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Abstract

Zonal �ow helps reduce and control the level of ion temperature gradient (ITG) turbulence in

a tokamak. The collisional damping of zonal �ow has been estimated by Hinton and Rosenbluth

(H-R). Their calculation shows that the damping of zonal �ow is closely related to the frequency

response of neoclassical polarization of the plasma. Based on a variational principle, H-R calculated

the neoclassical polarization in the low and high collisionality limits. A new approach, based

on an eigenfunction expansion of the collision operator, is employed to evaluate the neoclassical

polarization and the zonal �ow residual for arbitrary collisionality. An analytical expression for

the temporal behavior of the zonal �ow is also given showing that the damping rate tends to be

somewhat slower than previously thought. These results are expected to be useful extensions of

the original H-R collisional work that can provide an e¤ective benchmark for numerical codes for

all regimes of collisionality.
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I. INTRODUCTION

It is known that zonal �ow is an important mechanism to suppress ion temperature

gradient (ITG) turbulence [1][2][3]. Consequently it is important to understand the damping

mechanisms that act on zonal �ow. The original Rosenbluth-Hinton (R-H) study showed that

zonal �ow is modi�ed by the collisionless neoclassical polarization, but signi�cant residual

�ow survives due to the smallness of this polarization [4]. Later, Hinton-Rosenbluth (H-

R) found that collisional e¤ects could signi�cantly reduce the residual zonal �ow to a level

much smaller [5] than the collisionless kinetic theory predicts [4]. This collisional zonal

�ow damping has been tested by gyrokinetic simulation [6][7]. The original H-R analytical

calculation [5] is based on a variational principle and mathematically rather complicated.

In addition, it is only valid in two asymptotic limits: high and low collision frequency [5].

Here we provide a semi-analytical method to calculate the collisional zonal �ow damping

for arbitrary collisionality based on an eigenfunction expansion of the collision operator.

In addition, this new approach is used to obtain a simple analytical expression for the

neoclassical polarization, which is not only accurate in the two asymptotic limits, but also

captures the main features of the intermediate collision frequencies between these two limits.

The associated zonal �ow damping is then readily identi�ed by this new approach.

Polarization is a shielding phenomenon associated with the plasma. In perpendicular

wavenumber and frequency space, the polarization "polk (p) is de�ned by

"polk (p)


k2?
�
�k (p) = �4�e

�Z
d3vf ik (p)

�
, (1)

where p = i! is the frequency variable, and the density distribution function f ik (p) is

calculated from the linearized gyrokinetic equation in the frequency domain. Only the ion

charge density is considered since the ion polarization is larger than the electron polarization

by the mass ratio mi=me for the ITG limit of interest here. The Laplace transforms of �k

and f ik are de�ned by �k (p) =
1R
0

dte�pt�k (t) and f ik (p) =
1R
0

dte�ptf ik (t).

The linear polarization charge density is compensated by the nonlinear turbulent density

due to quasineutrality. In the H-R model, it is assumed that the turbulence produces a

perturbed charge density within a time longer than the ion gyroperiod, but much shorter

than the ion bounce time. Therefore, this initial turbulent charge density drives an initial

zonal �ow potential according to classical polarization "polk;cl, which is due to particle departure
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from the guiding center and can be easily identi�ed as "polk;cl = !2pi=!
2
ci, where !pi is the ion

plasma frequency and !ci is the ion gyrofrequency.

This initial zonal �ow potential will then evolve according to the following equation [5] :

�k (t) = �k (t = 0)Kk (t) , (2)

where the response kernel for an initial charge perturbation, Kk (t), is de�ned as

Kk (t) =
1

2�i

Z
dpept

p

"polk;cl

"polk (p)
, (3)

and "polk (p) = "polk;cl + "polk;nc (p) with "
pol
k;nc (p) the neoclassical polarization that is due to the

guiding center departure from �ux surface, and the path of the p integration is from �1i to

+1i, and to the right of all the singularities of the integrand. From the preceding equation,

the long time asymptotic behavior of the zonal �ow, the so caller residual, depends on the

zero frequency polarization response, i.e.,

�k (t =1)
�k (t = 0)

=
"polk;cl

"polk;cl + "polk;nc (0)
. (4)

The remainder of this paper is organized as following. In Sec. II, we review H-R collisional

kinetics to calculate the neoclassical polarization. Section III provides a detailed discussion

of the eigenfunction expansion method and some properties of the eigenfunctions and eigen-

values of the pitch angle scattering operator. In Sec. IV, we apply this new approach to the

calculation of neoclassical polarization. We then calculate the temporal dependence of the

zonal �ow potential in Sec. V. Section VI considers the energy dependence of the pitch angle

scattering operator more carefully, which modi�es the Sec.V result by a numerical factor.

In Sec. VII the model ion-ion collision operator is improved further by requiring that it

conserve momentum. Based on the results of the these sections, we calculate the zonal �ow

rotation in Sec. VIII. Concluding remarks are given in Sec. IX.

II. TRANSIT AVERAGE KINETIC EQUATION AND NEOCLASSICAL POLAR-

IZATION

When the radial wavelength of zonal �ow is much larger than the ion poloidal gyrora-

dius, the neoclassical polarization can be separated from the total plasma polarization. To
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calculate the neoclassical polarization, we focus on the gyrophase independent part of the

ion distribution function f ik, which we will denote as fk for convenience. This gyrophase

independent ion distribution function fk is driven by the axisymmetric zonal �ow potential

�k [5]:
@fk
@t

+ (vqb � r+ i!D) fk � Cii ffkg = �
e

Ti
F0 (vqb � r+ i!D)�k, (5)

where F0 is a local Maxwellian, Cii is the linearized ion-ion collision operator, and the

magnetic drift frequency is !D = k? � vd. Here we assume all perturbed quantities take
a eikonal form, � (r; t) =

P
k

�ke
iS with the eikonal S = S ( ) and the radial wave vector

k? = rS. The magnetic drift vd = b


� (�rB + v2kb � rb) has the usual radial component

form vd � r = vqb � r
�
Ivq



�
. Following H-R it is convenient to de�ne !D = vqb � rQ

with Q = IS 0vq=
. Notice Q � k?�p, where �p = �iq=" is the poloidal gyroradius. The

independent velocity variables used in the preceding equation are kinetic energy E = v2=2

and magnetic moment � = v2?=2B. Here we will only consider the collisionless the large

aspect ratio circular �ux surface limit as in R-H.

