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ABSTRACT

This thesis investigates the degree to which linear axisymmetric modeling of the
response of a tokamak plasma can reproduce observed experimental behavior. The
emphasis is on the vertical instability. The motivation for this work lies in the
fact that, once dependable models have been developed, modern control theory
methods can be used to design feedback laws for more effective and efficient tokamak
control. The models are tested against experimental data from the Alcator C-Mod
tokamak. A linear model for each subsystem of the closed-loop system constituting
an Alcator C-Mod discharge under feedback control has been constructed. A non-
rigid, approximately flux-conserving, perturbed equilibrium plasma response model
is used in the comparison to experiment. A detailed toroidally symmetric model
of the vacuum vessel and the supporting superstructure is used. Modeling of the
power supplies feeding the active coils has been included. Experiments have been
conducted with vertically unstable plasmas where the feedback was turned off and
the plasma response was observed in an open-loop configuration. The closed-loop
behavior has been examined by injecting step perturbations into the desired vertical
position of the plasma.

The agreement between theory and experiment in the open-loop configuration
was very satisfactory, proving that the perturbed equilibrium plasma response model
and a toroidally symmetric electromagnetic model of the vacuum vessel and the
structure can be trusted for the purpose of calculations for control law design. When
the power supplies and the feedback computer hardware are added to the system,
however, as they are in the closed-loop configuration, they introduce nonlinearities
that make it difficult to explain observed behavior with linear theory. Nonlinear
simulation of the time evolution of the closed-loop experiments was able to account
for the discrepancies between linear theory and experiment.
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Chapter 1

Introduction

1.1 General Background

The concept of magnetic plasma confinement relies on the fact that charged particles

are constrained to gyrate around magnetic field lines making it difficult for them to

move perpendicularly to the magnetic field. Since motion along the magnetic field

is free, one wants to close the magnetic field lines onto themselves or have them lie

on a closed surface within the confinement device, thereby preventing the particles

from leaving it. In the tokamak, see Fig. 1-1, this is achieved by bending a tube

of magnetic field lines into a torus. The magnetic field is mainly in the toroidal

direction, but there is a smaller poloidal component created by the current flowing

toroidally in the plasma. This current is necessary to complete the confinement

configuration.

One can follow the equations of motion of single particles and arrive via ensem-

ble averaging at a set of kinetic equations for the distribution function over space

and velocity of each species in the plasma. These are known as the Boltzmann

equations, which, together with Maxwell's equations, are a complete description,

provided one knows the effect of collisions on the distribution function.
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Ideal magnetohydrodynamics (MHD) is a fluid model to describe certain basic

macroscopic equilibrium and stability phenomena in a plasma. It results after taking

velocity moments of the Boltzmann-Maxwell equations and rests on the following

three assumptions:

* we are dealing with plasmas with thermal velocities much smaller than the

speed of light and phenomena with phase velocities much smaller than the

speed of light, so that the displacement current in Ampere's equation can be

neglected.

* electron inertia is negligible, so that electrons respond quickly enough to cancel

any charge imbalance and the net charge in Poisson's equation is zero. This

is known as the quasineutrality condition. This assumption also implies that

we are dealing with slow phenomena.

* the plasma is so dominated by collisions that it can be described by a scalar,

isotropic pressure.

The first two assumptions are well justified for fusion plasmas for most macro-

scopic phenomena of interest and lead to a set of single fluid equations. The third

assumption is not always justified for fusion plasmas, but, it turns out that many

macroscopic phenomena of interest are not dependent on the evolution of the pres-

sure tensor. The ideal MHD equations can be summarized as:

The continuity equation:

= -pV -(

where p is the plasma density and Y is the fluid velocity.

The momentum equation:

p =J x A - Vp (1.2)

18



where J is the plasma current density and B is the magnetic field.

The state equation:

(d) pV (1.3)

where y = 5/3.

Ohm's law:

E + vxB = 0 (1.4)

All the above quantities are functions of space and time, and d = a + -V is the

Lagrangean derivative.

In steady state, the momentum equation says that the Lorentz force is balanced

everywhere by the pressure gradient. If we define the poloidal flux, O(R, Z) as the

total magnetic flux flowing through a horizontal circular loop of radius R centered

at the tokamak axis at a distance Z from the midplane, the magnetic field can

be written in terms of this flux and, using Ampere's law, the momentum balance

equation can be rewritten as:

(V4' dp dR2V - - -poR 2  - F(1.5)
R2 dO dO

where F = RB4, and B4. is the toroidal field. Eq. 1.5 is known as the Grad-Shafranov

equation describing axisymmetric toroidal plasma equilibrium. Note that F and the

pressure are functions of 4 alone, i.e., they are constant on contours of constant

poloidal flux. Also note that the right hand side in Eq. 1.5 can be written as

-RJO(V)) where J4 is the toroidal plasma current. Given p(o) and F(0) profiles

and a set of external currents, Eq. 1.5 determines the shape of the flux contours.

For the plasma area, these are usually closed concentric contours. The innermost

contour is known as the magnetic axis of the plasma.

Linearized MHD stability can be studied when we consider perturbations from

an equilibrium with zero fluid velocity (6 = 0). All perturbed quantities can be

described in terms of the plasma displacement, f, which defines the perturbed fluid

19



velocity, V: () When the equilibrium is toroidally symmetric, this can be

expressed as a sum of normal modes by writing:

(5, t) = o(r, 0) exp (inO + iwt) (1.6)

where n is the toroidal number of the mode. Definitions of the spatial coordinates

are given in Fig. 1-1. The plasma is stable if the imaginary part of the eigenvalue,

w, is non-negative for all modes of the system. Instability can arise from pressure

gradients or from current flowing parallel to the field.

The advantages of the tokamak over other magnetic confinement schemes for

controlled nuclear fusion have always been shadowed by the fact that the maximum

Pt allowable for magnetohydrodynamic (MHD) stability is low. Being the ratio

of plasma to magnetic pressure, Ot is a measure of performance over cost and is

directly related to how suitable a confinement scheme is for efficient power gen-

eration. This limit arises from the so-called ballooning modes and external kink

modes. Ballooning modes are high-n pressure-driven modes due to the unfavor-

able field curvature characteristic of a tokamak. Kink modes can be driven either

by pressure gradients or by the current, and they dictate limits both on /3 and

total plasma current. Overall field stability can be made favorable by shaping the

plasma cross-section. It has been shown, both theoretically and experimentally in

the past ten years [1, 2, 3, 4, 5], that, elongation and triangularity of the plasma

cross-section, allows for a higher plasma current which improves MHD ft-limits

and confinement. For this reason, most tokamaks built in the 1980's and 1990's

have shaped plasma cross-sections. Examples are: JET in the U.K., ASDEX-U in

Germany, JT-60U in Japan, DIII-D, Alcator C-Mod, and PBX-M in the U.S.A.,

and TCV in Switzerland. Note that, except for JET, all other experiments are suc-

cessors to or modifications of circular cross-section tokamaks that existed previously

in the same research centers.

Axisymmetric plasma perturbations (toroidal mode number n = 0) deserve
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Figure 1-1: Tokamak geometry.
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Shot 940624003 @ 0.12 sec Flux contour spacing (L/R): 0.058Wb/0.012Wb

0.4-

0.2

0.0

-0.2

-0.4-

-0.6

0.500.600.700.800901.001.10 0.500.600.700.800.901 .001.10

Figure 1-2: Poloidal flux contours without (left) and with (right) the plasma at a
time early in the shot when the plasma is not strongly shaped yet. The right plot
shows only flux surfaces inside the plasma.
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special attention since they represent global motion of the plasma, usually toward

the vacuum vessel wall. The most dangerous of these is the so-called vertical insta-

bility, which is an almost rigid vertical shift of the plasma and is always associated

with strong shaping of the plasma. In order to create an elongated plasma, one has

to use the poloidal field coils to pull the plasma from the top and bottom and push

it from the sides. This is essentially a quadrapole field that has to be superimposed

on the vertical field, which is necessary to balance the forces that push the plasma

outwards in the radial direction [6]. These are: 1) the tire tube force due to the

fact that the plasma pressure is constant on surfaces that have a smaller inboard

area than outboard area and 2) the hoop force due to the fact that the force from

both toroidal and poloidal magnetic pressure is larger on the inboard side. The

externally applied poloidal field can then be concave towards the outboard side,

whereas for a plasma of circular cross-section plasma it is approximately straight.

This is shown in Figs. 1-2 and 1-3. Fig. 1-2 shows the magnetic field due to the

coils and the structure alone at the beginning of a typical Alcator C-Mod discharge

shot. This is the time right after breakdown and the plasma has not been shaped

yet. It is still nearly circular and the vacuum field needed for equilibrium is purely

vertical or concave towards the inboard side over a large region. Fig. 1-3 shows the

magnetic field due to the coils and the structure alone at a time later in the shot,

when the plasma has been given an elongated, triangular shape. Note how a larger

part of the field lines are now convex towards the inboard side. Fig. 1-4 shows

schematically how the vertical instability can arise. If the plasma current flows into

the page, the equilibrium field has to be pointing downwards in order to create an

inward force and balance the toroidal expansion forces. Imagine the plasma current

being concentrated in one toroidal filament. At equilibrium, the filament sits on

the midplane and sees no radial externally applied magnetic field. Now, if the field

is convex towards the inboard side, and the filament moves off the midplane down-

wards, it sees an outward radial field, which creates a downward force, pulling the

23



filament even further away from equilibrium. In the absence of a conducting wall

around the plasma, the timescale of this instability is of the order characteristic of

most MHD phenomena, known as the Alfven timescale. For a 1 keV ion tempera-

ture, and a 1 m length scale this timescale is in the psec range. With a conducting

wall around the plasma, the induced eddy currents provide damping and bring the

instability timescale to the order of the skin penetration time of the conductor.

Shot 940624003 @ 0.8 sec Flux contour spacing (L/R): 0.096Wb/0.025Wb
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Figure 1-3: Poloidal flux contours without (left) and with (right) the plasma at a
time later in the shot when the plasma is elongated. The right plot shows only flux
surfaces inside the separatrix.

In the earlier tokamaks, where the duration of the plasma discharge was not

considerably longer than the skin penetration time of the vacuum vessel, the vessel

acted as a perfect conductor, stabilizing these modes, so that controlling them was

not necessary. Modern tokamaks, though, have discharges with a duration tens or

hundreds of times longer than the L/R time of the vacuum vessel. It is of utmost

importance that the vertical instability is kept under control. When vertical control
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is lost, the plasma moves up or down until it hits the vessel and is extinguished.

This is known as a disruption. The eddy currents that are induced in the vessel

during a disruption exert very large forces on the vessel, and for most high perfor-

mance tokamaks these forces may threaten the mechanical integrity. In a reactor

relevant tokamak like the proposed International Thermonuclear Experimental Re-

actor (ITER) [7], the plasma will have enough thermal energy to vaporize 40 kg of

Beryllium, one of the plasma facing materials being considered. In case of such an

accident, the reactor might have to be shut down for a long time to repair the first

wall.

p x Bz - FR

J p x BR - Fz

B

Figure 1-4: Interaction of a toroidal current with a curved equilibrium field.

1.2 Related Work

As mentioned earlier, there are several other tokamaks in operation in the world

with shaped plasma cross-section and they all have to deal with the problem of the

vertical instability. Consequently, a lot of work has been done so far in this field.
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In the older configuration of JET, instability growth rates of 50-150 s- were

observed [8]. A single-filament plasma representation was used together with two

circuit equations, one for the vertical control coil pair and one for the vacuum vessel.

By choosing appropriate values for the parameters of this model, the open loop

growth rates were reproduced satisfactorily [9]. In voltage step tests, the oscillation

frequencies and growth rates were predicted to within a factor of two [9, 10]. Nothing

has been published yet on the new configuration. The modeling of the growth

rates for the vertical instability is unresolved, in the sense that they do have large

discrepancies between predicted and measured growth rates for divertor plasma

configurations [11].

For DIII-D vertical stability analysis so far, the plasma has also been modeled

as a single filament [12]. Its inductance is not allowed to vary with Z. The vacuum

vessel is constrained to have one antisymmetric poloidal distribution of toroidal

currents. Finite resistivity is allowed for the vacuum vessel and the control coil pair.

The equation of motion for the massless single-filament plasma (which is equivalent

to BR = 0 at the filament location) together with the circuit equations for the

vessel and the control coil pair give a third order system. From these equations, it

becomes clear that, without feedback, the plasma becomes vertically unstable on an

MHD timescale, when the decay index becomes smaller than a critical decay index

defined by
2Ro aM, 2(1.7)

where Mp is the mutual inductance between the plasma filament and the vacuum

vessel, L, is the self-inductance of the vessel, RO is the radial location of the plasma

filament and

Le t 4± + + (1.8)
poRo 2 2

Let and 1j are the external inductance and internal inductivity of the plasma re-

spectively. This model was used as guidance when exploring the stable operating

space of feedback gains. In Ref. [13], this model was tested against experiments
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where the plasma was moved up and down by means of steps in the voltage ap-

plied to the coil pair controlling the vertical position. The order of the response

was confirmed, as was the maximum achievable decay index. The growth rates and

oscillation frequencies of the modes of response, however, could only be predicted

to within a factor of two of the observed ones, if one unjustifiably adjusted the

vessel resistance by 50% and multiplied the actual feedback gains used by a factor

of four. No experiments were conducted, in which feedback control was turned off,

while the plasma was unstable. This experiment can result in a disruption, so that

a large number of them can be damaging to the tokamak. This is why it is usually

avoided. It is, however, the only direct way to compare open loop plasma behavior

to theory. Perturbed equilibrium modeling of the plasma has also been done [14],

but has not been experimentally validated yet.

ASDEX-U differs from other machines in the method used to interpret the

magnetic measurements in order to infer the state of the plasma. A large number of

MHD equilibria have been computed and the values of all the measurements used

by the control system as well as the basic equilibrium parameters that are being fed

back on have been stored in a database [16]. Using function parametrization [17],

a quadratic relationship between equilibrium parameters and measurements was

developed. A simple filament model of the plasma, together with 6 modes for

the vacuum vessel were used to produce rough estimates for feedback gains. The

Tokamak Simulation Code (TSC) [18] was then used in place of the tokamak to test

the control loop in pseudo-real time [19, 20]. TSC calculates the time evolution of

a free-boundary plasma equilibrium, which is consistent with a prescribed sequence

of currents in the poloidal field coils and the passive conductors. A better set of

feedback gains is developed this way, which is ultimately tested on the tokamak

itself. Substantial work has been done on electromagnetic modeling of the passive

conductors in ASDEX-U [21, 22]. For no-plasma runs, the passive stabilizer loop

current was predicted via 2-D eddy current modeling to within a 30% accuracy,

27



while in plasma runs, 2-D eddy current modeling with a filament model of the

plasma reproduced flux loop measurements to within a 20-50% accuracy.

As in ASDEX-U, in TCV control laws are being tested using TSC [23, 24].

The NOVA-W code [25] is also used to assess the effect of plasma deformability on

closed loop axisymmetric response. NOVA-W is a linear MHD stability code which

takes the effects of resistive conductors in the vacuum region into account. The

passive eigenmode always rearranges itself under active feedback so that the flux

measurements used in the feedback loop are minimized [26], thereby minimizing the

effect of the feedback system. NOVA-W was used to determine which measurements

and which actuators (PF coils) to weigh more heavily for more effective control. A

similar approach is also used in PBX-M [27].

In JT60-U a rigid multifilament model of the plasma was used together with a

vacuum vessel modeled as a set of 100 toroidal conductors [29]. In experiments where

feedback was turned off during vertically stable discharges, the theory predicted the

Z-evolution very well. In closed loop experiments where the plasma was perturbed

by means of neutral beam injection, the growth rate was predicted accurately, and

the oscillation frequency to within a factor of three.

A survey of related work performed so far shows that several sophisticated

models exist for the axisymmetric motion of a plasma in the presence of resistive

conductors. These models are used in a trial-and--error mode as an aid to finding

good feedback laws. However, these models have not been used substantially in

the context of linear control theory, to derive control laws, or predict experimen-

tal behavior. Only very simple models have actually been used for this purpose.

Comparison of theory to experiment is rarely published.
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1.3 Alcator C-Mod

Alcator C-Mod is the third in a series of compact, high-field tokamaks built at

M.I.T. and aimed at achieving high performance at low cost. Unlike its predeces-

sors, it has an elongated vacuum vessel, and the poloidal field (PF) coils are located

inside of the toroidal field (TF) coils. In addition, it features ten independent power

supplies feeding a set of 13 PF and ohmic heating (OH) coils. It has, therefore, the

capability of producing a large variety of shaped plasmas, and divertor configura-

tions. Fig. 1-5 shows a cross-sectional view of Alcator C-Mod. It can have a
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Figure 1-5: Cross-section of Alcator C-Mod

maximum toroidal field at the center of the vacuum vessel of 9 T and a maximum
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Figure 1-6: Cross-section of the vacuum vessel showing the OH and PF coils.

toroidal current of 3 MA. All magnets are made of copper and cooled with liquid ni-

trogen. Fig. 1-6 shows a closer view of the coils. Power is supplied by an alternator,

connected to a flywheel capable of storing 2000 MJ of energy.

The main function of the OHI coil is to control the toroidal loop voltage

(and hence the total plasma current) by varying the time derivative of the poloidal

flux. The difference between OH2U and OH2L currents controls the Z-position

of the plasma on a slow timescale, while the EFC coils, which are connected in

antiseries, control the Z-position on a faster timescale. The OH2 coils are fed by

two powerful but slow power supplies, while the EFC coils are fed by a smaller but

faster power supply. The R-position of the plasma is mainly controlled by the EF3

coils connected in series, which are fed by one power supply. Alcator C-Mod is

mostly run in a so-called diverted, single-null configuration. This means that the

last closed surface of constant poloidal flux (separatrix) does not touch the vacuum
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vessel wall (see Fig. 1-3) and that the two points of zero poloidal field that form

outside the last closed flux surface (x-points) are not symmetric; one of them is

further away from the plasma than the other, so that most of the particles escaping

the plasma by means of perpendicular (to the field lines) transport, end up through

parallel transport at one end of the vacuum vessel. The Z-position of the x-points

is mainly controlled by the EF1 coils. The EF2 coils control the x-point R-position.

The sum of the OH2 coil currents together with the EF4 coils, which are connected

in series, control the elongation and triangularity of the plasma by pushing on it

from the outside and pulling on it from the inside.

The control of individual plasma shape and position parameters is actually

much more coupled than this simplistic one-to-one identification of coil functions,

however, and necessitates the use of a very flexible control system. Fig. 1-7 shows

a block diagram of the hybrid digital/analog plasma control computer system used

in Alcator C-Mod. It can take up to 96 signals as input. The interpretation of the

state of the plasma is done by multiplying these signals by a predictor (A,-matrix)

to form up to 16 different linear combinations representing the parameters to be

controlled. These signals are then compared to their pre-programmed values and

the error, its integral and derivative are then multiplied by some gains. The result-

ing 16 signals are then multiplied by the controller (M-matrix) which determines

what coils are to be involved in controlling each parameter. The pre-programmed

voltage demand signals determine the general scenario of the discharge. They are

added to the output of the controller and the sum goes to the power supplies as

voltage demand. All matrix multiplications are performed in an analog way, but

the matrices are inserted digitally and can be changed during the discharge.

The inputs to the plasma control computer are mainly magnetic diagnostic

measurements of two types: poloidal magnetic flux and poloidal magnetic field on

the inside surface of the vacuum vessel. The poloidal flux is measured by the so-

called flux loops. These are wires running toroidally along the vacuum vessel wall.
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Figure 1-7: Block diagram of the hybrid feedback computer.
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The principle of operation in demonstrated in Fig. 1-8. The area A is large and the

B

V 
Integrator>

Figure 1-8: Illustration of the principle of operation of the flux loops.

magnetic field B going through it is in general toroidally nonuniform. The output

V is then

V dOp d
d tJ ds (1.9)

This is a toroidally averaged measurement, except for some loops that do not go all

the way around toroidally, but are located on the vacuum vessel wall between two

ports (partial flux loops). The poloidal magnetic field is measured by the B,-coils.

These are small pick-up loops located at different poloidal locations, oriented so that

no toroidal field flows through them. They operate on the same principle as the flux

loop, the difference being that the area A is small enough that the magnetic field i
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going through it can be considered uniform. The output V then is proportional to

. This is therefore a localized measurement. There are 21 full flux loops, 6 partial

flux loops and four sets of 26 Bp-coils located at four different toroidal locations.

