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Abstract 

Recent c alculations have shown that a radial el ectric field can significantly  alter the ion flow,  
neoclassical ion heat flux, bootstrap current, and residual zonal flow in a tokamak, even when the  
×E B  drift is much sm aller th an the ion therm al speed. Here we show the novel analy tical 

methods used in these calculations can be adapte d to a quasisy mmetric stellarator. The methods 
are based on using the conserved helical momentum *ψ  instead of the poloidal or toroidal flux as 
a coordinate in the kinetic equation. T he calcu lations also em ploy a m odel collision ope rator 
which keeps only the velocity-space derivatives normal to the trapped-passing boundar y, even as 
this boundary is shifted and deform ed by  the ×E B  drift. We prove the iso morphism between  
quasisymmetric stell arators and tokamaks extends to the finite- ×E B  generalizations of both  
neoclassical t heory and residual zonal flow. The electric field i n the HSX s tellarator may be 
sufficient for these finite- ×E B  effects to be significant. 



1. Introduction 

One important concept in  modern stellarator design is quasisy mmetry [1-5]. A magnetic 
field is defined to be quasisy mmetric when the magnitude B = B  varies on a flux surface only  
through a fixed linear combination of the Boozer angles [3]. Remarkably, magnetic fields can be 
found [6,7] which have this sy mmetry property even though the fields are not axisy mmetric in 
conventional cylindrical coordinates. Quasisy mmetry can also be defined  in a co ordinate-
independent manner [8]. In a quasisy mmetric field, Noether’s theorem implies the existence  of a 
conserved quantity. Therefore the particle orbits become integrable, so there a re no direct orbit 
losses, and radial transport is reduced. Another noteworthy consequence of quasisymmetry is the 
“isomorphism” [1,2] bet ween a quas isymmetric plas ma and an axisy mmetric one, whereby  
conventional neoclassical transport formulae for the quasisymmetric case can be obtained f rom 
the corresponding formulae for axisymmetry by making certain substitutions. These isomorphism 
rules will be reviewed in detail in section 3. However, not all plasma quantities are rel ated by the 
isomorphism. For example, it is pointed out in [ 9] that classical transport fluxes do not obe y the 
substitution rules, since classical transport arises from gyromotion rather than drift motion.  

In this paper we show the isomorphism does extend to neoclassic al transport and to the 
residual zonal flow even when these quantities are modified by a radial electric field Eψ . These 
“finite- Eψ ” modifications were calculated recently for tokamaks by Kagan et al in [10-16]. Here, 
the radial el ectric fi eld is defined by ( )p p/Eψ ψ ψ= − ∂Φ ∂ ∇  where Φ  is the electrosta tic 
potential and p2πψ  is the poloidal flux. The finite- Eψ  calculations in a to kamak are based on 
several novel analy tical techniques. Fir st, new or derings are used for gradient scale-lengths and 
for Eψ  based  on the sm all parameter p /B B , where pB  is th e poloidal field. Secondly, the 
canonical angular m omentum *Ψ  is used as the “radial” coordi nate in the kinetic equation, and 
the transit average is r edefined to be an integral along a constant- *Ψ  path instead of along a flux  
surface. Finally, a new m odel collision operator is used, one in which velocity -space derivatives 
are taken norm al to the trapped-passing b oundary, accounting for the m odification of t his 
boundary b y Eψ . In this pa per we will show how to generalize all of these elem ents – the  
orderings, p /B B , *Ψ , and the model collision operator – to a quasisymmetric stellarator. 

In a tokamak, the finite- Eψ  effects ar e important primarily in a high confinement m ode 
(H-mode) pedestal. If an H-mode tran sition is ever observed on a future larg e quasisy mmetric 
stellarator, as m ight have occurred in NCSX [17], the finite- Eψ  effects derived herein will be 
applicable to the pedestal of that device. However, th e finite- Eψ  effects may be observable in a 
stellarator without H-mode, perhaps even in t he only presently operating quasisymmetric device, 
HSX [7 ]. Finite- Eψ  effect s will be m ore i mportant in a quasisy mmetric stellarat or than in t he 
equivalent to kamak due to the larger effective ri pple in the form er. A field  generated by  real  



magnets will inevitably deviate somewhat from perfect quasisymmetry, and even small deviations 
can cause a large enough nonambipolar particle flux [8,18] to generate a large Eψ . Furthermore, 
HSX uses electron cyclotron heating, which leaves the ions cold, while we will show the electric 
field scal e at which finite - Eψ  effects set in is proporti onal to the ion therm al speed. We will 
show quantitatively that Eψ  in HSX may indeed be large enough for the effects evaluated herein 
to appear. 
 The next section gives furt her background on the fin ite- Eψ  effects in  tokamaks and on 
quasisymmetry. Detailed quantitative analy sis be gins in sect ion 3 with a review of the 
isomorphism between neoclassical transport in a quasisy mmetric plasma and an axisy mmetric 
one. In section 4 we sho w how the finite- Eψ  orderin gs generalize in quasis ymmetry, and we 
discuss applicability  of t hese orderings to HSX.  The model collision operator and the 
modifications to neoclassical transport are derive d in section 5. The resid ual zonal flo w is 
discussed in section 6, and we conclude in section 7. 

2. Background 

It was r ecently shown in [13,14,16,19] that a modest radial electric field c an cause 
significant modifications to the radial ion heat flux, ion flow, and  bootstrap current in a tokam ak. 
These modifications become significant when 
 p i~ /E B v cψ  (1) 

where i 2 /v T m=  is the ion thermal speed. Be cause pB B  in a  t ypical toka mak, the 
modifications to conventio nal neoclassical tr ansport [20-22] become important when the ×E B  
drift 2

E cB−= ×v E B  is still m uch smal ler than iv . Phy sically, the electric fi eld becom es 
important when it is as large as (1) because it th en affects ion trapping [11,12,15], which can be 
understood as follows. An  ion is trapped in a tokam ak when its n et poloidal m otion, the su m of 
parallel and drift components, is small enough that the mirror force can stop the particle before it 
reaches the inboard m idplane. For p i~ /E B v cψ , this net poloidal m otion receives contributions 
of comparable magnitude from the parallel motion and the ×E B  drift. It is therefore not ions of  
small ||v  which are trapped, but rather io ns for which the two contributio ns nearly  cancel. To  
restate this argument more quantitatively, note that an ion’s net poloidal motion is given by 
 ( ) ( )|| ||/ Ed dt v v uΘ ≈ + ⋅∇Θ = + ⋅∇Θb v b  (2) 

where Θ  is a poloidal coordinate with periodicity 2π , / B=b B , 
 1

p/u cIB ψ−= ∂Φ ∂ , (3) 

and tI RB=  is the major radius times the toroidal m agnetic field. A particle is trap ped if its 
/d dtΘ  can vanish, so we expect the trapped ions to be those localized in phase space ne ar 

||v u≈ − . The shift u  becomes ( )iO v  when Eψ  is as large as (1). 



 References [13,14,16] sh ow how this sh ift in the  trapped-passing bou ndary causes 
changes to t he neoclassical ion heat flux, i on fl ow, and b ootstrap current in t he ba nana 
collisionality regime. These calculations use a modified model operator for ion-i on collisions. In  
conventional calculations, only the pitch-angle scattering component of the collision operator is 
kept, together with an off set to conserve m omentum. The justification for us ing this simplified 
operator, vali d when p i /E B v cψ , is t hat the distri bution functi on is fo und t o have a lar ge 
derivative with respect to pitch angle. Loosely, this is the derivative normal to the trapped-passing 
boundary in velocity space. The modified collision operator em ployed by Kagan and Catto [ 13] 
instead keep s only  derivatives norm al to the shifted trapped-passing bound ary, even as this 
boundary is shifted by the ×E B  drift as discussed above. The modified operator thereby captures 
the dominant velocity-space derivative of the distribution function when p i~ /E B v cψ . 

Besides neoclassical transport, another quantity which is modified when p i~ /E B v cψ  is 
the residual zonal flow [11,12,15], a quantity introduced by Rosenbluth and Hinton in [ 23]-[24]. 
The “residual” su mmarizes the rate of zonal fl ow damping, sidestepping t he more co mplicated 
analysis of the nonlinear turbulence which drives the flows. In the Rosenbluth-Hinton model, the 
nonlinear drive for zonal flow in the kinetic equati on is effectively replaced by a delta function in 
time. After many ion bounce times , t he ions’ radi al drift partially shields the initial pote ntial 
perturbation ( )0tΦ = . The residual zonal flow is then defined as the ratio ( ) ( )/ 0t tΦ →∞ Φ = . 
Later authors have generalized the calculati on to include additional effects [25] and 
nonaxisymmetric geo metry [ 26,27]. Analytical expressions for the residual, obtained usin g a 
large-aspect-ratio approxi mation, can be used to  v alidate gy rokinetic and g yrofluid tur bulence 
codes. The residual also gives insight into the z onal flow amplitude which can be expected in the 
presence of turbulence.  

