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Abstract.  We highlight the necessity for evaluating and evolving the global axisymmetric
radial electric field in a tokamak consistent with conservation of toroidal angular momentum
for both 

€ 

δf and full f gyrokinetic codes, where f is the full distribution function and 

€ 

δf its
departure from Maxwellian. We also consider the effects of a strong radial electric field in a
subsonic pedestal in the banana regime, finding that it acts to reverse the poloidal flow,
increase the bootstrap current, and enhance the residual zonal flow regulation of turbulence.
We then generalize the concept of intrinsic ambipolarity to an H mode pedestal.

1. Introduction

We have recently obtained a complete gyrokinetic description for evaluating and evolving the
global axisymmetric radial electric field in a turbulent tokamak as well as for solving for the
remaining components of the electric field [1-3]. In addition, we have developed procedures
for evaluating strong radial electric field caused modifications to the banana regime ion heat
flow, ion and impurity flows in a flux surface, the bootstrap current, and the zonal flow
residual in a subsonic pedestal of a tokamak [4-7]. In what follows, we provide more insight
into these detailed calculations in a relatively equation free manner in order to focus on
physics issues not discussed in detail in these earlier publications. In particular, we explain
why the global axisymmetric radial electric field in a tokamak is so difficult to determine and
why it cannot be determined from quasineutrality, and we describe how the concept of
intrinsic ambipolarity [8-9] must be generalized in a subsonic pedestal where, unlike the core,
the transport coefficients depend on the radial electric field.

In section 2 we illustrate the impracticality of determining the global axisymmetric radial
electric field from quasineutrality by considering the general form for the flux surface average
of total toroidal angular momentum conservation for a turbulent tokamak [3]. The discussion
highlights the difficult and subtle issues associated with extending gyrokinetics to the
transport time scales at which the turbulent and neoclassical fluxes evolve the flux surface
averaged density, temperature, and electrostatic potential profiles. We demonstrate that any
analytic or numerical error in the radial current and/or quasineutrality can easily generate a
torque that will generate a non-physical global axisymmetric radial electric field. The need to
evaluate the global radial electric field from toroidal angular momentum conservation implies
that δf gyrokinetic descriptions are sufficient and there is no necessity for a full f description.

Sections 3 to 5 focus on the role of the pedestal radial electric field. In a subsonic pedestal the
E×B drift and the ion diamagnetic drift must cancel to lowest order so their difference is small
and comparable to ion temperature gradient terms in the ion flow on a flux surface [10-12]. In
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this situation the ions are electrostatically confined to lowest order and a large radial electric
field exists. The associated large E×B can compete with the poloidal component of the
parallel streaming to modify ion trajectories. These altered orbits thereby introduce electric
field modifications into the ion temperature gradient terms of the ion heat flux and ion and
impurity flows [5], and the bootstrap current [7] as briefly discussed in section 3, as well as
modify [4,6] the residual zonal flow response of Rosenbluth and Hinton [13] as noted in
section 5. In spite of these changes we explain in section 4 how the plasma remains
intrinsically ambipolar in the more general sense that the particle flux depends on the radial
electric field (unlike in the core), but cannot be determined by the setting the flux surface
averages of the radial ion and electron currents equal to lowest order.

To perform calculations in the pedestal, where there are strong radial density and electron
temperature gradients on the order of a poloidal ion gyroradius ρpi, it is convenient to employ
canonical angular momentum as the radial gyrokinetic variable [10]. To simplify further we
assume Bp/B << 1. The ion temperature pedestal is always at least B/Bp wider than ρpi because
of the constraint that the entropy production must vanish in a banana regime pedestal [10].

