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Chapter 1

General Theory

1.1 Introduction

This work is within the framework of MHD. We study a confined plasma
surrounded by a vacuum region and bounded by a resistive wall. Confined to
axisymmetric systems, Chapter 1 deals with a fairly general theory for such
systems. To be more specific, we are interested here in the case where the
configuration is stable in the presence of an infinitely conducting wall, but
unstable without the wall. For physical reasons an infinitely conducting wall
cannot be made. It is therefore of interest to study the effect of a resistive
wall. This is done in Chapter 1.

The results in Chapter 1 depend upon knowledge of the solution for the
stability problem in the two limiting cases.

1. The wall and the conductors in the vacuum region are not taken into
account (wall and conductors at infinity).

2. The wall and the conductors in the vacumm region are taken into ac-
count as infinitely conducting elements in the proximity of the plasma.

It appears to be the case that even the last of these problem areas has yet
to be comprehensively studied, probably because it is rather complex. This
is the subject of Chapter 2.
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1.2 The Lagrangian

We start from a Lagrangian f given by

S=81WF+ I dSn.- 1 B-f, (1.1)
2pAo s,

where the notation is the usual one associated with the MHD-energy Princi-
ple, see J. P. Freidberg I].

We consider a plasma region V, where S, is the boundary of this region,
and a vacuum region, which contains a resistive wall, with Vi the region
between the plasma and the wall and V the region outside the wall. Let the
perturbation in the vacuum magnetic field inside the resistive wall be given
by

$1 = 4; .(1.2)

This representation of the magnetic field has an obvious weakness, which is
the problem of multivaluedness in a doubly connected region, as we have
it in a typical toroidal configuration.' In spite of this, the simplicity of this
analysis as compared to a description in terms of a vector potential, hopefully
justify this shortcoming.

The boundary condition (the continuity of the normal component of B
across the plasma vacuum interface) is given by

nV s, =n - V x ( x B)s, = -V. -{n x (t x $)}|s,
= -V,-{n$-$n-}|s,=V .{n-}s, ,(1.3)

since n -B = 0 at the surface. We obtain the last representation by noting
that V, = V - nn-V (the surface gradient at a surface having the unit
normal vector n). The following identities exist

V, - (U X ) = V - V. x U - U - V. Xv , (1.4)

V, x n = 0, (whenever n is the surface unitnormal). (1.5)

'This is of special concern for the n = 0 and m = 0 modes.

4



Take u = n and v = x B in eq.(1.4) to prove the second last step in
eq.(1.3). We now consider the integral

2 SW V dS J V. (41 V42 )dS. (1.6)

Then we may write

sw t = n1 1VkdS + On - VidS, (1.7)
2pLO s, On-VdS+2pto s.(17

where n is a unit normal pointing outward from the plasma surface. Also
notice that we have used the fact that V24 = 0. Here S, and S,, are the
plasma and wall surfaces, respectively. At the wall surface we adopt the
convention that the unit normal vector is pointing towards the wall on the
inside, and away from the wall on the outside.

Using the boundary condition eq.(1.3), we may write

W = 1 4(, -{n x (4 x $}dS + y- On -V4dS, (1.8)
2pq0 Js, 2/to Js.

and

11 V, .{n x ( x }dS =
2po Js,

1 fV, -{Oin x (( x )}dS - n x (4 x f) -V,OjdS
2pLO s, 2pio s,

to show that the first of the integrals on the right-hand side above is zero,
we use the formula

J{v -v + Jn -v}dS = m. vds, (1.9)

where the integrals on the left-hand side are over a surface bounded by a
closed curve over which the integral on the right-hand side is performed.
Also m = T x n, where T is the unit tangent vector to the curve, n is the
unit normal vector to the surface and J = V, - n. (See Brand: Vector and
Tensor analysis p. 222 [21).

In our case the surface is closed and the left-hand side vanish, also
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v = qin x (t x f),

thus v -n = 0, and the first integral on the right-hand side of eq.(1.9) vanish
and we have the result

1 1~i '
1 jV, - {n x (t x B}dS= n - tf$ - V dS. (1.11)

2pos,2os

Notice that b - V4 = $ - VB = f . b 1 where $1 is the perturbation in the
vacuum magnetic field. We may then write

8W) = 1 n - ,b - $ 1 dS + - j n -V4;dS. (1.12)
V 2LO s, 2po s

For the outer region we have

VW3") = j V40 |2dS = - j q$0n- V4dS, (1.13)
2pAO fV. 2LO 's.0,1.3

with V 240, = 0.
The solutions O. and 4, are connected over the resistive wall region by the

solution within the wall. For the solution within the wall we shall use the thin
wall approximation and adopt the solution given by Haney and Freidberg [3]

eqs.(30) - (40). For this problem the solution for the magnetic field is derived
from a vector potential, and by expansion in the thin wall parameter it is
given by

B1. = V x Ao + V x A,+... (1.14)

The first or leading order term is a surface quantity not changing across
the wall. Continuity of the normal component of the magnetic field requires
to leading order that

n -V4O = n - V x Amo = -V, - (n x A.o), (1.15)

where we again have used the identity given by eq.(1.4). In a similar way we
obtain

6
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n - V4o = n - V x Ao = -V. . (n x Amo). (1.16)

From this we conclude that the jump in n - V4 across the wall is zero to
leading order (in the thin wall approximation). Since we also assume that
there is no surface current present on the wall surface, the parallel component
of the magnetic field must also be continuous across these surfaces (inner and
outer), that is

nxVqs. = n x (V x Am)Is., + n x (V x A.l)|s, +... (1.17)

n x Vq$ls.. n x (V x A,0o)|s., + n x (V x A, 1)Is.,+... (1.18)

From Ref. 3, eq.(40) we have

U
2

n x Au1 = a1 (s) + C(s)u + oo-yd 2 n x A(s) , (1.19)
2

where u is a parameter varying across the wall, being zero on the inside and
one on the outside and s is a surface parameter for the poloidal direction.
Since we are considering axisymmetric systems, no reference to the toroidal
direction is necessary. We find

V x A,, = (V,+nn-V)x A.,
= nn - V x Au1 + higher order terms

n - V(n x A )+...
1 8
I a (n x A u1) + .

C1(s)
S + pood n x Aou + ...

d
By using this result in eqs.(1.17) and (1.18) we obtain

1
n x V4|s. = n x (V x Ao) + n x C(s), (1.20)

d

n x VoIs,, = n x (V x Ao)+ n x C(s)
d

+ jtoydn x (n x Auo(s)), (1.21)
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or written as a jump condition

[n x VO]= -ptooydn x (n x A.o(s)), (1.22)

where [Q] means Qi - Q,. By adding eqs.(1.12) and (1.13) we obtain

6 W, +W*= 6 1f n .1§ -fidS

+ -- f On- Vq5dS - 1 f 0,n - V4,dS (1.23)
2po s., 2po s.0

Using the boundary conditions eqs.(1.15) and (1.16) we obtain

SwSQ + sw) -1 n - 1 dS

21L j(4i - 4.)V, - (n x A,,)dS

= f n.-tJ.BidS
2po s,

+ j(n x A 0) - V,(4. - 4k)dS

1 f V, {(n x A..)(4O - 0.)}dS

= f n.-t-1§IdS
1

+-- (n x Ai) - V,(4; - 4)dS, (1.24)
2po S.j

where we have again used eq.(1.9). From eq.(1.22) we obtain

n x [n x V(O; - 0,)] = -poa-ydn x [n x (n x Amo(s))], (1.25)

V,(O; - 4,) = -pooudn x A.o(s), (1.26)

where eq.(1.26) is a simplified form of eq.(1.25). From eqs.(1.24) and (1.26)
we obtain

8



nvSWP +8i W"= 1 n - t, t - fi dS - a-d In x A 0 ol 2 dS, (1.27)
2puo s, 2 s

and

L L $3 -$ 1dS = Wp+ W + In x Ao12 dS. (1.28)

Finally we may write our Lagrangian in the desired form

L = 6WF + W) + W*) + d n x A o12dS. (1.29)

Concerning the next section we shall simplify notation slightly and write eq.
(1.29) as

L = SWF + 6W, + W, + 8Ww, (1.30)

where

8Ww In x ALn woI2dS.
2 fs.

Notice that in the last integration over S,, no distinction needs to be made
between inner and outer wall surfaces, since only surface quantities are in-
volved.

The next step is to prove that the Lagrangian above is a variational form
that has the pressure jump condition at the plasma vacuum surface and
condition (1.26) as natural boundary conditions.

1.3 A Variational Principle

First we shall assume the following boundary conditions to apply, and that
these conditions also apply to the variation. These conditions reflect the fact
that the normal component of the magnetic field B, is always continuous
across any boundary, due to V -B = 0.

n -V-ils, = n -V x (t x B)Is,
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= -V,.{n x ((x E)}|s,
= V. -{fn - L }|s ,

n -V4ils. = n - V x Amo = -V, -{n x Awo},

n - Vo,0 s. = n - V x Ao = -V, -{n x Ao}

= n . Voils.,

0(oo) = 0.

(1.31)

(1.32)

(1.33)

(1.34)

We now take the variation of eq.(1.30). After a considerable amount of
algebra (see Appendix A for details) this can be written in the following way:

6(6WF) = -j C F(4)dV L n.8C(B-Q--pV --- Vp), (1.35)

where

F(t) - - Q x
ILo

and

For 6(6i) we find

8(6Wi) =

(V x B) - -B x (V x Q) + V{4 - Vp+ -ypV - },
Yo

QefQ =t V x (txB).

n n. 6GB. V4idS + I j - V64idS
IO s, [to Vs

- I OV2 80idS ,
Ao JVi

(1.36)

and

6(8W") = - 1 ,n -V6SOdS - 1 f 0 V 2 640 dS.
o si ce ha

Notice that

(1.37)

i, in - V8idS = V, -{n x (8 x $)}dS

= - [V, -f{qn x (6C x t)} - n x (8 x $) - V,Oj]dS

fn -8 t . V,4;dS,
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which has been used when obtaining eq.(1.36). When integrating the inner
vacuum region we need the following expressions obtained from eqs.(1.32)
and (1.33)

- n . V64idS - V, - (n x 8A,,)dS

V- LV, (qin x 6A. 0 )dS

+ -- n x 6A,V, ds, (1.38)
ILO S 

1.8

and also when integrating the outer vacuum region we need

-- ,n - 6.dS -1= -f 4V,.(n x 6A ,dS
J10 /to

=- fVL - (40,n x 6A, 0 )dS
Po S .

n x 6A... V,4 0dS. (1.39)

We summarize the results:

/ l1b(6VF) = - j8.F( )dV--] n-8t(B.Q--ypV-t-t-Vp)dS, (1.40)

6(8vi) -1 n -btl .V,,idS-- 1 f V2 b-OdS
110 IL O Vi

- V, -{in x 6A.}dS
ILO S.

+- n x 6A,,, - V,0dS, (1.41)

6(6V) -- 10{,n x SA ...dS}
I-O fS.
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- I j n x 8A,, - V,,q'dS - 2- f OV 2 640 dS, (1.42)
Ao s. ILO v0

b(6W.) = o-ydL (n x bA. 0 ) - n x AWdS. (1.43)

Adding these results and making another integration by parts, we obtain

6L = - S -F( )dV
Jvp

I f n.(B.-Q--ypV -t-.Vp)dS
Ao

+ -- n-8t§-VidS
Ao s,

+ - n x 6A,, V.(Oi - q%) + loa-ydn x A. 0 }dS
Ao fs.

1 f0,V 2 64idS - - f I V2 2 dS
/10 V /Io "0

1 V,{n x 6A. . ($ - 0.)}dS. (1.44)

From eq.(1.44) we see that we have a variational principle that produces
the equations of motion F(t) = 0 in the plasma region, and with the proper
boundary conditions, i.e., the pressure jump condition at the plasma vacuum
surface S, and the corresponding condition given by eq.(1.22) or (1.26) at
the conductor surface, as natural boundary conditions. There is in addition
one restriction to be observed. The solutions for the scalar potential have
to satisfy Laplace's equation also for the variations. This is still, not a se-
vere restriction since for our problems it will be natural to choose the trial
functions as solutions of Laplace's equation.

Finally, notice that the last term in eq.(1.44) integrates to zero when S.
is a closed surface, otherwise this term may contribute.
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1.4 Trial Functions

We shall now discuss functions that we shall use as a base for our trial
functions. We consider two associated problems:

Problem 1: There is no conducting wall present. The corresponding solu-
tions are given by . and 0..

Problem 2: The wall is infinitely conducting and makes a closed surface in
the vacuum region. The corresponding solutions are given by tb and
Ob.

Assumption: We shall make one assumption about these solutions, namely
t. = tb or the perturbation in the plasma is the same for the modes
considered in the two situations.

We then make the following expansion, let

10 = C14. +C24b, (1.45)

0. = C3 0 , (1.46)

with the boundary conditions

40(oc) = 0 and n - V 6 si = 0, (1.47)

and let both solutions satisfy the same boundary condition at the plasma
vacuum interface (t. = tb), according to the assumption above. We shall
use our Lagrangian as given in eq.(1.30)

S= 61VF + WW, + 8W,+6Ww . (1.48)

From the boundary conditions at the conducting wall and at the plasma -
vacuum interface, we obtain

n - Vqils, = n - VO.ls, and n -V4lbs, = 0 c = c3 , (1.49)

n -V4;|s, = n . Vk.1s, = n - Vbjs, c1 + c2 = 1, (1.50)
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W - \ V41 2 dV

= c i 1 V 4.|2dV + c22- \VkbI 2 dV
2po 2pLOV

+2cic 2,- Vq. - V~bdV. (1.51)

Now we have

I VO4,.V 4bdV =J V-(4V 4bdV = -1 4.n-V4dS = 6Wy". (1.52)
s,

Notice that in eq.(1.52) there is no contribution from the other surfaces, i.e.,
wall and conductors, as will subsequently be considered, because n -V 4 bIs' =
0 on these surfaces, which has been used in order to obtain eq.(1.52). Here
S4" refers to the vacuum part of the energy for the first problem, i.e., wall
at oo, and 8' to be used shortly, refers similarly to the problem with an
infinitely conducting wall present. Notice that n- Vols, = n - V01iS, due
to assumptions made. Furthermore

8 =1 IVO2 21 O,,~VSW, = IV4| 2dV = c.J-- 2 V4L\ 2dV. (1.53)

Now since c3 = cl and

IV 0t 1 f1 1

--sIv \V4i 2 dV + -- I V4.\2dV = 6Wy- , (1.54)

we may write

L = 6WF + W + 6W.+ 6Ww

= SWF + c165WV + c;SWO + 2c1 c2 W1 + SWw

= 6WF + (1 - 2)WW + W + 5Ww
= 81W + C(8W6 - 6Wy7) + SWW.

