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ABSTRACT

The effects of collisions on trapped particle modes in tandem mirrors

are analyzed. Two regimes are considered, a low collisionality regime,

i .
w e > v and a high collisionality regime, v, < w < Ve© The magnetic

* i

geometry of the equilibrium is left arbitrary and a pitch angle scattering

operator is used to model the effects of collisions. For w > ve electron

collisions are found to destabilize an otherwise stable negative energy
wave., Because of a boundary layer phenomenon the growth rate scales as

172 } 72 + th i
(Velw*l) / (Bmin/Bmax) / La/(La Lc) where BIll (Bmax) are the minimum

in
(maximum) values of the magnetic field and L (L ) is the length of the
a c¢

anchor (central cell) region. For vi < w < v two modes are obtained: (a) a
e

flute mode whose stability is determined by the flux tube integral of the
beta weighted curvature drive and (b) a dissipative trapped ion mode driven
unstable by the difference in collisionality between electrons and ions.

The flute mode persists as w « “i < v while the dissipative trapped ion
e

mode is damped by increasing ion collisionality.




I. INTRODUCTION

The present designs for tandem mirrors contain regions of unfavorable
curvature linked to stable minimum B regions. At sufficiently low beta the
field-line bending energy prévents the localization of an MHD mode to a bad
curvature region and forces the eigenfunction to be flutelike through the
machine. MHD stability is then determined by the average curvature drive
which is designed to be favorable. Using a collisionles_s, high mode number
theory it was shown, however, that such configurations were unstable to

electrostatic modes which localize in regions of bad curvature and fall to

1Y)

near zero in regions of good curvature.( This localization is effected
without the energy cost of creating perturbed magnetic field. The growth
rate of such instabilities becomes comparable to the MHD growth rate as the
number of particles linking the regions of good and bad curvature becomes

small. In this paper we consider the effects of collisions on such modes.

We first consider a situation in which the collision frequency is small
compared to the mode frequency. This is of interest for a case in which the
trapped particle mode has been stabilized by the charge separation effects
due to the spatial separation of electron and ion bounce points. This
spatial separation of bounce points is incorporated in the current MFTF-B
design. Such a stabilization mechanism creates a negative energy wave which
can be destabilized by the dissipative effects of electron collisions. In
Section III we calculate this destabilization using a boundary layer

analysis.

In Section IV we consider the limit in which the collision frequency of
electrons is much greater than the mode frequency. In this regime, which is
of relevance to present experiments, there are two modes: an interchange

mode whose stability depends on the beta weighted curvature drive and the

dissipative trapped ion mode. This mode has been studied theoretically in

(2-10) (11)
tokamaks and experimentally in the Columbia Linear Machine.

the Columbia experiment the mode was found to saturate at levels of

én/n<25%. -




We begin in Section II with a discussion of the bounce averaged

collisional drift kinetic equation and its boundary conditions in the
context of a model equilibrium. We finish the paper with a summary and

discussion of the results in Section V.

II. EQUILIBRIUM AND PERTURBED EQUATIONS

We consider a tandem mirror equilibrium consisting of cells linked by
passing particles. Within each cell the magnetic field is assumed to vary
with a scale length Lj where j labels the cell (central cell, plug, anchor,

etc.). The cells are separated by field maxima whose scale length ALB is

assumed to be small compared to the cell scale length Lj' We assume the

potential to be a constant éxcept at the end of the machine where sharp
positive and negative electrostatic maxima confine particles. The
equilibrium distribution functions are taken to be equal temperature and

density Maxwellians for both species.

In this model equilibrium configuration energy scattering is less
important than pitch angle scattering and is therefore neglected. 1In
particular, a pitch angle scattering event can convert a trapped particle
into a passing particle and thus modify the response of the distribution
function to the perturbing potential.

- 4
The perturbed distribution function f, is given by (4)
f = f exp(iS(a,B) - iwt)
where
. 3F,
f = q¢ + Joh. (1)

d¢
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In Eq, (1) h is the non-~adiabatic portion of the perturbed distribution
function and is the solution to the drift kinetic equation

aF 3 x VS * V'F,
R = - o _
(o - wd + iv'lg v )h ol Py = J Joqé + iC(h) (2)
10)

where C(h) is pitch angle scattering operator,

l/!

= (1 - AB) 3 /1 3h
iC(h) g +iv -—-—B———— "a—x [ 1(1 - AB) -ﬁ] .

We 1list below the definitions of the terms which appear in Eq. (1) - (2):
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In Eq. (2) the prime on the spatial gradient signifies that € and u are to

Hjm

H(z) -1

N

N

[V
be held fixed in the differentiation. All perturbed quantities, £, are

assumed to vary like § = §(e,u,a,B,2) exp (iS - iwt) where S = mOB + gkc) is
a constant along a field line and | VvV S | & >> |VE|. This reflects a
perturbation with short perpendicular wavelengths compared to equilibrium
scale lengths while allowing arbitrary parallel wavelengths. The wave
frequency, w, is assumed to be less than the gyro frequency. The
equilibrium distribufion function Fo(e,a,8) is independent of & the distance

.along a field line. For simplicity we have restricted ourselves to a purely
electrostatic perturbation and have ignored the compressional magnetic

perturbations.

Because the equilibrium potential ¢ is a constant axially it plays no
)

significant role in Eq. (2). We therefore eliminate it by introducing

the Doppler shifted frequency w’ E

corresponds to a transformation to a frame moving at the local E x B

o
w - w_ .here we =mec (aoo/aa). This

velocity in which the local electric field vanishes. For notational

simplicity we suppress the prime on w in the analysis that follows.
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We now consider cases where the transit time of particles through the
anchor region is short compared to a wave period or an effective collision

time. Expanding h in powers of w/wb the lowest order equation is
iv,,b * Vhy = O, (%)
that is, h° is a constant along a field line: ho = ho(l;e,a,e). The next

order equation averaged over a particle bounce motion yields the constraint

equation which determines h
o

- - aFo v(e) 2 aho
(v - wd)ho = —(w - w,)Joqé 3 ti=——" =% [D(x) e : (5)
t(A)
where
(A) = /(l — AB)‘/'
de
D(A) E/T A(l - AB)Y/? (6)
= 1 ds f
f(A) = = [ ——-———-——(1 —~ X;;Z/’
T
and
aF bx VS » ¥'F ad aF
(o] _ Ml ° _ o _._—9. _2 .
“% e B mQ mC \7a 3c

In the field line integral, the limits of integration are the bounce points,
tb, where B(Lb) = 1/a.

Equation (5) applies to three classes of particles:




(1) passing particles for whom 0<x<1/Bmax

(2) particles trapped in the central cell for whom

(1/B ) <a< (1/B )
max _min

(3) particles trapped in the anchor for whom

a
(I/Bmax) < (I/Bmin)

where B is the maximum field point and BJ is the field minimum in
max min

region j. We distinguish the distribution function ho(x;e,u,s), normalized

A

time t(A), and diffusion coefficient D(A) for each class by the subscripts
p, t(ecc) and t(a) respectively.

