
PFC/RR-93-4

Self-Similar Variables and the Problem
of Nonlocal Electron Heat Conductivity

S. I. Krasheninnikov, 0. G. Bakunin

MIT Plasma Fusion Center
Cambridge, Massachusetts 02139 USA

October 1993

This work was supported by the US Department of Energy under contract DE-FG02-91ER-54109.
Reproduction, translation, publication, use, and disposal, in whole or in part, by or for the US
Government is permitted.



Self-similar variables and the problem
of nonlocal electron heat conductivity

S. I. Krasheninnikovl, O.G. Bakunin2

MIT Plasma Fusion Center, Cambridge, USA

Self-similar solutions of the collisional electron kinetic equation are
obtained for the plasmas with one (1D) and three (3D) dimensional plasma
parameter inhomogeneities and arbitrary Zeff. For the plasma parameter
profiles characterized by the ratio of the mean free path of thermal
electrons with respect to electron-electron collisions, XT, to the scale length
of electron temperature variation, L, one obtains a criterion for
determining the effect that tail particles with motion of the non-diffusive
type have on the electron heat conductivity. For these conditions it is
shown that the use of a "symmetrized" kinetic equation for the
investigation of the strong nonlocal effect of suprathermal electrons on the
electron heat conductivity is only possible at sufficiently high Zeff (Zeff ;
(L/AT)1/ 2). In the case of 3D inhomogeneous plasma (spherical symmetry),
the effect of the tail electrons on the heat transport is less pronounced
since they are spread across the radius r.
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I. INTRODUCTION

It is well known that the Spitzer-Harm theory for the

electron heat conductivity along a magnetic field is only valid

for comparatively small ratios of the thermal electron mean free

path with respect to electron-electron collisions AT to the

characteristic length of the plasma parameter variation, L: 7=A /L

10 This is due to the fact that the main role in the

plasma heat conductivity is played by suprathermal particles. The

mean free path of these suprathermals, A~ XT(Ck/Te)2 (C* is the

suprathermal particle energy; T is the electron temperature; c.~

(4+9)Te) is much greater than AT.

At the same time, values 7 a 10-2 are rather typical of

plasmas in the tokamaks scrape-off layer (SOL ), 7,8 space

plasmas, plasmas produced on interaction of high energy fluxes

with matter, etc. So it seems rather attractive to generalize

Spitzer-Harm's theory for relatively high values of z: z a 10-2.

Such attempts have been made by many authors. Various

approximation methods for solving kinetic equations were used. For

example, in Ref. i the terms proportional to z2 were taken into

account in the expressions for the heat flux q; various

modifications of the method of momenta were used in Refs. 12-16.

Let us consider the studies of Refs. 17,18 in detail, the

results of which can be represented in rather compact form. These

are often used for various applications.

In Ref. 17 the integral expression previously obtained for

the heat flux q(x) from a heuristic consideration19 was
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theoretically verified and compared with the results of numerical

calculations:

q (x') 
q(x) = dx' exp f dl / T(l)

X

where qSH(x) is Spitzer-Harm's heat flux.

In Ref. 18 a procedure for approximately solving the

electron kinetic equation is proposed in the high effective plasma

charge limit Z , where the electron velocity distribution

function f (,x) can be represented as the sum of the symmetric

function f0(v,x) and the small asymmetric part gf I (v,x). In this

case deviation of f0(v,x) from the Maxwellian function in the

suprathermal region (responsible for the heat transfer) is causes

deviation from Spitzer-Harm's theory. The main idea of the paper

Ref. 18 is to convert the differential equation for f (v,x),

8 f 1 8 8f+ - f + 0) - 0, (2)
ac v av 8v

into an integral equation which is then solved by the iteration

technique, using the Maxwellian distribution function as a zero

approximation (here v is the electron energy; C fne(x)dx; n (x)

is the electron density). This conversion of Eq.(2) into an

integral equation was realized by means of the Green's function

G(C,(',v,v') for the operator 82G/8C2 + V3 8G/8v:

