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Abstract  When operating at low collisionality and high input power (PICRF ≤ 5 MW), large amplitude    
(5 × 10-5 < [ ~ /B Bθ θ ]wall ≤ 5 × 10-3) low frequency (fMHD < 50 kHz) MHD modes appear to limit the 
achievable β in Alcator C-Mod.  Modes with m/n = 5/4, 4/3, 3/2, and 2/1 were destabilized when βp  > 
0.52 and increased in amplitude with increasing β until a rollover or collapse in β occurred.  The largest 
amplitude modes with m=2, n=1 strongly degraded momentum and energy confinement when the 
modes coupled across the plasma core and locked to the wall, bringing the plasma ion toroidal rotation 
to zero, within experimental errors, about 50 ms after mode locking.  MHD stability was calculated 
with the MARS code for a discharge with a large m=2, n=1 mode. Comparisons were made with 
Neoclassical Tearing Mode (NTM) theory and with NTM’s found on other tokamaks.   

 
 

1. Introduction 
With high power ICRF heating (PRF ≤ 5 MW) on Alcator C-Mod, high performance plasmas 

are readily obtained with normalized beta values, βN = βT/(I/aBT), exceeding 1.2 and 

maximum values as high as 1.7 in H-mode.  The toroidal and poloidal β parameters are the 

usual ratios of the average plasma kinetic pressure to the magnetic pressure, β µT Tp B= 2 0
2/  

and β µ θp p B= 2 0
2/ .  All of the 2000 campaign discharges with βN > 1.2 were analysed for 

low frequency (fMHD < 50 kHz) MHD activity associated with high β.  At high density (ne> 

2.5 × 1020 m-3) and high collisionality, ν ν εωq q= =2 2
= i *e/ ( ) ≥ 1, sawtooth precursors and 

small ELMs dominate the MHD activity with rapid chaotic spikes on top of an Enhanced Dα 

H-mode (EDA) [1].  At lower collisionality, νq=2 ≤ 0.5, a small number of discharges in ELM-

free H-mode had moderate to large amplitude MHD modes (5 × 10-5 < [~ /B Bθ θ ]wall ≤ 5 × 10-

3)  with m/n = 2/1, 3/2, 4/3, and 5/4, which were destabilized at βp > 0.52 and increased in 

amplitude with increasing β until a rollover or collapse in β occurred.   

 The largest amplitude modes had m=2, n=1 and strongly degraded both momentum 

and energy confinement when the modes coupled across the core of the plasma to an m=1, 

n=1 mode (Figure 1).  The core toroidal plasma rotation dropped to zero, within experimental 

errors, about 50 ms after the modes locked to the wall, indicating a momentum confinement 

time that is somewhat longer than the energy confinement time (τE ≈ 33 ms).  Because of the 

correlation with low collisionality and high β, comparisons were made with neoclassical 

tearing mode (NTM) theory [2-5] and with similar modes found on other tokamaks [4-9].  
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Calculations were done with the MARS code [10] together with separate numerical 

calculations to determine the MHD stability properties of a discharge with a large m=2, n=1 

mode. 

 
2. Experimental conditions 
Alcator C-Mod is a compact high field (BT ≤ 8 T) divertor tokamak [11] with a major radius 

of 0.67 m, a minor radius of 0.22 m and a typical elongation of 1.7.  In these experiments, 

hydrogen minority Ion Cyclotron Range of Frequency (ICRF) heating at 78 – 80 MHz was 

used at an on-axis field of BT = 5.4 T to provide central resonance heating with plasma 

currents of 0.8 – 1.0 MA.  One 4-strap and two 2-strap ICRF antennas are each driven with 0-

π phasing so that there is no net current drive or direct momentum input. 

The main diagnostics used in this paper include a poloidal array of 15 and a toroidal 

array of 5 poloidal field pick-up coils (Figure 2), a 9 channel Electron Cyclotron Emission 

(ECE) Grating Polychromator [12], and a spatially fixed von Hamos type crystal x ray 

spectrometer [13-14].  The pick-up coils are sampled at 1 MHz with unequal poloidal and 

m=2,n=1 Locked Mode

 
 
Figure 1 A high β discharge with a large m=2,n=1 mode that leads to a β collapse. The line 
averaged density, central Te, ICRF power, βN, βp, toroidal ion rotation frequency, and 
dBθ/dt are shown. The shaded region is during the locked mode. 
 