The vacuum vessel, which has some sections as thick as 2 cm, serves also as

structural support for the PF coils and the first wall hardware. A large amount of

stainless steel serves as structural support for the TF coils. Both the vacuum vessel

and the structure are toroidally continuous for the most part and can carry large

eddy currents; this is desirable for passive control, because it helps slow down any

unstable axisymmetric plasma behavior. However, it also means that active control

is slower, since any change in the coil currents (which are outside the vacuum vessel)

creates eddy currents in the vacuum vessel and can only create a change in flux inside

the vacuum vessel after the eddy currents have died away. The first wall consists

of molybdenum tiles, and the bottom of the vacuum vessel is fitted with a closed,

baffled divertor chamber.

Auxiliary plasma heating is provided by two transmitters supplying a total

of 4 MW of ion cyclotron radio frequency waves. Because of its high particle-,

power-, and current- densities, Alcator C-Mod is expected to have edge plasma

conditions that resemble those expected in ITER, and is therefore going to offer

valuable information for the design of the ITER-divertor.

1.4 Motivation and Outline

From the above it is clear that vertical position control is essential for shaped toka-

maks. So far, tokamaks have been controlled by simple proportional, integral and

derivative feedback control that assumes that control of different plasma parame-

ters is completely uncoupled; in other words each coil set affects only one of the

parameters to be controlled. The advantage of this approach is that no model is
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needed for the response of the unstable system we are trying to control. Instead,

the "optimal" feedback gains are determined by trial and error from shot to shot.

If the no-coupling assumption is not true, however, the control of two different

plasma parameters will often cause two coil sets to fight each other, resulting in

a non-optimal use of resources (voltage sources for the coils). This is due to the

fact that changing one parameter may result in an undesirable change in another

parameter. Modern control theory has many interesting methods to offer for good

control of many-input many-output (MIMO) systems. When the control system of

the tokamak is frequency independent (as is the case in Alcator C-Mod), optimal

control theory can be used to make the most efficient use of the resources for the

smallest possible deviation of certain plasma parameters from their desired values.

With a frequency dependent controller, more sophisticated methods can be used to

reduce the effect of noise (H,-theory) and structured uncertainties in the form of

modeling errors and perturbations (p-synthesis theory). In both cases, however, a

good linear model of system response is needed. During a typical shot the plasma

goes through many different shapes and one cannot expect a single linear model to

be valid for all cases. Control laws based on different models can be used during

different phases of the plasma discharge. Most modern control systems (including

the Alcator C-Mod control computer) have this capability which is known as "gain

scheduling".

The purpose of this thesis is to examine the usefulness of linear axisymmetric

plasma response models in predicting the behavior of Alcator C-Mod geometric

shaping parameters and developing feedback laws to control them. In particular, it

attempts to go one step beyond what has already been done in that it uses a more

sophisticated plasma response model for this purpose than the single-filament or

multifilament models that have been compared to experiment to a limited extent so

far. The approach is to first create models for all the individual systems shown in

Fig. 1-7, test them individually, then put them all together in a closed loop, and test
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the closed-loop. Testing of individual systems in an open-loop configuration was

very satisfactory, proving that the perturbed equilibrium plasma response model

and a toroidally symmetric electromagnetic model of the vacuum vessel and the

structure can be trusted for the purpose of calculations for control law design.

Closing the loop introduced some serious nonlinearities making comparison of linear

theory to experiment unsatisfactory. When these nonlinearities are added to the

linear models, however, the experimentally observed behavior can be predicted by

theory satisfactorily.

Chapter 2 will present two plasma response models. The first is the rigid

multifilament model where the plasma is modeled as a set of toroidal filaments that

do not move with respect to each other and whose current does not change. The

second is the perturbed equilibrium model, namely a model that assumes that the

plasma is always in a self consistent MHD equilibrium in the vicinity of some central

equilibrium and that the time response is dictated by the L/R time of the conductors

around it. Both of these models neglect plasma inertia. Chapter 3 presents an

electromagnetic model of the vacuum vessel and the structure of Alcator C-Mod

and how this model agrees with experimental measurements. This model is useful in

plasma equilibrium reconstruction and was of some help in developing a repeatable

plasma startup procedure. Models have also been developed for the power supplies

that feed the equilibrium field coils and the results are also presented in Chapter 3.

Chapter 4 develops a dependable way of reducing the order of the resulting models

so they can be used for repeated time consuming control calculations. Chapter 5

presents a comparison of theory to experiment for elongated plasma discharges

where the feedback control was turned off and the plasma moved exponentially

towards the vessel wall. Chapter 6 presents a comparison of theory to experiment

for elongated plasma discharges with the feedback loop closed. Finally, Chapter 7

presents a summary and conclusions that can be derived from the comparison of

theory to experiment and suggestions for further work.
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Chapter 2

Linear Plasma Response Models

2.1 General Assumptions

In order to exploit the many recent achievements of MIMO linear state space control

theory, we have to have a linearized model for the response of the system consisting

of the plasma and the conductors around it. To arrive at such a model several

assumptions must be made. If the only tools we have to control the plasma are the

OH and PF coils, we can only affect toroidally symmetric modes of the plasma, so

we are justified in confining ourselves to considering axisymmetric behavior. If we

suppose that the response of the plasma is governed by the ideal MHD momentum

equation (Eq. 1.2), two timescales are of interest: the Alfv6n timescale of the plasma

and the L/R timescale of the conductors around it. If the first is much shorter than

the second (and usually it is by about 3 orders of magnitude), we are justified in

neglecting the inertia term in the momentum equation. The presence of the con-

ductors slows down any instability from the Alfv~n timescale to the L/R timescale.

If the plasma were surrounded by a perfectly conducting vacuum vessel, it would be

stable. We are also justified in neglecting plasma inertia effects for a practical rea-

son: the fastest Alcator C-Mod power supply cannot react faster than a timescale of
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approximately 1-msec, so that if the plasma were unstable on the Alfv6n timescale,

we would not be able to control it anyway. Then, the plasma is supposed to be

in equilibrium at each time and the conductors determine how it moves from one

equilibrium to the next. This is known as the quasistatic approximation.

A set of toroidal conductors is governed by circuit equations which describe

the evolution of the poloidal flux at the locations of the conductors:

MI+ RI= V (2.1)

where M is the inductance matrix (including mutual and self inductances), R is

the diagonal resistance matrix for the conductors, and V is the vector of voltages

applied to the conductors; its only non-zero elements are the ones corresponding to

the active conductors. The word "active" here refers to a conductor that is being

fed by a voltage source (power supply) as are the coils. I is a vector containing

the currents flowing in the conductors. We can choose the state of the plasma at

each point in time to be described by the poloidal flux it creates at the conductor

locations. Then, including a linearized plasma response would amount to adding

to M some matrix X accounting for the coupling between conductors mediated by

the plasma [32]:

MI+ XI + RI = V (2.2)

Here, X = , and ?kp is the poloidal flux at the conductor locations due to plasma

current alone. I is then the state vector of the plasma/conductor system.

Several linear models for the plasma have been devised, some of which will

be discussed in the following sections. All these models amount to finding the

matrix X. The simplest one is to replace the plasma by a single toroidal filament

[12]. The next step is to use several toroidal filaments for the plasma in order

to simulate a distribution of toroidal current in the plasma [30]. One can also

determine the linearized plasma response by perturbing the conductor currents that

give a certain base equilibrium of interest and considering the plasma to be always
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in an equilibrium which is a linear combination of the set of perturbed equilibria.

This approach was introduced in Ref. [31] and was extended in Ref. [32] to include

passive conductor response and approximate flux conservation. A more rigorous

approach based on the energy principle (but still neglecting plasma inertia) is used

in Ref. [33].

The aim of this thesis is not to evaluate these plasma models or to suggest

a new one, but rather to make contact between these models and the observed

behavior in the Alcator C-Mod tokamak. Only when we feel confident, that we can

explain the experimental observations with some linear model, can we go ahead and

make use of the wealth of existing modern control theory techniques.

2.2 The Rigid Filament Model

Representing the plasma as a single toroidal filament placed at the position of the

plasma current centroid ([12, 34]) is the simplest approach to the problem of vertical

stability. Fig. 2-1 shows a comparison of the poloidal flux at the locations of some

magnetic diagnostics (flux loops) due to the plasma alone for an elongated Alcator

C-Mod plasma and due to a filament carrying a current equal to the total plasma

current and placed at the plasma current centroid location. The flux pattern at

the vacuum vessel, where all the magnetic diagnostics are located, is similar in both

cases. It has been argued ([12]), therefore, that the single filament model of the

plasma is a satisfactory descriptor as far as the control problem is concerned. The

distribution of the plasma current, has to have some effect on plasma response,

however, for two reasons: first, when some of the plasma current is placed closer to

the vacuum vessel, more eddy currents will be induced when the "plasma" moves

than when all of the current is placed in the middle of the vacuum vessel; second,

as some current is spread over areas of different external field curvature than that

of the current centroid location, its stability characteristics have to change. If the
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plasma response is affected, the control problem will be affected as well.

If we know the plasma current distribution, the next logical step is to represent

the plasma as a set of toroidal current carrying filaments with a current distribution

resembling that of the plasma. We can assume that the filaments do not move with

respect to each other and restrict motion to the vertical direction only. This is

done in Ref. [30]. These are of course nonphysical restrictions, since there can be

other non-rigid and not exactly vertical modes which require less energy and are,

therefore, more unstable. It is not clear how one should go about specifying these

modes without going into a full MHD analysis, however. The rigid vertical motion

is a good approximation at least for the qualitative analysis of elongated plasma

response. The circuit equations for the conductors around the filaments become:

M-- i-. N Pj +N
MI +RI + 1p ' + I,;Mp = V (2.3)

where:

M,3 is a vector containing the mutual inductances from the ith plasma filament

to all the conductors,

4,p is the current in the ith plasma filament,

z is the change in vertical position of the plasma filaments and

N is the number of plasma filaments.

One has to specify how the plasma filament currents change. One possible

assumption is that the IJj's change so as to conserve the poloidal flux. This is a

valid assumption for an ideal (non-resistive) plasma. Another possible assumption

is to assume that the plasma filament currents do not change, conserving plasma

current density. This second assumption is of course easier to implement, since

the jpi-term vanishes in Eq. 2.3. Furthermore, it has been shown [35], that a

rigid constant current shift is never more stable or further from the exact energy

minimizing MHD eigenmode than a rigid constant toroidal flux shift. It makes
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sense, therefore, to use the constant plasma current assumption.

To determine z, we need the equation of motion of the plasma. There are two

forces acting on the plasma:

* The force due to the eddy currents induced in the conductors around the

plasma:

Feddy dEmag (2.4)
z dz

where Emag is the magnetic energy stored in the conductor and filament system and

e, is the unit vector in the vertical direction:

EM +1 (2.5)
3 3 1'iMV1

where Mpjj is the j'th element of vector Mi from Eq. 2.3.

M N M

Feddy = 9ZZI Ia [ 13 = T(2.6)
3 1p 3Z . 26

where M is the number of conductors around the plasma and the superscript T

stands for transpose.

* The Lorentz force due to the interaction of the plasma filament currents

with the radial magnetic field encountered as the plasma moves a distance z from

its equilibrium position:

NLorentz B aBRFLrt E - 2rIpi- IZ LZ (2.7)

BRi is the radial field at the location of filament i.

We have then:
d2z
M =t- + Fz(2.8)

where m is the plasma mass. In the quasistatic approximation, the left hand side

of Eq. 2.8 is negligible and one can simply solve for z and substitute into Eq. 2.3. z

is the position where the Lorentz force balances the force due to the eddy currents.
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Then, in the sense of Eq. 2.2, the mutual inductance matrix of the conductors due

to their coupling to the plasma is:

X = (_ Ia 59)7 (2.9)

Eqs. 2.2 and 2.9 describe the response of a massless filament plasma in the presence

of passive conductors and active coils. Performing eigenmode analysis on Eq. 2.2

usually gives one unstable mode for elongated plasmas, which is the vertical mode.

The plasma current distribution may be obtained either from an MHD equilib-

rium code, if we are interested in the response of a theoretical plasma equilibrium,

or can be reconstructed from data from a real plasma discharge at a particular time.

In the second case, an MHD equilibrium code has to be run anyway in order to look

at other equilibrium quantities for other purposes. In either case, the spatial grid

used by the equilibrium code can be used as locations of the plasma filaments. All

results presented in Chapter 5 are calculated using a set of 65 x 65 filaments coin-

ciding with the grid of an equilibrium code. This is purely a choice of convenience.

The computational cost of using so many filaments was small, and any operation

attempting to lump plasma current on that grid into a smaller number of filaments

would probably have had some computational cost as well. Of course, such a large

number of filaments is not necessary to reproduce current distribution effects. A

study was done in Ref. [30] to determine how the number of filaments affects the

growth rate of the vertical mode. It was found that the growth rate varied con-

siderably with fewer than ten filaments, but converged to some value when ten or

more filaments were used.

2.3 The Perturbed Equilibrium Model

The perturbed equilibrium model is described in Ref. [32]. In this section, an

overview of the model is given. First we look at the current conserving perturbed
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equilibrium model of the plasma response in the presence of the OH and PF coils

alone neglecting the vacuum vessel and passive structure. Then we look at how we

can incorporate our electromagnetic model of the vacuum vessel and passive struc-

ture, without introducing any additional computational work. Lastly, a method is

described for allowing the plasma current to vary so that magnetic flux is approxi-

mately conserved.

2.3.1 General Formulation

In order to write down a linear response model, one first has to define an equi-

librium condition or operating point. This requires specifying certain parameters

(inputs). Once the operating point has been defined, some other quantities we may

be interested in are also defined (outputs). The linear model then is supposed to

predict how the outputs vary when the inputs are perturbed slightly.

In a linear plasma response model one has to define a plasma equilibrium as

the "operating point" which involves solving the Grad-Shafranov equation. The

Grad-Shafranov equation (Eq. 1.5) is a second-order, nonlinear partial differential

equation. In order to solve it, two things are needed: a) p(o) and F(O) have to be

specified in the inhomogeneous part (the right hand side) and b) boundary condi-

tions have to be specified. There are two approaches commonly used to indirectly

define boundary conditions in computer codes that solve the Grad-Shafranov equa-

tion. In the free-boundary approach all toroidal currents flowing outside the plasma

are specified. The shape of the plasma is then an output of the code. In the fixed-

boundary approach, some plasma shape parameters are specified. The currents in

the coils are then an output of the code.

When one of the inputs of the equilibrium code is perturbed, the outputs

are perturbed as well. We can run the equilibrium code with each of the inputs
i 8outputs wperturbed one at a time to obtain a matrix, ( inputs ); which describes how the
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outputs change with the inputs in a static sense. For timescales that are slow

compared to the timescales of the momentum equation (Eq. 1.2), this is a good

description of plasma evolution. In other words, if we assume that:

- the only unstable (vertical) eigenmode will have a growth rate tomparable to the

L/R time of the conductors around the plasma, which is determined primarily by

the damping effect of these conductors, and that

- Eq. 1.2 has no other unstable eigenmodes,

then static transition from one equilibrium to another as described by (a"uputs) is

valid. The time evolution from one equilibrium to the other will be determined by

its coupling to the conductors as described in Eq. 2.2. If we use the currents in the

conductors, I, as the inputs and the poloidal flux due to the plasma current alone

at the conductor locations, O,, as the outputs of the plasma equilibrium code, the

coupling of the conductors due to the plasma becomes:

dp
X = -? (2.10)

dI J()

where the subscript J(O) denotes that the plasma current distribution remains con-

stant. This assumption of current conserving plasma response is not correct phys-

ically. It contradicts the ideal MHD assumption that the plasma has no electrical

resistivity. An approach for approximate flux conservation instead is discussed in

Section 2.3.3.

The free-boundary equilibrium code ASEQ (ASymmetric EQuilibrium) [40]

was used to implement the above perturbational equilibrium method in this work.

This is an up-down asymmetric variation of the plasma equilibrium solver of the

PEST (Princeton Equilibrium, Stability, and Transport) code [391. As a free-

boundary solver, it takes as inputs the coil currents and some parametrization of

the pressure and F profiles. The so-called Strickler profile shape function is used in

this study. Defining the normalized flux, P as:

axs(2.11)
4 5dge - Oaxis
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the profiles are parametrized as:

dp e - e(2.12)

dV; e-"11 -1I

and
dF e - f (2.13)

F- -c (2I

The proportionality constant in Eq. 2.12 involves the total plasma current I,. The

parameters ac and af control the peakedness of the profiles.

One technical point should be made here: elongated plasmas are inherently

unstable, so that the equilibrium code has problems converging, unless one of the

coil currents is allowed to float so that some other condition is satisfied. In this

study the vertical (Z) location of the magnetic axis was specified as input while the

EFC coil currents were allowed to vary. When each of the OH and PF coil currents

is perturbed, one has to also keep track of the change in the EFC coil currents which

is an output of the equilibrium solver. In this way we obtain a set of perturbed

equilibria with the same Z-position of the magnetic axis. The degrees of freedom

associated with moving the plasma up and down are then accounted for by running

two more perturbed equilibria in which the requested Z-position is perturbed (up

and down) and the EFC coil currents are allowed to float, while all other OH and

PF coil currents are fixed at the values they have in the base equilibrium.

The free-boundary equilibrium solver has the disadvantage that one does not

know in advance what the plasma is going to look like, or even if there exists a so-

lution to the Grad-Shafranov equation with the prescribed inputs. If the inputs for

the perturbed equilibrium are not very different from the inputs to the base equi-

librium, however, there should be a solution. The advantage of the free-boundary

approach is that it deals in coil currents; this not only makes simpler to use with

the circuit equation, but it also is a good representation of the degrees of freedom

of the system we are trying to control, since the coil currents are the only thing

we can change for control. The fixed-boundary approach offers the advantage that
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the plasma shape is known in advance, but the coil current combination giving the

requested plasma shape is not unique, so that some further assumption has to be

made concerning coil currents. Furthermore, the choice of shape parameters that

are used as inputs, may not describe all the degrees of freedom adequately, so that

special care must taken in the selection of the inputs.

2.3.2 Incorporating the Passive Conductors

In the previous section no account is taken in I (Eqs. 2.1 and 2.2) of the passive con-

ductors (vacuum vessel and structure). This procedure had already been described

in Ref. [31]. One of the things that Ref. [32] added is the effect of the passive

conductors. Theoretically, one could add the currents in the passive conductors

as inputs to the equilibrium solver and then perturb their currents one by one to

create a full set of perturbed equilibria including the passive conductor currents.

This would increase the computational cost of the perturbed equilibrium procedure

dramatically, however.

As mentioned in Chapter 1, there are 13 active coils in Alcator C-Mod. The

vacuum vessel and passive structure have a complicated shape and have been mod-

eled (as we shall in Chapter 3) by a set of 190 toroidal conductors. Admittedly,

the passive conductor system cannot have 190 modes all of which are distinctly

different and affect the plasma and magnetic diagnostics equally. We shall see in

Chapter 4 that one cannot reduce the passive conductor system to a size of less

than 30 without losing some modes important for control. As a result, the number

of times one would have to run the equilibrium solver increases from 13 to at least

43.

Ref. [32] proposed a way to avoid having to include the passive conductors in

the inputs of the equilibrium solver. It rests on the assumption that the number

of modes of plasma motion that affect the conductors around it is smaller than the
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number of active coils. It is hard to imagine that the plasma can move in such a way

as to excite modes of complicated structure in the passive conductors, i.e., modes

where adjacent elements have currents of opposite signs. To see this, one has to look

at the matrix At/bg(p), the change in flux due to the plasma at the passive conductor

locations for the set of perturbed equilibria. For the 190-element conductor model

and a set of 13 perturbed equilibria this 190 x 13 matrix is a mapping of plasma

modes to modes of the conductor system. If this matrix is of rank less than 13, then

the number of passive conductor modes that can be excited by plasma motion is

equal to the rank, i.e., the spectrum of excitable modes is covered by the information

contained in the 13 perturbed equilibria. Fig. 2-2 shows the normalized singular

normalized singular values

100

10-~ 1

10-2X

10 3 X

10-6 F
- 0 2 4 6 8 10 12

Figure 2-2: Singular values of the matrix Ai/bg(p) normalized to the maximum one
for an elongated Alcator C-Mod shot. Indices go from 0 to 12.

values of AZlg(p) for an elongated plasma equilibrium from one of the Alcator C-

Mod discharges used in Chapter 6. We see that the eighth largest singular value

is smaller than the largest singular value by five orders of magnitude. Therefore,

approximately seven modes should be enough to describe the effect of the plasma

on the passive conductors.
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One can then represent a set of passive conductor currents by an equivalent

set of coil currents that produce the same flux at some set of reference points inside

the vacuum vessel. If the mutual inductance between these points and the coils is

M.., and the mutual inductance between these points and the passive conductors

is Meg, then the flux at the reference points due to a set of coil currents I, is given

by:

-(C) = MCIC (2.14)

and the flux at the reference points due to a set of passive conductor currents I is

given by:

'Ne(9) = Me9 I9  (2.15)

If we equate the right hand sides of Eqs. 2.14 and 2.15, then the set of coil currents

that produce the same flux at the locus of points c is given by:

I=MtMegi' (2.16)

where Dcg = MtM, is the current mapping matrix. Since Me is not necessarily

square or of full rank, the inverse operation in Eq. 2.16 denoted by t is the so-

called pseudoinversion based on the singular value decomposition (SVD) of the

matrix being inverted [36].