To solve this equation, we separate the adiabatic response from the total distribution by

letting

fk � �
e

Ti
�kF0 +Hke

�iQ. (6)

Employing the fact that the zonal �ow potential is independent of the position along a �eld

line, the new distribution to be determined, Hk; then satis�es the following equation,

@Hk

@t
+ vqb � rHk � eiQCii

�
Hke

�iQ	 = eiQ
e

Ti
F0
@�k
@t
. (7)

The presence of collisions substantially complicates solving this equation. Fortunately, there

are two small parameters hidden in this equation that we can employ. The �rst small

parameter is !=!t, provided that the driving frequency of zonal �ow potential ! is much

smaller than the ion thermal transit frequency !t = vi=qR0, where vi =
p
2Ti=mi is the ion

thermal speed. The second small parameter is Q since only large wavelength zonal �ows

are considered. In the original H-R calculation [5], the equation is solved perturbatively by

expanding �rst in !=!t and then in Q. However, here we employ a di¤erent approach by

expanding �rst in Q and then in !=!t.

For Q� 1, we may expand Hk

Hk = H
(0)
k +H

(1)
k +H

(2)
k + :::,
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where H(j+1)
k = H

(j)
k O (Q). The leading order kinetic equation in this expansion becomes

@H
(0)
k

@t
+ vqb � rH(0)

k � Cii

n
H
(0)
k

o
=

e

Ti
F0
@�k
@t
. (8)

By inspection, we �nd that the leading order solution is simply,

H
(0)
k =

e

Ti
F0�k, (9)

since b � rH(0)
k = Cii

n
H
(0)
k

o
= 0. This piece of the lowest order distribution simply cancels

the adiabatic response in Eq. (6). The next order kinetic equation in the Q expansion gives

@H
(1)
k

@t
+ vqb � rH(1)

k � Cii

n
H
(1)
k

o
= iQ

e

Ti
F0
@�k
@t
, (10)

since Cii
n
H
(0)
k Q

o
= 0 because the momentum must be conserved in like collisions. In

addition, the second order kinetic equation in this Q expansion series becomes

@H
(2)
k

@t
+ vqb � rH(2)

k � Cii

n
H
(2)
k

o
� iQCii

n
H
(1)
k

o
+ Cii

n
iQH

(1)
k

o
= �1

2
Q2

e

Ti
F0
@�k
@t
. (11)

In terms of the H(j)
k , the perturbed density function fk to Q

2 accuracy can be written as,

fk �=
�
� e

Ti
F0�kiQ+H

(1)
k

�
(1� iQ) +

e

Ti
F0�k

1

2
Q2 +H

(2)
k (12)

To calculate the polarization constant, it is convenient to make a detour and �rst calculate

the time change of �ux-surface averaged polarization density,
D
npolk

E
=

R

d3vfk
�
, to obtain

@

@t

D
npolk

E
=

@

@t

�Z
d3vfk

�
(13)

=

*Z
d3v

" 
�ieQF0

Ti

@�k
@t

+
@H

(1)
k

@t

!
(1� iQ) +

eQ2F0
2Ti

@�k
@t

+
@H

(2)
k

@t

#+

Inserting Eqs. (10) and (11) for @H(1)
k =@t and @H(2)

k =@t in the preceding equation and

utilizing the properties of linear ion-ion collision operator Cii, we �nd

@

@t

D
npolk

E
=

*Z
d3v

 
� e

Ti
F0iQ

@�k
@t

+
@H

(1)
k

@t

!
(�iQ)

+
.

Thus, we obtain D
npolk

E
= �

�Z
d3v

�
iQH

(1)
k +

e

Ti
�kF0Q

2

��
. (14)
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This expression for the polarization density is accurate to second order in Q2, yet we need

only solve the �rst order equation, Eq. (10).

At this stage, a further simpli�cation can be made to the polarization density in Eq.

(14) by assuming a large aspect ratio circular �ux surface tokamak model. In addition, we

de�ne the pitch angle variable � = v2?B0=v
2B, with B0 the on axis value of magnetic �eld

and B0=B = R=R0 = 1 + " cos �, then the velocity volume element d3v can be written as

d3v = 4�BEdEd�=B0 jvqj. Using Q = IS 0vq=
, the polarization density can be written asD
npolk

E
= n0

e�k
Ti
k2?�

2
i

B2
0

B2
p

3

2

Z
d�

��

0Ti

i�IS 0ve�kF0

I
d�h

2�
H
(1)
k

�
E

�
I
d�h2

2�
�

�
, (15)

where � = jvqj =v, is the dimensionless parallel speed with � = vq= jvqj, h � B0=B = 1+" cos �

for a large aspect ratio circular tokamak, and the energy average is de�ned as

hAiE =
R1
0
dEE3=2e�mE=TAR1

0
dEE3=2e�mE=T

. (16)