2. Global axisymmetric radial electric field in the core

Parra and Catto [14] point out the impracticality of using quasineutrality or radial
ambipolarity to determine the global axisymmetric core radial electric field of a turbulent
tokamak. To verify this conclusion in the electrostatic limit consider the flux surface average
(denoted by 

€ 

〈...〉) of total toroidal angular momentum conservation:

  

€ 

〈J ⋅ ∇ψ〉 − ce〈(Zni - ne )∂Φ/∂ζ〉 = c∂ /∂t〈R2MniVi ⋅ ∇ζ〉 + (c / ʹ′ V )∂ /∂ψ[ ʹ′ V 〈R2∇ζ ⋅
 
π i ⋅ ∇ψ〉] , (1)

where 

€ 

B = I∇ζ +∇ζ ×∇ψ with 

€ 

ζ , 

€ 

ϑ  and 

€ 

ψ the toroidal angle, poloidal angle and poloidal
flux variables, B =

€ 

B , 

€ 

∇ψ  = RBp, 

€ 

ʹ′ V = dϑ /∫ B ⋅ ∇ϑ , J is the current density, ne, ni, Vi and M
are the electron and ion densities, the ion mean velocity and mass, R is the major radius, c is
the speed of light, e is the magnitude of the charge on an electron, and   

€ 

 
π i  is the full ion stress

tensor including Reynolds stress, and gyro and perpendicular viscosity. For a quasineutral
plasma ne = Zni and ∇⋅J = 0 requiring ambipolarity: 

€ 

〈J ⋅ ∇ψ〉  = 0.

To see the difficulty we allow an error departure from ambipolarity by estimating 

€ 

〈J ⋅ ∇ψ〉  ~
RBpJerror rather than setting it to zero. Then, we estimate the size of the off diagonal stress
tensor by assuming a gyroBohm scaling to find   

€ 

〈R2∇ζ ⋅
 
π i ⋅ ∇ψ〉  ~ RBpDgB

€ 

∇(RMniVi) ~
piR2Bp(ρi/a)3(B/Bp), where pi = niTi is the ion pressure, a is the minor radius, and 

€ 

ρi = vi/

€ 

Ωi is
the ion gyroradius with vi = (2Ti/M)1/2 and 

€ 

Ωi  = ZeB/Mc the ion thermal speed and cyclotron
frequency. The B/Bp factor comes from the ion flow Vi ~ vi(ρi/a)(B/Bp) << vi. For our
gyroBohm diffusivity estimate, DgB ~ (ρ i/a)ρivi. The preceding estimates give Jerror ~
enivi(B/Bp)2(ρi/a)4 as the ambipolarity error that will cause radial momentum transport to be
incorrectly evaluated. This error can be generated by analytic simplifications (such as a not
going to high enough order in the 

€ 

ρi /a expansion - a problem with typical Hamiltonian
gyrokinetic treatments in addition to their neglect of collisions) or with numerical noise or
algorithm shortcomings.



3 THC/3-2

3

The ion diamagnetic current is Jdia ~ enivi(B/Bp)(ρi/a). It is (R/a)1/2 larger than the bootstrap
current that is the same order as the Ohmic and driven currents generating the poloidal
magnetic field when (R/a)1/2(4πpi/Bp

2) ~ 1. Noticing that the ratio Jerror/Jdia ~ (ρi/a)3(B/Bp) << 1,
we see that an error in the correction to the lowest order ion Maxwellian distribution function
fMi as small as (B/Bp)2(ρi/a)4 ~ Jerror/enivi will lead to an unphysical torque on the plasma if it
results in a non-ambipolar radial current. Estimating 

