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Abstract

The linear stability of high-toroidal-number drift-ballooning modes in tokamaks is investigated

with a model that includes resistive and viscous dissipation, and assumes the mode frequency to be

comparable to both the sound and diamagnetic frequencies. The coupled effect of ion drift waves and

electron drift-acoustic waves is shown to be important, resulting in destabilization over an intermedi-

ate range of toroidal mode numbers. The plasma parameters where the assumed orderings hold would

be applicable to the edge conditions in present day tokamaks, so these instabilities might be related

to the observed quasi-coherent edge-localized fluctuations.
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1. Introduction.

Recent observations [1] of a localized instability (the quasi-coherent mode) in the edge pedestal

of some H-mode discharges in the Alcator C-Mod tokamak appear to be inconsistent with linear sta-

bility predictions for ideal ballooning modes, because the local pressure gradient in the pedestal may

be insufficient to drive the ideal-magnetohydrodynamic (MHD) instability. Resistive drift balloon-

ing modes might, however, explain the observations. Several recent studies, both linear [2,3,4] and

non-linear [4,5,6], have been devoted to this topic. In much of this work, a complex set of two-fluid

Braginskii [7] equations is solved numerically, sometimes in a complicated equilibrium containing or

simulating the proximity of a magnetic separatrix and scrape-off layer. Instability is generally found,

but there has been little discussion of a stability threshold. However, the experimental observations

on Alcator indicate that there is a stability threshold which separates "edge-localized-mode (ELM)

free" H-mode behavior, in which the edge plasma is fluctuation free, from "enhanced D,," (EDA)

behavior, in which the quasi-coherent mode is present in the edge pedestal. In addition, at higher

levels of auxilliary heating power, the quasi-coherent mode is replaced by a broad spectrum of grassy

ELMs [8]. It is possible that these observations may be explained by a linear stability threshold, with

initially a single mode (one toroidal mode number n,) becoming unstable, followed by an increasing

spectrum of unstable n. values. Although ideal-MHD ballooning modes might be near their stability

threshold, electron and ion diamagnetic corrections are likely to be important, as are interactions with

acoustic waves. Dissipative effects (especially resistive effects) are also likely to be important.

In this paper we investigate the linear stability of drift ballooning modes using a simple model

for the plasma equilibrium (the s - a model [9]), but including a variety of non-ideal physical effects.

We derive a simple eigenmode equation for drift ballooning modes by considering an optimal ordering

in which w ~ w, ~ w- j ~ pki ~ 71 ki ~ qki, where w is the mode frequency, ws = c8/Rq is the

frequency for sound propagation over a connection length, with c2 = (T + Te)/mi, q the safety factor

and R the major toroidal radius, w~j = (k x B) -Vpj/(neB 2) is the diamagnetic frequency for species

J, p = 0.3viip2 is the classical perpendicular viscosity with pi = [Timi/(e2B 2)]1/2 the ion Larmor

radius, and 71 and 71 are the longitudinal and transverse Spitzer resistivities. The s - a equilibrium
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model with s = rq'/q and a = -2Rp'q2/B 2 ~ 0(1) is employed and a two length scale averaging for-

malism is developed, using wIwA < 1 as the expansion parameter, where WA is the Alfven frequency,

WA = CA/Rq with cA2 = B 2/(nmi). The resulting eigenvalue equation contains the following physi-

cal effects: (1)Ideal-MHD instability drive (through the boundary condition). (2) Resistive diffusion

leading to resistive ballooning modes. (3) Sound wave propagation. (4) Two-fluid diamagnetic effects

which modify sound waves into electron drift-acoustic modes and introduce ion finite-Larmor-radius

(FLR) effects. (5) Perpendicular ion viscosity. The two different classes of resistive ballooning modes,

namely those driven locally in radius by the geodesic curvature (the Carreras-Diamond modes [10])

and those driven by the ideal-MHD energy (characterized by the stability index A's [11-13]) are both

described by the eigenmode equation.