In this study, the locus of points chosen for the mapping is the set of the 190

points on the spatial grid of the equilibrium solver where the poloidal flux is closest

to the the value of the poloidal flux on the plasma edge. The locus for a typical

shot is shown in Fig. 2-3. The error in the mapping is minimized in this way in the

area where the plasma is.

We now return to the circuit equation. We write the circuit equation for the

coils as:

Mac I + XCCIe + Me9J9 + Xcglg + RcI = Vr (2.17)
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Figure 2-3: Flux contours for a typical equilibrium and locus E used for coil-to-vessel
mapping (stars).
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where the subscripts "g" and "c" refer to passive conductors and coils respectively.

Xcc =-' ...p (2.18)
dIr

and

Xcg = XcDcg (2.19)

0,(p) is the poloidal flux due to the plasma alone at the locations of the coils for

the set of perturbed equilibria. I, are the perturbed coil currents used as inputs

in the set of perturbed equilibria. The circuit equation for the passive conductors

becomes then:

MegI + XggIg + Mgcke + X9 cIc + R9 Ig 0 (2.20)

where

Xgc = d~gg,) (2.21)
dI

and

Xgg = XgcDcg (2.22)

is the poloidal flux due to the plasma alone at the locations of the passive

conductors for the set of perturbed equilibria.

Eqs. 2.17 and 2.20 are a complete description of the system consisting of the

coils, vacuum vessel, structure and plasma assuming the current profile of the plasma

remains unchanged. We were able to incorporate the effect of the passive conductors

without having to do any additional work as far as the perturbational equilibrium

procedure is concerned.

2.3.3 Approximate Flux Conservation

As mentioned before, the assumption that the current profile of the plasma remains

a constant function of 0 is incorrect. It is reasonable to assume that the plasma

is a perfect conductor, however, as long as the timescale of interest is shorter than

51



the resistive decay timescale of the plasma, which is satisfied for typical Alcator

C-Mod discharges. The plasma will move then in such a way as to conserve the

magnetic flux contained in it. Ref. [32] presented an approximate way to include

flux conservation in the perturbed equilibrium approach for the plasma response.

A useful quantity related to flux in the tokamak configuration is the safety

factor, q, which is defined as the ratio of toroidal to poloidal angle traversed as one

moves along a magnetic field line:

q (2.23)

If we define the toroidal flux through a magnetic surface of poloidal flux ; as Ot,

then the safety factor can be written as ([6]):

q(0) = dbt(O) (2.24)
do,

According to this equation, in order for both poloidal and toroidal flux to be con-

served, the q(;b) profile must remain constant.

The equilibrium solver used in this study, ASEQ, does not give the user the

ability to specify the q(0) profile as an input. It is conceivable to have an equilibrium

code that lets some of the coil currents float so that the required q(;b) profile ensues.

Such a code would have similar disadvantages as those mentioned earlier for fixed

boundary equilibrium solvers. Allowing more than one coil current to vary at once

confuses the issue of trying to span the space defined by the available degrees of

freedom. Using ASEQ in an iterating process that would create a set of perturbed

equilibria with q(;) profile equal to that of the base equilibrium would be too time

consuming.

It is, however, possible to have approximate flux conservation if we run two

additional perturbed equilibria with the same coil currents as the base equilibrium

- except for the EFC coil variation necessary for numerical stability - where we
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perturb the two parameters associated with the F(4) profile. These quantities are:

I,, the total plasma current, and af, the profile parameter in Eq. 2.13. We can use

this variation then to satisfy two constraints pertaining to flux conservation.

Fig. 2-4 shows a sketch of poloidal flux as a function of toroidal flux for the base

equilibrium (subscript "0") and a perturbed equilibrium (subscript "1"). Since the

magnetic axis is a magnetic surface of zero cross-sectional area, the toroidal flux on

axis is always zero. One obvious quantity to be conserved, therefore, is the poloidal

flux on the magnetic axis, O,.. The second constraint should then have something

to do with the plasma edge. Both the poloidal and toroidal flux change at the edge.

We would like points (Oteopeo) and (Vte,Op,,) to coincide in Fig. 2-4. We can

linearly extrapolate the base equilibrium curve until it meets the VPt = Ot.1 line.

Using Eq. 2.24

-1(2.25)
Abte qeo

where qgo is the safety factor at the edge for the base equilibrium. We can see then

that a reasonable quantity to conserve is:

0. = Op'- (2.26)

In order to avoid any singularities associated with the separatrix in diverted plasmas,

the edge has been defined in this study as the flux surface where the poloidal flux

is equal to 95% of the separatrix value.

Defining the vector of parameters to be perturbed as:

(2.27)

and the quantities to be conserved as:

ex _(2 .28)0.j
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the constraints become:

AA, =-A + - Ag = 0 (2.29)

One can append the - variation to the circuit equation and then use these

constraints to eliminate fl. The circuit equation for the coils now becomes:

MCCIC + IC 19 + -_ DegI + p + RcIc = V (2.30)

The matrices involved with the variation of the coil currents while the F(V)) profile

parameters remain constant are the same as in the previous section:

X _c, XC- = (p) Dcg (2.31)
B~ , are

We can write:

- . IC (2.32)
BIC

and extract from Eq. 2.29:

.... -1 -

-- a =- - ... ~ (2.33)

Defining:

ab 0c(v) afi
YCC ao... -a, (2.34)

and

Ycg = Y,.cDcg, (2.35)

we can rewrite the circuit equation for the coils as:

(Mcc + Xcc + Ycc) I, + (Mc, + Xc9 + Ycg) 1 + RcI = c (2.36)
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The circuit equation for the passive conductors then becomes:

(Mg + X99 + Y 9 ) Ig + (Mgc + Xgc + Yc) . + RI = 6 (2.37)

where
85bg(p) &BJ

Y9C = - , (2.38)
--I

and

Ygg = YgrDcg (2.39)

Eqs. 2.36 and 2.37 can be combined then into one matrix equation:

(M + X + Y) I+ RI= V (2.40)

where 1 , V = , ,and the matrices have been put together from the
Ic V

submatrices appearing in Eqs. 2.36 and 2.37.

Eq. 2.40 is a linear, non-rigid, approximately flux-conserving model for the

response of the system consisting of the plasma, the coils, the vacuum vessel and

the structure. It will be used in Chapters 5 and 6 where it will be compared to

experimentally observed plasma response with and without feedback.

One has to be careful with the amount by which one perturbs the currents

and the plasma current density equilibrium parameters. If the perturbation is too

large, linear theory is invalid. If the perturbation is too small, machine accuracy

problems may arise. In both cases, the growth rate of a vertically unstable plasma

as calculated by the perturbed equilibrium model will change as the size of the

perturbation changes. This is illustrated in Fig. 2-5. There is a band of perturbation

sizes in the middle, however, where the growth rate does not change as the size of

the perturbation changes. This is the convergence region.

A VAX machine with a 32-bit single precision representation of a number in

FORTRAN single precision has a machine accuracy cm of around 1 x 10-. Because

of the finite machine accuracy, every arithmetic operation introduces a roundoff
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Figure 2-5: Illustration of the convergence band of perturbation sizes.

fractional error of at least c,. If N operations are performed, the total roundoff

error will be, in the best case when errors add up randomly, vWEm [37]. For

an equilibrium code which solves a second order partial differential equation on a

65 x 65 grid, N could be taken as the number of grid points and the roundoff error

is of the order of 1 x 10~'. Running the same code in double precision, however,

one has Em of around 1 x 10-1 and a roundoff error of the order of 1 x 10-1.

This provides additional freedom, when a convergence study is performed, ie, when

the amounts of perturbation are varied, until a range of values is reached where the

results do not vary considerably. With increased machine accuracy this convergence

band is wider.
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2.4 State Space Representation

A dynamic system can be viewed as a box with a set of inputs and a set of outputs.

Inputs are the quantities that can be varied from the outside world in order to control

the system, while outputs are the quantities that can be measured in the outside

world in order to observe the state of the system. The state of the dynamic system

is described by a set of physical quantities, the state variables, that are necessary

to describe its time evolution. The state may or may not be directly controllable

by the inputs and it may or may not be completely observable by the outputs. The

state variables may not be unique, i.e., there may be several equivalent state space

representations of the same system. The time evolution of these state variables can

be described by a set of ordinary differential equations. The variables that appear

when this set of equations has been written as a set of first-order equations are

the state variables. Suppose we have n state variables, X1, X2 ,..., x, and m inputs,

U1 , U2 , ... , Urn, and we have found the first-order differential equation for the time

evolution of the state:

=1 - =i f 1 (XiX 2 , U 1 U 2 ,Umt)

dx2
2 = t A= f2(XI, X2, -, n, U, U2, ... , Um, t)dt2

dxn
Xn - n X21, 2, -n, U1, U2 ... Um, t)

dt

Defining the state vector and the input vector:

L ,i LUMi

the state equations can be put in vector form:

x= - - f(2,,t)
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To linearize these equations, suppose that we are operating in the vicinity of X = Yo

and i = U-o. Then 5(t) = Xo + AS(t) and 9(t) = U- + Ai(t). The linearized state

equation then becomes:

iF = A(t)AY(t) + B(t)Ail(t)

where

A (9-
X_

B af

Dropping the "A", with the understanding that we are dealing in perturbed quan-

tities only and assuming that A and B do not vary with time, we get the following

equation for a linear time-invariant system:

X =Ai+B (2.41)

A is known as the response matrix of the system.

Since we usually do not have access to the state vector of a physical system, we

need some equation to relate the state vector to the quantities we can measure, the

outputs. In a linear system, the outputs will be linear combinations of the inputs

and the state variables. If we have 1 outputs, y, Y2, ..., y1, the output vector

Y1

is given by:

'= CS+ DU (2.42)

This is known as the output equation. Eqs. 2.41 and 2.42 are a complete description

of the relationship between the inputs and the outputs in the time domain.

The dynamics of the system we are interested in are described by Eq. 2.2 or

Eq. 2.40. The state vector consists of all the currents in the conductors, or Y = I.
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The input vector consists of the voltages applied to the conductors, or z7 = V. These

dynamics can be cast into the standard state equation form by writing:

A = -(M + X + Y)~1R

B = (M + X + Y)-1

The output vector in our case consists of the magnetic diagnostic signals

(poloidal flux loop signals, V), and poloidal field coil signals, Bp). These are given

by:

[§] N..
(2.43)

Bp G

where N is the mutual inductance matrix between the toroidal flux loops and

the conductors and G is the matrix of Green's functions between conductors and

poloidal field coil locations integrated over the cross sectional area of the conductors

(assuming a uniform current density is flowing through the conductors). Eq. 2.43

can be cast into the standard output equation terminology by writing:

Bp

=N]C = 
JG

D=O

By means of Laplace transforms, one can derive from the state and output

equations a relationship between the input and the output for the frequency domain:

[(s) = C (si + A)-' B + D] il(s) = G(s)u(s) (2.44)

where 1 is the unit matrix and G(s) is known as the transfer function. In a single-

input, single-output (SISO) system, this relationship is scalar and the frequency

domain representation may be more convenient. For MIMO systems however, the
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state space formulation in the time domain can be more useful, since the transfer

function is a matrix of functions which is harder to visualize. This formulation will

be referred to often in the following chapters.

In the following chapters, linear models will be developed for the subsystems

of the Alcator C-Mod tokamak. These will be put together into one closed-loop

system in Chapter 6. It is necessary to know how to append two linear systems in

series for this purpose. Suppose that we have two systems in series and that the

output of the first is the input of the second. The state and output equations of

the first system are:

1= Alli + B1i 1

12= CF1 1 + Diz71

Those of the second system are:

X2 = A 2 X2 + B 2 U2

Y2 = C2 2 + D 2u2

The combined system then has

as its state vector, 6 = il as its input vector and = W2 as its output vector. The

matrices associated with the state equation of the combined system can easily be

shown to be:

A1  0 (2.45)
B 2 C1 A 2

B = B1  1 (2.46)

B2D1

C= D 2C 1 C2  (2.47)

D = [D2D1 ] (2.48)
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We have thus a compact formulation of the models of the conductors, the

plasma, the diagnostics and the power supplies, which lends itself to computations

for control purposes.
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Chapter 3

Modeling of the Structure and

the Power Supplies

3.1 Vacuum Vessel and Structure Modeling

It is obvious that the values for the resistances and inductances one uses in matrices

M and R (eq. 2.1) determine to a large extent the response of the conductor/plasma

system. The vacuum vessel containing the plasma, which carries a large toroidal

current has to be able to withstand the mechanical stresses due to the large eddy

currents which can arise when the plasma moves or the currents in the PF and

OH coils change. It is clear then that the vacuum vessel has to be thick in order

to sustain these stresses. Insulating breaks would weaken it and were ruled out in

the design. The thick vacuum vessel is good from a passive stabilization point of

view, but slows down the active control. A thin vessel, on the other hand, would

allow much faster active control, since the fields generated by the coils can diffuse

through it more quickly, but it is not as good for passive stabilization by means of

eddy currents.

Since, in an experimental tokamak like Alcator C-Mod, one would like to
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examine a wide variety of plasma shapes, a further complication is introduced by

a vacuum vessel that is not conformal to the plasma, i.e., its distance from the

plasma edge varies significantly with poloidal angle. In addition, vacuum vessels

with corners are easier to machine than smooth conformal ones, and this was an

issue with Alcator C-Mod. In order for the TF magnets to withstand the mechanical

stresses associated with producing a large magnetic field, they have to rest against

large pieces of structural material. This is the reason for the massive domes and

cylinder surrounding the TF coils (see Fig. 1-5). These components are so thick that

the total resistance of a dome, for example, is comparable to the PF coil resistances.

Accurate modeling of the electromagnetic coupling of this structure and the vacuum

vessel to the coils, the plasma and the magnetic diagnostic measurements is essential

for the analysis of dynamic control of the position and shape of the plasma.

3.1.1 The Electromagnetic Model

An initial attempt to divide the coil/vessel/structure system into elements and

experimentally measure their resistances and inductances was soon aborted, since

the vessel and structure are the majority of the elements and they do not have

input/output "terminals", i.e. no voltage can be applied externally to these elements

and no measurement can be made of the current they carry, since the flux loops

and the Br-coils are located inside the vacuum vessel. Measurement of the eddy

currents in the vacuum vessel would only be possible if there were Bp-coils located

both inside and outside the vacuum vessel. Only a lumped resistance and inductive

coupling to the coils of the entire vessel/structure system could be measured. In

an attempt to get an accurate model of the conductor set around the plasma, the

SOLDESIGN code of Pillsbury [38] was used. The vacuum vessel and the structure

were divided into 190 toroidally symmetric elements of finite cross section that were

assumed to be carrying a uniform current density. Then, geometry and materials
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Figure 3-1: Model of Alcator C-Mod. The boxes with a "+" sign represent
toroidally continuous elements. The empty boxes represent toroidally discontin-
uous elements that were left out of the model.
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properties were used together with the Biot-Savart law for magnetic induction to

estimate the resistances and inductances of the conductors. Fig. 3-1 shows how the

machine was broken into elements. The 203 boxes containing a "+" sign are the

elements that are included in the model while the empty boxes are elements that

were left out because they have toroidal discontinuities.

Vacuum vessel

Toroidal direction

/

/K

fC
A

C

Eddy
currents

Molybdenum
tiles

Figure 3-2: Illustration of effective toroidal current path due to the molybdenum
tiles.

One detail concerning the inboard side of the vacuum vessel and the divertor

region should be mentioned here. As shown in Fig. 1-6, these regions are covered

with 2.5-cm thick molybdenum tiles. Molybdenum is a refractory metal and has a
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higher melting point than stainless steel, the material of which the vacuum vessel

is made. The reason for this is that these areas receive higher heat loads than the

rest of the vacuum vessel, since ions and electrons fall onto these areas by moving

parallel to the last closed flux surface, i.e., even if we assume that there is no motion

of these particles perpendicular to the magnetic flux surfaces. When the plasma

is diverted, the separatrix is the last closed flux surface and particles can travel

directly along it and hit the divertor region. When the plasma is limited - i.e., not

diverted - the last closed flux surface is essentially defined by where the plasma

touches the inboard wall. In this configuration, many particles from the last closed

flux surface hit the inboard wall directly. These tiles do not provide a continuous

toroidal conducting path. They are, however, in contact with the vacuum vessel,

and current can flow from the vacuum vessel into the tiles and back from the tiles

into the vacuum vessel as shown in Fig. 3-2. This changes the effective location

of any toroidal currents flowing in the inboard side of the vacuum vessel, which

means that the inductive current of these elements to the other conductors and

the plasma changes. The effective resistance of these elements changes as well.

No attempt has been made to rigorously model these effects. Besides the fact

that this is a toroidally asymmetric problem, there is no information available as

to what the contact resistance between the vacuum vessel and the tiles is. The

molybdenum tiles are slightly thicker than the vacuum vessel and molybdenum

is more conducting that stainless steel. The effect of the tiles was thus simulated

arbitrarily by calculating the mutual inductances between the inboard vacuum vessel

elements and the remaining conductors and plasma by assuming that these elements

are located at a radial position larger than their real radial position by a distance

equal to the vacuum, vessel thickness. This modification to the electromagnetic

model was adopted because it seems to give consistently better agreement between

theory and the experimental results presented in this chapter and in Chapter 5.

The weak point of this model is that it is toroidally symmetric and cannot

67



deal with toroidal asymmetries as they occur in the ports, mounting plate etc. The

number of elements is alarming from a computational point of view and leads one

to ask whether some order reduction is possible. This issue is pursued in Chapter 4.

3.1.2 Model Verification

A good way to evaluate the model is by putting currents through the active coils and

comparing the magnetic diagnostic measurements (when there is no plasma) with

an estimate of what these measurements should be, based on the model. Defining

Ng, the flux loop to vessel/structure mutual inductance matrix, N,, the flux loop

to driven coils mutual inductance matrix, G9 , the influence (Green's function) of

the vessel/structure on the Br-coils, and Go, the influence of the driven coils on

the Bp-coils, the circuit equation for the vacuum vessel/structure currents can be

written as

Mg9 Jg + MoJcc + R9.I9 = 0 (3.1)

where the subscript "c" refers to the active coils and the subscript "g" refers to the

vacuum vessel and the structure. Since I(t) is measured, one can solve Eq. 3.1 for

Ig(t) starting at times when there were no currents flowing in any of the coils, with

Ig(t = 0) = G and insert into the equations for the flux loops

O=Nq Ig+ Nci (3.2)

and for the B,-coils

Bp = G9 I9 + GCIc (3.3)

As the current flows from one leg of the TF coil to the next, it has to flow in the

toroidal direction and it has to be taken into account. This TF current contribution
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has been modeled as the two large white blocks shown on the inboard side in Fig. 3-

1. The current flowing in these elements has been included in the source term, IC,

in eq. 3.1 and in eqs 3.2 and 3.3 as an additional pair of coils. Since, however, these

elements are connected to the TF coil, which has a self-inductance much larger than

the mutual inductance between them and the coils, vessel or structure, it is safe to

assume that no eddy currents are induced in these toroidal elements simulating the

toroidal extent of the TF coil, so that no additional circuit equation is needed for

these elements in eq. 2.1.

A most useful test of the model would be to put oscillating currents into the

coils and compare estimated and measured values of the magnetic diagnostics. Dif-

ferences in phase and magnitude between them could give quantitative insight as to

where potential errors in the model lie. This was done in ASDEX-U [21, 22], by ex-

citing the pair of control coils at different frequencies. These coils are located inside

the vacuum vessel as are the magnetic diagnostics. In Alcator C-Mod, all coils are

located outside a thick toroidally continuous vacuum vessel, while all the magnetic

diagnostics are located inside. This means that even high amplitude current oscil-

lations in the coils will not be seen in the diagnostics unless they are of very low

frequency. This filtering effect was observed in the power supply characterization

runs (see Section 3.2) where 20-Hz oscillations in the power supply voltage with

amplitude of the same order of magnitude as the power supply operating limit were

hardly visible in the magnetic signals.