One element of the cal culations used to obtain the finite- Eψ  effects in [ 11-14,16,15,19] 
is a novel set of orderings. To under stand the new orderings, first recall the conventi onal 
approaches. The standard ordering for transport cal culations [20-22] is the “drift” or “low flow” 
ordering i~E vδv  where the small parameter / aδ ρ=  is the ion gyroradius divided by a system 
scale-length. No distinction is ty pically made between radial and parallel scale-lengths. Also, all 
components of B  are ordered the sam e, so p t~ ~B B B . The perpendicular gui ding-center drifts 
are given to leading order by 
 ( ) ( )d || ||/v v= Ω ∇×v b . (4) 

Here and throughout this paper, derivatives hold 2 /E v Ze m= + Φ  and 2 / 2v Bμ ⊥=  fixed, unless 
subscripts specify other quantities to be held fixed. The other conventional ordering [28-31] is the 
“large flow” or “MHD” ordering i~Ev v . Again, no distinction is ty pically made between radial 
and parallel scale-lengths or be tween different components of B . In the large-flow ordering, the 



conserved magnetic m oment is changed to ( )2 / 2E B⊥−v v , and other perpendicular drifts arise 
which are the same order as those in (4). In contra st, we will use “finite- Eψ ” to describe the 
orderings used by Kagan and Catto in  [11-14,16,15,19]. In this approach, p /B B  is taken to be a 
small para meter, and the  electri c field is ordered  using (1). As Ev  is therefore iv , then 

2 / 2v Bμ ⊥=  is still conserved, the perpendicular drifts are still given by (4) to leading order, and 
the low-flow drift-kinetic or gy rokinetic equations are applicable . Also, the r adial density scale-
length is orde red ( )p/B B ρ  rather than a . Whereas [ 28,29] give proofs that a n electric field of  
magnitude ~ /p iB v c  implies a sonic toroidal flow under the large-flow ordering, these proofs do 
not apply in the finite- Eψ  ordering due to  the larger magnitude of ( )p/f ψ∂ ∂

v
. It is therefore 

permissible for the m ean flow to be small co mpared to iv , in agreement with measurements of 
flow in tokamak pedestals. In the finite- Eψ  ordering, ||v ⋅∇Θb  and E ⋅∇Θv  are the same order, 
as in the hi gh-flow ordering, but unlike the high -flow ordering, t he leading-order Maxwellian i s 
now taken to be stationary. T hus, analy sis in the fi nite- Eψ  ordering differs from both of th e 
conventional approaches. 
 To calculate neoclassical t ransport and th e residual zonal flow in the new o rderings, 
Kagan and Catto [10] introduce the following novel analytical technique. A change of variables is 
made in the kinetic equation, replacing  pψ  with the g yroaveraged canonical ang ular momentum 

* p || /IvψΨ = − Ω  as an independent variable . The drift-kinetic operator D  gives zero when  
acting on *Ψ , so the “radial ” term ( )* */D f ψΨ ∂ ∂  in th e kinetic equation vanishes. Thus, the 
kinetic equation has the fo rm ( ) { }/D f C fΘ ∂ ∂Θ = , and the left-hand side can be annihilated by 
integrating in Θ  after dividing by DΘ , even when ||v ⋅∇Θb  and E ⋅∇Θv  are the same order. 
 In nonaxisymmetric plasmas, canonical angular momentum is no longer conserved. It is 
not clear therefore whethe r the p *ψ →Ψ  change-of-variables techni que described above can be 
generalized to a nonaxisy mmetric plasma. Howe ver, it was shown in [ 1] that a quantit y 
resembling *Ψ  is conserved  by  the gu iding-center dr ift motion when the magnetic field is  
quasisymmetric. A field is defined to be quasisymmetric if B  is independent of one of the Boozer 
angles, or if B  depends on the Boozer angles onl y th rough a fixed linear co mbination [ 1-5]. 
Axisymmetric fields are q uasisymmetric, but n early quasisy mmetric fields can be found which 
are far fro m being axis ymmetric [6,7]. Since guidi ng-center drift m otion can be expressed  i n 
terms of a Lagrangian i n which only B  (and not B ) appears, the sy mmetry in B  gives rise to a  
conserved quantity through Noether’s Theorem. By using this conserved quantity, we will show 
that the n ovel analytical methods used to fin d finite- Eψ  effects in toka maks can be adapted for 
quasisymmetric devices. In doing so, we generalize all the results of Kagan and Catto [ 10-14,16] 
and Landreman and Catto [15] to this important class of stellarators. 



3. Definitions and quasisymmetry isomorphism 

We consider a scalar-pressure equilibrium with well defined flux surfaces and flow that is 
much smaller than the therm al sp eed. In this situ ation, poloi dal and toroidal Boozer angles 

( ),  θ ζ  can be defined such that 
 p pq ψ θ ζ ψ= ∇ ×∇ +∇ ×∇B  (5) 
 pL K Iψ θ ζ= ∇ + ∇ + ∇  (6) 

where K  and I  are flux functions and ( )pq q ψ=  is the safety factor. (Note that some references 
on quasisymmetry instead use I  to denote the θ∇  coefficient. We choose the new convention 
because tRB  in an axisymmetric plasma is often denoted by I , and I  in (6) properly reduces to 

tRB  in axisymmetry. This can be seen by using Ampere’s Law to show that both tRB  and the I  
in (6) equal 2 / c  times the current topologically linked outside a given flux surface.)  

A quasisy mmetric field is then defin ed b y t he pr operty that B  depends on  t he two 
Boozer angles only through a particular linear combination, that is, ( )p ,  B B ψ χ=  where 
 M Nχ θ ζ= −  (7) 

and M and N are fixed integers for a given device. In th is situation, it can be shown [ 1,6,4] that 

* 0Dψ =  where ( ) ( ) ( )( )1
|| d/ / /D t v Zem t E−= ∂ ∂ + + ⋅∇ + ∂Φ ∂ ∂ ∂b v   is the drift-kinetic 

operator (assuming there is no inductive electric field), dv  is given by (4), 
 * h h || /I vψ ψ= − Ω , (8) 
 h /I I NK M= + , (9) 

and 
 ( )h p t/N Mψ ψ ψ= −  (10) 
is a “helical” combination of the poloidal flux and the toroidal flux t2πψ . We give a streamlined 
proof of * 0Dψ =  in appendix A.  The result closely  rese mbles the result for an axis ymmetric 
magnetic field that * 0DΨ =  where * p || /IvψΨ = − Ω . While * 0DΨ =  reflects the conservation 
of canonical angular m omentum in an axisymmetric field, * 0Dψ =  reflects the conservation of  

*ψ  durin g drif t m otion in a quasisy mmetric field  (g yromotion m ust be neglected). As  

p || /Ivψ − Ω  is conserv ed when ( )p ,  B B ψ= Θ  while h h || /I vψ − Ω  is conserved when 

( )h ,  B B ψ χ= , we m ight expect other t okamak formulae to be ap plicable to a quasisymmetric 
stellarator if we make the replacements 
 ( ) ( )p h h, , , , I Iψ ψ χΘ → . (11) 

We now sketch the pro of that this isom orphism indeed holds f or the conventional (low-
flow) banana-regime neoclassical fluxes and flows. The analysis will be generalized to the finite-
Eψ  case in sections 4-5. We begin with the drift-kinetic equation Df C=  for any particle species 
in a quasisy mmetric plasm a, using ( )h ,  ,  ψ χ ζ  as the spatial coordinates. (For 0M =  “quasi-
poloidal” s ymmetry, χ  and ζ  are degenerate, so θ  should be substituted for ζ  as the third  
coordinate throughout.) We make an ansatz ( )/ 0f χζ∂ ∂ = , and the f  we find will be consistent 



with this assumption. The leading order equation is taken to be ( ) { }|| 0 0/v f C fχ χ⋅∇ ∂ ∂ =b . The 
conventional entropy  production argument then shows that 0f  is a Maxwell ian and a flux 
function. The next order equation is then 

 ( ) ( ) { }01
|| d h 1

h

ff
v C fχ ψ

χ ψ
∂∂

⋅∇ + ⋅∇ =
∂ ∂

b v . (12) 

Next, we apply the following identity (proven in appendix A): 

 ( ) ( ) ( )d h || h || || h ||/ /v I v v I vψ χ
χ
∂

⋅∇ = ⋅∇ Ω = ⋅∇ Ω
∂

v b b . (13) 

This result i s what one would expect by  na ively appl ying the substitutions (11) to the 
corresponding identity for axisymmetry. We can then combine (12)-(13) as 

 ( ) h || 0
||

I v fg
v C gχ

χ ψ
⎧ ⎫∂∂

⋅∇ = −⎨ ⎬∂ Ω ∂⎩ ⎭
b  (14) 

where  
 1

1 h || 0 h/g f I v f ψ−= + Ω ∂ ∂ . (15) 

A subsidiary expansion ( ) ( )0 1 ...g g g= + +  is then made in the smallness of the right s ide of (14) 
compared to the left. The leading order equation is ( )0 / 0g χ∂ ∂ = . The ( )1g  term in the next order 
equation is then annihilated by a transit average to give the constraint  

 ( ){ }0 1
h || 0 h0 /C g I v f ψ−= − Ω ∂ ∂  (16) 

which determines ( )0g , thereby determ ining 1f . Here, the transit average  of any  quantity Y  is 
defined by 

 
( )
( )

||

||

 /

/

d Y v
Y

d v

χ χ

χ χ

⋅∇
=

⋅∇
∫
∫

b

b
. (17) 

For passing regions of ( )h,  ,  E μ ψ -space (in which any  χ  is allowed), ( )dχ⋅∫  indicates 

( )2 /
0

M
d

π
χ⋅∫ . For trap ped regions (i n which n ot all χ  are allowed), ( )dχ⋅∫  denotes 

( )max
min

d
χ

ς χ
ς χ⋅∑ ∫  where ( )||sgn vς = . 

To justify our assu mption that / 0f ζ∂ ∂ = , we need to show that neither χ⋅∇b  nor C  
introduce ζ -dependence in ( )0g  through (16)-(17). First, by forming the product of ( 5) with (6) 
we find ( )2 /B qI Kθ⋅∇ = +B , so ( )1B M Nqχ θ−⋅∇ = − ⋅∇b B  is independent of ζ . Second, as 
argued in the footnote of [32], the linearized and gyro-averaged collision operator only introduces 
spatial dependence throug h B , so no ζ -dependence is introduced.  The pitch-angle scattering  
model operators have this  same property. Thus, ( )0g  is independent o f ζ , so 1f  is as well. The 
problem of finding  1f  in a 3D field has thereby become 2D if the field is quasisy mmetric and 

( ), hψ χ  variables are used. 
 Equations (15)-(16) can be obtained by  naively appl ying the substitutions (11) to the 
corresponding tokamak expressions, so 1f  can be obtai ned by these same substitutions. Form ing 



3
|| 1 d v v f∫ , then the parallel flows an d currents obey  the isomorphism as well. Finally, as shown 

in appendix B, the moment equations used to  obtain the particle and heat flu xes fro m 1f  als o 
obey the isom orphism. Thus, all the banana-regim e ne oclassical fluxes and flows follow the 
isomorphism. 
 Table 1 su mmarizes the i somorphism rules (including the generalizations which will be 
derived in th e next section). Care  must be taken in two regards. First, whereas in axisy mmetric 
plasmas it is common to apply ( ) 1

0qR
−⋅∇Θ ≈b , it is not generally true that ( ) 1

0qRχ −⋅∇ ≈b  in a 
quasisymmetric stellarato r. Second, t okamak calculations use the m odel field m agnitude 

( )2
0 1 2 sin / 2B B ε⎡ ⎤= + Θ⎣ ⎦  with 0/a Rε = . In a stellarator, however, it will not generall y be true 

that the relative field variation equals t wice the inverse aspect rat io. We can use the expres sion 

( )2
0 1 2 sin / 2B B ε χ⎡ ⎤= +⎣ ⎦  in stellarator calculations onl y if  we understand the  ε  therein to be 

defined as ( ) ( )max min min/ 2B B B− . Thus, the i somorphism substitutions  m ust be made in 
tokamak expressions before either ( ) 1

0qR
−⋅∇Θ ≈b  or 0/a Rε =  are invoked. 