Submitted to Plasma Phys Cont Fus  9/20/2001   
 

 3

toroidal spacing.  The ECE channels are sampled at 

20 kHz and have a radial spacing of about 2 cm.  

The x ray crystal spectrometer has a line of sight 

tangent to the plasma axis.  It measures the toroidal 

ion rotation velocity from Doppler shifts of Ar17+ 

emission, which comes from the hot core region of 

the plasma, with 20 ms time resolution.  Trace 

argon impurities are added to the plasma to make 

these measurements.  The uncertainty in the argon 

ion rotation frequency depends on the argon signal 

level but is typically ~ 2 kHz.  For comparison, the 

magnetic pick-up coil data can be fast Fourier 

transformed at 1 ms intervals with 1 kHz frequency 

resolution. 

 

3. MHD mode analysis at high β 

Moderate to large amplitude modes that appear to 

limit the maximum βN achievable were found in 

only five of the high beta discharges analyzed.  All 

five of these discharges had relatively low 

collisionality with νq=2 < 0.5.  Two discharges had similar very large m=2, n=1 modes with 

[~ /B Bθ θ ]wall ≈ 5 × 10-3 preceded by smaller amplitude m=4, n=3 modes (Figure 3a).  Two 

other discharges had similar cascades of m=5, n=4 then m=4, n=3 modes with moderate 

amplitudes of [~ /B Bθ θ ]wall ≈ 5 × 10-5 (Figure 3b).  One discharge had an intermediate 

amplitude ([~ /B Bθ θ ]wall ≈ 2.5 × 10-4) m=3, n=2 mode (Figure 3c).  Figure 3 shows the auto-

power spectrum of an outboard midplane pick-up coil signal together with the RMS poloidal 

field mode amplitude at the wall and the poloidal and normalized toroidal β time traces.   All 

of the discharges had sawteeth, whose associated modes are visible as regular spikes in the 

mode amplitude, which may provide seed islands for NTM’s. 

 In the cases of the very large m=2, n=1 modes (Figure 3a), the discharges were in 

ELM-free H-mode with Ip = 1 MA, BT = 5.4 T, q95 ≈ 4, and νq=2 ≈ 0.1 – 0.2.  The mode 

amplitude increased with increasing βp, suggestive of NTM’s, then the frequency slowed 

down and the mode locked.  The confinement degraded substantially after the mode locked, 

 
 
Figure 2. A cross-section of Alcator 
C-Mod showing in dark blue the 
magnetic pick-up coils at one 
toroidal location. 
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m=4,n=3

m=2,n=1

m=4,n=2

m=2,n=2

(a) 
 

m=4,n=3

m=5,n=4

 
(b) 
 

m=3,n=2

 
(c) 
 
Figure 3. The auto-power spectra of a 
pick-up coil signal showing (a) a large 
m=2, n=1 mode, (b) a cascade of m=4, n=3 
and m=5, n=4 modes, and (c) an m=3, n=2 
mode together with the RMS poloidal field 
mode amplitude and βN and βp. Brighter 
color means higher amplitude. 

which then reduced β (Figure 1).  Due to 

equilibrium changes, the mode amplitude 

cannot be determined accurately while the 

mode is locked, but the small irregular 

sawteeth, near zero plasma rotation velocity, 

and poor confinement throughout the 

remainder of the discharge indicate a 

substantial locked mode remains until the 

plasma disrupts more than 0.7 s later.  An 

NTM would be expected to decrease sharply 

in amplitude with decreased β, so this 

suggests that these are more likely to be 

resistive tearing modes or may be error field 

induced modes [15].   

 The discharges with smaller 

amplitude cascades of m=4, n=3 and m=5, 

n=4 modes at high β (Figure 3b) were in 

ELM-free H-mode and had PICRF = 2.5 MW, 

Ip = 0.8 – 1 MA, BT = 5.4 T, q95 ≈ 3.9 – 4.8, 

βN ≈ 1.35 – 1.5, ne  ≈ 2 × 1020 m-3, and νq=2 ≈ 

0.09 – 0.13.  The higher order modes in these 

discharges are unusual in that a mode from 

such a deep rational q surface is not normally 

observed as the dominant mode with pick-up 

coils at the wall as it is usually coupled to a 

larger rational q surface that is closer to the 

pick-up coils.  The sawtooth precursors 

provide large magnetic perturbations and 

these higher order modes appear to be driven 

unstable by the sawtooth collapse.  In these 

cases, however, the m=4, n=3 and m=5, n=4 

mode amplitudes do not exceed [~ /B Bθ θ ]wall 
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≤ 2.6 × 10-4, which indicates that they do not have the strong nonlinear drive characteristic of 

NTM’s.   