Thus
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£ - 5WO 6 + W - 61W7) + ''w, (1.55)

where

Ww =In x Ao.2dS, (1.56)2is
and

n -V s=n - V x A.O = -V, - (n x AmO), (1.57)

is the boundary condition that connects A 0o to 0,,.
Since 0, = c3q$m it is natural to scale A.0 in a similar way, thus let

Awo =c3A o , (1.58)

and we have

n- V4os. = -V, (n x Awo), (1.59)

and

c3 -d n x AmdS t c3Sw . (1.60)

The Lagrangian can now be written as

V= WOC + c2(6W" -b 00) +(i -c 2)2 SWw. (1.61)

We find the stationary value of L with respect to the variational parameter
c2 by taking the derivative of L with respect c2 and set the result equal zero,
this way we obtain

61w
C2  6W W (1.62)

6I~b -- 614o. + 6&w

Let the stationary value of the Lagrangian be given as t, then we obtain

= 6W + SWw(SWb-8W") (1.63)
bWb - 8W,0 + bfw

In order to make an estimate of the growth'rate we solve the equation
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0, (1.64)

which yields

b8W 0  8Wb (1.65)
6Wb - SW". 5Wb 16

with

SW 0  = 14'F + J IV$Oc 2 dV, V = Vi + V, (1.66)

81j = b 6WF + jVObl2 dV, V = V, (1.67)

a-w= 2 n x A"'12 dS, (1.68)

and Ao satisfies the boundary condition

n -V s= n -V x Awo = -V. - (n xAo). (1.69)

Finally we may write in correspondence with the notations used by Haney
and Freidberg,[3 ]

SW 0
7bD = - 6W", (1.70)

with

TD = poOdb (1.71)

and

- ifs 'n x Ajo| 2dS
b =- S b . (1.72)

8Wb - 6W""

The boundary condition eq.(1.22) is a natural boundary condition, and
therefore it does not have to be satisfied by the variation of the solution. This
boundary condition normally is satisfied only by the exact solution, which
in general is unknown. However, the error made by assuming this condition
satisfied also by the variation must be small of first order. By making the
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assumption that the variations satisfy this boundary condition we can derive
a less accurate formula that may be simpler in practical use for the purpose
of evaluating b,

- f I n X A~O12 dS 8Wb - bW.b = .Id S (1.73)
1W7 - -WL - fs, IVaO6I2dS

where the last step in the formula above rests on the assumptions made above.
The last expression for b in eq.(1.73) has the virtue of being independent of
AO, it depends only on the solutions of Problem 1 and Problem 2 and the
geometry of the conducting surface. A derivation of this alternative formula
is presented in Appendix B.
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1.5 Resistive Wall and Resistive Conductors

In order to include resistive conductors inside a resistive wall we need to
modify the Lagrangian by adding two terms

1WC = V x A,12dV + A 2dV. (1.74)
2ito v 2 ve

In order to prove this we take the variation of eq.(1.74)

6(6Wc) = - (V x A,) - (V x 6Ac)dV + ay Ac- ArdV
AO fVe

- fV -{6Ac x (V x Ac)}dV
A0 V,

+- f Ac {V x (V x Ac)+ oyAc}dV
/10 ",

= -IL n x 8Ac - V x AdS
-IL k~

+- 5Ac -{V x (V x Ac)+ MooyAc}dV.

Notice that the surface unit normal vector n is pointing into the conductor.

1.5.1 Conductor Inside the Wall

We shall first study the case where the conductor is positioned inside the
wall. From the vacuum region outside the conductor there is a contribution
from the vacuum energy

W I -- V4 2dV (1.75)
2p11

1
6(6We =~ - V80V~idV

i
+ n(= -- V80 -{+ -- f6;d - - dVS4dV

- f in -V80idS+ .5n(1-76)

0O S,

18



where the last integral is over the conductor surface. Equation (1.76) now
replaces eq.(1.36). Let

6(AW ) 2 J n . VodV. (1.77)
ILO " 

1.7

The same kind of boundary condition that applies to a resistive wall
also applies to a resistive conductor. Here we make use of the condition
corresponding to eq.(1.33), and obtain

/16(SWi) = -- ~4kV, - (n x SAc)dS

- 1 n, x {6n Ac d

+- x A - VdS.

The integral of the surface divergence integrates to zero and we obtain

8(6i') + 6(6Wc) - f n x 6A,. {Vq5 - V x Ac}dS
11

+- SA - {V x (V x A,)+ MyAc}dS.

Since 6Ac is arbitrary and n x 6Ac is an arbitrary vector in the tangent plane
of the conductor surface Se, we obtain

V x (V x A,) + Mioo-yAc = 0 (1.78)

in the conductor and on the conductor surface we have

n x {n x [V,0 - V x Ac]}Is, = 0. (1.79)

The last condition means that the parallel component of the magnetic field
is continuous across the conductor surface. This way the condition becomes
a natural boundary condition for the variational problem.

1.5.2 Conductor Outside the Wall

As the next case we consider the situation where the conductor is positioned
outside the wall. For this case the equation corresponding to eq.(1.37) now

19



becomes

L(8V,) = - V . V64OdV

= -- V -{0, -V60,}dV - -s V2 504,dV
1P V

= -- 9n - V6 0, dS + - L 0,n - V640 dS. (1.80)

Let

8(64",) 0efn -Vjo .V dS. (1.81)

We again use the boundary condition corresponding to eq.(1.33), and obtain
results similar to the case with the conductor inside the wall.

1.5.3 Lagrangian Containing Wall and Resistive Con-
ductors

The preceeding analysis is strictly speaking restricted to considering just one
conductor, but the generalization to an arbitrary number of conductors is
obvious.

The full Lagrangian takes the following form

' = SWF + 6Wi + 81W0 + 6Ww + SWc, (1.82)
where SWe is now a part of RWi and SWC is the sum over all conductors
taken into account. Again we consider the fields to be given by eqs.(1.45)
and (1.46)

W = c~ |V4| 2 dV + 2c IV I|2 dV + 2c1c26W1,,V l 2po 2pto fgl

SWy*) = c J V4I 2 dV,

= [A 2 Vi~ = |I xkq2d 2dV Sc"+6
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and the sum is extended over all conductors. To leading order we obtain 2

V x A, = V x AcO = c1V$0 ,,

and we obtain

8Wc = - jVxAc dV= J IVO$2 dV.
2po v, 2pLO V

Moreover

2po I V$.I 2dV + | f 2 dV + - |V4f| 2dV = 5Wy".
2piO '. ". 12 2LO V O. 1

C = 6WF + C28Wy" + c;8WV

+2c 1 c2 8Wy" + 6WW + 8Wg

= 8W + c2(bWj - 5Wy") + 5WW + 5WR,

8WW = c381w,

= c35W, c3 n .Is,

8WW = !yIn x Ao2dS,

S= A 2 dV,

Wols. = n - V0.s, ,

Ac S, =

(1.85)

(1.86)= c3n - V x AC
(1.87)

(1.88)

(1.89)

(1.90)n - VO.|sc.

Since SW = 5WF + 614 and 6W, = 6 WF + 8W"I we obtain

C = 6W + C2(8lWb - 61W".) + c2(,Ww + SWC), (1.91)
2The error here depends on the resistivity of the conductor, and the error obviously

depends on the volume of the conductor as compared to the total volume of the vacuum
region. Remember that for the limiting case of a conductor with infinite conductivity, the
normal component of the magnetic field remains zero at all times.
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(1.83)

Thus

(1.84)

n - V x

n - V x



and
2 )C1 = (1 - c2)

Notice that for the case with the conductor in the outer region, the only
formal change is that ci in eq.(1.83) is replaced by c3 , but since eq.(1.49)
requires c1 = c3, this does not make any formal changes in the formulas. This
does not mean that there are no real changes, because the final result will
depend on the actual location of the conductor. However, the computational
procedure is the same whether it is located outside or inside the wall. Now
we make C stationary by determining C2 such that

di
= 0,dC2

and we obtain from Z = 0 that

SWv + 6I _ 8W"
SWb-8W 8Wb -(1.92)

Thus

I7D 8W ' TD= Ijoodb, (1.93)

and
and ~ ~ f I n x i w 12 dS + Ify,\ ~c\12 d2p _ m IACdd (1.94)

5Wb - 5W-
We are then left with a problem of determining the integral

Ic 2=od f 2dV.

This is the subject of the next section.

1.5.4 Magnetic Field Perturbation Inside a Resistive
Conductor

We shall assume axisymmetric conductors. This assumption is not a severe
restriction for tokamak systems. In fact axisymmetry is a virtue of a properly
designed tokamak system. We shall furthermore make the assumption of
circular cross section of the conductors and use the long thin approximation,
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permitting us to approximate the toroidal conductors with a straight cylinder
to leading order.

Assuming the perturbed magnetic field inside the conductor is described
by a vector potential A, the governing equation in the low frequency limit is
given by

V x (V x A) = -aA,

where the time dependency is of the form
we have

A,. 2 8A9
V 2A, - 2 89

A 2 8A,.
V2 Ae - Ae+ 2 A

r 2 r2 8
V 2 A,,

a = Loay-, (1.95)

exp(-yt). Written in components,

(1.96)

(1.97)

(1.98)

Boundary Conditions

The solution has to satisfy the boundary condition

n - V s= n -V x Als,. (1.99)

In the local cylindrical coordinate system the centerline of the circular cross
section conductor is the z- axis. In this system we have the coordinates r'
and 9' being related to the r and 9 in the 'plasma'- coordinate system as
follows

r = r0 + r'2 + 2ror'cos(Oo - 9')

tan = rosin0o+r'sin9'
r o cos 90 + r' cos 9'

Or r' ro
- - + - cos(O - 0')

C 2 r'ro cos( + 9') + r 2 cos 29'
' c(ro cos Oo + r' cos 0)2

1 ro sin 00 + r'sin 0'
cos2  r co

1 + 32 r0 cos 0 + r' cos 6

23
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We need to know n , and there are several ways of obtaining this
quantity, a few of which are outlined in Appendix C. At this point we shall
merely assume that this quantity is known and given as

n 1 2,rikv
ni -V~~oos, = L -fkeik

k c

where v is the parameter representing the poloidal direction of the surface,
and r, is the radius of the conductor. Thus for the rest of this problem we
consider n - VoIs, to be a given quantity on the conductor surface. We
recall that

8A, OA. irn'
n - Vx A= a - --e= m A - ikAe. (1.100)

r'ao' (9Z r'

This expression represents a real physical quantity and must therefore be
real, thus we arrive at the conclusion: The following quantities must be real

and At iAe.

Resistive Conductor, Solutions

For simplicity we shall from now on omit the primes as reference to the local
coordinate system, but remember that in the present context r, 0 and m refer
to the local coordinate system. Turning back to eqs.(1.96) - (1.98), we may
write these equations as

(r -)A- (M 2 + A, - (k2 - a)A, - 2m iAel (1.101)
rdr dr r-
l d d (m2 +1) 2m(r- e - M2 0A - (k2 - a)A& = - iA,, (1.102)
rdr dr rr 2

I d d m 2

(r dr 2 A-(k2 -a)A. = 0. (1.103)rdr r2

Multiplying eqs.(1.102) and (1.103) by i, we may rewrite the equations as

I d d (m 2 + 1) 2m(
r (r -)A,. - r2 A - (k2 -a)A, - Z, (1.104)

24



1d d (m 2 +212

S (r A,) - -2 - (k -a), = o. (1.106)
r dr dr r2

By adding and subtracting eqs.(1.104) and (1.105) we obtain

I d d (M 2 +2m+ 1) 0
rdr dr)(..A,-+ A) -(A,+ e)-(k -a)(Ar+ A) = o,
1 d d (M 2 -2m+1) 2

(r - -)(A, -- e) - 2 (Ar - A) - (k - a)(A, - A) = 0.
r dr dr

By inspection we see that

A, + A, = ciIm+I(kor), (1.107)

Ar - A = c2Im.-I(kor), (1.108)
A. = c3 Im(kor), (1.109)

where Im(kor) is the modified Bessel function and kD = I/k2- a. Since the
solution has to be finite at r = 0, there are no Km- functions present. Also
notice that our notation is a bit sloppy since our r and m actually are r' and
m', i.e., it is the coordinates in the local system.

We have already chosen V -A = 0 as our gauge condition. Thus we have

1 (rA,)+ + - 0,
r r r 00 z9 -

or

1 (rA,.) + mA + kA, = 0.
rr r

Here k = n/Re, where n is the toroidal modenumber and R& is the R-
coordinate for the center of the conductor. From eqs.(1.107) - (1.109) we
obtain

1
A, = 1 (c1Im+1 + c2 1m- 1) , (1.110)

2

AO = I (CIm+I - C2 Im-1) ,(1111)
2

A2 = C3 Im - (1.112)
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The gauge condition can be written as

d
d {X(C11m+1 + C2 Im-l)} - m{c1Im+1 - c 21m- 1 } + krcalm E 0. (1.113)

We list some properties of Bessel functions:

d
j(XIm) = IM + xI'=

=(1 - m)Im + xI.-

S(m + )Im + xIm+,
d (XI~) -mm + X,
d

S(XIm1) = mIm1 + XIm ,
dx

Using these relations we may rewrite eq.(1.113) as

c1(-mlm++ xI.)+ c2(-mIm_1+ xIm)+ cimI.+1+ c2mIm-1 +krc3Im 0

==> C 1 = -C 2 , c 3 =0.