In Section 2 the linear theory of dissipative drift ballooning modes is developed from a set of

linearized two-fluid equations [14,15]. These fluid equations are appropriate for the short mean-free

path conditions of the edge plasma in Alcator C-Mod. They describe isothermal ions and electrons

in a strong magnetic field toroidal equilibrium without temperature gradients. This linearized sys-

tem contains four first order ballooning equations: continuity, parallel momentum, Ohm's law and

vorticity. Eliminating the parallel ion flow, f||l, and the parallel component of the perturbed mag-

netic vector potential, All, generates a pair of coupled second order ODEs, describing shear-Alfven

and sound waves. This system is then specialized to the s - a equilibrium model. In Section 3 a

perturbative solution of the 4th order ballooning system is developed by means of a two-scale anal-

ysis. This yields a 2nd order resistive layer equation on the long scale of the ballooning variable

sA > 1. The relevant dispersion relations are obtained by matching the resistive layer solution to

the solution in the ideal-MHD region sA 1. In Section 4 the stability of FLR-modified ideal-MHD

modes is discussed. This differs from previous analyses [16,17] by including the coupling to electron

drift-acoustic modes. The main consequence is that the FLR stabilisation of ideal ballooning modes is

completely suppressed at intermediate values of toroidal mode number n.. In Section 5 the stability

of drift resistive ballooning modes is discussed and in Section 6 the effects of perpendicular ion viscos-

ity are outlined. Finally, a summary and overview of drift ballooning stability is presented in Section 7.
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2. Two-Fluid Equations for Dissipative Drift Ballooning Modes.

In this section, starting from a set of linearized two-fluid equations for isothermal ions and electrons

and using the s - a equilibrium model to describe the edge pedestal region of a tokamak, we derive

the appropriate eigenmode equations for drift ballooning modes whose frequencies and growth rates

are sub-Alfvenic. A simple reduced set of two-fluid equations has been given in Refs. [14,15]. Taking

the linearized version of Eqs.(31-36) of [15] with w = i0/,t, and further simplifying these equations

by assuming that the equilibrium ion and electron temperatures are constant and equal, and ions

and electrons are isothermal, the following system of ballooning equations is obtained for the four

dimensionless perturbed fields h = u/n, S = e/Te, 011 = Dli/c, and V = eAI c,/Te, where fi, 01;, 0

and Al are the perturbed density, parallel ion flow, electrostatic potential and parallel component of

the vector potential, respectively:

wL- e = (2w, -wkip )( + h) + cklls - i7Lki 2Cn, (1)
CA

WV11 + W*eb = c~kl - 4itk 2 11 , (2)

(w - We)' = ckl( - ) - irigki , (3)
2

wikp%(0+f) = 4wn + C-9k(kJp_ ) - i/pkjp(+u). (4)

Here we have introduced w. = pi(k x B) - n/(neB 2 ), K = [(B/B) - V](B/B) being the magnetic

curvature. The perpendicular viscous stress terms and the transverse particle diffusion (oc r7i) in

these equations do not appear in Ref.[15], and these terms were taken from Ref.[14]. Equation(1) is

the ion continuity equation, Eq.(2) the parallel momentum equation, Eq.(3) the generalized Ohm's

law and Eq.(4) is the vorticity equation. These equations are to be considered valid in leading order of

the short-perpendicular-wavelength ballooning expansion, kl /k± ~ r/(nq 2R) < 1, for the ballooning

representation variables. Therefore, kll = -iV 1 is a differential operator but k1 is just a function of

the spatial variables. Eliminating 011 and 3 from these equations, we arrive at a pair of second order

ODE ballooning equations for the new dependent variables

U = A , (5)
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and

V = -- 01 (6)
W*e

describing the coupling of shear-Alfven waves and drift-acoustic waves.

Next we specialize the ballooning equations to the s - a, large-aspect-ratio, circular tokamak

equilibrium model [9]. In this equilibrium, the parallel gradient operator becomes icskIi = w, d/dO,

where 0 is the ballooning extended poloidal variable, -oo < 9 < oo. The perpendicular wavenumber is

ki = (npq/r)Ici(O), with k2 (0) = 1+(s -a sinG) 2. The ratio between the curvature and diamagnetic

frequencies is w,/wi = [2wsq22/(wa)]g(9) with g(9) = cos9 + (sO - a sin9)sin9, and the ion Larmor

radius is related to the diamagnetic frequency and MHD variables through p,? 8[wwjir/(wn a)}2 .

