
PFC/JA-83-22

COLLISIONAL EFFECTS ON TRAPPED PARTICLE MODES
IN TANDEM MIRRORS

Barton Lane

Plasma Fusion Center
Massachusetts Institute of Technology

Cambridge, MA 02139

January 1984

This work was supported by the U. S. Department of Energy
AC02-78ET51013. Reproduction, translation, publication,
in whole or in part by or for the United States government

Contract No. DE-
use and disposal,
is permitted.



-2-

ABSTRACT

The effects of collisions on trapped particle modes in tandem mirrors

are analyzed. Two regimes are considered, a low collisionality regime,

i
w -P w > ve and a high collisionality regime, v < w < V . The magnetic

geometry of the equilibrium is left arbitrary and a pitch angle scattering

operator is used to model the effects of collisions. For w > v electron
e

collisions are found to destabilize an otherwise stable negative energy

wave. Because of a boundary layer phenomenon the growth rate scales as

(V eW* 1)1/2 (B /B )1/'L /(L + L ) where B (B ) are the minimum
e * mmn max a a c mmn max

(maximum) values of the magnetic field and L (L ) is the length of the
a c

anchor (central cell) region. For v i< < v two modes are obtained: (a) a
i e

flute mode whose stability is determined by the flux tube integral of the

beta weighted curvature drive and (b) a dissipative trapped ion mode driven

unstable by the difference in collisionality between electrons and ions.

The flute mode persists as w ^ v < v while the dissipative trapped ion
i e

mode is damped by increasing ion collisionality.
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I. INTRODUCTION

The present designs for tandem mirrors contain regions of unfavorable

curvature linked to stable minimum B regions. At sufficiently low beta the

field-line bending energy prevents the localization of an MHD mode to a bad

curvature region and forces the eigenfunction to be flutelike through the

machine. MHD stability is then determined by the average curvature drive

which is designed to be favorable. Using a collisionless, high mode number

theory it was shown, however, that such configurations were unstable to

electrostatic modes which localize in regions of bad curvature and fall to

(1)near zero in regions of good curvature. This localization is effected

without the energy cost of creating perturbed magnetic field. The growth

rate of such instabilities becomes comparable to the MHD growth rate as the

number of particles linking the regions of good and bad curvature becomes

small. In this paper we consider the effects of collisions on such modes.

We first consider a situation in which the collision frequency is small

compared to the mode frequency. This is of interest for a case in which the

trapped particle mode has been stabilized by the charge separation effects

due to the spatial separation of electron and ion bounce points. This

spatial separation of bounce points is incorporated in the current MFTF-B

design. Such a stabilization mechanism creates a negative energy wave which

can be destabilized by the dissipative effects of electron collisions. In

Section III we calculate this destabilization using a boundary layer

analysis.

In Section IV we consider the limit in which the collision frequency of

electrons is much greater than the mode frequency. In this regime, which is

of relevance to present experiments, there are two modes: an interchange

mode whose stability depends on the beta weighted curvature drive and the

dissipative trapped ion mode. This mode has been studied theoretically in

tokamaks(2-10) and experimentally in the Columbia Linear Machine.(11) In

the Columbia experiment the mode was found to saturate at levels of

6n/n<25%.
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We begin in Section II with a discussion of the bounce averaged

collisional drift kinetic equation and its boundary conditions in the

context of a model equilibrium. We finish the paper with a summary and

discussion of the results in Section V.

II. EQUILIBRIUM AND PERTURBED EQUATIONS

We consider a tandem mirror equilibrium consisting of cells linked by

passing particles. Within each cell the magnetic field is assumed to vary

with a scale length L. where j labels the cell (central cell, plug, anchor,

etc.). The cells are separated by field maxima whose scale length ALB is

assumed to be small compared to the cell scale length L . We assume the

potential to be a constant except at the end of the machine where sharp

positive and negative electrostatic maxima confine particles. The

equilibrium distribution functions are taken to be equal temperature and

density Maxwellians for both species.

In this model equilibrium configuration energy scattering is less

important than pitch angle scattering and is therefore neglected. In

particular, a pitch angle scattering event can convert a trapped particle

into a passing particle and thus modify the response of the distribution

function to the perturbing potential.

(4)
The perturbed distribution function f, is given by

f = f exp(iS(a,a) - iwt)

where

3F*

f = q - + Joh (1)
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In Eq. (1) h is the non-adiabatic portion of the perturbed distribution

function and is the solution to the drift kinetic equation

3F b x VS * V'FO

( - Wd + b * V')h =- - b

where C(h) is pitch angle scattering operator,

iC(h) E +iv BAB)

Jq* + iC(h) (2)

[(1 - AB) .

We list below the definitions of the terms which appear in Eq. (1) - (2):

b -
P *1 Ib x*B

VS b bx (my lb -Vb + pVB +qV*,)
1P -P P

= = qB/mc

(2/m) (e - pB - q+,)v I

C = mv1/2 + q 0

my 1

2B

F Fi

F = F (e, 0, B)o 0

(3)

ad
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vVS1

T / e elm /I

= ii pe I/\ 1 3J

e 2 - 3/1n A 1 + H

V =2 () / InA H

-z' fz
H(z) e + 1 - dt e-t

In Eq. (2) the prime on the spatial gradient signifies that E and P are to

be held fixed in the differentiation. All perturbed quantities, t, are

0 -
assumed to vary like C = C(ciC,8,t) exp (iS - iwt) where S = m 0 + 5(a) is

a constant along a field line and I V S I >> IVC|. This reflects a

perturbation with short perpendicular wavelengths compared to equilibrium

scale lengths while allowing arbitrary parallel wavelengths. The wave

frequency, w, is assumed to be less than the gyro frequency. The

equilibrium distribution function Fo(c,a,B) is independent of I the distance

along a field line. For simplicity we have restricted ourselves to a purely

electrostatic perturbation and have ignored the compressional magnetic

perturbations.