T (a' a2  
( 3f(v, = - G(C,C',v, (3)0 Gv' 8f' 2

The approach developed in Ref. 18 is generalized for medium
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Z in Ref. 20. However, this technique (which seems natural at

first sight) for approximately solving the kinetic equation (2)

actually gives an incorrect result. Indeed, by direct calculation

it can readily be shown that the distribution function obtained in

Ref. 8 begins to differ from the the Maxwellian one at particle

5 : 2
energies of v f3/7 . Meanwhile, from the solution of Eq.(2) by

means of perturbation theory it follows that this difference

6 , 2 5 ::. 2actually occurs already at v 1 , and at v 92/ the

difference between f0(v,x) and the Maxwellian function becomes

sufficiently large (see value below). This is explained by the

fact that the Coulomb term in the kinetic equation for the

distribution functions close to the Maxwellian one is in fact the

small difference between two large operators: deceleration and

heating of electrons (the second and third terms in Eq.(2)).

Incorrect separation of these operators results in an artificial

overestimation of the role of Coulomb electron-electron collisions

and in a reduction of the deviation of f 0(v,x) from the Maxwellian

function.

Unfortunately, criteria of the applicability of the

approximate solutions of the electron kinetic equation at high 7

values are not available and it can be tested by means of

numerical simulations in only a rather limited range of parameters

because numerical solution of the kinetic equation is cumbersome.

Moreover, all solutions of the electron kinetic equation mentioned

above were found for the case of one dimentional (1D) plasma

parameter inhomogeneity. It is still not clear what role nonlocal
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effects play in the electron heat conductivity for the cases of

two (2D) and three (3D) dimentional plasma parameter

inhomogeneity.

In Ref. 21 a class of solutions of the collisional kinetic

equation which allow representation in self-similar variables was

found. The transition to self-similar variables makes it

comparatively easy to find exact solutions of the kinetic

equation. Analytical and numerical studies of these solutions21,22

showed, in particular, that Eqs.(1),(3) do not describe the effect

of a strongly anisotropic electron distribution function tail on

the heat flux q, which under certain conditions can turn out to be

decisive.

In the present paper solutions of the electron kinetic

equation are found for the case of 1D and 3D (spherical symmetry)

plasma parameter inhomogeneity for arbitrary plasma Zeff by means

of self-similar variables. Criteria of the strong effect of tail

electrons on the electron heat transport are obtained.

Sections II-IV are devoted to investigating 1D inhomogeneous

plasma. In Sec. II the main equations analyzed in the paper are

given and the limits of their applicability are specified. In Sec.

III solutions of the kinetic equation for moderate values of Zeff'

(1+Ze )2 < z-1/2, are obtained. In Sec. IV the high Z (3

> 7-1/2) limit is investigated. In Sec. V the case of 3D

inhomogeneous plasma is considered. The results are discussed in

Sec. VI and the main conclusions are summarized in Sec. VII.
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II. SELF-SIMILAR VARIABLES FOR THE 1D KINETIC EQUATION

Let us assume ions to be at rest and consider the stationary

kinetic equation for an electron distribution function that is

inhomogeneous along the x-axis:

af e E f 12 a
V9 -M -- ay ! + _ g

(4)

2ne A Z n (x)8 8f

2  St( ,f) + e3e (1_9 )

where

a)r af (V) a v

St(Vf =- f f U adv',

U =(u -u u )/u 3V V/a13 a13 aa3c a

o is the angle between the particle velocity vector V and the axis

x; g = cosa; f ,(V,g,x) is the electron distribution function; e,

m, n (x) are its charge, mass and density; Z ef is the effective

ion charge; A is the Coulomb logarithm; St(V,f) is the

collisional Coulomb operator; E(x) is the ambipolar electric

field.

As shown in Ref. 21 Eq.(4) allows solutions in the

self-similar variables

f (V,x)= N F(0)/[Te (x)]', 0'= j*(m/2Te(x))l/2  (5)

where N is the normalization factor; JF(v)dv = 1; a is an

adjustable parameter; the function Te(x) plays the role of a

characteristic average electron energy. In this case the kinetic



7

equation (4) is converted in the following way:

8F Z 8F 1-g 2 8F

Tvy aF -2 -Ev + v ~

(6)

1 Z fa 2 aF
- St(, F) + -8g

2  )

where the parameter z E = eET /(2ne An ) is found from the particle

flux ambipolarity condition, which reduces to the relation j C

T (X)( 2 a)J = const, where J = SF(v)vudv. This condition is

automatically satisfied at a = 2, and, as a result, the value of

TE can be arbitrary in this case, while at a # 2 the quantity 7 E
is found from the relation J = 0. However, it will always be

assumed that j = 0.

