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Abstract

Analytic calculations of the magnetic fields available to magnetic diagnostics are per-
formed for tokamaks with circular and elliptical cross sections. The explicit dependence of
the magnetic fields on the poloidal beta and internal inductances is sought.

For tokamaks with circular cross sections, Shafranov’s results are reproduced and
extended. To first order in the inverse aspect ratio expansion of the magnetic fields, only
a specific combination of beta poloidal and internal inductance is found to be measurable.
To second order in the expansion, the measurements of beta poloidal and the internal
inductance are demonstrated to be separable but excessively sensitive to experimental

€rror.

For tokamaks with elliptical cross sections, magnetic measurements are found to deter-
mine beta poloidal and the internal inductance separately. A second harmonic component
of the zeroth order field in combination with the dc harmonic of the zeroth order field
specifies the internal inductance. The internal inductance in hand, measurement of the
first order, first harmonic component of the magnetic field then determines beta poloidal.
The degeneracy implicit in Shafranov’s result (i.e. that only a combination of beta poloidal
and internal inductance is measurable for a circular plasma cross section) reasserts itself
as the elliptic results are collapsed to their circular limits.
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Chapter 1

Introduction

1.1 Background

The realization of controlled thermonuclear fusion is one of the Holy Grails of modern
physics and engineering. Promising clean, practically limitless energy, fusion is one of the
principal hopefuls for future energy development. To this end, fusion research is being

conducted worldwide.

A favorite scheme for realization of controlled thermonuclear fusion is the tokamak, a
toroidal confinement device pioneered by Soviet scientists. Briefly, a tokamak consists of
a toroidal vacuum chamber that loops through powerful magnets, called toroidal field or
TF magnets. The TF magnets create a strong magnetic field in the toroidal direction. In
modern, high field experiments such as Alcator C-Mod, the toroidal field can be as high
as 10 T. In addition to the applied toroidal field, a tokamak realizes plasma confinement
by means of a self-generated poloidal field. A powerful transformer commonly referred
to as the ohmic transformer is pulsed to initiate tokamak operation. The magnetic flux
created by the ohmic transformer links the plasma that is being created simultaneously in
the vacuum chamber. The resultant electric field drives a current through the plasma in
the toroidal direction creating a magnetic field in the poloidal direction. This current is
called the plasma current, henceforth denoted as I,. I, =3 MA in Alcator C-Mod. The
poloidal field created by I, combines vectorially with the applied toroidal field to create a
rotational transform or “screw pinch” equilibrium that has proved remarkably efficient in

confining fusion plasmas for brief periods of time.

The difficulty in achieving breakeven, much less appreciable gain, in a fusion exper-
iments lies in confining plasma that is hot enough, long enough so that the necessary
number of fuel nuclei overcome their mutual Coulomb repulsion and fuse. Typically, mod-

ern fusion experiments have T, = 8 keV, n, ~ 5 x 1022, and energy confinement times
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(te) on the order of 500 msec. Lawson formulated a criterion for achieving breakeven in a

deuterium-tritium plasma that is summarized below.

N.TE pT = 102°m_33 (11)

To date, fusion experiments have improved dramatically, by a factor of 10* from
initial devices, but still fall short of achieving ignition. Research is ongoing and progress is
being made. Several new concepts are being explored in the newer experiments including
elongated plasma cross sections, divertors, pellet-fueling, neutral beam and rf heating to

name a few.

Crucial in gauging the performance of a given tokamak experiment are two parameters
Bp and £;. Bp, known as beta poloidal, is the ratio of plasma kinetic pressure to poloidal
magnetic field pressure. 3, has several definitions depending on which convention is em-
ployed. For the present calculation the following two definitions of 3, will be employed

where appropriate.

p)2u
8, = <B; ; 0 (1.2)
8
B, = %I;Ap,a,m (1.3)
r

(p) is the volume averaged plasma kinetic pressure. B>, 4ge/ 20 can be thought of as the
poloidal magnetic field pressure at the edge of the plasma. Equation (1.3) reduces to

Eq. (1.2) if the plasma has a circular cross section.

B, is a measure of how much plasma is being confined for a given edge value of
poloidal field. In some sense high 3, means better overall plasma confinement and tokamak
performance. However, it can be demonstrated that if 8, becomes too high, that is reaches
a certain limit, plasma equilibrium is no longer possible. For the case of a tokamak of

circular cross section the §, limit can be expressed thus
fp <1 (1.4)

where € = a/ Ry is the inverse aspect ratio of the tokamak.
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¢; is the internal inductance of the plasma per unit length normalized to po/4m. It is
a measure of the width of the current profile which has direct bearing on the stability of

a given equilibrium.

