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Abstract

Analytic calculations of the magnetic fields available to magnetic diagnostics are per-
formed for tokamaks with circular and elliptical cross sections. The explicit dependence of
the magnetic fields on the poloidal beta and internal inductances is sought.

For tokamaks with circular cross sections, Shafranov's results are reproduced and
extended. To first order in the inverse aspect ratio expansion of the magnetic fields, only
a specific combination of beta poloidal and internal inductance is found to be measurable.
To second order in the expansion, the measurements of beta poloidal and the internal
inductance are demonstrated to be separable but excessively sensitive to experimental
error.

For tokamaks with elliptical cross sections, magnetic measurements are found to deter-
mine beta poloidal and the internal inductance separately. A second harmonic component
of the zeroth order field in combination with the dc harmonic of the zeroth order field
specifies the internal inductance. The internal inductance in hand, measurement of the
first order, first harmonic component of the magnetic field then determines beta poloidal.
The degeneracy implicit in Shafranov's result (i.e. that only a combination of beta poloidal
and internal inductance is measurable for a circular plasma cross section) reasserts itself
as the elliptic results are collapsed to their circular limits.
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Chapter 1

Introduction

1.1 Background

The realization of controlled thermonuclear fusion is one of the Holy Grails of modern

physics and engineering. Promising clean, practically limitless energy, fusion is one of the

principal hopefuls for future energy development. To this end, fusion research is being

conducted worldwide.

A favorite scheme for realization of controlled thermonuclear fusion is the tokamak, a

toroidal confinement device pioneered by Soviet scientists. Briefly, a tokamak consists of

a toroidal vacuum chamber that loops through powerful magnets, called toroidal field or

TF magnets. The TF magnets create a strong magnetic field in the toroidal direction. In

modern, high field experiments such as Alcator C-Mod, the toroidal field can be as high

as 10 T. In addition to the applied toroidal field, a tokamak realizes plasma confinement

by means of a self-generated poloidal field. A powerful transformer commonly referred

to as the ohmic transformer is pulsed to initiate tokamak operation. The magnetic flux

created by the ohmic transformer links the plasma that is being created simultaneously in

the vacuum chamber. The resultant electric field drives a current through the plasma in

the toroidal direction creating a magnetic field in the poloidal direction. This current is

called the plasma current, henceforth denoted as I,. I, = 3 MA in Alcator C-Mod. The

poloidal field created by Ip combines vectorially with the applied toroidal field to create a

rotational transform or "screw pinch" equilibrium that has proved remarkably efficient in

confining fusion plasmas for brief periods of time.

The difficulty in achieving breakeven, much less appreciable gain, in a fusion exper-

iments lies in confining plasma that is hot enough, long enough so that the necessary

number of fuel nuclei overcome their mutual Coulomb repulsion and fuse. Typically, mod-

ern fusion experiments have T, z 8 keV, ne - 5 x 10 20 m-3, and energy confinement times

1



(TE) on the order of 500 msec. Lawson formulated a criterion for achieving breakeven in a

deuterium-tritium plasma that is summarized below.

nfeTE DT _ 10 20 m (1.1)

To date, fusion experiments have improved dramatically, by a factor of 104 from

initial devices, but still fall short of achieving ignition. Research is ongoing and progress is

being made. Several new concepts are being explored in the newer experiments including

elongated plasma cross sections, divertors, pellet-fueling, neutral beam and rf heating to

name a few.

Crucial in gauging the performance of a given tokamak experiment are two parameters

f3, and fi. O,, known as beta poloidal, is the ratio of plasma kinetic pressure to poloidal

magnetic field pressure. O, has several definitions depending on which convention is em-

ployed. For the present calculation the following two definitions of Op will be employed

where appropriate.

p)2po (1.2)
Pedge

(P)87rAplasma
A~s,,.(1.3)

(p) is the volume averaged plasma kinetic pressure. B2 /2po can be thought of as the

poloidal magnetic field pressure at the edge of the plasma. Equation (1.3) reduces to

Eq. (1.2) if the plasma has a circular cross section.

/8, is a measure of how much plasma is being confined for a given edge value of

poloidal field. In some sense high fl means better overall plasma confinement and tokamak

performance. However, it can be demonstrated that if , becomes too high, that is reaches

a certain limit, plasma equilibrium is no longer possible. For the case of a tokamak of

circular cross section the O, limit can be expressed thus

_', < 1 (1.4)

where c = a/Ro is the inverse aspect ratio of the tokamak.
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ii is the internal inductance of the plasma per unit length normalized to po/47r. It is

a measure of the width of the current profile which has direct bearing on the stability of

a given equilibrium.

One way in which experimentalists have sought to determine these two important

operational parameters is with magnetic diagnostics. For a comprehensive overview of the

most commonly employed magnetic diagnostics including Rogowski coils, flux loops, and

field coils, see Hutchinson (1987).

Several numerical studies have been undertaken to determine how and under what

conditions fi, 3,, and I, can be measured with magnetic diagnostics (Brahms [1990]).

Luxon and Brown (1982) while working on Doublet IIa and Doublet III employed a scheme

whereby the Grad-Shafranov equation was solved for a particular set of profiles and simu-

lated measurements were computed for the 24 one-turn loops and 12 partial Rogowski coils

actually monitoring the experiments. These simulated measurements were then compared

to the actual data and the differences minimized. Lau et. al. (1985) performed a similar

analysis on Doublet III adding 11 local magnetic probes to the diagnostics listed above.

Both groups found that the differences between actual and simulated measurements had

well-defined minima for non-circular cross sections and that I,, ,, and ii could be deter-

mined separately with some measure of confidence. For circular cross sections, only I, and

op +fi/2 could be determined. In a later work, Lao et. al. (1985) demonstrated that in the

circular case ,3 and ii could be separated by appealing to a diamagnetic flux measurement

in addition to the other measurements cited above. The validity of such an approach is in

doubt however as diamagnetic flux measurements are subject to substantial errors because

of a large toroidal field offset.

Numerical work on JET pursued by Brusati, et al (1984), Blum et al (1981, 1985),

and Lazarro and Mantica (1988) proceeded along the same lines. Their conclusions were

nearly identical with the Doublet III groups'. From magnetic measurements alone, I, and

the combination 3p + fi/2 could be determined for low 3, in near circular plasmas and

I,f,, and ei for non-circular plasmas. A critical elongation of 1.25 was calculated. For

plasma with elongations K > 1.25, the measurements were separable.
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Much analytic work has been done by Shafranov (1962, 1966) and Mukhovatov and

Shafranov (1971). Shafranov demonstrated that to first order in the inverse aspect ratio,

E = a/Ro, the radial and azimuthal components of the poloidal field outside the plasma

can be expressed in the following forms.

Be (r, 0) ~ A - (. 1 I + --2)(#, + )+In -r 1 + 2oaCos 0 (1.5)27rr 47r r2 2 a r 2

_ _I, 2 Li -i 2RoalBr(r, 0) ~- (' [ -)(3, + 2 ) +In -- 2J sin0 (1.6)47Ro r2 2 a r

a is the minor radius of the tokamak, Ro the major radius. A, is the famous Shafranov

shift which represents the distance the plasma has shifted outward in order to reach an

equilibrium that creates a toroidal force balance. One can determine I from the steady

component of Be and A, and the combination Pp + Li/2 from the first harmonics of Br
and Be. Shafranov's model and the studies cited agree.

Wind (1972, 1984) and Brahms et al (1986) applied function parameterizations to

the magnetic data analysis on the ASDEX experiment. The goal was to obtain a simple

functional form for intrinsic physical parameters of a tokamak in terms of the values of

measurements. Again, only OP + L/ 2 was determined with good accuracy in the presence

of realistic measurement errors in a near circular geometry.

The objective of the present work is to demonstrate analytically what has been hereto-

fore known only computationally. Namely, magnetic measurements are sufficient to deter-

mine 3, and Li independently only if the plasma is sufficiently elongated. What follows

in the present chapter is a short review of the ideal MHD model. Chapter 2 reproduces

Shafranov's results in the circular limit and extends the model further demonstrating how

although second order, second harmonic field measurements allow one to separate O, and

Li, the measurements are too sensitive to determine them with any confidence. Chapter 3

addresses the elliptic problem in which (for profiles fundamentally identical to those used

in the Shafranov model), the Grad-Shafranov equation is solved explicitly to first order.

The resultant magnetic fields available to a hypothetical set of magnetic probes are then

calculated explicitly.
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1.2 Ideal MHD

For a comprehensive overview of the subject, refer to Freidberg (1987). A few salient

points are summarized here.

Ideal MHD treats a plasma as a single, electrically neutral fluid capable of supporting

large electric currents. The currents are modeled as being carried by massless electrons

while the fluid's inertia lies with the ions. A reduction of the two-fluid equations for

electrons and ions to a single fluid equation with these approximations in mind yields the

famous force balance equation shown below.

J x B = Vp (1.7)

Ideal MHD models a plasma as having no resistivity. Therefore, Ohm's law can be cast

in the following form.

E + v x B = 0 (1.8)

In combination with Maxwell's laws and an equation of state (1.7) and (1.8) can be used

to solve for a very wide range of MHD equilibria.

In fusion configurations with confined plasmas, the magnetic lines lie on a set of nested

toroidal surfaces called flux surfaces.

Taking the B component of Eq. (1.7) reveals that flux surfaces must also be surfaces

of constant pressure.

B - Vp = 0 (1.9)

It is also worthwhile to note that taking the J component of Eq. (1.7) demonstrates

that the current flows along flux surfaces and never across them.

Consider the following two Maxwell's equations where the displacement current has

been ignored.

V - B = 0 (1.10)

V x B = poJ (1. 11)
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Define the magnetic field B in the following manner.

B = B064 + B, (1.12)

1
B, = 1 VO x 6,0 (1.13)

i is the flux function. Flux surfaces are surfaces of constant b. Combining Eqs. (1.7) with

(1.10-1.13) one can derive the famous Grad-Shafranov equation.

= ~1 dp2 - dF
i-poR2 - F-b (1.14)dO dO

The elliptic operator A* = R2 V- (p). F = RBk and can be shown to be a free function

of flux only.

F =F(O) (1.15)

Likewise for the pressure p.

p= p(O) (1.16)

Equation (1.14), the Grad-Shafranov equation, describes tokamak equilibrium in terms

of the flux function 0. Solving the Grad-Shafranov equation for certain prescribed, ideal

profiles p and F, one can thus calculate B, explicitly from 0. This is exactly the ap-

proach taken in Chapters 2 and 3. In both cases an inverse aspect ratio (6) expansion is

performed. For the circular case the expansion must be carried out to second order in e.