The solutions are therefore given by

A,. = C.(Im+1 - Im- 1) = -C,. Im (kor), (1.114)
kor m

A9 = crn(Im-1 + Im-1) = cm21m(kor). (1.115)

From this result we conclude that A, = 0, and that the boundary condition
eqs.(1.99) and (1.100) simpifies to

fme = k C.(IM+1 + Im1)1,.,e2 ""' (1.116)

It then follows that

Ifm = -kCm(Im+1 + Im-l)l,=,

and

2fm fm2cm -f f (1.117)
krc(Im+1, + lm-1)1,.=r, krcI'(korc)
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Technical details for a Copper Conductor

The solutions we just obtained contain a critical parameter ko where

k o tl VkJ - - = /n2 - 1LoeRj,,y

thus ko depends on conductivity and the characteristic time for the resistive
wall instability. The dependency on -y makes the problem complicated be-
cause this is the primary unknown to be determined in this work. Therefore
by considering a conductor of finite thickness we no longer obtain an explicit
formula for -y as given in eq.(1.93), since the integral over the conductors are
implicit functions of -y. However, y is likely to be weakly dependent on ko,
in which case we can solve the problem by iteration. The first step could be
to solve the problem with -y = 0 or some predetermined value from experi-
ence. Numerical trial and error is necessary to determine the validity of this
procedure. We shall now discuss actual numerical values for ko. Using the
conductivity for copper we find

a = 5.88 x 107Q-Im- 1 = 5.88 x 10 7AV-Im -

Iso = 1.26 x 10- 6 Hm-' = 1.26 x 10- 6VsA~'m'

thus

p = 1.26 x 5.88 x 1AV-m-'VsA-m-1 = 74.1sm-2 .

If we take Rc = 1 m we find pzoaR, = 74s. At this point we restrict ourselves
to situations where the resistive wall instability occurs on a timescale of the
order of 100s or longer, i.e., -y < 10-2s-1. We then have

and for n 5 0, it then follows that

kc2  R 1, - aRc) >0. (1.118)
C

Therefore, as long as the characteristic timescale for the resistive wall in-
stability is sufficiently long for the inequality in eq.(1.118) to be satisfied,
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the solutions can be written the way they are presented in eqs.(1.114) and
(1.115). If the inequality in eq.(1.118) is not satisfied, then the solutions have
to be rewritten in terms of ordinary Bessel functions. We are not investigat-
ing this possibility here. However, we notice that for the case considered

xo = korc=T n2 - aR ,
RI

would normally be a small number, as long as the square root is not too
large. When this is the case we can use the small argument expansion for
the Bessel functions. We shall discuss this limit subsequently, but first we
consider the energy integral.

Energy Integral

The purpose of this exercise is to evaluate the energy integral over the con-
ductor, see eq.(1.93) and the following equation.

c| Ik1 2dV = J A,.12 + Ae|2)

= 2 nAm)2 + (A 2m2 dZ,

ko M( a d

where x = kor, xo = korc and

2m
A,. = cm(Im+1) - Im-1) = -cmIm(X),

Aam = c.(Im+) + Im-1) = cm'(X),

A,-m 2 + Ae m) 2  = Cmn {(Im+I - Im-I)(In+I - -I-)2 Mm,n

+(Im+ + Im-1)(In+l + In-1)}

= : 2cmcn {Im+ I,.+1 + Im-, I.-1}-

in

We define the following matrices and vectors
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Om .. C"-(x) 1,(x) xdx, (1.119)

Cim V O1+1 m + 4-(I- m-1 , (1.120)

c U {c 1 ... C}. (1.121)

Then we may write

(A,.I2 + Ae2) Rrd~ddr = r2Rc - C -c'. (1.122)

We have not yet succeeded in solving the integrals given by eq.(1.119)
analytically. Therefore, in the next section we shall evaluate these intgrals
approximately.

The Small Argument Limit

An approach to evaluate the integrals given by eq.(1.119) is to expand in the
small argument of the Bessel functions

) ~ ~ m ( x) I 2 L(m + 1)'

fm  
1 

- f)2Cm krc Im(kor,)'

Ar=f m  mI"' W -) fm'( rm1

kr xI '(kore) kre re

Ae = -- ()jm1
kre I,,(kore) kre re

From which it follows that f A2 dV = f A dV, and we find

[ Ardr + Aqrdr ~ 2 rdr
JO~ ~ Jo M~ krc \r'J

2fmfn 1

k2 |m + n
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For k = 0, i.e., axisymmetric modes one has to re-do the problem. The
proper solution now is A,. = A9 = 0, A $ 0, or

A2 = cam(kor).

With a similar expression for c3

C3  - ____

ml Im(korc)

Thus

2rdr =
j ec A 2 r d r I e, ( 1 : f . _ _ _ _ _ 2

E Zrcmfn f 1 y1mI+InI+l dy

m l,n ml n + 2

r= Zrfmfn 1

where the dummy variable y = -. A full toroidal calculation has not yet
been done. This approximation may, however, be sufficiently accurate to be
of practical value.

1.6 The Screw Pinch with Resistive Wall

According to J.P. Freidberg: Ideal Magnetohydrodynamics, Ref. 1, eq.(9.105),
we have

yTd =k 2 b +M (1.123)
k2 b2K6J f{1 - (I;Kb/ I6K;)} SWb

where 7- = poodb.

1.6.1 The Basic Formula

We shall first test our basic formula eq.(1.93), which we write as

SWT(
S7D TD/= O6odb7, (1.124)
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with -1D given by eq.(1.70) and b by eq.(1.72) from which we obtain

k2 b2 + m 2

k2b2K6Il{1 - (I Kb/IK )}'

k2 b2 +m 2

bk 2b2KlIl{1 - (I Kl/IlK )}

We then proceed
eq.(1.72) we have

by computing b. According to the formula given in

-6 2s. In x k~o|2dS
81Vb -

First we consider the numerator in the expression for 6. Thus let

I& = In x A 0 12 dS,

where the vector potential A 0o satisfies the boundary condition

n . VO .s, = V, {n x A .} s4 .

Furthermore

n x Ao = a,

VS = iK = i{ e + ke},

V,-a = iK-a=iK.nxA,,,

and assume

n -Awo = 0 & V,-AWO= 0 ,

or

==> K -Awo = 0 ==> AIn x K,

iK - n x Awo = ijKI In x AW01,
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(1.125)

(1.126)

(1.127)

(1.128)

(1.129)

(1.130)

(1.131)

(1.132)



from which we obtain

n - = V, -{n x Awo}Is, = i|K In x A, ,

and

In x A.01
In. VO.S,12

K2

= K 2

b 2

m 2 + k 2 b2

From Ref. 1 we also have

0. = AKei(me+kz) _ ifa)G Km(kr)e(mO+kz)
k Ka

S= '(a)(-),
Ka

and

Inx Ao12dS = 47r2 Reb 1 a F 2(a) (Kb) 2 .
2pOO s= 2pO mW2 + kb 2 K.

From Ref. 1, eq.(9.79) we have

6W27r 2 Xe r 2 F 2
_SW - 8W00 = 2 /o F L

/0 |ml

Ab - A,- - ImIK. (I /K.) - (I./K.)
kaKa (Jl/K) - (I /K )

Ab - A0 kaIK 2 I K - IOK

I'K.'
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,~l=b 12

M2 ±k

(1.134)

thus

(1.135)

(1.136)

(1.137)

where

or

(1.138)

(1.139)

(1.140)

(Ab - A.) .2,



We now use the fact that

'Ka - IaK' = I'(ka)Km(ka) - Im(ka)K'(ka)

= W(I., K,.) = (Im-, - Im)Km. - Im(-Km_1 - K.)
ka ka

= Im. Km + IKm_1
1

=I,K.+1 + I.+, K. aka

where W(Im, K,) is the Wronskian and v = m - 1. (Fore more details
see Abramowitz & Stegun: Handbook of Mathematical Functions, p. 375,
eq.(9.6.15).) Thus we obtain

A6-A0 - ImIK' >0, (1.141)
I'K

since

I' K'

We may now write eq.(1.138) as

nv = -2ir
2R7 a2F2 (a) Kb C_1.42

-Lo k 2 a2  lK2 1 _L11K

We are then able to compute b given by eq.(1.127) and obtain

b 1Z;sn-x-Ii--2 dS
= A . -n xw A 1' (1.143)b b 6Wb - 6W 'V,,

or

b k 2b2  I'K'

b 2 + k2 b2 II K (1.144)

From eq.(1.126) we then obtain the desired result

i = Y' ,(1.145)

which proves that our variational formulation gives exactly the same result
as obtained by standard methods.
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1.6.2 Alternative Formula

We shall now derive the growth rate using the alternative formula given by
eq.(1.73), from which we have

b _ W_ - 6W

b b- fS, IV.b| 2dS

Using eq.(9.37) in Ref. P3 we find

= i (eec + ek) 4 b,=b

S m \ F(a)Kb- Ib e(mGKk -)
-(e + ek) k a K i

IbK

from which we obtain

12 m2 F 2(a ) 2 Kb - J12

|V4) 2 V= + k2) k 2K12 2

= + k 2 F2(a)a 2b~,

b 2 ) k2 Ka2 2'

li~ J
and finally a short calculation gives

Sk2b2 K

m2 k2 b 2 IbKj{1 - }, (1.146)btk m2 
a' b

which is exactly the same result as obtained in eq.(1.144). We then conclude
that the two formulas given in eqs.(1.72) and (1.73) give exactly the same
result for the case considered.

3Notice that there are some misprints in eq.(9.39) of Ref. 1
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Chapter 2

Vacuum Region

2.1 Preliminary Considerations

According to the general theory we have presented in Chapter 1, we have to
consider two cases.

1. No wall or conductors are present or taken into account. This case
provides information about 8W..

2. The problem is solved by considering the wall and conductors present
to be of infinite conductivity. This provides information about SW.

Regarding the first class of problems, there exists vast literature on the
subject, and numeric codes routinely solve such problems. When it comes
to the second class of problems, it appears that not many problems have
been solved in this catogory, although special cases have been studied like
the screw pinch considered in Chapter 1, section 1.7. Here we present an
analytic study of a system with a wall and an arbitrary number of conductors
present in the vacuum region, and the wall and the conductors considered
have infinite conductivity.1 By using Green's functions techniques and fast
Fourier transforms, we reduce the problems to problems in linear algebra.
The final solution have, however, to be obtaind by numerical methods. The
aim here is to provide the analytical basis for such an approach; that means,

1According to our formula for the computed growth rate y given by eq.(1.93), this is
the solution requierd in addition to the solution with boundary and conductors absent.
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numerically the problem is reduced to finding fast Fourier transforms and
subsequent matrix manipulations.

2.2 Green's 'Theorem'

Green's second identity can be written as

j{1V2U - UV 2V}dV = - f{Vn -VU - Un - VV}dS,

+f{Vn .VU -Un -VV}dS.

+{Vn - VU - Un . VV}dS, .(2.1)

We shall take V to be the vacuum region bounded by the plasma-vacuum
interface S,, the infinitely conducting wall SW, and all the conductor surfaces

*, . Here n refers to the surface unit normal vector for the surface under
consideration. We adopt the following conventions:

At Sp, n points outward into the vacuum region,

at Sc, n points away from the vacuum region, (into the conductor),

at S,, n points outward (away from the plasma).

Let the perturbation in the vacuum magnetic field be given as VV (notice
that V may not be single valued in the general case). We take U to be given
by

U = r -r G(r, r'). (2.2)

Here G(r, r') is the Green's function for Laplace's equation, and it satisfies
the equation

V2 G = 6(r - r'). (2.3)

Since V -B = 0 -+ V 2V = 0, we can integrate the left-hand side of eq.(2.1)
over the vacuum region to obtain
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al'(r) - {V(r')n - VG(r, r') - G(r, r')n - VV(r')}dS,

+j{V(r')n . VG(r, r')}dS.

+ {V(r')n -VG(r, r')}dS,. (2.4)

This is basically Green's third identity. As the observation point moves on to
a regular point2 on one of the bounding surfaces a = j, otherwise it has the
value 1. Notice that the solid angle over which integration is to be performed,
in the case when the observation point moves on to the surface, is reduced
from 47r to 27r. Notice also that n - VV(r) = 0 over a surface with infinite
conductivity. From eq.(2.4) we notice that there are basically two kinds of
integrals to be considered, that is

I, = f V(r')n' - V'G(r, r')dS, (2.5)

and

12 = f G(r, r')n' -V'V(r')dS. (2.6)
SS,(26

The seconed integral eq.(2.6) is nonzero only over S,, the first integral
eq.(2.5) contribute from all surfaces under consideration.

2.3 Coordinates

We shall use cylindrical coordinates R, 4, Z , to describe the axisymmetric
toroidal configuration.

2Regular here means that the surface has a welldefined normal vector n at the point
in question, otherwise appropriate adjustments must be made.
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The following relation to Cartesian coordinates exist

r={R cos 0, R sin 0, Z}, (2.7)

Or
r - {-R sin , R cos 4, 0} = Re,. (2.8)

We also have

O 1 8 8
eR + eR I +ez-Z , (2.9)

where eR, ek, ez are unit vectors in the respective directions.
Let the plasma vacuum interface be given as

R = Ro{1 + ex(v)}, (2.10)
Z = Roey(v). (2.11)

The surface unit normal vector pointing outward from the plasma region is
given by

n ro x rv

Iro x re
Re, x (eRR + ezaz

jr, x rI

- f{yeR - ez},

where

d d
y= -y(v), i = -x(v), and Q = Q(v) = k2 + y2. (2.12)

We shall also at times use the shorthand notation for any quantity q = q(v)
and write q' = q(v'). We compute n V and find

1 a (.)
n - y = y - x .Z (2.13)
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The surface element is given by

dS = r6 x rddv = nRRoEQdodv (2.14)

or
dS = Rd~dlp , (2.15)

where di, is the arclength element in the poloidal direction given by

dl, = VdR 2 + dZ 2 = ER 0  j2 + 2dv = E RoQdv. (2.16)

Thus we have

dl-d' = ERoQ and ERo Qdv = C,dv

C, being the circumference in the poloidal direction at 4 =constant. We
have chosen the range of v to be [0,1].

2.3.1 Boundary conditions

The boundary condition at the plasma vacuum interface given by eq.(1.3) is

n -VVIs, = Vs. - {n - $}s,.

Notice that the perturbation in the magnetic field is B1 = VV.
We now introduce a poloidal unit tangent vector to the surface by

t f eR+ e
t g e+ , where again Q = N22 + y2, (2.17)

with i = 4 and i = . We may then write the magnetic field as

B = Bpt + Bke,, (2.18)

and we have the surface gradient given as

V,=tt-V+!- * . (2.19)
R a4

From eqs.(2.18) and (2.19) we obtain
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{tt.V+ ' }{B t-Be 4 O}
R aOV8 . B 8

= t-VB, + e4 - t.