Instead of oscillations, shots with steps in the coil currents were used to test

the electromagnetic model. Fig. 3-3 shows a comparison between predicted and

actual values of some of the flux loop signals for a no-plasma case with nine driven

coils. Fig. 3-4 shows a comparison between predicted and actual values of some

of the Bp-coil signals for the same shot. This case is from the 1994 run period of

Alcator C-Mod and it was meant to be plasma shot, but a failure in the OH1 power

supply made breakdown impossible. We see that the error is less than 10%. It is
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Figure 3-3: Comparison between flux loop signals (solid line) and their values as
estimated from the measurements of the currents flowing in the coils using the
190-element model of the vessel and structure (dotted line).
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noteworthy, that the estimated signals are qualitatively identical to the actual sig-

nals, namely they are neither slower nor faster in their response to current changes,

even though their values may be slightly different. One source of such discrepancy

could be some faulty calibration of the coil current or magnetic diagnostic signals.

Another source could be errors in the influences from the coils, vessel, and structure

to the magnetic diagnostics, since they are only used in eqs 3.2 and 3.3 which have

no time dependence. Any error in the mutual inductances or the resistances of

the coils, vessel, and structure would cause a time dependent discrepancy between

measured and estimated signals. The only case where the discrepancy is alarming
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Figure 3-4: Comparison between Bp-coil signals (solid line) and their values as
estimated from the measurements of the currents flowing in the coils using the
190-element structure/vessel model (dotted line).

is the lower right signal in Fig. 3-4 which is from a B,-coil located between two hor-

izontal ports. This was expected since the toroidal asymmetry of the ports cannot

be modeled exactly by this toroidally symmetric model.
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3.1.3 A Secondary Application

As we shall see in Chapters 5 and 6, the primary use of the electromagnetic model of

the coils, vacuum vessel, and structure is in plasma equilibrium reconstruction and

in determining the axisymmetric plasma response. In addition to that, however, it

turned out to be of some use in arriving at a repeatable breakdown scenario during

the beginning of the 1993 Alcator C-Mod campaign.

At the moment of breakdown, a toroidal loop voltage between 10 and 20 V is

applied inductively causing some of the atoms in the gas filling the vacuum chamber

to be ionized. The resulting electrons and ions follow a spiral trajectory along the

magnetic field lines until they either reach the vacuum vessel wall or collide with

a neutral atom and ionize it. It is desirable that these first electrons and ions stay

inside the vacuum vessel as long as possible so as to ionize several neutral atoms.

Any poloidal field in the vacuum vessel region will send them in the direction of the

wall. This is due to the fact that, in the absence of plasma, there are no toroidal

current sources inside the vacuum vessel and, according to Ampere's law, there can

be no closed poloidal field lines inside the vessel wall. Electrons and ions born in

an area where there is no poloidal field will follow the toroidal field lines until they

collide. Therefore their chance to cause a second ionization will be much larger.

For this reason, it is important to have as large a region of zero poloidal field as

possible inside the vacuum vessel during breakdown.

This is difficult to achieve mainly because large amounts of eddy currents are

created in the vacuum vessel wall by the toroidal loop voltage needed for breakdown.

These currents create a large amount of poloidal field inside the vacuum vessel, and

the PF coils must be used to cancel this field. Fig. 3-5 shows the poloidal flux for

a shot that had plasma, at a time shortly after breakdown. One can see that the

poloidal field due to the measured coil currents is considerable, as is the poloidal

field due to passive currents estimated using eq. 3.1. Their sum however gives a
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(top right), and both (bottom) 50 msec after breakdown.
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much lower poloidal flux density in the central part of the vacuum vessel. In theory,

one could do the time integration implied by eq. 3.1 in real time and use it for

feedback control. This would imply reducing the model of eq. 3.1 to a size of less

than 16, the number of feedback channels of the plasma control computer. We shall

see in Chapter 4 that this is not feasible. In practice, the voltages applied to the

OH and PF coils must be preprogrammed so as to create a large zero-field region

at the right time. The conductor model could be used in prescribing these voltages,

but this would not give the millitesla accuracy that is needed for this purpose.

The next best thing is to use the model in a trial-and-error process. The voltages

are prescribed ignoring any passive conductors, and the shot is run. Subsequently,

eq. 3.1 is used to estimate the vessel and structure currents. Then the mapping

process of eq.2.16 is used to find a combination of coil currents that will create the

same poloidal flux on a surface inside the vacuum vessel as the passive currents.

Then enough voltage to sustain the negative of this combination of coil currents is

added to the previously prescribed voltages and the shot is repeated. This time the

flux density should be smaller inside the surface used for the mapping. The mapping

procedure can be used again, but one eventually runs into accuracy problems, so

that one has to continue with tedious fine tuning to achieve a good null-field area.

3.2 Power Supply Modeling

As we saw in Chapter 1, the OH2 and the EFC coils are vital in controlling the

vertical position. Given enough elongation, the vertical instability can always cause

the plasma to move more quickly than the power supply response time, so that it

is important to study the dynamics of the power supplies feeding these coils and

know their limitations.
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3.2.1 The OH2 Power Supplies

Each of the OH2 coils is fed by a four-quadrant, 12-pulse thyristor power supply,

which converts the 13.8 kV AC voltage from the alternator into a specified DC

voltage. Thyristors, also known as Silicon Controlled Rectifiers (SCR's), are high

power diodes with a semiconductor control mechanism (gate), which interrupts

current flow in the allowed direction, unless it receives an input signal greater than

some threshold. The phasing of an array of thyristors allows the output voltage to

vary. These supplies are rated at ±100 V and ±50 kA. Following traditional power

supply design, they have their own internal feedback control system. Fig. 3-6 shows

a block diagram of the power supply and how it fits in the plasma control loop.

The master control board adjusts the phasing of the thyristor array gates to give

Power Supply

CoCnoo Parsstoa

Electronics

Coil
Magnetic

Diagnostics

Control Plasma
Computer

Figure 3-6: Block diagram of the power supply and its position in the plasma control
loop.

the requested voltage at the output. Integral and proportional feedback are used for

this purpose. The electronics of this internal control loop have a considerably more

limited bandwidth than that of the plasma control computer (PCC); furthermore,

the internal control loop does not have the flexibility of the PCC, since the control
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scheme it offers is hardwired. It would, therefore, make more sense to do away

with it and hand control of the gate phasing to the PCC directly. Little time has

been devoted to this idea so far. Some shots that were run in this mode displayed

a hysteresis phenomenon which made breakdown difficult. The problem was that

when a zero demand was sent to the power supply, the output was not zero, but

equal to -IR, where I is the current in the coil and R is the power supply impedance.

This can be seen in Fig. 3-7 where the points corresponding to nearly zero demand

are not near the zero output line for the shot with broken internal control loop. One

could devise a scheme to compensate for this effect using the PCC, but it would

involve giving up a few of the 16 feedback channels of the PCC, so they can be used

for power supply voltage control. Therefore, it was decided to continue using the

old configuration with the internal control loop.

20 -

+ +

+ +

0 20-

-40- -

t6 . . ..

-15 -10 -5 0 5 10 15
demand voltage (V)

Figure 3-7: Demand versus output voltage for the OH2U power supply at a time
interval of near-zero demand for a shot where the internal control loop was broken
(*, solid line fit) and for a similar shot where the internal control loop was closed
(+, dotted line fit).
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Furthermore, it was observed that using mainly proportional gain in the inter-

nal control loop had a violent oscillation in the output voltage as a result. Fig. 3-8

shows the output of the OH2L power supply during an interval before breakdown

for a shot with only proportional gain used in the power supply feedback loop.

This oscillation subsided only when integral gain was applied and the proportional

gain was reduced to a value much smaller than that of the integral gain. As a

OH2..LV.It S40531018
1 .............. ........... .. ...... .... ... .....

0. -092 . 49 .' 88 . . 86 .-0,84 0.82 -0.8
1W2. ... 94 527020

0.82 .9 _08 -0.8 -0.4 -0.82 .08

Figure 3-8: OH2L power supply output voltage before breakdown as a function of
time for a shot with proportional gain in the internal feedback loop (top) compared
to a typical shot with integral gain in the internal feedback loop (bottom).

result, these power supplies have so far been controlled by an internal loop based

on integral gain alone. This compromises their performance somewhat.

To measure the response of the OH2 supplies experimentally the following

experiment was conducted: Using the PCC for feedback, the coil currents were

slowly brought up to values characteristic of the flattop of a typical shot. Then
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the feedback was turned off and voltage demands, equal to the resistive voltage

drop of the coils were fed to the power supplies. In addition, oscillations of various

frequencies between 20 and 500 Hz were superimposed on the demand of the power

supply under investigation. The amplitude of the oscillations was such as not to

cause any of the power supplies to exceed its operational voltage limit. In most

cases the amplitude was close to the half of the operational voltage limit, however,

so the modulation was substantial. The objective was to observe the response of

the power supply in the open-loop mode, i.e., when the power supply is not part

of the plasma control loop. Fig. 3-9 shows an example of such a shot: the OH2L

demand is being modulated at three different frequencies while OH2U demand is

constant. The ratio of amplitudes and phase differences between the input and

output signals were fitted (in a least squares sense) to a rational transfer function

with four zeroes and five poles. The resulting transfer functions are shown in Fig. 3-

10. The main message conveyed by these plots is that the power supplies cannot

follow any input varying at a rate of 100 Hz or faster. Fig. 3-11 shows the output of

the OH2L fitted transfer function given the measured demand signal as input. This

is compared to the measured power supply voltage for that shot. The agreement

is satisfactory. During these shots, measurements of the inputs and outputs of

the SCR array were also available so that a transfer function of the SCR array

alone could also be inferred. The transfer functions of the master control board and

the auxiliary feedback electronics were measured independently. If the above three

transfer functions are arranged in a closed loop as in Fig.3-6, the resulting transfer

function is, as expected, close to the transfer function between the input and output

of the power supply (see Fig. 3-12). If the SCR array is left out of this composite

transfer function, the behavior of the composite transfer function is significantly

more benign (see Fig. 3-12) leading to the conclusion that the SCR array is mainly

responsible for the power supply behavior. Developing a linear model for this array

from first principles, however, is beyond the scope of this work.
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Figure 3-9: OH2U (left) and OH2L (right) power supply demand (top) and output
voltage (bottom) for one of the power supply characterization shots. The fast
modulation (500 Hz) demand signal is aliased.
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Figure 3-10: Bode plots for OH2U (top) and OH2L (bottom) power supply fitted
transfer functions. The measured points are shown as stars.
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Figure 3-11: OH2L supply output voltage (solid) -and simulated output voltage
(dotted) for one of the power supply characterization shots. The simulated output
was calculated using the fitted transfer function.

The conditions of this experiment were not exactly realistic, since no elongated

plasma was present, but doing such an open-loop test with a plasma is not feasible.

Closed-loop experiments of this type with a plasma, although feasible, are risky

because of the fear of vertical disruptions. In many of the early highly elongated

plasma shots, a persistent oscillation in the Z-position is observed at frequencies

between 50 and 120 Hz, and this is the only realistic single-frequency power supply

data available at this point. As an example, Fig. 3-13 shows oscillations of frequency

110 Hz. Table 3.1 shows gain and phase data for some shots and how they compare

with predictions from the transfer functions of Fig. 3-10. The above experiments,

which resulted in the transfer functions of Fig. 3-10, were conducted on April 27,

1994. It was the first day of the Alcator C-Mod 1994 campaign. Looking at

Table 3.1, it became apparent that the measured transfer function agrees with data

from 1993, but disagrees with data from the 1994 campaign. Unfortunately, the

master control board was modified on the day when experiments were conducted to
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Figure 3-12: Comparison of the measured OH2U transfer function to the composite
closed-loop transfer function consisting of individually measured transfer functions
of the master control board, the SCR array (top only), and the auxiliary feedback
electronics.
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Figure 3-13: Traces characteristic of the vertical oscillation. The top two traces show
the difference in demand and output between upper and lower 0H2 powver supplies
The bottom trace is the position of the plasma current centroid as calculated from
soft X-ray tomography measurements.

Shot number plasma frequency gain phase

(Hz) [(measured/predicted) (measured/predicted)
no
yes
yes
no
yes
yes
yes
yes

60
60
60
60

110
110

90
110

1.1/0.74
1.1/0.74
1.0/0.74

1.14/0.74
0.56/0.21
0.28/0.21
0.38/0.32
0.22/0.21

-116.7/-170.1
-95.9/-170.1

-102.1/-170.1
-116.0/-170.1
-151.0/-247.2
-233.0/-247.2
-204.3/-224.1
-218.7/-247.2

Table 3.1: OH2L gain and phase data for some shots with oscillations.
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investigate the usefulness of proportional gain in the internal control loop or absence

of the internal control loop (which was after April 27, 1994), and it was not brought

to its original state. However, combining the data collected on April 27, 1994 with

a model of the master control board derived from the schematic diagrams and the

measured response of the auxiliary electronics, a composite transfer function was

derived which does agree with the data on Table 3.1. This transfer function for

OH2U is shown in Fig. 3-14 where it is compared to the response measured on

-: composite -:measured on 4/27
20

-402
10 10'

(rad/sec)

0

-100 - -...- -.-.--.-. -

"-200 7 7 .... ... -.. - -.--..-..--

300 
10

(rad/sec)

Figure 3-14: OH2U supply transfer function taking into account the proportional
gain in the internal control loop.

April 27. The main difference between the two responses is the small amount of

proportional gain in the master control board which results in a smaller phase lag.

A small amount of proportional gain was, therefore, beneficial, whereas, we saw

earlier (Fig. 3-8), that a proportional gain dominated internal feedback loop caused

very large oscillations.
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3.2.2 The EFC Power Supplies

The EFC coils are the closest to the plasma outboard coils and their only function

is to control Z-position on a fast timescale. A chopper system is used to apply

voltage to them. The chopper is a pulse-width modulated voltage source converter;

it switches the load (EFC coils) between a fixed voltage source (on-intervals) and

a nonlinear resistor (off-intervals), thereby applying a reverse voltage to the coils.

The length and spacing of these intervals are determined by a demand input signal

coming from the PCC. When the demand is zero, the on- and off-pulses are of the

same length and the switching happens at the highest frequency (3 kHz). When

the demand is nonzero, either the on- or the off-pulse becomes longer, depending

on the sign of the demand. The fixed voltage source is a 12-pulse thyristor DC

power supply. The nominal rating of the chopper is t1000 V and 0 to 3000 A.

Since the chopper can only carry current in one direction, the EFC coils normally

carry a bias current of 1500 A. This is an inherently nonlinear system and no

attempts at modeling it as a linear system were undertaken; instead, experiments

similar to the ones conducted to determine the 0H2 power supply dynamics were

performed for these supplies as well. Frequencies between 20 and 1000 Hz were used.

The measured response and a 3-zero/4-pole fitted transfer function are shown in

Fig. 3-15. A comparison between Fig. 3-14 and Fig. 3-15 shows that the EFC

power supply has a much flatter response than the 0H2 power supplies. Its current

output is much smaller, so that it cannot be used to correct large perturbations

from or change the equilibrium Z-position. This is taken care of mainly by the

OH2 coils.

3.2.3 The Other Power Supplies

As discussed in Chapter 1 all coils except the EFC have mainly a shaping function,

i.e., they control plasma shape quantities on a timescale which is slow compared
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Figure 3-15: Bode plots for the EFC power supply fitted transfer function. The
measured points are shown as stars.

to the vertical instability timescale. Special attention was given to the OH2 power

supplies above, because they are involved in Z-position control which is linked to

the vertical instability; however, they are not really much faster than those of the

other shaping coils.

The EF1 coils provide elongation by pulling on the x-points. Since they are

independent, the difference in their currents has an influence on the vertical position

of the plasma. In fact, they can produce more radial magnetic field at the nominal

vacuum vessel center (R = 0.665 m, Z = 0.0 m) per unit current than the OH2

coils. They are fed by two independent 12-pulse thyristor power supplies nominally

rated at ±200 V and ±15 kA. Their measured response and a 3-zero/4-pole fitted

transfer function are shown in Fig. 3-16. The response is similar to the OH2 power

supplies. It would seem that the EF1 coils could qualify to be the primary slow

Z-control coils, since, in a static sense, they can produce more radial magnetic field

than the OH2 coils and their power supplies have a similar response. The reason
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Figure 3-16: Bode plots for EF1U (top) and EFIL (bottom) power supply fitted
transfer functions. The measured points are shown as stars.
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why this is not the case is that the EF1 coils have more turns than the OH2 coils,

so that they have a much larger self-inductance (by approximately a factor of 20)

than the OH2 coils. As a result the same voltage applied to the OH2 coils produces

a larger dBR/dt than when applied to the EF1 coils.

The EF2 coils control the horizontal position of the x-points. They are fed by

two independent 12-pulse thyristor power supplies nominally rated at 560 V and 0

to 4 kA. Since they are independent, the difference in their currents has an influence

on the vertical position of the plasma on a slow timescale. Their measured response

and a 3-zero/4-pole (4-zero/5-pole for EF2L) fitted transfer function are shown in

Fig. 3-16. The response is slower than that of the OH2 power supplies.

The remaining coils provide perfectly up-down symmetric magnetic field, so

that they are not involved in vertical position control. On the day when the power

supply characterization tests were conducted, they were given low priority, and there

was not time left for them by the end of that run. The OH1 coil controls the plasma

current, the EF3 coils are connected in series and provide radial position control,

and the EF4 coils, which are also connected in series influence the elongation and

triangularity of the plasma. It is assumed that all of these quantities are changed

on a timescale which is slow in comparison to the power supply response time, so

that neglecting the power supply dynamics is a good approximation.

In this section we have dealt strictly with the frequency domain or transfer

function representation of the power supply dynamics. It possible to obtain a state

space representation of a system given a transfer function. Since the transfer func-

tion formulation does not make any mention of the state, there are several equivalent

ways to do this transformation depending on how one defines the state. These meth-

ods are described in Ref. [41]. Using these methods, the SISO transfer functions

developed in this section were converted into a state space form so they could be

used with the other system models.
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Figure 3-17: Bode plots for EF2U (top) and EF2L (bottom) power supply fitted
transfer functions. The measured points are shown as stars.
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It should be emphasized that the linear models of power supply dynamics

presented in this chapter are in no way a generally valid description of the power

supply response. The modulation measurements were performed at one amplitude

only. Both the thyristor power supplies and the EFC chopper are very nonlinear

devices and, as of yet, we do not have linear models for their response at different

amplitudes.
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Chapter 4

Model Reduction for

Axisymmetric Control

The linear models developed in the previous two chapters have order 200. This

means we have to routinely do multiple matrix operations like multiplications and

inversions with matrices of this size. This can be very time consuming and may pre-

vent us from doing these calculations repeatedly as needed for design and analysis.

In this chapter, we deal with the problem of reducing a complicated electromagnetic

passive structure model coupled to a linear plasma response model to a size that

allows rapid calculations for the purposes of plasma position and shape control. We

find that model reduction through eigenmode decomposition does not reproduce

the input-to-output relationship of the system, unless one has a good idea a priori

of which eigenmodes are important. Hankel singular mode decomposition, on the

other hand, provides an orthogonal basis for the system response, where the modes

are ordered by their importance to the input-to-output relationship. The perturbed

equilibrium plasma response model is used together with an electromagnetic model

of the Alcator C-Mod passive structure to assess the performance of different model

reduction schemes. We find that between 10 and 20 modes are required to give an
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adequate representation of the passive system. Emphasis is placed on keeping the

reduction process independent of the parameters of the plasma we are trying to

control.

In past work in the field of tokamak control, the trend has been either to over-

simplify or not to simplify at all. In the ISX-B tokamak [42], where the vacuum

vessel had two toroidal breaks, the vessel was successfully modeled as a single cir-

cuit carrying toroidal current with an m=1 poloidal distribution. In the DIII-D

tokamak, it was found both theoretically [12] and experimentally [13] that only one

eigenmode of the vacuum vessel response was enough to calculate gains that control

the vertical instability. However, this degree of simplification may not be generally

attainable and almost certainly will not yield quantitatively accurate predictions of

the dynamic behavior. In ASDEX-Upgrade [43], the passive coils inside the vacuum

vessel are the main sources of passive stabilization. The vacuum vessel is modeled

as a set of 60 toroidal filaments. This model is subjected to eigenmode analysis and

only a small number of modes with small numbers of current reversals is kept. By

contrast, Hofmann et al., in Refs. [24] and [44], tried to keep their control calcula-

tions independent of plasma parameters, and they used the large MHD transport

code TSC [18] to simulate plasma time evolution and optimize feedback gains. In

TSC, the vacuum vessel is modeled as a set of filaments. No attempt is made to

reduce the model.

