the design of a 90 degree bend in a 3d fiber in section 6.2.3. Then, we will

extend the design formulation to 3d Maxwell's equations and obtain optimal patterns

for a Y bend on a TE polarized PC slab.

Let Q represent the domain of the problem. This domain includes a certain

upstream length of the waveguide from the bend as well as a similar downstream

length and thus will be rectangular in 2d and a rectangular parallelepiped in 3d. The

incoming waveguide enters the domain from the left side boundaries and then bends

downwards 90 degrees escaping the domain across the bottom boundary. For this

reason, Perfectly Matched Layers (or PMLs) will be included at the left and bottom

boundaries, at least. The corner area will be considered the design region and the last

layer of waveguide before exiting the domain will form the objective region. Figure

6.10 shows the 2d geometric representation of the problem. The extension to a 3d

TIR fiber becomes natural.
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Figure 6.10: Geometry of the 90 degrees bend design for a 2d PC waveguide. PML
refers to the region of Perfectly Matched Layers, B forms the objective region and C
the design pixelization. In black are the rods of a dielectric material on air.

The simulation of this kind of problem for Helmholtz's equation has already been

discussed in the multiscale simulation method presented in chapter 2. In order to for-

mulate the optimization problem using the binary programming algorithm previously

introduced, two things need to be defined: the objective function, and the pixelization

of the design region (region C in the figure).

Firstly, we shall discuss the choice of the objective function J. In contrast to the

cloaking problem, for the waveguide bend design we are not interested in directly

matching an outcoming wave since the phase of the wave is irrelevant. What we

certainly want is to preserve as similar as possible the amplitude of the incoming

wave. Furthermore, we want the wave to propagate exactly in the direction of the

bent waveguide. For these reasons, the goal is to maximize the transmission, or

equivalently, to match the power or energy exiting the waveguide with the power or

energy entering the waveguide. Information about the power transmission is found

in the Poynting vector, which in electromagnetics can be computed as S = E x H,

when averaged over a period.

Furthermore, given that the waveguide exits the domain through the bottom

boundary, we are only interested in the vertical component of the time-averaged

Poynting vector in the exit region and we compare it with the horizontal component

of the same vector in a region prior to the bend.
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All in all, the objective function can be computed as the ratio between the output

power and the input power:

T = o, (6.3)
in

where each one of these powers is obtained from averaging all the vertical/horizontal

components of the Poynting vector for each element in the objective region B as:

P = jS -ndA. (6.4)

Furthermore, note that S = |S|, when averaged over a period can be computed in

terms of the frequency domain solution as discussed in [73]:

1
S = 1wIm(u*Vu). (6.5)2

Now that a suitable objective function has been described, we need to define

the pixelization of the design region. In this case, the most natural choice is just

a partition of the corner element in a square/cubic grid. Figure 6.11 shows the

discretizations considered for the simulation problem when the corner is assumed

to be a naive extension of the rodded structure (left); or when prepared for the

optimization method (right) through a triangulation that fits 20 x 20 squares as a

pixel decomposition.

Figure 6.11: Multiscale discretization examples for the corner of a 2d PC waveguide.
Discretizations of a naive geometry (left) and a square pixelization of the design region
for the optimization procedure (right).

In conclusion and with all the aforementioned considerations, the optimization

problem for the waveguide bend can be written as below. Note that maximizing the

152



transmission fraction is equivalent to simply maximizing the power in B since the

denominator of T remains constant. All in all, we want to solve:

IPB(u)I = L S(u) -ndxdy

V 2 u + k 2e(x,y)u = 0,

Vu -n - iku = VuO. n - iku0,

e(x, y) E {mn, emax},

e(x, y) = Eknown,

in Q

on Fin

V(x, y) E C

V(x, y) E Q\C

Note that e is set to Eknown outside the design domain C since the distribution

of permittivity values there is known, fixed and piecewise constant. In addition, Fin

corresponds to an interboundary condition that will account for the incoming planar

wave. It is also important to highlight that the governing equation will be modified in

QPML as described in appendix A. The multiscale method will be used to discretize

6.6 into:

max L wIm (u*Bu -n) dxdy
C'U B 2

qOC

s.t. 1: Aq(eq) + Ac(ec) u =f
(q=l..N.1

e= eq E {6min, Emax}nqI
m

E. =min + Emin) , P

p= 1

pP E {Emin, Emax},

(6.7)Vq = 1. .. Nel, q$f C

VS = 1. ... ecI

Vp= 1 ... m

Here B is the convection matrix obtained through the MSCG discretization de-

rived in chapter 2, Aq represents the subproblem contributions to the discretized

matrix, f contains information from the boundary conditions and eq is now a func-

tion for each macro element q that represents the elementwise constant permittivity

at each discretization element therein. eq is known at all subelements and has the

corresponding size nq but is unknown for the design region C where it is organized

into m pixels with material properties to be chosen between emin or Emax. In addition,

p is the vector of design variables that takes the value of the material chosen for each

pixel and EP' takes the value 1 only when the discretization element s belongs to pixel
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p. Finally, u E CVdof , where A/dof is the total number of degrees of freedom.

6.2.2 Design of a 2d PC waveguide bend

Let us now focus on the design of a highly efficient 90 degree bend for a 2d Photonic

Crystal waveguide. In particular, the reflection at the T junctions of 2d PC waveg-

uides has also been minimized using topology optimization methods in [72,73] and we

thus seek to compare how our approach performs. For the numerical simulation of this

problem we have discretized the entire domain ( into square subdomains containing

3 x 3 arrays of aluminum (e = 8.9) rods of radius r = 0.2a respecting the symme-

tries of a square, a being the periodicity of the structure or equivalently the distance

between the center of every two consecutive rods. Note that for this geometry, the

first bandgap shows up for unitary frequencies such that wa/27rc E (0.26,0.41) as

discussed in chapter 4 and shown in figure 4.5 therein.

Hence, any frequency strictly inside this bandgap will be completely reflected by

the described pattern (except for evanescent modes in the boundaries that decay

exponentially, see [74] for further details). Then, after including a linear defect that

then bends 90 degrees, we expect the wave to propagate only through the waveguide

created.