4. Change of variables and generalized Kagan-Catto orderings 

At a sufficie ntly large value of Eψ , th e contributi on from  the ×E B  drift t o the 

( )d /fχ χ⋅∇ ∂ ∂v  term  in the drift-kineti c equation Df C=  will no longer be negligible 
compared to the ( )|| /v fχ χ⋅∇ ∂ ∂b  term. The presence of the extra term invalidates the steps (12)
-(16), so we must use a d ifferent approach to find f . A w eaker Eψ  is required to cause thi s 
problem for t he ions than to cause it for electrons , so for the rest of this paper we assu me all 
symbols are ion quantities unless specified otherwise. 

We now make a change of variables which will p ermit a soluti on for f . We use *ψ  
instead of hψ  as an independent variable in the kinetic equation (along with χ  and ζ ), using the 
chain rule for changing to a new set of variables { }jQ : 
 ( )( )/

k j
j j Q

j

Df DQ f Q
≠

= ∂ ∂∑ . (18) 

We make an ansatz ( )
*

/ 0f ψζ∂ ∂ = , and the ( )*, , , , f f E tψ χ μ=  we find will be  consistent  
with this assumption. We have already shown * 0Dψ = , so Df C=  becomes 

 ( )
* **

|| d
f f Ze f

v C
t m t Eψ ψψ

χ
χ

⎛ ⎞∂ ∂ ∂Φ ∂⎛ ⎞ ⎛ ⎞⎛ ⎞+ + ⋅∇ + =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
b v  (19) 

Note that unlike (12) there is now no “radial” derivative term.  
As in the pre vious section, we neglect the contribution of the magnetic drifts to d χ⋅∇v  

in (19) compared to the adjacent ||v χ⋅∇b . However, we now keep the contribution of the ×E B  
drift to d χ⋅∇v , giving 
 ( ) ( )( )|| d ||v v uχ χ+ ⋅∇ ≈ + ⋅∇b v b  (20) 

where 



 h '/u cI B= Φ  (21) 

and the prime denotes h/ ψ∂ ∂ . This is precisely the definition for u  we would obtain by naively 
applying the isomorphism rules (11) to the u  in (3) and [13,10,11,15]. 

To verif y that Eψ  can be large enoug h i n quasis ymmetric stellarator experim ents to 
make u  comparable to ||v  in ( 20), we consi der HSX [ 7], which has 4N = , 1M = , 0K = , and 

1q ≈ . Figures 4 a nd 5 i n reference [33] give values of 2
t2π ψ∇  and I  for HSX. Taking 

1/22
t t~ψ ψ∇ ∇ , noting ( )h p1 /Nq Mψ ψ∇ = − ∇ , and defining 

 
( ) ph

h

1 /

/

Nq M

I I NK M

ψψ
α

− ∇∇
= =

+
 (22) 

we find ~ 0.3α  at the last closed flux surface, with α  decreasing monotonically to zero at the 
magnetic axis. Then u  is comparable to ||v  when the quantity  

 
( )
( )( )

i H

i i

/ 400 V/cm /
 =  = 1.2

/ 0.3 /1 T / 60 eV

E m mu
U

v B T

ψ

α
 (23) 

is ( )1O . The normalization for each parameter above reflects a typical HSX magnitude [18]. The 
value ~ 400 V/mEψ  above is not measured directly, but fields of this magnitude are predicted by 
calculations which solve for Eψ  using am bipolarity; the electron and ion particle fluxes are not 
automatically equal in these calculations because  the departures of the real  HSX field from 
perfect quasisymmetry are included. It is evident from  (23) that U  can be comparable to 1. In a 
tokamak, U  is typically non-negligible onl y in an H-mode pedestal. Howe ver, several factors  
allow ~ 1U  in HS X even in th e absence of a pedestal. First, the depar ture of the tr ue magnetic 
field from perfect quasisymmetry, while small, is still sufficient to cause significant nonambipolar 
particle fluxes [8,18], leading to a large Eψ . Second, the use of electro n cyclotron heating leaves 
the ions relatively  cold, and iT  enters th e denominator of (23). Th at U  can exce ed 1 was also  
argued in [18], since the “resonant” elec tric field res

rE  discussed in that  reference is defined such 
that res

rE Eψ >  and 1U >  are equivalent conditions. 
Next, observe that p /B Bα →  in a tokamak. As 1α  througho ut HSX, tokam ak 

results which rely on the smallness of p /B B  will be relevant to HSX. We will show that /ρ α  
will play the role in a quasisy mmetric plasma that the poloidal gy roradius ( )p/B B ρ  plays in an 
axisymmetric plasma.  

For the rest of this paper, we adopt the orderings ~ 1U  and 1α . We take  the scale-
length for m agnetic quantit ies such as B  and hI  to be a , with /a ρ α . We use the shorter 
scale-length /ρ α  for the density and electrostatic potential. These “fi nite- Eψ ” orderings all 
reduce to Kagan and Catto’s [ 10-14,16] in the lim it of axisy mmetry. Since iEv Uvα= , then in  
order to use the form of the drifts (4) which is valid only for iEv v , we require 1Uα . 



5. Neoclassical transport 

5.1. Expansion of the kinetic equation 

We take the distribution function to be a stationary Maxwellian to leading order 

 
3/2

M exp
2

m mE
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T T
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π
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⎝ ⎠ ⎝ ⎠

 (24) 

where η  and T  are flux functions. Further motivation for this leading-order distribution is given 
in appendix C. We next define g f F= −  where ( )*,  F Eψ  is obtained by replacing hψ  with *ψ  
in the arguments of η  and T  in Mf : 

 ( ) ( ) ( )
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. (25) 

Note that a Taylor-expansion of η  and T  about  * hψ ψ≈  in thi s definition gives M 1F f F≈ +  
with 
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, (26) 

where pri mes again denote h/ ψ∂ ∂ , and p , Φ , and T  are eval uated at hψ  rather than *ψ . 
Thus, the departure of f  from the Maxwellian (24) has two parts: M 1f f F g− ≈ + , where both 

1F  and g  are s mall compared to Mf . Then, since ti me derivatives in the drift-kinetic equation 
(19)-(20) are small for the calculation of neoclassical transport, 
 ( )( )( ) { }

*|| /v u g C F gψχ χ+ ⋅∇ ∂ ∂ = +b . (27) 

We approximate the collision operator by  the li nearized ion-ion collision operator 

ii,lC C≈ . Using { }ii,l M 0C Xf =  for  1X = , ||v , or 2v , we  can write { } { }ii,lC F g C g G+ ≈ −  
where 
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'
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m v uv u I T
G f z

T T

⎡ ⎤++ ⎢ ⎥= −
⎢ ⎥Ω
⎣ ⎦

 (28) 

and z  is indep endent of velocity. We wi ll choose the  value of  z  later to preserve momentum 
conservation by our model collision operator. 

We next expand the ki netic equation and ( ) ( )0 1 ...g g g= + +  for small collisionality. The 
leading order form of (27) is ( )0 / 0g χ∂ ∂ = . The next order form is 

 ( )( ) ( )( ) ( ){ }
*

1 0
|| ii,l/v u g C F g

ψ
χ χ+ ⋅∇ ∂ ∂ = +b . (29) 

5.2. Particle orbits and new transit average 

To understand the proper operation for annihilating the ( )1g  term in this last equation, we 
analyze particle trapping in greater de tail. In particular, we examine how ||v u+  varies with χ  at 



fixed μ , E , and *ψ , and what the periodicity requirement is on ( )1g  in the trapped part of phase 
space. The ca lculation of particle orbits proceeds much as in the tokamak cas e analyzed in [15] , 
but making the substitutions (11). Therefore, we will only summarize the calculation and its main 
results here. 

To allow for finite radial electric fields (i.e. nonzero u ), we will take into account the 
changes in potential ( )hψΦ  due to variation in a par ticle’s radial co ordinate hψ  over its 
trajectory. H owever, we ignore the ra dial va riation of all m agnetic quantities, treating hI  as 
constant.  We also ignore the effect of the radial drift on B, taking. 
 ( ) ( ) ( )h 0, /B B B hψ χ χ χ≈ =  (30) 

where the co nstant 0B  represents the minimum value of B  over the particle’s trajectory , s o 

( ) 1h χ ≤ . 
 We define ot her quantities with a 0 subscript ( 0u , h0ψ , etc.) to be the values when the 
particle crosses a minimum of B . This definition is u nique for passing particles, which alway s 
have the same hψ  when they cross  through a B  minimum, but not for trapped particles, for 
which hψ  alternates betwe en two values with each cr ossing. As long as all of the subscript 0 
quantities for a given trajectory  refer to the larger hψ  crossing or all refer to t he smaller hψ  
crossing, it is valid to choose either. 
  Next, the potential is Taylor-expanded to second order about h0ψ  to obtain 
 1 2

0 0 02
' ''Φ ≈Φ + Δ Φ + Δ Φ  (31) 

where h h0ψ ψΔ = − , and 0Φ , 0 'Φ , and 0 ''Φ  are r espectively Φ , h/d dψΦ , and 2 2
h/d dψΦ  

evaluated at the referenc e flux surface h h0ψ ψ= .  Using conservation of μ , E , and *ψ , 
straightforward algebra yields 

 ( )
2

||0 2 2 2
|| 0 0 ||0 02

1 11 1 2 1
v

v u hu S h h v B
h hh

σ μ
⎛ ⎞ ⎡ ⎤⎛ ⎞ ⎛ ⎞+ = + − + − − + −⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦⎝ ⎠

 (32) 

where ( )||1 sgn v uσ = ± = + , and 
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0
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''1 cI
S

B

Φ
= +

Ω
 (33) 

describes the  electric  fiel d shear or orbit squeezing [34 ]. For certain values of ( )||0 0 0,  ,  v u S , 
corresponding to certain values of ( )*,  ,  Eψ μ , some range of χ  is prohibited because the 
radicand in (32) becomes negative. This defines the trapped part of phase space. 