The perturbed potential ¢ is determined self consistently through the

quasi-neutrality condition,

0 =Z. q [fd’v q¢ :io +fd’v J,h] . 7N

i,e

Writing the velocity integral in terms of A and e

o 1/B
4nB (m\1/? f [ _ 1
fd’v = — (‘2—> deel/? A da a8/t

o]

we see that in regions where the magnetic field varies slowly the
eigenfunction ¢ will also vary slowly and that ¢ will change where particles

bounce.

We now consider the boundary conditions on h . Since h is independent
) o

of gyrophase (3h /36) = 0 at 6 = 0 where cos 6 = v|| /lgl. The angle © is
o
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the polar angle in the (v|| s XJ_> velocity coordinate system. In terms of

the (e,)) coordinate system the boundary condition at 6 = 0 implies that

o 0 (8)

Because of the high bounce frequency assumption, ho is a constant along a

field line and thus is equal for positive and negative going particles.

i’
plane vl' = 0 which corresponds to 6 = %/2, This implies that (8h°/ae) =0

Thus h 1is symmetric in the (v XJ_) velocity coordinate system about the
o .

at @ = x/2 which in the (e,)A) coordinate system becomes

: aho
- 1/2
(A -amd/r 52 o 0. (9)
B
In particular for deeply trapped particles
3ho
D(1) - 0. (10)
D 1
A
gJ
min

The boundary condition on ho at the boundaries between passing and

trapped particles is determined by the condition that the sum of the fluxes
into the boundary vanish. This is complicated by the existence of two

boundary layers at A = 1/Bmax the separatrix between passing and trapped

particles. We will argue that the contributions of these boundary layers to

the flux condition is small and can be ignored.
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The inner boundary layer is due to the logarithmic divergence in the
bounce period of particles which stagnate at the magnetic field maxima. We

denote the width of this layer by 6 It can be shown that

log °

8 ~ exp (-L/ALB)

A B
log min

where ALB is the magnetic field scale length near the maximum and L is the

length of the center cell or anchor.

The second boundary layer is due to the collisional pitch—-angle
spreading of distribution function perturbations during a particle transit
time. Over the bulk of the distribution function these transit time effects

~

contribute an order (v/mb) modification to the infinite bounce frequency

distribution function, where w z (T/m)?/?/L. We will neglect this
contribution. At the boundary betweén classes of partiéles, however, the
infinite bounce frequency distrfbution function has an unphysical
discontinuous derivative. Within a narrow layer about the separatrix these
discontinuities are resolved by the finite collisional spreading during a
particle transit time. We denote the width of this layer th and estimate

its width by comparing the parallel streaming term to the collision

operator,

- - 1/2
6x_ " —i— . B 1 - I; (11)
B wb max max

where E is a typical field strength within the cell., For a square well E =

Bmin' We assume that the equilibrium parameters are such that the

logarithmic layer lies inside the transit time layer. However we assume that

the transit time layer, 6\ , is itself small compared to either the width of
t

the passing particle region of pitch-angle space or to the width over which
collisions modify the infinite bounce frequency distribution function during

a wave period. We can estimate this last width by comparing the wave
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frequency, w, to the collision operator. In the high collision frequency

limit v ; w, the entire distribution function is affected. 1In the low

collisionality regime we again have a boundary layer phenomenon about the

separatrix between passing and trapped particles. Comparing the wave

frequency to the collision operator gives the width of the collisional

boundary layer

M, B [(%) (1 —E ) E ] 7 . (12)

max max

Comparing the expressions for A) and cxt we see that the transit time

coll
layer is contained within the collisional layer

Mcoll w(

GXt

e'cg >

) l/l >> 1.

We now consider the flux condition and show that the effects of the transit

time layer can be neglected.

In order to calculate the flux condition we begin with the local

statement of particle conservation by the collision operator

fd’v c(h) =0 (13)

where both C and h have not yet been bounce averaged. Integrating over a

flux tube gives

o]

A*
4ev [m\V2 F ah
- 1/2 9 _ oh
0 = deed/ = (2> [ dx 51 [Dp “]
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h|
A
max 3 ah
+§3: /;+ da a_x[Dt(j) 'a—f] + I, (14)
*

where

+ 1
Ay = —7;- - Gxt
max
1
xj =
max Bj
min

and S is the transit time boundary layer region. In the first two

integrals, the infinite bounce frequency equation is valid so h = hy a

constant along a field line. Using the boundary conditions on ho at A =0

and A = 1/B , , Eq.(8) and Eq.(10), gives
min

ah oh -
0=p —F - ZD()————t”’ + I,
A t(j) 3 +
P A =] 3 j +

(15)

where hp and h refer to the passing and trapped portions of ho(x), and

t(3)
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. ‘A+
N |
n Z dr pd2 2 dh(),2)
BT sgn (v j(l =I5 = [‘(1 - AR sr—‘——‘]' (16)
*

Physically the quantities D(3h/3)) are the collisional fluxes of

particles into the transit time boundary layer centered on the separatrix

between passing and trapped regions of velocity space, while the quantity I
represents the rate of change in the number of particles within the transit
time boundary layer integrated over a flux tube. We now argue that the
latter contribution is small and that therefore the fluxes into the transit

time boundary sum to zero to lowest order.

In the low collisionality regime the fluxes into the boundary,

D(3h/3r), are of order D° h/AAcoll where the diffusion coefficient D° 1is
. - -1 - 1/ |
D® = L(B B ) x (1 - B/Bmax) and AX_ ,; 1s given in Eq. (12). The

integral I,'can be estimated by using the kinetic equation and can be shown
~ 1y '
to be smaller than the surface flux by (m/wb) . In the high

-~

collisionality regime the surface fluxes are of order D°h°§ and I, is

smaller than the surface flux by a factor of

172 172 . ~17/2
O A N - /

2 -
max (1 - B/Bma )

(w/wb) x

which we will assume to be small. Thus in both cases we drop the factor I,

giving as the flux condition

dh

3h
b = e |
Do A =] ;Dt(j) ax y=af (17)
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The final boundary condition we require is the continuity of ho at the

separatrix x = Bhax' The distribution function h varies by an amount

dh

Sh” i a=al

within the transit boundary layer. Since |3h°/3x| < lhO/Alcolll this

~

;. )3/ '
implies that |6h/ho| < Gxt/Alcoll ¢ (w/wb) /? << 1., Thus we require that

h -1 (18)
A+ B .
max

p ht(j)

The bounce averaged drift kinetic equation (Eq.(5)) together with the
boundary conditions (Eq.(8), Eq.(10), Eq.(17) and Eq. (18)) and the quasi-
neutrality condition Eq. (7) completes the formal specification of the

problem. We now examine the solutions in two regimes.