We now seek to design an optimal pattern that is able to maximize the trans-

mission power for a given frequency after the bend. So let us pick wa/27rc = 0.34,

which is inside the described bandgap. If we first compute the transmission rate with

a naive approach consisting of designing the corner by just removing the rods from

an L shaped waveguide, we obtain a transmission fraction of 0.96, which is okay if

we accept losses of a 4% in every 90 degrees bend of the waveguide. Some related

work also asserts that higher efficiency can be achieved if the bend is smoothed out

by breaking it into two consecutive 45 degree bends. In this case and for the chosen

frequency, the transmission ratio increases to 0.98, or equivalently, a 2% of loss.

In order to set up the design optimization problem we replace the discretization

of the corner subelement by a square pixelization consisting of 20 x 20 = 400 pixels

embedded in a finer mesh for simulation purposes. Figure 6.11-right shows the mesh
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Figure 6.12: Wave propagation patterns through a 2d PC waveguide with a 90 degree
bend for wa/27rc = 0.34. Naive approaches (top), initial guess (bottom left) and
optimized pattern (bottom right). Insets show the exact geometry at the corners.

chosen for design purposes. Then a starting guess needs to be chosen, and just by

physical intuition and without any hope of getting a decent transmission rate we pick

two solid rectangles of the higher index material forming an L shape in the outer

corner of the bend, surrounded by the lower index material. For this configuration,

as expected, the transmission rate decreases all the way to 0.78 for the same design

frequency.

Nevertheless, we are now ready to start the optimization procedure introduced in

chapter 5 and further described for this specific problem in the previous section. The

final optimal pattern that has been obtained is shown -together with the naive and

initial guess approaches- in figure 6.12, and provides a transmission fraction of 0.997

so only 0.3% of the energy is lost after a the waveguide faces a 90 degrees bend.

All in all, we have been able to design an alumina/air pattern for the bend region

that is able to reduce the losses by a factor of 7 and 13 with respect to naive rod

based approaches. These factors are obtained as value losses for each of the naive

geometries divided by the losses provided by the optimized pattern. This reduction
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is particularly relevant for practical purposes, since long waveguides have multiple

bends. Table 6.1 summarizes these results.

Table 6.1: Summary of results for the 2d waveguide bend.
Pattern Naive #1 Naive #2 Initial guess Optimized

Transmission % 96 98 78 99.7
Factor over naive #1 2 < 0 13

An alternative approach for the design of these two dimensional structures is

topology optimization. In fact, for the problem of designing PC waveguide bends

in 2d, topology optimization has shown very good performance as shown in [72,73]

since the objective function is relatively binary by nature as well as not too sensitive

and especially tractable (in 2d). Results reported in [72] also offer a pattern that

for TM polarizations with square symmetries containing rods of radii r = 0.18a and

refractive index n = 3.4. This pattern provides significant transmission fractions

for any frequency in the gap wa/27rc E (0.32,0.44). We have also validated our

methodology by numerically simulating this geometry and matching the numerical

results reported in [72], see figure 6.14. Furthermore, we have optimized the geometry

further for a specific frequency and obtained better results, as shown in figure 6.13.
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Figure 6.13: Wave propagation patterns through a 2d PC waveguide with a 90 degree
bend for wa/27c = 0.34. Solution given in [72] through topology optimization (left);
and our optimum obtained starting from there (right).

Despite our method not being capable of improving this pattern for the full range

of frequencies, we are able to further reduce the losses for a single frequency. In

particular, we target the frequency with poorest transmission wa/27c = 0.34, for

which the naive approach only provides a transmission fraction of 0.971, the topology
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optimization pattern results in T = 0.995 and our method is able to increase the

fraction to T = 0.9998, when taking as initial guess the optimum given in [72].

.... .... .... ....
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Figure 6.14: ransmission fraction value (logarithmic) for frequencies in the lowest
bandgap for the naive approach, optimum in [72] and our optimum for w 0.34

6.2.3 Design of a 3d fiber bend

After the successful design of highly efficient two dimensional Photonic Crystal waveg-

uidc bends, we shall try the extension of this methodology to 3d fibers. The three

dimensional problem is especially challenging for two main reasons explained below.

Firstly, the simulation problem involves a significantly higher complexity, given

the increase of degrees of freedom as well as their connectivities. This first challenge

has been already discussed in chapters 2 and 3 and the multiscale methodologies offer

a rather efficient solution given the scalability and parallelizability of the methods.

In addition, the optimization problem requires a great deal more simulation runs

than in the 2d case. Note that the pixelization is now in three dimensions, and hence

the set of design pixels that are considered is significantly larger. That means that

the neighborhoods, which are chosen to be on the order of the number of pixels 0(n),

are larger, requiring more Reduced Basis simulations per iteration as well as a larger

basis to ensure accuracy of the approximations. Also, since the set of pixels is larger,

the optimal solution might take longer to be reached, i.e., more global optimization

iterations.
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Overall, the complexity of the problem increases very significantly because not

only will more global optimization iterations be required, but each one of which will

also take significantly longer because there are more neighbors, the basis is larger and

every simulation inherently takes longer. In spite of the aforementioned challenges,

optimal 3d bends can be found taking advantage of both the simulation and design

optimization techniques presented in this thesis.

Let us consider a 3d cylindrical fiber, where the cross section is a homogeneous

disc with a(x) = 11.8. Figure 6.15 shows the geometry for which we want to design

a bend that minimizes losses.

Figure 6.15: Geometric problem setting for the 3d fiber bend optimization.

By total internal reflection or index guiding, waves sent along the cylinder with

a frequency wo will not escape and can thus be guided. This frequency wo has been

chosen to be the one given by A = 4R, where A is the wavelength and R the radius

of the fiber. However, a sharp bend (90 degrees) will have significant losses since

some of the wave hitting the bend will not be guided (the internal reflection will not

be total). This is the reason why the naive approach obtained by intersecting two

straight cylinders will only provide a transmission fraction of 0.35 with up to 65% in

loss.

In order to set up the optimization problem, a corner cube of the domain is

removed and replaced by a new subelement in the multiscale simulation that embeds
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a 10 x 10 x 10 cubic pixelization; this is not too fine because of the 3d nature of the

problem but already challenging given its large size (1, 000 pixels). An initial guess

needs to be chosen and the projection of the two straight rods into the new pixelization

is chosen for simplicity. For this case, the transmission fraction drops down to 0.19

with 81% losses. However, after we let the optimizer work from there, it takes the

design into a pattern that provides, for the targeted frequency, a transmission ratio

of 0.88 and thus reduces the losses to only 12%, which is a significant improvement,

especially given that it is a sharp bend in 3d. Figure 6.16 shows the three geometries

and the corresponding solutions for wo, and table 6.2 summarizes these results.