For the elliptical case only first order is required, but the zeroth order solutions are much

more complicated. From these solutions, it is possible to deduce the desired information

concerning p, ,,, and the magnetic diagnostics.

1.3 Notation

A brief word about notation. Throughout the work, whenever a "caret" appears above

any quantity except a unit vector, that quantity is understood to be defined outside the

plasma. For example, b denotes the flux function outside the plasma while V) denotes

the flux function inside the plasma. Also, magnetic fields are labeled with subscripted

direction, order, and angular harmonic. For example, B9,, denotes the first order, first

harmoinc magnetic field in the 9 direction.

6



Chapter 2

The Circular Limit

2.1 Introduction

In this chapter the Grad-Shafranov equation will be solved to second order in the

ohmic tokamak expansion. See Shajii et al (1992). Then having explicit formulas for the

flux functions ,O I 1 , and b2 , the magnetic fields available to an idealized set of probes are

calculated. The dependence of these field amplitudes on , and fj are sought.

2.2 The Ohmic Tokamak Expansion of the Grad-Shafranov Equation

Consider a circular tokamak as illustrated in Fig. 2.1. The plasma of radius a is

surrounded by magnetic probes conveniently located on a concentric circle of radius b.

These magnetic probes sample the radial and azimuthal fields during the flattop portion

of tokamak operation. Assume that the signals are Fourier analyzed to yield the following

information.

B, (, b) = B, 1(b) sinG + Br2 (b) sin 26 (2.1)

Bo(6,b) = Boo(b) + Bo1(b) cos 0 + B0 2 (b) cos 26 (2.2)

" B,1 is the first order radial field.

* Br2 is the second order radial field.

" Boo is the zeroth order tangential field.

* B91 is the first order tangential field.

" B 02 is the second order tangential field.

The field amplitudes are ordered with respect to the inverse aspect ratio E < 1.

That is
Bo 1  Be 2  Br2B01  c oce(2.3)
Boo Bo1 B1
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The data yields five pieces of information with which it should be possible to obtain the

following five plasma parameters:

* I, total plasma current.

* A, the Shafranov shift.

* Op the poloidal ,.

" t normalized internal inductance.

" r the plasma elongation.

To obtain analytic expressions for the field amplitudes in terms of the desired param-

eters one proceeds as follows.

The MHD equilibrium of the plasma is described by the Grad-Shafranov equation

developed in Chapter 1.

A*O = -poR2 - FdF (2.4)
d#k dik

Again p = p(b) and F = F(b), free functions of flux that describe the pressure and

toroidal field profiles respectively. For this particular problem assume an ohmic regime of

tokamak operation as opposed to the high beta or flux conserving regimes. The regime

of operation gives the ordering and appropriate parameters in which to asymptotically

expand the Grad-Shafranov equation in order to obtain 4 to the desired accuracy.

Ohmic tokamak operation is characterized by low f, paramagnetic plasma behavior,

and q ~ 1 for stability. q is the safety factor where q(r) = Rl-. Ohmic operation

assumes that plasma kinetic pressure is confined mainly by a poloidal field generated by

ohmic current and not by any magnetic well in the toroidal field.

Expand the Grad-Shafranov in the parameter E, the inverse aspect ratio, where E

g < 1. The ohmically heated tokamak expansion is given by

BP ~(2.5)

B4

q ~ 1(2.6)

2pop 2 (2.7)

8



P ~ ~ 1 (2.8)
P

(ri) ko(r) +ik1(r) cos 0 + 02(r, O) + .. (2.9)

~ e (2.10)

~ e (2.11)
01

?P rROBO (2.12)

Choose F 2 (ik) and p(o) most conveniently and Taylor expand these free functions about

0o.

F2 ~ R(B2 + 2BoB 2 (b)) (2.13)

P(0) !:- P(0) + _ (01 +02) + 2 (01 + b2 )2 +... (2.15)
doo 2 d02

Rewrite the Grad-Shafranov in toroidal coordinates

1 a '7 1 a 2 0 2 dp d F 2  1 o sin0 9,0
rrr -r +r 2 002 - -o(Ro+rcos9) do do 2 R COS Or r 80 (2.16)

By substituting the expansions for 0, p(o), F(o) and collecting terms of the same order in

C, three inter-related equations are obtained.

co : -- a r -90 R 2Bo - po R2 dP(2.17)
rOr Or /d@ do

1 1 a (_ Olk1 01 1 W4o R2B d 2B2 /2(, d2p 2r dp\
rOr \ Or) - R0 Or 0 0 1 d#b - oJRo#1+d d-o-) (2.18)

2 r2 ,1(&1 # cos .Xd d2B 2  Ro d B
OE : V2 2 - COS2 + sin 2 - R2Bo d 2 - 0B s 7

Ro -r R2Ro rJo d/o' 2 d0

- d 2p (& d3p 2rb1 d p r 2 dp ~ o 2 oR (219- poR 02d02  2 + _ + COS2 Ro (2.19)

Equations 2.17-2.19 shall henceforth be referred to as the zeroth, first and second order

equations respectively. The zeroth order equation is a statement of radial pressure balance

and the zeroth order poloidal field is given by

1 di~b
Bo = 1o dr (2.20)

Ro dr

9



Rearranging terms in the zeroth order equation, it is a simple matter to show that j =

Sy. The first order equation can then be simplified and written in the following form
WR-B, dr

1 d (r + 1 V ppB_J r? (2.21)
r drkr dr r2 +Be dr = Be dr

Likewise, the second order equation can be cast in a more tractable form

V24'2 - Bo = R(r) + S(r) cos 26 (2.22)
Be dr

-1 d1 4' /por2 dp 2por .1 d 1 dp\ 4+ 1 d (o dJ
+ -- rBe - -1 +2ROI dr r Bo dr Be dr Be dr 2Bo dr Be dr

_ por 2 dp 2por d 1 dp $ d po dJ
S(r + -krBo - 1 +

B dr B-d 2BO dr Bo dr2Ro dr r Bo dr Bo d Bo dr 2od od

It is important to note that, as the complexity of each equation increases in proportion to

its order so does information content. In fact, Eq. (2.22) contains more information than

is required to derive the field amplitudes of the particular harmonics being sampled. Since

Be2 (r) cos20 oc dV;2 (r, 0)/dr only, the S(r) cos26 term on the right hand side of (2.22)

will be needed. For all practical purposes R(r) can be ignored for the remainder of the

calculation.

To specify the problem completely, the boundary conditions on 4if(a) and ?k 2 (a, 0)

must be imposed. Before turning to the detailed behavior of 0 on the plasma boundary

r = a it is worthwhile to mention that 4' must be regular at the origin. Whatever the

functional form given by the solutions of 2.21 and 2.22, an infinite flux at r = 0 is unphysical

and the coefficients of any terms that diverge as r -+ 0 must be set to zero in the region

r < a.

It was mentioned earlier that the boundary of the plasma is circular. That is only true

to zeroth order. Let the surface of the plasma be circular with small ellipticity. Assume

the surface of the plasma is described by r(0) where

r = a [1 + 2 (1- cos 20) (2.23)

The ellipticity is second order in E.

K.i - E 2 (2.24)

10



Here it is implicitly assumed that the equilibrium has been so arranged to set the Shafranov

shift A. = 0. This is not a necessary condition and has only been assumed for the sake of

simplicity.

The surface of the plasma is also a flux surface; that is, 0(a, 6) = const. Therefore,

we can Taylor expand Oo(r) at the boundary, add the first and second order contributions

to 0, and set the entire sum equal to a conveniently chosen constant.

S+ a dr' - (1-cos26) + 1cos6+4, 2 =0 (2.25)
1dr [ 2

Immediately, it becomes apparent that in order to satisfy the condition that '0(r.(6), 0)

,01(a) = 0 (2.26)

0 2(a, 6) = -aRoBe (K - 1)(1 - cos 20) (2.27)
2

To carry out this calculation analytically it is necessary to use very simple profiles for

p(r), J(r) and Bo(r). The following profiles are used to solve (2.21) and (2.22).

2

P= Po(l - ) r < c (2.28)
c

p = 0 r > c (2.29)

Be = Boc - r < c (2.30)
C

c
Bo = BOC- r > c (2.31)

r

J = J r < c (2.32)

J = 0 r > c (2.33)

See Fig. 2.2 for a depiction of these elementary profiles. This very simple model is intended

to replicate the behavior of plasmas with dense, current carrying cores, the ratio of c/a

being a measure of the peakedness of the actual smooth profiles that are measured in

experimental plasmas.

Before substituting these profiles into the first and second order equations, they are

used to calculate ti and O, quantities which depend only on zeroth order quantities.

11



Here, let 3, = (p) . where (p) is the volume averaged kinetic pressure and - is the

edge value of poloidal magnetic pressure. Given the profiles outlined above , is simple to

calculate.

(2.34)
B2

Now calculate i, the internal inductance of the plasma per unit length normalized

to po/47r. Actually the determination of ii is merely a statement of the conservation of

zeroth order magnetic energy.

LI2 B rd 3 V1sm, (2.35)
2 P J 2 yot

i Li /po (2.36)
27rRO / 47r

Breaking up the volume integral into two regions r < c and r > c, and substituting

Eqs. (2.30) and (2.31) in the appropriate regions, ii is obtained.

1
= - 2in a (2.37)

2

C
a -

a

The dimensionless ratio a is a measure of how peaked actual, smoothly varying profiles

such as these realized in experiments might be. As a --+ 1 the profiles become flat and

as a -+ 0 the profiles become highly peaked. Intermediate values of a can be chosen to

approximate a given experimental situation.

Expressions for 3, and fi in hand, one is in a position to solve Eqs. (2.21) and (2.22)

and obtain expressions for the field amplitudes to be measured.

12



2.3 The First Order Solution

Upon substitution of the given profiles into (2.21) in the region 0 < r < c the 01

equation becomes
1 d dO 1  -1 Bec
r r dr 2 -- (1+ 4#,)r (2.38)

Setting the coefficient of any terms that diverge as r -- 0 to zero, the solution of (2.38)

can be expressed in the form below

01(r) = -O(1 + 40,)r3 + cir (2.39)

Repeat this procedure for (2.21) in the region r > c keeping in mind that the decaying

solutions must now be kept in the form of the solution. Equation (2.21) becomes

1 d d=1 =o BC (2.40)
r dr dr r 2  r

Since 0 1(a) = 0 the solution to (2.40) can be expressed as

cBoc a 2

41 = -rln- + C2(r - -) (2.41)
2 a r

At this point in the calculation there are two undetermined coefficients, ci and c2.

Application of the and the jump conditions at r = c determine these constants.