One way in which experimentalists have sought to determine these two important
operational parameters is with magnetic diagnostics. For a comprehensive overview of the
most commonly employed magnetic diagnostics including Rogowski coils, flux loops, and

field coils, see Hutchinson (1987).

Several numerical studies have been undertaken to determine how and under what
conditions ¢;, B,, and I, can be measured with magnetic diagnostics (Brahms [1990]}).
Luxon and Brown (1982) while working on Doublet Ila and Doublet III employed a scheme
whereby the Grad-Shafranov equation was solved for a particular set of profiles and simu-
lated measurements were computed for the 24 one-turn loops and 12 partial Rogowski coils
actually monitoring the experiments. These simulated measurements were then compared
to the actual data and the differences minimized. Lau et. al. (1985) performed a similar
analysis on Doublet III adding 11 local magnetic probes to the diagnostics listed above.
Both groups found that the differences between actual and simulated measurements had
well-defined minima for non-circular cross sections and that I,, 8, and £; could be deter-
mined separately with some measure of confidence. For circular cross sections, only I, and
Bp +£;/2 could be determined. In a later work, Lao et. al. (1985) demonstrated that in the
circular case 8, and ¢; could be separated by appealing to a diamagnetic flux measurement
in addition to the other measurements cited above. The validity of such an approach is in
doubt however as diamagnetic flux measurements are subject to substantial errors because

of a large toroidal field offset.

Numerical work on JET pursued by Brusati, et al (1984), Blum et al (1981, 1985),
and Lazarro and Mantica (1988) proceeded along the same lines. Their conclusions were
nearly identical with the Doublet III groups’. From magnetic measurements alone, I, and
the combination 8, + £;/2 could be determined for low 8, in near circular plasmas and
I,,Bp, and ¢; for non-circular plasmas. A critical elongation of 1.25 was calculated. For

plasma with elongations x > 1.25, the measurements were separable.
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Much analytic work has been done by Shafranov (1962, 1966) and Mukhovatov and
Shafranov (1971). Shafranov demonstrated that to first order in the inverse aspect ratio,
€ = a/Ry, the radial and azimuthal components of the poloidal field outside the plasma.

can be expressed in the following forms.

Bo(r,0) ~ —Holp _ #olp [(1+ &6+ 2 1)+1——1+2R° ]cosO (1.5)

27r 41rR0
- polp B a_2 L; r 2ReA. | .
B, (r,0) ~ 4rRe [(1 . )(Bp + n 5— | sin6 (1.6)

a is the minor radius of the tokamak, Ry the major radius. A, is the famous Shafranov
shift which represents the distance the plasma has shifted outward in order to reach an
equilibrium that creates a toroidal force balance. One can determine I, from the steady
component of By and A, and the combination 3, + £;/2 from the first harmonics of B,

and Bg. Shafranov’s model and the studies cited agree.

Wind (1972, 1984) and Brahms et al (1986) applied function parameterizations to
the magnetic data analysis on the ASDEX experiment. The goal was to obtain a simple
functional form for intrinsic physical parameters of a tokamak in terms of the values of
measurements. Again, only 8, + ¢;/2 was determined with good accuracy in the presence

of realistic measurement errors in a near circular geometry.

The objective of the present work is to demonstrate analytically what has been hereto-
fore known only computationally. Namely, magnetic measurements are sufficient to deter-
mine B, and ¢; independently only if the plasma is sufficiently elongated. What follows
in the present chapter is a short review of the ideal MHD model. Chapter 2 reproduces
Shafranov’s results in the circular limit and extends the model further demonstrating how
although second order, second harmonic field measurements allow one to separate 3, and
£;, the measurements are too sensitive to determine them with any confidence. Chapter 3
addresses the elliptic problem in which (for profiles fundamentally identical to those used
in the Shafranov model), the Grad-Shafranov equation is solved explicitly to first order.
The resultant magnetic fields available to a hypothetical set of magnetic probes are then

calculated explicitly.



1.2 Ideal MHD

For a comprehensive overview of the subject, refer to Freidberg (1987). A few salient

points are summarized here.

Ideal MHD treats a plasma as a single, electrically neutral fluid capable of supporting
large electric currents. The currents are modeled as being carried by massless electrons
while the fluid’s inertia lies with the ions. A reduction of the two-fluid equations for
electrons and ions to a single fluid equation with these approximations in mind yields the

famous force balance equation shown below.
JxB=Vp (1.7)

Ideal MHD models a plasma as having no resistivity. Therefore, Ohm’s law can be cast

in the following form.

E+vxB=0 (1.8)

In combination with Maxwell’s laws and an equation of state (1.7) and (1.8) can be used

to solve for a very wide range of MHD equilibria.

In fusion configurations with confined plasmas, the magnetic lines lie on a set of nested

toroidal surfaces called flux surfaces.