€ 

ρi /a ~ 1/300 and B/Bp ~ 10 this requires
evaluating f/fMi to better than order 10-8, which is (B/Bp)(ρi/a)3 smaller than the ion
diamagnetic correction required to properly evaluate ion neoclassical heat transport. Such
accuracy, for diffusive gyroBohm transport, would require a very large number of particles
per cell. To see why this is the case we use the radial diffusivity due to noise estimate from
equation (9) of [15]. Taking the correlation time τ ~ a/vi, the grid cell size Δy ~ ρi, and the
fluctuating noise potential associated with discretization 〈Φ〉rms~ T/eN1/2, where N is the
number of particles per cell, gives Dnoise ~ (τ/B2)(〈Φ〉rms/Δy)2 ~ avi/N. Noise induced transport
competes with anomalous transport when Dnoise~ DgB ~ (ρi/a)ρivi or for N ~ (a/ρi)2 ~ 105

particles per cell. This estimate seems to be conservative but within an order of magnitude of
what is observed when momentum transport effects are ignored since a recent full f kinetic
electron PIC simiulation of TEM turbulence in FT-2 ran with ~104 particles per cell for (a/ρi)2

~ 104 [16]. Of course, many more particles per cell are required to avoid having the noise
impact toroidal angular momentum conservation. Estimating Jnoise ~ eDnoiseni/a as the error
current Jerror ~ (B/Bp)2(ρi/a)4enivi that has an impact gives N ~ (Bp/B)2(a/ρi)4 ~ 108 particles per
cell. As already indicated, the precise estimate of the number of particles per cell is somewhat
sensitive to the details of the PIC code used, but the 103 increase in the number of cells
required should be a reasonable estimate of the increased number of particles per cell required
to avoid introducing noise errors into conservation of toroidal angular momentum. Moreover,
runs (a/ρi)2 ~ 105 times longer than run times of tens to hundreds of transit times ~ a/vi will be
required to evolve turbulence on transport time scales.

To estimate the associated quasineutrality error that will generate the same unacceptable
torque we use charge conservation with ∂/∂t ~ vi/a to find (Zni - ne)error/ni ~ Jerror/enivi. As a
result, we find (Zni - ne)error/ni ~ (B/Bp)2(ρi/a)4 ~ 10-8 as the quasineutrality error that will lead to
an unacceptable torque. For such an error in the drift ordering, c∂Φ/∂ζ ~ RBpvi

€ 

ρi /a, the second
term on the left of (1) gives ce〈(Zni - ne)error∂Φ/∂ζ〉 << 〈Jerror⋅∇ψ〉. Consequently, a direct
evaluation of the gyrokinetic charge densities via quasineutrality requires an accuracy much
greater than (B/Bp)2(ρi/a)4. Such an evaluation is a hopelessly difficult and unnecessary task.

Any attempt at a direct solution of a kinetic equation and quasineutrality to evaluate radial
momentum transport or equivalently, the global axisymmetric radial electric field, will be
dominated by the shortcomings of the kinetic description as illustrated in [17], as well as
numerical inaccuracies. These problems can be avoided by using a hybrid or extended fluid -
gyrokinetic description that exploits the smallness of the ion gyroradius in strongly
magnetized plasmas in the presence of turbulence [1-3,18]. Hybrid or extended descriptions
use the conservation of number, momentum, and energy equations, as well as a few other
moments of the exact Fokker-Planck equation rather than a reduced kinetic description [19].
Even so, a direct evaluation of   

€ 

〈R2∇ζ ⋅
 
π i ⋅ ∇ψ〉  using the gyrokinetic f requires f/fMi to order

(B/Bp)(ρi/a)3 - still an impractical task. Fortunately, the use of higher moments of the Fokker-
Planck equation allows   

€ 

〈R2∇ζ ⋅
 
π i ⋅ ∇ψ〉  to be evaluated using an f/fMi that need only be
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known to order (

€ 

ρi /a)2(B/Bp) ~ 10-4 [1]; more than a (Bp/B)(

€ 

a /ρi)
2 ~ 104 decrease in the

accuracy required over full f gyrokinetic treatments. Moreover, gyrokinetic equations need
only be solved occasionally since profile evolution is handled by the conservation equations.
Implementing a hybrid fluid - gyrokinetic description differs for 

€ 

δf and full f gyrokinetic
simulations [1], but in both cases the hybrid description is formulated to employ the least
accurate f required to evaluate the off-diagonal elements of the ion stress tensor to determine
the global axisymmetric radial electric field.