J(r) is a step function. dj() is a delta function at r = c. 01 must be continuous at

r= c.

dJ(r) 1 ddr 1 drBe(r)6(r - c)
dr por dr

dJ(r) 1 d 2Becdr - r 6r-dr ~ por dr C

dJ(r) 6(r - c) (2.42)
dr pOC

01(c) - 0 1(c) = 0 (2.43)

13



Now examine Eq. (2.21) again integrating over the jump from r = c- to r = c+.

Jc+lId diic+ 01 !r + 2 ~ = C+ 2por dp
(r -)dr - f dr + J - c)dr (Be - - )dr (2.44)

The term on the right hand side of (2.44) is continuous. The first term on the left

hand side of (2.44) can be integrated by parts twice.

i+ + fc±kldr - dr + 2bi (c) = 0 (2.45)
dir ± r J r2  c 2c

Applying the continuity of ?P 1 at r = c, it becomes evident that the delta function in dJ(r)

requires there to be a step in "' at r = c.dr

di dP1 _ 201(c) (2.46)
dr dr c

Now apply the jump conditions to the solutions 0 1 and 1. This gives two equations in

two unknowns.

cBec In a + c2 (c - - 2 B(1 + 4,)C2 - CC= 0 (2.47)
2 c 8

Ci - c2 (1 - 2  cBO Ina -1 (1+40) (2.48)
c 2 L 4

The algebra is sufficiently simple that the steps are omitted.

c1 c =p+ (1 - a2) (2.49)= 2a 2 1  2 2"

C2 = (2.50)

7k is now completely determined.

Bec r cBec a2)01 (r) = ' (1 + 40p)rs - -O1 + 2 r (2.51)

cBcer ln + - + - (r _a (2.52)
,01(r) 2 rna + 2[O+2 2 r

Having 01 and 1, it is now possible to obtain the first order magnetic fields measured

by the probes at r = b. After the discussion in Chapter 1, the poloidal magnetic field is

14



exactly Bp = -VO x e6. Taylor expanding the 1/R, substituting the perturbed solution

for 7b = ' 00 + b1 + 02 + ... and collecting terms of comparable order, the first order fields

are given below.

1 1O#1(r,6)
B 1, =

Ro r 00

B1 ,. = - 1 sin 0 (2.53)Ro r

180 1 07b0o 1 0 1 8 0Be = - r Cos
R Or Ro Or Roar R! Or

1 &?ki 1
Bio = [ ON-1r -jBe(r) cos 0 (2.54)

Substitute (2.52) and (2.31) into (2.53) and (2.54). Evaluate the expressions at r = b.

I.~4 /.Op-e 1)( 2 ) bl
($±l =2+ )(1 -) +In-i (2.55)

4,rRo 2 b 2  a

I 1)( + a') b
47rRo2+ (2.56)

Note that both field amplitudes only specify the combination O, + - uniquely. They give2

the same information. It can be shown that taking the combination b 1 = Be1 (b) -lB, 1 (b)j

subtracts out any shift information wrapped up in the first order fields. This combination

is included here for reference only as the Shafranov shift Aa has already been set to zero

for convenience.

1 = l [1 2 (. + 1 (2.57)

Again note that only the combination O, + - can be found from the data. The first

order field measurements do not specify fl, and fi separately. Although it would seem that

having determined the plasma current I, from zeroth order measurements and knowing

the geometry, the two field measurements, B 1 , and B 16 , are sufficient to determine f3, and

ej separately, they are not. O, and i; relate to the first order measurements in a linearly

dependent fashion.

15



2.4 The Second Order Solution

Next, turn to Eq. (2.22) for 02. Perhaps the second order field measurements can

supply the additional information necessary to find fl, and fi. Focus on S(r) in the region

r < c. Substitute the expression for 01 in that region and the given profiles.

1 do, = 1 - - 2 dp 2por j1 d (1 dp\ + d ( _po d

S(r)=j ~ r~r B- Tr 2B, Tr Bed}2Ro Idr r Bo(r ) dr Be dr \ d BdrBe dr

Since != 0, the last term on the right hand side vanishes.

1 = 2 + 4 2 - - 2 or2
2R- 8R c 8c cB0,r \ 2

S(r) = 1 5 (1 +40)r2- r2 + 2flop 2
2R0  4c c Boc J

S(r) = Be 1 ,-1+2 r2
2ROc 4 B

S(r)= 33 p- r2

S(r) = 3Be - 1 r 2 r < c (2.58)
2ROc I P-45

For the purpose of calculating the amplitude of the second harmonic that appears in second

order, Eq. (2.22) becomes

v202 = 3Bec (op)r2 cos 20 (2.59)

A solution of the form 4'2 (r, 9) = 4'2 (r) cos 20 is sought. Substituting this form of the

solution into (2.59) converts a second order partial differential equation into a second order

linear ordinary differential equation which is trivial to solve.

d20k2 +di,b 2  4 _3 Bec 2  (.0
+ -2 202 = (p - 1r2 (2.60)

r 2+dr r 2 Roc k 4

Immediately one can write down the solution in the following convenient form

02(r) ( - r4 + bir 2  (2.61)

16



The same procedure is followed in order to find '0 2 (r, 0). This time 01(r) and the

appropriate profiles for r > c must be used to compute S(r) in this region.

_ d, 1  por 2 dp _2po 0ri d ( 1 dp< + d2 t J'
S(r) = - - -dr) 2(_r 1 po V

2 l r r _rBe(r) - Be(r) dr -Be (r) dr W9 dr) 2B,~ dr 'Bo(r) dr J
Again the last term on the right hand side vanishes because J(r) = 0 for r = c. Also

the pressure p(r) as well as its derivative d are zero in this region. S(r) simplifiesdi'

greatly.

S(r) = {d -j '' - rBe(r)

S(r)= 1 cB ra + cBec n +C2+C2a 2  2c a+ 2 - Br-c

2Ro 2 ar 2 a r2 2 a r2 r

S(r) = 2 2c2 -

1 2Bcc l+ i - 1] a2  Becc}S(r ) - 2Ro 2 O 2 2 r2 2

S(r) - Bc + r > c (2.62)
2Ro Ilp 2 r2 2

For the purpose of calculating the amplitude of the second harmonic that appears in

second order in the region r > c, Eq. (2.22) becomes

v 2 = O{ + 2 (2.63a)

A solution of the form 42 (r, 9) = ' 2 (r) cos 20 is sought. Substituting this form of the

solution into (2.59) converts a second order partial differential equation into a second order

linear ordinary differential equation.

d2 2  1 d0 2  4k2 Bocc [( 2 1

dr2 + r dr r 2 - 2Ro O + 2 r2 22

The solution is expressed most conveniently below.

2(r) =) - 2 + a2+ In + b2 r2 + (2.64a)
8Ro I 21
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At this point in the calculation of 0, there are three undetermined coefficients bl, b2 and

b3.Application of the jump conditions at r = c and the boundary conditions at r = a will

fix these three coefficients. Up to this point in the analysis, the microscopic details of the

calculations have been omitted as they were for the most part trivial. From this point on

however the algebra becomes both subtle and cumbrous and therefore it is worthwhile to

include each step.

First, determine the jump conditions on b2 and '2 across r = c. Again, return to

Eq. (2.22) and rewrite it in the following form.

d2'0 2  1 d0 2  4 po V
dr2 +r dr r 2 02 Bo(r)dr

1 [d@1  1 2 dP 2porol d 1 dp 02 d ( po dJ
[ - -1i -01 - II)

2Ro dr r - rB9(r) - dr Be(r) dr Be(r) dr 2B,(r) dr \Be(r) dr }
(2.64b)

Considering the step behavior of J(r) and dr, one finds that the jump conditions can

be determined quickly if '2 (r) near r = c is expressed in the following form

'02(r) = AJ(r) + Bp(r) + ' 2 (c+) + smooth functions -+ 0 as r -+ c (2.64c)

Substitute this form of 0 2(r) into (2.64) in order to determine the constants A and B.

A d+A-- A J + B - B 11 - _ P 2 (c+
rr , dr Be (r) dr d 2  Bo(r) dr Bo(r) dr

1 [ 2por# 1 dp + oV 1 d2J 1 dJ dB9  (2.65)
2Ro [ Bj(r) dr2  2Bo(r) \Be(r) dr2 B (r) dr dr

[d2 J ldJ _po dJ' rd2p po dJ ] o J

A dr2  r dr Be + B [dr2  B dr Be dr 02(C)

1or1 d2p 1ok 2 J 1dJ Vpo dJl
RoB 2dr2' 4RoBi [dr2 + r dr Be dr .

Find A and B in terms of 42, Bec, Po and the normalized first order flux 2

4

A = t0C-2 (2.66)
4Ro1

d2p 11o dJ -poc,1 d2p
dr2 Bec dr 2 RoOc dr2

18



Recall J = JoO(c - r) and 9 = - 26(c - r) where B(c - r) is the heaviside step function.
dr C

Therefore, can be written in terms of d.

d cJo dp (2.67)
dr 2 po dr 2

d 2p IO (_cJo d2p - poc d2P
dr2  Bee 2po / -r2 RoBOc 2

/IOCJO - 11oc;aB = - j-;- 12-
2B'po RoBOec

Rewrite B evaluating Bec with Ampere's law around a circular contour at r c.

pOJ 2B (2.68)
C

B = k2 - Poc34' (2.69)
pO RoBoc

The reason for writing i 2 (r) in the form of Eq. (2.64b) now becomes transparent.

02 - 02 = -A Jo (2.70)

d4 2  d0 2 = -Bdp (2.71)
dr dr dr

4-2
2Boc poc 4
poc 4RO

2 - 02 = - c'Bor2 (2.72)
2Ro

d d2 - d0 2 2po ( 2 PoC3V'1

dr dr c P R Bo c

d 2  d -2  - Boc2,2c (2.73)
dr dr c O

At this point in the calculation the jump conditions at r = c given by Eqs. (2.72) and (2.73)

and the boundary conditions on '2 at r = a given by Eq. (2.27) completely determine the

three unknown coefficients bl, b2 , and b3 . Equations (2.72), (2.73) and (2.27) can be written

as follows.
S-- 1

A = O + (2.74)
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Aa + -In a - bic2_- P( , - )c" = _ 1( 2 ____141?1

2b2 c - 2
C3 8R-cln

-2c 2 B , - 2

b2 a2 + -

a2

b2 + )[(b2cC2 2

cBec Aa 2

SR0

+ - 2b1c - Bec 2
2 2Ro

c.Boc
8Ro ( Aa2 +

2 Ina)]

= 2 Ro(m - 1)

Write these equations in matrix form.

b2C 2 + b b1c 2 = c1
C2

2b2c 2 - bi C2 = C

ab2a 2 + b3 =

+ cBe (Aa 2

SRo

+ R(clna+ c)

+ -Ina)
2

c3 Boe

c3Bec

c2= 2R 0 '

ci=c3Bec

C =c oc
2R]

2#,5+ 1(lna + )+ 1(O, -

S 1 1 + 1 1 Aa220,461 + 4na++(# 4 C2

2+ Aa2+ 1In a + 1(Op - )1

I(n - 1) - A 

Solve for b2c2 , b3 /c 2 , b1c2 . That is, write the system of equations developed above as a

single matrix equation.