III. Low Collisionality Limit

We consider first the situation in which the electron collision
frequency is less than the mode frequency. In this situation electron
collisions are unable to relax the bulk of the perturbed electron
distribution function in pitch angle within a wave period. To lowest order

the non-adiabatic perturbed electron distribution function is

(v - mi) _ 3F
—— 9% 3¢ (19)

ho"-"- —
(0 = wy)

This function varies rapidly however near the separatrix between
passing and trapped particles over a width comparable to leog’ the
logarithmic stagnation boundary layer. The effect of collisions is to

smooth out this rapid variation in h, over a collisional boundary layer. We
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can estimate the width of this layer by assuming that h, changes by unity

over an interval Axcoll and requiring the collision operator to be

comparable to the wave frequency over this layer. Evaluating t(A) and D(1)
at a point within the collisional boundary layer gives for the collisional

width

- - l/z
~ 1 v B B
Meot1 " |ToT (P73 B
co B w max max

where B is a typical magnetic field strength within the cell. We further

assume that the boundary layer width is narrower than the passing particle
-1

width in pitch-angle space, that is, AAcoll < Bmax.

In order to calculate the contribution of collisions to the trapped
particle mode growth rate, we construct a quadratic form by multiplying the

quasi-neutrality relation by ¢* and integrating along a flux tube.

3F,o
= 2 _ﬂ& 3 2 i& 3
0-2:[qf3 d*v |o]* 5— + q [fd’ve*nd, (20)
i,e

In the second integral we note that both ¢* and h are bounded everywhere.
Thus if we exclude the region of phase space which includes the transit time
strip we are in error by terms of order cxti. In this treatment we will
neglect such terms. Using the bounce averaged equation for ho’ Eq. (5),

which is valid outside the transit time strip we write

(v - w*) 3F, ah
. - ivla __o)
ho = =T Wy Je T ax( 3 (21
(w - wd) c

where we have assumed wd << w and neglected the drift frequency in the

collision term. In what follows we only deal with ho’ the non-adiabatic

perturbed distribution function to lowest order in w/wb. For notational

simplicity, we will suppress the zero subscript. For electrons J0 =1,

~hile for fons J, = 1 - (v2k?)/(4a?) and vy = 0, Inserting this in the

11

quadratic form we obtain




0 =1, +1iI, - (22)
where
® oF
_ AV [a: (D7)
I, = ; q'?(i) -/; deel/? A dr t ( vl
k, *v,?
[(W- lﬂ’) + "'ZL‘TT'L‘M“]Wz + w(wy, = 0 )x
i
k v 2
(1 -_.%?IL_) 131t + weay 1317 (23)
and

bn (m) 1/2 f s -, 3 3h
I, = ew —¢ i de €'/?* v(e) dx ¢% — D — . (24)
LA m* \2 o A Y a

In the integration over pitch angle the transit-time strip is excluded

- 3J
l* Z max
/dx= f + f da ‘ (25)
A 3 +
0 Ay ‘
where A, = - Gxt
max
+ 1 :
X* =B +6Xt
max
i 1
lmax- i * (26)
B
min

We analyze this quadratic form using a perturbative approach. We write

the exact solution to the collisional problem as

o=+,
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© =0 +u (27)
where ¢ and w are the exact solution to the collisionless problem and ¢,,
o

w, are the collisional modifications which we assume are small. We write

the quadratic form (Eq. 22) - (24))in a condensed notation as

0 = <¢*(Aw? + Bw + C)o¢> + iwe<¢*C(h)> (28)
where Aw? + Bw + C is the collisionless integral operator and the angular

brackets denote a flux tube integration. Substituting for ¢ and w, (Eq.
(27)), gives to lowest order

= <o*(Aw? *C
0 <¢°(Aw‘ + u,(ZAw° + B))¢°> + iwoe<0°C(h)>

+ <¢§(Aw; + Bu_ +C)¢,>
. .
+ w, [< ¢§(2Am° + B)¢o> + <0, (2Awo + B) ¢, >]. (29)

We examine two cases. If <¢t(2Amo + B)¢o> > <¢:A¢o>w, then to lowest

order

- iw e<¢*C(h)> -
woe ¢°C(h)

w, = : (30)

<¢g(2Amo + B)¢°>

As the collisionless mode nears marginal stability the denominator of this
expression vanishes and wl/w° appears to grow without bound. In this case
we return to Eq. (29) assuming that l”xlwol > |¢,/¢°l and obtain as an

estimate of the growth rate near marginal stability,

. 1w e<¢*C(h)>
(] 4]
wy = -

. (31)
<p*A¢ >

In both of these cases we must evaluate the integral

I, = ew°<¢:C(h)> ~ (32)
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where h is calculated using Eq. (21) with ¢ = ¢° and w = w . For notational
simplicity, however, we suppress the subscripts on ¢o and o in the
discussion that follows. In addition, we are concerned with the physical
situation in which the collisionless trapped particle mode is stable and

therefore take wo to be real.

We evaluate I, by performing a partial integration in A. Writing,
for example, only the A integral over the untrapped region of pitch-angle

space we obtain

*
’ -2 ah
[
Ay Mcoll
- 3h _ 39* _ 2h
= ¢* D3y - f da - D
A=2, Yo
X* . .
i ag* | 2h
fdx T (33)
Ax A)‘coll

In the first integral, which extends over the bulk pitch angle distribution,

we may substitute for h the collisionless value

Wy _ 9F,
ho=-11 _';_ qe¢ 1> (34)
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where we have neglected the particle drift frequency w In the second

d‘
integral which extends over the collisional boundary layer, h departs from
the collisionless value, but ;(A) is approximately constant and the integral

is small compared to the surface term. Explicitly

A Ak
Ap* ah 3g* 3h
_ - max
Mom Blonn Mom Beon '
A=Ay
- dh
= % il
¢ _ D A max
A= X* - “coll
AL
3 ( coll) o “D 3h (35)
L A
Ay max
...1 -
where ALcoll = |Zc - Zml , B(Zm) = Bmax’ B (Zc) = Bmax + A 41 and L is the

cell length. As we show later the maximum value of |D(3h/31)| occurs at A =
Ay -
the surface term and can be neglected. A similar manipulation can be

Thus the second integral is small by at least (ALcoll/L) compared to

performed for the integral over the trapped region of velocity space. We

therefore can write

[ -3
172
I, = ew%} <%> / f de €'/*v(e) x
[+]
A, - AX
* -
f oll % | wy aF
A da Ry Dp 1- 'J‘ qe de
AJ _
3 max ) 2 wg aF
+ da t(d) D 1 -—] q —2
N + 3 t( ) w e 3¢
AL + AX




o _ dh

_ . i - t(3) '

* ¢; Do % A= Ag 2j: ¢:(j) Pecy) A =2t o
N *

In order to evaluate the last two surface terms we need to explicitly solve

for h in the collisional boundary layer.