The preceding equation can be used in Eq. (1) to obtain the neoclassical polarization in the

form,

"polk;nc (p) =
!2pi
!2ci

q2

"2
3

2

Z
d�

�I
d�h2

2�
� �

�

0Ti

i�IS 0ve�kF0

I
d�h

2�
H
(1)
k

�
E

�
(17)

where " = r=R0 is the inverse aspect ratio for a tokamak, !pi =
p
4�e2n0=mi is the ion

plasma frequency, !ci = eB0=mic is the ion gyrofrequency at the magnetic axis, �i = vi=!ci

is the ion gyroradius. This form of the expression for "polk;nc (p) is convenient to display the �

space structure of total perturbed distribution and determine the contributions from trapped

particles and passing particles separately, even though the second term in the preceding

equation can easily be integrated by using
R
d3vv2qF0 = n0Ti=mi, to obtain an alternative

form for the neoclassical polarization,

"polk;nc (p) =
!2pi
!2ci

q2

"2

�
1�

Z 1�"

0

d�

�
3
0Ti

2i�IS 0ve�kF0

I
d�h

2�
H
(1)
k

�
E

�
. (18)

Next we solve Eq. (10) perturbatively for H(1)
k by expanding in the second small para-

meter, !=!t � 1,

H
(1)
k = h

(1)
k + h

(2)
k + :::

Then, the leading order equation vqb � rh(1)k = 0 gives that h(1)k is independent of poloidal

angle �. A transit average of the next order equation gives,

@h
(1)
k

@t
� Cii

n
h
(1)
k

o
= iQ

e

Ti
F0
@�k
@t
, (19)
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where the transit average is de�ned as, A =
H
d�A=

H
d� , with d� = d�= (vqb � r�). For

trapped particles, this average is over a full bounce; while for passing particles, it is over one

complete poloidal circuit. Speci�cally, for a large aspect ratio circular cross section tokamak,

d� �= qR0d�=vq, where q is the safety factor. In this case the transit average becomes

A =

H
d�
vq
AH
d�
vq

. (20)

The preceding transit averaged equation (19) is what Hinton and Rosenbluth(H-R) solve in

two limits to obtain their collisional results [5].

Since the distribution h(1)k is the leading order approximation to hk, it is not necessary to

evaluate higher order terms, and we need not make a distinction between h(1)k and H(1)
k . The

trapped contribution satisfying Eq. (19) is simply h(1)k = 0 because the drive Q vanishes.

The remaining task is to solve the transit averaged kinetic equation Eq. (19) for the passing

particle distribution h(1)k , which is required to calculate neoclassical polarization in Eq. (18).

Laplace transforming Eq. (19), the transit averaged kinetic equation can be written as

hk (p)�
1

p
Cii fhk (p)g = iQ

e�k (p)

Ti
F0, (21)

where the distribution hk (p) is the Laplace transform of h
(1)
k and independent of the poloidal

angle �. Since all the analysis that follows is done in the frequency domain, hk (p) is abbre-

viated to hk without causing any confusion.

It is known that pitch angle scattering is the dominant collisional process in a large aspect

ratio tokamak plasma [8][9]. We therefore approximate the ion-ion collision operator by the

model Lorentz operator used by H-R by using the simplifying replacement

Cii fhkg = 2
�

Ti
miE

�3=2
�ii
B0
B
�
@

@�
��
@hk
@�
, (22)

with

�ii =
4�e4ni ln �

m
1=2
i (2Ti)

3=2
(23)

For a large aspect ratio circular tokamak, Eq. (21) can be written as

hk � 2
�ii
p

�
Ti
miE

�3=2
1

L (�)

@

@�
D (�)

@

@�
hk = i

2��e�k
TiL (�)

IS 0v



F0, (24)
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where the functions L (�) and D (�) are de�ned by

L (�) =

I
d�p

1 + " cos � � �
(25)

= 4

r
k

2"
K (k) , (26)

D (�) =

I
d��

p
1 + " cos � � � (27)

= 4�

r
2"

k
E (k) ; (28)

with k de�ned as

k � 2"

1� �+ "
. (29)

Note that L (�) is proportional to the bounce time. If we de�ne a dimensionless distribution

Gk through

Gk =

0Ti

i�e�kIS 0vF0
hk, (30)

then Gk satis�es

Gk � 2
�ii
p

�
Ti
miE

�3=2
1

L (�)

@

@�
D (�)

@

@�
Gk =

2�

L (�)
. (31)

Therefore, the neoclassical polarization in Eq. (18) can be written as

"polk;nc (p) =
!2pi
!2ci

q2

"2

�
1� 3

2

Z 1�"

0

d� hGkiE
�
, (32)

when the energy average de�ned by Eq. (16) is employed.

In the collisionless limit, Gk = 2�=L (�). According to Eq. (17), the collisionless neoclas-

sical polarization can be written as

"polk;nc (p) =
!2pi
!2ci

q2

"2
3

2

�Z 1+"

0

d�

I
d�h2

2�
� �

Z 1�"

0

d�
2�

L (�)

�
(33)

The integrand of this equation can be plotted to demonstrate the pitch space structure of

the distribution, as shown in Fig. 1. We see the second term in Eq. (33) tends to cancel

the �rst term for the passing particles, leaving an order "3=2 contribution to the polarization

that mainly comes from the trapped contribution of the �rst term. As a result, the total

polarization becomes small and of order "3=2,

"polk;nc (p) =
!2pi
!2ci

q2

"2
1:6"3=2, (34)
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FIG. 1: The collisionless distribution in pitch angle space.

which is the well-know R-H collisionless neoclassical polarization.

For the collisional case, H-R solved Eq. (31) analytically for two asymptotic limits: the

high frequency, early time (low collisionality) limit where p�ii � 1, and the low frequency,

long time (collisional) limit where p�ii � 1. In the sections that follow we will employ a

semi-analytical method to calculate the neoclassical polarization and associated zonal �ow

damping for arbitrary p�ii.