The m=3, n=2 mode in Figure 3c also appears to be triggered by a large sawtooth, but 

at relatively low βN ≈ 0.9.  This discharge was in EDA H-mode and had Ip = 0.8 MA, BT = 5.4 

T, q95 = 4.6 – 5.1, and νq=2 ≈ 0.52.  The sawtooth collapse triggers the mode and then the L-H 

transition and the mode persists across the L-H transition and throughout the H-mode. Sauter 

has shown that NTM’s can be destabilized on JET even at such low beta values if the seed 

island is sufficiently large [16].  While the mode frequency spins up with increasing β, the 

amplitude does not increase with β, which, together with the relatively high collisionality, 

suggests resistive tearing modes rather than NTM’s.   

 

4. Momentum and energy confinement degradation 

In the discharges with very large m=2, n=1 modes, both momentum and energy confinement 

were strongly degraded by the modes, as shown in Figures 1 and 4.  The core ion toroidal 

rotation can be compared to the mode rotation frequencies together with the apparent mode 

Locked Mode

 
Figure 4. The line averaged density, Dα emission, plasma stored energy, ICRF source 
power, total radiated power, Ohmic input power, H factor, and outboard midplane magnetic 
pick-up coil signal are shown for the discharge in Figure 1.  The mode is locked during the 
shaded region. 
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Figure 5. ECE Te signals at the q=1 and straddling the q=2 surface and the bootstrap 
parameter -βpLq/LTe at q=2 showing an increase by about a factor of 2 as the m=4,n=3 and 
m=2,n=1 islands grow. 
 
coupling across the plasma by also comparing magnetic modes measured at the edge with 

electron temperature oscillations on the core ECE channels.  The drop in plasma stored energy 

has also been compared with that expected by the Chang and Callen belt model [17].    

Figure 1 shows the core toroidal plasma ion rotation frequency was about 30 kHz at 

0.77 s and began decreasing just as the mode locks at 0.8 s.  The dominant magnetic mode 

frequency does not track the plasma rotation as it usually does [18] but is substantially slower, 

indicating a weak coupling of the sawtooth precursors to the modes near the edge of the 

plasma.  Both the mode rotation and the plasma rotation are in the ion diamagnetic drift 

direction.  The mode at 0.76 s with a frequency of about 14 kHz is predominantly an m=4, 

n=3 mode (Figure 3a).  After the next sawtooth crash, there is a faint mode with m=2, n=2 

that peaks at 28 kHz after the crash, which is close to the core ion rotation frequency at that 

time. Ion toroidal rotation velocity profiles were not measured in this shot, but in C-Mod they 

generally fall off quite rapidly with radius [19] so that already at the q=1 surface, 10 cm from 

the center, the plasma rotation may be as low as 14 kHz to explain an n=2 mode at twice that 
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frequency.  This n=2 mode quickly slows down before the next sawtooth crash even though 

the core plasma is still rotating rapidly (Figure 1). During this phase from 0.766 s onward, the 

magnetic pick-up coil signals are dominated by a growing m=2, n=1 mode starting at 5 kHz 

and slowing down to lock at 0.802 s.  A coupled m=4, n=2 harmonic is also present at twice 

the n=1 mode frequency.   

At 0.77 s, a low frequency oscillation appears on the 20 kHz sampled ECE signals 

near the q=1 surface that is not coupled to the edge m=2, n=1 mode (Figure 5).  Just before 

0.78 s, when the m=2, n=1 amplitude exceeds [~ /B Bθ θ ]wall ≈ 1.9 × 10-3, the core mode 

frequency becomes the same as the m=2, n=1 frequency indicating strong coupling between 

the two modes.  Despite the fact that the core plasma ions are still rotating at ~30 kHz when 

the mode begins to lock, the m=1, n=1 mode in the core rotates with the much slower m=2, 

n=1 mode frequency and also locks at the same time (Figure 6).  Once the m=2, n=1 mode 

couples strongly to the core m=1, n=1 mode, the core plasma rotation also begins to slow 
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0

-80

 
 
Figure 6. ECE Te signals from the center to the edge showing no phase inversion across the 
q=1 surface and a phase inversion between channels 7 and 8, near q=2, together with a 
magnetic pick-up coil signal 
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down and it stops rotating at about 0.85 s (Figure 1).  This indicates that the momentum 

confinement time is ~50 ms, which is somewhat larger that the energy confinement time of 

~33 ms just after mode locking.  Similar locking of core rotation to an m=2, n=1 mode has 

been observed on JET [20].   