Figure 6.16: Zoomed alternative geometries for the 3d waveguide bend (top) and
corresponding wave propagation patterns showing the level sets t0.3 (bottom). Naive
approach (left), initial guess (center) and optimized pattern (right).

Table 6.2: Summary of results for the 3d fiber bend.
Pattern Naive Initial guess Optimized

Transmission % 35 19 88

6.3 Optimization of Maxwell's waveguide bends

We can formulate a design optimization problem for a Y waveguide bend on a 3d

Photonic Crystal slab. This application is relevant since this kind of bend are regularly
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used in PC waveguides when a signal is sought to be split in two. Not only will we

solve the problem in 2d assuming infinite thickness of the slab, but also in 3d with

finite thickness. For this latter case, full Maxwell's 3d simulations will be required

and to that end, we will use the MSHDG method developed in chapter 3.

6.3.1 Problem formulation

Figures 6.17 and 6.18 show the geometry of the problem that we are here interested in

solving. A hexagonal lattice is considered with holes of radius 0.3a on a material with

a certain permittivity, a being the periodicity or the distance between the centers of

consecutive holes. For three dimensional slabs with this in-plane structure, a Photonic

bandgap appears for the H_ modes (note we consider the TE-like polarization) when

the thickness of the slab is around a, see [74] for further details.
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Figure 6.17: Geometric problem setting of the Y bend design for a 2d/3d slab PC
waveguide. PML refers to the region of Perfectly Matched layers, B forms the objec-
tive region and C the design pixelization. Black represent the air holes on a slab of
a certain homogeneous material.

Figure 6.17 shows in black the holes drilled across the slab, assumed to be made of

silicon (E = 11.8). Note that the shaded areas correspond to the PML (see appendix

A for further details), both areas B form the objective region and C corresponds to

the design region. A rectangular domain with 27 x 20 pixels will be considered therein.

Additionally, figure 6.18 shows two 3d visualizations of the geometry considered.

All in all, note that if HDG is considered as a numerical scheme for the subelement

problems, then the Poynting vector will be computed as S = E x H. Furthermore,

we consider Maxwell's equations as constraints and the corresponding interelement
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Figure 6.18: Geometric description of the Y waveguide bend on a PC slab. Air
holes of radius 0.3a are accordingly drilled on a higher permittivity material slab of
thickness a.

condition for the incoming field. We can thus write the binary optimization problem

for the following continuous formulation:

max ITB(E,H)I = S(E, H) -ndxdy
e,E,H B

s.t. V x H - (iwe(x, y, z) + -)E = J, in Q

V x E +iwpH = 0, in Q (6.8)
n x H - ikn x E x n = go, on FiP

e(x, y, z) E {6min, 6max}, V(x, y, z) E C

6(x, y, z) = eknown, V(x, y, z) E Q\C

where e is set as known in all the subdomains except for C. Note that rin corresponds

to an interboundary where the incoming wave is imposed through a Robin boundary

condition for go = n x HO - ikn x El x n, with an initial field obtained as H0 =

(0, 0, HO), where HO - ei'x given that a TE-like polarization is assumed. After the

MSHDG discretization of Maxwell's equations is considered, we are able to formulate
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the design optimization problem as follows:

max S(U) -n dxdy
6,U ./B

q0C

s.t. Ao + E Aq(S) + Ac(ec) U F,
q=1..N.,

e = eq E {6min, Emax In, Vq = 1 ... Nei, q 0 C (6.9)

E = Emin + Z(P - Emin)RIs, Vs = 1... jecI, Vc E C
p=1

p, E {eminEmax}, Vp = 1... m

where U = (H, E, T, A) and then the Poynting vector can be recovered from the

definition to obtain the objective function. A0 represents the portion of the MSHDG

discretization matrix that is independent of all values of permittivity, and Aq (eq) for

q C provides the terms of the MSHDG discretization matrix that corresponds to

all subelements except from those in region C. Finally, Ac(ec) will be the term

corresponding to the subelements in C. Note that A0 and the sum of all Aq for q V C

will only be computed once, added and stored.

6.3.2 Design of a Y waveguide on a PC slab

Let us first focus on the two dimensional setting where the slab is assumed to have

infinite thickness. For the parameters chosen (materials, radius, symmetry) a Pho-

tonic bandgap appears for frequencies in the range wa/27rc E (0.19, 0.27), as described

for instance in [74]. Let us choose w = 0.225 and analyze the transmission fraction

obtained with a naive approach for the Y bend, where a defect is created with the

shape of a Y. The H solution field can be found at the top of figure 6.19. For

this configuration, a total of 13% of the incoming energy goes into undesired losses.

Similarly, we can now project the corner rod into our pixelization and compute the

solution field, shown in the center of the same figure, for which the losses increase to

16%. Finally, this state is taken as a starting guess and the optimization procedure

is considered, which after about 1, 000 iterations and several runs reaches the binary

pattern shown in the bottom of the figure for which the losses are reduced to 5%.

Once the 2d problem has been solved, we are ready to approach the 3d model. In
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11.8 material. Naive approach (top), initial guess through projection (center) and
optimized pattern (bottom). Insets show the exact geometry at the Y corner.

this case, the thickness of the slab has been considered to be d = a and the geometry

shown in figure 6.18 has been surrounded by a PML region. All in all, the total

number of degrees of freedom for the forward simulation problem before the MSHDG
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reduction is around 600 million, considering the nodal points times the components

of U.

The cylindrical extension of the same three patterns discussed so far has been

considered within the 3d simulation setting. As expected, the performance of all the

patterns is significantly worse. However, the 2d optimized pattern still provides a

much higher efficiency than either the naive hole. Figure 6.20 shows the H. solution

states on a cut over the horizontal plane corresponding to half of the thickness re-

spectively for the solution states with each one of the three geometries: the rounded

hole, its projection into our pixelized domain and the 2d optimal pattern. The color

map has been changed to facilitate the identification of the propagated field.

The perfectly rounded hole drilled on the silicon slab will now have only 0.32 as

transmission fraction and thus yields 68% in losses. Similarly, the projected hole

onto the pixelized domain increases the losses up to 75%. On the other hand, the 2d

optimized pattern will maintain a decent performance with only 39% of losses.

Table 6.3 summarizes the transmission fraction values for each case. Note that

the pattern optimized for the 2d case improves the transmission in the 3d case by a

factor of two.