III. EIGENFUNCTION EXPANSION

The idea behind this general approach is straight forward. If the eigenfunctions and

eigenvalues of the transit averaged collision operator @
@�
D (�) @

@�
can be found, then the

transit average kinetic equation of Eq. (21) essentially becomes an algebraic equation.

A completely analytical method is desirable, but impractical even for this simple Lorentz

operator. However, the eigenfunctions and eigenvalues for the Lorentz operator can be

computed numerically [10][11].

To facilitate numerical implementation, we normalize the passing pitch angle space to

[0; 1] by setting � = (1� ")x. Then the simpli�ed transit average kinetic equation in Eq.
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(31) can be written in terms of the new x variable as

@

@x
~D (x)

@

@x
Gk � p~�ii ~L (x)Gk = �2�p~�ii , (35)

where the collision time ~�ii includes the energy dependence implicitly,

~�ii �
1

�ii

�
miE

Ti

�3=2
= �ii

�
miE

Ti

�3=2
, (36)

and the functions ~D (x) and ~L (x) are de�ned as

~D (x) =
2D (�)

(1� ")2
(37)

=
8x

1� "

p
1� x+ "+ x"E

�
2"

1� x+ "+ x"

�
, (38)

~L (x) = L (�) =
4p

1� x+ "+ x"
K

�
2"

1� x+ "+ x"

�
. (39)

At the trapping boundary x = 1, the distribution function Gk must vanish to be contin-

uous with the trapped particle distribution. At the other end x = 0, the velocity particle

�ux must vanish, ~D (x) @
@x
Gkjx=0 = 0, to avoid a �ux into a forbidden region. The bound-

ary condition at this end is automatically satis�ed since ~D (x = 0) = 0. In addition, the

distribution function Gk is not allowed to diverge to in�nity at either boundary.

Before solving Eq. (35), we digress brie�y to consider the eigenvalue problem that must

be solved. We let the eigenfunctions gn (x) and the associated eigenvalues �n satisfy the

following eigenequation:

@

@x
~D (x)

@

@x
gn (x) = ��n ~L (x) gn (x) , (40)

where gn (x) and �n depend on " implicitly. Each eigenfunction gn (x) and eigenvalue �n can

be computed numerically by a shooting method [10][11]. Because the transit averaged colli-

sion operator @
@x
~D (x) @

@x
is self-ajoint, this eigenvalue problem is a Sturm-Liouville problem.

Therefore, the eigenfunctions form a complete set and are orthogonal to each other,Z 1

0

dxgm (x) gn (x) ~L (x) =Mn�nm, (41)

where �nm is the Kronecker delta, and the constant Mn is de�ned as

Mn �
Z 1

0

dxg2n (x) ~L (x) . (42)
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FIG. 2: Eigenfunction gn and eigenvalue �n in Eq.(40) for n = 1 through 6, and " = 0:1.

We can then expand the solution of Eq. (35) in terms of this complete set fgn (x)g,

Gk =
1X
l=1

algl (x) . (43)

Inserting this series into Eq. (35) and multiplying the equation by gn (x) and integrating it

from 0 to 1, we obtain an algebraic equation

an (�n + ~
0)Mn = 2�~
0�n, (44)

where the constants ~
0 and �n are de�ned as

~
0 � p~�ii, (45)

�n �
Z 1

0

dxgn (x) . (46)

Note that ~
0 depends on energy implicitly and �n depends on " implicitly. From Eq. (44)

we know that the eigenfunction expansion coe¢ cient an is

an =
2�~
0�n

(�n + ~
0)Mn

, (47)

11



and the distribution function Gk becomes

Gk =

1X
n=1

2�~
0�n
(�n + ~
0)Mn

gn (x) . (48)

Knowing the eigenfunctions gn, we can then calculate �n andMn. These quantities, together

with the eigenvalues �n and driving frequency ~
0, can be used to determine the distribution

Gk and then the neoclassical polarization.

A. Properties of Eigenfunctions and Eigenvalues

Before going further, it is useful to discuss some properties of the eigenfunctions fgng and
eigenvalues f�ng. We are particularly interested in the properties of the quantities �n, Mn

and �n, because these quantities are directly related to the passing particle distribution Gk,

as we have shown in the preceding section. It is found that these quantities can be expanded

in power series of inverse aspect ratio ", [10][11]

�n (") =
1X
k=0

u (n; k) "k=2, (49)

�n (") =
1X
k=0

B (n; k) "k=2, (50)

Mn (") =
1X
k=0

M (n; k) "k=2. (51)

In order to obtain the leading order coe¢ cients in the preceding expansions, we can let

" ! 0. Then the eigenequation, Eq. (40), becomes a Legendre equation with the variable

� =
p
1� x,

@

@�

�
1� �2

� @
@�
G = �2�G. (52)

Therefore, we can easily determine the eigenvalues �n (0) = 2n2 � n, and eigenfunctions

g
(0)
n (x) = P2n�1

�p
1� x

�
. With these eigenfunctions, we can evaluate �n (0) and Mn (0) to

�nd �n (0) =
R 1
0
dxP2n�1

�p
1� x

�
= 2

3
�n1 and Mn (0) =

R 1
0
dxP 22n�1

�p
1� x

�
2�p
1�x =

4�
4n�1 .
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FIG. 3: The quantity �n (")
2 =Mn (") versus mode number n on a log-log scale, for " = 0:01, 0:1,

and 0:2.