Here it is useful to note that Eq.(6) is similar in structure

to the equation representing the electron runaway effect in a

electric field, which allows one to use the approaches developed

in Ref. 23-26 for it solution.

Solutions of type (5) correspond to a constant ratio of the

mean free path of electrons with an energy of about T (x) to the

characteristic scale length of T (x):

S= - T e2 (dnT/dx)/(2Te 4 An ) = const. > 0 . (7)

Taking account of the distribution function form (5),

relation (7) results in the following temperature and density

profiles:

T (a- /2 )(dT /dx) = const, n e T (3/2-a) (8)
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Considering the expression for the energy flux density,

corresponding to Eq.(5),

q(x) = QTe(x)(3 -a)N(2/m)2 , Q = F(v)v 3 dv, (9)

it is easy to see that the dependence on x in Eq.(9) vanishes at a

= 3. Note that the case a = 3 corresponds to energy flux

conservation for the classical 1 dependence of the electron heat

conduction coefficient Kc on temperature K a T 5/2 as well (see

Eq.(8)). In other cases one has dq/dx * 0, i.e. the presence of

either temporal terms or energy sources or sinks not taken into

account in Eqs.(4),(6). However, when 7 << 1, the effect of T (X)

inhomogeneity on the distribution function in the range of thermal

velocities v ~ (2T /m) /2 is small and the function f in this

range is close to the local Maxwellian one. Therefore for the case

a * 3 and z << 1 it can therefore be assumed that Eq.(6) describes

the effect of suprathermal particles on the heat flux q(x) in the

presence of the sinks or sources in the thermal velocity range.

In the limit of interest, v >> 1, Eq.(6) transforms to

2

- F + + (_ _y

1~ -a8 (F (10)+a(,,)a

where C = v2; (+Zeff )/2.

Further simplification of the kinetic equation (10) is

related to fast symmetrization of the electron distribution

function at high g, where F(v) can be represented in the form of

the sum of the symmetric part F0(v) and the small asymmetric part
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gF 1 (v). In this approximation the equations for F0 (v) and F (v)

have the forms:

(1-)d E d 3d dF

yt ({F ) ~ ({F ) =

(11)

F2 d 2 dF0F , = - y { pd - ( C F O ) + E d '

Substituting the expression for F1 (v) in the equation for

F (v), one obtains

72 (1-a)d( a[ ( 3 -a)d a 2d
- -(C F,,) + jC (F )]

6 d(F 3  )d a 6C d~~F)
-C [(3- FO) + 0(2 (F ) (12)

3 d dF

C dC ~o doJ

where 6 = T7. Essentially Eqs.(11),(12) are a self-similar

analog of the equation used in Ref. 18.

Analyzing Eq.(12), one can see that distortion of the

Maxwellian distribution function starts at the energies C6 192

The local "temperature" of the electrons with the energies C5

j3/-2 exceeds the temperature of the bulk electrons by a factor of

two. On the other hand, in order for the condition F >> F to be

true, it is necessary, as seen from Eq.(11), that the electron

energy be rather small, C3 , j9/7. Hence, it follows that the

applicability of Eqs.(11),(12) and of Eq.(2) derived in Ref. 18 is

restricted by the relation 0 : 7-1/2

At energies C4 > 12, i.e. where electrons have time to
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diffuse at a distance of about -d1 (measured in the mean free

path) distortion of the Maxwellian function becomes very strong

and f (,x) is determined by the integral T,(x) profile. Strong

anisotropy in fe(V,x) and violation of the applicability

conditions (11),(12) can be expected at 2 2 p/z, where the mean

free path becomes greater than the characteristic scale of Te(X)-

In the opposite case ( z -1/2 distortion of the

Maxwellian distribution function is accompanied by strong

anisotropization and one should consider the complete equation

(10).