In the usual phase-space coordinates ( ), , , ,Eψ χ ζ μ , ||v  is only fixed once ( )||sgn vς =  is 
specified. In contrast, (32)  shows that in our new ( )*, , , ,Eψ χ ζ μ  phase-space variables, ||v  (or 
equivalently ||v u+ ) is only fixed once a diff erent discrete degree of freedom  ( )||sgn v uσ = +  is 
specified. When *ψ  is used as a coordinate, then the periodicity requirement in the trapped part of 
phase spac e is that f  m ust be independ ent of σ  at va lues of χ  for which || 0v u+ = . This 



constraint is the periodicity condition we need to annihilate the ( )1g  term in (29) for trapped ions. 
We thus introduce a new transit average operation, defined for any quantity Y  by 
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For regions of ( )*,  ,  E μ ψ -space corresponding to passing particles, ( )dχ⋅∫  indicates  

( )2 /
0

M
d

π
χ⋅∫ . For regions correspondin g to trapped particles, ( )dχ⋅∫  means ( )max

min
d

χ
σ χ
σ χ⋅∑ ∫ . 

It is important to notice that since *ψ  rather than hψ  was taken as an independent variable in the 
kinetic equation (27), the  integrations  in the trans it average hold *ψ  rather than hψ  fixed.  
Applying the new transit average to (29) gives 

 ( ){ }0
ii,l 0C g G− = . (35) 

As in the standard bana na-regime analysis, the ( )0g  obtained from this equation can be used to  
find the radial heat flux and parallel flow. We henceforth drop the superscript on ( )0g  to simplify 
notation. 

We consider  a large- aspect-ratio model for the magnetic field well  by  taking 

( ) ( )21 2 sin / 2h χ ε χ= −  with 1ε . (We are free to s hift the coordinate χ  such that 0χ =  
aligns with 0B .) As stated earlier, in a ste llarator, ε  doe s not necessarily equal the geom etric 
inverse aspect ratio, unlike  the tokamak case. Following [15], ||v u+  can vanish (i.e. a particle is 
trapped) only if ||0 0 i~v u vε+ . Thus, the trapped-passing boundary is shifted to ||v u≈ − , that is, 
away from the center of the leading-order Maxwe llian. We define  “trapped and barely passing” 
ions to be those with ||0 0 || i~ ~v u v u vε+ + . These particles are found to have orbits of width  
~ /ε ρ α . Most ions instead have ||0 0 || i~ ~v u v u v+ + . These “freely passing” io ns have orbit 
widths ~ /ερ α . 
 Recall from the discussion following ( 17) that ( ) ( )/M Nq B qI Kχ⋅∇ = − +b . Keeping 
the variation of B  with χ  in this definition would only give a ( )O ε  correction to the new transit 
average (34), so we treat χ⋅∇b  as constant in (34) for analytical calculations. 

5.3. Model collision operator 

In the conventional banana-regime analysis, the collision operator is replaced with the pitch angle 
scattering operator 

 ||
pas ||2

hv
C v

w

ν
λ

λ λ
⊥ ∂ ∂

=
∂ ∂

 (36) 

where 2 / 2w v= , 2
02 /B vλ μ= , ( ) ( ) ( ) 13

B3 2 erf 2x x xν ν π
−

⊥ = ⎡ −Ψ ⎤⎣ ⎦ , / 2x v m T= , 

( )4 4 3/2
B i C4 ln / 3Z e n mTν π= Λ  is the Braginskii ion-ion collision frequenc y, ClnΛ  is t he 

Coulomb logarithm , ( )
21/2

0
erf 2 x yx e dyπ − −= ∫  is the error function, and 

( ) ( ) ( ) ( )
122 erf  erf 'x x x x x
−

Ψ = ⎡ − ⎤⎣ ⎦ . Use of the model operator pasC  is justified by  noting that 



for 1ε , the distribution function obtained using pasC  has a large ( ( )1O ε − ) λ  derivative [35]. 
Since pasC  can be obtained by keeping only / λ∂ ∂  derivatives in the operator for collisions with 
a Maxwellian field (as we will show shortly), it is plausible that pasC  yields accurate results. The 
operator pasC  does not generally satisfy the momentum conservation property  
 3

|| 0d v v C =∫  (37) 

that is satisfi ed by  both t he full Fokker-Pla nck ion-ion collision operator and the linearization 
thereof. However, (37) beco mes true fo r a particular choice of the constant z  in G , and so in  
conventional neoclassical calculations, z  is selected to be this value [21]. 

We now review the reaso ning used b y Kagan and Catto to m otivate the model ion-ion 
collision operator used in [ 13]. We seek an opera tor with several properties. First, the operator 
should gi ve the sam e ion heat flux, flo w, and boots trap current as pasC  in the 0Eψ →  limit . 
Second, we will want to exchange the order of derivatives in the collision operator with the transit 
average integral in (35). To do so, the collisi on operator derivatives must be of the form / X∂ ∂  
for some ( )*,  ,  X Eψ μ  (independent of χ ), holding other combinations of ( )*, ,  ,  Eχ ψ μ  fixed. 
Lastly, the operator should keep only velocity derivatives in a d irection approximately normal to 
the modified trapped-passing boundary described by (32) and the discussion following it. 
 Here we consider only  the cas e 0 1S = , i.e. no electric field shear, '' 0Φ = . The 0 1S ≠  
case is analyzed in [13,14,16]. By restricting our attention to the '' 0Φ =  case, several expressions 
in the followi ng discussion beco me much simplified. Also, Kagan and Catto [ 13,14,16] showed 
the m ost dra matic eff ect of Eψ  enters through  the m agnitude of  Eψ  rather than through its 
derivative: ' 'Φ  only affects the ion heat flux through an overall algebraic multiplier 0S , and 

''Φ  does not affect the ion flow or bootstrap current at all. 
The model collision operator is then derive d from the linearized  Fokker-Planck operator. 

The implicit field term dramatically complicates the analysis, so it is neglected  [35]. The explicit 
test-particle term then gives the standard Rose nbluth potential f or collisions with a Maxwellian. 
The resulting operator can then be written 

 { } ( )M M M
ˆ ˆ /C f f f f⎡ ⎤= ∇ ⋅ ⋅∇⎣ ⎦v vQ  (38) 

where 

 ( ) ||2

4 2
v

νν⊥= − +vv vvQ I  (39) 

and ( )( ) 13
|| B3 2 2x xν ν π

−
= Ψ .  
We next cast  (38) into a new set of vel ocity-space variables. The  choice of variables is  

unusual outside of [13], so we motivate it with the following argument. Suppose we could fin d 
new variables W  and Λ  such that 
 || 2 1 /v u W h+ = ± − Λ  (40) 



so as to closely resemble the expression 
 || 2 1 /v w hλ= ± −  (41) 

which is used  often in the conventional calculations, but with the same || ||v v u→ +  replacement 
we have needed to make in the transit averag e. The parallelism between (40)-(41) will allow the 
finite- Eψ  calculations to t hen be d one in much the same way  as the convention al calculations, 
and allow the finite- Eψ  results to conti nuously reduce  to the standard ones. Also, the shifted 
trapped-passing boundar y will then be the curve ( )min hΛ = , just as the trapped-passin g 
boundary in the 0Eψ →  case is the curve ( )min hλ = . Thus, keeping only /∂ ∂Λ  derivatives in 
the collision operator will capture the dominant velocity-space behavior for the finite- Eψ  regime, 
just as / λ∂ ∂  derivatives do in the 0Eψ →  case. 

To construct the W  and Λ  variables, we rearrange (32) for 0 1S =  to obtain 

 ( ) ( ) ( )2 2 2 1
|| ||0 0 0 01 1 2v u v u h u h Bμ−+ = ± + − − − − . (42) 

We have used the result 0hu u=  since 0 1S = . Note t hat ||0v , 0u , and 0Bμ  are all constants of 
the motion and/or adiabatic invariants. The χ  dependence (i.e. th e h  dependence) in (40) is 
fundamentally different from that in (42), so there is  no way to define a W  and Λ  to make (40) 
true exactly . However, to leading order  in ε , ( ) ( )2 21 2 1 1 /h h O ε− = − − +  for ( )1 / 1h O ε= + . 

Therefore (42) can be written 
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In this form, it can be seen that to achieve the desired form (40), there is only one possible way to 
define W  and Λ : 

 
( )2||0 0 2

0 02

v u
W B uμ

+
= + + , (44) 

 
2

0 0B u

W

μ +
Λ = . (45) 

Notice that as 0Eψ → , Λ  reduces t o λ , and W w→  since then 2
||0 02v Bμ+  is conserved. We 

will use W  and Λ  along with gy rophase ϕ  as the velocity space variables in m ost of the  
remaining calculation. 
 We will need to relate W  and Λ  to ||v  and v⊥ , and therefore we must relate ||0v  to ||v  
and v⊥ . To do so we combine (42) and (44) to obtain 

 ( ) ( )2 2 2 2
|| 02 3W v u h u v⊥= + + − + . (46) 

Using (45) we then find 

 ( ) ( ) ( )2 2 2
|| 01 / 2 3 2 /h W v u h h u− Λ = + + − − . (47) 

Thus, instead of (40), the exact relationship is 



 ( ) ( )2 2
|| 01 / 2 3 2 /v u h W h h u+ = ± − Λ − − − . (48) 

For 1ε , the ( )O ε  terms in  23 2 /h h− −  cancel, and so (40) is ob tained within on overall 

( )1 O ε+  multiplicative factor. A particle is trapped if and only  if ||v u+  can vanish, meaning the 
right hand side of (40) vanishes as h  varies while Λ  and W  are fixed (since Λ  and W  are  
constants of the motion.) Therefore, to a very  good approximation, a partic le is trapped if and 
only if ( )min hΛ > . 