Therefore, we may write the leading term explicitly to obtain

�n (") = 2n
2 � n+

1X
k=1

u (n; k) "k=2, (53)

�n (") =
2

3
�n1 +

1X
k=1

B (n; k) "k=2, (54)

Mn (") =
4�

4n� 1 +
1X
k=1

M (n; k) "k=2. (55)

We can compute the quantities �n ("), �n (") and Mn (") numerically for various inverse

aspect ratios " and mode numbers n. As we will show, the most interesting quantity for

the polarization calculation is �n (")
2 =Mn ("). Therefore, we plot it as a function of mode

number n for various ", as shown in Fig. 3.
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IV. COLLISIONAL NEOCLASSICAL POLARIZATION

We next proceed to construct the neoclassical polarization from these numerical eigen-

functions. If we de�ne

P =
3

2

Z 1�"

0

d� hGkiE , (56)

then the neoclassical polarization in Eq. (32) can be written as

"polk;nc (p) =
!2pi
!2ci

q2

"2
(1� P ) . (57)

Once we know the term P , we e¤ectively know the neoclassical polarization. Inserting the

expression for Gk in Eq. (48) into the preceding equation we obtain

P = 3� (1� ")
1X
n=1

�2n
Mn

�
~
0

�n + ~
0

�
E

, (58)

where the energy average is de�ned in Eq. (16). Letting y = miE=Ti, the preceding equation

can be explicitly written as

P = 4
p
� (1� ")

1X
n=1

�2n
Mn

Z 1

0

dyy3e�y

�n=
0 + y3=2
, (59)

where the frequency 
0 = p�ii is independent of energy.

Employing the preceding equation and Eq. (57), we can calculate the neoclassical po-

larization for various driving frequencies or collisionalities p�ii, and inverse aspect ratios ",

as shown in Fig. 4. From this �gure we can see that, for high driving frequencies or low

collisionalities, the neoclassical polarization is small, so it is sensitive to inverse aspect ratio

". On this fast time scale, the ions can only di¤use within a narrow boundary layer so that

the di¤usion can only modify the collisionless result slightly [5]. However, for low driving

frequencies or high collisionalities, the neoclassical polarization becomes large and ignoring

the " dependence is not as critical to the �nal answer, as shown in Fig. 4. On this slow time

scale, the ions have enough time to di¤use over the whole pitch angle space. In this small

p�ii limit, the distribution function Gk extends over the whole passing space with a magni-

tude proportional to p�ii. Therefore, the �rst term in Eq. (57) dominates, the neoclassical

polarization becomes order unity, and the " dependence becomes a higher order e¤ect.
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FIG. 4: The neoclassical polarization in units of
!2pi
!2ci

q2

"2
, calculated by Eq.(57) by computing the

coe¢ cients �n, �n, and Mn numerically and employing a total of 20 terms to approach the exact

value.

A. Approximate Methods for Neoclassical Polarization

The preceding exact eigenfunction expansion method is very accurate, but sometimes a

simpler result may be more convenient. We next present a more concise, but approximate

method for evaluating the neoclassical polarization.

From Fig. 3, we see that �21=M1 dominates the other eigenfunction expansion coe¢ cients.

Therefore, it is sometimes convenient to retain only the leading order term in the preceding

equation, namely

P ! 4
p
� (1� ")

�21
M1

Z 1

0

dyy3e�y

�1=
0 + y3=2
, (60)

where �1 = 1 + 1:461
p
" is the leading order eigenvalue of Eq. (40) [11][12]. However, from

Fig. 1 we know that in the collisionless limit P = 1� 1:635"3=2. This limit suggests that a
reasonable approximation satisfying the high frequency asymptotic limit that also has the
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form of Eq. (60) is

P � 4

3
p
�

�
1� 1:635"3=2

� Z 1

0

dyy3e�y

�=
0 + y3=2
, (61)

where the quantity � is to be determined by the low frequency asymptotic limit.

In the low frequency limit p�ii � 1, we know the distribution function Gk =

�p�ii

�
miE
Ti

�3=2 R 1�"
�

d�0=
�
4
p
1 + "� �0E

�
2"

1+"��0
��
if only the bulk response is considered [5].

According to Eq. (56), we obtain

P � 8p
�

0
�
1� 1:461

p
"
�
. (62)

Comparing this equation to the low frequency limit of Eq. (61), we �nd � to be

� = �1 = 1 + 1:461
p
", (63)

to the accuracy of O (
p
"). This is the same as the leading order eigenvalue �1

[11][12].Therefore the neoclassical polarization can be calculated from Eq. (57), (61) and

(63).

We then can compare the polarization P from this approximation method to that from

the exact numerical calculation by summing Eq. (59) to 20 terms. For inverse aspect ratio

" = 0:1, this approximation is very good, as shown in Fig. 5. In fact even for " = 0:2 the

relative error is only 15%. We also plot the H-R collisional polarization P in the same �gure

as a comparison. It is seen that the H-R analytical results are only valid in either limit, but

fail quickly as p�ii approaches the other limit.

V. COLLISIONAL ZONAL FLOW DAMPING

Using our rather complete understanding of the role of collisions on neoclassical polariza-

tion, we can proceed to investigate the zonal �ow damping associated with collisions. Using

Eqs.(2) and (3), the evolution of the zonal �ow potential can be written as

�k (t) = �k (t = 0)
1

2�i

Z
dpept

p

"polk;cl

"polk;cl + "polk;nc (p)
, (64)

where the classical polarization is "polk;cl =
!2pi
!2ci

q2

"2
in the long wavelength limit, and the neo-

classical polarization can be evaluated from Eq. (57) using the approximate P of Eq. (61).
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FIG. 5: A comparison of the frequency dependence of the polarization P , which is only part of the

neoclassical polarization according to Eq.(57), from di¤erent methods for " = 0:1. The exact line

is calculated by Eq.(59). �HR-High�is the H-R high frequency polarization, while �HR-Low�is

the H-R low frequency polarization [5][12]. The dotted curve �Approx �is calculated by Eqs.(61)

and (63).