Notice that tt : Vt = 0, t -eo =0, eo - =0 and 2f =r s x 8edyr
relation is due to axisymmuetry. For 2twe find

at

a4

0, where the last

a ieR+ yez _ aeR

~ ae e2 +p2 Q 8a

and we have the following result

V, -B = t - VBp +RQ
R Q

Since we have

(2.20)

t-VR= +

we may write V, B as

V, B = t -VBp + -pt
R

Thus we obtain

R= ,Q

- VR = -t -V(RB,).
R

V- V5.- L

Rt - V(R1) + Bpt -V8L + 54eo. VL

t -V(Rp,(1) +5 ,oI 9

where (- = n - t is the normal component of t at the boundary. We finally
obtain the result we want

n . VV = -- t . V(Rbp.)
R

(2.21)

where we remember that R = Ro{1 + ex(v)} in our notation.
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2.4 Green's Functions

From Sec.2.2 we are left with the problem of evaluating the following two
integrals

and

(2.22)1 = I V(r')n' -V'G(r, r')dS,

'2 = G(r, r')n' -V'V(r')dS. (2.23)

In the first integral, integration is to be performed over the plasma vac-
uum interface as well as any conducting wall surface and conductor surfaces.
The last integral is to be performed only over the plasma vacuum interface,
since contribution to this integral from any infinitely conducting surface is
zero (n - B = 0 on such surfaces).

Using a parameterization of the surfaces S and S by the variables v and
v', and representing V(r') as V(r') = V(R', Z')exp(inO'), we may write

Is 10 dv'

where

G(r, r')

27r d$'R'V,(R', Z')ei*' Ro {(v')a - (v') G(r, r')

(2.24)

1 1

4,r Ir -r'

1 1
(2.25)

4,r {R 2 + R'12 + (Z' - Z)2 - 2RR' cos(O - 0')}5

and

&G(r, r') _

aR'

OG(r,r')
OZ'

1 R' - R cos(O - 0')

4,r {R 2 +R'2 + (Z' - Z )2 _ 2 RR' cos(4i- ')}s

1 Z'-Z
.(

4,rf { 2 + R'2 + (Z' - Z )2-- 2RR 'cos(O - 0')} 5
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We then use the following identity

R'- Rcos(4 -0') = R'+ {R2+ R' 2 + (Z' - Z) 2 - 2RR'cos( - (')}
2R,

-!{R2+R'2+(Z'-Z)2}
2RI

R'12-R2-_(Z' -Z)2

2R'

+ R2+ R' 2 (Z' - - 2RR' cos(4 - 0')},

and obtain

- 1dv' Jo 2w

1 dv' f27 R _(R ,ZI _ _)__ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _

47r J o 2 {R 2 + R'2 + (Z' - Z)2- 2RR'cos( - ')}1

1 1 2{pj(v' R2-R 2 -(Z'-Z) 2

f - 2w + + - I)(Z' - Z)}e i'Z'ckR '

47r d ) R {R 2 R'2 + (Z'- Z)2 - 2RR' cos(4 -o)}2

nn
27r 0

+F(Ssjs)(v, V')(si"s')(V, 0')1 dv',

where

=- v')[R 2 - R 2  _ (Z -Z') 2] - 2R'i(v')(Z'- Z) ,
R--,ZeS
R

1
,Z#ESI

= a(v)(v' - v) 2 + O({v' - v}Y) V,V'Es, for i = j,

where the last step in this formula is valid only for the case i = j and then
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rEj

F(s-sa )(v,v')

(2.28)

(2.29)

dO'R'V,,(R', Z')e i"*' :RO p(V') a - i (V') 1



a(v) = {[1 + rx(v)'KQ - (2.)0,
here K+ is the curvature of the surface S, in the poloidal direction given as

_ 2 6(v)y(v) - yvzv2i V = W 2 .(2.31)
{j2(V) + y2(V)}33

See Appendix D, for details. The last representation of F(v, v') is useful for

studying the limit v' - v, in the case when v and v' refer to the same surface.

I(sSs)(v, v') = - Roetn(46' -)d~l
41o {R 2 + '2 +(Z'-Z)2 -2RR'cos(4 -o')}2 RzEsi

W',ZFESj

(2.32)

1 f27r Rie(0'-4)do'
i,(,si,SI(V, ')= 1

4 Jo {R 2 
- R'2 + (Z' - Z) 2 - 2RR'cos(4 - 4')}2 RZES,

R1,Z'ESJ

(2.33)
It is assumed that all the surfaces considerd are determined by some para-
metric representation cast in the following form

R = Ro1 + cx(v)},

Z = Roqy(v).

We then consider the integral I2 and obtain

I1,,,)= G(r, r')n'. V'V(r')dS

1 f A , 27r eRoR'Q'ei"(O'-O)d'
4 r o fR'Q' o {R 2 + R'2 + (Z' - Z)2 - 2RR' cos(4 -4')}1

1 f'1 - I A,(v')e"OI?(SIs,)(v, v')dv'. (2.34)
7r ')
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Notice that the integration over v' is restricted to the surface S, since this
integral vanishes over all other surfaces. A, is defined by (see eq.(2.21))

n' -V'V(r') = I {t' -V'(R't,(±) + oin-L

A ' ) , (2.35)

or

A(v') = EQ'{t' -V'(R't-) + boinw} 1I'E,*s,

Notice that

Q't'. V' = (v') a + (v') d (2.36)R' LZ' c RO dv'

In order to show that eq.(2.36) is correct, let F(R(v'), Z(v')) = f(v') be an
arbitrary differentiable function of its arguments. Then we have

df dR' aF dZ' F
dv' dv' aR d' Z',

and with R' = & {1 + Ex(v')} and Z' = -Roy(v') we easily obtain eq.(2.36).
The boundary condition, eq.(2.35) is worked out in detail in Sec.2.3.1 (eq.(2.21)).
Notice also that we may consider only one toroidal modenumber n (&1 =

_±e "o), at a time, and that t is the unit tangent vector in the poloidal
direction given by

t = {i(v)eR + (v)ez} .

Making use of these results it is convenient to write

An(v') = d- {[1 + ex(v')]B,(v') i(v')}+ineQ(v')B,(v')(i(v')kV*es, . (2.37)

In order to proceed we have to evaluate the elliptic integrals IL"',sj)(v, v') and
1s() v, v'). as given by eqs.(2.32) and (2.33).

44



2.5 Elliptic Integrals

2.5.1 The I and i, Integrals

We shall simplify notation by writing I, and i, instead of the more precise
notation and s used in eq.(2.32) and (2.33). At this point spec-
ification of the surfaces over which integration is performed is not essential.
In the integrals I, and I,, we change the variable of integration to o = 4' - 0
and also use the fact that ei" = cos no + i sin no as well as some new pa-
rameters defined by the following equations, (we are using notations similar
to Hakkarainenl'J).

R'2 + R 2 + (Z' - Z) 2 - 2R'R cos(4' - 4) = h2 {1 + k2 - 2k cos4}

where

R'f2+-4 R 2+ (Z'-_Z)2 h h2(1 +k 2)

2R'R ' 2h 2k,

1+ k2 = R'2+R2+(Z'-Z)2

k 2a R'R

Thus
k2 - 2ak + 1 = 0,

and
k = a V2- -1= a - Va-2 _i <i,

where we have chosen the lower sign to make k < 1. By use of these sub-
stitutions we can cast the integrals I,, and Ij, eqs.(2.32) and (2.33) in the
following form

n(v, v') = co n d, (2.38)
4h fir 1 + k2 - 2k cos4'}2

J{(, V') = C o- n do, (2.39)4h3 -{1 + F2 - 2kc cos o} 3
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where

h kR (2.40)

Since the integrands in both integrals are periodic functions with period 27r,
we may choose the range of integration to be any interval of length 27r. Also
notice that the integral containing sino integrates to zero, being an odd
function. In order to arrive at the standard form of these integrals we make
a new change of integration variable by the substitution

4 = 20- r ,

thus cosik = -1 + 2 sin2 0 and dO = 2d. This way we obtain

RO cos2nO do
4h {(I + k) 2 - 4k sin29})

= (-1~Ro f cos 2nO do (2.41)
h {(l + k) 2 - 4k sin2 0}

The last step is easily accomplished by looking at the integral from ! to2
7r, changing variable in this integral by the substitution 9 = 0' + r, and
then noticing that the sum of these integrals amounts to integrating an even
function from - 2 to .2 2

Performing the same steps on the other integral i, we obtain

I(vv' = (-)- cos2n =d. (2.42)
3h 03 {(1 + k) 2 - 4k sin2 0}5

For simplicity we now write

lr i cos 2nO
L2n(k) i= cos 1 do, (2.43)

1 +k {1 - k 2 sinO},

1 2 cos 2nO
L2n(k) = ( , dO, (2.44)

(1 + k)3 fo f 1 _ ke2 sin 2 0},

where

I = . (2.45)
S+ k
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Thus LO is an elliptic integral and

I" = (-1)"-~ L2 ,(k), (2.46)

In = (-1)"-gL2n(k). (2.47)

In order to evaluate L2n(k) we take the derivative of L 2n(k) with respect
to k and obtain

dL 2n(k) _ 2 [1 + k - 2 jsin
29]cos2n/- dO. (2.48)

dk J{(1 + k)2 - 4k sin2 }22

Then we use the identity

1 + k - 2sin 2 0 = {(l + k)2 -4k sin20}+ 1 + k - (I +k)2
2k 2k

{ f(1 + k)2 - 4k sin2 ) _ I k2

and obtain

dL 2n(k) 1 5 cos 2nO =d
dk -2k o {(1 + k)2 - 4k sin2 dO

+ - k2 2 cos 2n 2 dO

2k 0  {(1 + k)2 - 4k sin2

This yields

L k cos 2nO dO = 2k dL 2n, 1
1-2~k = d -+ L2 n . (2.49)o (1 + k)2 - 4ksin 1- k2

Thus, as long as we know L 2n(k) and - L 2n(k) we can determine L2 (k).
Before we pursue the evaluation of the integrals L 2n(k) and -L 2n(k), we
shall list some basic properties of elliptic integrals that will be useful.
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2.5.2 Basic Properties of Elliptic Integrals

The complete elliptic integrals of first and second kind, K(k) and E(k) are
definied as

K(k) <'
dx

1I - k2 sin 2 x

E(k)~12 1 - k2 sin 2 dx. (2.51)

In eq.(2.45) we have k tl 2V'' (1+k) for obvious reasons. From standard
tablesLN] we find the following useful relations,

K(k) = (1+k)K(k),

E(k) = 1 {2E(k) - (1 - k2)K(k)},T+-k

(2.52)

(2.53)

K'(k) = dK(k) =

E'(k) = dE(k) =

E(k) K K(k)
k(E-k 2 k

1{E(k) - K(k)}.

Thus we have from eq.(2.43)

Lo = +k= K(k), L' = K'(k).

2.5.3 Useful Recurrence Relations

For the purpose of evaluating L 2 ,(k) for n > 0 the following recurrence
relation that can be obtained from Gradshteyn & Ryzhik: Integral Tables[']
p. 15 7 (2.581) with m = 0 and r = -1, is useful
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Cos2n -dx = 1)k2 [(2n - 2)k 2 - (2n - 2)(1 - k2)] Cos2n-2 1A-7dx
+(2n - 3)(1 k2) 2cos2n-4 z -Adx}

2n - 2 2k 2  
Cos2n-2 XA~1d

2n-1 k2 jO

+ 2n - 3 1 - k2  Co 2 n-4 xA-d,
2n - 1 k2  0

where
A= - k2 sin 2 x and n > 2.

Let

C2n(I) = Cos2n x d,. (2.57)
1 - k2 sin 2 x

It then follows that M 2n(k) is given by the following recurrence relation

2n-2 2k 2 -1 2n - 3 1_k 2 - .
(=2n\J - -AI 2n-2(k) + 2 - M 2 -4(k). (2.58)

2n -1 P2 2n -1 V2

In order to start the iteration we need to know M 2n(k) for n = 0 and
n = 1, which can easily be determined as

Mo(k) = K(k), (2.59)

and

M2 (k) = f 2 COS dx
0 1-k2 sin 2 X

/ 21 + (1 _ k2 sin 2 X)

- JO1 _ 2sin2 ,

= 4-{E(k)-(1-k2 )K(Ic).
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We shall find it more convenient to express all quantities in terms of k rather
than k. Therefore we define

A 2,(k) -l 1 M 2 (k). (2.60)

We then compute these quantities and the derivatives for n = 0 and
n = 1, and obtain

Mo(k) = K(k), (2.61)
I

M2(k) = {E(k) - (1 - k)K(k)} , (2.62)
2k

M (k) = - - K(k) , (2.63)
k I(I - k2) I

1 E(k)-(-'
M (k) = - - + k (1 - k)K(k)j . (2.64)

By expressing cos 2nx in terms of powers in cos x we may write

(1+k)L2n(k) = f cos2nx dx
f0 V1- kc2 sin 2 X

2n-1 OS2n X _ 2n 2 2n-3 Cos2n-2 X +

=o 1 _ 2 sin 2 X

= 22n-1k2n(k) - 222n-3 2 , 2 (Ic)1

+ 2n(2n- 3)2 2n-5 i'2n-4(/k) - 2n(2n2-4)2 2n-7 1 2n -6,(k +---2n3
2n- + 2n2n4)2n2mfl )+

= 22 -12n(k) + (-1)"' (2n-( n+) 2 2n( 2n-2m( ) ,

where k 2, is determined by the recurrence relation eq.(2.58). Changing to
k representation and M instead of k and k we obtain for n > 0 the relation

(notice that the 1 + k - factor is now absorbed in the definition of M2n)

L 2n(k) = 22n-IA2n(k) + 1(_-)" (2n- n+0 )2n-2"m 2n-2m(k). (2.65)
m=i m
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For -L 2,(k) = L'2,(k) we thus have the relation

L' 2n(k) = 22 - 2M'(k) + (--1)" 1(2- .m+)22n2'M2n-2m(k). (2.66)
tn=1 M

The recurrence relations for M2 , and M2,, becomes

A

where

We then find

Al4(k)

2n-3g(k)M2,-4 ,2n - 3

2n - 1g(k)M2n_4
2n - 3

+ 2n - '

= 1k 2

= - k 2

4k2

2 1
3 f(k)M2 (k) + -g(k)Mo(k)

6k - k2  {E(k) - (1 - k)K(k)}]

+1 [(1 -k)2][k)
+3 4k]

1 f{f 4(k)E(k) + g4 (k)(1 - k)K(k)}

(2.67)

(2.68)

(2.69)

(2.70)

(2.71)

where

f4 (k) = {-1 + 6k - k2}, g4(k) = 1 - 5k}
4
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2n - 2

M2 ,(k) = 2n - 1 f(k)A-2,,, 2 (k) +

2n - 2r' (k) -2n - 1f(k)M2 n- 2(k) +

+ 2n - 2 f'(k)M2.- 2(k)
2n - 1

f(k) = -1 + 6k - k2

4k

g (k) (I 1k )2  'k
4 k'



'(k) = 2f'(k)2(k) + Ig(k)1o(k)
3 '3

+ 3f(k)M'(k) + 3g(k)AI(k)

3 4k 2  [ {E(k) - (1 - k)K(k)}]

+ - _ kk2 K(k)]

+ 2[1 +6k - k 2 -_II ~)_(1 -k)K(k)

+ (I - k) 2 rI E(k) -K(k)
3 k k (1 - k2) )}

1 j{ 4 (k)E(k) + 44(k)(1 - k)K(k)} , (2.72)

where

4(k)=2- 4-k 2 -k4(k)= k -
= 4(1 +k) 2

AM6 (k) 4 f(k)M4(k) + 3g(k)M 2(k),5 5

M () 4 3
M(k) f(k)M'(k) + 5g(k)AI(k)

5 5+ f'(k)M4 (k) + ')2(,.

this stage one ortant point should be observed. That is: Al 2 and
well as their deri-atives are all regular functions of k in the limit k -- 1,
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which corresponds to v' - vi -+ 0. From this fact we can conclude that in

our representation of the integrals I, we have:

The singular behavior when k -+ 1 is associated with the terms

containing Mo and A10 only.

