
PSFC/JA-10-35 
 
 

Nonlinear heating of ions by electron cyclotron 
frequency waves  

 
K. Hizanidis, a P.A. Zestanakis, a A.K. Ram, and Y. Kominis a 

 
October 2010 

 
 
 
 

Plasma Science and Fusion Center, Massachusetts Institute of Technology 
Cambridge, MA 02139  U.S.A. 

 
a National Technical University of Athens  

Association EURATOM-Hellenic Republic 
Zografou, Athens 15773. Greece 

 

 

 
 

 
 
 
 
 

This work was supported by the U.S. Department of Energy, This 
work is supported by DoE grants DE-FG02-99ER-54521 and DE-
FG02-91ER-54109, and by Association EURATOM, Hellenic 
Republic. Reproduction, translation, publication, use and disposal, 
in whole or in part, by or for the United States government is 
permitted. 

 
 
 

To be published in the Proceedings of the 37th  European Physical Society Conference on Plasma 
Physics (2010). 



Nonlinear heating of ions by electron cyclotron frequency waves

K. Hizanidis1, P.A. Zestanakis1, A.K. Ram2, Y. Kominis1

1 NTUA, Association EURATOM-Hellenic Republic Zografou, Athens 15773. Greece
2 Plasma Science and Fusion Center, MIT, Cambridge, MA 02139 U.S.A.

Abstract

The conditions for nonlinear heating of ions by two high frequency electron cyclotron (EC)

beams are determined analytically. It is found that the extraordinary X mode is best suited for

imparting wave energy to ions and modifying their distribution function. The eventual aim is to

determine the possibility of affecting the transport of fusion alpha particles in tokamak plasmas

by EC waves.

Introduction

It has been previously shown that high frequency electrostatic lower hybrid waves can interact

with ions and nonlinearly energize them [1, 2]. This occurs either for a spectrum with a band-

width larger than the ion cyclotron frequency or for two plane waves with their frequencies

separated by a low integer multiple of the ion cyclotron frequency. We have developed a more

general theory which considers the nonlinear interaction of electromagnetic waves with ions in

a magnetized plasma. Of particularl interest is the interaction with waves in the EC range of

frequencies - the X mode and the O mode. The electromagnetic waves propagate as a Gaussian

beam into the plasma and spatial region of interaction occurs where two such beams overlap in

a plasma. The interaction with ions occurs when the wave frequency of each beam is modulated

around the the ion cyclotron frequency. The conditions for the nonlinear interaction are studied

using the Lie transform canonical perturbation theory for Hamiltonian systems [3].

Hamiltonian Perturbation Theory

The motion of a charged particle in the presence of electromagnetic fields is given by the Hamil-

tonian

h(q,p, t) =
[
1+ (p− eA(q, t))2

]1/2
+ eΦ(q, t). (1)

where A and Φ are the vector and scalar potentials, respectively, for the fields, e is the charge of

the particle, q is its position and p is its momentum. The mass m and the speed of light c have

been normalized out. A particle’s position and velocity are represented in phase space by the

6–dimensional vector z ≡ (q,p).

We assume that A = A0 + ϵA1 is a sum of two terms. The first term corresponding to the

background steady state magnetic field while the second term is due to the EM field. Φ is the



scalar potential corresponding to the electromagnetic field. We asume the amplitudes of A1 and

Φ are small compared to the amplitude of A0 so that the EM waves are perturbations acting on

the particle. The perturbations are indicated by the ordering parameter ϵ, so that Φ is of order ϵ.

We order each term in the perturbation theory by using subscripts [3], e.g., for the Hamiltonian

h = h0+ ϵh1+ ϵ
2h2.... The particle velocity is given by

v ≡ ∂h
∂p
=

p− e A
γ

=
∑

i

∂hi

∂p
≡
∑

i

vi, (2)

γ =
[
1+ (p− eA(q, t))2

]1/2
(3)

The unperturbed Hamiltonian is

h0 =
[
1+ (p− eA0(q, t))2

]1/2
(4)

and the next two terms in the perturbation expansion lead to

h1 = −e v0 ·A1 + e Φ1, (5)

h2 = −e v0 ·A2 + e Φ2 +
1
2e2γ−1

0

[
A1 ·A1− (v0 ·A1)2

]
, (6)

Consider a continuous canonical transformation operator T (q,p, t;ϵ) which maps the particle

orbit z to Z ≡ Tz. T (ϵ = 0) = I is the identity transformation. For every function of the phase

space variables and time g(z, t), g(T z, t) = [T g](z, t) The generator of this transformation w is

related to T by
d T
d ϵ
= −T Lw, (7)

where Lw is a Lie operator, whose action on an arbitrary function of the phase space variables

g(z) is given by Lw g = {w,g}. When the particle orbit z evolves under the Hamiltonian h, the

transformed particle orbit Z ≡ Tz evolves under the Hamiltonian K = T−1h+T−1
∫ ϵ

0 T (ϵ)∂w(ϵ)
∂t dϵ

[4]. Then to second order in ϵ

T0 = I, T1 = −L1, T2 = −
1
2

L2+
1
2

L2
1,

K0 = h0, K1 = h1+
∂ w1

∂t
+ {w1,h0},

K2 = h2+
1
2

L1 [h1+K1]+
1
2

[
∂w2

∂t
+L2h0

]
, where Li ≡ Lwi .