Because the equilibrium potential 0 is a constant axially it plays no

significant role in Eq. (2). We therefore eliminate it by introducing

the Doppler shifted frequency w' E W - WE ..here wE = m c (at /a). This

corresponds to a transformation to a frame moving at the local E x B

velocity in which the local electric field vanishes. For notational

simplicity we suppress the prime on w in the analysis that follows.
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We now consider cases where the transit time of particles through the

anchor region is short compared to a wave period or an effective collision

time. Expanding h in powers of w/wb the lowest order equation is

iv b * Vh. = 0,
I P

(4)

that is, h is a constant along a field line: h = h (;0,x,8). The next

order equation averaged over a particle bounce motion yields the constraint

equation which determines h
0

(w - wd)ho = -(w
aF

-W*)Joq# -j.- V(C [ aah 0+us a X [DOL)
-r(A) ka

(5)

dL

J(0 - XB)i

D(A) B (1 - AB)&/"

1 f di f(k)
ioI (1 - B)'/Z
T

aF
0

b x VS - V'FO

m- m

In the field line

tb, where B(b ) =

integral, the limits of integration are the bounce points,

Equation (5) applies to three classes of particles:

where

(6)

and

a i
aF
0.

ac
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(1) passing particles for whom O<X<1/Bmax

(2) particles trapped in the central cell for whom

(1/B ) <A< (1/Bcc
max min

(3) particles trapped in the anchor for whom

(1/B )<X< (1/B a
max min

where B is the maximum field point and B is the field minimum in
max min

region j. We distinguish the distribution function h (;Ec,8), normalized

time T(A), and diffusion coefficient D(X) for each class by the subscripts

p, t(cc) and t(a) respectively.

The perturbed potential $ is determined self consistently through the

quasi-neutrality condition,

3FO
0 q d'v q# + fd J . (7)

Writing the velocity integral in terms of A and c

1/B

4dB d / /2(dIv~ ma r2) f _____f___

0 0

we see that in regions where the magnetic field varies slowly the

eigenfunction 0 will also vary slowly and that 0 will change where particles

bounce.

We now consider the boundary conditions on h . Since h is independent
0 0

of gyrophase (3h /ae) = 0 at e = 0 where cos e = v, . Te n eThe angle e is
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the polar angle in the v , ) velocity coordinate system. In terms of

the (c,X) coordinate system the boundary condition at 9 = 0 implies that

o. 0 (8)

Because of the high bounce frequency assumption, h is a constant along a

field line and thus is equal for positive and negative going particles.

Thus h is symmetric in the (v , v ) velocity coordinate system about the

plane v = 0 which corresponds to 6 = w/2. This implies that (ah /30) = 0

at e = w/2 which in the (c,) coordinate system becomes

ah
1 - XB)I/ ax 0. (9)

In particular for deeply trapped particles

3h

D(A) a1 0. (10)

Bimin

The boundary condition on h at the boundaries between passing and

trapped particles is determined by the condition that the sum of the fluxes

into the boundary vanish. This is complicated by the existence of two

boundary layers at X = 1/B the separatrix between passing and trappedmax
particles. We will argue that the contributions of these boundary layers to

the flux condition is small and can be ignored.
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The inner boundary layer is due to the logarithmic divergence in the

bounce period of particles which stagnate at the magnetic field maxima. We

denote the width of this layer by 6A * It can be shown that

6X B , exp (-L/ALB
log min B

where ALB is the magnetic field scale length near the maximum and L is the

length of the center cell or anchor.

The second boundary layer is due to the collisional pitch-angle

spreading of distribution function perturbations during a particle transit

time. Over the bulk of the distribution function these transit time effects

contribute an order (v/w ) modification to the infinite bounce frequency

distribution function, where wb (T/m)l/'/L. We will neglect this

contribution. At the boundary between classes of particles, however, the

infinite bounce frequency distribution function has an unphysical

discontinuous derivative. Within a narrow layer about the separatrix these

discontinuities are resolved by the finite collisional spreading during a

particle transit time. We denote the width of this layer 6Xt and estimate

its width by comparing the parallel streaming term to the collision

operator,

r - 1/2

S iV B B

B wb max max

where B is a typical field strength within the cell. For a square well B =

B * We assume that the equilibrium parameters are such that the

logarithmic layer lies inside the transit time layer. However we assume that

the transit time layer, 6X , is itself small compared to either the width of
t

the passing particle region of pitch-angle space or to the width over which

collisions modify the infinite bounce frequency distribution function during

a wave period. We can estimate this last width by comparing the wave
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frequency, w, to the collision operator. In the high collision frequency

limit v > w, the entire distribution function is affected. In the low

collisionality regime we again have a boundary layer phenomenon about the

separatrix between passing and trapped particles. Comparing the wave

frequency to the collision operator gives the width of the collisional

boundary layer

B
max

- 1/2
B

max

Comparing the expressions for AXo and 6X we see that the transit time
coil t

layer is contained within the collisional layer

Aoll 'P ( / >> 1.

We now consider the flux condition and show that the effects of the transit

time layer can be neglected.

In order to calculate the flux condition we begin with the local

statement of particle conservation by the collision operator

Jd 'v C(h) = 0 (13)

where both C and h have not yet been bounce averaged. Integrating over a

flux tube gives

0 = of dee m / d X D,

coll ) (12)



max
d A Dt(j) - + +j

where

fi -j' f vd'v C(h) 2Y (1)

± 1
Bmax

dee/ 2 I,

- At

Aj - 1

max Bi
min

and S is the transit time boundary layer region. In the first two

integrals, the infinite bounce frequency equation is valid so h = h, a

constant along a field line. Using the boundary conditions on h at A = 0
0

and A = 1/Bmi, Eq.(8) and Eq.(10), gives

3h

p D t(j) a +

where h and ht(j) refer to the passing and trapped portions of h (A), and

-12-

(14)

of0

+ I

(15)



-13-

dXf t T
(-B)~I . (16)

Physically the quantities D(3h/ak) are the collisional fluxes of

particles into the transit time boundary layer centered on the separatrix

between passing and trapped regions of velocity space, while the quantity I

represents the rate of change in the number of particles within the transit

time boundary layer integrated over a flux tube. We now argue that the

latter contribution is small and that therefore the fluxes into the transit

time boundary sum to zero to lowest order.