We are now in a position to determine L 2, and i 2, and thereby I,, and

4. for n > 1. We have already determined Lo and L' by eq.(2.56). From

eq.(2.65) we obtain with n = 1

L 2(k) = 2M 2 - Mo

= 2 {E(k) - (1 - k)K(k)}) - K(k)

{E(k) - (1 - k)K(k)} - K(k)

I {E(k) - K(k)},
k

L'2 (k) = 2M2 - AI0

= 2 - E(k -( -k)K(k) - E(k) -K(k)

k2 (1 -1 k

which also can easily be obtained by taking the derivative of the expression

for L 2(k) directly. From eq.(2.65) we obtain with n = 2

L 4(k) = 8A1 4 - 8,1 2 + M0

= 8 {f 4(k)E(k) + g4 (k)(1 - k)K(k)})

-8 {E(k) - (1 - k)K(k)}) + K(k)

Sf(1 + k2 )E(k) + (1 - k2 )K(k)} + K(k)},
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L4(k) = 8AI - 8M' + AI'

= 8 ( { 4 (k)E(k) + y4(k)(1 - k)K(k)})

-8 2E(k) (1-k)K(k) +k (1k2) -K(k)

P1 4-k+2k _ -2S 1 - 3k 2 +2k 4 E(k) + (k2 - 4)K(k)

For n > 2 it becomes increasingly difficult to work out the analytic so-
lutions in detail. The algebra probably becomes "prohibitive" for practical
reasons with regard to determining M2, and M2, for n > 3 in detail, as an
explicit function of k. If this is the case there exist the possibility to do it
numerically. The recurrence relations eqs.(2.67), (2.68) and eqs.(2.65) and
(2.66) can be used to determine L2n(k) and L'(k) and this can be imple-
mented as a numerical scheme.

In principle the integrals I,, and j,, are now determined for ar-
bitrary values of n.

In the numerical evaluation of these integrals over v' we have to pay
special attention to the singularities of MO and MO. In the next section we
do the basic analysis for proper treatment of these singularities. For the
purpose of reference we list some basic results here,

In = (-1)"$L 2.(k), (2.73)

In = (-1)~L2 ( k)

= ( - k2 ){2kL'n(k) + L2n(k)}, (2.74)

and

h- RR R2+R 2 +(Z'-Z) 2

S ka2 2R'R(2.75)
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The specialization to I(SS') and 1 (s.,s,) is obtained from the above for-
mulas by letting (R, Z) E Si and (R', Z') E S. In addition to the singularity
for k = 1 that appears explicitly in eq.(2.74), there are also singularities
associated with 111 0 and M. This will be the subject of the next section.

2.5.4 Singularity of the K(k)

When the observation point is located on the surface over which the integra-
tion is performed, we encounter a situation where lv' - v| -+ 0 or k -4 1. For
this value of k, K(k) is singular. From Abramowitz and Stegun: Mathemat-
ical Tables6] p. 591 (17.3.26) we obtain

1
lim K(k) = 2n 2 - - lim ln(1 - k2)
k-1 2 k-1

Notice also that k -- 1 ~ Iv' - vi -4 0, thus

lim K(k) = lim K(k).
k-1 V,-VI-0

We shall now evaluate this singularity in terms of the physical variables v
and v'. We have from eq.(2.75)

k = a - v'2 -2i,

a a (V, ) R'12 + R 2 + (Z' _ Z )2
a = a(vv') = 2R'R

f2 (X(v') - X(v))2 + (y(v') - y(V))2
1+ 2 (1 + fx(v'))(1 + EX(v)) (2.76)

Thus

k =1 =(1 -a) 2 = 2 -1 or ct 1

a=1 = (R' - R)2 + (Z'- Z) 2 =0 R'=R, Z'= Z.

And we also have
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h =R R'

where

R = Ro{1 + ex(v)},

Z = Roey(v),

R' = Ro{1+F£x(v')},
Z' = Roey(v').

All the surfaces considered, i.e., the plasma-vacuum interface, the wall and
the conductor surfaces are assumed to have a parametric representation of
the form presented here. Thus x(v) and y(v) will be different for the dif-
ferent surfaces. However, the following analysis is general in the sense that
it applies to all these surfaces for the case where the "observation point" is
located on the surface over which the integration is performed. And when
the integration variable v' approches the "observation point" v, we make a
Taylor expansion and obtain

E2 2 (v' -V)2

= + + ((v' - ))2 (1 + C(v)) 2
£2Q2 (v' -v)

a 2(v. v') = 1 + 2 ( + V) 2 + O((v' - v)3 ), (2.77)
(1 + CX(V))2

k = I I EQ' -vI +0((V V)2)1 + FaX(v)

= 1- 1+ - V)+ O((v'-v) 2 ), (2.78)

I-k 2 2Q v' -v) + O((v' - V)2)
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2EQv'+- vi O((v' - V)2), (2.79)
1 + (x(v)

ln(1 - k2 ) = ln v'/-v+ln 2 Q , (2.80)
1+ F-X(V)

1
K(k) = -ln(1 - k2 ) + 2n2 + 0(1 - k2 )2

= 1 In |V' -| -1 In + "Qv + In 2 + O(|v' -vj)2 2 2 1 + -Ex(v)
1 1 eQ
- In I sin ir(v' - v) -1 In 8r + + OO' - V),2 2 87r[l + Ex(v)] +0I'-v)

(2.81)

where we have used that asymptotically for small jxl, = 1 + O(x 2 ) and

In[1 + O(x 2 )] = O(X2 ) => In lxj = In I sin xl + O(x 2 ). The last representation
for K(k) is a conveninent form for further elaboration, based on some useful
integrals that can be found in Gradshteyn & Ryzhik: Integral Tables[5 ] p.
584 (4.384 (3) & (7), which we list here for convenience

2 ri 1
, = - dx ln(sin x) cos 2px - , p > 0, (2.82)7r 0 2p

IP = 2dx In(sin x) cos 2px= In 2, p = 0, (2.83)
7r 

(

J, = -2 dx In (sin x) sin 2px = 0 , Vp . (2.84)
7r
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2.5.5 Singularities of L2, and L 2n

In eq.(2.28) we first consider the last part of the integral given by

e (s,)(R',Z')FCS"sj)(v, v')i,(,Sal)(v, v')dv'. (2.85)
27r 0

Again we shall omit the references to the specific surfaces other than observ-
ing that we consider the situation where the integration in V' is performed
over the same surface as v is evaluated on, i.e., we have i = j or Si = Sj.
These cases are the only cases we need to consider with regard to singular
behavior in the limit k -+ 1 or Iv' - vi -4 0. We shall evaluate the integral

given by (2.85) in this limit. From eqs.(2.33) and (2.29) we obtain

1 2+ Roein(O' -)dO'

4 0{R 2 + R'2 + (Z' - Z) 2 - 2RR'cos(4 - 0')} 2 ,zES,
R',Z'ESj

= ( 1)" j0
2 (v, v') . (2.86)

1
2= 1- k2 {2kL'2 n + L2n} (2.87)

F(v,v') = (v - v') 2a(v,v') + O((v - v')3 ). (2.88)

It is convenient to write L 2n and L' in terms of a regular and singular

part, thus we define

L 2n(k) = L2n(k) -(-1)"MJ(k) = L 2n(k) - (-1)"K(k), (2.89)

Li2(k) d! L'(k) - (-1)"AO(k) = L'(k) - (-1)"K'(k), (2.90)

or-

L 2n(k) = L2n(k)+(-1)"K(k), (2.91)

L'2n(k) = 'n(k) + (-1)"K'(k). (2.92)

Evaluation of the integral (2.85) makes it necessary to calculate the limit
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IiM (v'- v) 2 i 2,(k(v,v')) lim (" - )2 {2kLIn + L2n}
V'-uj-..O tv'-ul--o 1 - k

lim (v' -v) 2 ( 1)n{2kK'(k) + K(k)}
1,'-vI-.o 1 - k

- urn ~ |v' -- vi 2Ek=lim (-1)"n' 2E(k)
ul-VI (1 - k2)2

(- 1) [1 + fX(v)] 2

(2.93)

where we have used that

={ E ~ k))
k K'(k)= (-k); -K (k),

1 - k2 -2EQlv' -v| + 0((v' - V)2)
1 + EaX(v)

which are easily obtained from eqs.(2.54) and (2.79). L 2n has at most a loga-

rithmic singularity which behave as In v' - vi when jv'- vI -+ 0, associated

with K(k) through MO. It is then clear that

lim |v' -vIL 2n(k(v,v')) = 0.
Iv'--v -.O

Finally we obtain

rlim -et " (R', Z')F(v, v')in(v, v')
Iv'-vi-+o 27r

-e2n lim V(R', Z')a(v, v')(-l1)n 4(v - v') 2 Lz(v,v')
27 IV'-vl-oP

eo V(R, Z) a(v, v)
47 V Z 2Q2[1 + EX(v)]

- 1n(R,Z) {Q - EY(v) < 00, (2.94)
47 1 62 1 + Ex(v) I
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where K is given by eq.(2.31) and Q = Q(v,v') > 0. Equations (2.30), (2.44)
and (2.47) as well as the limit given in eq.(2.93) has been employed. Also
note that liml,-,-o h = R, and that Ro/R = [1 + Ex(v)]-.

This result shows that the integrands of the integrals containing L 2 , is fi-
nite in the singular limit, and therefore numeric integration can be performed
across the singularity without any problems. The formula given by eq.(2.94)
may be useful as a test for the numerical scheme to be used.

These results reflect the fact that L2, has only a logarithmic singularity
associated with Mo, and L'2n has a singularity of the form (v' - v)-' as well
as a logarithmic singularity. It is the singularity (v' - v)-' that gives rise
to the finite contribution in the limit considered in eq.(2.94). We conclude
that the integrand of I(s,,s,) in eq.(2.28) is nonsingular concerning the part
dependent on In. The only singularity left to give special consideration is
associated with L 2n, where again it derives from the logarithmic singularity
of Mo = K(k).

We then turn to the first part of the I, integral eq.(2.28) and I2, eq.(2.34),
both of these integrals depends on L 2, through I,.

Singularity of L 2 .

We first consider a few asymptotic limits that make it easier to evaluate
limi, 1,-o L2,. From eqs.(2.81) and (2.79) we have the asymptotic relations

K(k) = In(1 - k2) + 21n2 + O(1 - k2), (2.95)

and

1 - k2 2EQ(V) 27r(v' - v) + O((v' - v) 2 ). (2.96)
7r1 + EX(v)] 2

By combining eqs.(2.95) and (2.96) we may write

K(k) = - In 2-(v'- - In cQ(v) + O(v' - v). (2.97)
2 2 2 87r[1 + cz(v)]

It is convenient to define a function K(v,v') which is regular at v = v' by

k (v, v') t- K(k) + In sin r(v' - v)I. (2.98)
2
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Since

' sin 7r(v' - v)urn in =-0
7r(v' - v)

we obtain

Iin K(v,v') J. n i sin 7r(v' - v) 1 In CQ(v)
-m IO (I, -VI )rV = V)i - -I

v-v -. 0o -v) 2 8ir(1 + ex(v))

1 EQ(v)

2 87r(1 + ex(v))

By eq.(2.98) we also have

1
K(k) = k(k) - In I sin 7r(v'- v)I. (2.99)

2
The reason for the particular choice of function to add in eq.(2.98) is of course
the ease of integration in the next step to be considered.

The 11 Integral

Returning to eq.(2.28) we now consider the part of the integral containing

Ls, "s). We restrict ourselves to the cases where i j or Si = Si, because only
in these cases do we have to integrate through the logarithmic singularity.
Again we omit the reference to a particular surface, in order to ease notation.