III. SOLUTION OF THE SELF-SIMILAR 1D EQUATION ( < 1/2

Let us find solutions of Eq.(1O) in various characteristic

ranges of the dimensionless energy with their further matching.

A. Low energy range, C2(#/T)1/3

In this energy range the distribution function F(v) is quite

close to Maxwellian and can be found by expansion in Legendre

polynomials P1 (w):

Co

F(v) = ( F4()P(g) (13)

i=0

Leaving the mean expansion terms only and substituting F.(i)

in the form

F = f-3/2 e- (2k3 (2k+i)a , (14)

k=0
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where a0=1, one finds from Eq.(10) the following recurrent0

relation:

1-1 i+1
a + -a

21-1 al 2i+3 k-

a = (15)
k ( 1(1+1) + 6(2k+i)/

It can be seen that F0(() deviates noticeably from the

Maxwellian function at energy C a (g/2 ) /6 , while the role of the

asymmetric term F1 (C) only becomes essential for higher energies (

1/3

B. Energy range (g/1)1/3 7-1/2

In this energy range it is convenient to introduce the

variable z = C1/2 and to represent the function F(V) in the form

F(v) = -/exp(-p(z,g)). (16)

Expanding V(z,g) in a power series in -

P(zg) = PO/71/2 + P/1/4 + + . , (17)

and substituting this expansion in Eq.(10) after appropriate

calculations, one finds

PO(Z) = z - z /3 8,)
(18)
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Z 3 2 ))1/ 2  1+g 1/2

(-)

(19)
Z

+ g1/2f( (1z' 2 1/2dz'
(1-Z,2y

0

(3 1  2 2 (1-y) + 4 22 + Oz2  12 1/2

+6-10z2 +y 1/2 -1
~+610z ln2[1+ 2 - 4 ln(2/(l+y)) (20)

- (a'-3/4)1n(1-z 2) + - qz2 2 + C,Z1-21

C = - C1  + C 1 /2 + C1 31n(z.) + C 4 (21)

where z* 9 11/3 1/6 and C 1 - 1 are the matching constants of the

distribution functions (13), (17), realized at energies z = z,.

C. Energy range z = 1

Let us introduce the variable y = (z2 _1/7 11 6 and represent

the function V as a power series in -d -

o(Y,) = V01/6 + P, + ... + C2' (22)

Expanding the function V1 in Taylor series in the vicinity of
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00

V (y, W ) = I ( (1 )k (23)
k=O k!

and substituting Eqs.(22),(23) in Eq.(10), one finds

(P 0= - Rp/2 _ p24 4/4 (24)

0 (4

P , (25)

1 ( (6 3)' 11+21p 3  13p 3  2 p3 '

-- - 1 n(p) + 11n+ 3  + -1 2 -- 3  (26)

C2 = 1 + (2/3)z-1/2 + (2T)3 12 1 1 2 [(1/4)] 2

(27)

- (a-(6+jS)/4)1n(g/2) - 12 1nT + 6 - 1 - 1n ,

where f(x) is the gamma function; C2 is the matching constant of

the solutions (17), (22) in the energy range z s v-1/2 where

both expansions are applicable, and the function p(y) = P(Y)//

where Y = y/g1/3, is determined by positive roots of the equation

P3 + YP - 1 0. (28)

They are

P= 2(-Y/3) 1 3 cos ( arccos[2 2 13YKj 3 12  for 22 13 < -1 (29)

1 23 3 3/ /

1/ 3 +1 13

=1] (30)

1 22/3311/2 111/3 22/3 Y

21/3[ [(3l+1] - , for 3

At the limit of applicability of the expansion (22) (y y4 =
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), the function V(y, = 1) = C3 turns out to be equal:

C =C + -+ + C- 1nz + 1n. (31)
3 2 6 12 2 (31) 4)

Applicability of the expansions (17), (22) of the function

q(gi) can be verified by direct comparison between the magnitudes

of successive terms in the series (17), (22). It is easy to show

that the results of a given section are true at

13 71/2 (32)

D. Energy range (2/1)1/2 (1/7)1/2

This characteristic energy range only exists at rather high

g-values. The distribution function F(4) is found to be close to

the spherically symmetric one, and one should use Eq.(12) to

obtain it. Let us neglect the ambipolar electric field effect

which is not essential here (the terms proportional to 6) Equation

(12) is then transformed in the following way:

Id2 (1-U)d(C ) 3 d dF0
(C F.) = - (F 0 + . (33)

The solution of Eq.(33) in the range (2/7)1/2 < C

(1/72)1/4, taking account of its joining with the solutions in

lower energy ranges, has the form

F= 7-3/2 exp- C + 3((2/z) -1) (34)0 ~ (- 3 :
At higher energies (9/z71/4 71/2 the solution of

Eq.(33) has the power law dependence
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F = Tr 3 1 2 exp -C 3  1/4 a. (35)

The power law dependence F (v) (V2a see Ref. 21)

represents a "collectivization" of high-energy electrons

practically insensitive to Coulomb collisions. In this case, the

spectrum of such electrons is determined by just the global

parameters of electron temperature and density profiles (a in the

case under consideration). A similar dependence F(v) a v-2a occurs

at energies C p , where F(4) again becomes strongly

anisotropic and the applicability condition of Eqs.(11),(12) is

violated.

E. Energy range { a ((/7)1/2

We seek the solution of Eq.(10) in this range in the form

F (v) = it (z,i) + 7 2c (Z' g) + ... . (36)

Substituting Eq.(36) in Eq.(1O), one obtains the equation for

it (z,g):

2 (1-a)8 2
z (Z Co) = + , -jy . (37)

It is easy to see that at a: 0 the main role in the

parabolic type equation (37) is played by the terms on the

left-hand side. The solution of Sq.(37) at g a 0, with allowance

for the corresponding matching, can therefore be represented in

the form

-312 e )( )/2) a
IV~Z, g) T-3/exp - C 4 Z ID O(y) ,(38)
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where

C4 = C3 + (3/4)g + (a/4)1ng . (39)

The function t (w) represents the angular dependence F () at

112
S(13/7)2 Unfortunately, this dependence cannot be

analytically defined. It can only be shown that J0(-141) <<

i(IgI) owing to the absence of a particle source at v = and g s

0. Therefore , taking into account that the angular asymmetry

112F (M) at C = (p/7)/2 approaches unity, the following estimate can

be assumed to be valid:

j 0(g)g dW ~ 1. (40)

Thus the structure of the solution of Eq.(1O) at p < 1-1/2

can be represented in the following way (Fig.1). At low energies (

: (9/i)/, the distribution function F(v) is isotropic and

approaches the Maxwellian one at ( 2 1/6; at energies

(9/)1/3 -/2, it is anisotropic and it deviates

significantly from the Maxwellian function; at high 3, at energies

(2/7)1/2 1/2, it differs considerably. from the

Maxwellian one but again becomes isotropic (at n- 1 this range

practically vanishes) and finally, at energies C a (/1)1/2, it is

far from being Maxwellian and is strongly anisotropic. Note that

this so-called "collectivization" of electrons, where their

spectrum is determined by the global parameters, the electron

temperature and density profiles (F(v) v-2a in the case under

consideration), takes place at energies a (g/72 )1/4
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IV. SOLUTION OF THE SELF-SIMILAR ID EQUATION (g > 1/2)

The solution of Eq.(12), representing the case of high Zef'

where 1 > 7-1/2, is readily found at a = 2 since all the parts of

the equation are complete differentials:

313/ 2 + (2-S)'3 (, -5)
F ( EXP J 313/72 + (1--)5 ' (C -5(

Unfortunately, the integral J, as will be shown later,

diverges at a s 2. Therefore we shall consider Eq.(41) as a formal

expression with which one can, nevertheless, compare the solutions

obtained in some indirect way.

Let us represent the function F0 () in the form

Fo() = -32 exp(-O(C)) . (42)

Since, as follows from Eq.(41) and from qualitative

considerations given in the second section, a noticeable

distortion of the Maxwellian distribution function (doubling of

the local "temperature") occurs at energies ( 2 1/5 let us

introduce the variable u = C(( 1/5 and represent the function i

as a power series in s-1 2 , where s = (v2)1/5.