1 1
2 0

a 2/Cc c2/a 2

-1] b2 c 2 ] C 1
-1 b3 /c 2  = C2 1

0 _ b1 c 2 I C3

c1 , c2c3 are known and given by (2.75-2.77). Repeated application of Kramer's rule to

(2.78) wll solve for the column vector on the left hand side. However, since the present

20

b2 c 2 +
C2

cB-
SRo

2c 2Bc -c
C2 - -fp

Ro 12
+ Bec 2 (-+2Ro 4c

1
4

A a
2

+ 4 c2
+1 Ina]8 i

(2.75)

(2.76)

(2.77)

(2.78)



calculation is aimed at determining b 20(b) and B2,(b), it will only be necessary to solve

for b2 and b3 . The second order magnetic fields are uniquely determined inside the plasma

but are not of interest here.

It is a simple matter to calculate the determinant of the 3 x 3 matrix on the left

hand side of (2.78). Then, two applications of Kramer's rule give b2 and b, completely

specifying i2-

-1 (a4 + c4 ) (2.79)
a2 /c 2 c2 /a 2  0 a c

C1  1 -1 2
Db2 c2 = c2  0 -1 =-[c3 + -(c 2 - c1 )] (2.80)

c3  c2 /a 2  0 a

b3  1 c -1 a2

D = 2 c2  -1 =-ca - -(c2 - cl)] (2.81)
c a2 /c 2 c3  0 C

Note the combination c2 - ci appears in both (2.80) and (2.81).

coc B -[ + n 1 1 A a2

C2 -C 1 = 2RL +2(na- + C2
2 4 62 4 4

+1 4 c2 8 4na 4(,

C2 - c 2oB 2 _- 20 1 + 1 n a + g1 (2.82)

At this point in the calculation it is possible to obtain analytical expressions for the second

order field amplitudes measured by the probes. Again the poloidal field can be expressed

exactly B, = IVO x eo. As before, substitute the perturbed solution for 0 = Oo + 0 1 +

02... and Taylor expand the 1/R

l 8
r R 8

1 1 _ b2cosi 29- b
B bR 1 sin + 22 sin 2 1 -cos ...

Keep only second order terms with sin 20 dependence.

1 bej (b)Br 2 (b) = bRo [2 2 (b) - b)] (2.83)
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Repeat the same procedure to find B02 (b).

1R O
Be2 - R Or

cos 2 0 Cos 6+

$ 02(b) = 1 [ 2
Ro IOr

b O 9r
2Ro Or

b2 800
+ 2RR-0 OrJ

Turn to Eq. (2.83) and evaluate each term.

= 2 cBc blnb +

cbBe c [ n b +I R in +

b(1 - ) 2

(1 - )]

= _ _ - In - + (1 - a
87rRo Ro I a T2'

b2C2 ( b3 c2)+ (b - cBe' (Aa 2

8Ro
+ -In b)]2 aJ

bRoV)2(b) = Ta + Tb

Ta =2 [bb2c2 + C2b3

T- cBec2 I- In b+ A-
12 a 2j

Evaluate Ta, then Tb.

Ta = 2

T =
aDbRo

-2
Ta = DbRo

[(-C3 
- S(C2 -ci)) + C2

-b4 + c 4

b2C2

+ 2
C (C2 - l ]

- Cl)]

b C+bba(C2 - Cl)
b2C2 C3 + a2b2 J 1

22

302= 
1 NO +EOrCosr + bCos 29b2

cR s 0

(2.84)

1
2  1(b)

1 (b)

2 1 (b)
2R0

2(b)=
2

bRo

(2.85)

where

(2.86)

(2.87)

(2.88)

b2 )(C



T = -2 b + c4 C.BO' : (K 1) + 1a 2

= DbR 0 [b2c2 2Ro C2 4 C2

+ - a4 C3Bec
+a 2b2 2Ro - 2039 1 + Ina +

Qbi 8

p1I b a 2c 2  c2
T 27rRO RO a4 + C4 b2

[ b 4 ±C 4 (+!2

b2c2
1 +

1)+4 c2

V- a 4

+ a2 V

Tb = -
87rRO R0

2 1 1

b # : j + 8 n P

(1 In b
2 a

+ )

Recall from Eq. (2.66) that .'i = (C)

1 Ina + (1
a 2

C2

B,.2(b) = - 2 >1(b) + Ta + T

Define the dimensionless quantity b,, 2.

br2 = i, 2 (b) b
POIp/87rRo Ro

b
b, 2 =- In -

a

a2

T21- A

l b
- 1 In -

2 a
a 2  4a 2 c 2 c 2 be + c4

2 + 0 + c4 2 b2 c2

R2 la 2
:g (r - 1) + 4--2A

4a 2 c 2 c2 b- a4 -1 1
+ 44Z a2 b2 -2,3,i/ + In a + 4,]

4 (C4 2  -2
a4 +C4bV bV K-

1 a2 1 b 4 a 4 C4 T2 2 1 3pl1) + A +4 - 2a,4+ b + In a + 1
98 4

(2.94)

For the interesting case when b = a, that is when the probes are on the plasma surface,

b, 2 reduces to the following simple form.

br2 = 42 (K - 1)
a2

b = a (2.95)
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(2.92)

b2 =- In -
2 a

(2.93)



It is also useful to examine the opposite limit b > a, the case when the probes are located

far away from the plasma surface.

3 b - 4b4a2  1 [ (2 1 2\ 4c4

b,2;-2 Ina A 4 + C4 )b2 bF [R _1 4JaIa 4 + C4 - 2,#1p + 8Ina +

b,,2  ~ In b
2 a

+4 4 R( - 1)
+ 4+4 a2 +4c 4 2 2 0 + 1Ina + -

+a4 + C4 1t-8J 4

Now unfold the algebra in Eq. (2.84) in order to obtain analytic expressions for the second

order second harmonic tangential field.

O2[Orb Or
2R0 Or

+ b2  b1
2RO Or Ib

b b2 NVO
2R3 Or

b

T2  bRgOj

T2 r

T3 M

RoOr b

T _ /10 b
-47rRo R0

T2= - 2JO

b

[ '(In (l+ 1 ) + (1+ ) cBoc

b cB6 r b 2 ]
T 2 - b 2 cIn- b+1+ (1±-a

2RO 2 [ a P~

1[c-e + b,
T = -c-(bn

Ro[8Ro a 2

T 3 = I-OI (n

l67rR0 R0  a

T3 = 16 b (In -b

167rRo R( a

2
DbRo

+ 1)
2

+1)
2

rb 2  c2

2C3c - (C2

)+2b2 b -

+ [b2C2b b3 C2+Ro C 2 C2b j

C2

- Cl))+ (
a2

+ C
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(2.96)

(2.97)

(2.98)

(2.99)

(2.100)

(2.101)

-ci))]

B20 (b)=
Ro



2' plOI b b 1T3 67 (In -+ )
l67rRO Rolf±)

2 b 2 _C2 b2 a 2 )C
C3+(-~ +

DbRo I C )C + + )2  -

T3 =_ 1 I b (In b + 1
167rRo Ron + 2

2 [b 4 _C4 C3 Bec (RO2 ~a 2  b + a4 C3 B,9 a,+ a

pI b [a2 c4  -- c4 -R (K- 1) + I2
27rRo R [b2 a4+ c4 c2b2  c2 4 c2

a2  c b+a 4  14 1)]

l2rRo Ro la2+ a0 c ba2 ( -2 2R1 Ina + )

-~( -2p) +
a4rR0R [C ±4 KK()1±8i 4)]

T-324+c4 + 1 n +po I (2.102)

+2 (b) = T 1 + T2 +T

Define the dimensionless quantity b02.

b 62 = f02 (b) b (2.103)
pOI/87rRo RO

Combining terms and normalizing properly b0 2 can be written in the following form.

3 3 b 1a 2  4a2 b4 -_C 4 1 1a 2

be 2 =- - In -(1A+ )A _ + + (r. - 1) + -T2A (2.104)

4cb4 _a- 14 V4

+ 44 (Vk2 - 2i 1 + In a + )

Before examining be 2 in the limits b = a and b > a, it is necessary to simplify b,-2 and b0 2

once more.
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Combine A terms in (2.94) and (2.104).

a b 4 + c 4
b,2 : 1+ K 4 + 14

b82 : b

(b - a4 ) c4

(W - C4) b4

a4 b4 - C4

+ T4 a4c4 I
a 2  (b4 + a4 ) c 4

- (a4 + c4) V

Simplify A.
1 1

A ,+f 2 4na-

-1 201 + In a +
P
4

+ - 2, 1 +
4

i can also be simplified.

- 1 ( - In a

Rewrite b, 2 and b02 using (2.105-2.109).

a

b /b 4 +a 4 ) a 4 (-\
In- +41I 2

a - a4 +c 4  b4 \ E2

b 3 a2 (b4 - c 4 a4
n -+- A+4 44

a 4 b2 ~a 4 +c b'
(K-1) (b 4 + a4

+4a4+c4)

8 16*i+ l na+

(2.110)
3
8

(2.111)

Consider b >> a, that is when the measurements surface is far from the edge of the plasma.

3 b 4
br 2  -- In - +

2 a 1+ a 2

3 b
b02 ~ -- In -

2 a

3 4
4 1+ a 2

(-
E2 )

( 2 
)

+ 4 2 -2 _
+ a41 -2,1 +

r+v4

4a 2

+ 14

3 ii- Ina + -
8 161

-2 _ 3 1#1 -2Ppji + - In a + - 1

Notice that b, 2 and b82 have exactly the same dependence on K (also unknown) O,, and

a. Hence, profile effects cannot be separated from the ellipticity for measurements of B, 2

and b82 far away from the plasma edge. p and fi are still not uniquely determined.
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(2.105)

(2.106)

Also

(2.107)

163Ina +
8

(2.108)

(2.109)

b-,2  
3

3
6 2 = --

2
1-

(2.112)

(2.113)

1 = 1

+4 bd - a4\ C4 ro-2 -
+ 4 a+ C4 4 #1 2,



Consider b -+ a, the opposite limit, when the magnetic probes are placed close to the

plasma edge.

bh2 = 4 (K 1) (2.114)

b02 = 3 - A + 4 (1 + a4) 2 + 1) + 8a4 2- 2flp: + Ina + ] (2.115)

Consider (2.114) and (2.115) in the limit a ~ 1 flat profiles. Let a = 1 - 6, 6 < 1.