When the m=2, n=1 mode couples strongly to the core m=1, n=1 mode, the energy 

confinement is seriously degraded (Figure 4).  The H factor during the mode, relative to the 

ITER89P scaling [21], falls from H89 ~ 2.0 to 0.7 despite 4 MW of ICRF heating, which is 

normally more than sufficient to keep the plasma above the H-mode threshold for similar 

conditions without the large m=2, n=1 mode.  The confinement continues to decrease with 

increasing mode amplitude. The stored energy saturates at the start of the oscillating m=2, 

n=1 mode and then decreases rapidly when the mode locks just after 0.8 s. Then at 0.814 s, 

the ICRF power drops suddenly and the plasma reverts to L-mode. 

The confinement degradation before the H-L transition can be compared to the Chang 

and Callen belt model for the change in stored energy due to large MHD islands [17].  For a 

given island, the drop in stored energy is predicted to be proportional to the island width 

according to: 

∆W P r
W
a

a
rin inc s

is

s
= +4 0 32 0 390

3
4

2

2τ ( . . ) ,                (1) 

where Pin is the input power, τinc0 = ∆W/∆Pin is the incremental energy confinement time, rs  is 

the radius of the mode rational surface, Wis is the island width, and a  is the plasma minor 

radius.  There was a ramp in ICRF power early in the discharge in Figure 4 that allows τinc0 to 

be determined and it is found to be about 47 ms at that time.  The m=2, n=1 island width is 

determined from a simple cylindrical expression for a tearing mode [22]: 

    W r
B q

mB r qis s
r s

s s
=

′
4

~

θ
,                   (2) 

where all quantities are evaluated at the mode rational surface and ~Br  is the radial field 

perturbation due to the mode with poloidal mode number m, Bθ  is the equilibrium poloidal 

field, and the prime denotes the radial derivative of the safety factor profile, qs.  The radial 

field perturbation at the resonant surface is related to the poloidal field perturbation measured 

at the wall by ~ ( ) ~B
r
r

Br q
coil

s

m
wall=

+=
2

1α θ .  The extra factor, α ≈ 0.5 for m=2, n=1, beyond a 

simple cylindrical current-free model comes about by integrating the MHD equation [23]: 
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r d
dr

r d
dr

m q
nq m

r d
dr r

d
dr

r
q

~ ~
/

~ψ ψ ψ− −
−

F
HG

I
KJ =2

2

1
1 0,     (3) 

where ~ψ  is the perturbed poloidal magnetic flux, solving for ~ /B rθ ψ= −∂ ∂  and ~ ~ /B im rr = ψ  

with the boundary condition at the limiter such that ~Br coil
= 0, which should hold for rapidly 

oscillating modes that cannot penetrate the conducting limiters.  Note that for the 2/2 mode, α 

≈ 0.9 and for the 4/3 mode α ≈ 0.7.  Also, if the boundary condition is changed to ~Br ∞
= 0, 

then α approaches unity.  With the boundary condition at the limiter, at the time just before 

mode locking, the m=2, n=1 island width is then Wis ≈ 0.03 m (Figure 5).  At that time the 

input power was 4.2 MW and including the other quantities from a kinetically constrained 

equilibrium calculation using the EFIT code [24], the change in stored energy is predicted 

from Eq. 1 to be ∆W ≈ 50 kJ.  Unfortunately, the comparison with the experiment is 

complicated by the fact that the plasma is not in steady state and there are no similar low 

density ELM-free discharges without large MHD modes.  Nonetheless, this calculation 

suggests that if there had not been a mode degrading confinement, the peak stored energy 

would have reached 250 kJ.  The closest discharge to these conditions without a large MHD 

mode was in EDA H-mode and had ne= 3.5 × 1020 m-3 with nearly the same input power and 

a stored energy of 230 kJ.  Since ELM-free H-modes generally transiently reach higher 

confinement than EDA H-modes, the estimated change in stored energy due to the mode is 

larger than previous cases but not unreasonable. 

 
5. Comparison with MHD stability theory and NTM scalings 

Since these moderate and large amplitude MHD modes are observed at high β and low 

collisionality, the MHD stability of one of the largest modes was calculated with the MARS 

code [10] and compared to separate numerical calculations to determine its proximity to 

marginal stability for resistive tearing modes.  In addition, the operational space of the high β 

discharges has been compared with scalings from other tokamaks for the onset of NTMs. 