To simplify the results even further, we can use a Pade approximation to the energy integral

in Eq. (61). Then, Eq. (61) becomes

P �
�
1� 1:6"3=2

� 
0


0 +
p
�
8
�1
. (65)

Inserting this equation into Eq. (57), we �nd the neoclassical polarization to be

"polk;nc (p) �
!2pi
!2ci

q2

"2
1:6"3=2
0 +

p
�
8
�1


0 +
p
�
8
�1

. (66)

In the large aspect ratio limit, the neoclassical polarization is much larger than the

classical polarization. Therefore, we may ignore the classical polarization in the denominator
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of Eq. (3). Inserting the neoclassical polarization in Eq. (66) into Eq. (2), we obtain

�k (t) = �k (t = 0)
"2

q2
1

2�i

Z
dpept

p

p�ii +
p
�
8
�1

1:6"3=2p�ii +
p
�
8
�1
. (67)

Inverting the Laplace transform we �nd

�k (t) = �k (t = 0)
"2

q2

�
1 +

�
1

1:6"3=2
� 1
�
e
� �1t

7:4"3=2�ii

�
. (68)

From this equation we can see that with collisions the zonal �ow damps to a level much

smaller than the R-H collisionless residual in a decay time of order "3=2�ii. Although the

decay time is of order "3=2�ii, it is enhanced by the numerical factor 7:4 to roughly the

magnitude of ion-ion collision time. Recall that H-R found the average decay time to be

1:5"�ii. Therefore, for " = 0:04 these two decay time are equal. But for most realistic

situations, " > 0:04, and our decay time is slightly larger than the H-R estimate.

VI. ENERGY DEPENDENCE OF COLLISION OPERATOR

In the preceding calculation, we take the pitch angle scattering operator to be the form

of Eq. (22) as in H-R. However, the full energy dependence of the pitch angle scattering

operator has the following form [13][14]

Cii fhkg = 2
H
�p

y
�

y3=2
�ii
B0
B
�
@

@�
��
@hk
@�
, (69)

where y = miE=Ti and H (z) = erf (z) � [erf (z)� z erf 0 (z)] = (2z2), where erf (z) =
2p
�

R z
0
e�x

2
dx is the error function. With this improved collision operator, the polarization

P in Eq. (59) is modi�ed to become

P = 4
p
� (1� ")

1X
n=1

�2n
Mn

Z 1

0

dyy3e�y

H
�p

y
�
�n=
0 + y3=2

. (70)

Thus, the one term approximation for P in Eq. (61) becomes

P =
4

3
p
�

�
1� 1:635"3=2

� Z 1

0

dyy3e�y

H
�p

y
�
�1=
0 + y3=2

, (71)

which still satis�es the two asymptotic limits. Using a Pade approximation, this result

simpli�es to

P =
�
1� 1:635"3=2

� 
0

0 + �1=�0

, (72)
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where the numerical factor

�0 =
4

3
p
�

Z 1

0

dyy3=2e�y=H (
p
y) = 5:38. (73)

The neoclassical polarization in Eq. (57) then becomes

"polk;nc (p) =
!2pi
!2ci

q2

"2
1:6"3=2
0 + �1=�0


0 + �1=�0
(74)

Therefore, the temporal dependence of zonal �ow potential becomes

�k (t) = �k (t = 0)
"2

q2

�
1 +

�
1

1:6"3=2
� 1
�
e
� �1t

1:6"3=2�0�ii

�
, (75)

and the decay time becomes 8:8"3=2�ii, only slightly longer than the previous estimate.

VII. MOMENTUM CONSERVING MODEL COLLISION OPERATOR

The pitch angle scatter operator employed in the preceding sections doesn�t conserve

momentum for like particle collisions. For completeness, we consider an improved model

collision operator to remove this shortcoming. This Kovrizhnikh model operator takes the

following form [15][13][16]

Cii fhkg = �iiD

�
L fhkg+

mi

Ti
vkukF0

�
; (76)

where �iiDL fhkg is the Lorentz operator de�ned in Eq. (22), but with �iiD = �iiH (z) =z
3 and

z �
p
miE=Ti =

p
y. To conserve momentum, the parallel �ow speed uk must satisfy

uk =
3

2

Z
d3vvk�

ii
DhkZ

d3vz2�iiDF0

, (77)

which doesn�t depend on the sign of the parallel velocity �. Evaluating
Z
d3vz2�iiDF0 =

�iin0�0 gives the constant �0 = 4p
�

Z 1

0

dzH (z) ze�z
2
= 0:60. Therefore,

uk =
3

2�iin0�0

Z
d3vvk�

ii
Dhk. (78)

The transit average kinetic equation for this model collision operator then becomes

Gk �
�iiD
p

�
2

L (�)

@

@�
D (�)

@

@�
Gk +

mivûk
Ti

2�

L (�)

�
=

2�

L (�)
, (79)
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with the dimensionless distribution function Gk de�ned in Eq. (30) and the �ux function

ûk de�ned as

ûk =
3B0

2�iin0�0B

Z
d3vvk�

ii
D�GkF0. (80)

Following the eigenfunction expansion technique in Sec. III by letting Gk =
P
n

angn (x),

we �nd the coe¢ cient an to be

an =
2��n
Mn

p� iiD +
mivûk
Ti

p� iiD + �n
, (81)

where � iiD = 1=�iiD and an = an (z) is energy dependent. Noticing that ûk /Z
d3vvk�

ii
D�
P
n

angn (x)F0 /
P
n

�2n=Mn, we can estimate the e¤ect of ûk by recalling Fig.