- [-b + A(1 - 1 + 26)] = (2A - 1)b (2.116)

Rewrite (2.114) and (2.115) in this limit.

b,2 4(K-1) (2.117)

3 166 4-1 1 3 _1

b 42 = - A + 2 E 2  +4+(l - 2, (2A - 1)6]

-1 3 _1(218be2 = 1 - A + 6 [8 - 4(2A - 1)(A - )(2.118)

For flat profiles, a ; 1, b, 2 gives no information about a and hence ii and b02 gives

information but is is a small correction of order 6 compared to 1 - A, already a small

quantity. This will be difficult to measure in practice.

Hence, even resor ting to second order magnetic field measurements does not uniquely

specify ti and 3, in the circular limit.

2.5 Summary

The equations of interest are summarized below.

- -= poI[1, [1_ 2aQ2 (O) (257)$1= 47rRO V 2 # 2 (.7

For b >> a

b,-2  3 b 4 ( - 1 4a2 - 2 -2 i+ 3  1(2112)
2 - 1 + a2 2 +1 + a4 1 2J +16±na+
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3 b 3 4(K - 1 4a 2  r-2 -2113
b82 3- In - + - + + ( -+, +a -23 + Ina + (2.113)

2 a 4 1+a2 ,2 + 4 8 6

For b -+ a

b,-2 = 4(KC1) (2.117)

b02 = 1 - A\ + 6 18 K - - 4(2A - 1)(A - 1)(21)

It has been shown that for plasmas with circular cross sections with small, second order

ellipticities, first order, first harmonic field measurements determine only the combination

fl, + £i/2. Second order, second harmonic field measurements when taken far away from

the plasma, cannot separate the ellipticity from the profile effects. The same measurements

if taken close to the plasma edge depend so sensitively on already small quantities that

experimental errors invalidate them. Therefore, we conclude that even appealing to second

order, only the combination r + ii /2 is available to practical magnetic diagnostics for near

circular cross sections.
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Chapter 3

The Elliptic Limit

3.1 Introduction

In this chapter the Grad-Shafranov equation will be solved to first order in the ohmic

tokamak expansion. Then, having explicit formulas for the flux functions ?Po and b1 outside

the plasma, the magnetic fields available to an idealized set of probes are calculated. The

dependence of these field amplitudes on p, and ii are sought.

3.2 The Zeroth Order Solution

Consider a tokamak of elliptic cross section as illustrated in Fig. 3.1. An elongated

plasma limited at a horizontal distance Xb from its center is surrounded by magnetic probes

conveniently located on an ellipse characterized by the elliptic coordinate urn. Before

proceeding further, it is useful to review the system of elliptic coordinates that will be

used throughout the calculation. The elliptic coordinates are u,v, and 4. 4 is the familiar

toroidal angle. Surfaces of constant u are ellipses and v is an angular coordinate varying

from 0 to 27r. The transformation from rectangular coordinates to elliptic coordinates is

given below.

x = csinhucosv (3.1)

y = ccoshusinv (3.2)

c is a length factor that for the remainder of the problem will be considered determined

by the actual dimensions and ellipticity of the measurement surface. Solving the two

transcendental equations that appear below, knowing the height ym and width xm of the

measurement surface, uniquely determines c and urn.

Xn = c sinh ur (3.3)

YM = c cosh u. (3.4)
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For use later in the calculation the two operators V and V2 are given below.

C( cosh 2u+cos 2v )1/2 +O + 8R (3.5)

(2p e 2 4 +2 0_g2_ 8R Op8R 00
c2 ; ohncs2 v 262+c( cosh 2cos 2v ) o + 0 + nc OU2 OV2 R 002 C2(cosh2ucos2v )R L49U OU± 19

(3.6)

As in Chapter 2, the following five plasma parameters are sought.

* I, total plasma current.

* A. Shafranov shift.

" , the poloidal 3.

" ti the normalized internal inductance.

* K the plasma elongation.

The magnetic probes on the measurement surface u, sample the tangential and nor-

mal magnetic fields during the flat top portion of tokamak operation. It is the aim of this

part of the calculation to obtain analytic expressions for the field amplitudes sampled in

terms of the plasma parameters sought, thereby trying to uniquely determine 8p and ii

from the field measurements.

Again, the Grad-Shafranov equation describes the plasma equilibrium inside the toka-

mak.

A*O = -poR2- - F (3.7)
dik dik

p = p(o) and F = F(0) are free functions that describe the pressure and toroidal field

profiles respectively. As in the circular case, assume ohmic tokamak operation and use the

appropriate scalings (2.5-2.12) when expanding (3.7) order by order. A perturbed solution

for ,(u,v) is sought.

V)(u,v) =0o(u, v) + 01(u, v)+... (3.8)

~0 - (3.9)

This time, however, c, the aspect ratio, is given by the expression below

c
W = < 1 (3.10)
R
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Analogously to the circular case, p(4k) and F 2 (b) are expanded about their 7ib0 values and

are linear in i1.

p(d) = P(p) + d k ... (3.11)db0

F 2 (o) = [B2 + 2BoB 2 (' 0 ) + 2Bo 2  1 .... (3.12)

p(0o) = PO[1 - ](uv) (3.13)

B 2 ( 0 ) = Boa[1 - ] (uV) (3.14)

J=Jo u < uo (3.15)

J= 0 u > uo (3.16)

po is the plasma kinetic pressure on axis. Bo is the toroidal field applied at the edge of

the plasma. a represents the paramagnetic rise of toroidal field inside the plasma that

characterize ohmic discharges. a ~ 0(E2 ). As before, the plasma is modeled as having

a hot, current-carrying core and a more diffuse outer region, the area of the former to

the latter being some measure of the peakedness of actual, smooth profiles encountered in

experiments. 0, = const defines the edge of the current carrying core. The core of the

plasma is modeled as an ellipse u = uO, of area 7rKea 2. The x, y coordinates of the core

follow immediately.

x, = a = csinhuo (3.17)

yc = nca = ccoshuo (3.18)

At this point in the calculation the dimensions of the core and hence 1c and uO are un-

known.

10 is not as obvious here as in Chapter 2. In fact, the behavior of 00 is markedly

different from the circular case if the ellipticity is zeroth order. Examine (3.7). Expand

the right hand side to zeroth order.

2o B02R2A*00 = -poRO(--) + a
3Oa
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R2 aB2R2
W O = /LoPo +

R3 aB R~
Let Q = popo - + =const

W*OO = Q (3.19)

Now expand the A* operator in the left hand side of (3.19).

2
v2oo - 2-VR -Vao = Q (3.20)

R

The second term on the left hand side of (3.20) is first order and hence should be neglected.

V 210 = Q (3.21)

Curiously, (3.20) is most conveniently solved for the elliptic problem in rectangular co-

ordinates. First boundary conditions must be given on the boundary uO and at the origin.

The boundary of the plasma core uO, is to be modeled as a flux surface up to and including

first order. This specifies the following two conditions on 10 and o.

o(uo, v) = bo(uo, v) = const (3.22)

O900 000WO (3.23)
OU Ou U0 ,V

0 must also be regular at the origin.

The equation of the ellipse after which the core is modeled appears below.

X2 2
-+ = 1 (3.24)
a2  Kga 2

Immediately the solution of (3.21) becomes obvious.

00 = ) (3.25)
a2 Kla2

Equation (3.25) is regular at the origin and constant on the uO ellipse.

'ko(uo, v) = - (3.26)
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The constant Z can be determined quite simply from (3.21).

V2io= -+ 2  Q
a2 + K2a2 Q

a 2 __ (3.27)
2 ( K2+1

The Grad-Shafranov equation can then be expressed as

A*P = -poRoJo = Q (3.28)

Observing the convention of defining a positive valued flux function (3.25) can be rewritten

in the following form.

iko = pio Ro -,.j K ) [ + Y 2 (3.29)
2 + 2 K2a27r r. +1 a C

The zeroth order flux function inside the plasma is fully determined.

The zeroth order flux function in the outer region u > uo, is most conveniently ex-

pressed in terms of the coordinates u and v.

Note that in an axisymmetric torus, ± = 0, and in the outside region 2 = = 0.
0 d, dFO

Equation (3.7) can be written in an extremely simple form to zeroth order.

,92 0 + (92 - 0 (3.30)
6U 2 (9V2-

Equation(3.30) is satisfied by an infinite set of orthogonal complete functions natural to

elliptic coordinates.

iOo(u, v) = (A, sinh nu + Bn cosh nu)(Cn sin nv + Dn cos nv) + Eu + Fv (3.31)
n

Since the problem is up-down symmetric, F = 0 and all Cn = 0. Keeping in mind the

criteria that 4o(uo, v) = Oo(uo, v) and that their derivatives must also be matched on the

boundary, choose the form of the solution listed below.

'o = 2 (U - UO) + Z3 sinh2[u - uo] cos 2v +E4 (3.32)
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Apply (3.22) to (3.32)

Z4 = poRo.L (K

Now apply (3.23).

= Z 2 + 2Zs cos 2v

o 2 22]
2 K~a2

sinh2 + c cosh 2 u sin 2 V
Ksa

2

Z4 -2sinhuo coshito cos2 V+ 2 cosh uO sinh io sin2 V
a2 Kla

[c 2 2 sinh uo cosh uo cos 2 v

c 2 sinh2 uO

c2 2 cosh uO sinh uo sin2 ]

c2cosh2 uo

[ 0coshito 2 sinhuo 2,
-0 =Z 4 2 cos2v+2 sinv

au Uo I sinh uo cosh to

= 2a4 e Cos2 v + 1-- si2 V
U UO IC I

Oko
au IUO=

8O = 4
= 4

1 1
KC + ic cos 2v + - - -cos 2v

Ic K c .

K 2 +1K 2 -1 1
+ C cos 2v

KC Kc I

Z2 = _e4 I + K C

C 2 = Z4  [

12 vc 

O(u, v) is now uniquely determined.

,0o(u, v) = poRo I2 + 1
2.2+ 1 I K~~+21 1-11

K [- + 1 -- sinh2[u - uo] cos 2v + 1
rc 2 ie I

Note the cos 2v behavior of O and hence of Bou and b0 , disappears as te -+ 1, corre-

sponding to the circular limit.
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(3.35)

(3.36)

'0 = a
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3.3 Beta Poloidal and the Internal Inductance

Before calculating the zeroth order fields, develop expressions for ii and O, for the

profiles given. First consider ti.