In this chapter we attempt to reduce a large linear model of a tokamak plasma

with a set of axisymmetric conductors around it while minimizing the error in

the transfer function and making sure the vertically unstable mode is faithfully

reproduced. No attempt is made, however, to deal with the problem of how the

effects of noise, disturbances and model errors in the original model are amplified

with model reduction.
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4.1 Methods of Model Reduction

We employ two methods for the reduction of the standard control problem consisting

of the state equation (Eq. 2.41) and the output equation (Eq. 2.42), where the state

vector is of size n., the output vector is of size ny and the input vector is of size

n,: eigenmode decomposition and Hankel singular mode (HSM) decomposition. In

each of these methods, two transformation matrices, T, and T, are calculated so

that the model reduction can be represented as the transformation:

A B] TAT, TIB (4.1)

C D CT, D

The transformed model in Eq. 4.1 has the same number of inputs and outputs as

the original system but a smaller number of internal states.

The simplest approach to model reduction is via eigenmode decomposition.

The left and right eigenvectors of A, ti and i6, and its eigenvalues Ai for i = 1, ... , n,

satisfy the equation

A = VAW (4.2)

where V is a matrix with Vi's as its columns, W is a matrix with tii 's (superscript

H stands for Hermitian conjugate) as its rows, A = diag(Al, A2,..., A), and W =

V- 1 . If we consider certain modes to be more important than others (one could

favor unstable and slowly damped modes over fast damped modes for example), T,

would have as rows the zv1 's corresponding to the important modes, and T, would

have as columns their Vi's.

The concept of singular values of a matrix has been used very successfully in

all areas of control theory lately, and one might expect it to appear here as well.

Note, however, that, for a real symmetric matrix, the singular values are equal

to the eigenvalues. M is a symmetric matrix and the plasma response is usually

only a perturbation from this symmetry. Discarding small singular value modes is,

therefore, equivalent to discarding the slow eigenmodes.
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As opposed to the above method, which is concerned with the properties of

the response matrix A alone, model reduction in terms of Hankel singular val-

ues focuses on the input-to-output behavior of the complete system described by

Eqs. 2.41 and 2.42. The solution to these equations is:

Y(t) = C exp [A(t - to)] Y(t = to) + C exp [A(t - r)] Bil(T)dr + Dil(t) (4.3)

We define the controllability grammian as:

P j exp(At)BBH exp(A't)dt (4.4)

and the observability grammian as:

Q j exp(A t)CHC exp(At)dt (4.5)

From the formulation of the formal solution in Eq. 4.3 one can show [41], that,

when P is non-singular, it is possible to go from any initial state to any final state

in a finite time interval At using the inputs il. Also, when Q is non-singular, it is

possible to determine f(t) by using the measurements - over a finite interval At

after t. As At -+ oo, P and Q satisfy the Lyapunov equations [41]:

AP + PAH+ BBH=O (4.6)

AHQ + QA + CHC = 0 (4.7)

The Hankel singular values (HSV's) of the system [A, B, C, D] are defined as:

ali ([A, B, C, D])E A(Q (4.8)

where Aj(PQ) is the i'th eigenvalue of PQ. The HSV's are the singular values of

the mapping from past inputs to future outputs (see appendix).

It is worthwhile to note that HSV's, as well as eigenvalues, are invariant under

state space transformation, which is a necessary property for an input-to-output
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figure of merit. If we define a new state space ' = T, where T is non-singular, the

new state equation is

2= TAT~z + TBU

and the output equation becomes

y= CT-'E+Da

while the controllability and observability grammians, P and Q, become P =

TPTH and Q = (T)-lQT-l respectively and their product becomes TPQT-',

thereby yielding the same eigenvalues and HSV's as PQ.

Furthermore, P and Q are both real symmetric matrices, so that there exists

a real matrix R such that Q = RHR and RPRH = UHy 2 U where U is a unitary

matrix and E = diag(oH, CH 2 , O,.). If we choose T TBAL = -E-1/2UHR

we get P = Q = E. This is known as a balancing transformation. If we partition

the transformed matrices,

f3 TBALATB-1A TBALB AlA2B
= A 2 1 A 22 B 2

C 1  C2  D

where the subscript 1 refers to the largest k HSV's and the subscript 2 refers to the

smallest n., - k HSV's, we get a reduced system [All, B1 , C1, D]. This method of

model reduction was proposed by Moore [46]. Glover [45] showed that the frequency

domain transfer function matrix of this reduced system , G(iW) = C(iwI- )-f$+

D, differs from the transfer function matrix of the full system, G(iw) = C(iAW -

A)- 1B + D, by the following maximum error:

(G(io) - O(iw)II- < 2 S aHi (4.9)
i=k+l

where the infinity norm signifies the largest singular value of a matrix.

TBAL is not necessarily an orthogonal matrix, and the above balancing trans-

formation can be badly conditioned when the system is nearly unobservable or
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uncontrollable, i.e., P or Q are close to singular. Safonov and Chiang [47] proposed

the following set of transformation matrices that yield exactly the same G(iw) as

the truncation of the above balanced realization of the full model: For every real

matrix with real eigenvalues, such as PQ, there is a real orthogonal matrix V

such that VTPQV is an upper triangular matrix with the diagonal consisting of

the eigenvalues of PQ - see Golub and van Loan [36] - which is known as the

Schur form of PQ. Two Schur forms of PQ in which its eigenvalues appear on

the diagonal in ascending or descending order can be realized using orthogonal,

real transformations VA = [VA2 I VA1] and VD = [VD1 I VD2] respectively, where,

again, the subscript 1 refers to the largest k HSV's and the subscript 2 refers to the

smallest n, - k HSV's. Note, that VA and VD are orthogonal eigenspaces of PQ.

Next, a new matrix, E, is formed and decomposed according to its singular values:

E VT V = UEEEVT

It can be shown [47] that the transformation matrices

= E-1/2UTVi

Tr = V1iVEE1 2

produce the same reduced-model transfer function matrix as Moore's [46] balance-

and-truncate approach. What has been gained by opting for these not so intuitive T,

and T, is an algorithm which works even if the full system is close to unobservable

or uncontrollable. This is the technique we use here, in the form of a MATLAB

application [48].

4.2 Partitioning the Model

As we saw in Section 2.4, one can transform Eqs. 2.2 and 2.43 into state and output

equations as in Eqs. 2.41 and 2.42. One can then use the model reduction methods
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mentioned above. We have to go through the computationally tedious process of

model reduction, however, for each equilibrium we wish to investigate, because the

plasma response matrix, X, depends on the equilibrium. We should like to have

a reduced model of the vacuum vessel/structure without a plasma so that model

reduction would only have to be carried out once. We want to keep the active coils

complete in our reduced model but reduce the total size to manageable proportions.

In general, the passive system consists of approximately nested sets of con-

ductors. The set closest to the plasma is generally a representation of the vacuum

vessel. Further out, will be the mechanical structure. As we shall show, it can be

advantageous to partition the model and treat the "vacuum vessel" and "structure"

separately. This partitioning can be done intuitively for the examples we discuss. In

what follows, we use the subscript "v" to refer to the vacuum vessel, "s" to refer to

the steel structure around the vacuum vessel, "c" to refer to the active coils,"g" to

refer to either vacuum vessel or structure elements for unpartitioned ("composite")

models, and"r" to refer to the reduced space.

If we consider a composite model, keeping the vacuum vessel and the structure

together, we can write the circuit equation for the vacuum vessel/structure without

a plasma as in Eq. 3.1, and rewrite this in state equation form as

19 = -Mg-|RZ - M -M9,afe

which, together with an appropriate output equation, lends itself to any of the order

reduction schemes mentioned earlier, resulting in the two transformation matrices,

T, and T,. This reduction can then be applied to the full model including the

plasma response. Then, an approximate reduced model is:

T(M 2 g + Xgg)T, T(Mg, + X9,) 1 
(Mc, + Xcg)T, (MCC + XCC) j

(4.10)
0 R, I V
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When we use a composite model of the vacuum vessel and the structure, it

is possible that the order reduction process will keep some irrelevant modes of one

and neglect important modes of the other, thereby forcing us to keep more modes

than necessary to get a good reduced model. This is the case, for example, when

one tries to reduce the model of the vacuum vessel and the structure for Alcator

C-Mod by eigenmode decomposition. The structure elements are thick pieces of

conductor and give rise to a large number of slowly damped modes (large L/R time)

so that, if we choose to keep only the slow modes, we almost end up neglecting the

vacuum vessel altogether. A better approach is to reduce the vacuum vessel and

the structure models separately and then add the coil and plasma response. We

can write one circuit equation for the vacuum vessel without plasma,

M" + M+ 8I8 + MJc/ + Reef, = 0, (4.11)

and one for the structure,

MsI, + MsvIv + MscIc + RssI, = 0, (4.12)

and then we can reduce the order of each one of these as we did above for Eq. 3.1 to

obtain transformation matrices Tej and Tvr for the vacuum vessel and T, and T,,

for the structure. Adding the plasma response, we get the following approximate

reduced system:

M11 M12 M13 'l. Rin 0 0 111

M21 M 2 2 M 2 3  I., + 0 R 2 2  0 Is' = (4.13)

M31 M 32 M33 Je 0 0 R3 IC E:

where

Ml = Tvi(Mvv + Xvv)T

M 12 = T,1 (M,, + Xvs)T
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M13 a T,(M. + Xue)

M 2 1  Tsi(Msv + Xsv)Tvr

M22 3 TsI(Mss + Xs,)Tsr

M 2 3  T.,(M., + X,,)

M 31  (M.o + Xo)T,

M 32  (M , + Xc.)T,

M33 (Mec + Xc)

RI, T11  RoT,

R22 TsRssTsr

R33 = ReC

These reduction schemes are not expected to work as well as the reduction

of the combined plasma/coils/vessel/structure system. One thing we can do to

improve their performance in capturing some of the plasma behavior is to include

the response of a generic plasma in the reduction of the composite or the separate

vessel/structure system. This would amount to adding to all M-matrices in Eqs. 3.1,

4.11, and 4.12 the corresponding X-matrices for the generic plasma.

4.3 Results

We represent the Alcator C-Mod vacuum vessel by 94 elements and the structure

by 96 elements as shown in Fig. 3-1.

As an example to test the techniques described in the previous section we

choose a typical expected high performance Alcator C-Mod plasma. A different

slightly more elongated equilibrium was chosen as the generic plasma. Parameters

describing these equilibria are shown in Table 4.1.
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Quantity example generic units
plasma current 3.01 3.01 MA

radial magnetic axis location 67.5 67.9 cm
vertical magnetic axis location 0.00 2.00 cm

minor radius 21.1 21.3 cm
elongation of 95% flux surface 1.58 1.70

elongation of separatrix 1.69 1.85
triangularity of 95% flux surface .271 .379

safety factor on axis 1.01 .973
safety factor on 95% flux surface 2.08 2.53

internal inductance .680 .705
Op .197 .101

Table 4.1: Essential characteristics of the example and generic
this section.

equilibria used in

Two figures of merit were chosen for the performance of the different model

reduction techniques:

" How well the vertical instability mode eigenvalue of the full model is repro-

duced.

" The relative maximum error in the transfer function matrix as a function of

frequency defined by:

HG(iw) - G(iw)IIK
IG(i2w)VK

Fig. 4-1 shows c, (w) for a reduction of the combined plasma/coils/vessel/structure

model by eigenmode and HSM decomposition. The full model is of length 200 (190

vessel/structure elements and 10 coils) and includes the response of a typical Alca-

tor C-Mod plasma. The model reduced by eigenmode decomposition is of length

40. The two models reduced by Hankel singular mode decomposition are of length

10 and 40. Note how badly eigenmode reduction keeping the unstable and the 39

slowest modes reproduces the input-to-output relationship. Reduction to the same

number of modes by HSM gives errors that are smaller by several orders of mag-
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Figure 4-1: E,(w) for two different model reduction methods. The two models
reduced by Hankel singular mode decomposition are of length 10 (upper) and 40
(lower). The unstable mode eigenvalue is reproduced exactly in all cases.
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nitude. With eigenmode decomposition, we have no guidance as to which modes

influence the outputs. It is obviously not just the slowest modes in this case.

The range of w's used in these figures represents the range of eigenvalues of the

full system. It should be noted, however, that modes with decay rates higher than

10sec' are unimportant and result in very small absolute values of ||G(iW)JJ.

In other words, any such fast excitation of the coils will not be observed at the

magnetic diagnostics, since it will not have a chance to soak through the vacuum

vessel. Because of the definition of the relative error, high values of er(w) in this w-

range does not necessarily mean poor performance of the model reduction scheme.

Also, from a control point of view, anything that exceeds the bandwidth of the

magnetic diagnostics and the response time of the power supplies feeding the coils

is unimportant. In Alcator C-Mod, we do not hope to control anything changing

at a rate faster than 10 3sec- due to power supply limitations.

Fig. 4-2 shows c,(w) for eigenmode reduction where the plasma and coil re-

sponse were reduced by acting on them with the transformation matrices calcu-

lated when reducing the composite (upper plot) or the separate (lower plot) ves-

sel/structure model as described in section 4.2. In the first plot, the 190-element

vessel/structure model was reduced to seven different sizes ranging from 5 to 60. In

the second plot, the 94-element vacuum vessel model was reduced to six different

sizes ranging from 5 to 50 and the 96-element structure model was reduced to size

10. The coil and plasma response were added afterwards. Note how using more

modes in the first case does not noticeably decrease the error. We observe that in

this case, no unstable mode appears. This is because the (slow) modes we have

kept are due to the structure, and the vacuum vessel has effectively been ignored.

Consequently, the plasma becomes vertically unstable on the ideal MHD timescale.

Our massless plasma assumption cannot handle such instabilities with growth rates

of the order of the Alfven frequency. As the plasma becomes more and more un-

stable, the unstable mode growth rate increases and, somewhere in the 10sec'
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Figure 4-2: E,(w) for eigenmode decomposition.
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area, disappears since the massless plasma model cannot describe modes with such

growth rates. If the number of modes kept increases significantly, sufficient vessel

modes will be kept, that the vertical instability will return and errors will start go-

ing down, approaching zero as the number of passive modes kept approaches 190. It

is remarkable, though, that this does not happen before we reach 50 modes. When

we split the vessel from the structure, thereby making sure that some modes due

to the vessel are included, we are able both, to reduce the error by keeping more

vessel modes, and to reproduce the unstable mode.

0

0

101
100
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10-3

10-4
10-5

0.
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100

10-

10~2

10-3

10- 4

10- 5

0.

composite vessel/structure

1.0 10.0 100.0 1000.0 100
rod/sec

separate vessel/structure

1.0 10.0 100.0 1000.0
rod/sec

100

00.0

00.0

Figure 4-3: e,(w) for Hankel singular mode decomposition.

Fig. 4-3 shows the same for HSM reduction. In the first plot, the 190-element

vessel/structure model was reduced to seven different sizes ranging from 5 to 60. In

the second plot, the 96-element vacuum vessel model was reduced to six different
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sizes ranging from 5 to 50 and the 94-element structure model were reduced to size

10. The coil and plasma response were added afterwards. Together with Eq. 3.1

and Eqns. 4.11 and 4.12, the parts of Eq. 2.43 relating the currents in the respective

passive elements to the magnetic diagnostic signals were used as output equations.

This proved to give better results than using an identity as output equation, i.e.,

using the state vector as output vector. Note how the error is reduced in the

composite vessel/structure case (upper plot) when the number of modes kept is

increased. An unstable eigenmode is reproduced, provided we keep at least 20

vessel/structure modes.

We see that E,.(w) curves for different number of modes kept do not intersect, so

we abbreviate the presentation of results hereafter by considering only one frequency.

0.60

0.50 eigen/no plasma

0.40
0

0.30 eigen/with plasma

00)

0.20

0.10
HSM/no plasma

0 20 . . HSM/with plasma

0 20 40 60 80 100
number of modes kept

Figure 4-4: E,. at 10 Hz as a function of number of modes kept for eigenmode (eigen)
and Hankel singular mode (HSM) reduction of the composite vessel/structure sys-
tem with and without a generic plasma.

105



Fig. 4-4 once more shows how the error in eigenmode reduction stays unaffected

as the number of modes kept is increased for the composite vessel/structure system.

In contrast, HSM reduction shows a decrease in error if more than 20 modes are

kept. In both cases, the reduction with a generic plasma response yields smaller

error for the same number of modes kept.

250

200

0

CO

to

150

100

50

0

-50
0 20 40

number of modes kept
60 80

Figure 4-5: Difference between reduced model and full model unstable eigenvalue
(279.1 rad/sec) as a function of number of modes kept for eigenmode (eigen) and
Hankel singular mode (HSM) reduction of the composite vessel/structure system
with and without a generic plasma.

Fig. 4-5 shows the difference in unstable eigenvalue between reduced and full

models for composite vessel/structure reduction. Note that none of the reduced

models obtained with eigenmode reduction but without a generic plasma response

give an unstable mode. The same holds for the first two models obtained by HSM

reduction without a generic plasma.

Figures 4-6 and 4-7 show c, and unstable eigenvalue error for the reduction
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20
number of

30
vessel modes kept

Figure 4-6: e, at 10 Hz as a function of number of vessel modes kept in addition to 10
structure modes for eigenmode (eigen) and Hankel singular mode (HSM) reduction
of the separate 96-element vessel/ 94-element structure with and without a generic
plasma.

107

0

a)4

0.60

0.50

0.40

0.30

0.20

0.10

0.00

*: eigen/no plasma

0: eigen/with plasma

A: HSM/no plasma

0: HSM/with plasma

.. ... I ... .... ....

0 10 40 50



of the separate vessel/structure model by eigenmode and HSM decomposition with

and without the generic plasma response. Note how eigenmode and HSM reduction

perform comparably. Also note how the error decreases if we keep more than 10

vessel modes (20 vessel/structure modes total). The generic plasma helps in both

cases, but it does not help as much in the eigenmode reduction as in the HSM

reduction.

250

200 *eigen/no plasma

0: eigen/with plasma

0 150 - A: HSM/no plasma

Fl: HSM/with plasma

S 100-

Z 50-

0-

-50 .I* I

0 20 40 60 80
number of vessel modes kept

Figure 4-7: Difference between reduced model and full model unstable eigenvalue
(279.1 rad/sec) as a function of number of vessel modes kept in addition to 10
structure modes for eigenmode (eigen) and Hankel singular mode (HSM) reduction
of the separate 96-element vessel/ 94-element structure with and without a generic
plasma.

We have seen in this chapter that, in a tokamak with such complicated vacuum

vessel and conducting superstructure as Alcator C-Mod, more than just a few

passive modes have to be taken into account. Keeping the slowest eigenmodes

erroneously lead one to neglect the vacuum vessel altogether. Only by resorting to
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a splitting of the vacuum vessel and the structure into two models, and keeping the

slowest modes of each gave a reduced model with reasonable error. The reduction

based on Hankel singular modes on the other side performs comparably with either

the composite or the partitioned models. Transformation matrices for the model

reductions are calculated once either without a plasma or with a generic plasma and

then applied to the plasma response matrix of each particular case. The inclusion

of a generic plasma was beneficial. In the results presented in Chapter 6 a reduced

model with 30 modes for the vacuum vessel and 10 modes for the structure was used.

The reduction was performed via HSM decomposition and the generic plasma used

in the examples in this chapter was included.
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Chapter 5

Comparison to Experiment

Part I: Open Loop

This chapter presents analysis of experiments which were performed on Alcator

C-Mod during the Fall of 1993 for the purpose of testing the validity of the linear

plasma response models presented in Chapter 2. Even though the idea behind these

experiments is simple - turn off the feedback and observe plasma behavior -, they

had not, to the author's knowledge, been performed on another tokamak with elon-

gated plasmas previously, mainly because of the associated danger of disruptions.

5.1 Equilibrium Reconstruction

In order to form the linear plasma response model, we need to define the oper-

ating point about which we consider the plasma to be perturbed. We consider a

time well into the so-called "flattop" part of the discharge, when the total plasma

current is constant, the plasma has been shaped and the large amounts of eddy

currents induced in the vacuum vessel and superstructure at the beginning of the

discharge have largely decayed away. Then, we can use the different measurements

110



to reconstruct the state of the plasma at some instant in time in the form of an

equilibrium that satisfies the Grad-Shafranov equation and does not contradict any

of the measurements. We present in this section two ways to do this: one of them,

in the form of the code EFIT, uses only the data at the time of interest in a fitting

procedure, while the other, based on the circuit equation relies on the history of the

data from the beginning of the discharge until the time of interest.

5.1.1 Reconstruction Using EFIT

In recent years, the EFIT code [49] has been used at several research centers as a

reliable and efficient method to reconstruct the plasma current profile parameters in

tokamaks, as well as the plasma shape and a flux surface geometry consistent with

the Grad-Shafranov equation from the magnetic and coil current measurements

without changing the measurements significantly. The reconstruction is a non-

linear optimization problem, but EFIT transforms it into a series of linearized min-

imizations interwoven with the iterations of the equilibrium solver. The linearized

minimizations can be carried out easily with the singular value decomposition tech-

nique. The method is fast enough that a typical 1-sec Alcator C-Mod discharge can

easily be analyzed at 20 msec intervals in under five minutes. It usually takes 20

minutes between two discharges; magnet cooling and building up of stored energy

make this waiting time necessary. The EFIT code is then an indispensable tool in

the decision making process between two discharges in Alcator C-Mod.