In analyzing the boundary layer we recall that we are concerned only
with the region in which the boance averaged equation, Eq. (5), is valid and
are outside the lgyer in which t diverges logarithmically. Thus although h
varies by unity 1, D(X) and ; are all approximately constants within the

boundary layer which we denote as t°, D° and ¢° respectively. We write the

bounce averaged equation in the boundary layer as

3F,

in e -5 D® 3!  in
‘wh - (w - w*) qe é Y. + iy :o T h (37)

We note that each of the three classes of electrons has a boundary

1

layer at A = B_max and that therefore Eq. (37) represents three boundary

layer problems for hin, the inner solution for each class. In each boundary

layer we require that hin asymptotically approach the collisionless solution

1 in
valid away from the boundary A = Bmax' We connect the three solutions, h_ ,
in ' -

in : in _
ht(c) and ht(a)’ by requiring that h™ have the same value at A Bmax for
the three classes and that the flux condition, Eq. (17) be satisfied.

Defining the quantity ¢° for notational convenience

~ Ui - aFo
° - -— . C————
[ = (1 m ) qe $ 3¢ (38)
we obtain
in ~ ~ 'NIT; 1/2
- 4O © _ .0 - -
, hp = ¢p + (h op) exp| -o —-\5;-— (x* A) (39)

for » < 1/B and
max

~

in “o ° "o 'wh:( i) A
h = + (h°® - - | — =\ A= 40
e o™ T e’ P G (oba) | 0
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for 1 > 1/Bmax where 0 = (1 - 1 sgn(w))/ ¥2 and A,= B _ .

We determine the value of h®, the value of h at A = B , by imposin
max ~ 8

flux conservatign, Eq. (17). Ignoring terms of order GAt/Axcoll ~ (m/mb)l/2
we obtain
- 1/2 ~
-~ T° -~ To ‘/1
D° (h® - ¢%) | b = -Zn° (h° - o7 ) £ (41)
P P’ \D; T () () /\ D¢y
and thus
ve . 0 (<° D°)‘/' + 7 °§ﬁj) (T:(j) D:(j))‘/’ (43)
(x202)1/% 42, (12 DR )/

3

Returning to the integral I,, we can now evaluate the surface terms,

w
1]
< |
%*
=

oy _Z t(J)
plax t(j) t(j) A +
A= x* i %

i} . ( SNV
~o o o ° l“l P
= (OP) Dp a(h® - ’p) = 5;)

+

3 * o ] _L_'_ t(
‘j‘: (o:(j)) D e a(h® - t(j) ( —:—(—3) + o(sxth x .(43)

Substituting the expressibn for h®, Eq. (42), in the expression for S, Eq.
(43), and substituting the result in Eq. (36) gives the following expression
for I,

e

® oF,
et ) e
I, = e'w’-aT (5) J: deed/? (1 -\ 5
v 39|?
}:: Jo 3
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v 1/2 Sgn(w,) -1
“ /2

[l o (‘ DI+ Zl":(j)f t(j)”'c’(j)”"]

'@S (t° D°)‘/’ +

25 (0 A

i t(j) ey ” (46)
° 172 1/2

(rp DY/ +Z CenPeep’t

where the integral over A extends only over the region outside of the
collisonal boundary layer. The first term in I, represents the effécts of
collisions on the bulk perturbed distribution function while the second is
due to the boundary layer. Note that both terms in I, vanish if ¢ is flute-

like through the machine. We recall from Eq. (30) that the collisional
growth rate is given by

Re{Iz}

y=—-é—1-;——- (45)

LIM)

In order to estimate typical growth rates, we consider a simplified
model square well equilibrium with passing electron and ion bounce points at
z =L and z = Lbi respectively. The anchor region where the curvature is

favorgile begins at z = Lc and extends to Lbi' We  make the further
assumption that the eigenfunction drops to near zero in the anchor region
and that the anchor and center cell magnetic field strengths are equal.
Because the magnetic field strength is flat within each region the effect of

collisions on the bulk vanishes and we obtain the following estimates:

Lc Lbi_ Lc Lbe— Lc
I, = e? — 2 In (._____.___.>+ P + kip?
I T [ pass Ly Lo _Lpi Do

L(L -L )
c

“1 bi “be 2
- ww |n + k2p2 (1 +1n.,) n@]+-y k23p% n
* °
[ pass LbiL] | i i MHD l i

(sgn(w) ~ 1)
V2
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where

(k. xb e vP)(k xb'Vb)

A L

YMHD - nom -L

; x/z 2w ,e‘m x/a 1/2

= In A

w lwl(zr)’/‘

xb‘V'
~1 -L ° “e
w* = nomini = - w*
_ d(anT)

e = diznno) g

We wish to consider a situation which is stable to trapped particle
modes and thus take Lb > Lbe Setting I, to zero yvields two real roots with

~

w /u > 0. The real part of I; carries the same sign as wi and thus the
root with smaller magnitude is destabilized by collisions. Writing I, = Aw?
+ Bw + C, the value of (3I,/3w) for this root is

b ~ 2 o 172
-— = - sgn(mi) (3 gﬁc) /

(47)

Thus the growth rate depends on how much the underlying curvature driven
trapped particle has been stabilized by charge separation. For the case

i
that we = (3I,/3w) * w , we estimate the growth rate as
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172 _
Bo / (Lbe Lc)

Bmax Lbe o

12 (48)

" v
i e

y = o, | 1
Wy

When the collisionless mode is marginally stable we obtain from Eq.

(31) the following collisional growth rate

—

- 1/2 1/2 e 1/2
Ve Eg_ bpe =~ Le 1 - “x
¥ lmol Y Bmax Lbe “o . (49)
n - L - L : ®
+ +
P Lbi e be c k.L pi
5 % Lbi T"be -

2 2
For Lbi - Lbe <K Lbi’ Lbe and k.L Py < np/no (Lbi - Lc)'/Lbi,

this expression reduces to

: B A w e e
Yy = lmol e max 1 - 7%

w B w

o 0 o

where Iwol ~ |w*i| (Lbi - Lbe)/lo(Lbe - Le) and we have assumed n_ = 0. Thus
when the collisionless mode is well stabilized the collisional growth rate
due to the dissipative effect of electron collisions is small. For plasma
parameters for which the collisionless mode is marginally stable, however,
the collisional growth rate can be a substantial fraction of the mode real

-~

frequency which in turn is approximately m:.

IV. High Collisionality Limit

We turn now to the limit in which W, > Ve D> w D> v For simplicity

i.

we again consider an equilibrium with a constant electrostatic potential
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except for large positive and negative confining peaks at the end of the

tandem. In this limit the difference between electron and ion bounce points

does not fundamentally alter the physics and so we assume that electrons and
ions turn at the same point.