 

5.1 MHD stability calculations compared with measurements 

Resistive MHD stability was analyzed with the MARS code and with separate numerical 

calculations at 0.77 s for the discharge shown in Figures 1, 3a, and 4 – 6 using a kinetically 

constrained EFIT equilibrium.  Numerical solutions of a modified Eq. 3 with a wall at the 

limiter radius of r acoil =125.  and with a flux surface averaged current density profile taken 
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from MARS, indicate that a cylindrical equivalent tearing instability index defined by the 

jump in the radial derivative of the perturbed poloidal flux across the rational surface rs  [25] 

′ = − ≈+ −∆m n r rd dr d dr
s s

, ( ~ / ) / ~ ( ~ / ) / ~ψ ψ ψ ψ 0 for m=2, n=1.  Since there are large uncertainties 

in the equilibrium, because there are no internal magnetic field measurements, the 2/1 mode 

may be marginally stable or unstable within the error bars.   However, the calculated rs m n′∆ ,  ~ 

6 was clearly unstable for the m=2, n=2 mode.  For all other modes checked including the 3/1, 

3/2, 4/1, 4/2, 3/3, 4/3, and 4/4, the calculated ′∆m n,  were substantially less than zero and so 

were stable.  In the MARS calculations, an n=1 ideal internal kink mode was found to be 

weakly unstable in the core.  Since q(0) < 1,  it is dominated by the m=1 poloidal harmonic 

with smaller m=2, 3, and 4 sidebands.  As in the separate numerical ∆′ calculations, an n=2 

tearing mode was also unstable at q=1 with a dominant m=2 poloidal harmonic, with little or 

no sidebands.  A dominant m=2, n=1 mode, as observed on the magnetic signals in the 

experiment, was not found in the MARS calculations, even when the resistivity profile was 

artificially increased by three orders of magnitude to effectively eliminate the stabilizing 

effect of the favorable average curvature term [26,27] in the code.  These results indicate that, 

neglecting uncertainties in the calculated equilibrium, the observed m=2, n=1 mode would be 

an NTM.  However, given the uncertainties in the equilibrium, it is not clear whether the 

observed 2/1 mode is a classical or neoclassical tearing mode. 

Figure 6 shows channels 2 through 8 of the ECE Te signals together with a magnetic 

pick-up coil signal. A large oscillation is observed on the ECE channels from the center to 

near the edge at the outboard midplane and the innermost 7 channels are in phase while there 

is a phase inversion on the outermost 8th channel.  So, the q=2 surface appears to be between 

the 7th and 8th channels.  However, EFIT, using external magnetic measurements and kinetic 

profiles, placed the q=2 surface about 5 mm inside channel 7, which is within the 

uncertainties.  Since the ECE measurements show no phase inversion across the q=1 surface, 

this indicates that there is no reconnection at the q=1 surface.  However, the clear phase 

inversion near the q=2 surface, between channels 7 and 8, indicates that the m=2 mode is a 

tearing mode [28].  The absence of reconnection at the q=1 surface may support the theory 

that differential rotation can suppress reconnection [29]. 

 Calculations of the displacement at the q=1 surface due to an m=2, n=1 tearing mode 

in the presence of differential rotation between the two rational surfaces [27,29,30] indicate 

that, for an equilibrium close to being ideal unstable to the 1/1 mode, the 1/1 displacement 

due to the 2/1 mode can be significantly larger than the 2/1 island itself.  This effect combined 
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with the fact that the temperature gradient is somewhat larger at the q=1 surface than at the 

q=2 surface could explain why the core oscillations are larger than the oscillations near q=2 

on the ECE signals, even though the 2/1 is the dominant mode on the magnetic signals.  In 

addition, while a weak 2/2 mode is visible on the autopower spectrum of the magnetic signals 

(Figure 3a), no 1/1 mode is visible.  The explanation could be that the 2/2 mode is a tearing 

mode, as found by MARS, with a relatively weak radial decay (∝1/r3) while the 1/1 

displacement is an ideal kink with its typical “top hat” radial structure [22,31] that provides 

no significant 1/1 component of ~B  at the wall.  Assuming a 1/r3 dependence, the 2/2 mode 

amplitude at the q=1 surface is about 15 times lower than the 2/1 mode amplitude at the q=2 

surface, based on the magnetic measurements, and so the 2/2 island width would be less than 

5 mm and would not be measurable on the ECE signals.  Thus, the dominant m=2, n=1 tearing 

mode on the magnetic coils appears to drive the m=1, n=1 and nonlinearly the m=4, n=2 

harmonics and coexists with a separate m=2, n=2 tearing mode. 