Another useful property of the variables Λ  and W  is found by applying a Λ  derivative 
to (47): 
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|| ||

||,, WW

v u v W

v u hχχ

⎛ ⎞∂ + ∂⎛ ⎞⎜ ⎟ = = −⎜ ⎟⎜ ⎟∂Λ ∂Λ +⎝ ⎠⎝ ⎠
. (49) 

This propert y is rem iniscent of the result ( ) ( )|| ||/ /
w

v w v hλ∂ ∂ = −  which is used extensively  i n 
conventional neoclassical calculations. The equalities (49) are true regardless of whether hψ  or 

*ψ  is held fixed in the partial derivatives, since 0 1S =  and χ  is fixed so u  is constant. 
 Now consider the result of applying a velocity gradient to (46), 
 ( )||vW v u ⊥∇ = + +b v . (50) 

Applying a velocity gradient to (45) and using (50) we find 

 
( ) ( )|| 1 /

v

v u h h

W W ⊥

+ Λ −Λ
∇ Λ = − +b v . (51) 

Then using 2
v vϕ −

⊥∇ = ×b v , we obtain the Jacobian 
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This expression closely resembles the Jacobian for the conventional variables 
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∇ ×∇ ⋅∇
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with the same || ||v v u→ +  replacement seen in (49). 
Note that in contrast to [ 13], the small- ε  approximation has not been used at all here to  

derive (49)-(52) (aside from motivating the definitions (44)-(45)). 
For trapped and barely passing particles, the right hand side of (47) is ( )2

iO vε . Therefore 
1 / h− Λ  mu st be ( )O ε  for these particles. In light of (50)  and (51), then i~W v∇v , 

i~ / vε∇ Λv , and 

 ~
W

W
ε

∇ Λ ⋅∇
∇ Λ ∇

v v

v v

. (54) 

Therefore, in the trapped and barel y passing region of velocity space, the Λ  and W  coordinates 
are nearly  or thogonal. Th us, ( )/

W
∂ ∂Λ  will act roughly nor mal to the shifted trappe d-passing 

boundary, as desired. 



 To perform integrals later on, we will need  to know  the upper and lower bounds of W  
and Λ  at given 0u  and χ . From  (46), W  can  be arbitrarily  large, and the lower bound is 

( ) ( )2 2 2
0 03 / 2 1h u u O ε− ≈ ⎡ + ⎤⎣ ⎦ . To find the bounds on Λ , we can combine (46) and (47) to write 
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It follows th at at given 
0
u  and χ , t he minimum o f Λ  is exactly  0 (which occurs when 

||v →±∞ ) and the m aximum allowed Λ  is precisely ( )22 / 3 h−  (which occurs when ||v u= −  
and 0v⊥ = .) For 1ε , this upper bound equals ( )2h O ε+ . 
 Next, we use the general form ula for the dive rgence in an arbitrary coordinate sy stem to 
write (38) as 

 { } ( ) ( )M M
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ˆ1ˆ
X Y

f
C f f X Y

X Y f

⎡ ⎤⎛ ⎞∂ ∂
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∑ v vJ
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Q  (56) 

where X  and Y  range over th e set { },  ,  W ϕΛ . The partial derivatives in (56)  hold fixed the  
remaining elements of this set, along with ψ  and χ . Recall that the col lision operator appearing 
in the drift-kinetic equation (and therefore in ( 35)) has been gy roaveraged. If  we  gy roaverage  
(56), the X ϕ=  term s vanish since the quantit y in sq uare brackets is periodic in  ϕ . Then 

0W ϕ∇ ⋅ ⋅∇ =v vQ  from (50) and 0ϕ∇ Λ ⋅ ⋅∇ =v vQ  from (51), so the gy roaveraged { }M
ˆC f  is 

given by the right hand side of (56) with { },  ,  X Y W∈ Λ . 
In analogy to the weak- Eψ  case, we now drop the / W∂ ∂  derivatives in (56) in order to 

obtain a tractable model operator. For 0u = , the result of this si mplification is precisely pasC  as 
defined in  (36). For  the g eneral 0u ≠  case, the distribution function we obtain usi ng our final 
model operator has a large Λ  derivativ e, making it plausible th at discarding the / W∂ ∂  
derivatives will not dramatically affect the calculations for 1ε . 

To evaluate (56) we must compute ( ) ( )∇ Λ ⋅ ⋅ ∇ Λv vQ . The algebra bec omes intractable 
unless we us e ( )1 / ~h O ε− Λ  and ( ) ( )|| i~v u O vε+  to discard terms which are small for 
trapped and barely passing particles. We thereby neglect the ⊥v  term in (51) to obtain 

 ( ) ( ) ( ) ( )
22 ||2 2 2

|| || i2 4 2
v u v v O v
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νν εν⊥
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⎧ ⎫Λ
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⎩ ⎭
v vQ . (57) 

We approximate 2 2
|| 0v u≈ , and usin g (44), we approxim ate ( )2 2

02v W u⊥ ≈ − . Our model operator 
becomes 

 { } ( ) ( ) ( )|| 2
|| M 0 ||2

M, ,

ˆˆ
2 W W

v u f
C f v u f W u

fW ψ ψ
ν ν ν⊥ ⊥

+ ⎡ ⎤⎛ ⎞∂ ∂⎛ ⎞ ⎛ ⎞⎡ ⎤= + Λ + −⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎜ ⎟∂Λ ∂Λ⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
. (58) 

Notice that ( 58) has a similar for m t o pasC  (in (36)). (To obtain (58) we hav e made the 
replacement 2Λ →Λ , which is perm issible since 1Λ ≈ . Kagan and Catto make a different 



replacement 2 1Λ →  at this point  in deriving the m odel operator of [ 13]. All results will be 
independent of the exponent on Λ  because the identity (76) is independent of this exponent.) 

Where v  appears inside ν⊥ , ||ν , and Mf  in the operator, we make the approximation 

 22v W u≈ − . (59) 

The quantities ν⊥ , ||ν , and Mf  are then all constant with respect to the Λ  derivative. We now 
apply the chain rule, so as to hold *ψ  rather than hψ  fixed in t he par tial derivatives. For an y 
quantity ξ , 
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To obtain a tractable model collision operator, the last term is dropped for both of the partial 
derivatives in (58). Then defining 
 ( ) 2

K || 0 /u Wν ν ν ν⊥ ⊥= + −  (61) 

we have 
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We may now plug in f̂ g G→ −  from (35). In G  we use (59) and 0Ω ≈Ω . Thus 
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This operator is the one e mployed by Kagan and Catto [ 13] with hI I→  and p hψ ψ→ . Since 
T , 'T , hI , and 0Ω  do not var y significantly over an orbit widt h, these quantities are all treated 
as constant with respect to derivatives and integrals at constant *ψ .  
 We have demonstrates that many expressions for the new , W Λ  variables are identical to 
the conventional results in the , w λ  variables, but with the replacement || ||v v u→ + . This pattern 
can be seen in the form of the model operator, the derivative (49), and the Jacobian (52). D ue to 
the correspon dence between the new expressions and the conventional ones, the steps used to 
calculate neoclassical quantities with the new co llision operator will m irror steps in the 
conventional calculations. However, the replacement ( ) ( )Kw Wν ν⊥ →  in the new collision  
operator is a significant change, for now energy  diffusion as well as pitch-angle scattering is 
retained. This change to t he effective collision frequency will cause finite- Eψ  modifications to 
the ion heat flux, ion flow, and bootstrap current. 

5.4. Banana constraint 

We must now find the g  piece of the distribution function by solving (35). First consider 
the trapped particles, for which this equation becomes 



 ( ) ( )
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h
|| ||

M 0

'10 I Tg mW
d v u v u z

f T T

χ

σ χ
σ χ

χ
⎧ ⎫⎡ ⎤∂ ∂⎪ ⎪⎛ ⎞= + Λ − + −⎨ ⎬⎢ ⎥⎜ ⎟⋅∇ ∂Λ ∂Λ Ω⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

∑ ∫ b
. (64) 

The 'T  drive term vanishes due to the σ  sum. Therefore 0g =  is a solution for trapped particles, 
as in the standard banana-regime calculation. 
 Next we consider passing particles, for which (35) becomes 

 ( ) ( )
2

h
|| ||

M 00

'0
M I Tg mW

d v u v u z
f T T

π
χ

⎧ ⎫⎡ ⎤∂ ∂⎪ ⎪⎛ ⎞= + Λ − + −⎨ ⎬⎢ ⎥⎜ ⎟∂Λ ∂Λ Ω⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
∫ . (65) 

It is permissible to switch the order of the integral and the first /∂ ∂Λ  derivative because we have 
constructed Λ  and W  to be f unctions of ( )*, ,  Eψ μ , We integrate in Λ  from 0Λ =  and apply 
(49) to find 

 h

M 0|| *

'I Tg HW mW
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f T Tv u

⎛ ⎞∂ ⎛ ⎞= − −⎜ ⎟ ⎜ ⎟∂Λ Ω+ ⎝ ⎠⎝ ⎠
 (66) 

where 
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π
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= ∫  (67) 

and ( )minH H h= − Λ  is a  He avyside step function which is 1 for p assing particles and 0 for 
trapped particles. 

5.5. Momentum conservation 

We choose the parameter z  by requiring  
 ( )3

|| K 0d v v u C+ =∫ , (68) 

a co mbination of the part icle and momentum c onservation prop erties of our ion-ion col lision 
operator. Using a parity  argument as in appendi x D, it can be shown that num ber conservation 
( 3

K 0d v C =∫ ) and energy  conservati on ( 3 2
K 0d v v C =∫ ) are both satisfied to leading or der 

regardless of z . 
To evaluate velocity integrals such as  (68) we nee d to write 3d v  in ( ),W Λ  variables. 