The internal inductance (un-normalized) of the plasma, L;, is determined from a

poloidal magnetic field energy balance inside the plasma.

Li12 = 1 f Bp- Bpod3 Vplasma (3.37)
2 P' 21to J

Since the exact shape of the plasma boundary is not a simple ellipse if one models the

core as such, Eq. (3.37) can be tricky to evaluate. Making use of the vector potential A

simplifies matters considerably.

1
B = -- Vio x 6 (3.38)

Ro

Bpo = V x A6, (3.39)

-Li - v x A. V x Ad3 Vp2 P 2po

- J [V.(A x VxA)+A.Vx Vx A]d3 V, (3.40)
2po

Let

T1 -- V1 . (AxVxA)d3 Vp
2pto

T2 E- A- V x V x Ad3V
2po

Examine T1 . Apply Gauss' theorem.

Ti = -Jii-AxVxAdS
21Lo

T 1 = V x A - cV27rRoA
/*po plasma boundary

- Bp, -dLe27rRoA
2pto plasma boundary

37



Now employ Ampere's law f B, -& = poIp and bo = -ARo = const.

T= 1PoIp27ko
21LOpl~ama boundary

T= 7rIpVPO (3.41)
plasma boundary

Examine T2 .

T2 =-- A.VxVxAdV
2pto

Again the differential form of Ampere's law gives

V x V x AO = poJi0 (3.42)

T2 = - A6 -yoJ6,d 3 V,

Recall, however that J = Jo inside the core and is zero everywhere else.

T2 = 1-- AptOJo27rRodSco,.
2o

= 7r Jo ARodScore

T2 = -7rJo f iodScore (3.43)

Equation (3.37) simplifies tremendously.

!L1 I2 = 7rI?,o -7rJO fOo(u,v)dScore (3.44)
plasma boundary

Equation (3.44) is very easy to evaluate since 0 and Oo are uniquely determined and

the only integral to be evaluated spans the core and not the entire plasma. Examine the

integral on the right hand side of (3.44).

I = )O(u, v)dSore (3.45)

juo 27r ( [ 22 2 s s2

pOj ao J 2 + - + Y -(cosh 2u + cos 2v) dv du
. a 2 a 2a 2. 2
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I = PO J2as _ ,ROJ 1) sinh 2 UCOS 2 v + 1 cosh 2 u sin2 v] [cosh 2u + cos 2v] dv du
0aj 2 +1 cJo 2 2 K - [

o J 7 2 2/K2J~Roo -Oa C 1) [sinh2 u cosh 2u cos 2 V + sinh2 u cos 2v cos 2 V

2 +1

+ 1 cosh 2 u cosh 2u sin2V+ 1 cosh 2 u cos 2v sin2v d du

ii (co -n 1),2 h

I = poRo J- + I sinh2 u cosh 2u + -sinh2 u + - cosh2 u cosh 2u - cosh 2u du
*Kc2 2 + 1 2 2 2K

I o - 2 JOa2K2KC r[C oRo 2 r. + 1 2 cosh u cosh 2u + 4K2 cosh 2u - 4r2Idu
* 2 a2  2 _K 1) [K +1 12 -K 2  -1 i +

I - 2 poRoJo- + 2 cosh2 2u + cosh 2u - + du
c2 2 + 1 [ K. K.2

I 2 2 2 u
c2 a2  2 2- +1 2 - _2

I= o Jo 2 + K 17rKU sinh4uI sinh 2u-

2 4 2 2 ++ 11-K22 48K K

1 = coooIn+1 6 ( sih2 +o cohu+
J2 2 K+2 2 -

JOa 2  K 2  1)7rKC+ 11 1 C- ~ K±

I= poRo4 - 4 ih + u + 2 + ( K2 -1)J
2 I2 c + 1 2 -8K+

4 [K± 2 1 2K~

4~ 3 2

K Ke 7rKca 2 4KC 1 2  (3.46)

271rojK2 + 1  2 [4K.2 2K2

Now it is possible to obtain an expression for fi. Evaluate (3.44). Modeling the plasma

core as an ellipse does not guarantee that the actual boundary of the plasma will also be an

ellipse. In fact, casual examination of (3.36) reveals that the actual plasma boundary (also a

flux surface) will not be an ellipse, but some other elongated shape approximately elliptical.

Therefore in evaluating (3.44), ?O 0plama boundary will be evaluated at x = Xb,Y = 0 to

which correspond the elliptic coordinates u = Ub and x = 0 even though the flux surface

upon which Xb lies is not itself an ellipse.

Li2= rIp KoRI c [K +1 [u- + sinh2[u - Uo] +
27 r. + 2xg1 Kc 2 K,
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R o I ,., lrKa 2

27r n2+1 2
42 -1

4K2

2 +1]

2 J
f __r 2211 K1  K 1,+1 1K2_1

L;iJ2 =poRoI2 c + 1 ,c - +1 sinh2[u - uo]+
2 K 2C

1 c [KC
4 K + +1 -14 g+ 1 Cg

1]

2 +1
2] P

Li = K1oRo [u - uo] + _ sinh2[u - uo] +1
K2 + 1 [K 1 c 2 Kcj

1 W, + 1  
2 K.+1 4K2

2L-

poRo

fi= 2r+1
K2 +

K2 +11,

2 +1
2+ C

(3.47)

.c lu - s +1 e smnh2[u - o] +1 4Kc ~ 8[K 1,  2 K1,  4K2 8K~

rK 2 +1 1K 2 -1 3K± +1
[ C , u U 0+ c sinh2[u-uo]+ 1 8K! (3.48)

This expression for ii is exact. Since the limiter position Xb is known, the corresponding

point in toroidal coordinates u = ub and v = 0 can be determined from the equation below.

Xb = csinhub

s!+2 _ 21 2f+1
[ub -uo] + 1 -C sinh2[ub - uol+ 1 - 1, 2K1, 2 K1, 8K 1 ,

Examine (3.50) as K1 -+ 1.
1

fi = 2[Ub - UO]+ -
2

(3.49)

(3.50)

(3.51)

Consider the plasma boundary to be at r = b and the core boundary to be at r = a. Then

as the circular limit is approached ub and uO approach the following values

2a
no ~in --

C

2b
Ub I in -

C

b 1
i= 2 in - + -

a 2

(3.52)

(3.53)

(3.54)

K1, -+ 1
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Equation (3.54) is the old circular result found in Chapter 2. Next obtain an expression

for Op.

p 87r pdSp (3.55)

13P y r, (2 ) dS(
87r 2o

Op -2 porca2 [5 (3.56)
A0 , 8rc

3.4 The Zeroth Order Fields

Now it is necessary to evaluate the information contained in the zeroth order field

measurements. The poloidal field at the measurement surface can be expressed as

BP(um, v) = 1 X x0 (3.57)

B has both b and i components in the elliptic limit.

|Nod I vkeo (3.58)
Ro

1 -

0OU 1 = VfA (3.59)
Ro

Evaluate (3.58) and (3.59) on the measurement surface um.

1 IOI n2_(
IBo.(um,v)I = C(cosh2u 2 +cos2v )1/2 + l C 1 cosh 2[um -01 cos 2v (3.60)

1 pOIP K
j$ou(umv)j = C(cosh 2um+cos2 1/2 27r K2 + 1 sinh 2[u, - uo]sin 2v (3.61)

Suppose that the data from the magnetic probes located on the measurement surface un

is Fourier analyzed. To measure the zeroth harmonic or "dc" component of the field,

theoretically only one probe is required. To measure higher harmonics, proportionally

more probes are required. To compensate for measurement errors and random fluxuations
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in the data, this minimum number of probes must be supplemented. Therefore, it is

advantageous to measure the lowest harmonics accessible to the diagnostics with as much

redundancy as is practical. This consideration motivates the remainder of the calculation.

*0 1
IBP(Ulm,V)I=Z sh 2lm+COS 21)1/2 (B sin nv + Cn cos nv) (3.62)

nO c(co 2 )

If the zeroth order fields are so decomposed the following three amplitudes are measured.

BVDC CO = 27 (T - m) (3.63)

poI, r.2 _ i
By 0 2  C 2 = C cosh2[um - uo) (T - m) (3.64)

27r K2 + 1

1
pLOI, K2 _ 1

Bu0 2  B_ = sinh2[um - uo] (T - m) (3.65)
27r r+ 1

Expectedly, as re -+ 1, the second harmonic behavior of the zeroth order fields (i.e. BV-0 2

$u 0 2 -+ 0) disappears. As one approaches a circular cross section, r. -+ 1, the zeroth order

fields lose their angular dependence. Information is lost.

It is useful to take the difference of the squares of (3.64) and (3.65) applying the

identity cosh 2 x - sinh 2 X 1.

f3 2 f32 p I 2 ( ,2 _ 2 2)

2- B 02 = (2 (T 2 - m2) (3.66)
27r ril +

Hence, fV 0 2 and Bu 0 2 are not independent quantities. In fact, casual examiraation of (3.64)

and (3.65) reveals that in the limit of large um, that is, when the measurement surface is

far away from the plasma, BV0 2 -+ buo2 and the combination v 2 - 0u$2 cannot be used

to find Kc. Let

2 _ f ~2) 1/2 27r
ly $fV02 0 "2 ) fO (3.67)

I, can be determined immediately from the BVDO measurement and Eq. (3.63).

I, = (3.68)
ILO
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Assuming that the measurement surface is not extremely far from the plasma edge, and

having determined I,, measuring EV0 2 and $u 0 2 uniquely determines -.

c = 1+ Y (3.69)

The ellipticity of the hot, current-carrying core is determined. Having ic, the uo coordinate

that describes the boundary of the core can be found by solving the transcendental equation

below.
1

tanh uo = - (3.70)

The actual dimensionality of the core follows.

a = csinhuo (3.71)

At this point in the calculation, the dimensionality, area, elongation, and current of the

core have been uniquely specified by zeroth order measurements.

Returning to the actual edge of the plasma specified by the limit position xb given,

the elliptic coordinate of that point, Ub, can be determined by solving the transcendental

equation given below

Xb = csinhub (3.72)

Uo, Kc, Ui are known quantities. 4; follows immediately from Eq. (3.48).

2n KC + 1 1 r2.- 3x +e(373
_ = i~t~ -[u- +o] +- sinh2[ub - uo]+ 1 - (3.73)

K2 + 1 Kc 2 Kc 8K!]

Because of the additional information available in the zeroth order field measurements, f,

can be determined independent of the first order fields and O, for a finite ellipticity. It can

be demonstrated from the formulae above that the ability to determine ii independently

from zeroth order measurements disappears as one approaches the circular limit.