Table 6.3: Summary of results for the 2d/3d Y waveguide bend.
Pattern Rounded Hole Pixel Projection 2d Optimized

Transmission (2d) % 87 84 95
Transmission (3d) % 32 25 61

6.4 Concluding Remarks

This chapter has presented several optimal designs that have been computed by bring-

ing together the numerical simulation capability and the design optimization tool. We

have thereby illustratively proven the validity of this new design paradigm by obtain-

ing practical patterns. It is particularly remarkable that discrete optimization has

been carried out on problems which are already challenging just to simulate numeri-

cally. Furthermore, the computational efficiency of these methods has allowed us to
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Figure 6.20: H_ solution field for a 3d TE polarized PC slab waveguide with a Y
bend for wa/27rc = 0.225. The radii of the holes are 0.3a and the thickness of the
e = 11.8 slab is a. Naive approach (top), initial guess through projection (center)
and 2d optimized pattern (bottom).
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choose fine enough pixelizations to describe the design region with up to a couple of

thousand pixels, both in 2d and 3d.

Firstly, we have focused on the design of an invisibility cloak in 2d. Optimal

patterns with reductions of the scattered field of over 97% have been found for both

cylindric and carpet cloaks. The materials (PI and aluminum) as well as the shapes

of the pixels for each pattern have been chosen to facilitate as much as possible their

fabrication.

In addition to the cloaking problem, the design of improved sharp waveguide bends

has also been considered. In a two dimensional setting, we have found a discrete pat-

tern that reduces the transmission losses down to 2% for specific frequencies around

a 90 degree bend of a TM polarized squarely symmetric PC waveguide. Analogously,

full 3d optimal patterns have been found for sharp bends on cylindric fibers, for which

the transmission fraction has risen to 0.88.

Moreover, the same techniques have been used for a 3d Y waveguide bend on a

TE polarized PC slab. The simulations in 3d consider Maxwell's equations instead.

The optimal patterns have been obtained in 2d and tested through the 3d simulations

offering improvements of the transmission fraction from 0.32 to 0.61 in the 3d setting

and for specific frequencies. In order to improve this results even further, we could

consider the optimization of the upper and lower 60 degree bends as well as the inner

sides of the Y.

Similarly, additional applications within electromagnetics, acoustics and elasticity

could also benefit from this design capability. Besides, more relevant patterns would

be found if robustness constraints were included in the design formulation, both with

respect to the material properties as well as the targeted frequency.
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Chapter7

Summary and Future Work

Science never solves a prob-
lem without creating ten more.

-George Bernard Shaw

Last but not least, this chapter summarizes the work presented in this thesis pointing

out the main contributions as well as listing potential future lines of research. Also,

several physical applications are discussed that have not been considered here and

that could benefit from this research.

7.1 Conclusions

The main goal of the research presented in this thesis has been to devise a capabil-

ity for the automatic, robust and practical design of materials that present desired

features for wave propagation control. Such capability has been obtained by devel-

oping a set of multiscale methods for the numerical simulation of wave propagation

problems together with a binary optimization algorithm for design.

Firstly, the numerical simulation capability by itself is one of the main contribu-

tions. The organized division of the computational domain into equivalent subdo-

mains allows for a static condensation of the degrees of freedom that reduces the size

of the global problem from O(n) to O(n1 / 2 ) in 2d and O(n2/13 ) in 3d. For given compu-

tational resources, this approach allows for the simulation of larger problems in 2d and
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in 3d. This technique has been implemented for Helmholtz's and Maxwell's equations

providing a robust, convergent and efficient procedure for the numerical computation

of wave propagation problems in the context of acoustics and electromagnetics. More-

over, the same techniques have been adapted for a nonlinear hybridized resolution of

wave eigenvalue problems, again in 2d and 3d. As a result, problems with a total of

up to several hundred million degrees of freedom have been solved without the use

of supercomputers. The key advantage of these methodologies lie in the re-use of

the local solutions. Note that the static condensation of the volumetric degrees of

freedom into the boundary traces is carried out only for a handful of subelements.

In contrast to other parallelization strategies, including efficient direct solvers, we

exploit the physics and only solve one representative of each class.

In addition, we have developed a binary optimization procedure. This design

approach goes beyond the classical heuristics of discrete optimization since it takes

advantage of the actual physics of the problem. The use of reduced basis approxima-

tions lets us take advantage of the inherent physics and helps us further reduce the

computational cost at each iteration. Furthermore, this approach guarantees the bi-

nary nature of all the solutions found, bringing a rather common and often intractable

manufacturability constraint into the formulation of the design problem. Note that

this optimization technique helps improve given patterns and therefore can always be

used as a post-processing methodology for any candidate material obtained through

any alternative technique.

The combination of the aforementioned techniques results in the most relevant

contribution of this thesis. In fact, bringing together a numerical technique efficient

enough that makes design optimization possible, even in 3d, with a binary optimiza-

tion method that numerically obtains patterns that meet this basic manufacturing

constraint, is novel, unique and promising. On top of that, the optimization algo-

rithm benefits greatly from the multiscale methodology since, at each iteration, none

or just a few subelements need to be recomputed (depending on the definition of the

subelements) and the reassembly of the global matrix is modified only locally, for a

handful of nonzero entries of the global matrix.
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Finally, the validity and effectiveness of this approach has been proved by actually

designing patterns that are not intuitive yet very effective in terms of optimality

criteria. In particular, circular and carpet cloaks as well as low loss acoustic and

electromagnetic waveguide bends, in 2d and remarkably in 3d, have been found. The

design of these novel devices are of high interest in the structured materials and

metamaterials communities and therefore they have been designed with a focus on

accurately meeting most fabrication requirements pointed out by experimentalists.

These include the choice of the component materials for each application, the ranges

of frequencies of interest, the size of the patterns, the shape of the pixels, and of the

domains of interest. In conclusion, all these patterns are not only unintuitive but they

also provide the desired features optimally, while maintaining their discrete nature.