We first consider

I,= (-) L2n(k),

obtained from eqs.(2.41) and (2.46). By using eqs.(2.91) and (2.99) we rep-
resent L 2n(k)

as

L2 .(k) = L2,(k) - (-1)" In I sin 7r(v' - v)I. (2.100)

Notice that L 2,(k) is just L2n with Mo = K(k) replaced by k(v, v'). L2,

is now a regular function of v and v' also when v' = v. This way I, splits
naturally into parts
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(2.101)

where

I, (=n 1)" Ln(V, v'), i_ IV f In I sinir(v'- v)1, (2.102)

and 1 as given by eq. (2.28) splits naturally into two parts

I= 1 +11. (2.103)

A Useful Integral Formula

In order to numerically evaluate the double fast Fourier transforms of the
fields, it is convenient to evaluate the integrals over the singular part of K(k)
analytically. Thus, we must evaluate integrals of the form

I e 2i(m''-rn ) In Isin 7r(v' - v)Idv'

= e 2i('-m)v 10 e27i(m'('-) In I sin 7r(v' - v)Idv'

= e2Ii(m'-)v J {cos 27rm'x + i sin 27rm'x} In I sin 7rxldx

= e2wi(in'-m)v {cos 27rm'x + i sin 27rm'x}ln I sin ,rx Idx

= e2i('-m)vo I cos 27rm'x In I sin irxdx

= 27i(mi'-mi)v 2m~ ' (M' 0)
-e X{ (in' = 0)

= e2i(m'-m)"f (in') (2.104)

where

f(q) c 2 2. (2.105)

This result is easily obtained by applying the formulas given by eqs.(2.82),
(2.83) and (2.84).
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The Singular Part of the Integral I,

We proceed to consider that part of the integral ( eq.(2.28)) that contains
I, and which we call I1, and is defined by

.n0 1e" f4 , K(V')Ey(v')n(v, v')dv'. (2.106)
27r

Let

VK(v') = iRoBo Vme 2 imv'. (2.107)
m=-00

From now on we shall omit the reference to the toroidal mode number n,
since it appears only as a parameter that has to be set initially.

Looking at eqs.(2.102) and (2.106), we find it convenient to Fourier trans-
form the following quantity

- v')) = E Ykle 2wt('+Lv). (2.108)
47rh(v, v')

We can now compute the integral 11 in terms of given Fourier transforms.

es" in 1 Ro
I,(v) =7 f ((v'(v'){- In Isin 7r(v'-v)I}dv'

27r o 2h
1 00 00 '00

= iReBoei" { m2j Y 2 .it('+l")} in I sin 7r(v' - v) dv'
m=-a0 k=-oo 1=-o

iRoBoe'nO 1: E fVml'jie2Clvj e~r~~)vv In I sin 7r(v' - v)I dv'
00 Ce"00 1200 + ( - |'

= iREOe" E f VmYk e2 7ri(k+l+m)v - 2(m+k) m
M=-= k_ = 2 m + k =0

or

11 = iR0oBoe' 4 ' E z: Pm1cIe 2 i(k+1+m)"f(m + k) . (2.109)
m=-00 k=-oo 1=-oc
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where eq.(2.104) has been used and f(m+ k) is defined by eq.(2.105). In the
subsequent analysis we shall sometimes simplify notation by writing

and 1 E E .
m m=-oc m,k m=-co k=-oo

We have made no special reference to any surface here, since the procedure
is the same for all surfaces. However, when evaluating these integrals for
different surfaces one has to pick the right functions (v'), h(v, v') and so
forth, for that particular surface. When we later on may want to be specific
in referring to a particular surface, we shall do so by superscripts a, 3, where
a, 0 can be S,, S. and Se, as previously introduced as reference parameters
for the plasma vacuum interface, the wall and conductor surface number i,
respectively. Thus in specific notation it will be like

J! and Y a'o (2.110)

The Singular Part of the Integral 12

We then consider the singular part of the integral 12. From eq.(2.34) we have

12 = - A.(v')I(v, v')dv', (2.111)
7r 0

where A,(v') is given by eq.(2.37) and I, is given by eq.(2.32) or in elaborated
form by eqs.(2.41) and (2.46). Thus we have

, 1 27r Roe in(O' -'bd$'
In(v,v =

41o {R 2 + R'2 + (Z'-- - 2RR' cos(4 -. 0')}b RZEs.

(1)n , L2n(k(vv'))
h(v, v')

(-l)" { 2 f(k) - (-1)" In sin r(v' - v)I}
h(v, v' )

where eq.(2.100) has been used. Then we write 12 the obvious way as

12 = 12 + 12 (2.112)
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where 12 is that part of the integral which contains the logarithmic singularity.
By definition we introduce

j2 !! n6 1A,(v')~ Ro' In I sin yr(v' - v)! dv',
and2r7mr e.h(v,(v')2.i

and from eq.(2.37) we have

(2.113)

A,(v') = dI[1 + Ex(v')]jP(v') ,(v')} + inEQ(v') 4,(v') n (v')|V Es,,

(2.114)
Let

n = Ro 1&e 2rikv'

1+ x(v')]bo(v') = Bo Nle 2nlu'

= BO E Pme2imv'
Tn

thus we obtain

[1 + Ex(v')]tp(v') n = BoR ~i:kbIei+ 1

k1

from which we substitute in eq.(2.114) to obtain

An(V') = {[+ EX(v')]b,(v') n} + inEQ(v')B3(v')gn(v')

= iRoBo (27r(k + l) 1 + n,&) &e + (2.115)
kI

Furthermore let

1 ,,e27ri(pv'+qv) .
27r h(v, v') ,

(2.116)
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Using the results in eqs.(2.115) and (2.116) we obtain

i2 = iRoBoer6 E E(2,r(k + 1)f1 +nijjkhre2i(k+1+P+q)V
P9 k1

x j e27ri(k+l+p)(v'-v) In sin 7r(v' - v)I dv'

= iRoBoe'n E (2,r(k + 1) 1 + nA)&h,,e
pq ki

x 2(k++p) k+1+P#0 (2.117)
1-In2 k+l+p=0

The Regular Parts of the Integrals 11 and 12

We then proceed to evaluate the regular parts of the integrals I, and 12. From
eq.(2.28) we find that the regular part of the integral 11, which we called 11
is defined by

11 ff V(v') {Ey(v')i,(v, v') + F(v, v')in(v, v')} dv', (2.118)

where I,(v, v') is given by eq.(2.102) as the regular part of I, also notice
that we have already checked that F(v, v')In(v, v') does not have any singular
limits. We let

EI(v')n(v,v') = EHke 2 ri(kv'+mv), (2.119)
27r k,m

-F(v, v'),(v, v') = 1 Fkme2i(k'+m) (2.120)
27r km

and use the representation of V,

V(v') = iRoBo F e2"""'. (2.121)

For I1 we then find

I1 = iRoBoe" (Hm +Fm)e2im(k+)0
khl,m

= iRoBoe E 5 lj(IH-jm + Fjm)esr""". (2.122)
I'm
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Then adding the results in eqs.(2.109) and (2.122) we obtain

I1 = iROBoe i" 4 f (m + k)Im1ki e2 ,iT(k++m)v + E 1n(H-mi + F-mi )e271vI
k,I'm Im

where again f(m + k) is defined by eq.(2.105). We may then write

I, = iRoBoei" ' I( [ H-mi + F-ml)+E f(m+ k)Yr(-k-MmI e)J

(2.123)
We define a matrix r' by its elements

Fmi = 2{H-,m1 + F-mi + E f(m + k)Yk(}-k-m)}, (2.124)

and we represent the Fourier transforms as vectors, so that we may write

z B ie1  27rilv n.2rlI, = 2mRoBoe" fmie = RoBoe" (- F) e2 " ,r, (2.125)

where

V = {V1,V2, -- }. (2.126)

Referring to 12 given by eqs.(2.111) and (2.112) we write

12 - An(v')In(v'v')dv'.

By using the representation for An given in eq.(2.115), we have

An(v, v') = iROBO (2r(k + 1 )b, + nP1 ) &ke2ni(k+l).
kc I

Then we introduce the Fourier transform representation

- -In(v, v') = .Ie 2 iCPv'+4v), (2.127)
7rP

from which we obtain
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I2 iRoBoel ( {2,r(k+l) +ni} flhpq.riqv
pq ki

x e27ri(k+ip)v'dv/

= iRoBoen E { 27r(k + l)bi + n~l}fk f-(k+l) 627," . (2.128)
q ki

From eqs.(2.117) and (2.128) we find 12 = 12 + 12

I2 = iRoBoe F (2(+l) 1 +i(k++p+)v
P9 ki

2(k++p) k++p#0
-- In2 k+l+p=0

+iRoBoe'i" Z{27r(k + I)b1 + nfi}jkHj-(k+),6e27ri

q hi

= Z Z{27rmlm.-k + nfm-k}
q km

X{Lm q + f(m + p) hp(q-m-p)}!ke2rne " . (2.129)
P

We define a matrix A by

Akq = 2 {27rmfm-k - Bm-k}{h-m, + f(m + p) hp(q-m-p)}, (2.130)
pm P(210

where again f(m + p) is defined by eq.(2.105), and we obtain

12 = RoBoe" ( A)qe 2 . (2.131)
q
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2.6 Matrix Representation

In the previous section we derived expressions for 11 and '2 given by eqs.(2.125)
and (2.131)

ie inc 2,rilv _____ 27ilI, RoBo ln Im Ie R
I=2 =22 oB (V -r), e2Wi" .(2.132)

1
12 =iRoBoei"o D( -A),e 2W7ie . (2.133)2

Going back to eq.(2.4) we obtain the following generic equation in terms of
the vector representation of the Fourier harmonics

e RoBo V m.e _j(P) + 12 + I"' + I', (2.134)
2 1 i 1 1

where we have adopted the convention that the unit normal vector is pointing
outward on the plasma-vacuum interface, i.e., into the vacuum region. For
more details see eqs.(2.125), (2.107) and (2.126). On the other surfaces n
is oriented out of the vacuum region considered. With this convention we
rewrite eq.(2.134) as

v(-) +- v) - ra'") - v(") ''r - v(ci) . rCcs) = 4 -A(). (2.135)
i=1

This is a linear system of equations where the unknowns V(') are vectors.
The label a indicates the surface where the 'observation point', i.e., on which
surface the integration variable v is located. Thus a takes on the values

p, w, ci (i = 1,2 ... ) with

p referring to plasma - vacuum interface,

w to the infinitely conducting wall,

ci to be conductor number i, of which there are 1 all together.
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This is a rather complicated system of 1+2 equations with 1+2 unknowns.
Remember the unknowns themselves are vectors with of the order 100 com-
ponents, and all capital Greek quantities are matrices of the order 100 x 100,
with 1 = 4 this becomes a 6 x 6 system. There is still one simplifying fact,
and that is: We only need to determine one of the unknowns, namely V(P). If
we consider a triangularization procedure for solving this system, this means
that we have to carry this procedure only to the stage where the system
matrix has zeroes above the diagonal in the first row. Remember, however,
that the elements in our system matrix are themselves matrices.

Wall but no Conductors

As a first simple step we consider a wall with no conductors taken into
account, resulting in the following system.

vM) .% W) - v(-) . r(,) = A ) (2.136)
v(P) . r(p,w) + V(-) -(w"') = -A(-) (2.137)

where we have introduced

%F) I + rPP) and n(-) i - rCw'w). (2.138)

Multiplying the first equation by (r(wP))-l and the second equation by
(0(w'))-I and adding the resulting equations we obtain

VP) -A =-B, (2.139)

or
V = ( . BA-, (2.140)

where
A = {l(p) (r(w))-I + r(pw) - (l(#W,))-} , (2.141)

and

B = A(P) (F(w))-l + A(w) - (fCwt))-1} . (2.142)

Thus the infinitely conducting wall without any conductors has a somewhat
simple solution. Now we return to the general case.
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General Case

In general we can write the system of equations, eq.(2.135) as

v(P . %F( - VC-) r(wP) - v(c) .r(clP) - V(C2) . p(2P) + ---

v() - r(p'') + VC-) (-) - V(c1) . r(cl,w) - v(c2) . (C2,w) +

vf - r(p,cl) - v(w) . r(w,c) + v(c) C1 - V(C2) . r( ----

v(8 . p,c-) - V(w) . r(w~c) - v(c) r('cc - - + V(c) - C

F(P) 4- i + rPPP) ,
n(w) '! i - r(ww),

C, cf i - r(clcl,

c,, t-- I - r(c-,c-) .

= -A(P)

=- -A(w)

=- -A(cl)

(2-C")
(2.143)

(2.144)

(2.145)

(2.146)

(2.147)

This represents the solution to the general problem in closed form. Whether
it is useful in the sense of being tractable in practical terms, has yet to be
determined.

2.7 An Algorithm for Solving the Matrix
System of Equations

For convenience we redefine the matrix coefficients in eq.(2.143) and write

V, - A(O) + V2 - A(O) + --- + Vm - A(O) = ( B)

V -A$ + V 2 . Alc + --- + V -A( = (-B)V, - A, + 2 +--+V m n M AI=(-B
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where the connection to the coefficients of eq.(2.143) is straight-forward.
First we multiply these equations from the right by the inverse of the last
matrix coefficient in each equation, then take the first equation and subtract
the second equation, then subtract the third equation from the first equation
and so on. This way we eliminate the last variable Vm, and we arrive at a
reduced system of order (m - 1) x (m - 1), which we write as

V1 A(')+ V 2 A + ... + Vm- 1  A = B

V,- A(') + V2, A(' + .. + V._1 .A( 1 B(

V 1 A(')1+ V2 A (1 2 + ... + Vm-1 -A' = B(1) ,

where

A(') = A1"(A AI 21 Am

- A0. -A I" (AA - 1

AA= 1 - (A() A(- - AO)

and in general we have

A(') A -A ( - - A - (A . (2.148)

For the left-hand side we find

( B B (AO) 1 - B I (A

(1 Bl")(AO) - -BN - (A), (2.149)

which determines B as

B Bl - (Alk) - B O (Alm) . (2.150)
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We continue the procedure by multiplying each equation again from the right
by the inverse of the matrix coefficient of Vm-, and obtain

V,

V,

.. +Vm-2 - Alm2 -2

2)

V, -Am-21 + V 2 A 2 2 + .. + Vm- 2 A22m-2

= -B B(2)

= ( B2)

= -B22
(2

t=m2

where

A -=)' -( A 9 - (

The general recurrence relation is given by

A A -(A - - (A - .

And for the left-hand side we obtain

B+ B) -kA - ( + A" )

or
B + = k+BA- (A - B k+l (Ak .