We also define the resistive and viscous frequencies w,, = 71(npq/r)2 and w. jz(nq/r) 2. Then the

shear-Alfven equation takes the form:

d [( - w.,)IP dU (w-wi)(w+iwpkc) I2 U =

w-( -wWe iw+k2 d9 kU

S-a g (U + V) + 2w2(+iwki) I (7)
WA

and the drift-acoustic equation takes the form:

d2V (O - w*e)(w + 4iwIjk2) v=
4iw2 ) + Dwk~~wk~d02 W2-

4q2 (LO + 4ip)+ k(2 + iI) I( - U)i)U - 2wiV +
2(a 4 w a2  2(W - *,)

+ [iw2a + (U + V) +

d n + k2iwq I dU dVWOd9 1.A 1_+ -- [n( + 4iwyki)] - 1 - (8)d6W - Wee + iW77 T dO d70

By setting p -+ 0, w.j/w -+ 0 and 7_ -* 71 these equations reduce to the isothermal single fluid

resistive MHD equations [18].
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3. Two-Scale Averaging of the Drift Ballooning Equations.

Under plasma conditions of interest for magnetic fusion, including tokamak edge conditions, the

characteristic resistive diffusion time r is orders of magnitude longer than the characteristic Alfven

time rA = 1/WA. Therefore we can introduce the natural dimensionless resistivity parameter

1/3 - n2 q\1/3  2/3QA1/3

WA r 2 WA ) (
and use it as the basic small expansion parameter for a perturbative solution of our drift ballooning

equations. The growth rates of resistive modes typically fall within the "drift ordering", being com-

parable to the diamagnetic drift frequency but much less than the Alfven frequency, -y w*j < WA.

In order to also take into account the sound wave effects, we will carry out our perturbative solution

assuming the maximal orderings:

W W~ W*j ~ . E?? WA. (10)

Besides, we assume that the viscosity is smaller than or comparable to the resistivity:

W. (11)

Accordingly, we define the normalized dimensionless frequencies e = W/(E7 WA), W Ws/(E,7 WA)

and W,. = w*j/(E4 WA), as well as / A/w,7 = p/mi. It follows that the resistivity, the viscosity

and the inertia only become important at large values of the ballooning variable: sO ~ C1 > 1. In

this domain, to be termed the resistive layer, all the frequencies, O, ws, w*j, 771k ~ W,(sO) 2 and

jk 2 ~ W,(s) 2 , are comparable and of the order of e7 WA.

For sO ~ 1 hence k2 (9) - 1, a domain to be called the ideal-MHD region, the effects of the

resistivity, the viscosity and the inertia are negligible. Here, to zeroth order in e,7, the drift-acoustic

equation is simply
d2 VO(O) W(W - *,) Vo(0) = 0, (12)

d0 2  + 2

whose only solution that can be continued through the resistive layer in such a way that it vanishes

at infinity is Vo(O) = 0. Then, also to zeroth order in E,, the shear-Alfven equation reduces to

d k2()dUo(O) (3I[O (O) dO + a g(0) Uo(0) = 0, (13)
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whose solution is Uo(9) = UidaL (9;w 2 = 0), the ideal-MHD solution in the absence of inertia. Its

asymptotic behavior at large 101 is

ZF 10Uo(191 - oo) = Uideal(IGI o;iW 2 = 0) = + 1(14)

for an even parity mode or

Uo(101 - o) = Uideal (101 -- 00; w2 = 0) = +1 (15)

for an odd parity mode. The constant 1/A' is proportional to the incremental ideal-MHD potential

energy, 6W, associated with the ballooning perturbation so that positive, zero and negative values of

1/A' correspond to ideal-MHD stability, marginality and instability respectively.