In the low collisionality regime the fluxes into the boundary,

D(ah/aX), are of order D* h/AXColl where the diffusion coefficient Do is

Do = L(B B )
- I

(1 - B/B max) and AXcoll is given in Eq. (12). The

integral I, can be estimated by using the kinetic equation and can be shown

to be smaller than the surface flux by (W/Wb) . In the high

collisionality regime the surface fluxes are of order Doh B and I, is

smaller than the surface flux by a factor of

1/2 1/2 1/ -1/
(w/Wb) (w/v) (B max/B) (1 - B/B )

which we will assume to be small. Thus in both cases we drop the factor IT

giving as the flux condition

P a D t( t(j)

+

Lsgn (vI)

(17)
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The final boundary condition we require is the continuity of h at the

-1
separatrix I = B . The distribution function h varies by an amount

max

3he
h ~ 6t T~ A = A*

within the transit boundary layer. Since 3h0 /a < h 0/A Coll this

implies that 16h/h 0 1 < 61 t /Acoll P (W b)'/' < 1. Thus we require that

h = h (18)
p t(j) X + B -1

max

The bounce averaged drift kinetic equation (Eq.(5)) together with the

boundary conditions (Eq.(8), Eq.(10), Eq.(17) and Eq. (18)) and the quasi-

neutrality condition Eq. (7) completes the formal specification of the

problem. We now examine the solutions in two regimes.

III. Low Collisionality Limit

We consider first the situation in which the electron collision

frequency is less than the mode frequency. In this situation electron

collisions are unable to relax the bulk of the perturbed electron

distribution function in pitch angle within a wave period. To lowest order

the non-adiabatic perturbed electron distribution function is

(W -W, 3Fo
ho = -#_-fe- (19)

(W wd) ea

This function varies rapidly however near the separatrix between

passing and trapped particles over a width comparable to 6A , the

logarithmic stagnation boundary layer. The effect of collisions is to

smooth out this rapid variation in h. over a collisional boundary layer. We
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can estimate the width of this layer by assuming that h, changes by unity

over an interval AX and requiring the collision operator to be
Coll A

comparable to the wave frequency over this layer. Evaluating T(X) and D(X)

at a point within the collisional boundary layer gives for the collisional

width

AX 1  V
Coll W ( Bmx Bma

where B is a typical magnetic field strength within the cell. We further

assume that the boundary layer width is narrower than the passing particle
-1

width in pitch-angle space, that is, AXc < B
Col max.

In order to calculate the contribution of collisions to the trapped

particle mode growth rate, we construct a quadratic form by multiplying the

quasi-neutrality relation by ** and integrating along a flux tube.

[ qj Afdsv Ia + qJ 4  'dsvo*hJo (20)

i,e

In the second integral we note that both ** and h are bounded everywhere.

Thus if we exclude the region of phase space which includes the transit time

strip we are in error by terms of order 6X ti. In this treatment we will

neglect such terms. Using the bounce averaged equation for h , Eq. (5),

which is valid outside the transit time strip we write

*ww~ - F0  iv 13 /
hq = - qDJ+ - - D- - (21)

0 ^
(W - ed T

where we have assumed wd << w and neglected the drift frequency in the

collision term. In what follows we only deal with h , the non-adiabatic

perturbed distribution function to lowest order in w/w b. For notational

simplicity, we will suppress the zero subscript. For electrons J = 1,

.hile for ions J. = 1 - (v'kz)/(4Aa) and v = 0. Inserting this in the

quadratic form we obtain

I
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0 = I 2+ 1 (22)

where

iE a I dA

Itji) + i a + w(w, - (hdx

( 2v a
+ -, - -( - d )

(23)

and

CI/ V(C) f dl * a D ahax 3A (24)

In the integration over pitch angle the transit-time strip is excluded

dA =
Af
0

where

max

+
dA (25)

- - 1
B t

max

+ 1
A* -- + al

max

I 1
max Bi

min

(26)

We analyze this quadratic form using a perturbative approach. We write

the exact solution to the collisional problem as

0

11

I

I w 4w 1/ de

+

- x
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= + W (27)

where * and w are the exact solution to the collisionless problem and 0 ,
0 0

W1 are the collisional modifications which we assume are small. We write

the quadratic form (Eq. 22) - (24))in a condensed notation as

0 = <#*(Awl + Bw + C)#> + iwe<#*C(h)> (28)

where Awl + Bw + C is the collisionless integral operator and the angular

brackets denote a flux tube integration. Substituting for 0 and w, (Eq.

(27)), gives to lowest order

0 = <4*(Awj + wl(2Aw + B))$ > + iw e<$*C(h)>
0 0 0 0 0

+ <**(Awz + Bw + C)*1 >0 0

+ w, [< * (2Aw + B)* > + < 0 (2Aw + B) 01 >1. (29)

We examine two cases. If <#*(2Aw + B)* > > <0*Af >w, then to lowest
0 0 0 0 0

order

- iw e<**C(h)>
W, 0 -- 0 - ( 0

<*(2Aw + B)0 >o 2A 0 0

As the collisionless mode nears marginal stability the denominator of this

expression vanishes and w,/w appears to grow without bound. In this case

we return to Eq. (29) assuming that IW/W 0 > I0/ O I and obtain as an

estimate of the growth rate near marginal stability,

iw e<0*0(h)>

W, = - (31)
<b*A >

In both of these cases we must evaluate the integral

I ew <O(h)>
0 0 (32)
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where h is calculated using Eq. (21) with * = * and w = w . For notational
0 0

simplicity, however, we suppress the subscripts on* and wa in the

discussion that follows. In addition, we are concerned with the physical

situation in which the collisionless trapped particle mode is stable and

therefore take w to be real.
0

We evaluate I. by performing a partial integration in X. Writing,

for example, only the I integral over the untrapped region of pitch-angle

space we obtain

J,= dA a* D a3A 3h

D 3* D

1 =

f dAl

X* -X Coll

l ~ 1coll

dA D

3 D .

In the first integral, which extends over the bulk pitch angle distribution,

we may substitute for h the collisionless value

(34)

(33)

I

(e W* e F
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where we have neglected the particle drift frequency wd* In the second

integral which extends over the collisional boundary layer, h departs from

the collisionless value, but *(X) is approximately constant and the integral

is small compared to the surface term. Explicitly

dA

A- AColl

a** D ah < dX
ax axcj

f- Al Col

aI* D

max

ax max
a hcoll

/"Coll 
a max (35)

where AL l Z - Z 1, B(Z ) = Bx, B (Z ) =B + AX and L is the

cell length. As we show later the maximum value of gD(ah/aX)i occurs at X =

X*~ . Thus the second integral is small by at least (ALColl/L) compared to

the surface term and can be neglected. A similar manipulation can be

performed for the integral over the trapped region of velocity space. We

therefore can write

I ew - ( f de c0/v() x

coll

dX a

max

+ dA

+oll

D 1

a
t(j)

e aFO

- q T

Dt(j) ( W e

3F 0

I
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8h D h

+ *D - * t t(j) at(j) (36)

In order to evaluate the last two surface terms we need to explicitly solve

for h in the collisional boundary layer.