Notice that k, 1 < m - a. Thus, having carried out the iteration to the
point where a = m - 2, we have the final result

V1 -A(-~ = t -B - (2.154)

(2.155)Vi = Bim~0 . (A(m-))
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(2.152)

(2.153)

-All + V2 -Al +

-A21 + V2 -A22 +

I



and
r = Bm') - (A (2.156)

A(')and B (), where k < m and I < m are given, and from the knowledge

of these quantities we determine A and B recursively by eqs.(2.151) and
(2.153), and the problem in principle is solved.

CPU - time Estimates

According to current available information on MF-Cray systems the cpu time
for a typical matrix inversion of a 64 x 64 matrix is less than a millisecond,
addition of two numbers is one instruction set and takes of the order 10-s,
regarding multiplications we make an estimate and consider that to be equiv-
alent to 5 instruction sets.

We can then make the following table for the number of operations en-
volved

If we consider a case of 8 conductors, we have m
amount of cpatime we obtain

= 10, and for the total

55. 10-3 + 28.5 - 10-6 + 28.5 - 10~7s 0.06s.

From this little exercise we conclude that the most time consuming operation

by far is the inversion of matrices. The other operations are negligible in

comparison.
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Iteration Inversions multiplications additions

Iteration no. 1 m 2(m - 1)2 (m - 1)2

Iteration no. 2 m - 1 2(m - 2)2 (m - 2)2

m - I iteration 1 2.1 1

Sum r(m+1) 2 m(m)(2m-1) m(n-1)(2m- 1
_ 2 6 6



2.8 The Vacuum Energy 6117b

In principle we have now obtained V1 at the plasma vacuum interface given
by eq.(2.155). We are therefore ready to compute the vacuum contribution
to bW, 8W1, in the presence of an axisynmetric infinitely conducting wall
and with an arbitrary number of circular cross section conductors

dSV*n -VV. (2.157)
2pLO s,

We start by listing the main results obtained. From eq.(2.35) we have

n - VV(r) = An M) e'n"
eRQ

and as in eq.(2.115) we represent

An(v) = iRoBo Z{27r(k + l)B 1 + nf }&ke2rk+l)v,
k,1

and from eq.(2.107)

Vn(v)=iRoBoe" P Vme 2 rnm

From eq.(2.15) we have

dS = Rdpd1P = fRQRod4dv.

We substitute from these relations in eq.(2.157) to obtain

W FRORQdodv ARQ e'"(iRoBoe'" Z VE e Ivm vY
2pO s, r-RQ =O
,rRB+ n

10 k,l,m

= rMRBO n r
po 27r
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Let m-1 = k - = m - k, and we obtain

61 = (=m '-k + -B3_k) i1,*. (2.158)
/10 km 21r

It is now convenient to define a matrix B with elements Bmk as

Ank = 7rRB (bn-k + -- m-k). (2.159)
AO 27r

This way we may write

W = V* . B - =*-* -B. - W (2.160)

where we have used eq.(2.155) in the last step, and

w, c ' r* -B. (2.161)

This finally determines the vacuum part of the perturbation in the energy

for the case of a conducting wall and conductors in the vacuum region, and

r is given by eq.(2.156).
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2.9 Numerical Scheme

In order to apply eqs.(1.93) and (1.94) there are two main obstacles. First,
one has to determine 61iU, i.e., the perturbation in energy with an infinitely
conducting wall and conductors present. Second, one has to determine the
energy integral over the interior of the conductors. In this Chapter we sum-
marize the results for numerical computation.

2.9.1 Numerical Evaluation of 61Vb

The vacuum-part of the perturbation in energy is given by

W' =f .* b i-( (2.162)

w IV, V - B .(2.163)

B- Matrix

For this case the surface is restricted to the plasma-vacuum interface, thus
v,v' E SP.

[1 + Fx(v')lN(v') = Bo bien

EQ(v')B4,(v') = Bo A,,2 rem

B.i = B (mB- + --- n .. (2.164)
/10 27r

This determines the matrix B.

2.9.2 r-Matrices

Functions and Recurrency Relations

R'2 + R R2 +(Z' -Z)2
2R'R'
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k = Q - da 2 _ -1 <,

h R'

(-k

k(k) = K(k) 1 -In Isin 7r(v - v')I
2

= K(k),

= K(k),

= {E(k) - (1 - k)K(k)}

S( k2) -K(k)}

- E(k)(1 - k)K(k).

L2,(k) = 2 2n- A2 ,(k) + (-l)., n (2,-(,,,+l ))2 2f- 2m M n2,(c).
M= m

L'2n(k) = 2
2n- '(k) + ~(-1)" n ( 2-1 +l) )22f-2" n-2m(k). (2.171)

L2n(V, v') = L 2n(v, v') + In I sin 7r(v' - v)

2n - 2 2n - 3
M2.(k) = 2n - 1 f(k)M2n- 2 (k) + 2n - 1g(k)M 2.- 4,

2n - 2 2n - 3
M'n(k) = 2n - 1f(k)Aln_2(k) + 2n - 1(k)Mjn_4

2n -2 2n- 3
+ 2n - 2 f'(k)M2n- 2(k) + 2n - 39'(k)M2n-42n-1 2
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Mo(k)

l 0o (k)

Al 2( k)

AM4 (k)

1'(k)

(2.165)

(2.166)

(2.167)

(2.168)

(2.169)

(2.170)

(2.172)

(2.173)



-1 + 6k - 2

4k
_(1 -k ) 2

- 4k

-4k
2

, f(k1k
2

g'(k) = -1k 2 .

(2.174)

(2.175)

M4 (k) = {f 4(k)E(k) + g4 (k)(1 - k)K(k)}

f4 (k) = -{-1 + 6k - k 2},4
94(k) = 1 - 5k}

4

AM'I(k) = 1k f 4(k)E(k) + §4(k)(1 - k)K(k),

2-4k -+k2 - k
j4() = 4(1 +k) g4( k) = k - ,

Integrals

The basic elements we need to compute the F(sss,) matrices are

In (-) n!(v, v t f -R2 In Isin r(v' - v)

in = (-I)nh3(1 k2){2kL'2n(k) + L 2n(k)},

Fourier transforms

F(Sss)(v,v') = { (v')[R' - R2 - (Z - Z')2 - 2R'i(v')(Z' -

yXv') 1"(V, V')27r

1 s ,s i v')in(v, v')
27r

= Z Hme27i(kv'+mv),

= { Fam7ripa,'+m") ,

k,m
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f(k)

g(k)

(2.176)

(2.177)

Z} RZES
R',Z' ES

(2.178)

(2.179)



i(v') = IRoBo e2

R hv ' = 1 Y e 2)i-k ' + I )
47rh(v, v1 k=0 =0

(q 0)
(q=0)

rm = 2{Hmi + Fm 1 + E f(m + k)Y-k-m)},
k

Matrices

In the following the superscripts (a,0) means v E S,, v' E So. Exsample:
vclw) means that v E Sc, (conductor surface S) and v' E SW (wall surface).
With the apropriate specification of surfaces eq.(2.183) provides the means
of determining the following matrices:

r(p,cw)=

rc(P,c2)=

r(wP) =

r(ww) =
r(wcl)-

r (W,C2)=

r(c1,P) =

r(c,w) =

r(cl C2)-

r(c2P)

, c2,w) =

r (C2,C2)-

The next step is to use the
of matrices:

A( - i + r('d ,
A() - r(CP),

A( - r(clp)

A(O= rk'2,

A14)I,

information above to determine the following set

A(O) = r(pw),

A( = -=,w)
A23(0 = -rkcl"),

A(") = _ r(cow) ,

A() = r(pc),

A() = -r(,c1)
A() = I - r,ci)

A(") = -r(c,c,)

80

(2.180)

(2.181)

(2.182)

(2.183)

f (q) -y - iln2



= r(p-c2)

= -r(w'c2)

= -I - r(clc2)

= I - r(C2,C2)

= _r(c3,c2) ,

A(O = -- r(clc2)

A() = p(Pc3)

A = -rf(W'c3)

A() = -- r(cC3)

A(O= r(c2,c3)

AM = I - rPc3,C'),54

A -O) r(c,,C3)

Given the matrices above we are now ready to start the iteration using
the following formulas

Ac+' = A(- - (A()-. - A() -+ m-.k111 1 lM-, k-s1lI (k+l (2.184)

B(a+I) = B) - 1A ) - Bi (A -m-a) (2.185)

Notice that k, 1 < m - a. Thus, having carried out the iteration to the
point where a = m - 2, we have the final result

V1 -A(m7~ = 4 - B(2.86 (2.186)

(2.187)

(2.188)

V, =B(- B"-'- (A(--') -

r = Bim-1) . (A(m-~ .

2.9.3 Conductor Integral

A = - A(P) - U(P) - AP'c),

B = {{r(CP) - (A(c))~l} - {I - A(cc)} r(cc) -1
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1
C

xo=kore= n2-aR2,

fm--m  1
= 2krcI|,(kor)'

Notice that the components of the vector fJ(c) is
mined in terms of these components.

(2.189)

f,. Thus cm is deter-

1m = I (x)Im(x)xdx,

CIM CI+O m+1 + Cii m-1,

C {ci...c,}.

Then we may write

| A,.12 +| A,|2) Rrd~d~dr = 87r 2 RC c - C -c*.

Alternative approximate evaluaton of the same integral;

jArdr + A rdr ~ 2 rdr

2f mfn 1

m,n k2Im|+ InK

(2.190)
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Appendix A

Variation of 6WF

In this section we shall compute the variation in SWF

614'F = dV{-
2 v,

8(AWF)

We find

1Q -6Q
ILO

ILo
+ yp(V -)2 - -3 x Q +4 -VpV -}dS, (A.1)

flj dVQ8Q+ yp(V )V St

- I6 -3 x Q - J-3 x 6Q
2 2

+I -4VpV - t+ 6t -VpV .84}dS.
2 2

1= -Q.-Vx (S x B)

= V.-{(64x B) x Q}+ 84. B x (V xQ),
IO LO

and

-ypV -. V-64 = V. {.54'ypV -t} -6t-V{ypV -*},

1
2 - 1 ( x
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=1 \7 - {6Q ( - B -4 -v}
2po11

-Se- { V( -Vp) - VB ( x J)

1 1
2 2

4 t Bt - btB,

(A.2)

is a dyadic

and

v=.-VB+B-V+Bx(Vx )=V(B-4)-4x(VxB).

Details on this step can be found in the last section of this appendix. We
also have

v- .VpV -6= v - f{844. Vp} - 18 -'V(4 - vp)2 2 2

We collect the expanded terms and find

S(6 WF) = dVk. - B x (V x Q) - V(ypV
A0

JxQ- V(4 Vp) + -VB( x J)
2 2 2

1 1
-- J x (B. V)4+ - x (B. V)J

2 2

+ Vp-- V(4-Vp)}
2 1 2

+V. - (6 xB) xQ+84-ypV -4

1 1 -B+ 4-v+ 1 1. 1
2pLO 2pO 2 J
fF 1 1

dV I- --(VxQ)xB- -(VxB)xQ

-V{ypV -. + . -Vp}
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- Q x (V x B)+ 1pV--+ ~VB.(( x J)
2 2 2

1 J x (B -V)( - x (B - V)J
2 2 J

+V.{ (8 x B) x Q+ 5ypV -

1 6Q -B + 1 -v + -6 - Vp
2po 2pLo 2

We have

- 1 Q x (V x B)
Po

= JxQ=Jx{Vx( xB)}

= Jx {B-V - (VB+VB-BV-}
= J x (B.-V) - J x (( -V)B -J x BV*- .

Since
Vp=J x B,

we also have

1 1 1
- Q x (V x B) + VpV -. = J x (B - V)t - -J x (. V)B,

and2 2 2

and also

F( ) t# - 1Q x (V x B) -- B
ILo IAo

We may now write

x (V x Q)+ V{. Vp + ypV. }.
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f,(6WF) = j v- { -F([)

+ 1J x (B - V)1- J x V)B

+ (VB) . x J - J x (B - V)C + - x (B - V)J
2 2 2

+V -1(8 x B) x Q +S(ypV -

18Q B+ 1 4 V+ 16((- VP
2pLO 2pO 2 j

Notice also that

-(VB) - x J + x (J - V)B - J x (d . V)B 0.

A proof of this is provided elsewhere I']. Since B - VJ = J - VB we obtain

(6VF) = dV& .F(t)+ n-T, (A.3)

where

T d-- I(6xB)xQ+6-ypV-4

1 1Q -B+ 4-v+18-2 po 2po 2

We need a few more vector identities, which we are now providing

n.(6 x B) x Q = -n -6B-Q,
n.6Q n - V x (8 x B)= -V, -V,

V =n x (8 x B) =-Bn -S,
n -8Q -B =-(V, -V) - B= -V, BV}+V -V,{(-B},

V -V,{C- B} = -n.6 B-V{.-B}

=-n -6 B-{( - VB + B -V4+ 4 x (V x B) +B x (V x )
= -n-6{B :VB + BB:V }-n -6oJx B -,
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thus

1 _ 1- -. Q -B = V,.{- -BV}
2p0 2pO

1 1
+ n-64{B: VB + BB:V4}+-n- 8J x B.4,

21to 2

and

1 1
-n . '-v= -- n.84B-v
2pio 2pLO

1
- --n.6{BB: V4+B4: VB}.

2pO

By adding the two last equations we obtain

1 11n - 6Q 4 - B + - n - , v
2po 2po

1 1
= V,- {4BV} + -n -4 - Vp.

2pLO 2

And finally

n-T=-n-64 IB-Q--ypV-.-4-Vp +IV,-.{-BV}.
I./o J 2 po

The last term in this expression integrates to zero by using the formula given
in eq.(1.9), and noticing the fact that we are integrating over a closed surface
where n - V = 0.