Notice fro m (48) that for given W , Λ , and χ , there ar e two allowed values fo r ||v u+ . 
Therefore at given χ , equations (48) and (46) give a 1-to-1 map between ( ),  ,  ,  W ϕ σΛ  and v . 
The proper way to integrate a quantity ξ  over velocity space in our new variables is therefore 
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J

 (69) 

with the Jacobian J  given by (52). 
Combining (68)-(69) with our model operator (63) and the distrib ution function (66), we 

therefore require 
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∫ ∫  (70) 

The Λ  integral  is indepen dent of W  so w e divide it  o ut of  the eq uation. We then change 
variables from W  to ( )2

0 /y W u m T= − . From the earlier discussion of th e lower bound on W , 
the lower bound on y  is ( )O ε  so effectively zero. Therefore 
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 (71) 

where we have slightl y redefined U  to be the flux function ( )h i 0'/cI v BΦ , a definition whic h 
differs from the original one (23) only by a factor of 1h ≈ . Using 2x y U= +  in the definitions 
of ν⊥  and ||ν , we can now evaluate z  for an y gi ven U . For 0U = , (71)  giv es 1.33z = , in 
agreement with conventional neoclassical theory. 

5.6. Neoclassical ion heat flux 

In appendix B we derive the following equation to relate the radial ion heat flux to an integral of 
the collision operator: 

 
2

3h
h ||

0
 

2
I mv

h d v v Cψ⋅∇ = −
Ω ∫q . (72) 

Although this equation was derived directly from the full Fok ker-Planck equation using only the 
quasisymmetry co ndition ( )h ,B B ψ χ= , the sam e equation wo uld result if the iso morphism 
substitutions (11) were naively appli ed to the analogous equation for toka maks. Using the 
number, momentum, and energy conservation properties of the collision operator, as well as (59), 
then (72) is equivalent to 

 ( )3h
h ||

0

mI
h d v v u WCψ⋅∇ = − +

Ω ∫q . (73) 

Substituting in the collision operator and distribution function, we then have 
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 (74) 

We next inte grate by parts in Λ , not ing there is no  contribut ion from the boun dary. Applying 
(40) then results in 
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 (75) 

The Λ  integral can then be performed using the method in appendix B of [35]. In general, 
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for any 1γ > −  where 
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and ( )2E κ  is the com plete ellip tic integral of the second kind. Again changing to t he variable 

( )2
0 /y W u m T= − , then 
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Plugging in the collision frequencies, 
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where 
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This function  is plotted in  figure 1a. At 0U = , 1Q =  and (79) recovers the conventional heat 
flux. Multiplying the rig ht-hand side of (79) b y S  accounts for or bit squeezing effect s [13], 
where 

 ( )
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h
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S

B
ψ Φ

= +
Ω

. (81) 

5.7. Ion Flow 

The parallel flow is obtained by forming the integral 
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We then write the remaining integral as 
 ( )( ) ( )3 3 3 3

|| || ||  d v v g d v v G d v v u g G u d v g G= + + − − −∫ ∫ ∫ ∫ . (83) 

Using (28), the first integral on the right-hand side gives 

 3 2 h
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'5 
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pI T
d v v G U z

m T
⎛ ⎞= + −⎜ ⎟ Ω⎝ ⎠∫ . (84) 

The second integral on th e right-hand side of (83)  can be evaluated in the same manner as the 
integral (75) for the heat flux, and the result is ε  smaller than (84). Si milarly, the last  integral 
in (83) is also ε  smaller than (84). This integral is di scussed further in appendix D. Thus, th e 
final integral in (82) is approximately given by the right-hand side of (84). Defining  

 ( ) 21 5
1.17 2

A U U z
⎛ ⎞= + −⎜ ⎟
⎝ ⎠

 (85) 

then the parallel flow can be written 

 ( )h
||

' ' '1.17 pI p Ze T
V A U

nm p T T

⎡ ⎤Φ
≈ − + −⎢ ⎥Ω ⎣ ⎦

 (86) 

The function ( )A U  is plotted in figure 1b and agrees with the corrected result from [13,14]. Note 
that ( )0 1A = , and so (86) recovers the conventional result for 0U = . 

5.8. Bootstrap current 

The bootstrap current calculation for  the finite- Eψ  regime in a quasisy mmetric stellarator 
proceeds exactly as for the low-flow r egime in a  tokamak (e.g. as shown in [21]), but with two 
modifications. First, the electron kinetic equation is written in ( )h ,  ,  ψ χ ζ  variables and analyzed 
as in (12)-(17). Second, t he parallel ion velocit y ( 86) is used. This la tter change affects the 
electron-ion collision operator, but otherwise the conventional m odel electron collision operator 
is used. After solving for the electron distribution function in the banana regime in the usual way, 
taking a velocity  moment to obtain the parallel current, using the Spitzer function sf  as in [21], 
and approximating sf  with two Sonine polynomials [19], the bootstrap current for arbitrary Z  is 
found to be 
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where e ip p p= + . For 1Z = , (87) becomes 
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As expected, these expressions can be  foun d fr om the large- Eψ  tokamak results [ 16] if th e 
isomorphism substitutions  are made. Also, setting ( ) 1A U =  in (88) we recover equation (37) 
from [1], Boozer’s low-flow-regime result for a quasisymmetric stellarator. 

6. Residual zonal flow 

 We now briefly  discuss the residual zo nal flow in a quasisymmetric stellarator. Much of 
the analysis is identical to the tokamak analysis in [15] if the iso morphism substitutions (11) are 
applied, so here we merely summarize the framework and results of the calculation. 
 We assume the potential Φ  can be decom posed into an equilibrium component ( )φ ψ , 
which is constant in tim e on the tim escale of interest, and a pertu rbation ( ),  tδφ ψ . We further 
assume that φ δφ∇ ∇ , so the electric field used to calculate u  and U  in (21) and (23) is only 

φ−∇ . Unlike the neoclassical t ransport calculation, here we allow '' 0Φ ≠  so orbit squeezing 
effects are included. 

We again use the kinetic equation (19) in which *ψ  is used as an independent variable. In 
contrast to the neoclassi cal transport analy sis, collisions are dropped but tim e variation is kept . 
Note that in (19), the / /t tδφ∂Φ ∂ = ∂ ∂  derivative is performed at constant hψ , not *ψ . A change 
of variables can be made using 
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 (89) 

The last term can be evaluated using the remarkable identity 
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which can be shown with a few lines of algebra. Th erefore ( )h * || ||/ /v v uψ ψ∂ ∂ ≈ + . We have 
already assumed h h/ /δφ ψ ψ∂ ∂ ∂Φ ∂ , and so the last term in ( 89) is small co mpared to the  
left-hand side. Thus, ( ) ( )

h *
/ /t tψ ψδφ∂Φ ∂ ≈ ∂ ∂  to leading order, giving the kinetic equation 
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As in the neoclassi cal transport analy sis, we take the distribution f unction to be a 
stationary Maxwellian Mf  to leading order, and we ag ain define g f F= −  with ( )*,  F Eψ  in 
(25). The kinetic equation (91) is li nearized by  a pproximating h h/ /ψ φ ψ∂Φ ∂ ≈ ∂ ∂  in t he 
definition of u  and by taking ( ) ( )

* *
/ /f E F Eψ ψ∂ ∂ ≈ ∂ ∂ , giving 
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We then consider the dynamics of the system over a timescale τ  which is long compared 
to the thermal bounce time ( ) ( )1 1

||v u χ
− −+ ⋅∇b . We therefore expand g  as a series in the small 

parameter ( )( )|| /v u χ τ+ ⋅∇b , writing ( ) ( )0 1 ...g g g= + + . Th e leading order equation  gives  
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0 / 0g
ψ

χ∂ ∂ = .  To next order, 
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The ( )1g  term can be annihilated by applying the transit average (34). Following [15], we assume 
the potential has an eikonal form ( ) ( ) ( )h h, expt t iδφ ψ δφ ξ ψ= ⎡ ⎤⎣ ⎦  and we Tay lor expand ( )hξ ψ  
about h0ψ . Then integrating the transit-averaged (93) in time from 0−  to any positive t, we obtain 
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and we have taken the s ystem state for 0t <  to be 0g =  and 0δφ = . We then assume that the 
radial electric field does not modify the weak- Eψ  result [25] 
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if we substitute δφΦ→  and evaluate Mf  and n  at the unperturbed energy  2 / 2 /v Ze mφ+ . 
Writing f F g= +  and Tay lor-expanding ( )*,F Eψ  in bo th argum ents about Mf , we find 

[ ] ( ) ( )13 3
M M   1iP iPd v f f Ze T d v f e eδφ ψ − −− ≈ −∫ ∫  in (96). For 1P  we then obtain 
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Upon performing the integrations as described in [15], the residual zonal flow can be expressed as 
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where 3/2 2
RH 1.64 /ε αℜ =  is t he Rosenblut h-Hinton (w eak- Eψ ) result, h'k Iξ α⊥ = , S  is 

defined in (81), ( )h i 0'/U cI v B= Φ  as described following (71), 
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gives the real part of ℜ ,  
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describes the i maginary part. The functions ϒ  and Ξ  are plotted in [15] (with Ξ  denoted there 
by Λ ). 

It can be see n as follows that the weak- Eψ  result RHℜ→ℜ  agrees with [27 ]. Due to 
(13), the parameter rω  in [ 27] vanishes, and so 2 0Λ = . Consequently, there are no oscillations 
of the potenti al. If we choose hs ψ= , then h || /G I v= Ω . By applying the magnetic field model 

( )2
0 1 2 sin / 2B B ε χ⎡ ⎤= +⎣ ⎦ , recognizing 2dα π=∫  and 

n

M=∑ , and carry ing out t he integrals, 
we recover (97) with RHℜ =ℜ . 

7. Discussion and conclusions 

In the preceding sections we have  shown how to calculate finite- Eψ  effect s in a  
quasisymmetric stellarator. Kagan and Catto’s t echnique of changing from the radial variable pψ  
to the canonical angular m omentum *Ψ  in the kinetic equation ca n be generalized because a 
similar conserved quantity *ψ  exists in a quasisymmetric field. The conservation of *ψ  allows an 
analytical treatment of the particle orbits, which is not possible in a more general stellarator field. 
To define th e finite- Eψ  regime in a quas isymmetric fi eld, the geometric f actor h h/ Iα ψ= ∇  
plays the role that p /B B  does in  a tokam ak, so we order 1α . We allow strong densit y and 
potential variation, ~ /n nα ρ∇  and ( )i~ /E Bv cψ α . Present estimates of Eψ  in the HSX 
stellarator suggest it may indeed be as la rge as in this ordering, making finite- Eψ  effect s 
important. However, it is not clear whether our sm all ordering of the density scale-length, or  our 
assumption that flows are much less than iv , are appropriate for that experiment. 