In the resistive layer, i.e. s ~ c- > 1, we carry out a two-scale perturbation analysis, introducing

the slow variable Z = e,?s9 in the secular terms of the ballooning equations and reserving the 0 notation

for the fast variable in the periodic terms. Thus we write:

d a a
wo -+ + (16)

Ic(0) -- 1 + (Z/e,7 - a sinG)2, (17)

g(9) -* cosO + sin9(Z/e - a sin9), (18)

and expand the linearized ballooning equations with

U(9, Z) = Uo(9, Z) +e, Ui(, Z) + e U2(0, Z)+... , (19)

V(, Z) = e V1(, Z) + e V2(0, Z)+... . (20)

With this ordering, the shear-Alfven equation yields in zeroth order:

a [ Z 2  UO (21)
061 iZ2/(C ,) g =0,(1

whose solution is Uo = Uo(Z). In first order we solve for Ui(0, Z) and V1(0, Z) to obtain

U1(0, Z) = a sinG 1 + Uo(Z), (22)
Z ( Z - C "'

7

I



V1 (0, Z) = Z sinO 4q2(p - cZyi)(cD + 4iAZ 2 )/a + ia/(C - 'Je) Uo(Z). (23)1 - (c - ce)(& + 4iAZ 2 )/C;2'

In second order a pair of equations for U2(0, Z) and V2(0, Z) is obtained. The condition for solubility of

the equation for U2 (9, Z) in the fast scale variable, yields the following secular equation that determines

the leading order eigenfunction Uo(Z):

2 d Z2 dUos d [ +Z2 - dol + * _ Li)( p + ifZ 2 )Z 2 Uo + (24)dZ[ 1 +iZ 2 /(LD - c)*e) dZj
2

+ a Z < sinO(Ui + V) >o - TO UO = 0,

where < ... >0 indicates the average over the fast, periodic variable 9. This equation is subject to the

boundary conditions,

Uo(Z - oo) = 0 (25)

as required by the ballooning representation, and

UO(Z __. 0) =+ ,E(27A/ Z (26)

to match the solution (14) or (15) in the ideal-MHD region. The solution of this boundary problem

yields the sought after dispersion relation for our dissipative drift ballooning modes. Transforming to

a newly normalized secular variable X 2 = iZ 2/(p - (.e), the resistive layer eigenmode equation can

be cast in the form:

s X2 1+ 2 dx) - X2Q(X 2) + X4T(X 2 ) UO = 0, (27)

where
2

Q(X 2 ) = iL(L - )Q - c.e) [+ 2q2P(X2) - 1 - P(X2)], (28)

T(X 2) = _ C *,)p _ We) 2 11 + 8q2P(X2)], (29)

and
^2

P(X 2 ) = . (30)
C 2- (+ - *e) [+4A(c - CZ))X2

Equation 24 (or equivalently 27) describes the coupling of visco-resistive ballooning modes to drift-

acoustic waves. The novel feature of the foregoing two-scale analysis lies in the ordering w/w, ~ 1.

In much previous analyses, either w/w, < 1 or w/w, > 1 was assumed. As a result of the w/w, < 1
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ordering, Vo(Z) $ 0 and a 4th order coupled set of averaged equations is obtained [12,19]. In this

limit, the geodesic curvature drive for the Carreras-Diamond resistive ballooning mode (the term pro-

portional to a 2 in the expression for Q) is lost and only resistive ballooning modes which are driven

by A' are found. With w/w, >> 1, sound wave propagation is neglected and the resistive ballooning

modes of the Carreras-Diamond type are found [10,12,20,21,22]. Our equations provide a bridge be-

tween these two extremes, not only for studying resistive ballooning modes but also for investigating

finite-Larmor-radius effects on ideal ballooning modes [16,17]. These problems will be revisited in the

next sections.