It is tempting to form conservation of toroidal angular momentum from a conservative form
of the gyrokinetic equation by taking its canonical angular momentum =

 ψ∗≡ψ− (Mc/e)R
2v⋅∇ζ  moment, just as energy conservation can be formed from the total

energy = E = v2/2+ZeΦ/M moment. However, this method is only valid when the distinction
between  


R≈ r+Ωi

−1v× n and  
r  variables is unimportant to lowest order. Unlike radial ion heat

flux, the lowest order radial flux of toroidal angular momentum (the lowest order Reynolds
stress) has strong spatio-temporal variation, that must coarse grain average to zero in an up-
down symmetric tokamak in the absence of flow shear (as generated by the Coriolis pinch due
to a toroidally directed flow). Indeed, this lowest order vanishing of the Reynolds stress is
expected to be a robust property even in asymmetric tokamaks provided the mean flow is
diamagnetic in order [1]. Consequently, even seemingly small corrections to the lowest order
Reynolds stress matter. Only for sonic flow will the symmetry breaking flow shear terms
matter more than these diamagnetic drift ordered gradient driven corrections that were
evaluated in [1].

Retaining these drift ordered terms becomes extremely difficult when toroidal momentum
conservation is formed using the ψ∗ moment of the gyrokinetic equation because higher order
corrections in the gyroradius, ρi/a, and fluctuation amplitude, eδΦ/T, expansions of the
gyrokinetic equation are required that carefully retain the necessary distinction between  


R and

 
r  in momentum conservation when transforming from guiding center phase space back to
physical space [1,2]. In particular, the expansions in ρ i/a ~ eδΦ/T must be performed
concurrently to second order (at least) by keeping modifications due to products of ρi/a and
eδΦ/T [including the distinction between  


B(

R)  and  


B(r ) , and collisional turbulent and

neoclassical effects]. Moreover, when rewriting ψ∗ in gyrokinetic variables the gyrokinetic
corrections to the ψ have to be retained to one order higher than in the Iv||/Ωi term since to
lowest order ψ∗ = ψ, while to next order  ψ∗ ≈ψ+Ωi

−1v× n ⋅∇ψ− (Iv|| /Ωi )  with  B = B(

R)  and

 
n = n(


R) . These higher order corrections are required to insure that the gyrokinetic ψ∗ is

equal to the exact ψ∗ order by order (unless the exact ψ∗ is used as the radial gyrokinetic
variable as in [10]).

3. Effects of the pedestal radial electric field

In a subsonic banana regime density pedestal of poloidal ion gyroradius width ρpi, the E

€ 

×B
and ion diamagnetic flows must cancel to lowest order. This behavior is seen in the helium
discharges on DIII-D where the background ion temperature can be measured directly [20].
The lowest order cancellation keeps the ion flow subsonic and means that the ions are
electrostatically confined with the radial electric field satisfying (Ze/Ti)dΦ/dr ≈ -dlnpi/dr ~
1/ρpi >> 1/a [10]. The associated subsonic E

€ 

×B drift competes with poloidal component of
parallel streaming when Bp << B in an axisymmetric tokamak since it allows cE

€ 

×B/B2 ~
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(Bp/B)vi. This competition modifies the collisionless orbits [4-7] by introducing finite orbit
effects as well as orbit squeezing, and makes it necessary to retain the distinction between
surfaces of constant magnetic flux and drift surfaces on which the canonical angular
momentum remains constant. This nonlocality is removed by assuming the inverse aspect
ratio ε << 1; thereby allowing us to obtain analytic results since the trapped and barely
passing ions remain localized with their departure from a flux surface of order ε1/2ρpi << ρpi.
The strong radial electric field alters the shape of the trapped - passing boundary and moves it
on to the tail of the ion Maxwellian thereby exponentially reducing ion heat transport [5] and
neoclassical polarization effects in the zonal flow residual [4,6,20]. Perhaps more importantly,
the poloidal ion and impurity [21] flows,