The electron non-adiabatic distribution function is given in the high

bounce frequency limit by the solution to the bounced averaged collisional
drift kinetic equation, Eq. (5) and Eq. (6),

oF
(0 = a)h = =(o - w)ap 5= + 1C(h). (50)

we will analyze this equation using a perturbative approach exploiting the

e
two small parameters §, « w/ve and §, « wd/w. To lowest order in both

parameters the collision operator dominates yielding the following equation

(e)

e
for the zero order non-adiabatic distribution function ho

1E(h§°)) =0 (51)

The solution to Eq. (51) is that h° is proportional to the the Maxwellian

equilibrium distribution function

h(e) - h(e) F (52)
0 0,0 o©

and is thus independent of pitch angle.

This implies specifically that the non-adiabatic perturbed distribution

h(e)

function, oFo’ for electrons trapped in each region is equal to the non-

adiabatic perturbed distribution function for passing particles, and thus

that h(e) is equal to the same constant for all classes of particles.
0,0

’
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We now turn to the ion equations. In this case there are again two

i
small parameters &, v Fi?; » md/m » 8, and §, v (vi/w). By analogy to the

results of the preceeding sections for the low collisionality limit of

electrons we expect the ions to exhibit a boundary layer behaviour leading
to a contribution to the growth rate of order (vilw)‘/'. We write the

perturbed potential as

V=0 +o, (53)
[+]

where 00 is the potential to zero order in all the small parameters and ¢,

is the modification induced by the various small effects. Away from the

collisional boundary layer we can write the ion perturbed response to lowest

order as

ed uy \ o
(1) o ‘ o
fo T o 1 © T For (54)
and in the boundary layer as
A ed
(1) _ _ o (1) :
f 7 F,o+hy e (55)

Thus the quasi-neutrality condition to lowest order is

i
2ed W, ed
--_0 s _* ) e (e)
0 T no+ﬁv (1 w)TFo+ho’ono. (56)

We have added and subtracted the collisionless non-adiabatic response in the

integral over the collisional boundary layer and treat the difference, Gf;i)

in the next order equation, where
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| L
(1) . (1) U ) &4
SfpL @ f“"’ [“m - (l'r)—f‘l“o]~

BL

The subscript BL indicates that the velocity integral extends over the

collisional boundary layer.

Eq. (56) is an 1nhomogeneous integral equation for ¢o. We distinguish

two cases depending on whether w is an eigenvalue of the homogeneous
equation. In case (a) we assume that w Iis not an eigenvalue of the

homogeneous equation; then the solution to the inhomogeneous equation, Eq.

(56), is that ¢, is a constant, oo = ¢: and

(e) 2e¢§ ' w: eoz

hoo =~ Tt \1-5 )T (57)
»
where
Tk bV

~ Fo 1 11 2 no

w, = d’v-ﬁ— wy = — . (58)
(4] o i1

The eigenfrequency w is undetermined at this order. Thus case (a) yields a

flute mode.

In case (b) w is an eigenvalue of the homogeneous equation which corres-

ponds to Eq. (56),

o -0
2ed w, e¢
= -__h s - X1 _h
0 = F— 0, + [iv( “’o) 7 F, e (59)
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For notational clarity we denote the eigenfunction of the homogeneous

o
equation as ¢h with corresponding eigenvalue W The inhomogeneous

equation, Eq. (56), is an inhomogeneous Fredholm integral equation of the
second kind. 1In general such an equation has no well behaved solutions if w

is an eigenvalue of the corresponding homogeneous equation except in the

(o] .
case that ¢h is orthogonal to the inhomogeneous term. Before considering

this orthogonality constraint we first show that w is real. This can be

)
shown by multiplying the homogeneous equation by (¢h)* and integrating along

a flux tube.

Solving for w gives
0

2 eFo
T (60)

‘d" 3 . i o
w, = -‘/;li—‘./:i v fu* ‘}¢h

- . . F b4
de s Opay _ |30 2 € [¢]
[atfarvearogry - 5] =

This shows that w is real and decreases as the number of nodes in oh

~

increases. Thus (-mo/wi) is bounded from above. Since w, is real we may

choose ¢§ to be real as well. We also note that‘the phase velocity of this

mode is in the direction of the electron diamagnetic drift. The phase
velocity of an unstable collisionless trapped particle mode with equal
electron and ion bounce points is in the direction of the ion diamagnetic
drift. This suggests that the non-flute like mode we are considering does
not go over into the fast growing collisionless trapped particle mode, but

rather into a collisionally driven trapped particle mode.

In order to derive the constraint on ¢;, we multiply the inhomogeneous

0
equation, Eq. (56), by ¢h, and the homogeneous equation, Eq. (59), by ¢o.

Integrating each along a flux tube and subtracting gives the condition
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: de o |

Eq. (61) is a necessary condition for the existence of solutions to the

inhomogeneous equation if w is an eigenvalue of the homogeneous equation.
A o
We now show that in fact the homogeneous solution L2 does satisfy this

constraint.

We first integrate the homogeneous equation Eq. (59) along a flux tube

i.
w P
- dl s —0 d‘: 3 - * (o]
0 = -2 ‘/:B;_ /;l vtho + f 3 ./;1 v (1 —-—-WO oh Fo' (62)

-

Since ?: depends only on pitch angle we can perform the energy integrals in

~

i
Eq. (60) and Eq. (62). Substituting for (1 - w*/mo) from the quadratic

form, Eq. (60), in the flux tube average of the homogeneous equation gives,

ﬁ" ﬁ’ Ve F x f"’ ﬁ’ (¢h l-(;;)l]Fo
. (63)
f“ ﬁ’ v(s) F,

This can only be satisfied if

de 3.0, de 8.0 _ de o

o
or if ¢h is a constant. Thus if any non-constant solutions to the

homogeneous equation exist they satisfy the constraint that their flux tube
integral vanishes and in such a case solutions to the inhomogeneous equation
exist even if w is an eigenvalue of the homogeneous equation. By inspection
we see that we can write the general solution to the inhomogeneous equation

in case (b) as




° ) 65)
¢° = ¢, + 2% (

)

. o e
where ¢° is related to hg o by Eq. (57). As noted earlier, mo is real,
. ]

therefore to calculate a growth rate we must go to higher order. As we
shall see below case (b) leads to the dissipative trapped ion mode which has

2-10
been studied theoretically in the context of the Tokamak geometry( ) a

(11)

nd

experimentally in the Columbia Linear Machine

Case (a)

We return now to calculate the eigenfrequency for the flute mode of

case (a). We consider electrons first and write,

o
¢=¢o+¢;

e¢° " wi eoo
*
e o, (1___)_.3.F°+h(‘e)

T w T
e 0
o, e¢o (e)
i e .
where use has been made that w, = -w, . Substituting into Eq. (50) gives
-e e 0o e ;
@ _fa ), )T, %)
hy w 1 -3 T Fo 1 w T Fo
-e
“a (), ,C (e |
+ - h, " + i-; (th*"") (67)
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(e)