After EFIT is run at the time of interest, one gets as output a set of coil cur-

rents, passive element currents, and parameters defining the p(O) and F(O) profiles.

The inputs for the free-boundary code (ASEQ) used for the perturbational equi-

librium plasma response can be derived from this information. Using the mapping

procedure of Eq. 2.16, the passive currents can be transformed into an equivalent set

of coil currents that produces the same poloidal flux inside the vacuum vessel as the
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passive currents. The profile parametrization in EFIT is different than in ASEQ.

dP(*) is given as a third degree polynomial while F(O) dF O) is only assumed to vary

linearly with 0. This parametrization can be transformed into the Strickler profile

parametrization (Eqs. 2.12 and 2.13) via a simple fitting process. The distribution

of plasma current in space is also an output of EFIT (or ASEQ) and can be used

for a multifilament representation of the plasma.

We now have a plasma equilibrium which can reproduce the magnetic signals

that were used to derive it. It should be noted that, since the currents in the

passive elements cannot be measured, they are free parameters used in the fitting

process. The 190-element model for the passive elements described in Chapter 3

is also used in EFIT. The fitting problem that EFIT solves is not well conditioned

enough to result in a unique set of passive currents. The passive currents that result

from running EFIT are, therefore, not unique, even though they may reproduce the

measurements accurately. As a result, they do not necessarily correspond to the

physical passive current distribution at the time of interest.

5.1.2 Reconstruction Using the Circuit Equation

Another way to estimate the passive currents is to use the circuit equation (Eq. 3.1)

as we did in Section 3.1.2 with no-plasma shots. The only difference, of course,

is the presence of a plasma. If we represent the plasma as a set of filaments, the

plasma current coupling to the passive elements can be added as another term to

the circuit equation:

Mga 9 + Mgcic + MPIP + RggI = - (5.1)

Here, M9 p is the mutual coupling between the plasma filaments and the passive

conductors, and IP is a vector containing the currents in the filaments. It is assumed

in Eq. 5.1 that the plasma current distribution is known at all times. This is not

true, however. The time step necessary when integrating Eq. 5.1 has to be less
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than the penetration time of the passive conductors or of the order of 1 msec. The

only information pertaining to the plasma current, however, that is experimentally

available with such temporal resolution is the total plasma current and the location

of the plasma current centroid.

-0.4 l-

-0.6 1-

-0.8 H

Flux loop measurements, 931001015 @ 740 msec
T I 1 1.1 I

)IE

*B X

X *
+ measurements

S*: circuit equation

box: EFIT

0 5 10
flux loop index

15 20

Figure 5-1: Comparison between actual poloidal flux measurements (+), predictions
from EFIT (box), and the circuit equation/free boundary code combination (*).

Nevertheless, we can use the argument that was made in Section 2.2 to prove,

that, in order to get a first approximation of the passive currents, all we really need

is knowledge of the total plasma current and the location of the current centroid.

Because of the toroidal geometry, the flux pattern created at the location of magnetic

diagnostics - and, therefore, at the vacuum vessel as well - by a distributed plasma

current is very similar to the flux created by a single filament carrying the total
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plasma current and located at the location of the current centroid. I, then becomes

a scalar, I,, in Eq. 5.1 and Mps becomes a vector, A1,. Given I,(t), M,g(t) and

Ic(t), we can solve for I,(t) starting at a time when there were no currents flowing

in any of the coils. We have then the passive currents and the coil currents at

any time of interest. Using the mapping procedure of Eq. 2.16, we can transform

the passive currents into an equivalent set of coil currents, as was mentioned in

the previous section. The only ASEQ inputs missing then are the p(O) and F(Ob)

profile parameters. For lack of another source of this information, it is taken from

the EFIT reconstruction, after the appropriate transformation from EFIT to ASEQ

parametrization has been performed as mentioned in the previous section. It is

assumed here that plasma response is not strongly dependent on the profiles. Note

that the magnetic diagnostics are not used at all in this procedure.

Both techniques for reconstruction can reproduce the magnetic measurements

at the time of interest satisfactorily. Fig. 5-1 shows a comparison of the magnetic

flux loop readings at some time during a discharge and also their values as calculated

from the plasma reconstruction using EFIT and the circuit equation approach. The

EFIT reconstruction performs slightly better in this respect, which is to be expected

since it uses the magnetic diagnostics in the fitting process.

The two methods give significantly different distribution of passive currents,

but the flux pattern due to the passive currents inside the vacuum vessel is almost

identical. This can be seen in Figs. 5-2 and 5-3. Fig. 5-2 shows the current

density in the 190 elements representing the passive conductors and the poloidal

flux generated by these currents inside the vacuum vessel, as these were calculated

using EFIT at one instant during a discharge. Fig. 5-3 displays the same information

as calculated using the circuit equation approach. Note how EFIT tends to put large

currents on the inboard elements of the upper and lower domes that are closer to

the midplane. To compensate for these, it has to put negative currents in the

neighboring vacuum vessel elements. Integrating the circuit equation on the other
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931001015 at t =740 msec

~,> ->

C

56.119MA/m**2

EFIT

flux level spacing : 9.3813e-02 Wb

0.00

Figure 5-2: Current density in the passive conductor elements and poloidal flux due
to the passive conductor currents as they are estimated using EFIT. The sign in
each element indicates current direction.
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931001015 at t =740 msec

I
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flux level spacing : 9.8674e-02 Wb
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Figure 5-3: Current density in the passive conductor elements and poloidal flux due
to the passive conductor currents as they are estimated using the circuit equation.
The sign in each element indicates current direction.
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hand, tends to give lower currents of the same sign in these elements. Although

there is no way to measure the passive currents, the latter distribution should be

closer to what one would expect the actual distribution to be, since all modes with

neighboring elements carrying currents of opposite sign are very damped.

The flux created inside the vacuum vessel by the passive currents as calculated

by the two methods is the same; all other inputs to the free-boundary equilibrium

code being the same, the plasma equilibria calculated with inputs from the two

methods are almost identical, and so is the plasma response calculated from them.

The results presented in this and the next chapter were calculated using the circuit

equation to estimate the passive currents.

5.1.3 Calculation of the Open-Loop Eigenvalues

Once the base equilibrium has been determined, the filament model or the perturbed

equilibrium model can be used to determine the matrix X in Eq. 2.2, or matrices

X and Y in Eq. 2.40 for the flux conserving version of the perturbed equilibrium

model. Then, the response matrix A is obtained. Eigenvalue analysis of A shows,

that, for elongated plasmas, there is always one (and only one) unstable open-

loop eigenmode. The pattern of this mode is always of a vertical nature. Fig. 5-4

shows the normalized current density in the coils and passive conductor elements

due to the eigenvector of the unstable mode for a typical case. Note how the mode

corresponds to a distribution of currents which is almost perfectly antisymmetric

with respect to the midplane, thereby creating mainly radial magnetic field in the

center of the vacuum vessel, which forces the plasma to move vertically.
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Figure 5-4: Normalized conductor current density corresponding to the eigenvector
of the open-loop unstable eigenmode of a typical elongated plasma. The sign in
each element indicates current direction. The flux due to these currents is also
shown.

118

| f ]

I



5.2 Open-Loop Experiments

The validation of the electromagnetic model of the vacuum vessel and structure in

Section 3.1.2 was easy to implement in an open-loop configuration, i.e., with no

feedback, since the system we were testing is stable and no feedback was needed.

Testing of a plasma response model is not as easy, though, since feedback is essential

in producing and sustaining a plasma, especially an elongated plasma. It is also not

possible to test the X and Y matrices by themselves since the plasma always moves

in the presence of the conductors around it. But, since the model of the conductors

was validated very satisfactorily in Section 3.1.2, any test of the plasma-conductor

system is essentially a test of the plasma response. In this section we present some

experiments in which we allowed a vertically unstable plasma stabilized by means

of feedback control to actually become unstable by turning off the feedback control.

Predicted and observed responses are compared.

5.2.1 Experiments

In the Fall of 1993 a limited set of experiments was performed to obtain open-

loop growth rates of elongated plasmas that can be compared with the theoretically

predicted ones. These experiments consist mainly of fewer than 10 shots in which

an elongated plasma was formed and, at some point, the vertical position feedback

was turned off for a short interval and then turned back on. The duration of the

interval was 10 msec. As expected, the plasma moved up- or downwards driven by

the vertical instability. The feedback was turned off by setting the PID gains (see

Fig. 1-7) of the feedback channels responsible for vertical position control equal to

zero for 10 msec. Fig. 5-5 shows one of these gains as a function of time as well as

some other signals on the same timescale. Feedback is turned off at 0.7 sec. At this

point, the system consisting of the plasma and the conductors around it is in an

unstable equilibrium. The slightest perturbation from this equilibrium will cause
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SHOT # 931026006 R-centroid

0 ;6 6 3 -.. -.. ......-. .. .-. .-..-. .-. ...... ....-.-. ..

2 -.. -. ...-. ..-. - -. .- -

.. .. . ...... ....... ..

0 -.6 6 -. . - . -. ...... ....... .-- ... -. .. . -. .. ... ...
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Shot # 931026006 Z-centroid
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Shot # 931026006 I-p ampere
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1 0 - ..- .- .- ..-.- .. .. - - ----- - - -. ... .. - ... ...... .......

Figure 5-5: Traces characteristic of the shots where the feedback was turned off to
observe plasma behavior. Shown are the R- and Z-location of the plasma current
centroid (top two plots), the total plasma current (second from bottom), and the
proportional gain in one of the feedback channels (bottom).
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the plasma to move vertically. In most of these shots, the perturbation seems to

have been a jump in the EFC coil current. The power supply for these coils can

only carry current in one direction. Because of this, the coil has to carry a bias

current so that one has the ability to add or subtract current. Consequently, a

constant preprogrammed voltage must be applied to the EFC coil in addition to

the feedback part of the demand signal. Zero output from the controller (see sketch

of the PCC in Fig. 1-7) does not result in zero demand to the power supply, but

rather in a demand that results in enough voltage to sustain the bias current. If the

average EFC current was not exactly equal to the bias current at the time when

the feedback was turned off, a zero demand signal to the supply will cause a sudden

jump in the average coil current. This effect is shown in Fig. 5-6.

The total plasma current and the radial position of the plasma current cen-

troid do not change while the vertical position becomes increasingly negative in an

exponential way. At 0.71 sec, the feedback was turned back on, but it was not able

to bring the plasma back to its original position. The plasma had already moved

into an area where the curvature of the magnetic field was too destabilizing. The

shot ended in a disruption. Unfortunately, most of these discharges ended up in

disruptions. In an attempt to avoid these disruptions, some shots were run in which

the time interval during which the feedback was off was 5 msec. These shots did not

end up in disruption, but the vertical position excursion did not have enough time

to develop the exponential pattern from which a growth rate can be read. They

were, therefore, not useful for the purposes of these open-loop tests. The danger of

disruption that this kind of experiments bears, is the main reason why they are not

performed often. To the author's knowledge, this was the first time that the results

of such experiments are ever published.

5.2.2 Results
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Figure 5-6: Characteristic jump in the EFC current when the feedback is turned
off. Also shown is the demand to the EFC power supply and the Z-position of the
plasma current centroid. The feedback is turned off at 0.75 sec.
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931026006 @ 700 msec
-0.015
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dashed: fit
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-0.030 - fit: -0.018 - 0.0012*exp(262.8*t)
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Figure 5-7: Experimentally observed rise in the Z-position of the current centroid
during the 10 msec of turning off of the feedback is fitted to an exponential in order
to be compared to theoretical growth rate predictions.
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Shot number observed perturbational filament
930916025 49.5 75.6 16.4
931001005 281.1 300.1 127.5
931001010 370.0 418.1 184.2
931001015 256.4 335.3 164.7
931001019 220.1 208.4 153.2
931026006 262.8 246.9 111.9

Table 5.1: Growth rates in sec-1 for some shots where the feedback was turned off.

As shown in Fig. 5-7, the measured Z-position of the current centroid as a function

of time was fitted to an exponential function,

Z(t) = ao + ale-", (5.2)

with a real 'y, which is the experimentally observed growth rate. To compute the

theoretically predicted growth rate, the plasma equilibrium was reconstructed at a

time immediately prior to the time when the feedback was turned off. The X and

Y matrices can then be computed using either the filament or the perturbed equi-

librium methods. As discussed in Section 5.1.3, the eigenvalue of the one resulting

unstable eigenmode is what we call here the theoretically predicted growth rate.

Table 5.1 shows the shots where the feedback was turned off for 10 msec. The

column titled observed denotes the growth rate fitted to the observed rise in Z of

the current centroid. Perturbational denotes predicted growth rates based on the

perturbed equilibrium plasma response model. Filament denotes predicted growth

rates based on a rigid filament model of the plasma. The same information is shown

graphically in Fig. 5-8.

We see that the filament growth rates are always considerably lower than the

perturbational growth rates. This is to be expected, since the rigid, current conserv-

ing, purely vertical mode of response that the filament model is assuming requires

more energy than the energy minimizing MHD eigenmode. The perturbational

equilibrium, on the other hand does not place any of these three constraints on the

mode of response and should, therefore, be closer to the energy minimizing MHD
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Figure 5-8: Theoretically predicted vs experimentally observed growth rates. Stars

and diamonds denote growth rates calculated using the perturbed equilibrium model
and the filament model respectively.
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eigenmode. The agreement between observed and perturbational is within 40%, 30%

for the higher elongation cases, i.e., all cases in Table 5.1 except shot 930916025.

The observed growth rates were calculated using a non-linear least squares

fitting routine. As a crude attempt at error analysis, however, let us suppose that

the observed growth rate is calculated in a simple way using only two points of the

Z-position vs. time plot, the beginning and the end of the no-feedback interval.

The equations for the first and last points are:

Z1 = ZO + oe*'

Z2 = ZO + /3e"'2

where Z and t refer to Z-position and time respectively, the subscripts "1" and "2"

refer to the starting and ending points respectively and ZO, P, and -y are fitting

parameters, y being the growth rate. We can then write:

n z-Zo)
Y = (z,-zo) (5.3)

Taking the derivative with respect to Z 2:

d-y _1

dZ2  (Z2 - ZO)(t 2 - t 1) (5.4)

If we call AZ 2 the uncertainty in measuring the vertical position, then the uncer-

tainty in the observed growth rate is:

AZ 2

Ay = (Z-- 0 ( 2 t)(5.5)(Z2 - ZO)(t2 - t1)

Let us assume an experimental uncertainty of 5.0 mm. Discrepancies as large as 5.0

mm between the Z-position as measured using X-ray measurements (the method

that was used in obtaining the observed growth rates) and the Z-position as obtained

from the EFIT code have been observed. If we consider an excursion of 1.5 cm,

then, for the 10 msec interval, Ay is of the order of 30 sec 1 . This error bar in

observed growth rates is enough to explain the discrepancy between observed and

perturbational growth rates for most cases in Table 5.1.
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Chapter 6

Comparison to Experiment

Part II: Closed Loop

6.1 Calculation of Closed Loop Eigenmodes

Fig. 6-1 shows a sketch of the closed loop we are trying to model. The box labelled

"plasma, conductors, diagnostics" contains the plasma and conductor models de-

scribed in Chapters 2 and 3. The "prime" denotes state space with no power supply

dynamics. The box labelled "power supplies" contains the power supply dynam-

ics described in Chapter 3. The rest of the sketch shows the parts of the plasma

control computer (PCC). The previous chapter concerned itself with the open loop

system consisting of the plasma, the coils, the vacuum vessel and the structure.

Therefore, the A'-matrix without any extra dynamics, was all that was needed for

eigenmode analysis. When the loop is closed, however, several other systems come

into play, as shown in Fig. 6-1. These are the diagnostics, the power supplies, and

the PCC. The diagnostics are mainly magnetic flux and field measurements and coil

current measurements and, as we saw in Chapter 2, they are related to the state by

the C'-matrix without introducing any additional dynamics. The power supplies
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do introduce additional dynamics, described by the matrices, A.,,B,,, and C,, in

Fig. 6-1. These extra dynamics can be appended to the dynamics of the plasma

and conductors as discussed in Chapter 2.

ref

z

Predictor
matrix
(interprets
diagnostics)

Controller matrix
(distributes work

+ among coils)

-> I M

d 7

PID gains

Figure 6-1: The subsystems of the closed loop.

Supposing then that, at any instant, we can reconstruct the plasma equilibrium

so that we have a model for the plasma, the conductors, the power supplies and the

diagnostics described by the matrices A, B and C, the diagnostic measurements

can be described by 7 = Ci, the output of this system. This vector then goes

through the PCC, which gives the input to the system, il, namely the demand

voltages to the power supplies. We should remember, that we are always dealing

with perturbations from some operating point.
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As shown in Fig. 6-1, the PCC consists of three parts. The predictor, the PID

and the controller. The predictor matrix, Ap, multiplies the measurement signals

to give a set of linear combinations that can be identified as instantaneous values of

parameters which need be controlled. No nonlinear calculation may be performed

during the plasma discharge.

These predictors are calculated as follows: The locus of the magnetic diag-

nostics defines a surface. One usually chooses to represent the plasma current

distribution as a set of toroidal currents, fIh, inside this surface, and the currents in

the coils, the vessel and the structure as another set of toroidal currents, It, out-

side this surface. The locations where the currents It flow do not necessarily have

to coincide with the real conductors. It is easy then to find the influences of these

currents on the measurements, W, as mutual inductances and Green's functions, Gin

and Gt. Given the measurements, one can then estimate these currents as

Iin t

Gi[ G. Y (6.1)

where the "t" denotes a pseudoinverse based on singular value decomposition. The

plasma current, I,, is then the sum of the elements of I,. If the R- and Z-values

of the locations where in flow are denoted by fg, and Z, respectively, then the

magnetic axis location of the plasma, (Rma,Zma), can be estimated as

IpRm. a = RinhI (6.2)

IZma = Zj1 i, (6.3)

One can also calculate the matrices that give the flux, magnetic field compo-

nents and their gradients due to at any location inside the vacuum vessel

using Gin and Gt. Combinations of these can give useful quantities to be con-

trolled. Predictors for Rma and Zma can also easily be implemented as the difference

in flux at two points. A special case is the location of the lower x-point. Suppose
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we have the matrices, which, when postmultiplied by give BRo, Bzo, ,BRQ

8BM aB70 and O-7 , the field components and their derivatives at some nominal

x-point (denoted by the subscript "0") in the vicinity of the real x-point. A first

order expansion about the real x-point gives a relation between these quantities and

the radial and vertical distances between the nominal point and the real x-point:

B R O = B a z(6 .4 )
Bzo -7 L ki AZ

Inverting the matrix in Eq. 6.4 would be a nonlinear operation since the quantities

involved contain g, the measurements. However, if one uses values for the derivatives

from the precalculated plasma equilibrium that defined the nominal x-point - scaled

by the plasma current - the matrix inversion is straight forward and one should get

a good estimate.

After the predictor, the vector of parameters to be controlled, Apy, goes

through the PID. There, each parameter, its derivative and its integral are mul-

tiplied by different gains. Define square, diagonal matrices P, I and D whose diag-

onals contain the proportional, integral and derivative gains respectively to multiply

each parameter. The output of the PID is then:

PApW+ IA gdt'+ DAp ) (6.5)

Next comes the controller (M-matrix) which distributes among the different

coils the work that has to be done to bring the parameters to be controlled to their

prescribed values. The output of the controller is the demand voltage to the power

supplies, which is the input, U1, to the modeled system [A B C]:

1i -M (PAp+ IA, jdt'+ DA P) (6.6)

When only proportional gain is used, we can substitute U = MPApCi into
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the state equation to get

x = (A - BMPApC) Y = ACLS (6.7)

where ACL is the closed loop response matrix containing all the closed loop eigen-

mode information.

When proportional and derivative gains are used, we can use the output and

the state equations to substitute for y and i in Eq. 6.6 to get

ACL = A - B (1+ MDApCB)~' (MPApC + MDApCA) (6.8)

where 1 is the unit matrix.