0 = 0 /s + 1/s1/2 + 2 +... (43)

Substituting Eqs.(42),(43) in Eq.(12), one finds

U

3 u' (44)
(u' +3)
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0 =0, (45)

6 8u 5 + (u-1)ln 5 + . (46)
2 5 5 +3 53

u +3

It is easily proved by direct verification that the

applicability of the expression (41), and, as a result, of the

expressions (44)-(46), is violated at C (/z2 ) 1/4 (U ?

(/72 )120 >> 1), i.e. at the time when strong distortion of the

Maxwellian distribution function already occurs and

"collectivization" of high-energy electrons starts (see expression

(37) and estimates in Section II).

The solution of Eq.(12) in the energy range (P1/2 1/2 

(P/7)1/2 is similar to the solution (35) of Eq.(33). In the energy

range 2 : (p/7)1/2, where the applicability of Eq.(12) is violated

and it is necessary to consider Eq.(10), we obtain a solution of

the type (36), (38):

F(v) = n 3 2 exp(- C5  j g) (47)

where

C5 3 5 (1/5)(4/5) 2 1/5 + (a-l)ln ( 2 ) 1/4

(48)

+ (a/4)1n9 + (6/5)6 - 3/4

At the same time the function i (g), like to $(g),

represents the angular dependence F(v) at high energies and the

estimate (40) is also valid for it.

Thus the structure of the solution of Eq.(10), for P > z-1/2
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can be represented in the following way (Fig.2). The distribution

function F(v) is isotropic up to energies s (13/z)1/2; at low

energies, C s( 2 )1/6, it approaches the Maxwellian; at the

energies (g/2 )1/6 < (9/2 ) 1/4 considerable deviation from the

Maxwellian function takes place; at energies ( a (g/2 1/4

"collectivization" of the electrons starts and F0(v) greatly

differs from the Maxwellian function and, finally, at energies

(13/) /2 the function F(4) becomes strongly anisotropic.

V. SELF-SIMILAR VARIABLES FOR 3D KINETIC EQUATION

Let us now consider a 3D inhomogeneous plasma. It will be

shown that in the case of spherical symmetry of the plasma

parameters self-similar variables can be introduced. The

stationary kinetic equation for the electron distribution function

f,( ,r) inhomogeneous along the radius r is

af e E af 1-g 2 a
Vg - e 2

(49)
2Te A Z .n (r) a 8f

=St(,f ) + eff e 2 e

where - is the angle between the particle velocity vector V and

the axis r; g = cosO; E(r) is the ambipolar electric field

directed along the r axis.

It is easy to show that Eq.(49) allows solutions in the

following self-similar variables:

fe (,r) = N F[Or/(vr),v]/[T (r)], v = V(m/2T (r))1 /2 , (50)

where, as in Eq.(5) N is the normalization factor; fF(v)dv = 1; a
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is an adjustable parameter; and the function Te(r) plays the role

of a characteristic average electron energy. Equation (49) is

transformed to

v F) 2 2 8F T'E ( aF +1-g2a8F (1dv g (aF + 2f v - (a+1/2)(1- w ) j8 k 2m 11.T - +F 2 iFgE8F 1-

(51)
1 Z 8 8F

=- St(4,F) + -(1-g) )2
which differs from the corresponding self-similar equations

derived in [21,23] for the case of 1D plasma parameter

inhomogeneity by the term proportional to I8F/8g on the left-hand

side of Eq.(51). This term describes the spread of the electrons

across the radius r.

As in the case of 1D inhomogeneity the solution of Eq.(51)

corresponds to a constant ratio of the mean free path for

electrons with an energy of about Te(r) to the scale length of

T (r) and to the same dependencies of T (r) and n, (r) on r.

In the limit of high energies, v >> 1, Eq.(51) is transformed

to

+F + aF) - (a+12)(1-g2 F + 2F)

(52)

1 a F + + (1- 2)F

For the high-p approximation the equations for F (C) and

F (C) will have the forms:
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2 1-a)d ( 2 dF
F F) + E (53)

2 (a+ 2 )d 2 2 d a (1-a)dF
- TC( FC,) + SEC i

6 (4-a ) d a 3 dF0
- - C ( a)(C FO) + E C (54)

3d dF
-d (FO + )