-e e
The term (wd/w)h, is an order §, correction to hs ) and can be neglected

self-consistently in this order. Integrating over velocity and along a flux
tube gives the integral of the first order correction to the electron non-

adiabatic perturbed density

' o -e e
¢ w ™
ds g3 . (e) €% rdr 3 “d *\ F
fB d vh, = -5 _"Bﬁlvm l-w o
e ed
de f.s e _ o
- fB fd" 1 =3 T F,e (68)

We now consider the first order ion response. We note that since the
mode is flute-~like the lowest order mnon-adiabatic perturbed ion distribution
function is independent of pitch angle. Thus the ion collision operator

i
operating on hg ) vanishes. The effect of ion collisions on this mode will
thus be of higher order, specifically (vi/m)‘/’(md/w), and does not affect

the lowest order eigenfrequency. We write the ion response as

i o
W, ed
D - |1-2) 2F +nD (69)
T o
where
wi ;i e¢o eé e¢°
(1) _ . d 70 LT -y 0
hy = 1 = [ = T + T + (J° 1) T Fo' (70)

Thus the quasi-neutrality condition correct to first order in the

various small parameters 1is

i

ed, 3 W, e;‘ F
0=—2Tno+ dvl-rT o
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| 1 -1 kfvi\ o
w w, | l_ e¢ .
+ fd3v 1-—: g IRCH
w w 202 T

- -/;3vh(,e). ' (71)

Integrating over a flux tube and using the expression for the flux tube

integral of the non—adiabatic electron response, Eq. (68), gives a quadratic

in w,

e¢o
o

(0! = uy(l + ndu + yi) 5= 0 (72)

where

(k xbe* V) [k, xb* (be* ¥)]
fd" 2 ~_L ~ -.l ~ ~ ~ .
*J3 mefn k? °
i1 o at _l
] &7
B ai

The drive term is the usual beta weighted line averaged curvature and by
assumption the machine has been designed to make this negative in order to
achieve MHD stability. Thus we conclude that in the high collisionality
limit one mode of the system isAa stable flute mode. Collisions have served
to couple the response of the central cell and anchor and thereby prevented

the localized perturbations characteristic of the trapped particle mode.
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We note that this mode remains unchanged as we increase the ion
collisionality since the lowest order solution for the ion non-adiabatic
perturbed distribution function is independent of pitch angle. The
remaining modes of the system which are non-flute-like are not driven by

local bad curvature but by the difference between the electron and ion

collision frequencies. We turn to these now.

Case (b)

We begin our analysis of case (b) by writing,
° o
L S M (74)

w =w +uw

(/]
we eoo
RAE e
(]

°
where ¢h and w are the eigenfunction and eigenvalue of the homogeneous

integral equation,

-2e¢o w, 1 e;o
h 3 * h
0= T no+/; v 1 "—a: TFO. (76)

Substituting Eq. (74) and Eq. (75) in the electron equation, Eq. (50),

gives

e o
—e., (e) —e D e¢°
(wo + w, wd)hl wy 1 o, | T F
e o
o - W) S @ TR -y S TE, -t oy
0 w) 7 (O F 0IF =0y oy +0F = T 0
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+ iveC(hSe)) | (77)

Recalling that (ve/w) >> 1 the lowest order equation assuming

Ihy] < j(1 - mi/mo)(e¢:/T)Fo|

is
-0
ed ‘
e h _ -, (e) :
(uo m*) -T— FO = i\leC(hl ) . (78)
We note that if we integrate this equation over velocity space and along a

0
flux tube, both sides vanish since the flux tube integral of 2% vanishes.

Thus if we integrate the exact electron equation over velocity and along a

flux tube we annihilate the lowest order piece leaving a constraint on the

integral of h(,e). Dropping terms which are second order small we obtain

_ek

' e e °
) W, ed
de son(e) _  fde s d __* 7% o
_/;3_ ﬁ vhy T = fﬁ‘ ﬁ vF, o \LTa ML
o 0 °
e -
w* eb, .
- < ':;o-),r— ' (79

Turning to the ion equations we first consider the region away from the

boundary. Writing

i

(1) _ “* Ve o —o (1) ,
h = (1 - -a:) T (Oo + Oh)Fo + h, (80)

and assuming |h§i)| <«< J(1 - ui/mo)e“: +;§)(F0/T)l, we obtain




-35-

;i mi (")
W %, ") e o, 0 1% e 0, 70
hy w w T (Qo + ¢h)Fo teT T (¢o + ¢h)Fo
[ o )
1 —
( w*) ed,
+ {1 «-—} =—F
w, 0
wi efo k o k,2v?
[ -2 _1{*% J.J_ + ¢ L 1 )F
2 2
ER T 2‘21 201
iv
+ = ety . (81)
o
In the boundary layer we write
mi
%
n(d) . (1 --—-) S 0OF +h(1) (82)
w T /]
o .
(1)
where hin satisfies the equation
¢ :
LD _ b} (1)
w, 1n = (w m*) F° + iv C(h ). (83)

We neglect all higher order terms in obtaining this equation since we only

i
need hgn) to zero order in (w /w) and ( lPi)‘. We note that integrating

this equation over velocity and along a flux tube yields the constraint on

(i)
/dl. ﬁ, (1) (80

in ’




-36~

Gathering these results, Eq. (75) - Eq. (82), we write the condition of

quasi-neutrality to first order as

- i
w w
d * e o, —o
s Clairadl R OO
° o
m*i e (o kJ:YLz 60 ijv 2
- {1- =)&(% + % Lt
2 2
mo T 252i 2914

o

o
bulk
mi
Y (i)_ __: e 2o
+ d3v hin <1 o ) T ‘h Fo
boundary
layer

- ﬁ’vhse) . (85)

o 0
We first obtain an expression for ¢° in terms of oh the solution to the zero

order homogenebus integral equation. We integrate the quasi-neutrality
condition over a flux tube and use the electron constraint derived earlier

Eq. (79) to yield
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T B mﬂi' w,
+ 2T (E_L" Q'VP) '[K_L x b'(h'vb)]
m® 8%, %o
-1 i
de k, v, * w o
4-_[_ ﬁsv <_.-L-___-L - J.L.)( - ._t) ¢1(-)1 F (86)
B Zﬂi' ' w W °o -

In obtaining this we exploit the vanishing of the flux tube integral of ¢;,

i e
and the fact that w, = -w,.

Our final task is to derive an expression for w;. This we accomplish

by multiplying the quasi-neutrality condition by 4’}“: and integrating over a

flux tube. We eliminate the terms in ¢, with the expression obtained by

: )
multiplying Eq. (76), the homogeneous integral equation for 2% by ¢, and

integrating over a flux tube.