When proportional, integral and derivative gains are used, the number of states

has to be increased to account for the dynamics of the integration. We define

X' [ where 1 =;F and X2 = , and the new system has the following state

space matrices:

Ai =B C= C (6.9)
0 A B

u is the input to this system. The closed loop response matrix now becomes:

0 1
ACL= [ QL1Q2 (6.10)

where

Q= 1 + BMDAPC (6.11)

Q2 = A - BMPAPC (6.12)

Q= -Q1'BMIAC (6.13)

ACL is of twice the size of A and will have half of its eigenvalues equal to zero. It

should be emphasized here that the gains used in the closed-loop analysis are the

actual gains used in the PCC as they are read from the hardware.
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While in the open loop case it is easy to find the vertical mode - for elongated

plasmas, it is the one unstable mode - in the closed loop case there are usually no

unstable modes - this is after all the primary purpose of feedback control - and

one has to look at the modes carefully to discern the vertical ones. This is done by

looking at contour plots like the ones in Fig. 6-4. The left plot shows the contours

of constant poloidal flux created by the eigenvector of a mode. Remember that the

eigenvector is a combination of currents in the coils, vessel and structure. Where

the contour lines are horizontal, i.e., P = 0, Bz = 0; therefore the magnetic field

is purely radial and exerts a vertical force on the plasma. Modes that have a large

area of nearly horizontal flux contour lines near the magnetic axis of the plasma

are thus identified as vertical modes. The right plot shows plots of the equilibrium

poloidal flux contours (solid lines) taking the plasma into account. The dotted lines

are contour plots of the sum of the equilibrium poloidal flux and the flux due to

the eigenvector multiplied by an arbitrary constant. This plot is a visual aid in

determining the plasma motion caused by an eigenmode.

6.2 Comparison to Experiment

6.2.1 Background Oscillations

As mentioned in Section 3.2, one experimental observation that can be identified

as an eigenmode and be compared to the theoretically predicted closed loop eigen-

modes is a background oscillation in the Z-position of the plasma that occurred

often during early elongated discharges. Their frequency is not always the same; it

varies between 50 and 120 Hz. It has been believed ([50]) that this oscillation was

due to the slow response of the OH2 power supplies. In the first phase of the 1993

campaign, this oscillation usually had a frequency of approximately 100 Hz, which

could arise if the 0H2 power supplies had a 0.005 sec delay. This seems reasonable,
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although, the power supply dynamics had not been determined experimentally yet.

It has been argued([50]) that his oscillation goes away when integral gain is applied

to the slow Z-position feedback channel and the proportional is decreased. However,

a maintenance period elapsed between the campaign phase, when the integral gain

was not available, and the last phase of the 1993 campaign, when it was. During

this maintenance period Alcator C-Mod was reconfigured to produce poloidal and

toroidal fields and plasma current of sign opposite to that of before. The amplitude

of these oscillations was indeed considerably reduced after the maintenance break as

compared to before. However, a "same-conditions" comparison has not been made

to investigate the effect of integral gain. The nearest thing to such a comparison

-1.e~2............... ................ ........................

-2e-2 .. ................. -- - Xray Z-centroid (m) - -9 1007004

-2 e-- .................. ................ . ................2 2 
-- - -- - -- - - -

-2.6eb. U 0'.

-2. ....... Xray Z-centroid (m) 931007006

............ .......... .............

Figure 6-2: Z-position traces of the plasma current centroid as calculated from soft

X-ray tomography measurements for three shots from the day when integral gain
was applied for the first time.
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proportional integral derivative
shot number gain gain gain

931007004 1.0 0.0 1.0
931007006 1.0 2.0 1.0
931007009 0.48 4.0 1.0

Table 6.1: Feedback gains applied to the slow Z-position control channel for three
cases.

that exists so far is shown in Fig. 6-2. It shows the Z-position trace for three shots

from the first day when integral gain was applied. A set of gains was chosen for

the slow Z-position control channel on that day which was not changed during the

rest of the 1993 and the 1994 Alcator C-Mod campaign. The gains applied to the

slow Z-position are shown in Table 6.1; these numbers are out of a maximum of

10. All traces in Fig. 6-2 have a 2 mm peak-to-peak oscillation, even though the

integral gain has been increased and the proportional gain decreased gradually from

the first to the third. There is also a difference in the plasma equilibrium between

the top and the bottom two traces in Fig. 6-2. Even though all three equilibria have

the same elongation, the bottom two have a higher average Z-position. Hence this

comparison is also not at the same conditions.

It is clear that one ought to scan the gains to see what the exact cause of the

vertical oscillation is. It is not clear that 0H2 dynamics is the cause and more

integral gain the cure. As a counterpoint the argument will be made in this section

that this vertical oscillation is not due to OH2 power supply dynamics but rather

due to the interaction between the plasma and the EFC coils.

Fig. 6-3 shows an example of such an oscillation at 110 Hz. If we carry out

the eigenmode analysis outlined in the previous section for this case, we find a

single oscillatory vertical mode with eigenvalue -97.9 + 608.7i. Its flux pattern

is shown in Fig. 6-4. This mode has a frequency close to the observed one but

seems too strongly damped to be consistent with the observed quite coherent oscil-

lations. It will be referred to as the vertical mode (to be distinguished from power
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Figure 6-4: Flux created by the eigenvector of the vertical mode by itself (left) and
overlaid on the plasma equilibrium flux (right).
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supply modes which may cause vertical motion), because it exists even when per-

fectly responsive power supplies are assumed: if the above calculation is carried out

without considering the OH2 power supply dynamics, we still get a vertical mode

of eigenvalue -34.7 ± 641.9i, indicating that the OH2 power supplies are not its

cause. In order to determine the nature of this mode, one useful test is to check

how the calculated eigenvalues move when the gains are varied. Fig. 6-5 shows the

root locus (i.e., the location of the eigenvalue) of the above theoretically predicted

vertical mode as the output of the controller to the EFC power supply is multiplied

by the factor indicated next to each point. A factor of one indicates the actual gain

used in the particular discharge. We see that the eigenvalue of the vertical mode is

greatly affected by how much the EFC coil is used in the feedback process. Fig. 6-5

also shows the root locus of a mode of a vertical nature due to 0112 power supplies.

The reason this mode is attributed to the to OH2 power supplies is that, when

the OH2 supply dynamics are not included in the calculation, this mode does not

appear. As the EFC controller gain decreases, the task of controlling the vertical

position falls increasingly on the OH2 coils, and their power supply dynamics drive

the system unstable. As the EFC controller gain increases, the vertical mode be-

comes increasingly more damped, until at some point the gain becomes too much,

turns the locus curve around and drives the vertical mode unstable. At the same

time the OH2 supply mode goes to the position it has when the power supplies are

not connected to the rest of the system, indicating that they are not being used

in the control process. This plot also indicates that, with a slightly larger gain

(around 1.25), the vertical mode would be only marginally damped, while the fre-

quency would still be similar to the observed one. Given the uncertainty in the EFC

power supply dynamics, and in the variation of gains as a function of demand, it

may indeed have been the case that the overall gain of the EFC power supplies was

1.25 times the gain measured in the power supply characterization experiments.

If the output of the controller to the 0112 power supplies is varied (Fig. 6-6),
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vertical mode root locus for varying OH2 controller gain
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the eigenvalue of the vertical mode is not affected as much. It is also noteworthy

that one of the eigenmodes peculiar to the OH2 power supply dynamics, which

normally has a pole at -112 ± 255i, moves considerably and eventually becomes

unstable when the gain becomes larger than what was used in this shot (Fig. 6-7).

However, this mode is not of a vertical nature (see Fig. 6-8) and the imaginary part

of its eigenvalue is not near the observed oscillation frequency.

shot 930923019 at 0.5 sec, 0H2 power supply mode

0.4 0.4-

0.2 0.2

0.0 0.0

-0.2 -0.2

-0.4 -0.4

-0.6 -0.6

0.500.600.700.800.901.001.10 0.500.600.700.800.901 001.10

Figure 6-8: Flux created by the eigenvector of one of the OH2 modes by itself (left)
and overlaid on the plasma equilibrium flux (right).

Searching through the existing data, a case could be found, where the only

difference between two shots is the derivative gain on the fast Z-position feedback

channel which only drives the EFC coils. The Z-position traces for these two shots

are shown in Fig. 6-9. The only difference between these two shots is that one of
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Figure 6-9: Z-position of the plasma current centroid as calculated from soft X-ray
tomography measurements for two shots with different derivative gain in the fast
Z-position control channel.
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them (top) has no derivative gain on the fast Z-position feedback channel while the

other (bottom) has a gain of 3. The oscillations have been clearly suppressed in the

shot with the derivative gain.

All the above seems to indicate that these background oscillations are not due

to the inadequacies of the OH2 power supplies as implied in [50]. In order to prove

this, one would have to do some gain scans in the real experiment and observe

response.

6.3 Perturbative Tests

The previous section concerned itself with comparison to theory of observed phe-

nomena which were not caused intentionally for that purpose. In June 1994, one day

of shots was dedicated to vertical stability tests. Unfortunately, midway through

that day, an accident involving the coaxial cable feeding the OH2L coil occurred

which caused operation of Alcator C-Mod to be stopped for repairs for the follow-

ing four months. Several shots were obtained on that day related to the vertical

stability of elongated plasmas.

The main idea in all these shots is to inject a square wave perturbation into

the programming of the desired value of IpZma and watch how the plasma relaxes

to its new equilibrium after each shot. Something similar to this was done in [13].

The only difference is that, whereas in [13] the perturbations were injected after

any derivative gain had been applied, in our case they were injected between the

predictor matrix and the PID (see Fig. 1-7). This approach can lead to large

spikes which may cause the power supplies to reach their operational current or

voltage limits. This is especially important for the EFC power supply chopper

which mainly takes care of fast Z-position control. This chopper used to have an

overcurrent protection circuit capable of terminating the shot, but, prior to the 1994
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operating campaign, this circuit was replaced by a current limiting circuit. When

the current reaches a preset limit, this circuit reverses the sign of the demand signal

to the chopper momentarily, so that the effect is one of saturation rather than

shot abortion. The fact that the output of the PID and controller matrices has a

maximum level presented another potential problem. The spikes could cause the

demand signals to saturate. From an operational point of view, this may not be a

problem, provided the power supply voltage and current limits are not exceeded.

Saturated demand signals add nonlinearity to the closed-loop system, however,

which will make it more difficult to compare its response to that of the the linear

theoretical model of the system, especially since the EFC chopper behavior tends to

be considerably different than the empirically derived model of Chapter 3 under such

conditions. The magnitude of the Z-perturbation was large enough to occasionally

result in some saturation of the demand signals. The shots that were analyzed

and are presented in this section are the ones that have a minimum amount of

saturation. The effect of saturation of the demand signals is discussed' further in

Section 6.4.

The nominal plasma parameters in these shots were I, = 600 kA, BT = 5.4

T, Rm, = 0.68 m, and elongation of slightly larger than 1.5. They were all of a

lower single-null configuration. Fig. 6-10 shows characteristic traces from one of

these shots. The top left trace shows steps injected into the IZma reference signal.

We are feeding back on IpZma rather than Zma. In addition, we are feeding back

on Ip and the steps are injected during a time when the plasma current is constant

so that they are essentially 1 cm steps in Zma. The change from one value of the

step to the other is completed in 1 msec. The middle left trace shows the difference

between the IpZma output of the predictor matrix and the reference signal. The

spikes due to the steps are pronounced. This error signal goes into two different

feedback channels, the slow Z-position channel which mainly drives the OH2 coils

and the fast Z-position channel which drives the EFC coils. The bottom left trace
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Figure 6-10: Characteristic traces from a shot with steps in the prescribed Z-
position.

144



shows the Z-position of the plasma current centroid as calculated from the soft

X-ray tomography measurements. The top right trace shows the current of the

lower EFC coil current. The on- and off-pulses of the chopper give this signal its

"noisy" appearance. The middle and bottom right traces are the OH2U and OH2L

coil currents. The OH2U current seems unaffected by the steps; the ramping up of

the current has to do with plasma current control. The OH2L is affected by the

steps, because it is also involved in the control of the position of the lower x-point,

which is apparently very sensitive to vertical displacements.

What happens in these traces can be explained with the help of the following

simplified picture: Looking at the 0.75 sec step, the error in IJZma suddenly becomes

negative. This sends a demand signal to the EFC coils that produces the first

(upward) current spike in the lower EFC coil current trace. Fig 6-11 shows the

polarity of the EFC coil and plasma currents. Let us portray the plasma as a

current carrying filament originally sitting in the equilibrium field generated by

the coils. The equilibrium position is where BR = 0. Remember, that we are

considering response on the 1 msec timescale so we are not dealing with plasma

inertia. Neglecting eddy currents in the vacuum vessel, if we apply a positive (into

the page) current step to the lower EFC coil (which also means a negative current

step to the upper EFC coil, since they are connected in antiseries), the radial field

will increase so that the BR = 0 point of the field due to the coils alone moves below

the plasma. Of course the plasma is always on the BR = 0 point of the total field,

i.e., the eddy currents keep the plasma where it is in the beginning so it ends up

above the equilibrium point of the field due to the active coils. As the damping effect

of the eddy currents decays, the plasma moves upwards so as to create more eddy

currents and compensate for their decay. All this presupposes that the EFC coils

have better coupling to the plasma than the eddy currents. This first EFC current

spike then has the effect of pulling the plasma upwards. As the plasma moves

upwards, the output of the PID due to the proportional part of the fast Z-position
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Figure 6-11: Simplistic picture of a"filament plasma"
field created by the EFC coils.

in the presence of the vertical
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error control channel decreases (and eventually changes sign if there is overshoot

as in the case of Fig. 6-10), while the derivative part increases. The demand to

the EFC eventually changes sign resulting in the second (downward) spike in the

lower EFC coil current, which tries to push the plasma down or decrease the rate

at which it is moving upwards. Eventually an intermediate equilibrium is reached,

where the average EFC current is different than the 1500 A bias current before the

step. This is only possible as long as the Z-position error trace is non-zero, as is the

case. Now the equilibrium field due to the coils has moved above the old position

of the plasma and the eddy currents are not playing a big role any more.

Until now only the EFC coils have been playing a role in vertical feedback

control. The reason for this, besides the fact that the other coils involved with ver-

tical control (primarily the OH2 coils) are slower to respond, is that, for these shots,

much smaller gains are used in the slow Z-position control channel, which drives the

0112 coils, than in the fast Z-position channel. The intermediate equilibrium men-

tioned above cannot last since the error in IpZma is non-zero and there is another

feedback channel (the slow Z-position channel) trying to control it. Eventually the

0112 coils reduce the error in Z-position to zero and bring the EFC current back

to its normal bias value.

Using the method described in Chapter 5, the equilibrium was reconstructed

at a time long enough after the step that the plasma had settled in its new position;

typically 50 msec after the step. The perturbed equilibrium procedure was applied

then to get the open-loop plasma response. Table 6.2 shows shot number, time

in the shot and the calculated open-loop growth rates for ten such cases. Then,

the procedure outlined in Section 6.1 was used to find the closed-loop eigenmodes.

The vertical mode was identified in order to be compared to observed behavior.

In essence, we have a closed-loop stable plasma and we see how it behaves when

it is pushed 1 cm above or below its equilibrium position. Table 6.3 shows the

theoretical and experimental growth rates and oscillation frequencies for the ten
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theoretical
case shot number time open-loop growth rate

(msec) (1/sec)
1
2
3
4
5
6
7
8
9
10

940527020
940624003
940624003
940624005
940624005
940624005
940624009
940624014
940624014
940624017

700
800
860
800
860
900
800
800
900
800

148.9
286.8
140.9
256.0
184.7
174.7
293.1
316.6
171.6
319.5

Table 6.2: Open-loop growth rates calculated theoretically for ten cases with step
perturbations.

theoretical theoretical experimental experimental
case closed-loop closed-loop closed-loop closed-loop

growth rate oscillation frequency growth rate oscillation frequency
(1/sec) (rad/sec) (1/sec) (rad/sec)

1
2
3
4
5
6
7
8
9

10

-240.2
-226.4
-194.5
-341.2
-232.0
-279.5
-289.1
-322.3
-235.5
-304.2

315.6
465.3
363.8
537.4
435.2
447.9
534.2
554.1
434.8
522.1

-112.6
-126.7
-114.9
-150.5
-216.9
-249.1
-164.9
-135.6
-242.2
-216.0

396.8
788.8
309.0
673.5
376.6
625.4
762.4
731.8
749.1
795.0

Table 6.3: Comparison of theoretical to experimental closed-loop eigenvalues for
the ten cases considered in this chapter.
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cases of Table 6.2. The experimental values were derived as follows: Looking at the

Z-position trace in Fig.6-10, we see that, after each step, the Z-position first follows

a strongly damped oscillation and then settles into an intermediate phase where the

final Z-position has not been reached yet, because the slow Z-controller has not had

an effect yet. During this time there is some fluctuation in Z-position but it is not

clearly an oscillation, hence not a phenomenon that could be reproduced by the

linear model. As a result, a fit to a single exponential was made only to the initial

damped oscillation according to the formula:

Z(t) = a0 + e(a 1sin(wt) + a2cos(wt)) (6.14)

Here, a0 ,1,2 are fitting parameters, while y and w are the growth rates and oscillation

frequencies listed in Table 6.3. A typical fit is shown in Fig. 6-12. The information

in Table 6.3 also portrayed graphically in Figs. 6-13 and 6-14. The error bars were

-0.005

-0.010

-0.015

C

N-0.020-

-0.025

-0030 1_.
0.86

shot 940624005

0.88 0.90
time (sec)

0.92 0.94

Figure 6-12: Z-position trace during a step change (solid line) and fit to the initial
behavior (dotted line).

obtained by doing the calculation with 25% more and 25% less overall controller
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Figure 6-14: Comparison of theoretical to experimental closed-loop oscillation fre-
quencies for the ten cases considered in this chapter. The lines through the origin

of slope 1/2 and 1 are shown.

151



2500 1 I I I I I I I I I I

2000

1500

1000

500

-1000 -500 0 500 1000

Figure 6-15: Root locus of one EFC power supply mode (triangles), one OH2 power
supply mode (diamonds), and the vertical mode (stars) as controller gain to the
EFC power supply is varied from zero to five.
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Figure 6-16: Root locus of the vertical mode as controller gain to the EFC power
supply is varied from zero to five neglecting all power supply dynamics.
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gain to the EFC power supply than what was used in the experiment. Note that

these error bars are correlated: as the growth rate moves along the error bar in

such direction as to approach the line of slope one, the oscillation frequency moves

in a direction away from it. This can be seen more explicitly in Figs. 6-15 and 6-

16. Fig. 6-15 shows the root locus of the vertical mode, one of the EFC power

supply modes and one of the OH2 power supply modes as the controller gain to

the EFC power supply is varied by a factor of zero to five times what was used

in the experiment. The power supply modes shown are the only power supply

related modes affected by this gain scan. As the gain is increased, the eigenvalue

of the OH2 mode converges to the value that it has when the power supply is

not connected to the rest of the system. This was also seen in one of the earlier

shots with persistent oscillations (Fig. 6-5). What is different from those shots

is the behavior of the vertical mode: as the gain is increased the vertical mode

becomes more stable, whereas in Fig. 6-5 it turned around and became unstable.

Also, as the gain increases, the EFC mode becomes unstable, but its frequency

is higher than anything observed experimentally. Fig. 6-16 shows the root locus

of the vertical mode as the EFC controller gain is varied, assuming perfect power

supplies. The behavior is similar to that of Fig. 6-15 indicating that it is not due

to some interaction with a power supply mode. This behavior is observed in all

shots with steps in the Z-position. The reason for the differences in the root loci

of the vertical mode for the two cases in Fig. 6-5 (shot 930923019) and Fig. 6-15

(shot 940624005) is that in earlier shots (as in Fig. 6-5) no derivative gain was

used in the fast Z-position feedback channel. Indeed, if the calculation for shot

930923019 is redone with an artificial derivative gain equal to what was used in

shot 940624005, the resulting root locus changes to look more like that of Fig. 6-15

(see Fig. 6-17). A similar variation of the controller gain to the OH2 power supplies

produces negligible variation in the eigenvalues.

From Fig. 6-13, it can be concluded that the model gives a more damped closed-
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loop system than observed, approximately by a factor of two. From Fig. 6-14, we

see that the oscillation frequency is predicted correctly by the model to within a

factor of two. In this figure, two clusters of points can be discerned: one in the 700

rad/sec experimentally observed frequency area and one in the 400 rad/sec area.

This second set (cases 1, 3, and 5) are equilibria that seem to be more open-loop

stable to begin with (see Table 6.2).

20001 1 . I I I I I I I

0

1500- EFC mode

5

1000-

vertical m cje* )

500 5

0H2 mode

0 . I I

-2000 -1500 -1000 -500 0 500 1000 1500

Figure 6-17: Root locus of one EFC power supply mode (triangles), one OH2 power
supply mode (diamonds), and the vertical mode (stars) as controller gain to the
EFC power supply is varied from zero to five. This is shot 930923019 with fast
Z-control derivative gain from shot 940624005.