3 and retaining only the leading term approximation. Therefore,

ûk �
r
2Ti
mi

6
p
��21

�0M1

Z 1

0

dz
H (z) e�z

2

p� iiD + �1

�
p� iiD +

mivûk
Ti

�
. (82)

This integral cannot be performed analytically. However, we can again use a Pade approxi-

mation to to obtain

ûk �
r
2Ti
mi

�21
M1

6
p
��0p�ii

�
p�ii +

4�0�1p
��0

�
h
p�ii +

�
�1
3�
� �21

M1

�
12
p
��0
�0

i
(p�ii + 2�1�0)

, (83)

where the constants �0 =
Z 1

0

dzH (z) e�z
2
= 0:322 and �0 =

Z 1

0

dzH (z)2 e�z
2
=z2 = 0:43.

When evaluating ûk in Eq. (82), the Pade approximation for the second term has a 50%

error for p�ii � 1 although it is good for p�ii � 1 and p�ii � 1. However, since the second

term is small compared to the ûk term on the left side, this 50% error becomes insigni�cant.

The polarization P in Eq. (56) can then be approximately calculated by using Gk �
a1g1 (x) and Eq. (81)

P � 3� (1� ")
�21
M1

*
p� iiD +

mivûk
Ti

p� iiD + �1

+
E

. (84)

To the satisfy the collisionless limit, the polarization must take the form

P �
�
1� 1:635"3=2

�*p� iiD + mivûk
Ti

p� iiD + �1

+
E

, (85)

where the energy average can be evaluated as*
p� iiD +

mivûk
Ti

p� iiD + �1

+
E

=
8

3
p
�

Z 1

0

dzH (z) e�z
2

z4
p�iiz

3 + 2zH (z)
q

mi

2Ti
ûk

p�iiz3 + �1H (z)
. (86)
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We can again use a Pade approximation to simplify this expression to obtain

P �
�
1� 1:635"3=2

�
p�ii

p�ii + �1=�1
, (87)

where the constant �1 = 1:16=
p
"+�0 with �0 found in Eq. (73) to be 5:38. The neoclassical

polarization in Eq. (57) then becomes

"polk;nc (p) �
!2pi
!2ci

q2

"2
1:6"3=2
0 + �1=�1


0 + �1=�1
. (88)

Therefore, the temporal dependence of zonal �ow potential becomes

�k (t) = �k (t = 0)
"2

q2

�
1 +

�
1

1:6"3=2
� 1
�
e
� �1t

1:6"3=2�1�ii

�
, (89)

and the decay time becomes
�
8:8"3=2 + 1:9"

�
�ii. The parallel �ow needed to conserve mo-

mentum makes the decay time somewhat longer, but the change is only signi�cant for

" < 0:05 so is normally negligible.

VIII. ZONAL FLOW ROTATION

A. Collisionless Rotation

Zonal �ow is more than simply the poloidal rotation of plasma. In truth the zonal �ow

also includes a toroidal rotation as demonstrated by the following calculation.

The complete solution to the linearized kinetic equation includes both gyrophase inde-

pendent f and gyrophase dependent ef contributions: f = f+ ef . The gyrophase independent
part f produces a parallel �ow, that can be calculated to accuracy of O (Q2) in the colli-
sionless limit using f = F0 + f1. Here f1 is the linearized distribution, f1 =

P
k

fke
iS. For

the demonstration here, only the polarization part of f1 is of interest. It has been calculated

by Ref. [4] or shown in Sec. II in the collisionless limit. To O (Q2) accuracy,

f1 =
X
k

e�k
Ti
i
�
Q�Q

�
F0 (90)

Therefore, the parallel �ow uk =
1
n0

R
d3vvqf1 can be calculated as

uk =
eI

n0Ti

@�

@ 

Z
d3vF0vq

��vq



�
� vq



�
. (91)
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The integration can be carried out to obtain

uk = BF ( )� @�

@ 

cI

B
, (92)

with the �ux function F ( ) de�ned as

F ( ) =
eI

n0Ti

@�

@ 

Z
d3vF0

�vq



�2
. (93)

The perpendicular �ow is given by the gyrophase dependent part ef , which is simply the
diamagnetic term ef = 1



v � b � rj�F0, (94)

with gradient taken holding the total energy � � v2=2 + e
mi
� �xed. Therefore, taking the

gradient holding E �xed gives

ef = 1



v � b �

�
rjEF0 +

e

Ti
F0r�

�
. (95)

The �rst term in the preceding equation gives the diamagnetic �ow, which combines with

the parallel neoclassical �ow to give a divergence free �ow. As usual, this piece along with

other neoclassical contributions are ignored as small when evaluating the zonal �ow. The

second term in the preceding equation gives the poloidal zonal �ow that is of interest here,

namely

u? =
1

n0

Z
d3vv? ef

=
e

n0Ti

b�r� �

Z
d3vv?v?F0, (96)

which not surprisingly simply turns out to be

u? =
c

B
b�r�. (97)

Combining the parallel �ow in Eq. (92) and perpendicular �ow from the preceding equation,

we �nd a divergence free �ow

u = �c @�
@ 

Rb� +BF ( ) , (98)

with b� = Rr�; the unit vector in the toroidal direction and B = Ir� + r� � r . From
the preceding equation, we see that the zonal �ow not only contains poloidal rotation, but

also toroidal rotation. In the collisionless limit, the function F ( ) can be evaluated for a
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circular tokamak in the same way we calculate the collisionless polarization in the previous

section to �nd

F ( ) =
@�

@ 

cI

B2
0

(1� 1:6"3=2), (99)

where B0 = I=R0. Therefore, the total �ow becomes

u = �cR@�
@ 
b� + cR0

B0

@�

@ 
(1� 1:6"3=2)B, (100)

giving the toroidal component

u� = �R0c
@�

@ 

�
2" cos � + 1:6"3=2

�
, (101)

and the poloidal component

upol = R0c
@�

@ 

"

q
(1� 1:6"3=2), (102)

where the potential � is related to the initial potential � (t = 0) by � =

� (t = 0) "2=
�
q21:6"3=2

�
, according to Eqs.(2), (3) and (34) or Ref. [4], since the neoclassical

polarization dominates over the classical. Because the potential � takes a local eikonal form

and hence the radial variable " is �xed in calculation, we can write the total collisionless