Generalizing the tokamak procedures to a quas isymmetric stellarator, we have calculated 
the finite- Eψ  modifications t o the neoclassical ion he at flux, io n fl ow, bootstrap current, and 
residual zonal flow. We find these expressions match those which would be obtained by applying 
Boozer’s isomorphism substitutions to the tokamak results. Physically, the isomorphism holds for 
these finite- Eψ  effects because these processes result from guiding-center drift dynamics and not 
from additional phy sics such as the gy romotion. T he isom orphism relat es the guiding-center 



drifts but not  the gy romotion, which is why  neoclassical transport obey s the i somorphism but 
classical transport does not. 

The m odifications to neoclassical transport are obta ined b y gene ralizing the modified 
model collision operator proposed in [ 13]. Our derivation em phasizes that the ( ),  W Λ  variables 
employed by Kagan and Catto are unique, in that they are the only possible way to generalize the 
conventional relation || 2 1 /v w hλ= −  to the form  || 2 1 /v u W h+ = − Λ . The finite- Eψ  
modifications to neoclassi cal transport are in part due to the replacem ent of the deflection  
frequency ν⊥  in the usual pitch-angle scat tering operator by a new frequency  Kν  in the new  
collision operator. The frequenc y Kν  acco unts for ener gy scatter across the modified trapped-
passing boundary when this boundary is shifted due to Eψ . 

The discussion of finite- Eψ  effects in earlier tokamak references is also applicable to the 
quasisymmetry case. For exa mple, the trapped-passing boundary  shifts from || 0v ≈  to ||v u≈ − , 
but in the finite- Eψ  ordering i t is consistent for the ion fl ow to be subsonic so the l eading-order 
distribution remains centered at || 0v = . The trapped fraction therefore dim inishes as ( )2exp U− . 
Therefore the heat flux becom es exponentia lly sm all, and the resi dual zonal  flow 

( ) ( )/ 0t tδφ δφ→∞ =  approaches 1. As noted in [ 11], this latter effect creates a positive  
feedback loop. If a weak t ransport barrier develops, the associat ed Eψ  would reduce zonal flow 
damping, strengthening the transport barrier. 

The parallel ion flow is mostly carried by  passing particles, so for a strong radial electric 
field ( ~ 1U ) the fl ow does not beco me exponentially small, though it i s substantially modified. 
The bootstrap current depends on the ion flow, so it is modified as well. The coefficient of the ion 
temperature gradient in the parallel ion flow and bootstrap current reverses sign when U  exceeds 
1.2. Importantly, the bootstrap current grows stronger as Eψ  is increased. 

Appendix A. Proof of *ψ  conservation 

We now derive the identit y ( 13) an d th e conservation of *ψ . Proofs  of the latter have 
been given previously in references including [1], [6], and [4]. 

Both relations require that the potential, if it varies at all on a flux surface, have the same 
helicity as B : ( )h ,  ,  tψ χΦ = Φ . In this case, sinc e ( )2

|| 2 /v E B Ze mμ= − − Φ , then 

( ) ( ) ( )|| ||/ / / / /v B N M v Bζ θ∂ ∂ = − ∂ ∂ . This result, together with the Boozer r epresentations for 
B  in (5)-(6), gives 

 ( )h || h || ||
|| 1 p

I v I v vNq
v

M B
ψ θ ζ

θ
⎛ ⎞ ⎛ ⎞∂⎛ ⎞⋅∇ = − ∇ ⋅∇ ×∇⎜ ⎟ ⎜ ⎟⎜ ⎟Ω Ω ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

b . (A.1) 

Also, using ( ) ( )d || ||/v v= Ω ∇×v b , we can similarly show 

 ( )h || ||
d p p

I v v

B
ψ ψ θ ζ

θ
⎛ ⎞∂

⋅∇ = ∇ ⋅∇ ×∇ ⎜ ⎟Ω ∂ ⎝ ⎠
v . (A.2) 



The identity (13) immediately follows. 
Before completing the proof that * 0Dψ = , we first prove a lemma: B  depends on θ  and 

ζ  only through the combination M Nθ ζ−  (i.e. the field is quasisymmetric) if and only if L  has 
this sam e propert y. We begin by  casting the equili brium condition ( ) / 4 pπ∇× × = ∇B B  int o 
Boozer coordinates. Then apply ing ( )2

p /B qI Kψ θ ζ∇ ⋅∇ ×∇ = +  (which follows from  th e 
scalar product of (5) with (6)) we obtain 

 ( )
2

p p p

4 qI KL L dK dI dp
q q

d d dB

π
θ ζ ψ ψ ψ

+∂ ∂
+ − − =

∂ ∂
. (A.3) 

Note that the only quantities in this equation which va ry in θ  or ζ  are B  and L . By expanding 
(A.3) in Four ier series in θ  and ζ , it foll ows that L  depends on θ  and ζ  only through the 
combination M Nθ ζ−  if and only if B  does the same, proving the lemma. 

In a quasisymmetric field therefore ( )/ / /L N M Lζ θ∂ ∂ = − ∂ ∂ . Using (5) and (6) we can 
then show ( )d h || / 0I v⋅∇ Ω =v . Combining this result with (13), we obtain ( )|| d * 0v ψ+ ⋅∇ =b v . 
It quickly follows that * 0Dψ = . 

Appendix B: Moment equations for the radial particle and heat fluxes 

We now derive the result (72) which relates the radial heat flux to a m oment of the 
collision operator in a quasisy mmetric stellara tor. Along t he way, we will also derive an 
analogous relation for the particle flux. We first note the identity 
 h hB I Bψ×∇ ⋅∇ = ⋅∇B B , (B.1) 

obtained by writing B  in the Boozer representations (5) and (6 ) and usin g 

( )/ / /B N M Bζ θ∂ ∂ = − ∂ ∂ .  
Next, we follow [8,36] and define the vector 

 h
h2 2

1 I

B B
ψ= ×∇ −y B B . (B.2) 

Using (B.1) and ( ) 0hψ⎡ ∇× × ⎤×∇ =⎣ ⎦B B  we find the useful properties  
 ( )0   and   0∇ ⋅ = ⋅ ∇ ⋅ =y b y b . (B.3) 

In the axisy mmetric li mit, 2
tR ζ→ − ∇y  wher e tζ  is the conventional toroi dal angle i n 

cylindrical ( )t,  ,  R Zζ  coordinates. 
Now take the full Fokker-Planck equation, multiply it by any function ( ), X r v , integrate 

over velocity, and apply a flux surface average. The result can be written 

 ( )3 3 3 3
h

h

1  '   
'

d
d v fX d v Xf V d v Xf d v XC

t V d
ψ

ψ
∂

= + ⋅∇ −
∂∫ ∫ ∫ ∫v  (B.4) 

where the overdot indicates the Vla sov operator ( )1 1
t Zem c− −∂ + ⋅∇ + + × ⋅∇vv E v B  with  

( ) ( )1 1' 1 /V Nq M d dθ ζ θ− −= − ⋅∇∫ ∫ B . Consider the choice 2X v= ⋅v y . Assuming = −∇ΦE  
with Φ  a flux function, then 



 ( )2 2
h h

'2 Ze Ze
X v v

m mc
ψ ψΦ

= ⋅ ∇ ⋅ − ⋅ ⋅∇ − ⋅∇v y v y vv v  (B.5) 

where a prime denotes h/d dψ  as usual.  
We now proceed to order the various terms in (B.4) using the conventional drift orderings 

rather than the finite- Eψ  orderings. We use the small parameter / aδ ρ=  with i /vρ = Ω  and a  
a macroscopic scale l ength. We expand  the full  distribution function as  j jf f=∑  with 

0~ j
jf fδ  and 0f  the Maxwellian of ( 24). We order 2~t δ∂ Ω , ~ν δΩ , 

1
h/ ~ / ~ ~ ~T T B aη η ψ−∇ ∇ ∇ y , and i~ /Bv cδE . 

We define ϕ⋅  to be a gy roaverage holding ψ , θ , ζ , 2 / 2v Bμ ⊥= , and E  fixed. We 
then define f f f ϕ= − . By the standard drift-kinetic procedure [37], 

 ( )
2

1 0 h
' ' 5 '   where     ,

2 2h
s p Ze mv T

f f s v
p T T T

ψ ψ
⎛ ⎞Φ

= ×∇ ⋅ = + + −⎜ ⎟⎜ ⎟Ω ⎝ ⎠
b v . (B.6) 

In (B.4), the time derivative term is ( )2 4
iO v nδ  and therefore negligible compared to the collision 

term, which  is ( )4
iO v nδ . In the 'V  term , the contribution from f ϕ  is proportional to 

( ) ( )3 2 3 2  d v f v s v d v f v s vϕ ϕ ϕ=∫ ∫vv vv . Due to  

 ( )( )2 2
|| / 2v vϕ ⊥= + −vv bb bbI  (B.7) 

then h 0ϕ ψ⋅ ⋅∇ =y vv , so f ϕ  does not contribute to the 'V  term. The contribution to the 'V  
term from 1f  is propor tional to ( )3 2

0 0d v f v s v =∫ vvv . Thus, the largest contribution to t he 'V  
term in (B.4)  com es fro m 2f , making the 'V  term ( )2 4

iO v nδ  and negligible. From (B.4) we 
therefore have 

 
( )

( )

3 2 3 2 3 2
h

3 2 4
h i

   

'2  .

Ze
d v fv d v v C d v fv

mc
Ze

d v f O v n
m

ψ

ψ δ

⋅∇ = ⋅ + ⋅ ∇ ⋅

Φ
− ⋅ ⋅∇ +

∫ ∫ ∫

∫

v v y v y v

y vv

 (B.8) 

Due to (B.7) and (B.3), f ϕ  does not contribute to the ∇y  term in (B.8). The contribution to the 
∇y  ter m fro m 1f  vanishes since ( )3 2

0 0d v f v s v =∫ vvv . Thus, the  largest contribution to the 
∇y  ter m in (B.8) com es from  2f , m aking the term  ( )2 4

iO v nδ  and therefore negligible  
compared to the collision term.  