Interaction of ions with a slowly varying envelope of EM fields

Assume that

A0 = qx B0 ŷ A1 = A1(q, t)exp
[
ikxqx + ikzqz− iωt

]
(8)



while the first order fields are given by the vector potential where ω ≫ Ω, the ion cyclotron

frequency, A1(q, t) is the slowly varying envelope, kx and kz are the components of the wave

vector perpendicular and parallel, respectivley, to the direction of the ambient magnetic field.

The canonical transformation to the guiding centre variables (yg, pg), (ψ,µ) and (qz, pz) gives:

h0 =
[
1 + 2Ωµ + p2

z

]1/2
(9)

h1 = −
e
γ0

∞∑
n=−∞

U∗n ·A1(rg+ξ, t)exp
[
ikxxg+ inψ+ ikzz− iωt

]
+ cc, (10)

where ρ =
[
2µ/Ω

]1/2 , Un =
υ√
2
Jn+1

(
kxρ
)
û+ + υ√

2
Jn−1

(
kxρ
)
û− + pzûz, û± =

ûx± iûy√
2

, υ =

ρ Ω, rg = (xg,yg,qz), xg = pg/Ω and ξ = ûxρsinψ+ ûyρcosψ.

In our perturbation we choose w1 so that K1 = 0. Then

w1 = −i
e
γ0

∞∑
n=−∞

exp
[
ikxxg+ inψ+ ikzqz− iωt

] U∗n ·A1(rg+ξ, t)

n Ωγ0
+ kz

pz
γ0
− ω
+ cc, (11)

provided that ω has an infinitesimally small positive imaginary part so that the fields decay

exponentially as t→−∞. Also
∣∣∣∣[ ∂∂t +

pz
γ0

∂
∂qz
+ Ωγ0

∂
∂ψ

]
A1

∣∣∣∣≪ ∣∣∣∣[n Ωγ0
+ kz

pz
γ0
− ω
]
A1

∣∣∣∣.
From eq. 11 we determine K2, which is the second order Hamiltonian due to the nonlinear

interaction of the particle with the EM fields. This can be done by using the K − χ theorem

[3, 5]. We obtain,

K2 =
e2

ω2 E
∗
1(x, t)

 1
γ0
+

∞∑
n=−∞

[kz
∂

∂pz
+n

∂

∂µ

]
1

ω−n Ωγ0
− kz

pz
γ0

− 1
γ0

Un U∗n
γ2

0

 ·E1(x, t) (12)

Interaction with a beat wave

The form of K2, Eq. 12, reveals that there is a resonance between the unperturbed motion

and the slowly varying envelope when the wave frequency of is very high compared to the

characteristic frequencies of the cyclotron frequency. As an example, consider the consider two

EM waves with frequencies ω1,2 = ω±∆ω/2 and wave vectors k1,2 = k± k̃/2 propagating at an

angle θ with respective to the ambient magnetic field. The envelope takes the form:

E1(x, t) = E0
1 cos
[
1
2

[
k̃xx+ k̃zz−∆ωt

]]
, (13)

where E0
1 is, without loss of generality, real. The effect of this interaction can be approximated

by the Hamiltonian:

K̃ = Ωµ+ k2
z I2−∆ωI+

1
2

∣∣∣E0
1

∣∣∣2 ∞∑
m=−∞

Jm
[
kxρ
]
cos
[
ϕ+mψ

]
, (14)



where ϕ = kzz−∆ω and I = pz/k̃z is the conjugate momentum. We have assumed that the dy-

namics is non-relativistic and only the first term of K2 in Eq. 12 is kept. Moreover, the envelope

can be modulated in frequency so as to enhance the energization of ions [6]:

E1(x, t) = E0
1 cos
[
1
2

[
k̃xx+ k̃zz−∆ωt− ωFM

ωmod
sin[ωmodt]

]]
, (15)

where ωFM is the modulation bandwidth and ωmod is the modulation frequency. Then K̃ be-

comes

K̃ = Ωµ+ k2
z I2−∆ωI+

1
2

∣∣∣E0
1

∣∣∣2 ∞∑
n,m=−∞

Jn [αFM]Jm
[
kxρ
]
cos
[
ϕ−nωmod+mψ

]
, (16)

where αFM = ωFM/ωmod. It is evident that frequency modulation enables the interaction of the

magnetized particles with a multitude of resonances.

The strength of the interaction can be estimated by applying the standard Chirikov criterion

or by estimating the rms deviation of zero order invariants

∆µrms =

√
⟨∂w̃1

∂ψ
⟩, (17)

where w̃1 is the first order Lie transform generator given by ∂
∂t w̃1+ {w̃1,K0} = ⟨K1⟩−K1.

Our calculations for a typical tokamak plasma show that X–mode interacts more effectively

with ions that the O–mode, for ωFM ≈ ωmod ≈ ∆ω ≈ Ω when the propagation of the wave is

almost perpendicularly to the magnetic field and ω is slightly greater than the electron cyclotron

frequency.

Conclusions

We have considered the dynamics of the interaction of magnetised particles with EM waves. In

particular we have demonstrated that the modulation of the EM wave at a bandwidth larger than

the cyclotron frequency of the particle can modify the topology of the phase space by introduc-

ing resonances between the particle motion and the envelope of the EM radiation. Aspects of

such interactions in typical tokamak plasmas have been considered.
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