We shall not demonstrate here the solutions of Eqs. (52),(54)

in all energy ranges, unlike in the case of 1D inhomogeneous

plasma. We consider below just the tail electrons, since it can be

shown that the difference between the 1D and 3D distribution-

functions at low energies is not as important as for tail

electrons with energies C a: (/j)/

The distribution function of these electrons is described by

the equation

2 F
y aF + C - (a+1/2)(1- 2 ) = 0. (55)

Assuming that the angular distribution function at g s 1 and

at energies ((/)/ has the form 0 (g) = exp(-CM (1-u)), where

C 1 is the decay scale of the distribution function along the g

coordinate, the asymptotic solution of Eq.(55) for tail electrons,

112
S>> (,/')/, can be represented in the following way:

T h e) n mo ca f r ( a - 1 / 2 )

F(v ) <xexp -C 9(1 -gJ (7 1/2 . ( 56 )

The normalization constant for Eq.(56) is practically the
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same as in the case of 1D inhomogeneous plasma.

Thus, the main effect of 3D inhomogeneity or, in other words,

the main effect of of the electron spread across the radius r is

the beam-like distribution function of the tail electrons, which

to some extent leads to suppression of the influence of tail

electrons on the heat flux.

VI. DISCUSSION

First of all the presence of a strongly anisotropic power law

tail in the distribution function at energies C ? (p/z)1/2 in the

above derived equations should be emphasized. This result is quite

natural if one takes into account that electrons are collectivized

at such energies and their spectrum should be determined by global

characteristics of the temperature and density profiles Te(,X),

ne(x), but not by their local values. Since we consider the

distribution function f e(V,x) and the dimensionless energy C in

the form (5), the only dependence f on v satisfying this

condition, will be f , 1/V2 a.21
e

Formally, such a power law dependence of f (V) results in a

divergence of the dimensionless heat flux Q in the expression (9)

at a s 3 (for 1D inhomogeneity) owing to the contribution of

suprathermal particles for any values of T. Relation a s 3

corresponds to a rather steep dependence Te(x): dinT /dlnx 2 2/7.

At a = 3 the divergence is a logarithmic, while at a < 3 it obeys

the power law. At a much steeper dependence of T e(x), where a s 2,

the dimensionless particle flux J diverges and it turns out to be
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impossible to determine the quantity s, while at a s 3/2 the

quantity N turns out to be divergent. Here it should be remembered

that the case a = 3 corresponds to the constant heat flux q

according to Spitzer's electron heat conduction law.

It should be noted that the Luciani-like nonlocal expression

for the heat flux, Eq.(1), for the electron temperature and

density profiles under consideration does not make any difference

between the cases with a >3 and a < 3 and gives q =

q SH(x)/r1-T 2 (3-a) 21 .qSH

However, the emergence of a great number of suprathermal

electrons is related to their transport from some hotter zones

(electric field effect, E x dT/dx is inessential here). Therefore
e

in real limited systems, where the maximal temperature is limited

to T s T the formally emerging divergences can be eliminated

by cutting off the divergent integrals at the energy level mv2 /2

T (we assume that the distribution function fe approaches a

self-similar one in the energy range mV /2 s T ). Assuming that

C S C m T IT , in Eq.(9), one finds the contribution of

tail electrons to the integral Q (a < 3):

exp(C ) 0<-1/2

AQ2 (3- ) ) exp(C 4 ) 2 (57)
tail (3c 7ma x

exp(-C 5 ) ' -1/2

Taking into account the fact that the contribution of

electrons to the integral of Q, where C s (g/1/2 is of the order

of -, the effect of tail electrons on the heat flux becomes

essential when the temperature difference is rather large:
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T ax(3-a) >a/2 4 1/2 -1/2
>r . (58)

exp(C5( 
2  >1/5-/

In formulating Eq.(58) we left the main term only in the

constants C4 and C5 ; here C4 ~ 2/3, &5 ~ 311 5r(1/5)r(4/5)/5.

In the case of smooth T (x) profiles, where a > 3, the effect

of tail electrons on the heat flux only becomes noticeable at

rather high values z ~ 1.

Note, however, that the estimate (58) and other

generalizations made in this section are based on self-similar

solutions of the collisional kinetic equation that were obtained

for the electron temperature and density profiles characterized by

z. It is obvious that they do not spread to the zones with uniform

electron temperature in the step-like temperature profile.