4. Effect of Drift-Acoustic Waves on FLR Stabilization of Ideal Ballooning Modes.

The above two-scale formalism can be used to study diamagnetic drift and drift-acoustic effects

on ideal modes. For this purpose, we will consider in this section an ideal-MHD unstable equilibrium,

i.e. A' < 0, where resistive and viscous dissipation are negligible. Then, in the limit 7 - 0, p -+ 0

Eq.(24) becomes

d(Z~ (12qPo Z2
2- Z2 + (+2qww) ~"i) 2Uo = 0, (31)dZ _Z W2 C2

where
W2

P = P(P=0) = 2 - . (32)

Its solution decaying at infinity is

2p 1/2 Z
Uo(Z) = exp - -(1+ 2q 2 Po)W(w - La,) , (33)

Z I SWAE77

and imposing the matching condition (26) as Z -+ 0 we obtain the dispersion relation for compressible,

dissipation-free ballooning modes in the presence of diamagnetic drift effects:

SWA 1/2,A -(1 + 2q2 Po)w(w - (34)

or

W(- w) [(1 + 2q 2 )w2 - w(o - W*e)] SA [ W (W - W) (35)
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The quantity -1/A' is a measure of the ideal-MHD energy, -6W, available to drive the ballooning

instability. It is convenient to characterize this energy in terms of the ideal-MHD growth rate

71 (1 SW)/A~ (36)(1 = - +2q2)1/2ZF 9

which would be obtained in the incompressible limit, wa/1y -> co, in the absence of diamagnetic

effects. So, the right-hand side of Eq. (35) contains the ideal-MHD instability drive while the left-hand

side indicates the presence of three waves: an ion drift wave, w = wj, and a pair of toroidally modi-

fied electron drift-acoustic waves, w(w - w*e) = (1 + 2q 2)w. The effect of the electron drift-acoustic

waves is lost in both the w, -+ oo and w, -> 0 limits: for w,/w -* oo we have -w(w - w~j) = Y,

and for ws/w -- + 0 we get -w(w - w~j) = yj(1 + 2q 2). These standard FLR results are illustrated

in Fig.1, where the w, = o and w, = 0 growth rates are plotted versus the toroidal mode number

nw, for the choice of parameters s = 2, q = 5, w*j/(nWA) = -w*e/(lnwA) = 0.02 and A's = -50

which corresponds to a = 1.185 = 1.01 arit. All short wavelength modes with n, above the critical

value such that Iw*jI/2 exceeds yj in the w, = oo case, or yi(1+2q2 )1/ 2 in the w, = 0 case, are stabilized.

The standard FLR results are dramatically modified when we consider the complete dispersion

relation (35), including the coupling to electron drift-acoustic waves at finite o. Now, instead of the

simplified quadratic dispersion relations of the standard FLR treatments, we have a quartic dispersion

relation with two more roots associated with the two branches of electron drift-acoustic waves, some

of which may yield a new positive growth rate. This is illustrated in Fig.2, where the growth rate

is again plotted versus n. for the same parameters used in Fig.1, but now w, = 0.05 WA. Here, in

contrast to Fig.1, both low and high n~, modes are FLR stabilized but an island of instability appears

at intermediate n, values. This occurs in the neighborhood of that n, at which the ion drift wave is

resonant with a branch of the drift acoustic waves:

UJi(Wi - w*e) = (1 + 2q 2 ) 2. (37)

At this n. value, the electron drift-acoustic waves have frequencies w = 2w*e and w = wxj, and the

quartic dispersion relation (35) has two roots close to w.i, one of which develops a positive growth

rate:

U)= .2q i Yr + o -- ), (38)
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Thus, at this resonant value of n, there is no FLR stabilization, i.e. whenever A' < 0 there exists

an unstable mode whose growth rate is actually enhanced, for small 'yI/wi, by a factor 2q/V/ above

the value it would have in the absence of diamagnetic effects.

5. Drift Resistive Ballooning Modes.

In this section we shall consider an ideal-MHD stable equilibrium, i.e. A's > 0, and investigate

drift resistive modes in the inviscid limit. Setting L = 0, Eq.(27) becomes

s2 d (1 X2 dX Qo X 2 Uo = 0, (39)

with

Qo _ Q(, = 0) = *j( ) - )((-.ze) 1 + 2q2P - [1 - Pol, (40)

and Po given by Eq.(32). Equation (39), subject to the boundary conditions

Uo(X -+ oo) = 0 (41)

and
. 1/2

UO(X -> 0) + (42)

to match the solution (14) or (15) in the ideal-MHD region, has the form of the canonical resistive

ballooning equation considered for instance in Ref.[181, only the expression of our coefficient Qo being

different from the standard ones. The solution to this boundary problem (in terms of confluent

hypergeometric functions) is therefore known, and we can write the general dispersion relation for

drift-resistive ballooning modes:

A/ - j. 1/2 Ql/ 4 r[(Q112 /S - 1)/4]
E7B0 = - (43)

8s 1/2 r [(Q/1 2/s + 5)/4]'

These modes can be driven unstable by a positive A' or, for even negligible eA's but finite pressure

gradient, by the a2 term in Qo. Two limits of this dispersion relation are of interest. The first one is

B A'V > 1, i.e. close to the ideal-MHD instability threshold, where it yields

Qo = s2. (44)
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The second one is eA'A < 1, i.e. away from the ideal-MHD instability, where the dispersion relation

reduces to

_ [2r(5/4)1 s2(e NB)4

o -17(3/4) J (c2 - c*e)2

The general expression (43) provides a continuous transition between these two limits.

The approximate dispersion relation Qo = s2, valid in the vicinity of the ideal-MHD instability

threshold where eA's - oo, can be written as

i(w - )(W - W,*e) [(1 + 2q 2

= w,1w s2wg _ (,2+ a 2 /2) w(w - we)]. (46)

Similar to the previous section discussion after Eq.(35), the left-hand side of Eq.(46) indicates now the

presence of four waves: one ion and one electron drift waves plus the two toroidally modified electron

drift-acoustic waves. The effect of the electron drift-acoustic waves is lost in both the w, -> oo and

W' -+ 0 limits. In the incompressible limit (w, -+ o) Eq.(46) reduces to a dispersion relation analogous

to that found in the theory of internal kink modes near the ideal-MHD marginal point [11,23]:

2 2
iW(W - w.4)(w - W.e) = W1WAS (47)

1 +2q 2 '(7

In the absence of diamagnetic effects this has the solution w = i[wqwAs 2 /(l + 2q2 )] 1 3 , which has two

1/3 2/3
damped roots and one unstable root with a strong resistive growth rate proportional to W7 WA . Fi-

nite w.j diamagnetic effects mitigate this resistive instability, yielding instead two damped modes with

real frequencies in the vicinity of w,i and w, respectively, and one unstable mode with real frequency

close to 0 and a weak resistive growth rate proportional to wo ,~W 2 . Analogous results hold in the

limit w, -* 0, substituting s2 + a 2/2 > 0 for (1 + 2q 2)-l. The coupling to the electron drift-acoustic

waves at finite w. introduces two new roots of Eq. (46), one of which develops a strong resistive growth

rate when the resonance condition (37) is satisfied. At this point, the new drift-acoustic root with real

frequency around 2w*e is damped, but one of the two nearly degenerate roots with real frequencies

around w,. has a strong resistive growth rate proportional to wn WAIWi-1/2*

Away from the ideal-MHD instability threshold, i.e. for the range of equilibrium parameters where

0 < A' $ 1, we have E 7' < 1 and the approximate dispersion relation (45) holds. This can be
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written as

iw(O - Wi)(W - we) [(1 + 2q 2  w

[2r(5/4) Ad B _ 4L02

r(3/4) ( -w ,,)2 [I - W(W - B- 2 WAwO(w - W*e). (48)

Similar to the previously discussed dispersion relations (35) and (46), the right-hand side of Eq.(48)

contains the instability drive. Here the two different resistive ballooning driving mechanisms, namely

the global ideal-.MHD energy drive represented by the term proportional to A'4 , and the local pressure

gradient and geodesic curvature drive represented by the Carreras-Diamond term proportional to a 2,
are explicitly shown. In the absence of these driving terms, the left-hand side of (48) would yield the

ion and electron drift waves and the pair of electron drift-acoustic waves. The effect of the electron

drift-acoustic waves as well as the a2 drive are lost in the incompressible limit: taking u, -- oo,

Eq. (48) reduces to

3 2r(5/4) 4 3 2 / 4

-iu(w - wi)(o - we)3 = W5 A (49)
1 (3/4) 1 1 + 2q2

This is the generalization, including finite diamagnetic drift frequencies, of the resistive ballooning

mode dispersion relation derived in Refs.[11-13]. For vanishing Wn, this predicts an instability whose

growth rate follows the "tearing mode scaling", being proportional to w,73/5W 2/5A A 4 / 5