Before moving on to determine p, from the first order field measurements, it is neces-

sary to extract yet another plasma parameter from the zeroth order flux function bo. The

plasma boundary is also a flux surface. This implies the following.

'o(fb, -) = 4'o(ub,0) (3.74)
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fb - -K sh 2[f - UO] = Ub + 1 . sinh 2[U ] - U0] (3.75)
c 2 c r c 2 mc

Solve (3.75) numerically for Ub. The elongation of the plasma ., as distinct from the

elongation of the core Ke, is then uniquely determined

cosh Ub
K = f. (3.76)

sinh Ub

3.5 The First Order Solution

So far, before appealing to first order measurements, fi, ., and I, have been determined

from zeroth order measurements. Now return to the Grad-Shafranov equation and solve

it to first order obtaining 4 1 and 4 1'. O, lies buried in the first order field measurements.

Inside the core, b1 is most easily obtained using rectangular coordinates. In the R, Z plane

A*O=R -R R +Z2 (3.77)

1 a8p a20 O2?p
R+ 2 (3.78)

In the R, Z plane make the following transformation

Z = y (3.79)

R=Ro +x

Keeping the large aspect ratio limit in mind, x/Ro < 1, the first order Grad-Shafranov

equation inside the plasma can be cast in the following form.

1O'&b0  2x 2 dpV 2 - 1 --- /2xpoR - (3.80)
R o Ox R o  

0 db0

V 2 is now the familiar 82/8X2 + O/Oy 2 .

P = Po(1 - -- )

dp = po 
(3.81)

d&b0  #ba

0 = poRoIp (K (x 2 + 2
27r rV2+ 1 \2 2 22

9o= poRoI 2rc ! (.82)xax 27r KC+ 1 a2
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Combine (3.80-3.82) to generate the 01 equation.

V201 2 3 ( OROI, 2K, 2[ po 27r(Kc + 1)
To# =7a -- + - poRo -X (3.83)
~Ro\\4ra2 LtoRoI, Kc

V2 IOIP KC + 47r _ + x (3.84)
\ira2 K2 +1 I, c

Using (3.56), eliminate po in favor of 3p.

_ ___ 2 r5K-1
87r 2 _ -

O= 2 poirKca L 2 (3.85)

P0gOp r 8 r

PO = OI, _ (3.86)
I,- 8ir2 tca 2 5r. -2
2P 87r, "C 1Pl

v o, = /tz0Ip Kc+ 47r POIP 1 8K 1 X
2ra2  + 1 87r 7rKca 2 5r2 -1

V21 = + 4(K + 1),) X (3.87)

V201 = ZX (3.88)

Z = POIP ( + 4(Kc + 1)o, (3.89)ra 2 \ + +1 5 2 -1

In order to solve (3.88), boundary conditions are needed. The first is that 01 must be

regular, i.e. does not diverge at the origin. Also, the edge of the core, the uO ellipse, is

modeled as a flux surface even to first order. Thus 41 is constant on that surface. Choose

a convenient value

01(UO, V) = 0 (3.90)

A function that satisfies both conditions appears below.

a2  2_

01 = Qx X + -a- (3.91)
a2 Kga2

Plugging the Ansatz for 7f1l back into (3.88), it is a trivial matter to fix the value of Q.

Q = aZ (3.92)
2 \3KC+

Q/toIP (___ + 4(___ + 1),(
27r 3h + 1 1 +1 + ! (393)
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Finally 0 1 is uniquely determined.

IOIp KC

(K+1 
+

4(K2 + 1)
5K. - 1 X[2 +y 2 J

a2 Ksa2

It is useful to check these results against those obtained in Chapter 2 by taking the circular

limit Ke -+ 1.

POIp 1
27r 4

- 1] (3.95)

x = r cos

y = r sin

x2 + Y2 2

)(r,)= (1 + 4#p) - r) cos 0 (3.96)

Equation (3.96) agrees nicely with (2.39). The next step involves solving the first order

Grad-Shafranov equation outside the core for 1. Again, u, v coordinates serve best in this

2
+ -5

= -- (cosh u cosv- - sinh u sin )
WO 'OU au

(3.97)

(3.98)c

T, = E cosh u cos v-
Tu

T2 = f sinh usinv-O
ev

(3.99)

(3.100)

Evaluate T1.

=2 +1
T, = f cosh U Cos VC, (CK

.2 _ 1
+ c cosh 2[u - uo] cos 2v)

Kc

C, = poRoI, -c1
27r r.2 + 1
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region.

02

,us2

(3.101)

(3.102)
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2i + 12 _ 1
T = CIE + cosh u cos v + 1 cosh u cosh 2[u - uo] cos v cos 2v

Lc IMc)

Ti = C EKc+1 cosh u cos v

r 2 -1
+ C cosh u [cosh 2uo cosh 2u - sinh 2uo sinh 2u] cos v cos 2v

Ic

T, = CE c + cosh u cos v

K2 _-1
+ [cosh 2uo cosh 3u + cosh 2uo cosh u - sinh 2uo sinh 3u - sin 2uo sinh u] cos v cos 2v

T1 = =C +1cosh u cos v

+ - cosh 2uo cosh 3u cos v + cosh 2uo cosh 3u cos 3v + cosh 2uo cosh u cos v

+ cosh 2uo cosh u cos 3v - sinh 2uo sinh 3u cos v - sinh 2uo sinh 3u cos 3v

- sinh 2uo sinh u cos v - sinh 2uo sinh u cos 3v1 (3.103)

Evaluate T2.

T2 = EC, sinh u sin v c 1) sinh 2[u - uo] sin 2v (3.104)

1c

T2 = -EC, I { [cosh 2uo sinh u sinh 2u - sinh 2uo sinh u cosh 2u] sin v sin 2v}
Ic

T2 = -{C, c osh 2uo cosh 3u - cosh 2uo cosh u

- sinh 2uo sinh 3u + sinh 2uo sinh u] sin v sin 2v

2 -1
T2= -EC. cosh2uo cosh 3u cos v - cosh 2u0 cosh 3u cos 3v - cosh 2uo cosh u cos v

+ cosh 2uo cosh u cos 3v - sinh 2uo sinh 3u cos v + sinh 2uo sinh 3u cos 3v

+ sinh 2uo sinh u cos v - sinh 2uo sinh u cos 3v } (3.105)
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Calculate the combination T, - T2 .

T1 - T2 = eC, [ + 1 coshu cos v

+ 1 2 cosh 2uO cosh 3u cos v + 2 cosh 2uO cosh u cos 3v - 2 sinh 2uO sinh 3u cos v
4 1cI

- 2 sinh2uo sinh u cos 3v

T - T2 = .Ccosh u cos v + c [cosh 2uo cosh 3u - sinh 2uo sinh 3u] cos v
IKC 2rcI

+ [cosh 2uO cosh u - sinh 2uO sinh u] cos 3v

T1 - T2 1 cosh u cos v
[ c

r2 _ 2 _

+ c cosh[3u - 2uo] cos v + K cosh[u - 2uo] cos 3v (3.106)
2rnc 2rc

Equation (3.97) simplifies tremendously.

20 1KC+1C 2 1 tS 2 -

O2 + _ = EC, +cosh u cos v+'c cosh[3u-2o Cos V+ cosh[u-2o] cos 3v
(92 OV2  Kc 

2Kc 2Kc

(3.107)

It can be shown that for equations of the form

+ = C cosh mu cos nv m: n (3.108)

C
1, = 2 cosh mu cos nv (3.109)

The particular solutions for the non-resonant terms in (3.107) can be written down imme-

diately.

The first term on the right hand side of (3.107) is somewhat troublesome. It is

resonant. Equations with resonant forcing terms of the form

+___ ' = Ccoshucosv (3.110)
au2 v2
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have particular solutions of the form

= C(u sinh u cos v + v sin v cosh u) (3.111)

However, since i1, must be single valued, solutions linear in v are not allowed.

-1
= 1 Cu sinh u cos v (3.112)

At this point, the particular solution of (3.107) is fully determined.

cc, = 2 1C, usinh u cos C + cosh[3u - 2uo] cos v - 1, cosh[u - 2o] cos 3v
= C5  2,ncco l6Kc -16Knc 0]cs v

(3.113)

The homogeneous solutions must be chosen carefully to match '1 and '1 at the core

boundary. The particular solution (3.113) represents a toroidal correction to the essen-

tially straight elliptic plasma column solution 04o. Notice it only depends on the plasma

current and core dimensions, not on

'k1 = O1p + 01h (3.114)

Choose a convenient form for the homogeneous solution b1h.

01h = A cosh[u-uo] cos v+B cosh 3[u-uo] cos 3v+C sinh[u-uo] cos v+D sinh 3[u-uo] cos 3v

(3.115)

'1h = A cosv + Bcos3v (3.116)

U 01

Oh = C cos v + 3D cos 3v (3.117)
OU

U0

The jump conditions across the core boundary uO will fix A, B, C, and D. Since in this

problem the core boundary is modeled as a flux surface to first order and there are not

surface currents, 01 and its derivatives are continuous across uO.

1- 1 = 0 (3.118)

8,01= 0 (3.119)[Ott OB UO==
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Recall b1 was so chosen so that ?1(uo, v) = 0.

'tf1(U",v) = 0 (3.120)

Equation (3.120) in combination with (3.116) and (3.113) specifies A and B.

(Kg + 1 Kx21

A -, + uO sinh uO + K cosh ou
2Kc 16K,

c pOROI, 'e t +1 K2 -1
A - 27r -- + uosinh uo + cosh uO

RoC 22 r., 1 2 16rvc

csinhuo = a

ccoshuo = nea

A = +I e -1 (3.121)
27r 2 16 r,, + 1

r 2 -1
B = C ' coshuo

16Kc

c tsoRoIp Ki K 2
B = - C - coshuo

RO 27r K2+1 16Kc

B = /IoaIp Kc K - 1 (3.122)
27r 16 K+1

Next, match the derivatives. Calculate O,'8u /u
UO ,V

1= Qx + ]

Use the chain rule.

0 OxO O y
- = a x (9 + -O a(3 .1 2 3 )Ou Ou ax 9U Ny

0,1 XQX x + Q X2+ -2 + OQ 2xy
Ou Ou a2 Ia 2 ' a' JC Ou KCa 2

tt = U02 + 1 =0a2u
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80 1

au UO'V

1901

Ou
UO'V

= Qare cos v K2 +

K2

QaK K(+1
-Qase ( C

(

K2 -1
+ 2 cos 2v

c2

+2K_
+ C

3K2 + 1
cos v +

2Kc

-1 _ N
cosv + K cos3vJ

2K r.