Vi
pol =

7cIBp
6e〈B2 〉

∂Ti
∂ψ
Jb (U

2 )    and  

€ 

Vz
pol =Vi

pol −
cIBp
eni〈B

2〉
∂pi
∂ψ

−
ni
Zznz

∂pz
∂ψ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  , (2)

are modified by the radial electric field because it affects momentum conservation during ion-
ion collisions [5], with u = cI ʹ′Φ / 〈B2 〉1/2  and U = u/vi, where Φ ' = ∂Φ/∂ψ. A subscript z
denotes the impurity, and Jb is given by

Jb (U
2 ) = 6

7
5
2
+U2 −

dye−y (y + 2U2 )3/2 (yν⊥ + 2U
2ν|| )o

∞∫
dye−y (y + 2U2 )1/2 (yν⊥ + 2U

2ν|| )o
∞∫

⎡

⎣
⎢

⎤

⎦
⎥  , (3)

with Jb(0) = 1. Measurements of the poloidal Boron impurity flow in Alcator C-Mod indicate
the importance of retaining this finite radial electric field effect in the pedestal [12] that acts to
change the ion poloidal flow direction [22].

Finite orbit effects indirectly affect the electrons through their friction with the ions. This
friction depends on the parallel ion flow and thereby on the poloidal ion flow that in turn is
proportional to the radial ion temperature gradient. As a result, finite orbit effects modify the
coefficient of the ion temperature gradient term in the bootstrap current. This modification is
found to enhance the bootstrap current and the effect can easily be incorporated into existing
expressions [7]. For example, using total pressure p = ne(Ti+Te), the Z = 1 expression for the
bootstrap current [21] becomes

J||
bs = −2.4 εcIB

〈B2 〉
∂p
∂ψ

− 0.74ne
∂Te
∂ψ

−1.17Jb (U
2 )ne

∂Ti
∂ψ

⎡

⎣
⎢

⎤

⎦
⎥  . (4)

The bootstrap current is enhanced over the conventional expression [23] for a finite radial
electric field because Jb is monotonically decreasing (becoming negative when U2 > 1.4).

The expression for the ion heat ion heat flux in the banana regime has also been evaluated [5],
as have all plateau regime results [24]. In both regimes flows and currents are independent of
orbit squeezing since they are insensitive to the localized portion of the ion distribution
function. In the banana regime the ion heat diffusivity is reduced by the strong pedestal radial
electric field, while only depending algebraically on orbit squeezing [5]. The plateau ion heat
diffusivity increases with electric field strength before falling off exponentially and does not
depend on orbit squeezing [24].



6 THC/3-2

6

4. Intrinsic ambipolarity in a pedestal

The appearance of the electric field dependent Jb factor in the coefficient of ion temperature
gradient terms and other electric field factors in the ion heat flux [5,24] and particle fluxes
[24] leads to the question as to whether intrinsic ambipolarity in a axisymmetric, turbulence-
free tokamak [8,9,25] is modified in the pedestal. For isothermal ions or in the weak radial
electric field limit all our results reduce to the conventional ones [23,26]. In addition, the
radial electric field has not introduced any new transport forces. The ion kinetic equation still
has only an ion temperature gradient drive and the electron kinetic equation has the usual
drives except for the Jb coefficient in the ion temperature gradient term that comes from the
electron friction with the ions. Consequently, the altered neoclassical expression for banana
regime radial particle transport for Z = 1 and large aspect ratio from equation (11.43) [23]
becomes

 
〈ne

Ve ⋅∇ψ〉 = −2.2

ε I2

meΩe
2τei

∂p
∂ψ

−1.4ne
∂Te
∂ψ

−1.17Jb (U
2 )ne

∂Ti
∂ψ

⎡

⎣
⎢

⎤

⎦
⎥  , (5)

where τei the Braginski electron-ion collision time and we have neglected the pinch term for
simplicity. In spite of the radial electric field entering the particle flux through Jb,
conservation of momentum in like particle collisions insures a vanishing lowest order radial
ion particle flux and intrinsic ambipolarity in the pedestal to next order since the toroidal
component of the species momentum equations give [8,9]