Now consider the 'Φ  term in (B.8). Noting 3 3d v f d v fϕ ϕ ϕ=∫ ∫vv vv  and (B.7), 
then f ϕ  does not contrib ute to this term . Th e contribution fr om 1f  is propo rtional to 

( )3
0 0d v f s v =∫ vvv . The largest contributi on to the 'Φ  term in (B.8) therefore co mes from 2f . 

This term  is ( )2 4
iO v nδ  and therefore negligible (though it w ould rem ain if E  were ordere d 

larger.) 
To restrict our attention to neoclassical transport and exclude classical transport, we keep 

the parallel com ponent of y  in the collision term , but drop th e perpendicular com ponent. This 
leaves 



 3 2 3 2h
h ||

0
  I

d v fv h d v v v Cψ⋅∇ ≈ −
Ω∫ ∫v . (B.9) 

The particle flux can be found by repeating the preceding argument using X = ⋅v y  in 
(B.4). We find 

 ( ) h
Ze

X
mc

ψ= ⋅ ∇ ⋅ − ⋅∇v y v v . (B.10) 

The ordering of terms in (B.4) proceeds as before, and so 

 3 3 2 2
h i  mc nmc

d v f d v C O v
Ze Ze

ψ δ⎛ ⎞⋅∇ = ⋅ + ⎜ ⎟
⎝ ⎠∫ ∫v y v . (B.11) 

For a plasma with a single species of ions, iiC C≈  in the ion kinetic equation, and so the collision 
term in (B.11) vanishes to leading order in e i/m m .  
 In light of this result and (B.9), the ion heat flux can be written as 

 
2 2

3 3
h h h

5 
2 2 2

mv T mv
d v f d v fψ ψ ψ

⎛ ⎞
⋅∇ = − ⋅∇ ≈ ⋅∇⎜ ⎟⎜ ⎟

⎝ ⎠
∫ ∫q v v , (B.12) 

which when combined with (B.9) gives (72) as desired. 

Appendix C: Exact and leading-order solutions of the drift-kinetic equation 

We first prove a theorem regarding the time-independent drift-kinetic equation 
 ( ) { }|| dv f C f+ ⋅∇ =b v  (C.1) 

where { }C f  is the (nonlinear) Fokker-Planck operator for self-collisions, and the magnetic field 
is quasisymmetric. We look for solut ions f  which are independent of ζ  at fix ed χ . Casting 
into ( )*,  ,  , , Eψ χ ζ μ  variables as in (18) we obtain ( )( ) { }

*
/D f C fψχ χ∂ ∂ =  where  

( )|| dD vχ χ= + ⋅∇b v . We multiply both sides by ( )ln /f Dχ  and recognize a perfect derivative: 

 ( ) { }
*

ln
ln

C f f
f f f

Dψχ χ
⎛ ⎞∂

− =⎜ ⎟∂⎝ ⎠
. (C.2) 

Now multiply by ( )sgn Dσ χ= , integrate over all all owed χ , and sum over σ  and (in the case  
of trapped particles) all helical wells. These operations annih ilate the left-hand side. Next, 
integrate over all allowed *ψ , μ , and E , so  we have int egrated over all of position- and  
velocity-space (except for the unimportant ζ  coordinate). This leaves 

 { }1
*0    lnd d d dE D C f f

σ
ψ χ μ χ −=∑∫ . (C.3) 

We now change from *ψ  to hψ  as an integration variable. Using the Jacobian mentioned 
previously in (90), then (C.3) becomes 

 { }1
h ||0    lnd dE d d v C f f

ς
μ ψ χ χ

−
= ⋅∇∑∫ b  (C.4) 

where ( )||sgn vς = . This can be rewritten as 

 ( ) { }1 3
h0  lnd d d v C f fψ χ χ−= ⋅∇∫ ∫ ∫B . (C.5) 



Using the Landau form  of the operator for sel f-collisions, the Cauchy -Schwartz inequalit y as 
usual implies { }3  ln 0d v C f f ≤∫  for any f . Thus, (C.5) im plies that { }3  ln 0d v C f f =∫  at a ll 
positions, so f  must be Maxwellian 

 
3/2 2

exp
2 2

m m V
f E

T T
η

π

⎛ ⎞⎛ ⎞⎛ ⎞= − − ⋅ +⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
v V , (C.6) 

where, for now, η , T , and V  may  depend  on p osition. Since f  m ust be independ ent of  
gyrophase, the mean flow V  must be parallel to B , so we write V=V b . Next, (C.1) becomes 

( )
*

/ 0f ψχ∂ ∂ = , so f  can vary  only through *ψ , μ , and E . Therefore, η , T , and V  must be 
position-independent.  Forming the velocity moment of (C.6) gives 

 3  exp Ze
d v f V

T
η Φ⎛ ⎞= −⎜ ⎟

⎝ ⎠∫ v b . (C.7) 

The divergence of (C.7) must vanish to satisfy number conservation, implying V  must be zero. 
 Thus, we have proven  th at the onl y ζ -independent e xact solution s of the equi librium 
drift-kinetic equation (C.1)  in a quasisy mmetric field are stationary Maxwellians as in (24) but  
with no gradients in temperature or pseudo-density η . 
 We now consider the related problem  of finding the leading-order distribution function 
for the neocl assical transport or residual zonal fl ow analysis. Suppose the leading-order ki netic 
equation is taken to be ( )( ) { }|| 0 0/v u f C fχ χ+ ⋅∇ ∂ ∂ =b . Adding the small magnetic drifts to the 
left-hand side results in (C.1), so  the proof following (C.1) applies and 0f  must be Maxwellian. 
Although 'T  and 'η  are nonzero in a realistic plas ma, we interpret the proof as indication these 
gradients are weak. If we i nstead expand the kinetic  equation for small collisionality, to leading 
order 0Df ≈ , so f  must be a function of the constants of the motion ( )*,  ,  Eψ μ . Since we 
want f  to also be nearly  Maxwellian, we therefore must take ( )*,  f F Eψ≈  with F  given by 
(25), and we demand that F  be Maxwellian to leading order. A Taylor-expansion of η  and T  in 
F  about * hψ ψ≈  gives M 1F f F≈ +  where 

 || h
1 M

' 3 '
2

v I mE T
F f

T T

η
η
⎡ ⎤⎛ ⎞= − + −⎜ ⎟⎢ ⎥Ω ⎝ ⎠⎣ ⎦

 (C.8) 

(equivalent to (26)) wi th η  and T  evaluated at hψ  rather than *ψ . Therefore  

( )1 M/ ~ / TF f rηρ α  where Trη  is the shorter of th e scale-lengths of η  and T . For f  to remain 
Maxwellian to leading order, T  and η  can vary only on a scale length which is long compared to 

/ρ α . It is still possible that the true density  n  and the potential Φ  var y on the lengt h scale 
/ρ α  as long as their combination in η  varies more slowly. 



Appendix D: Integral for the parallel flow 

Here we argue that 

 ( )3 h

i

'~ nI T
d v g G

v m
ε−

Ω∫  (D.9) 

and therefore that the last integral in (8 3) can be dropped. We b egin by writing the integr al in  
terms of ( ),W Λ  variables: 

( ) ( ) ( )3
||

||

2 2
g G W

d v g G dW d dW d g G v u
h v uσ σ

π π
− ∂

− = Λ = − Λ − +
∂Λ+

∑ ∑∫ ∫ ∫ ∫ ∫  (D.10) 

We are free to add a constant behind the derivative, so 

 ( ) ( ) ( )3 2 2 1 1 /d v g G dW W d g G h
σ

π ∂
− = Λ − − − Λ

∂Λ∑∫ ∫ ∫ . (D.11) 

We next integrate by  parts in Λ . There is no contri bution from  the lower boundar y 0Λ =  
because the l ast quantity  in parentheses  vanishes  there. There is also no contribution from  the 
upper boundary since 0G =  there and 0g =  in this trapped region to leading order. Thus, 

( ) ( ) ( ) ( )3 M
M

M M
2 2 1 / 1

g G g G f
d v g G dW W d h f

f fσ
π

⎡ − − ⎤∂∂
− = Λ −Λ − +⎢ ⎥∂Λ ∂Λ⎣ ⎦

∑∫ ∫ ∫ . (D.12) 

To leading order in ε , Mf  is i ndependent of Λ , so the M /f∂ ∂Λ  term vanishes. Also, from 
(66), ( )M M/ /f g G f∂ ⎡ − ⎤ ∂Λ⎣ ⎦  is odd in σ  to leading order, and so it vanishes in the σ  sum. To 
properly calculate the leading n onvanishing contribution to the i ntegral above, we need not only 
the next correction to Mf  in the ε  expansion, but also th e next correction to g , which is not 
feasible. In any event, since the right-hand side of   (D.12) vanishes in leading order, the estimate 
(D.9) is adequate.  
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Table 1: Quasisymmetry-axisymmetry isomorphism 

 Axisymmetry Quasisymmetry 

Symmetry of B  ( )p ,  B B ψ= Θ  ( )h ,  B B ψ χ=  

 Poloidal angle Θ  Helical angle M Nχ θ ζ= −  

Radial coordinate pψ =  poloidal flux ( )/ 2π  Helical flux h p t /N Mψ ψ ψ= −  

 tI RB=  h /I I NK M= −  

Conserved quantity * p || /IvψΨ = − Ω  * h h || /I vψ ψ= − Ω  

 ( )1/ qR⋅∇Θ ≈b  [ ]M Nq B

qI K
χ

−
⋅∇ =

+
b  

Relative B  variation /a Rε =  ( ) ( )max 0 0/ 2B B Bε = −  

Small geometrical 
factor 

p p/ /I B Bψ∇ ≈  h h/ Iψ α∇ =  

Normalized electric 
field 

( ) 1
i 0 p/U cI v B d dψ−= Φ  ( ) 1

h i 0 h/U cI v B d dψ−= Φ  

 



Figure captions 

1. Numerical functions which appear in (a) the heat flux and (b) the parallel flow and bootstrap 
current. 
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