2 1C cos 3v
2K,

(3.124)

2+2 r2
Ki + 1 3Kx2 _i K2 -1 I

(uO cosh uO + sinh uO) cos v + _ . sinh uO cos v + C sinh uO cos 3v
2 Kc (u6 chC 16Kc

+C cos v + 3D cos 3v (3.125)

Together, (3.124) and (3.125) specify C and D. Match the cos v terms.

fK+1 3Kx-1 h - 3+1
EC, (uo cosh uO + sinh uo) + sinhuo +C=Qa

S2Kc 16 rce 2rc

CQ 3 KC +1C = Qa I
2nc

1K K!+1 . 3 K-1
- eC, uO cosh uO + c sih uO + - smnhuo

S2rc 2rc 16 r-c

C /oaIp KC / Kc 4(.2 + 1),3p) + 1
r2+1+ 5K221

C2ir 3K 2 +1 \K!+1 5K - 1 )' 2ic2 C

_ _oI_ _ c _C + 1 K!+1 .
Co cosh uo + snh nuo

R2 27r K!+1 2 c 2Ke

- poal, Kc
27r 2

3K 2 -1
+ 3 - sinh oU

16 rIc

C + 4(K + 1)
+ C,

poaIp .c _ O+1 + C+1
SUO+ +

27r nK+1 I2 2Kc

3 Kc - 1

16 rcI
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- 2 c cosh O co sinh2  Cos2 + c c s inh u cosh uO cos v sin2 v
a2  Kja2

= 2Q ccoshuo cosv cos2 v + - cosh uo cos v sin 2 v

K

=Qase cos v 1 + cos 2v + 2 - 2 cos 2v
Kc sc

BitoOu1
19 0,

I1o,

Ito,

Ito ,1

= Qa(
v

=EC,



C = IpoaI,
27r

6cuo
2

K2

+
2(K +1)

1 2Kc(Kl+ )
2 +

2+.5r.2C-1O

Match the cos 3v terms.

r2
CC, ,1sinh uO

16ne-

D = Qa -
6Kc

-1
+3D=Qa2 _K

2Kc

K2 -
EC, sinh uO4 8Kc

D =6

6sc

Qa - eC, sinh ol
8 J

IzoaI Ki

27r 32 +1

D = poaI, Kp - 1
27r 6Kc

[ ~.r r+.

( K

(K2 +1

( + K

(r%2 +1

+4(K!+1)fl
5K. - 1 O

+ 4( + 1)
5.2-1 O)

1 c poRoI,
8 RO 27r

1 KC]

8 K2+ 1

ne sinh Uo
K2 + 1

(3.127)

,1 (u, v) is now fully determined.

1( OCIp KC
'k(U, V)= 2 2 K+ I2c u sinhucosv

+ c cosh[3u - 2uo] cos v - K1 cosh[u - 2uo] cos 3v

+A coshfu - uo] cos v + B cosh 3[u - uo] cos 3v

+C sinh[u - uo] cos v + D sinh 3[u - uo] cos 3v (3.128)

The coefficients A, B, C and D are given by (3.121), (3.122), (3.126) and (3.127), respec-

tively.

In order to have confidence in the calculation of t1, (u, v), it is necessary to examine

its behavior in the circular limit. Let Kc -+ 1.

A - - a Ip iO
27r 2

B -+0

C o 2ap
27r

[iO 1 
14 J

D -+ 0

(3.129)

(3.130)

(3.131)

(3.132)
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As r. -- 1, all third harmonic (cos 3v) behavior disappears. The cos v behavior persists.

This is in perfect agreement with the circular limit.

Evaluate (3.128) in the limit rc -+ 1 on the plasma boundary (ub, 0).

= O sinh ub - oa cosh[ub - O]+ 12aI - + , sinh[Ub - O]Kc1 27r 12 27r 2 27r+ +- 23~ 4ihu o
(3.133)

In this limit, a and b approach the following.

a ceUO (3.134)

b ceUb (3.135)
2

sinh[ub - uo] ~ cosh[ub - uo] eUbUO (3.136)
2

= tobI tUb pzoaI uo e[Ub-UO] poaI, [u 1 ] e[Ub-L]
01 2 + +2sc-+ 27r 2 27r 2 2 27r 2 4 . 2

p tobIp 101 - Ub-UO -- +O

,C4 47r *~ 4

p/obI, ~ b 1
1 = In + OP Eliminate in b/a in favor of ii using (3.54).

KC 1 47r a 4

1.tpobI, re 1 1 1
#1 = - - --I

c 1 4ir [2 4 4 J

=bBb F £+i~2 b (3.137)

Recalling that in Chapter 2 the boundary of the plasma was at r = a and that in taking

the limits (3.134-3.136), the decaying exponentials al/r were ignored, Eq. (3.137) is in

perfect agreement with Eq. (2.52). 41(u, v) checks out.
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3.6 The First Order Fields

Fewer probes are needed to accurately sample the first harmonic than to sample the

third. Analyzing the signals as before, the poloidal field at the measurement surface urn

can be expressed in the form Eq. (3.62).

JBp(Um,V)\=Z _ _ _ (Bn sin nv + Cn cos nv)
n=O c (cosh 2ur+cos 2)1/

Measure only the first harmonic. Two amplitudes corresponding to the tangential and

normal fields are found.

B~ 1~C=/oCI, 1 (1 1 3 Kx2 _ '1
A2 IC1= -- -um cosh um + - sinh um + 3 r.+ sinh[3um - 2uo]27r Ro 2 2 16 r2 +I

1 1
+ - A sinh[um - uo] + - C cosh[um - uo] (3.138)

piocI, 1 1 si h m + 3 Kn2 -_ U

Be IL B =2Um sinh um + 3 + cosh[3un - 2uo]27r R0  2 16 ,r±1Oc

1 1
+ A cosh[um - Uo] + - C sinh[um - uo] (3.139)

The constant C is linear in ,. Equations (3.138) and (3.139) give the same information.

Therefore, only E,1, the first order tangential field amplitude, need be considered. Once

E31 , is measured, p, can be calculation directly from (3.138). As in Chapter 2, the

Shafranov shift A, was set to zero for simplicity.

p, is determined from first order measurements for a plasma with finite elongation.

Notice, however, that if the magnetic probes are far away from the plasma edge, the large

Um limit, the third term on the right hand side of Eq. (3.138) dominates and the ,
information is lost.
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3.7 Qualitative Behavior of the Model

A qualitative picture of how the model derived above behaves in a tokamak with C-

Mod-like parameters is shown in Figs. 3.2-3.4. The parameters used in these calculations

are listed below.

a = .25m (3.140)

RO = .75m (3.141)

f = 1/3 (3.142)

Ip = 4MA (3.143)

The elongation of the plasma . was varied from K = 1 to K = 2.

Figure 3.2 illustrates the dependence of the second harmonic field on the elongation of

the plasma. Notice that the second harmonic field B 02 quickly disappears as the plasma

cross section approaches a circle. Remember, the information contained in the second

harmonic led directly to the evaluation of fi.

Figure 3.3 demonstrates how fi could possibly be measured from Bv0 2. It is only

meant to show that these particular values of field could be used to infer ti for conditions

(3.140-3.143) using this simple model.

In principle, having ii, P, can be determined from the first harmonic. Figure 3.4

illustrates how this might be accomplished. Notice the linear dependence of B 11 on f3,
and that even at very low 3,, b,11 persists as K -+ 1. This agrees with the results obtained

in Chapter 2.

In conclusion, it has been shown analytically for this model problem that for finite

ellipticity, magnetic measurements can be used to measure 8, and te separately. This

ability is lost as the plasma cross section approaches a circle. Then only the combination

P, + 4i/2 is available to the diagnostics.
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3.8 Summary

The equations of interest that describe the fields available to the diagnostics in our

simple model problem are summarized below.

vDC = OIp (T - m) (3.63)
27r

b, 02 = 2 2: cosh 2(u, - uo] (T - m) (3.64)

2oI K2
b 0 2 = 2 2 1 sinh2[um-uo] (T-m) (3.65)

27r n2 + 1

2Kc [+r 1 1 2 -l 3f+1'
2K = [ub - UO] + 1 C sinh2[ub - uol + 1- (3.73)K2-+1 KC 2 ne 8r.2

p~/.ocI, 1 1. 3 K2-_1
$Vl = 2LOC 2UM cosh urn + 1 sinh um + + 1 sinh[3um - 2uo]

27rR0  2 2 16 r+1

1 1
+ -A sinh[um - U0 ] + -C cosh[u - uo] (T - m) (3.138)

Ro RO

It has been shown that in the circular limit, when re -+ 1, 1ki and hence $,v only

depend on the combination , + ii/2.

In the elliptic limit, when the measurement surface is far away from the plasma bound-

ary, um > 1, the combination E,0 2 - il02 can no longer be used to accurately determine

K, and hence i. From far away, the plasma looks circular. Also in the large um limit

examination of (3.138) reveals that 3, information is lost as non-P, dependent terms that

make up B, dominate.

Finally, for both finite K and um, i and I, can be determined from E3o 2 and BVDC

respectively and the , information resides in the B, measurement.
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Figure 3.1: Idealized Elliptical Tokamak
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Bv02 versus Plasma Elongation
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A

Figure 3.3: Bv02 vs. Internal Inductance

1.8-

1.6-

1.4-

1.2-

1.0-

0.8-

0.6'
0.0 0.2 0.4 0.6

A

BvO2 (T)

0.8 1.0 1.2

3vDc=2.42 T

59

6
U
C
S
U

C

6
C
S
C



A

Figure 3.4: Bvll vs. Beta Poliodal
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Chapter 4

Conclusions and Suggestions for Future Work

For tokamaks with circular cross sections, only the combination Op +ii/2 is obtainable

from first order measurements. Second order field measurements are found to specify 6,

and t separately, but are too sensitive to be used with any confidence.

For a certain class of idealized tokamaks with elliptical cross sections, it is shown that

finite ellipticity introduces robust second harmonics into the zeroth order magnetic fields.

From these second harmonics it is possible to deduce E4. O, can then be separately deter-

mined from the measurement of the first harmonic component of the magnetic field that

appears in first order. The second harmonics that determine eI disappear as the elliptical

cross section approaches a circle. Concurrently, the combination O ,+/2 reappears in the

first order flux function and hence the first harmonic. The circular degeneracy is recovered.

Future work along these same lines might take the form of solving the Grad-Shafranov

equation in an elliptical tokamak under less restrictive, less idealized conditions. General-

ization of the calculation to include an arbitrary Shafranov shift and a circular measure-

ment surface would be highly desirable.
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