  

€ 

〈ni

 
V i⋅∇ψ〉 = −(cI /Ze)〈B−1 d3vMv||∫ C1

ie〉 = (cI /Ze)〈B−1 d3vmv||∫ C1
ei〉 = Z−1〈ne

 
V e⋅∇ψ〉 , (6)

where the 

€ 

C1
jk  are the unlike linearized collision operators and we continue to neglect the

pinch or induced electric field effects for simplicity. Then the only change in the neoclassical
radial electron particle flux is through the Jb coefficient of the ion temperature gradient term.
As a result, employing 

€ 

〈J ⋅ ∇ψ〉  = 0 cannot determine the radial electric field - that is, the
plasma remains intrinsically ambipolar even though the radial electric field dependent
coefficient Jb appears in the radial electron particle flux.

To determine Φ' total toroidal angular momentum conservation must be employed, just as in
the core, to evaluate the departure from radial Maxwell-Boltzmann ions, that is, the departure
from 

€ 

dΦ/dψ+ (Zeni)
−1dpi /dψ = 0. The only difference is that in the pedestal typically

ZenidΦ/dψ ≈ -Tidni/dψ >> - nidTi/dψ. Indeed, the proof in [10] that the ion temperature Ti

must vary slowly compared to the poloidal ion gyroradius scale of the pedestal relies on the
observation that the Ti dependent puesdo-density η ≡ niexp(ZeΦ/Ti) must also vary slowly. If
the plasma is toroidally rotating sonically then the toroidal rotation frequency ω  = -
c[

€ 

dΦ/dψ+ (Zeni)
−1dpi /dψ] must also vary slowly so there are still only rather weak

departures from a generalized Maxwell-Boltzmann ion relation. This behavior is required to
make the Vlasov operator vanish to lowest order since the ion distribution function can only
depend on the constants of the motion E = v2/2 + ZeΦ /M = total ion energy and
  

€ 

ψ∗≡ψ− (Mc/e)R2 v ⋅∇ζ=ψ +Ωi
−1 v ×  n ⋅∇ψ− (Iv|| /Ωi) = canonical angular momentum. And, in

addition, it must also be Maxwellian, fMi = η(M/2πTi)3/2exp(-ME/Ti), to make the entropy
production integrated over the pedestal vanish, where to lowest order this requires Ti(ψ*) ≈
Ti(ψ) and  η(ψ*) ≈ η(ψ), with fMi independent of poloidal angle in the banana regime. The fact
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that the ion temperature and psuedo-density must vary slowly means that the pedestal differs
surprisingly little from the core, with the key difference being that for the typical case of a
subsonic pedestal the ions are electrostatically confined to lowest order so that the E×B drift
can alter results. We also remark that the slower variation of the ion temperature and psuedo-
density mean that the electrons must be playing the key role in setting the strong variation of
the plasma density (and thereby the potential) and electron temperature.

In a turbulent tokamak pedestal the ambipolarity argument is only slightly more involved than
in the core. We have demonstrated that the neoclassical contributions to the radial particle
fluxes remain intrinsically ambipolar. Consequently, the turbulent portions must as well, as
long as direct orbit and ripple losses remain small and neutrals do not play a significant role.
This observation might seem physically reasonable since the turbulent fluxes are expected to
be associated with E

€ 

×B drifts. A more detailed and convincing proof follows by realizing that
the toroidal angular momentum conservation equation (1) remains valid. As a result, as long
as quasineutrality continues to hold in the pedestal then 