In analyzing the boundary layer we recall that we are concerned only

with the region in which the bounce averaged equation, Eq. (5), is valid and

are outside the layer in which T diverges logarithmically. Thus although h

varies by unity T, D(A) and * are all approximately constants within the

boundary layer which we denote as r*, Do and *O respectively. We write the

bounce averaged equation in the boundary layer as

in e - 3F0  D* a1  in
wh =-(W - W*) q e* + iv h (37)

We note that each of the three classes of electrons has a boundary

layer at A = B-1  and that therefore Eq. (37) represents three boundary
max

layer problems for h n, the inner solution for each class. In each boundary

layer we require that hin asymptotically approach the collisionless solution
-1 in

valid away from the boundary A = B . We connect the three solutions, h ,

h tn and h ,n by requiring that hin have the same value at A = Bmax for

the three classes and that the flux condition, Eq. (17) be satisfied.

Defining the quantity * for notational convenience

- ) q (38)

we obtain

F0 1
h in = -+ (h* - )exp) * - (39)
p pp

for A < 1/B and
max

hin = * + (ho -0 * exp-o D. A (40)
t(j) t(j) t(j) t(j)
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for A > 1/Bmax
r a-1

where a (1 - I sgn(w))/ /2 and A,= B '

-1
We determine the value of h*, the value of h at A = Bma , by imposing

flux conservation, Eq. (17). Ignoring terms of order 6A t /Acoll WWb) 1/2

we obtain

D* (h* - *O) (0) - D
t(j) ho -0(

and thus

T(0D)1/l +_~i
pp)

(r Do Do 1/
(t(j)D t(j))/

Returning to the integral I,, we can now evaluate the surface terms,

ah
S *D pp 1 p aA A-A j

ah

t(j) t(j) axtj +

S(@)*Do a(h* - )
p p pO

P 
/)

P

* /0
+ ( *()) D*tj a(h* - #O* ) t) + 0(61AtB .(43)

Substituting the expression for h*, Eq. (42), in the expression for S, Eq.

(43), and substituting the result in Eq. (36) gives the following expression

for I.

= eaw (M ) 1/2

A D

de/ 1- -*)( F)
0

0

(41)

(42)ho =
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+ sgn(.) -

A 2

h**(T"D*)'/' + 1 * *(J (TO* D* J))/'
p p p t~j tj t~j

,* (C* D*)1/2 + A* T* D*
P p p t j) (T.t(.J) t(j))''(4

(T* D*)'/' + E (T* D* )1/2 (44)
p p t(j) t(j)

where the integral over A extends only over the region outside of the

collisonal boundary layer. The first term in I. represents the effects of

collisions on the bulk perturbed distribution function while the second is

due to the boundary layer. Note that both terms in I. vanish if 0 is flute-

like through the machine. We recall from Eq. (30) that the collisional

growth rate is given by

Re{I }
Y2 = (45)

In order to estimate typical growth rates, we consider a simplified

model square well equilibrium with passing electron and ion bounce points at

z = L and z = L respectively. The anchor region where the curvature is
be bi

favorable begins at z = L and extends to Lb* We- make the further
c bi*

assumption that the eigenfunction drops to near zero in the anchor region

and that the anchor and center cell magnetic field strengths are equal.

Because the magnetic field strength is flat within each region the effect of

collisions on the bulk vanishes and we obtain the following estimates:

L L+ L - Lc
it ea 4- n ic+ b k pa no

AL (L - L
c bi be 

- w p L + k pa (1 + rj.) n k p' no4: 1 nas L be i1 TMHD

1 = e(sgn(w) - i)
o Bo
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Bmax/

4, M 
1/2

B 2;

(L - L )
be C

Lbe

40 e

J dee Fq(1--
0I

I1 + H

IHD
=-2

(k x b - V'P)(k x b * Vb)

nom k'i I

pe e jfI 2w eeme/I ln A 1IwI(2TPj/' l

T k x b *9'n
T xb0 ^Ae

nom a

d(InT)
e d(tnn )

We wish to consider a situation which is stable to trapped particle

modes and thus take L > L . Setting I, to zero yields two real roots with
>0 The bi be i

/witW > 0. The real part of I. carries the same sign as w* and thus the

root with smaller magnitude is destabilized by collisions. Writing I, = Aw

+ Bw + C, the value of (8I1 /aw) for this root is

11 = W
0

=i (B - 4AC) 1/ 2
= -sgn(W*) 2A

Thus the growth rate depends on how much the underlying curvature driven

trapped particle has been stabilized by charge separation. For the case
^i

that wo = (311/aw) = * we estimate the growth rate as

where

(46)

(47)
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Y =/ i B a*
(Lbe c

Lbe
(48)

When the collisionless mode is marginally stable we obtain from Eq.

(31) the following collisional growth rate

1/ 2 ( BaB

(ax)/

(b, - Le +

Lbi

Lbe - Lc
Lbe

Lbe - LC +

be

For L - Lbe ( Lbi' Lbe and k p < n /n (Lbi - c)/Lbi,

this expression reduces to

- 1/f, 1

Y - |I e max 1 - *

B
IW0 B0 0o

where 1w0 - i^be - Le) and we have assumed n = 0. Thus

when the collisionless mode is well stabilized the collisional growth rate

due to the dissipative effect of electron collisions is small. For plasma

parameters for which the collisionless mode is marginally stable, however,

the collisional growth rate can be a substantial fraction of the mode real

frequency which in turn is approximately W*.