7.2 Summary of contributions

The contributions of this thesis can be synthesized as:

" Development of multiscale numerical methods that take advantage of repeated

geometries to enable the resolution of larger problems for given computational

resources:

- formulation and implementation of a multiscale CG methodology in 2d

and 3d for Helmholtz's equation,

- formulation and implementation of a multiscale HDG methodology for

Helmholtz's and Maxwell's equations in 2d/3d;

" Development of a nonlinear multiscale numerical method for eigenvalue prob-

lems with repeated patterns:

- formulation and implementation of a nonlinear multiscale CG methodology

for the eigenvalue Helmholtz's equation in 2d/3d,

- extension of the code for periodic problems imposing Bloch's theorem;

" development of a tractable algorithm for the discrete design optimization of

heterogeneous materials:
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- introduction of a binary gradient coordinate descent heuristic approach,

- use of reduced basis approximation to improve the efficiency,

- combination with the simulation tools to enhance the design method;

* demonstration of the design capability for circular and carpet electromagnetic

cloaks in 2d; and

" demonstration of the design capability on the creation of patterns for highly

efficient sharp bends in 2d PC waveguides and 3d fibers and PC slabs.

7.3 Future Work

Many avenues for further research relating to these methods are apparent. Firstly, we

list the ideas that could potentially enhance the multiscale simulation methodology.

We then look at future work involving the optimization procedure and finally conclude

by listing several applications that could potentially benefit from this research.

7.3.1 Numerical simulation

We begin by discussing future lines of research regarding the numerical simulation of

wave propagation problems. These include the consideration of high order meshes,

the extension to nested multiscale methods, the parallelized implementation of the

method, the formulation of the MSHDG method for eigenvalues and extending the

techniques to other equations.

Use of high-order curved meshes

Most of the problems of interest contain geometric details at very different scales.

That is partially the reason why multiscale methods are a powerful approach for

their numerical resolution. Nevertheless, the local discretizations that have been

considered throughout the work presented in this thesis do not use high-order de-

scriptions of the geometries. This is currently a very active field of research by itself

and different methodologies have been successfully implemented, such as linear elas-
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ticity deformation of meshes [125] as well as more advanced techniques that can truly

describe complex high-order geometries both in 2d [133,134], as well as in 3d [63].

The consideration of this methodologies could further reduce the degrees of free-

dom of the local problems, which most of the times are overdimensioned in order

to ensure a good description of the geometry. Moreover, the development of higher

quality meshes, especially for 3d problems, would also help reduce the total number

of degrees of freedom of the local problems, potentially leading to choices of larger

subelements.

Furthermore, we have only considered structured macrodiscretizations. The ex-

tension of the multiscale methodologies for unstructured subdomain decompositions

would generalize the simulation methods. In particular, note that for linear PDEs

the Jacobian does not depend on the position or the solution fields and thus it can

be pulled out from the integrals. Then, by properly defining the map from each

subelement into a reference element, only one representative of each class of reference

subelements needs to be solved.

Extension to nested multiscale approaches

The multiscale methods provide equivalent numerical approximations to their local

solvers (CG and HDG respectively) with considerable savings in the computational

effort. This is achieved by decomposing the governing equation on a bounded domain

into a number of local subproblems on subdomains and introducing the Lagrange

multipliers to glue the approximation across subdomain interfaces. As we have seen,

only a few local subproblems need to be solved and are trivially parallelizable. Thus,

the main computational effort comes when solving the global system. It is therefore

desired that the size of the subelements is as large as possible (then the amount

of Lagrange multipliers is reduced), but if they are chosen too large, then the local

problems become limiting in terms of computational effort.

Similarly to how nested multigrid methods work [141], the implementation of a

nested multiscale approach could provide an even more considerable reduction of the

computational effort since several levels of macrodiscretization could be considered. In
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the presence of repeated patterns (as an example, recall the PC waveguides) one could

devise a first level of macrodecomposition into subelements that contain 8 x 8 rods.

These local problems might seem too large to solve by direct solvers and could already

be limiting the computational effort; nevertheless, if each of the representatives is also

solved through another level of macrodiscretization into 2 x 2 rods, a global reduction

of the degrees of freedom could be achieved.

This is a very interesting area of further research, but note that the decision of

how many levels of discretization minimize the computational effort seems to be very

problem dependent. Therefore, a somehow automated manner of making such deci-

sion could certainly enhance the multiscale approach. Furthermore, when choosing

the size of the subproblems there is a trade-off between the total number of degrees of

freedom (the larger the subdomains, the less degrees of freedom) and the density of

the system of equations (the larger the subdomains, the higher the order considered

and thus the denser the system becomes) that should be carefully analyzed in order

to find optimal sizes of subelements.

Extend the implementation with parallelization and iterative solvers

All the simulation results that have been presented here have been obtained through

direct solvers using Matlab@. For the large 3d problems with over 500m degrees of

freedom, a single linux machine with four eight-core AMD Opteron 6320 CPUs, each

one with a clock frequency of 2.8GHz, 24MB of cache and a total memory of 512GB

has been used. The 32 cores allow for the absolutely parallel resolution of the local

problems. Nevertheless, the limiting factor that does not let us go to larger problems

is the RAM required for solving the global system of equations. Going to more power-

ful computers is not really a solution to this issue given the. poor scalability of the size

of the system with respect to the size of the problem (especially in 3d). However, a

parallel implementation of the multiscale methods as well as the use of iterative solvers

with preconditioners could allow the resolution of significantly larger problems if one

is willing to trade off wall-clock time. The parallel implementation through the use

of iterative solvers on the CPU has already been successfully developed for implicit
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DG methods [126] as well as the HDG method [135]. An equivalent extension for

the multiscale methods presented here would significantly contribute to the resolu-

tion of even larger wave propagation problems. It might be necessary to consider

the time dependent wave equation since devising preconditioners for Helmholtz's and

Maxwell's equations in 3d is inherently complicated. Furthermore, the static con-

densation carried out from each local subelement into the global system may also be

challenging to consider in parallel.

Develop a nonlinear MSHDG for 3d Maxwell's eigenproblem

Chapter 4 introduces the extension of the multiscale CG method presented in chapter

2 for Helmholtz's equations in 2d and 3d. Similarly, the MSHDG method that has

been developed in chapter 3 could also be adapted to solve the eigenvalue Maxwell's

equations also in 3d. The eigenproblem formulation of Maxwell's equation would

be analogously converted into a nonlinear formulation in exchange of a significant

reduction of the size of the problem.

In fact, the electromagnetics community has also shown a big interest on band

diagrams for 3d problems. In this case, TE and TM modes cannot be decoupled

and finding bandgaps that simultaneously impede the transmission of electric and

magnetic pulses becomes harder. In particular, full 3d Photonic Crystals have only

recently captured the attention of the community because such gaps are narrow for

simple structures.