One of the things that was to be studied on the run day on which the above

experiments were performed (and possibly on additional ones) was the effect of

feedback gains on closed-loop behavior. Unfortunately, the malfunction of the

OH2L coaxial cable, ended the run day and the run period before any such gain

scan could be accomplished. It was also seen in the previous section that this is

essential to determine what causes the ubiquitous 50-120 Hz oscillation and how to

suppress it.
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6.4 Nonlinear Simulations

As was mentioned in the previous section, saturation of the demand signal to the

power supplies can be a source of nonlinear behavior. In this section we examine

to what extent it can explain the discrepancy between experimentally observed

behavior and theoretically predicted behavior based on linear models.

Xray Z-centroid 940624017

0.75 0;8 0.85 0:9
demand 940624017

-- -- - --

10 .

05.........

-5 - . -.

-10 ... ....
0.75r

Figure 6-18: Z-position of the plasma current centroid (top) and demand signal
(bottom) to the EFC power supply showing the saturation effect.

Fig. 6-18 shows the demand signal to the EFC power supply for one of the shots

mentioned in the Section 6.3. At each step in the requested IZm2, there is a spike

in the error in IpZma (see Fig. 6-10), which, when multiplied by the appropriate

elements of the P, I, D, and M matrices produces a demand signal to the EFC
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which is larger than the value that the signal transmission hardware can handle. It

is, therefore, clipped off at the maximum value allowed by the hardware. All of the

shots mentioned in the previous section have some saturation. The shots that were

analyzed stayed saturated for approximately 3 msec. Shots with longer intervals of

saturation were not analyzed because of their highly nonlinear nature.

We can look at the demand signal saturation effect by looking at a simulation

of the time evolution of the system. Once the matrices A, B, and C have been

determined, the state and output equations determine the time evolution of the

linear system with the appropriate inputs and initial condition. The steps in IpZma

which were injected in the shots considered on the previous section can be handled

in two equivalent ways:

" one can choose as operating point the equilibrium at some time after the step

when the plasma has settled in its new position. 6(t) is then given by Eq. 6.6.

The initial condition is then non-zero. One can reconstruct the equilibrium

right before the step and take the difference between the two equilibria to be

the initial condition.

" one can choose as operating point the equilibrium right before the step. The

initial condition is then zero, but the input is:

i 1(t) = inear(t) = -M (PA - + IAp i Wdt' + DA ) -

-M (PZrej +I Zrefdt' + DZrei) (6.15)

where Zef is a vector containing the reference inputs for the quantities which

are being fed back on. In this case, Z,,f only has nonzero values for the

elements corresponding to IpZma.

Let us adopt the second approach. The effect of the demand signal saturation

can be added by using as input:
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it(t) = { iinear(t) if ujinea,(t)I < 0 (.
whrezo sa e tor cot=nn i IhjartI z(6.16)U0 i f lilun,.r (t} > UO

where -0 is a vector containing the maximum absolute values of the demand signals

allowed by the hardware and IGinear(t)| denotes a vector consisting of the absolute

values of the elements of Ullinear (t). The solution to the state and output equations

is given in Eq. 4.3. Using ?(t = to) = 0 and i7(t) as prescribed by Eq. 6.16, we

get the evolution of the state as a function of time and from it the evolution of the

Z-position.
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Figure 6-19: Vertical position after a step as measured (dotted), and as calculated
by means of a linear (dashed) and a nonlinear (solid) simulation.

This procedure was carried out for the shots of Table 6.2. The results for one

case are shown in Figs. 6-19 and 6-20. The linear response model assumes that any
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Figure 6-20: Demand signal to the EFC power supply after a step as measured
(dotted), and as calculated by means of a linear (dashed) and a nonlinear (solid)
simulation.
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amount of demand signal to the EFC power supply is attainable. Therefore, when

the step in IpZma is applied, it immediately asks the EFC power supply for a very

large amount of voltage. This is the 1300 Volt/turn spike seen in Fig. 6-20. Note

that the EFC power supply cannot deliver more that 100 Volts/turn and the signal

processing hardware is calibrated so that the maximum demand signal corresponds

to the maximum output voltage of the power supply. If the hardware were able to

deliver the 1300 Volt/turn spike in the demand signal, the Z-position would go to

its requested value much more quickly that it actually does (see Fig. 6-19). From

Fig. 6-19 we can see that the time evolution without the saturation effect suggests

an oscillation frequency larger than the observed one. In the previous section,

however, we saw that the theoretically predicted oscillation frequency was usually

smaller than the observed one. What was listed as theoretically predicted oscillation

frequency in the previous section was that of the vertical mode. There is an EFC

mode, though, with an oscillation frequency at approximately 1700 rad/sec which

seems to be what is governing the time evolution in the absence of the saturation

effect. In other words, the response is determined essentially by the dynamics of

the EFC power supply, because of the very large demand. If we do not allow the

demand to the EFC power supply to exceed 100 Volts/turn, the demand signal

stays saturated for a long time and the Z-position takes longer to reach its desired

value. This nonlinear simulation looks much more like the measured response than

the linear simulation.

In order to make some contact with Figs. 6-13 and 6-14, an oscillating expo-

nential was fitted to the initial part of the nonlinear simulation of the time evolution

of the Z-position in the same way as an exponential was fitted to the measured Z-

position in Fig. 6-12. The results are shown in Figs. 6-21 and 6-22. The agreement

between theory and experiment is much better than in Figs. 6-13 and 6-14, namely

to within 50%.

We can conclude from this section, that the nonlinear effect of the saturation
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one is shown. Theoretical growth rates were derived from the nonlinear evolution.
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of the demand signal goes a long way towards explaining the discrepancy between

theoretical and experimental growth rates and oscillation frequencies.
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Chapter 7

Summary and Conclusions

Elongated plasmas are inherently unstable and present, therefore, a challenge as

far as control of plasma shape and position is concerned. Until now, control of

tokamaks has been carried out largely in a trial-and-error fashion. The reason

for this lies mainly in hardware limitations. The hardware necessary for feedback

control on the timescale of the vertical instability has been of an analog nature of-

fering very little flexibility. Recent technological advances have made more flexible

feedback control computers available. An example is the Alcator C-Mod hybrid

analog-digital control computer which offers the fast response of analog signal pro-

cessing with the flexibility of digital programming of the feedback gains. Digital

feedback computers that are fast enough for tokamak control have also recently

become available, making it possible to use frequency dependent feedback gains.

This new technology allows us to exploit some powerful methods of modern control

theory for more effective and efficient tokamak control. All these methods, how-

ever, presuppose the existence of some linear model of the system to be controlled.

The existence of a model is not necessary if the feedback gains are determined by

trial and error. Many models of plasma response already exist with a wide range

of complexity. Before modern control theory can be used, however, for designing
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feedback control laws, the models upon which the control laws are based have to

be tested. So far, little has been done in the area of testing linear plasma response

models against experimentally observed behavior. The only published comparisons

of theory to experiment involve rigid filament representations of the plasma.

This work has attempted to make a comparison between more sophisticated

theory and experiment using data from the Alcator C-Mod tokamak. A linear

model for each subsystem of the closed-loop system constituting an Alcator C-

Mod discharge under feedback control has been constructed. No new theories have

been developed here. The following aspects of the study, however, are original:

* A non-rigid, approximately flux-conserving, perturbed equilibrium plasma

response model was used in the comparison to experiment.

* A detailed toroidally symmetric model of the vacuum vessel and the support-

ing superstructure was used.

" Modeling of the power supplies feeding the active coils has been included.

" Experiments were conducted with vertically unstable plasmas where the feed-

back was turned off and the plasma response was observed in an open-loop

configuration. Such experiments have not been performed previously on other

tokamaks because of the danger of disruptions associated with them.

" Nonlinear simulation of the time evolution of the closed-loop experiments was

done in an effort to account for the discrepancies between linear theory and

experiment.

The agreement between theory and experiment in the open-loop configura-

tion was very satisfactory, proving that the perturbed equilibrium plasma response

model and a toroidally symmetric electromagnetic model of the vacuum vessel and

the structure can be trusted for the purpose of calculations for control law design.
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When the power supplies and the feedback computer hardware are added to the

system, however, as they are in the closed-loop configuration, they introduce non-

linearities that make it difficult to explain observed behavior with linear theory. A

recapitulation of the major points and conclusions of each chapter follows as a well

as some suggestions for further work.

7.1 Linear Plasma Response Models

When studying axisymmetric modes of plasma behavior in the presence of resistive

conductors for the purpose of axisymmetric control, the assumption can be made

that the timescale of plasma response is of the same order as the L/R time of the

conductors, which is much longer than the Alfv6n timescale characteristic of MHD

phenomena. The plasma inertia can then be ignored and the plasma can always be

assumed to be in equilibrium, moving from one equilibrium state to another very

slowly. The law that determines how the equilibrium moves from one equilibrium

state to another is the circuit equation of the conductors around the plasma. The

plasma response can then be represented as an additional inductance matrix, X, in

this circuit equation describing the mutual coupling of these conductors as mediated

by the plasma. A linear plasma response model is simply a prescription for X. Two

methods have been described for obtaining X: the filament model and the perturbed

equilibrium model.

In the filament model, the plasma is represented as a rigid set of current carry-

ing filaments that can only move vertically. These filaments are added to the circuit

equation of the conductors around the plasma with the assumption that their cur-

rent does not change. The flux at the conductors is only affected by the change in

mutual inductance as the filaments move. The massless-plasma assumption allows

one to equate the force on the filaments due to the eddy currents induced in the

conductors to the Lorentz force the filaments experience as they move through the
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unperturbed magnetic field due to the conductors and solve for the Z-position of

the filament set. Substituting the Z-position into the circuit equation gives the X

matrix.

In the perturbed equilibrium model, a base plasma equilibrium is calculated

using a free--boundary equilibrium code and used as the operating point of the linear

response model. If all the coil current inputs to the equilibrium code are perturbed

one by one by a small amount and the code is run again, a set of perturbed equilibria

is obtained that span the space of plasma motion, i.e., the plasma is always a linear

combination of this set of perturbed equilibria. If the flux at the conductor locations

is one of the outputs of the equilibrium code, the X matrix can be defined as a matrix

giving the change in flux at one conductor location due to the plasma alone due

to the change in current in another conductor. The vacuum vessel and structure

response can be "folded in" with no additional computational cost by assuming

that a set of vessel/structure currents can be represented by a set equivalent coil

currents. Furthermore, by perturbing two inputs of the equilibrium code pertaining

to the plasma current profile, two constraints for approximate flux conservation

can be satisfied. We thus have a non-rigid, not necessarily vertical, approximately

flux conserving linear model which is a much less constrained representation of the

plasma/conductor system than the filament representation.

7.2 Modeling of the Structure and the Power

Supplies

The vacuum vessel and the structure have been split into 190 toroidally symmetric

elements. Their mutual inductances and resistances have been estimated theoret-

ically on the basis of geometry and materials properties. Their inductances and

Green's functions to the magnetic diagnostics and to the a grid in the plasma re-
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gion have also been calculated. Toroidal asymmetries like ports are the weak point

of this model. The model has been tested by putting step currents into the coils.

The magnetic measurements as a function of time were predicted theoretically using

the circuit equation and compared to the actual measurements. The agreement was

to within 10%, which is better than any published comparison of this kind.

The power supplies feeding the coils are very nonlinear devices and no attempt

was made to model them from first principles, since this would involve modeling

large arrays of thyristors. Instead, linear transfer functions have been determined

empirically by injecting oscillations of various frequencies into the demand signal

to the power supply. Then, by looking at the output of the power supply, we get a

few points of gain as a function of frequency and phase as a function of frequency

through which a transfer function can be fitted. Due to lack of time, the demand

signal oscillations were only of a single amplitude. The effect of amplitude on power

supply dynamics was not investigated. It is possible that power supply dynamics

are different at different amplitudes.

7.3 Model Reduction

We have described and investigated two types of general model reduction schemes,

based on eigenmodes or Hankel singular modes respectively. In application to the

axisymmetric electromagnetic model of Alcator C-Mod, we find that two additional

factors are also of importance, namely whether or not a plasma is included in the

model during reduction, and whether the passive elements can be partitioned in

such a way as to guarantee retaining the important modes of the vacuum vessel.

Reduction of the entire system using the Hankel singular modes can be achieved

down to dimension 40 with negligible error and to dimension 10 with probably

acceptable accuracy. In contrast, retaining even 40 of the slowest eigenmodes leads
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to large errors in the system response. Plainly, case-by-case analysis of a specific

complete system, for example to study optimum feedback control algorithms, will

benefit greatly from model reduction using the HSM approach. The eigenmode

decomposition is unsuccessful in its direct form.

An intuitive partitioning of the passive structure into separate vacuum vessel

and structure allows one to obtain successful reduction using the eigenmode tech-

nique as well as HSM. However partitioning requires the use of more or less ad hoc

judgement about which elements to include in which partition. It may not always

be straightforward to make this judgement effectively. In our example, where par-

titioning is rather natural, we still need to retain between 10 and 20 vessel modes

to obtain accuracy of 10% or better in the open-loop system response and unstable

mode growth rate (30 when using HSM without generic plasma).

In reducing the passive elements alone, which is convenient because it allows the

reduction to be done once and for all, it is very advantageous to include a generic

plasma. This enables the HSM approach to obtain 10% accuracy with between

10 and 20 passive modes both with the partitioned and the unpartitioned model.

Roughly twice as many are required with no generic plasma. In all the cases we

have run, we have been able to adequately represent the full (vertically unstable)

model with a smaller number of modes than when using no generic plasma at all,

provided the generic plasma had some elongation.

The eigenmode reduction also benefits from the inclusion of a generic plasma,

when partitioning is used. However, it obtains only about 20% accuracy without

partitioning and this does not improve even adding up to 60 modes. This limited

accuracy is likely to be even worse for larger differences between generic and actual

plasmas. If a vertically stable generic plasma were chosen, for example, there would

be little or no improvement over the no-plasma eigenmode reduction. What appears

to happen is that the unstable generic plasma forces the inclusion of one mode

dominated by the vessel (namely the unstable mode). This single vessel mode
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differs from the actual unstable mode (unless one is dealing with exactly the generic

plasma) by enough to cause significant errors.

We conclude that accurate axisymmetric control modeling based on system re-

duction by selecting the slowest eigenmodes is possible in situations where retention

of the important modes is guaranteed either by system simplicity or by appropriate

partitioning. The more complex HSM reduction technique can handle situations

where eigenmode reduction fails but it offers no clear quantitative advantage in

situations to which eigenmode reduction is well suited. Neither technique gives a

quantitatively accurate representation of Alcator C-Mod with fewer than between

10 and 20 significant modes.

7.4 Open Loop Tests

After having gained confidence in the electromagnetic model of the vacuum vessel

and structure, the model of the plasma response in the presence of these conductors

was tested in an open-loop configuration, so that the power supplies and the plasma

control computer (PCC) were not in the picture. After establishing an elongated

plasma, the feedback was turned off for a brief interval and the plasma started

moving up- or downwards. Fitting the evolution of the vertical position of the

plasma current centroid to an exponential, a growth rate was obtained.

The plasma equilibrium shortly before the feedback was turned off was recon-

structed. Two methods can be used for the equilibrium reconstruction: 1) a fitting

method using only the magnetic diagnostics information at the time of interest and

2) a method based on the circuit equation which does not use the magnetic diagnos-

tics, but uses the time history of all coil currents up to the moment of interest. The

two methods give similar results but the second gives more physical distributions

of eddy currents in the passive conductors.
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Analysis of the response of these equilibria using both the filament and the

perturbed equilibrium model gave only one unstable mode which was of an almost

purely vertical nature. The eigenvalue of this mode was compared to the experimen-

tally observed growth rate. The growth rates predicted by the filament model were

significantly lower than the observed ones. This was expected, since the assump-

tions that go into the filament model constrain the allowable modes of response.

The growth rates predicted by the perturbed equilibrium model were fairly close to

the observed ones, within 30%. These tests proved that the electromagnetic model

of the conductors combined with the perturbed equilibrium model of the plasma

were able to predict linear plasma response satisfactorily when other dynamics -

like the power supplies - are absent.

7.5 Closed Loop Tests

To model the entire closed-loop system one has to feed the output of the power

supply model to the input of the plasma/conductor system. Then, the output of

the plasma/conductor system is led through the feedback gains, as these are read

from the PCC hardware, to the input of the power supply model. Performing

eigenmode analysis on the closed-loop system gives no unstable mode; hence, one

has to look at the modes carefully do discern the vertical eigenmode. In the closed-

loop configuration, this vertical mode usually has a complex eigenvalue.

In some discharges dedicated to studying closed-loop behavior of elongated

plasmas, steps in the desired (reference) IpZm. were injected. As the plasma moved

to its new position, it overshot and displayed some oscillating behavior. The vertical

position of the plasma current centroid was fitted to an oscillating exponential and

the resulting growth rate and oscillation frequency were compared to the eigenvalue

of the vertical eigenmode. The agreement was not satisfactory; it was to within a

factor of two.
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In an attempt to explain the discrepancy between theory and experiment, it

was investigated how the theoretical eigenvalues change with a change to the overall

gain of the demand signal to the EFC power supply. Even though the theoretical

eigenvalues were affected considerably, this gain variation was not enough to explain

the discrepancy.

Saturation of the demand signal to the EFC power supply was present in all

closed-loop test shots. This is not a linear effect, and cannot be included in the

eigenmode analysis of the closed loop. It can, however, be studied when we try to

simulate the time evolution of the system from some initial condition. Then, we can

require, that the input to the system does not exceed a certain value. Simulations

without the saturation effect show that, when the step in the IJ Zma reference signal

is applied, a very large demand is sent to the power supply which brings the plasma

to its new position quickly, in a time determined mainly by the power supply dy-

namics. Simulations with the saturation effect, however, show an evolution of the

vertical position of the plasma which closely matches the experimentally observed

one. The nonlinear effect of the saturation of the demand signal was able to explain

to a large extent the discrepancy between theoretical and experimental eigenvalues.

7.6 Suggestions for Further Work

The Alcator C-Mod run time devoted to this work has been limited. Some more

work should be done in the future to fill in the gaps. This work should concentrate

in two areas: power supply characterization and closed-loop tests.

The power supply dynamics were empirically determined at one amplitude only.

More power supply characterization shots like those described in Chapter 3 should

be run with the amplitude of the oscillations varying. Since the power supplies are

very nonlinear devices, it is impossible to come up with a linear model of general
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Figure 7-1: Implementation of the step in the reference IpZma using one channel
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validity, but we can have a "library" of linear power supply models valid at different

amplitudes which can be applied to different cases.

One problem that plagued the closed-loop tests was the nonlinearity intro-

duced by the saturation of the demand signal to the EFC power supply. This

saturation was present in all these shots and was mainly due to the step in the

Ipma reference signal going through the derivative part of the IpZma feedback

channel. The top part of Fig. 7-1 shows how the step was implemented in the shots

from Chapter 6. The IpZma signal is subtracted from the reference signal and the

difference goes through both the proportional and the derivative gains. In order to

avoid the spikes in the demand signals, it would be better to implement the steps

using two feedback channels as shown in the bottom of Fig. 7-1. The IpZma signal

should go into two channels, one of them only with proportional gain and the other

only with derivative gain. The reference signal with the step should go only into the

channel with the proportional gain. The output of the sum of the two channels will

be the same as the output of the one channel of the present implementation except

during the 1 msec of the step change. This implementation should help avoid the

saturation effect.

Unfortunately, all the shots studied in Section 6.3 were very similar. Once the

procedure has been streamlined, shots with varying elongation and varying gains

should be run in an effort to scan the Alcator C-Mod operating space.
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Appendix A

Interpretation of the Hankel

Singular Values

The HSV's are the singular values of the mapping from past inputs to future outputs.

To see this, rewrite Eq. 4.3 for 9(t = to) = 6, to = -o, U(t) = i-(-t) for t < 0,

6(t) = 0 for t > 0 and D = 0:

g(t) = C exp(At)-o F (t) [6(t)] (A.1)

where

O exp(Ar)BVY(r)dr (A.2)

17(t) is a time dependent integral operator mapping the input for t < 0 to the output

for t > 0. Let us suppose that ori is a singular value of this operator with 9(t) as

the corresponding (time-dependent) eigenvector, i.e.,

where

FH(t) [H(t)] AH(t + 7)1pAH
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Using the definition of the operator and its Hermitian, the definition of the observ-

ability grammian Q, Eq. 4.5, and Eq. A.2 it can be shown that:

FH(t) [F(t) [V(t)]] = BH exp(AHt) Qo (A.4)

Using Eqs. A.3 and A.4, we get (Glover [45]):

PQO = O (A.5)

which is equivalent to Eq. 4.8, the definition of the HSV's.
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