IV. High Collisionality Limit

We turn now to the limit in which wb >> v e v. For simplicity

we again consider an equilibrium with a constant electrostatic potential

Y 1W 01
ve

W 01

n
p

n
0

e)
S - **

a Z
k_1 P

I/a

(49)
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except for large positive and negative confining peaks at the end of the

tandem. In this limit the difference between electron and ion bounce points

does not fundamentally alter the physics and so we assume that electrons and

ions turn at the same point.

The electron non-adiabatic distribution function is given in the high

bounce frequency limit by the solution to the bounced averaged collisional

drift kinetic equation, Eq. (5) and Eq. (6),

aF

(W - )h = -(w - w )q - + iC(h). (50)

we will analyze this equation using a perturbative approach exploiting the

e
two small parameters 6, 0P w/v and S P e /w. To lowest order in both

e d

parameters the collision operator dominates yielding the following equation

(e)
for the zero order non-adiabatic distribution function h0

-(e)
iC(he) =0 (51)

0

The solution to Eq. (51) is that h is proportional to the the Maxwellian

equilibrium distribution function

Ce) (e)
h h F (52)
0 0,0 0

and is thus independent of pitch angle.

This implies specifically that the non-adiabatic perturbed distribution

Ce)
function, h F , for electrons trapped in each region is equal to the non-

0,0 0

adiabatic perturbed distribution function for passing particles, and thus

that h(e) is equal to the same constant for all classes of particles.
0,0
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We now turn to the ion equations. In this case there are again two

small parameters a, - k2p J^ / d 6, and 6, ' ( /w). By analogy to the

results of the preceeding sections for the low collisionality limit of

electrons we expect the ions to exhibit a boundary layer behaviour leading

to a contribution to the growth rate of order (v /) 1/1. We write the

perturbed potential as

*=, + (53)

where + is the potential to zero order in all the small parameters and *

is the modification induced by the various small effects. Away from the

collisional boundary layer we can write the ion perturbed response to lowest

order as

~() o * ) e
f =---- F + 1- 0F (54)

0 T 0T o

and in the boundary layer as

^(i) .-- F +h oi)
f T F 0+ h (55)

Thus the quasi-neutrality condition to lowest order is

0 =--2e -n + dv 1-e n . (56)T 0 o k 00

We have added and subtracted the collisionless non-adiabatic response in the

(i)
integral over the collisional boundary layer and treat the difference, 6 fBL

in the next order equation, where
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6f -

BL

The subscript BL indicates that the velocity integral extends over the

collisional boundary layer.

Eq. (56) is an inhomogeneous integral equation for 0 . We distinguish

two cases depending on whether w is an eigenvalue of the homogeneous

equation. In case (a) we assume that w is not an eigenvalue of the

homogeneous equation; then the solution to the inhomogeneous equation, Eq.

(56), is that 00 is a constant, 0 = 0 and

(e) 2e#
0 +0

-
(57)

where

481 =

T k x b Vin

fdJF 0 ~ 0
Jv - 1-

n0 n 0i
(58)

The eigenfrequency

flute mode.

In case (b) w

ponds to Eq. (56),

w is undetermined at this order. Thus case (a) yields a

is an eigenvalue of the homogeneous equation which corres-

2e

T 0-
v 1-F . (59)
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For notational clarity we denote the eigenfunction of the homogeneous

equation as h with corresponding eigenvalue wo. The inhomogeneous

equation, Eq. (56), is an inhomogeneous Fredholm integral equation of the

second kind. In general such an equation has no well behaved solutions if W

is an eigenvalue of the corresponding homogeneous equation except in the

case that is orthogonal to the inhomogeneous term. Before considering

this orthogonality constraint we first show that w 0 is real. This can be

shown by multiplying the homogeneous equation by (th)* and integrating along

a flux tube.

Solving for w gives
0

0 1 eF
=J d 3v wiiV e 0 (60)

f d3 v(2 1;012

This shows that w is real and decreases as the number of nodes in h
0

increases. Thus (-e%/ 4 ) is bounded from above. Since w , is real we may

choose 0 to be real as well. We also note that the phase velocity of this

mode is in the direction of the electron diamagnetic drift. The phase

velocity of an unstable collisionless trapped particle mode with equal

electron and ion bounce points is in the direction of the ion diamagnetic

drift. This suggests that the non-flute like mode we are considering does

not go over into the fast growing collisionless trapped particle mode, but

rather into a collisionally driven trapped particle mode.

In order to derive the constraint on *h, we multiply the inhomogeneous

equation, Eq. (56), by *h, and the homogeneous equation, Eq. (59), by * .

Integrating each along a flux tube and subtracting gives the condition
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- d - 0. (61)

Eq. (61) is a necessary condition for the existence of solutions to the

inhomogeneous equation if w is an eigenvalue of the homogeneous equation.

We now show that in fact the homogeneous solution does satisfy this

constraint.

We first integrate the homogeneous equation Eq. (59) along a flux tube

0 = -2 d~v#F + v 1 - # F0 . (62)

Since # depends only on pitch angle we can perform the energy integrals in

i
Eq. (60) and Eq. (62). Substituting for (1 - W/W 0 ) from the quadratic

form, Eq. (60), in the flux tube average of the homogeneous equation gives,

]% -V*F# x F fv ) - ([() F

0fd fd3v(*;) F. (63)

This can only be satisfied if

d j d f oF _ fsj f v* FO = no .0 = 0, (64)

or if $ is a constant. Thus if any non-constant solutions to the

homogeneous equation exist they satisfy the constraint that their flux tube

integral vanishes and in such a case solutions to the inhomogeneous equation

exist even if w is an eigenvalue of the homogeneous equation. By inspection

we see that we can write the general solution to the inhomogeneous equation

in case (b) as
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0 0
0 =0 + f

(65)

where 0 is related to h by Eq. (57). As noted earlier, w is real,

therefore to calculate a growth rate we must go to higher order. As we

shall see below case (b) leads to the dissipative trapped ion mode which has

been studied theoretically in the context of the Tokamak geometry(2-10) and

(11)
experimentally in the Columbia Linear Machine .