Summarizing the results, we now have

8(6WF ) = - dV64 - F(4) (A.4)

-fS n-6S{1B - Q - ypV - Vp}, (A.5)

and this is the desired result.
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A.1 Variation of 6WF, details

We consider the term

1 1
-J x 6Q = - (V x B) x 6Q =-6Q x (V x B). (A.6)

Lo IO

We have

' x (V x B) =V( -B) - B x (V x ) - VB - B - V , (A.7)

thus

SQ.[4x(VxB)] 8Q-V( -B)-6Q-{(-VB+B.V +Bx(Vxt)}. (A.8)

We also have

6Q = Vx (S4xB)= B-V6 -64.VB-BV-6 = V.{B6(-6B}, (A.9)

since V - B = 0. We already have

41 ct' B6 - 6 B . (A.10)

It then follows that 4 = -4c, i.e., 4 is an anti-symmetric dyadic. Here 4,

is the conjugate of 4. We may therefore write

6Q = V - -11. (A. 11)

By combining these results we obtain

SQ - [ x (V x B)] = V - (6Q - B) - (V - -F) -v. (A.12)

Notice that since SQ is the curl of some vector, the divergence of 6Q is
identically zero. We have introduced

v = &.VB+B.V+Bx(Vx4)=V(B.t)- x(VxB), (A.13)

and furthermore
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(A.14)

Since v may be written as
v=VO +u, (A.15)

with u = piJ x t. We notice that 4 : VV4 = 0 since 4 is anti-symmetric,
where 0 may be any scalar function. Thus

(V - 4) -v = V - (-P -V) - Io : V(t x J). (A.16)

Elaborating on the last term we have

,P : V( x J) = {B8( - 8tB} V(t x J).

We first consider

B6t:V(txJ) = B-(6-V)txJ
= 6t.V{B-txJ}-(8t.VB)-t xJ

= 64.V{-Vp}-(8t-VB).-xJ.

Then we consider

-StB : V(t x J) = -b -{(B - Vt) x J + t x (B -VJ)},

from which we obtain

(V.- 4).-v V -7 (,I -V) - pot4 : V(t X J)

+po6 - f{(B - Vt) x J + t x (B - VJ)}.

Finally we then obtain

I
bQ.-x J - 6Q. x (V xB)

yo

= V - {Qt - B - -v}
po

+8t -V(t - Vp) - (8t - VB) - t x J

-6 -{(B - Vt) x J + t x (B -VJ)}. (A.17)

This result is employed in eq.(A.2)
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Appendix B

Alternative Formulae

(derivation)

We consider the boundary condition

V.(4O - Oo) + poo-ydn x Ao = 0, (B.1)

and notice that this boundary condition is a natural boundary condition for
the variational problem. As such, it is not satisfied by the trial functions in
the general case. However, if we disregard this fact here and assume that the
trial functions also satisfies this boundary conditon. (We shall discuss the
meaning of this assumption elswhere.) Then let the trial functions be given
as

Oi = C10. + C20b, 0o = c34., (c3 = ci) (B.2)

and

Awo = c3 Awo . (B.3)
We then find

n x Ao = -(poo-d)~ ,7 (B.4)
C'

Taking the square of this relation and then integrating the resulting equation
over the conductor surface we obtain

In x dS = (oyd) 2dS, (B.5)
se ci s
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or

' =n A 2dS = c 1 
2 fs 2c, Poayd Is

Moreover from the solution for c2 , eq.(1.62) we find

C2
C2

C2 C 2

1- C2
(2#+/ k (1~~)2

IV,02dS.

2

32'

(B.6)

(B.7)

with a = 1W. and = SW - 8W.. Now substituting back in eq.(B.6), we
obtain

a = a2V 2dS, (B.8)
Y2p-yd 2 is,

or

02p2ega = f IoVad 2dS, (B.9)

which may be rewritten as

a =i fs , yd
2 fSbIJVabj2dS

d
n x Ao 2 dS,

and we obtain

I L In x Ao12dS = (8- W")2
2 fs #4b 2 dS

Finally we may now write the expression for > as

- fs, In x Ao12 dS
b W6 - 6W

811' - 8',
2;Ao fs V5 , 6 |2dS

Notice that on Sb: V,O = V bb - nn -V4b = Vb, since n - Vb = 0
on this surface.

In summary we have
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(B.11)

(B.12)



Y7D = , (B.13)

= poo-db, (B.14)
- SWb - W
b = W W, (B.15)

6 fS, IVs0bI 2dS '

which is the result given in eq.(1.73).
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Appendix C

Boundary Condition on a
Conductor

In order to solve for the perturbation in the magnetic field inside a resistive
conductor, we need the information about the normal component of the
magnetic field from outside. This is in our case given as n . V4,,Is. Notice
that our basefunctions for expansion are 0, and (kb. Since n - Vbels, = 0,
where Sb is any bounding conductor surface, i.e., wall or conductor surfaces,
this part gives no contribution from conductors or wall.

The problem we need to solve is therefore only related to 0.. We shall
now in a couple of different ways obtain the solution to this problem.

C.1 Numerical Differentiation

In this approach we consider a solution 4. obtained by a Green's function
technique. Having obtained this function we then evaluate 4. at two or
more points (dependent on accuracy required) along a normal at the surface
under consideration. From this information we then compute the directional
derivative in the usual way, which gives us the value of n. Vbls at the point
of the surface considered.

We now outline a procedure for finding 4 at an arbitrary point in the
vacuum region. First compute . at the plasma-vacuum interface by solving
the integral equation
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o4.(r) = - { (r')n - VG(r, r') - G(r, r')n V..(r')}dS,, (C.1)

where a takes the value 1 when the observation point moves onto the surface
and otherwise o = 1. In the case considered the argument r for the function
0,(r) is evaluated on the surface S, (o = 1). Similar to eq.(2.107) we
represent 0. at the plasma-vacuum interface as

4q|sb = iRoB oe E U ()e 2  mv

Notice that 4 in the exponent refers to the toroidal angle variable. We solve
eq.(C.1) as before by Fourier expansion and obtain

U(P) + U(P) - =(P') = (P),

or

U ( - A(P)- {I + r&*)}-1 , (C.2)

which is also the result we obtain by replacing V by U in eq.(2.135), and
only keeping the first two terms on the left-hand side of the equation. Thus
having obtained ,. at the plasma-vacuum interface, we are now in a position
to determine 0, at an arbitrary point r by again using eq.(C.1), but now
with r being an arbitrary point not on the plasma-vacuum interface. This
way we obtain

(r) = - {4 (r')n - VG(r, r') - G(r, r')n - V,.(r')}dS,

= -I +I2- .(C.3)

Since the observation point is not on the surface of integration, the integrals
11 and 12 as given by eqs.(2.28) and (2.34) are not singular. Moreover these
integrals are now determined for any given value of the observation point
r = (R, Z). Notice that there is no reference to the poloidal angle. Because
of the axisymmetry the toroidal angle only appear in the exponential for a
given mode number.
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We also notice that the observation point located on the surface Sj in
these integrals can now be located anywhere except on the surface Sp. In
accordance with this it is convenient to change the notation so we write

I(isj )(V, V') =>I(S.,s)(i, V') (C.4)

I(is ) )(V, V') =>Ili'sj)(i, V') .(C.5)

The solution can now be written as

o.(r) = -uCp) - r(r) + (.A(t).

Here U(P) is given by eq.(C.2) and r and A (to be determined) are now vec-
tors instead of matrices, and they are functions of T = (R,Z). For a given
value of (R, Z) the left-hand side of the above equation is given, thus deter-
mining .. (R, Z). Notice that the left-hand side of eq.(C.3) is determined,
in contrast to the other cases we have considered, where we ended up with
an implicit equation for the unknown vector.

C.1.1 Determining T(R, Z) and A(R, Z)

We have

= L= q$.(r')n. VG(r,r')dS, df I?.sj(r,v') (C.6)

12 = I G(,r')n. V4,.(r')}dS, p' fi2si , v') (C.7)

(r) = -Ifsi (t, V') + j2ISs(, v')

=- -- j~ V(v'){q'(v')Ilr's,)(i, v')
=r27r

+-F(f~s,)(;, v')i,(r-s,)(r,v')}dv'

_e O1An (V') I,,)dV', (C.8)
27r f

where
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I (,s,( v') - Ro cos 2nO
h -o {(1 + k) 2 - 4ksin29},

=- 1)" L2n(k) (C.9)

f~rs,(r v) (1)"n N cos 2nO
hI( {(1+ k)2 - 4k sin26},

- 1)"g 2.(k) (C.10)

Here

L 2n(k) - 2dk L2n+ 1 2 L2n,1 -k dk 1-k 2

k[RR k= -, C =R'2 + R 2 +(Z'- Z) 2

k 2RR'

To continue we follow the procedure outlined in eqs.(2.118) to (2.131). The
only difference now is that we have to specify a point (R, Z) in the poloidal
plane, instead of taking double Fourier transforms. Thus instead of matrices
as given by r in eq.(2.125) and by A in eq.(2.131) we now end up with vectors
for these same quantities.

C.2 Direct computation of n - V$oc,|sc

We have that 4 has already been determined on the surface S, as a Fourier
series in eq.(C.2). We shall now outline a procedure for direct computation
of n - Sc, that is, on a given closed surface Sc in the vacuum region,
which may be arbitrarily chosen at this point, we shall determine n -V .Is,
or rather the Fourier transform of this quantity. Here n is the surface normal
to the surface Sc, pointing into the volume enclosed by Sc.

In order to achieve this we shall again make use of Green's third identity,
a modified form of eq(2.4), which now becomes

1 .(r) = - ,.(r')n - VG(r, r') - G(r, r')n - VO.(r')}dS,
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+ j{,(r')n -VG(rr') - G(r, r')n -Vcr.(r')}dS,

rCES, .

2.(r) = - { (r')n- VG(r, r') - G(r, r')n -V,.(r')}dSp

+ { O(r')n.VG(r,r') - G(r,r')n- Vq$.(r')}dS,

r E Sc.

From eq.(C.1) with a = we have2

- .(r)= -- {5.(r')n -VG(r, r') - G(r, r')n - Vk,(r')}dS,.

Equation (C.11) reduces to

(C.12)

r E S,

f,{ .(r')n -VG(r, r') - G(r, r')n - Vq$.(r')}dS, = 0,

In principle 4.(r') is determined by eq.(C.3), and by using this information
we can then determine n - VoIs, from eq.(C.13), however, we shall use a
different approach and solve eq.(C.13) in conjunction with eq.(C.12). Again
using Fourier transforms we write

n .(r')|r ES,

n - VO.(r')1r'Csc

G(r, r')dS

n - VG(r, r')dS

G(r, r')dS

n - VG(r, r')dS

rES,

r' ESp
rIESt

r'ES,

rES,

r'ESc

rESc

r' ESe

= ZU) e21rikv'

Ukc e.ig~'o,

k

ALk e
k

F Fc)e2wi(kv+lv')dV/,
A'

- A (cA)e21i(kv+1v')dV/.
k1
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(C.11)

(C.14)

(C.15)

(C.16)

(C.17)

(C.18)

(C.19)

r E S, (C. 13)



In terms of the appropriate Fourier vectors and matricies eq.(C.12) and
eq.(C.13) can now be written as

Uce) -A(P'') - U() -p(c) = 0 (C.20)

U(c) = -U(P) AcP) + * - A(P

+U(c) Ac'') - U(c) -r(c'') (C.21)

or

0(c) . r(C.P) - U(c) - A(cP) = 0 (C.22)
(c) .r(c,c) + u(c) - A(c,c) = -A(P) - U()-A('-). (C.23)

Notice that the factor 1 multiplying 0.(r) in eq.(C.12) has been accounted
for in the definitions of r and A. From eq.(C.22) we find

U(c) = (c) - r(cP) - (A(c))1 . (C.24)

We substitute for U(c) by eq.(C.24) in eq.(C.23) and obtain

Uc-) = A -B- 1  (C.25)

where

A = ( -A( P - A(P'c), (C.26)

B = {{(cP) . (A(C))- 1} .I - A(c'')} - r(c'c)}. (C.27)

The result given in eq.(C.25) is the solution to our problem. The matrices
Vc,,O) and A*1,) are determined in a similar way to the procedure used in
eqs.(2.122) to (2.131). The solution is obtained as a Fourier series, which is
convenient for our purpose.
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Appendix D

The Limit of F(v,v')

We shall study the limit Iv - V'I -+ 0 of the expression

F(v, v') "{y(v')(R' + R)(R' - R) - (Z' - Z) 2 ] - 2R'i(v')(Z' - Z)}

First we consider

y(v')(R'+ R)(R' - R) =

+ER'{ci 2(v)y(v) +

+

{y(v) + j(v)(v' - v) + - --}Ri{2[1 + Fx(v)] + ei(v)(v' - v) + --

x efi(v)(V' - v) + z(v)(V' - v)2 + - -

2AR&[1 + ex(v)]z(v)y(v)(v' - v)

2i(v)9(v)[1 + Cx(v)] + :(v)i(v)[1 + Ex(v)]}(v' - v)2

2fRA[1 + fx(v)].i(v)(v )(v'- v)

eR J2 {2(v)y(v) + [2i(v)j(v) + i(v)i(v)][1 + f.X(v)]I (v' - v)2 + - -

Then consider

(')(Z' - Z) 2 = {v) + g(v)(v' - v) + - .}Rf{1 + ey(v') - 1 - cy(v)} 2

= E2 R{y(v) + g(v)(v' - v) + -}{y(v)(v' - v) + -.. }2

= E2 RN(v)(v' - v) 2 +-.

And then we consider the last term
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2R'4(v)(Z' - Z) 2R[1+ E(v')Ji(v')[y(v') - Ey(v)]
= 2ER2{1+ ex(v) + ei(v)(v' - v) + .}{i(v) + i(v)(v' - v) + --

xfy(V)(V' - v) + W)( - v)2 + - -

= 2ERi {[1 + 6x(v)]-(v)y(v)(v' - v)

+ {[1 +4_ EX(v)][i(v)y(v) + l(V)i() + Cs2(v)y(v)}(v' - v)2 + .

We notice that the first order terms cancel, since

2eR [1 + ex(v)]i(v)y(v) - 2eR2[1 + fx(v)]i(v)(v) = 0.

Then we obtain

F(v, v') = R{Cei2(v)y(v) + [1 + Ex(v)1[2z (v)y(v) + i(v)y(v)]

Ey3 (v) - [1 + fx(v)j[2;i(v) (v) + i(v)i(v)] - 2Ei2(V)y(V)}(V- v)2 + -

{ + ex(v)][-z(v)y(v) + f(v)9(v)] - ey(v)[i 2 (v) + y2(v)]}(v' - v)2 + O(v' - v)

[1 + fx(v)]Q 3  _ 2(V)Q2 + O(v' - v) 3

Q2{[I + Fx(v)]QK - (3y2(v)} + O(v' - V)3

where

def 2 i(v)(v) - ()i(v)

is th curv2(V) + y2(V)}

is the curvature in the poloidal direction.
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