€ 

〈J ⋅ ∇ψ〉  = 0. Therefore, for steady
state turbulence only   

€ 

〈R2∇ζ ⋅
 
π i ⋅ ∇ψ〉  can change, but its vanishing must continue to

determine the axisymmetric radial electric field! We remark, however, that the form of
  

€ 

〈R2∇ζ ⋅
 
π i ⋅ ∇ψ〉  will differ in the pedestal since the finite E

€ 

×B drifts can alter particle
trajectories. This change could increase the size of the off diagonal stress terms to a Bohm
diffusivity. The resulting a/ρi increase in size would mean that momentum flows, as in the
sonic case, are no longer in flux surfaces to lowest order [1]. Consequently, in the pedestal
larger error currents and quasineutrality errors may be allowed, but not as large as Jerror/enivi ~
(ρi/a)3 ~ (Zni - ne)error/ni.

5. Pedestal electric field effects on the zonal flow residual

The altered neoclassical polarization of the plasma due to the strong radial electric field of the
pedestal modifies the Rosenbluth and Hinton zonal flow residual [13]. The derivation of this
modification is given in detail in references [4,6] so here we simply present the final result.
The residual is defined as the ratio of the final (t →  ∞) over the initial (t = 0) potential
perturbation  Φ  applied without altering the density

 

Φ(t→∞)
Φ(t = 0)

=
1

1+ℜ
 , (7)

with

€ 

ℜ =ℜRH
Γ(U2)
S

+ i Λ(U,S)
〈krρpi〉

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  (8)

where 

€ 

ℜRH =1.6q2/ ε  is the Rosenbluth and Hinton result,

Γ(U2 ) = (4/3 π )exp(−U2 ) dy(y + 2U2

0

∞

∫ )3/2 exp(−y)  (9)

and

Λ(U,S) = 2S−1/2U SΓ(U2 )+ 4π−1/2 (1−S)exp(−U2 ) dy(y + 2U2

0

∞

∫ )1/2 exp(−y)⎡
⎣⎢

⎤
⎦⎥

 , (10)
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where S =1+ (cI2 ʹ′ʹ′Φ /〈ΩiB〉) . The important differences between the pedestal and the core are
as follows. At large U the trapped region shifts to the tail of the distribution function causing
an exponential decay of Γ and Λ, thereby reducing ℜ . As a result, the zonal flow residual can
approach unity and more strongly regulate pedestal turbulence. The imaginary term Λ
represents a spatial phase shift in  Φ  introduced by u. Orbit squeezing effects do not enter Γ
and only enter Λ algebraically.

The form of (10) suggests that once the U goes beyond a critical value a further increase in
the global pedestal radial electric field enhances the zonal flow residual and thereby is
expected to reduce anomalous transport. This feedback mechanism may play a role in
pedestal formation and the low to high mode transition as the pedestal density profile
steepens.

6. Discussion

We have explained why great care is required when evaluating the global axisymmetric radial
electric field in a tokamak by considering the size of the allowed error terms in the
conservation of total angular momentum equation. These errors can be due to numerical noise
or algorithm shortcomings, or approximations associated with the asymptotic gyrokinetic
treatment (in particular, not retaining magnetic geometry effects to high enough order in a
turbulent plasma). We stress that a (Bp/B)(

€ 

a /ρi)
2 less accurate ion distribution function is

required if a hybrid fluid - gyrokinetic treatment is employed [1,2,25].

We also discuss the effects of a strong pedestal radial electric field in a weakly collisional
plasma and generalize the notion of intrinsic ambipolarity to demonstrate that it remains valid.
We note that in the banana regime this strong pedestal radial electric field acts to reverse the
poloidal flow [5] and increase the bootstrap current [7], and enhance the residual zonal flow
regulation of turbulence [4,6]. The influence of the pedestal electric field is stronger in the
banana regime than in the plateau regime [24]. The effect of the electric field on the poloidal
impurity flow is clearly observed in the Alcator C-Mod pedestal [22] and is agreement with
our predictions [5,24].
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