Extend the techniques to other equations

The multiscale methods introduced in this thesis have been developed and imple-

mented for frequency domain waves described by Helmholtz's and Maxwell's equa-

tions. This capability could be easily extended to time domain wave equations as

well as nonlinear wave equations. Firstly, elastic wave equations would allow us to

model computational mechanics and thus design materials for the seismic wave miti-

gation as well as devices for the ultrasonic wave control. This equation is linear and

describes the propagation of waves in an elastic medium. Similarly, there are several

wave equations in the context of fluid dynamics. In particular, the shallow water
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equations are a set of nonlinear hyperbolic equations that describe the flow below

a pressure surface in a fluid (wavelength much larger than depth). These equations

model tides, tsunamis, waves incoming ports and other large length scale waves on

fluids. The design of submerged ports as well as tsunami dispersers could be obtained

using these equations.

Furthermore, although multiscale methods have already been implemented for

other equations such as elliptic coercive equations for flow in porous media [69] or

computational mechanics [71], problems governed by other physics could greatly ben-

efit from the adoption of the approach presented in this thesis. Firstly, the clever

identification and choice of a macrodiscretization with equivalent subelements can

help reduce the global number of degrees of freedom compared to any CG, DG or

HDG based discretization considered, without jeopardizing the quality of the approx-

imation. This technique could not only be especially suitable for the numerical com-

putation of flows in porous media (note the pattern repetition therein), but it could

also be very helpful for problems with homogeneous materials, such as Navier-Stokes

equations for aerodynamics or aeroacoustics, for instance.

Special attention needs to be paid for nonlinear equations since the reuse of the

local subelement information might be complicated given the presence of a Jacobian

that is no longer independent of the solution field. If the local subelements are not

reused, these multiscale techniques would not differ significantly from the already

existing domain decomposition techniques, e.g. [135].

7.3.2 Binary design optimization methods

We now point out the main areas of future research in terms of the design optimization

methodology. Mainly, we discuss the inclusion of other manufacturability constraints,

the design optimization over ranges of frequencies and the consideration of pixel

adaptive approaches.

174



Include further manufacturability constraints

It is often the case that the computed optimal solution of an optimization problem

cannot be implemented directly, irrespective of data accuracy, due to either techno-

logical limitations, the deliberate simplification of a model to keep it tractable, and/or

human factors. Fabricability constraints are typically very difficult to include in the

optimization formulations because of their complexity and ambiguity, yet they are

crucial for the optimal patterns to be valid and practical. A fabrication adaptivity

methodology has been introduced in [95], whereby a conservative but robust optimal

solution is sought that allows the robust optimum to be manually tunable according

to manufacturability concerns.

The extension of the work presented in [95] or other robust design ideas as the

ones presented in [15,20] to the binary design optimization algorithm would make

the results more realizable. Solution patterns are already binary, which is one of the

main fabrication concerns, but it might be the case that suspended pixels show up

in the solution. Similarly, the precision at which pixels can be fabricated is bounded

but not zero and the current optima do not have any guarantee of performance if the

patterns are not matched exactly.

Extend methodologies for optimization of frequency ranges

The optimization algorithm that has been presented in this thesis considers objec-

tive functions that involve the solution field u(x, e) for a fixed frequency wo. When

designing patterns for wave propagation control it is often the case that the devices

sought are more interesting if valid for a range of frequencies. Incorporating solutions

u for a few similar frequencies in the objective function as in [60] can be done at a

computational cost factor of O(n) where n, is the number of targeted frequencies.

Robust optimization ideas with respect to the frequency w instead of the design pa-

rameters e could also enhance the optimization methodology significantly. Similarly,

the use of reduced basis could also be considered, since close enough frequencies never

provide arbitrarily different responses. Alternatively, the objective function could in-

clude terms towards the minimization of the sensitivities of the solution /ulOw.
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Pixel adaptivity

The illustrative examples presented in chapter 6 have considered pixelizations of the

design domain that try to be as close as possible to fabricable patterns. It has

already been discussed why for computational practicality the number of pixels needs

to be relatively small. There is a trade-off between the number of pixels considered

(the more, the potentially better quality pattern) and the computational cost of

getting an optimal solution (more iterations required plus each iteration is more

expensive). It would thus be desired to follow an adaptive methodology: start from

several random initial guesses on a rather coarse pixelization; then, the best solution

is chosen, the pixelization is refined around the boundaries of the current pattern and

the optimization restarted from the projection of the previous optimal state into the

refined pixelization. In this manner, the number of pixels could be consistently kept

at around a thousand whereas the precision of the pattern could be enhanced.

7.3.3 Potential applications of interest

Finally, let us now mention some of the physical applications that have not been

considered for design in this thesis and that could greatly benefit from the method-

ologies developed herein. The simulation of superlenses [47,56,166] or nano and mi-

crocavities [2,88,157] have been included in chapter 2 and all these applications could

also use the binary optimization procedure for design. Furthermore, acoustic hologra-

phy devices [89] could be designed. These are materials that can control the phase at

which an acoustic wave is reflected based on the angle of incidence. Similarly, the de-

sign of claddings for Photonic Crystal fibers as in [78] could also be enhanced through

the methodology here presented. Also, the design of sound bullets [148] for terrain

inspection and medical purposes, ultrasound focusing devices [165] or nanoantennas

with improved optical performance [79] is of high interest. There are also natural

extensions of this field to the heat equation, with particular interest in the design of

thermodynamic cloaks and heat flux concentrators [65,140].

Also, there are problems where periodicity can be assumed and only the simulation

and design optimization of a certain unit cell is needed. The multiscale forward
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simulation tool can also be used there (the eigenvalue solver of chapter 4) as well as

the binary design optimization procedure for their design process. Examples of these

problems are photonic/acoustic/elastic bandgap as in [68,96,98], among many others.

Within the last few years, as an extension of Photonic Crystals and electronics,

Plasmonics has attracted attention from researchers within the wave propagation

community. Plasmonics studies the coupling of light to charges (like electrons) in

metals. This coupling allows breaking the diffraction limit through geometric details

at the subwavelength scale [118], unlike Photonic Crystals, which need to be several

wavelengths long. Applications of Plasmonics to photovoltaic devices [7], nanolithog-

raphy [150] and nanooptical devices [93] have also raised the interest of this field.