Case (a)

We return now to calculate the eigenfrequency for the flute mode of

case (a). We consider electrons first and write,

0

*=0 + 01

(e) eo0 (e)
h = -2 0 + 1 - F + h

e F (66)

i e
where use has been made that w* = -* . Substituting into Eq. (50) gives

-e

(e) d

-e

+ (e) ++-Whi+

e 0 e e-
o *

Z- - Fo - T Fo

i (h (e) (67)
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-e (e) (e)
The term (wd /w)hl is an order 6, correction to h, and can be neglected

self-consistently in this order. Integrating over velocity and along a flux

tube gives the integral of the first order correction to the electron non-

adiabatic perturbed density

t3() e# f~d 3  W d / - F
fd 3 vhae) = - 0- ( §)

el,
-d- - F. (68)

We now consider the first order ion response. We note that since the

mode is flute-like the lowest order non-adiabatic perturbed ion distribution

function is independent of pitch angle. Thus the ion collision operator

(i)
operating on h vanishes. The effect of ion collisions on this mode will

0

thus be of higher order, specifically (v /w)&/I( d/w), and does not affect

the lowest order eigenfrequency. We write the ion response as

h~i * 0 F + hai (69)( - Y o

where

10 01
M W td eo e# e*o]

h- - + T + ( 0J - 1) - F . (70)

Thus the quasi-neutrality condition correct to first order in the

various small parameters is

e#, 
3 * * *0~~~ ~~ = 2 n +
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-i k vj) e# o
+f3v ( _i)('d oF

+ W 0- 2 2

-d vh.(e) (71)

Integrating over a flux tube and using the expression for the flux tube

integral of the non-adiabatic electron response, Eq. (68), gives a quadratic

in w,

(72)

where

v(w*

aTMHD=

-iW id

d ,

F
_e -e+ W* Wd) Tn 0

k
'I

mi

_dt 2
JfB m 21 n

(k x b * VP) [k x b 9 (b - Vb)]

J .f 
k"

di

The drive term is the usual beta weighted line averaged curvature and by

assumption the machine has been designed to make this negative in order to

achieve NHD stability. Thus we conclude that in the high collisionality

limit one mode of the system is a stable flute mode. Collisions have served

to couple the response of the central cell and anchor and thereby prevented

the localized perturbations characteristic of the trapped particle mode.

(73)

e+
(m -mZ1+ n m+ Y, ) = 0

a
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We note that this mode remains unchanged as we increase the ion

collisionality since the lowest order solution for the ion non-adiabatic

perturbed distribution function is independent of pitch angle. The

remaining modes of the system which are non-flute-like are not driven by

local bad curvature but by the difference between the electron and ion

collision frequencies. We turn to these now.

Case (b)

We begin our analysis of case (b) by writing,

* = *0 + #0 + *

d 0 + .

h(e) = - 1 -(h
0

F# + (e)
T F o+ hi

where # and w are the eigenfunction and eigenvalue of the homogeneous
h a

integral equation,

0 -0

0 -2 eh n + fd3v (1 Ti) h F. (76)

Substituting Eq. (74) and Eq. (75) in the electron equation, Eq. (50),

gives

eto

(0 + Wg - )h d 1 - to T F0

- (W0- W K- (+ )Fo W1

e 0
e -o W1Cd e*

T h 0TW0

(74)

(75)
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(e)
+ iveC(h1  ) (77)

Recalling that (v e/w) >> 1 the lowest order equation assuming
e

h 11 < 1(1 - e /W )(e0 /T)F I

is

-0

e e*
(W - w", 0 iv C(h,) (78)

We note that if we integrate this equation over velocity space and along a

flux tube, both sides vanish since the flux tube integral of *h vanishes.

Thus if we integrate the exact electron equation over velocity and along a
flux tube we annihilate the lowest order piece leaving a constraint on the

(e)
integral of h . Dropping terms which are second order small we obtain

eeeo

f djvh I=F- _ f vF [ -u+2) +

e(

1 - T (79)
0

Turning to the ion equations we first consider the region away from the
boundary. Writing

h = (1 -i (j + *)F + hi (80)

and assuming Ih I << (1 - W*/W )e(*0 + )(F /T)|, we obtain
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(+ ' )Fo + w) ho
To 'ho F. + W

(i)

- 1 -

+ - (h
0

+ ok v F

29o

(81)

In the boundary layer we write

h~- 1 - ) F + h)

(i)
where hin satisfies the equation

--o

i ~ ' inh (83)

We neglect all higher order terms in obtaining this equation since we only

i)
need hin to zero order in (wd/w) and (k p . We note that integrating

this equation over velocity and along a flux tube yields the constraint on

(i)
in

IId'vh = 0.Bl in (84)

i-- i

h 1i 'a

0 (

(i 
es,
- F

(82)

e ok_ vj_

T 20
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Gathering these results, Eq. (75) - Eq. (82), we write the condition of

quasi-neutrality to first order as

2e# ,
0 =- n +

-i
(ad

0

(d'vF -0JT

( - ( +)

- e -o k2 v' o k'v :
o- h

0 T 2i 20

+ *e 0 - iv +'vl-(h )
0bk

bulk

+ fd v h - 1 - F

boundary

layer

- j vh ( (85)

0 0

We first obtain an expression for 0 in terms of *h the solution to the zero

order homogeneous integral equation. We integrate the quasi-neutrality

condition over a flux tube and use the electron constraint derived earlier

Eq. (79) to yield

I
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e0 ki T0 Idl P.

=- - 1 -

+ 2T

M i an 0

x ) [P x * (b * V ]
0

+fd- i i)

20 - 1 - $ F h (86)

In obtaining this we exploit the vanishing of the flux tube integral of *h

and the fact that e = -m .

Our final task is to derive an expression for w,. This we accomplish

by multiplying the quasi-neutrality condition by and integrating over a

flux tube. We eliminate the terms in *, with the expression obtained by

multiplying Eq. (76), the homogeneous integral equation for # by *j and

integrating over a flux tube.