For plasma parameters of interest at the edge of high-performance H-mode tokamak discharges,

the a2 drive is the dominant one. Thus, neglecting A' , we get the simplified dispersion relation

-i(W - W4) [(1 + 2q2  
2 - w(w - we)] = W 2, (50)

or Qo = 0. This dispersion relation generalizes the results of Refs.[10,22] by including the effect of

sound wave propagation and coupling to the electron drift-acoustic waves. If we neglect the sound

wave propagation, i.e. setting w, = 0 in Eq.(50), we recover the result of Ref.[22]:

iw(W - wli)(W - We) = YCD, (51)

where YCD = (a2/2)?/3 w/3 2/3 is the single-fluid Carreras-Diamond growth rate [10]. Like in the

analysis of modes near the ideal-MHD instability threshold, we see, as noted in [22], that the dia-

magnetic drift terms mitigate the strong single fluid resistive instability leaving only a weak resistive
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instability with near-zero real frequency w ~ ia2w,?w7/(2w2). However, our complete dispersion rela-

tion (50) shows that the growth rate of this instability is strongly enhanced when the low-frequency

branch of the drift-acoustic mode is degenerate with the ion drift wave according to the resonance

condition (37). At this point, due to the previously discussed mechanism responsible for the loss of

FLR stabilization of ideal modes, a strong resistive instability

2 1/2

t(i - 3 1)a ,wa (I2

is again found. This resonant peak of the resistive growth rate is shown in Fig. 3, where Im(w) is

plotted versus n., for the same plasma parameters used in Fig. 2, except that now a = 1.0 < ait;

the magnetic Reynolds number is taken to be S = = 1.25 105 and i'V is neglected. The

dependence of the mode frequency on no is shown in Fig.4, where the ion diamagnetic frequency w.

is also shown.

6. Visco-Resistive Ballooning Modes.

Perpendicular viscous effects enter Eq.(27) in two ways. The term T contains the viscous drag

on the perturbed perpendicular velocity and agrees with results in [23,24. The factor P contains

the viscous drag on the parallel flow and introduces, as noted in [25), a strong toroidal enhancement

of the viscosity in the limit w, -- oo. Assuming that the perpendicular viscosity is given by its

classical value, we have # = 0.15#e(mi/me)1 / 2 and, typically, A < 1. In this case we can linearize

P(A; X 2) ~-' Po + AP 1(X 2), and Eq.(27) becomes:

2 - (QOX2 + ToX4) Uo = 0, (53)

with P and Qo given by Eqs.(32,40), and

To = iA(1 + 8q2P0)( _ ''")( _ 2 + 2Aa2P2 (2 - (.)/& (54)

Moreover, for A' < 1 i.e. away from the ideal-MHD instability threshold, the magnitude of both

Qo and To is much less than unity. Thus, restricting ourselves to this case, we can solve Eq.(53) in

two asymptotic regions. First, an inner region JXj - 1, where it reduces to

2 d X2 duo) 0 (55)
X 1 + X2 dX'
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and has the following solution satisfying the ideal-MHD matching condition:

U = - + En ) 1 -2 (l -X). (56)

Then, an outer region IX > 1, where it reduces to

2 d2UJ' _ (Qox2 + ToX) U - 0, (57)SdX2  x)u =o,(7

and whose solution is subject to the matching condition UJI(X -+ 0) = U'(X -* oo). Now we can

obtain a variational form of the visco-resistive dispersion relation using the trial function

U'(X) - X1/2K(OX2 [71/2 - (o/2)1/2 r(3/4) X (58)

B [ -- ):) A' r(5/4) X1j

where K 11 4 is the modified Bessel function and o is a variational parameter. This choice of trial

function satisfies identically the matching condition to UO (X) besides the decay condition at infinity,

and reproduces the exact eigenfunction in the inviscid limit To = 0. For negligible A' drive, the

resulting variational dispersion relation is

Qo + 2.46(sTo) 2/ 3 = 0. (59)

The numerical solution of this variational visco-resistive dispersion relation is displayed in Fig.5, for

the same parameters used in Fig.3 and A2 = 0.003. It shows that the viscosity reduces the growth rate

of the drift resistive ballooning mode, especially at very large toroidal mode numbers, but it does not

affect much the growth rate peak at the resonant value of n,.