Additionally, there is also a large set of potential uses of structured materials

for wave propagation in elastic media that are beyond the scope of this thesis. Some

examples are earthquake filters [77], nonlinear shock dispersers [61,68] or elastic cloaks

[58]. Moreover, negative Poisson's ratio materials, first introduced in [84, 85], are

metamaterials that can offer remarkably large volumetric changes under small stresses

[55,149, 155, 156,159].

All the applications that have just been mentioned are a small representation of

possible wave control applications of interest. They all require the simulation of a

large, finite domain and the optimization of a subregion therein, and therefore should

benefit from this work.

The important thing is
never to stop questioning.

-Albert Einstein
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Appendix

Perfectly Matched Layers for Multiscale
methods

Wave propagation problems often occur in unbounded domains. However, for the

numerical solution of these problems, a finite and bounded computational domain

needs to be defined. In particular, the choice of boundary conditions is not trivial

if all reflections want to be avoided. All in all, the boundary conditions of a wave

propagation problem modeled through Helmholtz's equation should be considered as

Sommerfeld radiation conditions [146]:

V - (a(x)Vu) + k2b(x)u = f in Rd
d-1 49U (A.1)

lim |xI 2 - - iku = 0 Vx = x jx
JxJ-+OO (a|xJ

where a, b are define once the material properties and the frequency are fixed, d E

{2, 3} represents the dimension of the physical domain and i = x/'- T denotes the

imaginary unit.

The truncation of this boundary condition at a given external non infinite bound-

ary corresponds to the so-called first-order absorbing boundary conditions. These

type of boundary conditions can be accurate for some scattered field problems but

clearly provide a significant source of error, especially if the boundaries are not too

faraway, in terms of wavelengths, from the regions of interest.

An alternative boundary conditions treatment for wave propagation problems is

given by Perfectly Matched Layers, or just PMLs. The main purpose of these arti-

ficial layers of computational domain is to avoid reflections by damping the physical
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solution to zero before it reaches the actual boundaries. J. Berenger proposed in [17]

a methodology whereby creating a transformation of the derivative operators that

included imaginary values, the solution field was damped.

More specifically, if we want to consider PMLs that absorb waves propagating

in the x direction, the following transformation of the derivative operator through a

change of variables needs to be included in the equation for that part of the domain:

S 10 _ 1 0
-9 + -(A.2)

0X sXax 1- 9X)x

and equivalently for directions y or z. Note that w is the frequency and c-(x) some

auxiliary function that only depends on the spatial variable x and that will define

the damping. Also note that wherever o > 0, waves propagating in x are attenuated.

For notation purposes, let us now define

~ a a) = (1 09 1 a 1 09 A3

and now the Helmholtz problem defined by A. 1 can be truncated at a domain of

interest Q0 plus several layers of PML around it Qpm, to form a computational domain

Q = Qo U Qpml. Then, the equation that governs the problem in fo corresponds to

(a- , ay, uz) = (0, 0, 0), whereas the one on the right and left sides of Qpmj will consider

ax > 0, the ones on the top and bottom sides of Qpmi will take o-, > 0 and the front

and back sides of Qpm, will have o-, > 0. Similarly, the areas where two PML regions

intersect will have the corresponding two components of - positive and for the corner

regions, the three components will be greater than zero.

All in all, the problem can be written as:

V - (aFVu) + bssyszu= f, in Q C Rd (A.4)

anything, e.g. : u = 0 on oQ J
where

syszsx 0 0

F= 0 sxsZsY 1  0 I (A.5)

0 0 ssysZ

The thickness of the layers could be arbitrarily small if the values of a- are chosen
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large enough. However, a very large contrast of values of a leads to reflections at those

points. It is therefore essential to choose o-x(x - xo1), -y (Iy - yo1) and o-,(Iz - zol) to

be non constant functions that slowly and smoothly increase with the distance to the

PML boundary position.

Furthermore, the exact same transformation on the derivative operators needs

to be considered for the PMLs when Maxwell's equations are solved. All in all, we

replace V +- V, which can also be written analogously to equation A.4 as:

FV x H - (iwa(x) + b(x))sxsYszE = J, in 1
FV x E + iwc(x)sxsYszH = 0, in Q . (A.6)

anything, e.g. : n x E = 0, ono J9
More advanced PMLs have been devised in [83] for the case of heterogeneous

materials or more precisely PC waveguides. The choice of the functions s presented

there allow for a reduction of the PML width of 50% to 80% taking advantage of the

heterogeneity of the waveguides and the output wave pattern [83]. When considering

the Perfectly Matched Layers formulations within the multiscale methodologies, this

dependence of the stretching functions s on the distance to the PML boundary can

jeopardize the efficiency of the method. This approach can easily be included within

the Multiscale methodologies, although in this case, every extra subelement used in

the PML region needs to be solved separately.

Recall that we will only be solving a few different local problems, corresponding

to representatives of each class of geometry. However, for every PML subelement,

the governing equation is different (note that x - x0 is different for every subelement,

and equivalently for y - yo, z - zo). In order to be able to reuse the resolution of

local subelements many times, firstly we choose the local discretization of all the

subelements forming the PML region to be the same. For this specific case, note that

all subelements aligned along the vertical column of the right side boundary of Q0

belong to the same class and thus only one representative needs to be solved. That

can be extended to every of the 4 boundary edges in 2d or the 6 faces in 3d. One

more element per corner needs to be included.
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One more consideration to have in mind is the fact that the thickness of the PML

needs to be of the order of several wavelengths, to avoid reflections that may affect the

solution field in Q0. This would lead us to include more than one layer of subelements

one next to the other. Note that every layer would require one more representative

to be solved, since every layer has a different function s (there the name PM-Layers).

It is though preferable to create a wider element that can take the desired amount of

wavelengths than to consider multiple layers of subelements.

Finally, sometimes the domain boundaries 9Q0 might not be aligned with the wave

direction k. In this situation, it is preferable to inscribe Q0 inside a rectangle aligned

with k and then attach to it QPa*

All these tricks might depend on the specific problem that we want to solve but

it is important that these considerations are taken into account in order to minimize

the computational cost increase produced by the use of PMLs. In all the examples

simulated in this thesis, the number of local subelements required for the problem

itself plus the PML never exceeds 15, which makes them fully parallelizable provided

16 or more cores are available.
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AppendixB

Multiscale methods

This appendix provides some theoretical results, theorems and proofs corresponding

to the multiscale simulation methods. The intention is to complete the statements

and derivations of chapters 2, 3 and 4 as well as facilitating their reading.