Moreover, a definite effect on the heat flux production is also

exerted by some boundary effects (e.g. interaction between the

plasma and tokamak divertor plates). The study of such effects is

beyond the scope of this paper.

In the case of 3D inhomogeneous plasma, owing to the

beam-like character of the tail electron distribution function

(56), the effect of tail electrons on the heat flux starts to

become pronounced at much steeper effective temperature profiles

(a < 7/4) than in the case of the 1D inhomogeneous plasma.

Let us now consider when the high-Z approach, which is

based on representation of the distribution function in the form

of the sum of the symmetric part and the small asymmetric one,
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can be applied for investigating the effect of nonmaxwellian

suprathermal particles on the electron heat conduction. It is

necessary to note that if inequality (58) is not fulfilled the

energy range responsible for the electron heat conduction is10 1

< c < c2 , where c = (3+5)Te, C2 = (7+9)Te.

Let us assume the electron temperature profile to be

characterized by the magnitudes of AT/L = I < l and 9 < 1-1/2. it

was shown above that in this case the electron distribution

function deviates noticeably from Maxwellian and is still

symmetric in the range ( 2/7) 1/6 < C < (/d) 1/3; at higher

energies C > (p/z)1/3 the distribution function becomes strongly

anisotropic. The effect of this deviation becomes noticeable for

the heat conductivity when (g/-2 )1/6 < 2 I e and becomes very

strong when (g/z2 1/6 < c 1/T.. But this effect can only be

described by high-Z approach when the distribution function in the

113range of interest is still symmetric, that is c 2 e< (9/7)

Both inequalities ( (g/72 1/6 S C /T and c 2/T < (g/7)1/3 ) can

be fulfilled if zef is extremely high, Zff a 260, but no

elements with this charge exist. Therefore for < X-12 the

analysis of strong deviation of the electron heat conduction from

the Spitzer-Harm theory must take into account the energy range

> (9/7)1/3 where the distribution function can not be described by

high-Z approach. Thus, high-Z approach can only be applied for

the investigation of the nonlocal effects under the condition

-1/2
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VII. CONCLUSIONS

i. Solutions of the collisional electron kinetic equation are

found for 1D and 3D (spherical symmetry) inhomogeneous plasmas

with arbitrary Z eby means of self-similar variables. 2 1

ii. The criterion (58) is obtained for the plasma parameter

profiles characterized by the ratio of the mean free path for

thermal particles, X , to the electron temperature scale length L.

It determines the effect that tail particles with motion of the

non-diffusive type have on the electron heat conductivity.

iii. For these conditions it is shown that the use of a

"symmetrized" kinetic equation of the type of Ref. 18 for the

investigation of the strong nonlocal effect of suprathermal

electrons on the electron heat conductivity, when the electron

heat conduction can not be described by Spitzer-Harm theory, is

only possible at sufficiently high Z ef (Z ef ?: ( L/? T 1/2

iv. In the case of 3D inhomogeneous plasma (spherical

symmetry), the effect of tail electrons on the heat transport is

less pronounced since the tail electrons are spread across the

radius r.
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Figure captures

Fig.1 Characteristic energy zones of electron distribution

function change at moderate Zeff: (1+Zer )/2

1/7 /. Region 1 - linear deviation F(V) from Maxwellian

function, F(v) is symmetric; 2 - weak deviation F(4) from

Maxwellian function, F(4) is symmetric; 3 - essential

deviation F(v) from Maxwellian function, F(v) is

asymmetric; 4 - strong deviation F(4) from Maxwelli .

function, F(4) is symmetric; 5 - "collectivization" c:f

electrons, F(V) is symmetric; 6 - "collectivization" of

electrons, F(4) is asymmetric.

Fig.2 Characteristic energy zones of electron distribution

function change at moderate Zeff: j a (1+Zef )/2 2: i/1/2

Region 1 - linear deviation F(4) from Maxwellian function,

F(V) is symmetric; 2 - strong deviation F(v) from

Maxwellian function, F(v) is symmetric; 3 -

"collectivization" of electrons, F(V) is symmetric; 4 -

"collectivization" of electrons, F(v) is asymmetric.