7. Conclusions.

By making use of the s - a equilibrium description of a Tokamak, a simple differential eigenvalue

equation describing linear resistive ballooning instabilities has been derived. This equation (Eq.(27))

is appropriate for collisional plasma conditions in the edge pedestal region of a Tokamak. This ex-

tends the original analyses [10,22] of resistive ballooning modes, by describing the effects of matching

to the ideal region, of coupling to electron drift-acoustic modes, and of perpendicular viscosity. When

a > ac,.t (the critical value for ideal-MHD, n4 -- oo, ballooning instability) coupling to drift-acoustic
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waves removes ion FLR stabilization of ideal-MHD modes at a particular range of wavelength, i.e. a

particular toroidal mode number. In addition, when a < acit and ideal modes are no longer unstable,

the same coupling mechanism causes the growth rate of drift-resistive ballooning modes (drift-RBM)

to peak in this range of wavelengths. In practice, however, for parameters typical of the edge pedestal

in Alcator C-Mod, (Wa/WA 0.02, wj/fnwA ~ 0.05, q = 5) these effects are predicted to appear

at very low values of no = 2 or 3. In the absence of ion viscous damping a broad spectrum of

unstable drift-RBMs is predicted to be unstable so that the transition between ELM-free H-mode and

the EDA-mode in Alcator C-Mod (in which a single Quasi Coherent Eigenmode with no ~ 20 appears

in the pedestal region) cannot be explained within the context of linear drift-RBM theory.

Addition of perpendicular ion viscous effects has been studied in a variational formalism. This

indicates that the unstable spectrum of RBMs may be truncated by viscosity, with shorter wave-

length modes being stabilized as p is increased. But viscous effects cannot expain the appearance of

a relatively short wavength (no ~ 20) mode before other wavelengths, as the H-mode pedestal steepens.

The foregoing drift-RBM analysis might be considered to be relevant to the, so called, "wash-

board modes" [26] which have been observed in the edge of JET plasmas as the H-mode pedestal

re-establishes itself following its collapse in a Type I ELM event. "Washboard modes" have toroidal

mode numbers in the range 1 < n4 < 10 and may therefore coincide with the truncated spectrum

(see Fig.5) predicted when ion perpendicular viscosity is added to the drift-RBM analysis. However,

they are reported to propagate in the direction of the electron diamagnetic drift, whereas, as shown

in Fig.4, the drift-RBMs of the present analysis are ion modes.
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Figure Captions.

Fig.1 FLR-modified growth rate of ideal ballooning modes as a function of toroidal mode number,

no. Plasma parameters are: s = 2, q = 5, w.j/nWA = -W*e/nOWA = 0.02, A's = -50 (corre-

sponding to a = 1.185 = 1.01a,.it). The 0(1/n) correction to the ideal-MHD quantity, A' has been

neglected. The solid curve is for WS/WA = 0 and the dashed curve is for the incompressible limit,

WS/WA -> 00.

Fig.2 FLR-modified ideal ballooning growth rate, versus no for W,/wA = 0.05. Other parameters

are as in Fig.1.

Fig.3 Growth rate of the drift-resistive ballooning mode (from Eq.(50)) against toroidal mode

number, no. Parameters are: s = 2, q = 5, w.i/nLOWA = -W.e/nOWA = 0.02, a = 1.0, S = 1.25 10 5.

Fig.4 Frequency of the Drift RBM against toroidal mode number, no. The linear dependence of

the ion diamagnetic frequency, w.j, is also shown by the dashed line.

Fig.5 Effect of perpendicular ion viscosity on the drift-resistive ballooning mode growth rate. Solid

curve is for j = 0.003, dashed curve is for y = 0 (as in Fig.3). Other parameters are as in Fig.3.
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