 

5.2 Comparison with NTM theory and scalings 

The neoclassical bootstrap term of the modified Rutherford equation for the time evolution of 

a tearing mode island width is proportional to the local quantity -βp Lq/Lp [4], where the local 

β µ θp i i e en T n T B= +2 0
2( ) /  and Lx = X/(dX/dr) is the local scale length at the mode rational 

surface [5].  Figure 5 shows the ratio –βpLq/LT as a function of time during one of the 

discharges with rapidly growing m=4, n=3 and m=2, n=1 modes, where the pressure gradient 

has been approximated by the temperature gradient for a flat density profile.  This parameter 

increases by nearly a factor of two over this time range as the m=4, n=3 and m=2, n=1 island 

widths, calculated from magnetic field measurements at the wall using Eq. 2, increase 

substantially.  While the uncertainties are large, this does suggest that the neoclassical 

bootstrap term may be playing a role in the increasing island widths of these modes. 

The high β operational space so far obtained on C-Mod is shown in Figure 7 using 

global scalings for the onset of NTMs at q=1.5 and q=2 from other tokamaks [7,9].  The 

scalings plot βN/ρ*i and βN/ρ*i
1.3 versus the collisionality ν ≡ νi/(εω*e), where ρ*i  = vti /(ωci a), 

vti is the ion thermal velocity, ωci is the ion cyclotron frequency, a is the minor radius, νi is the 

ion collision frequency, ε = rs/R, and ω*e is the electron diamagnetic drift frequency calculated 

at the mode rational surface.  The diamonds correspond to the five discharges with moderate 

to large MHD activity while the open circles correspond to discharges that did not have large 

MHD activity.  Relative to the other high β points, the diamonds are some of the closest 
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points to the global scalings for the onset of 

NTM’s observed on DIII-D [7,9] and 

ASDEX-Upgrade [7].  While the scaling for 

q=1.5 is closest to some of the C-Mod points, 

only one discharge had an m=3, n=2 mode 

and it had relatively high collisionality.  The 

DIII-D scaling for the onset of NTM’s at q=2 

is much further from the C-Mod data, which 

are a factor of three or more below the 

scaling. The diamonds have ν < 0.52, which 

is close to the value of 0.3 below which 

neoclassical effects are expected to become 

important theoretically [2].  Given the 

uncertainties in the theory and the 

experimental measurements, it is possible 

that at least the largest of these modes are 

NTM’s.   

 

6. Conclusions 

A detailed analysis of all of the high β discharges from the 2000 campaign on Alcator C-Mod 

has found five discharges with moderate to large amplitude, low m, n MHD modes that 

appear to limit β at low collisionality.  Large sawteeth are present and may provide seed 

islands for the growth of NTMs.  In two cases, large m=2, n=1 tearing modes are present that 

couple across the plasma to large m=1, n=1 ideal internal kinks, which lock to the wall 

dragging down the plasma ion rotation in the core and eventually lead to disruptions.  

However, the C-Mod data lie about a factor of three below the q=2 NTM boundary on DIII-D.  

In one such case, the MHD stability was calculated with the MARS code and with separate 

numerical ∆′ calculations and while a 2/2 mode was found unstable, the 2/1 mode was near 

marginal stability.  The absence of a 2/1 mode in the MARS calculations even when the 

resistivity was artificially increased to reduce stabilizing effects in the code together with the 

particularly large amplitude of the mode observed in the experiment suggest that it could be 

an NTM. Uncertainties in the equilibrium, however, make it difficult to determine 

conclusively if these modes are classical resistive or neoclassical tearing modes.  In the 

(a) q=1.5

(b) q=2

 
Figure 7. High β operational space for 
Alcator C-Mod at (a) q=1.5 and (b) q=2.  
The diamonds correspond to the discharges 
with moderate to large MHD activity.  The 
dashed lines are fits to the onset of NTM’s 
in DIII-D and the solid line with asterisks 
is a fit to ASDEX-Upgrade NTM’s at 
q=1.5. 
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upcoming experiments, C-Mod will attempt to extend operations to lower ν and higher βN in 

order to better test such NTM scalings.  
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