This yields the following expression

i
- [4* s “1% =0\,

o

3} o
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i — 2 T_—_—_-
dL " e | w, - ¢ k v ? ¢, k, 2y ?
+f_ﬁvpo 1_ — ..2 ;.{1 - 0__'!!__.-1.-_..}. h_.-.L__J_:
B w T| w : 29, 29,1
o o i

ul
. mi
ds 0 (1) *
'/T ﬁ""h hin = -

boundary

=)
=4

layer

f ﬁ’ °ne), (87)

Using the flux tube integral of the boundary layer ion equation: we can

combine the second and third terms which are due to ion collisions to give

the following expression for w,

i@

(o]

da : e i - _ far s V% d ~o,?
f ﬁ (3;) F = f'ﬂ" ﬁ" FoWl-+ | -u—;,(bh)

k, v k, v, ?
N O i e Lt
28, 20,

iv
i L o=, (1) de o, (e)
T /‘%‘ f”"%c‘“ >+ f 5 ﬁ""hhx (88)

where the ion velocity integral is over the entire velocity space except for

the transit-time layer. Note that the particle curvature drift and the ion
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finite larmor radius terms only contribute to modify the real part of the
frequency. The ion and electron collisional terms, however, will contribute

to mode damping and growth respectively for a sufficiently flat temperature

profile.

We proceed now to evaluate the ion collisional term as in the previous
section dealing with the low collisionality limit, Using a pitch angle
scattering operator, performing a partial integration and neglecting the

integral over the boundary layer in comparison to the surface term we obtain

the result

iv
i fde o=, (1)
?ﬁﬁw““

o
[+]
J
2 o o) e Wy ) "
e »
+ j a -] $o% \a F
+
o F M)
(1) (1)
|5 » s ) DR JP L3 (89)
h,p "p 3 3 h,t t(j) 3
- +
A=A, x=ar]).
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-0
Returning to the boundary layer equation we note that the values of ¢h’ D

-~

and t are constant to order (ALB/L) within the boundary layer. Defining

~

-0 ] °
’°, D" and t as those constants the solution to the boundary layer

*h
equation is

i i
w w
(1) * e —0,0 o _ __ *) ezo,0
Pinp T P T ) T o T h 1 o ) T *n,p Fal *
|w ':0 l/l
o!'p - '
exp |-o P (A, =) . (90)
v.D
ip
for 0 < A < A,
wi
(1) * le —o,0
= -— )= F_ +
Pin,e( = \' 7w, )T *ne(h) Fo
mi fw ';o A 1
o __*)e —o,0 _ Jolt(d) e P
h 1 A e‘h,t(j)Fo exp ¢ oo (x =2 f(91)
17e(J)
+
for 3, < A < .
max

/] . i
where ¢ = (1 - 1 sgn(w))/ vV 2 and h 1is the value of h( ) at the boundary

o
between trapped and passing particles. We determine the value of h by

imposing particle flux conservation. To leading order in (w/wb)‘/z Eq. (17)

yields
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1
w
0 *\e —0,0 0.0,/
- ()R ]‘v”v’
o
° * e —o, 1/2
- X [h i <1‘w—o)f he(s) T ]“t(a) Deyy) . D)

Solving for h° , substituting in the boundary layer solutions h( )

in and using

these to evaluate the surface terms in the ion collisional contribution to

the first order quadratic form gives

iv
——“’o /—ﬁ— /:1 vohC(h ) =

‘e AAeor1 —0 b A3 t
3 max 3¢
h:P) ( h t(j))
/ dA» D ( YN + jz f+ t(j)
0 e + A coll

i4% 1/2 . Vi(e) 172 (sgn(wo) - i) wy
+;n'1_(7) [dc et/ (W 5 l—w—o—;—Fox

( )z( D )l/" E(th t(j)) (T t(J) t(J)) /
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-0,0 , 0.0 -0,0 "o o :
[h, (rpPp) "/ + ; ’h,t(j)(‘t(jf’t(j)”"]

0 0 X
(e D */* + ; (Tt(J) t(j)) /*

(93)

The first term proportiohal to (vi/wo) is due to the effects of collisions

on the bulk of the pitch angle distribution, while the last term

proportional to (vi/m)‘/’ is due to the boundary layer. As we shall see the

ion collisional terms are stabilizing for a sufficiently flat temperature

gradient. We turn now to the electron destabilizing term.

We will analyze the electron term which is proportional to

j.dz / Bj.d’vo;hse by rewriting it in terms of |ah$ )/axl' and then

integrating the electron equation explicitly to obtain the pitch angle
derivative of the electron perturbed distribution function. We begin with

the first order electron equation,

iy iv ah-(,e)
e

A (94)

e ’ A
We first note that since oh is purely real, hs ) must be purely

e e
imaginary. Multiplying the electron equation by hs )/(wo - w,), integrating

over velocity space and a flux tube, performing a partial integration in 2
and using the particle flux condition Eq. (17) and continuity of h, gives

v
L-d" /;' h (e) +1[g}‘/;'vipo D
T (mo - m:)

ahﬁe)

(95)
a :
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(e)

Returning to the equation for hy, *, Eq. (94), we write out the bounce

average of ¢,; explicitly

l’ . e¢° _ah(f)
dr h ]
F = 4iv — D .
J(l -AB)‘/’ T "o e 3 A
(96)
Integrating both sides gives
o] (&
- - - 3 z____ =
2 (w, w*) (1 AB) Y/ Fo = iv, D 33 + C. (97)

We determine the value of the integration constant C by applying the

boundary condition that (811( )/M) be finite at A = 0 and A = (llein).

Noting that D(A = I/Bmin) = D(A = 0) = 0 and that

(o]
e
de h .
fB— (1 - 2B)}/ 2 . ~0 (98)

min

(] ]
e eé
de o e & _ [dr %%
‘/‘T—(l AB)Y/® — > ﬁ 7 =0 (99)
A >0

we conclude that C = 0 for both trapped and passing species. Thus combining
Eq. (88), Eq. (95), and Eq. (97) we obtain the following expression for the

and

electron contribution to the growth rate
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e
blo - w;) :
42 fyape%$®) - iﬁ-ﬁ/;’vF ~— & /éi o0 (1 -aB)3/2| . (100)
B h B o T B "h
tveD(A)

We are now in a position to write an expression for w, in terms of the

solution of the zero order homogeneous integral equétion, Eq. (59).
Returning to the quadratic form Eq. (88) we substitute for the electron and
ion collisional contributions from Eq. (100) and Eq. (93) and use Eq. (60)

o
to write o in terms of Qh' We can write the resulting expression as

+ 1y (101)