Firstly, let us show the existence and uniqueness of the MSCG approximate solu-

tion, as well as the relationship between the solutions to this method and a classical

CG approach. The equivalent theorem and proof for the MSHDG method can also

be derived.

Theorem B.1 There exists a unique function (Uh, A, qh) in the space Yh x Vh(gD) x
Wh satisfying the primal formulation 2.14. Moreover,

Uh = uh on Q, A = uh on S (B.1)

where Uh E Xh(gD) is the solution to formulation 2.9.

Proof Since A E Vh(gD) and Uh e Yh, it follows from (2.14b) that Uh E Xh(gD)-

Moreover, since Xh(O) E Yh, by 2.14a and 2.15 we have

(aVUh, Vv)n + (bUh,v)a - ([qh],v)e, = (f,v)Q, Vv E Xh(O). (B.2)

We next note from the definition of the space Vh(O) that it = vIC, belongs to Vh(O)

whenever v E Xh(O). Hence, the jump condition (2.14c) implies that

(Jqhl, v) e = (gN, v)FN, Vv E Xh(O). (B.3)

It thus follows from B.2 and B.3 that

I (aVUh, Vv)n + (bUh, v)a = (f, v) + (gN, V)FN, Vv E Xh(O). (B.4)
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By the uniqueness of the approximate solution of the CG method, we immediately

obtain that Uh = Uh and, as a consequence, that A = Uh on Eh.

It remains to prove that the function qh exists and is unique. By (2.14a) and the

uniqueness of Uh, this is equivalent to proving that the trivial solution is the only

solution of
M

Z (qh, v)aom = 0, VV Yh. (B.5)
m=1

Since qh E Wh, there is a w E Yh such that qhlanm = wjaQm for all Qm E T. Taking

v = w in the above equation, we have that qh = 0. El

Let us now state and prove that the decomposition considered for the multiscale

methods indeed provides the solution to the combined problem.

Theorem B.2 Let uf and u,7 be solutions of the following problems, respectively.

-V- (aVuf) + bk 2U - f, in Qm  (B.6)

uf = 0, onOm '

-V- (aVun) + bk2 U, = 0, inQm  (B7)

Un = o o 8m

Then, u = Uf + un is the solution of:

-V - (aVu) + bk2 U=f, inQm  (-
. (B.8)

u = 77, on aQM

Proof Let us consider u =f +u, and plug it in equation B.8.

-V - (aVuf + u.) + bk2 (uf + u,7) = f, in Qm

(B.9)

uf + u, = 7, on fOm

Now the first line, we use linearity of the operator V as well as bk2 to split it into two

additive blocks. In the second equation we use that uf = 0 on 9Q and u, = on aQ

from equations B.6 and B.7. All in all,

[-V - (aVuf) + bk2 uf] + [-V- (aVu.) + bk2u,] = f, in Qm

(B.10)

0+,q=77, on6Q m
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Finally, let us use again B.6 and B.7 to replace [-V - (aVuf) + bk 2uf] by f and

[-V - (aVue) + bk2 U?] by 0 to obtain an identity, proving the statement. El

We now prove the uniqueness of the solution for the weak dual formulation of the

MSCG. This result could equivalently be proven for the MSHDG method.
Theorem B.3 Let (Uh, A, qh) be the solution of the primal formulation 2.14. Then

Uh=UA+Uf, and qh= qx + qf. (B.11)

Moreover, the Lagrange multiplier A E Vh(gD) is the unique solution of

ah(A, p) = bh(A), VP Vh (0), (B.12)

where

ah(7, P) = (aVU, VU,)n + (bU 7, U,), (B.13)
bh(P) = (f, U,)n + (gN, P)rN(

Proof We first note from (2.16a) and (2.18a) that

(aV(U + Uf), Vv)o + (b(U + Uf), v),

- ([q\ + qf], v), = (f, v), Vv E Xh(O). (B.14)

This equation and Theorem 1 immediately yield the first result (B.11).

The first result implies that (2.14c) can be rewritten as

([qA + qf]I, P), = (gN, A)rN, Vp E Vh(0). (B.15)

We next note from (2.18b) and (2.18a) that

([qa],p)e, = ([q.],Uy)e,

= (aVUA, VU)n + (bUA, U,t)f. (B.16)

Similarly, from (2.18b), (2.16a), (2.18a), and (2.16b) we have

(Jqf, II)e, = (qf], U

= -(f, UI)n + (aVU, VU)n + (bUf, Ut)

= -(f, U1)Q + ([q41, Uf)Eh

= -(f, Uz)Q. (B.17)

The second result (B.12) follows from (B.15)-(B.17). This completes the proof. 0
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Also, equivalent results can also be stated for non-conforming discretizations.

Proofs for theorems B.4 and B.5 are analogous to theorems B.1 and B.3.

Theorem B.A There exists a unique function (UO A, qh0f) in the space Y" ' x

Vh" "(gD) x Wh 1 satisfying the primal formulation (2.43). Moreover,

Uon = U on on Qe. A. =Uneon (B.18)

Theorem B.5 Let (Uon, non, qo) be the solution of the primal formulation 2.14.
Then

Un " Unon + U n". (B.19)

Moreover, the Lagrange multiplier Anon V," "(gD) is the unique solution of

a"on(A""", ) = bon(), Vp E V"on(0), (B.20)

where anon and b"o" are given by

ah *(7, A) = (aVU"o", VU,"*")o + (bU,"*, U,"*"), (B.21)
bnon(/) = (f, Un"*). + (gN, p)FN'

for all q, p E Von".

Finally, let us algebraically obtain the nonlinear expression that is used for the

MSCG method when the eigenvalue Helmholtz's equation wants to be solved.

Theorem B.6 There exists -yh E R independent of the polynomial degree of approx-
imation that satisfies

a(A, ) = (( - -YhUW) UA, U) Vg E Vh (B.22)

and such that (-Yh, uh) is a valid eigenpair of problem 4.1.

Proof (sketch) Skipping all functional analysis details we sketch-prove here the

derivation of B.22. Firstly, recall that we can write Uh = UA + Uwf so that 4.10

holds. Let us then set f = -yhUh and, as a result, Uh = U\ + Uw(-yhUh). Rearranging

terms we obtain Uh = (I -- yhUw)- 1UA, converting 4.10 into B.22. 1:1
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