�ow as

u = �cR "2=q2

1:6"3=2
@� (t = 0)

@ 
b� + cR0

B0

"2

q2
(

1

1:6"3=2
� 1)@� (t = 0)

@ 
B. (103)

As is seen from Eqs.(101) and (102), toroidal rotation and poloidal rotation both exist

for zonal �ow and are of similar magnitude, that is O
�
"cR0

@�
@ 

�
. The toroidal �ow is largest

on the outboard side where it is also larger than the poloidal �ow. In the collisionless limit,

the toroidal zonal �ow may be more e¤ective than the poloidal in controlling turbulence on

the outboard side.

B. Collisional Damping

For the collisional case, in the frequency domain the perturbed distribution function

becomes

f1 =
X
k

�
hk �

e�k
Ti
iQF0

�
, (104)

where hk has been obtained by solving Eq. (21). Therefore, in the frequency domain, the

parallel �ow uk =
1
n0

R
d3vvqf1 can be calculated as

uk (p) =
cI

B

@� (p)

@ 
(P � 1) , (105)
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where P is de�ned by Eq. (56) and approximately calculated by Eq. (72). The perpendicular

�ow still takes the familiar E � B form, as in the collisionless case. Therefore, the total

zonal �ow becomes

u (p) = �cR@� (p)
@ 

b� +B cI

B2
0

@� (p)

@ 
P , (106)

where � (p) is related to the initial zonal �ow potential � (t = 0) by [5]

� (p) =
� (t = 0)

p

"polk;cl

"polk;cl + "polk;nc

. (107)

Again, ignoring the classical polarization in the denominator of this equation, and inserting

Eq. (88) we can obtain an expression � (p). This expression along with Eq. (87) allows Eq.

(106) to be written as

u (p) = �cR@� (t = 0)
@ 

"2

q2p

p�ii + �1=�1
1:6"3=2p�ii + �1=�1

b�
+B

cI

B2
0

@� (t = 0)

@ 

"2

q2

�
1� 1:6"3=2

�
�ii

1:6"3=2p�ii + �1=�1
. (108)

The inverse Laplace transform of this equation gives the time evolution of the zonal �ow

u (t) = �cR@� (t = 0)
@ 

"2

q2

�
1 +

�
1

1:6"3=2
� 1
�
e
� �1t

1:6"3=2�1�ii

� b�
+B

cI

B2
0

@� (t = 0)

@ 

"2

q2

�
1

1:6"3=2
� 1
�
e
� �1t

1:6"3=2�1�ii . (109)

From this equation, we see that the poloidal rotation of zonal �ow decays to zero in a time of�
8:80"3=2 + 1:86"

�
�ii, but there is a long time residual toroidal rotation, of order cR

@�(t=0)
@ 

"2

q2
.

IX. CONCLUSION AND DISCUSSION

In the preceding sections we have employed a semi-analytical method to e¢ ciently cal-

culate the arbitrary collision frequency response of the collisional neoclassical polarization

based on an eigenfunction expansion of the collision operator. Our analytical formula for

the collisional neoclassical polarization is valid for the whole range of p�ii. The formula is

extremely good for the asymptotic limits p�ii � 1 and p�ii � 1. For values of p�ii between

these two limits, our analytical result captures the leading order frequency dependence of

the neoclassical polarization in the " expansion so is able to keep the relative error much

smaller than H-R. In the original H-R work, the validity for the weak collision case p�ii � 1
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requires
p
"p�ii � 1 and the validity for the strong collision case requires p�ii � 1. Their

results fail quickly for intermediate values of p�ii as shown in Fig. 5. Consequently, for zonal

�ow damping, it is advantageous to employ our formula since it treats intermediate collision-

alities more accurately. Earlier work [17] proposed a plateau in the frequency response of

neoclassical polarization at intermediate values of p�ii, leading to an order
p
" modi�cation

in Eq. (32) compared to the collisionless value of order "3=2 given by Eq. (34) and collisional

value of unity implied by Eq. (59). Although an increase in the neoclassical polarization

with collisions is found here, the calculations herein actually indicate the transitional be-

havior of the frequency response of neoclassical polarization is smooth with no evidence of

the existence of such a plateau.

As an extension of the original H-R work, we consider the full energy dependence of the

pitch angle scatter operator, which e¤ectively increases the decay time by a small factor.

We then check the e¤ect of retaining momentum conservation in ion-ion collisions by using

a momentum conserving model collision operator. This improvement gives an enhanced

zonal �ow decay time, presumably because some of the initial momentum lost by pitch

angle scattering operator is restored by this new term. However, the correction is negligible

except at very large aspect ratios.

In addition, we carefully consider the zonal �ow poloidal and toroidal rotation compo-

nents. Our kinetic results show that in the initial phase, the zonal �ow contains not only

poloidal, but also toroidal rotation, and that they are of roughly the same magnitude. The

toroidal �ow is largest on the outboard side where it is also numerically larger than the

poloidal �ow. Eventually the poloidal rotation damps away to zero while the toroidal rota-

tion damps to a constant residual plateau that is of order O (
p
") compared to the initial

magnitude.

Our result for the collisional neoclassical polarization and the zonal �ow damping is simple

and can presumably be readily veri�ed by numerical simulations. Indeed, it should provide

a useful benchmark for turbulence codes.
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