This yields the following expression

= fd., vF
-B To ( -) T h

i

w
0

(1 + lii )
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i, k v a
0 +

20 20 2

iv -I+ id vhC(hi)

0 bi ulk

fd'vth

boundary

layer

Lh~ i) ()
in tV

- fv! h hi . (87)

Using the flux tube integral of the boundary layer ion equation we can

combine the second and third terms which are due to ion collisions to give

the following expression for w

1 f drv5;* )1. = - d F

- h+ ' hI
2 /

iv- I fdsvt(h(i)) 
+

W0 Bh

Jd 1 0 (e)d-v#hj

where the ion velocity integral is over the entire velocity space except for

the transit-time layer. Note that the particle curvature drift and the ion

(88)

+

f dt i e I Wd ( )i+ _- d v F 1 4- - h
B f T 0

"d -0)?
_Z7 T (h0 1 0
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finite Larmor radius terms only contribute to modify the real part of the

frequency. The ion and electron collisional terms, however, will contribute

to mode damping and growth respectively for a sufficiently flat temperature

profile.

We proceed now to evaluate the ion collisional term as in the previous

section dealing with the low collisionality limit. Using a pitch angle

scattering operator, performing a partial integration and neglecting the

integral over the boundary layer in comparison to the surface term we obtain

the result

Sf fdavhC(h )

W

de / v (e)

0

eD

A i
+ ~ ax d (

+ oll

8h M
- 0 in,p[h,p p ax

8 a SF

F
0

(89)
ahM

int
. 'h,t t(j) ax

my { 2

*Coll

of dX

I = x *

-0'4h, t)

0 T t(j) (ij

X = X*j
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Returning to the boundary layer equation we note that the values of Oh, D

and T are constant to order (ALB/L) within the boundary layer. Defining

0,0 D0 and T as those constants the solution to the boundary layer
h

equation is

h(1 ) F + h (1 - t : F x

in, - ~ ~

exp -0 ( -)- X) (90)

f or 0 < A*

h J) FO +
in,t(j) 0 T h,t(j) F

[ho - 1 - e~lltj FI exp - 0 ___ -t(9)

( j)

for I < A < A
max

where a = (1 - i sgn())/VT and h is the value of h at the boundary

0

between trapped and passing particles. We determine the value of h by

imposing particle flux conservation. To leading order in (w/wb)'/' Eq. (17)

yields

I
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w 0 Th,p F p p

F
0 0

(T t(*) Dt(j) (92)

h and usingin

-0

w #(1

Solving for h0 , substituting in the boundary layer solutions

these to evaluate the surface terms in the ion collisional contribution to

the first order quadratic form gives

- i f dj: da0 Ch(i))

+14w m 1/2
wm

0 (1
-

0
-eF x
T o

de 0 /

coll -o

p p

X*

f
0

max

A*

jE I+

+ 14w ( /1

M

J de e /2

0

(v () (sgn( ) -

t(j) t(j)

(1

[ h0 - (l

[
i

0

F x
T o

h ,t(j)
+.

- h -

D t~j ,t( j)

(~) a(T D )'/a
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:",* (*D*)%/ + i **O* (TO D0  )t i
p p p ht J t j) tj )(93)

(T0D)I/ + 0 D0  )1/2
pp t(j) t(j)

The first term proportional to (v /w) is due to the effects of collisions

on the bulk of the pitch angle distribution, while the last term

proportional to (v /w)'/' is due to the boundary layer. As we shall see the

ion collisional terms are stabilizing for a sufficiently flat temperature

gradient. We turn now to the electron destabilizing term.

We will analyze the electron term which is proportional to

o(e) (e)/,,'adtef dt / Bf dsv hh by rewriting it in terms of 18h /A1 and then

integrating the electron equation explicitly to obtain the pitch angle

derivative of the electron perturbed distribution function. We begin with

the first order electron equation,

Ce)

(W F -e)-e- -C h (e)) - D -- (94)
0T 01

0 (e)
We first note that since #h is purely real, h, must be purely

(e) e
imaginary. Multiplying the electron equation by h ./(W - W*), integrating

over velocity space and a flux tube, performing a partial integration in A

and using the particle flux condition Eq. (17) and continuity of h, gives

de h +e 3h__( (95)j!fd v hi + i] d v -'W-F 0 D e 1
T (o0 W*)
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(e)Returning to the equation for h , Eq. (94), we write out the bounce

average of # explicitly

(e)
e_ _ _ _ e + h _ah _

(W - )j - F = iv --- D
J(1 - AB)1/ T 0 e A 3A

(96)

Integrating both sides gives

e Dh(e)e ah1
-2 (w - w')jB (1- AB)/T F0 = iv D + C.0o e ax (97)

We determine the value of the integration constant C by applying the

(e)boundary condition that (8h /aA) be finite at A = 0 and A = (1/B )1 min
Noting that D(A = 1/B ) = D(A = 0) = 0 and thatmin

e#! (1 - _B)_ _ 0B 
TI

Bmi

and

(98)

(1 - AB)!/a
A +0

dt e4, h
(99)

we conclude that C = 0 for both trapped and passing species. Thus combining
Eq. (88), Eq. (95), and Eq. (97) we obtain the following expression for the
electron contribution to the growth rate
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e

d od' h(e) = i fdvF - * e d 0(1 -XB)1/] . (100)

f Ifd V hJB o fd 0 Ve D(X) BI h

We are now in a position to write an expression for w, in terms of the

solution of the zero order homogeneous integral equation, Eq. (59).