9 = 5wr + iYion electron
where
_ boundary
Su, = sgn(wo)yion
w k(?v 2 k |2y 2
de 1 — 4 vy
fT j;l’vFo (w, - wy) [;‘i (o)t - <¢§ + o - ) op
0 29; 29;
+ .
/'%i »/d’v [zuh‘)* - (?{:)*]Fo
- boundary bulk
Yion Yion Yion
bulk e (m\ 3/? 12 %
Yion = - P 3 (—2-) /dec / vi(e) 1 —-J; F'o
! o
A, — A Xj
* coll —0 2 max ) 2
da D “h’) + E : dA D (a‘h,t(j))

X p \ o 3 t(3) \ar

0 +
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. U%ifi'v [z(og)* - (T;’l)']. Rt
w

boundary _ _ . — 172 __* _
Yion . .3(91|m°|) / (1 o (1 - .57 ni) n x

1/
MR INN TN, PP

040, 2
) 22222

i,
(xopD)H/ + E (tt(j) )t

f%i fi’v[Z(Og)’ - (o)t FO{"I | - ao

. 2 e
w W .
- - - — (1 +1l4n))n
2.52 1 “'o( Jn

—0,0 5 0 t
[’h,p‘ R ’h,t<j>“t<j>"t(j>""] ‘

Yelectron = _
v
e

l
da [ B ¢ (1 - xB>'/= ” - .
p)t(j)f fdz (1 - 13)1/1 X i— d’V Fo Z(Oh)z - (¢h)!

-1

The energy integrals over the collision frequencies have been expressed

for the ion boundary layer damping and electron growth rates using the

(10)

numerical values of Rosenbluth, Ross and Kostamorov . The quantities ;;

andTe in Eq. (102) are
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4xe™n

- 1 [
v B e lnA
e vz wITT

_e¢ N _1nA
= 7,7 x 10 ™y

_ 1 4we“n° _ nolnA
v, = — ~ InA = 1.8 x 10 (103)
1 7 wi/TT]]*t T¥/?
where in the numerical expression n& is in cm— and‘T is to be expressed in

eV.

We note that Eq. (101) and Eq. (102) are not variational for w, in

0 0
terms of ¢h; rather oh and wo’are dete:mined as the solution to the

homogeﬁeous integral equation Eq. (76) and then used to evaluate Eq. (101)
and Eq. (102). We can, however, construct a maximizing variational

quadratic form for o Eq. (60). Thus our procedure to evaluate w,
approximately is as follows: choose an appropriate set of trial functions
for ¢;, vary them until the quadratic form for w, is maximized, then use the
maximizing trial function and the correspoqding value of w, to evaluate wy

In order to derive a very rough estimate of the growth rates involved

we consider a square-well model where the magnetic field is a constant, B ,
o

except for abrupt maxima where the field rises to Bmax' We denote the value

o
of ¢h in each region as ¢, where j labels the region. Subtracting the

k|
quasi-neutrality relations Eq. (76) for each region gives
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where nT is the trapped density. The

(104)

' o
constraint that j&l (¢h/B) = 0 implies

that 3: = 0 for passing particles. Using these results in Eq. (102) gives

the following expression for the imaginary part of w,,

Im Cwy) bulk boundary
m lwy Yion Yion Yelectron
bulk
ion =0
boundary _ _ 0% ‘~e|),/, 1+ 2_23 -1) «
Yion AR R np
31/2
0 Bo / 1
T B no I/l
- 25 "1
T
% %
=5 0 T
Yelectron . n . s
v, (233- 1)
T
B l/l
o
' +-é i ax) Bo A
x {1n L - (1 -3 )
max

g
B
max

- 57n) ] x

- (105)
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where
’ 1/2
nT Bo /
Evi R
) max
np—no—nT
d1nT
"= i ° (106)

We note that as n is increased the ions become less stabilizing while the
electrons become more stabilizing. For n = [2(no/nT)/(2n°/nT - 1)]/.57 the

ions are no longer stabilizing. Assuming that n is less than this and that

boundar
the magnetic geometry is kept fixed then y ou v

3 75 1 s
electron’ Yion = (T%. /no' ).

More explicitly, for plasma parameters such that

~

e
lag | oyl > v, (107)
linear theory predicts stability 1if
boundary
Y jon Yelectron < 0. (108)
For the square well model this implies
I Y
v, > a? : (109)
v?




1/ 1/2
wli-% /] L D /
2np +2 % Bma Bmax
o——— —— 1 1.4“ X ln B 1/’1
Do Dp o
Bmax | ‘
a = s .(110)

no ) (Bo >1/1 no 3/1
311 +{2— -1 x 1 = .57n (2 —_— = >
( nT ) ( Bmax nT

This mode had been studied experimentally in the Columbia Linear Machine

with good agreement with theory. The real frequency increases with nT/no

(11)

while the saturated mode amplitude decreases with increasing density .

V. SUMMARY

We have presented the collisional effects on trapped particle modes in
the high and low collisionality limits using a perturbative approach. The
magnetic equilibrium geometry is taken to be arbitrary although the

equilibrium electrostatic potential is taken to be a constant axially.

We can summarize the physical effects of collisions as follows. In the
drift kinetic equation a perturbing potential acts as a perturbing local
spatial source of particles. This number perturbation is then carried along
unperturbed orbits. In a collisionless trapped particle mode distfibution
function perturbations in the center cell are communicated to the anchor
only through the streaming of passing particles. With the addition of
pitch-angle collisions the local perturbing source is carried along
unperturbed orbits and diffused in pitch angle. The collisional diffusion
creates an additional mechanism by which distribution function perturbations
can flow from the center cell into the anchor. 1In the low collisionality
case the dissipative nature of this relaxation destabilizes an otherwise

stable negative energy wave.
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If the collision frequency is sufficiently large the perturbed
distribution function is forced to be nearly isotropic in pitch angle. This
leads to two possible modes. The first is a flute-like mode whose stability
is determined by the flux tube integrai of the beta weighted curvature.
Because of this mode’s flute-like nature the lowest order response of both
ions and electrons is a constant times the equilibrium Maxwellian
distribution. Physically the ions and electrons E x B drift together and no
net charge perturbation results, The eigenfrequency is determined by taking
into account the Poppler shifts due to the curvature drifts of electrons and
ions. Because of the constraint that collisions4do not change the net
number of particles in a flux tube, collisional effects do not enter into
determining the modévétébility; Thus this mode pérSists even for ion

collision frequencies large compared to the mode frequency.

The second mode in this regime, thé dissipative trapped ion mode is
driven by the difference in electron and ion collision frequencies. Thus a
density increase which raises both the ion and electron collision
frequencies without affecting the lowest order mode eigenfrequency, leads to
a damping of the mode. In this case the explicit form of the collision
operator is important in determining the growth rate. For a calculation of
this growth rate using a collisional operator which includes energy drag the

reader is referred to Ref. (12).

Because of the perturbative nature of the analysis followed here, the

behavior of a system with w, v ve cannot be determined. Using a two region,

magnetic square well model an expression suitable for arbitrary
collisionality and amenable to numerical analysis has been developed

elsewhere. The reader is referred to Ref. (12) for details.
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