Returning to the quadratic form Eq. (88) we substitute for the electron and

ion collisional contributions from Eq. (100) and Eq. (93) and use Eq. (60)

to write w in terms of * . We can write the resulting expression as

W, = awr ion + iYelectron
(101)

where

awr = sgn(w )yboundary
r 0 ion

fdI fd'vF (a - W) [ 0

+ d-t P [( a - ( i)] F

( )a 0k 2 1
(.0) 0 -LVI

0 i9

k
0

+ 4 4h]h 2SI2
i

boundary + Ybulk
'ion = lion ion

bulk 4v/
Tion ~ 2

Jdeel/tvi(C)F
0

[* ~ Ucoll

x dA Dp ax ) +E

ki
max

dk D a#htj
t(j) (ax

+ AColl

2]

I

a
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x frfdav 2()2 -0)z] F

Yboundary = -.3(v I)'/
)ion I)

(;,0-O)1t(ODO)' +
h9P p

1 - (1 - .57 :) no x

(j) t(j) D t(j) /

0h~ p p :o h(j) ((j) tD )

0D0/1+
p p

~(T 0  D 0  )
t(j) t( j)

x fdsv[ 2 ( 0 ()1] F -

Yelectron

(102)

-2 5 - e

=-2.52 (7 1)[ - -~ (1 + 1.4n n no

B #h (1 - B) 1 / 2

A- (1 - AB'/ 1  fd -'v F,[2(*O) - i 2]

p t(j) d F I - )Lh -

The energy integrals over the collision frequencies have been expressed

for the ion boundary layer damping and electron growth rates using the

(10)
numerical values of Rosenbluth, Ross and Kostamorov The quantities

and v in Eq. (102) are
e

I
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4we n
- 1 0
v - -- mAmA

_. n lnA
7.7 x 10 T

4ween n lnA
inA - 1.8 x 10 (103)

-3
where in the numerical expression n is in cm and T is to be expressed in

0

eV.

We note that Eq. (101) and Eq. (102) are not variational for w, in

0 0
terms of h; rather *h and w are determined as the solution to the

homogeneous integral equation Eq. (76) and then used to evaluate Eq. (101)

and Eq. (102). We can, however, construct a maximizing variational

quadratic form for w , Eq. (60). Thus our procedure to evaluate w,

approximately is as follows: choose an appropriate set of trial functions

0
for #h, vary them until the quadratic form for w is maximized, then use the

maximizing trial function and the corresponding value of w to evaluate w,

using Eq. (101) and Eq. (102).

In order to derive a very rough estimate of the growth rates involved

we consider a square-well model where the magnetic field is a constant, B ,
0

except for abrupt maxima where the field rises to B *We denote the value
max

of h in each region as * where j labels the region. Subtracting the

quasi-neutrality relations Eq. (76) for each region gives

I
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e

*

(a =no nl

2--- - 1
nT

(104)

where n is the trapped density. The constraint that fdt (O /B) = 0 implies
T h

that = 0 for passing particles. Using these results in Eq. (102) gives

the following expression for the imaginary part of W1,

bulk boundary
= ion + Yion

+ Telectron

bulk 0
ion

boundary -
Tion

n
-0

n T

( B
B
max

Yelectron w 5
e

e

-. 3( e /, 1 + 2 -_ 1) (1 - .570) x

n
2

En2 +
[ n

(2

n
(2

n
0

- ) 1.4

)

n
0

nT

B /E+ 1 B

( )max

VBmax

(105))"/I

Im (WI)

x Iln (1
B
S 0

max



-48-

where

n / B

n 0-kn ' B )
n =n -n
p 0 T

dinT
S dlnn (106)

We note that as n is increased the ions become less stabilizing while the

electrons become more stabilizing. For n = [2(n /n T)/(2n /n - 1)1/.57 the

ions are no longer stabilizing. Assuming that n is less than this and that

boundary
the magnetic geometry is kept fixed then yboudar l (T3 .7s/0.5).

~electron' ion 0

More explicitly, for plasma parameters such that

1W01 P > vi, (107)

linear theory predicts stability if

boundary + y < 0. (108)
ion electron

For the square well model this implies

> al (109)

e
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B &/I B

2n n B B
p + 2 0 ma) max)

5 n 
- 1 1.4n x ln :B /

o To

L -) .(10)

n /B n 3/1

.3 1 + 2-0 .57n B 2 -- - 1
n T B man

This mode had been studied experimentally in the Columbia Linear Machine

with good agreement with theory. The real f requency increases with n T/n0

while the saturated mode amplitude decreases with increasing density .

V. SUMMARY

We have presented the collisional effects on trapped particle modes in

the high and low collisionality limits using a perturbative approach. The

magnetic equilibrium geometry is taken to be arbitrary although the

equilibrium electrostatic potential is taken to be a constant axially.

We can summarize the physical effects of collisions as follows. In the

drift kinetic equation a perturbing potential acts as a perturbing local

spatial source of particles. This number perturbation is then carried along

unperturbed orbits. In a collisionless trapped particle mode distribution

function perturbations in the center cell are communicated to the anchor

only through the streaming of passing particles. With the addition of

pitch-angle collisions the local perturbing source is carried along

unperturbed orbits and diffused in pitch angle. The collisional diffusion

creates an additional mechanism by which distribution function perturbations

can flow from the center cell into the anchor. In the low collisionality

case the dissipative nature of this relaxation destabilizes an otherwise

stable negative energy wave.
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If the collision frequency is sufficiently large the perturbed

distribution function is forced to be nearly isotropic in pitch angle. This

leads to two possible modes. The first is a flute-like mode whose stability

is determined by the flux tube integral of the beta weighted curvature.

Because of this mode's flute-like nature the lowest order response of both

ions and electrons is a constant times the equilibrium Maxwellian

distribution. Physically the ions and electrons E x B drift together and no

net charge perturbation results. The eigenfrequency is determined by taking

into account the Doppler shifts due to the curvature drifts of electrons and

ions. Because of the constraint that collisions do not change the net

number of particles in a flux tube, collisional effects do not enter into

determining the mode stability. Thus this mode persists even for ion

collision frequencies large compared to the mode frequency.

The second mode in this regime, the dissipative trapped ion mode is

driven by the difference in electron and ion collision frequencies. Thus a

density increase which raises both the ion and electron collision

frequencies without affecting the lowest order mode eigenfrequency, leads to

a damping of the mode. In this case the explicit form of the collision

operator is important in determining the growth rate. For a calculation of

this growth rate using a collisional operator which includes energy drag the

reader is referred to Ref. (12).

Because of the perturbative nature of the analysis followed here, the

behavior of a system with "' v cannot be determined. Using a two region,

magnetic square well model an expression suitable for arbitrary

collisionality and amenable to numerical analysis has been developed

elsewhere. The reader is referred to Ref. (12) for details.
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