Taking the B component of Eq. (1.7) reveals that flux surfaces must also be surfaces

of constant pressure.

B.-Vp=0 (1.9)

It is also worthwhile to note that taking the J component of Eq. (1.7) demonstrates

that the current flows along flux surfaces and never across them.

Consider the following two Maxwell’s equations where the displacement current has

been ignored.
V-B=0 (1.10)

V x B = poJ (1.11)



Define the magnetic field B in the following manner.
B = B¢é¢ + Bp (112)
1
B, = ZzV¥x &y (1.13)

Y is the flux function. Flux surfaces are surfaces of constant 1. Combining Eqs. (1.7) with

(1.10-1.13) one can derive the famous Grad-Shafranov equation.

A% = —poRZ% - F% (1.14)
The elliptic operator A* = R2V . (-}%). F = RB4 and can be shown to be a free function
of flux only.
F = F(¢) (1.15)
Likewise for the pressure p.
p=p(¥) (1.16)

Equation (1.14), the Grad-Shafranov equation, describes tokamak equilibrium in terms
of the flux function 1. Solving the Grad—Shafranov equation for certain prescribed, ideal
profiles p and F, one can thus calculate B, explicitly from 1. This is exactly the ap-
proach taken in Chapters 2 and 3. In both cases an inverse aspect ratio (€) expansion is
performed. For the circular case the expansion must be carried out to second order in e.
For the elliptical case only first order is required, but the zeroth order solutions are much
more complicated. From these solutions, it is possible to deduce the desired information

concerning (3, £;, and the magnetic diagnostics.
1.3 Notation

A brief word about notation. Throughout the work, whenever a “caret” appears above
any quantity except a unit vector, that quantity is understood to be defined outside the
plasma. For example, 1 denotes the flux function outside the plasma while ¥ denotes
the flux function inside the plasma. Also, magnetic fields are labeled with subscripted
direction, order, and angular harmonic. For example, By,, denotes the first order, first

harmoinc magnetic field in the § direction.



Chapter 2
The Circular Limit

2.1 Introduction

In this chapter the Grad-Shafranov equation will be solved to second order in the
ohmic tokamak expansion. See Shajii et al (1992). Then having explicit formulas for the
flux functions 1,50,1/;1, and 1,Z'2, the magnetic fields available to an idealized set of probes are

calculated. The dependence of these field amplitudes on 3, and £; are sought.

2.2 The Ohmic Tokamak Expansion of the Grad-Shafranov Equation

Consider a circular tokamak as illustrated in Fig. 2.1. The plasma of radius a is
surrounded by magnetic probes conveniently located on a concentric circle of radius b.
These magnetic probes sample the radial and azimuthal fields during the flattop portion
of tokamak operation. Assume that the signals are Fourier analyzed to yield the following
information.

B,(8,b) = B,1(b) sinf + Bi5(b) sin 26 (2.1)

By (8,b) = Bgo(b) + Boe1(b) cos + Bga(b) cos 26 (2.2)

B, is the first order radial field.

B, is the second order radial field.

By is the zeroth order tangential field.

By, is the first order tangential field.

By, is the second order tangential field.

The field amplitudes are ordered with respect to the inverse aspect ratio e = - < 1.

That is
B¢y B¢z Bro

o< o« X € 2.3
BGO BOI Brl ( )
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The data yields five pieces of information with which it should be possible to obtain the

following five plasma parameters:
e I, total plasma current.
o A, the Shafranov shift.
e (3, the poloidal .
o £; normalized internal inductance.
¢ x the plasma elongation.

To obtain analytic expressions for the field amplitudes in terms of the desired param-

eters one proceeds as follows.

The MHD equilibrium of the plasma is described by the Grad-Shafranov equation
developed in Chapter 1.
dp dF

Aty = _#°R2¢—h_b pkis (2.4)

Again p = p(y) and F = F(¢), free functions of flux that describe the pressure and
toroidal field profiles respectively. For this particular problem assume an ohmic regime of
tokamak operation as opposed to the high beta or flux conserving regimes. The regime
of operation gives the ordering and appropriate parameters in which to asymptotically

expand the Grad-Shafranov equation in order to obtain 1) to the desired accuracy.

Ohmic tokamak operation is characterized by low 3, paramagnetic plasma behavior,
and g ~ 1 for stability. q is the safety factor where g(r) = ﬁro—Bg:({;);. Ohmic operation
assumes that plasma kinetic pressure is confined mainly by a poloidal field generated by

ohmic current and not by any magnetic well in the toroidal field.

Expand the Grad-Shafranov in the parameter €, the inverse aspect ratio, where € =

% < 1. The ohmically heated tokamak expansion is given by

BP
—= ~€ (2.5)
By
g~1 (2.6)
2p0p 2
B3



€O:

B 1 (2.8)
Y(r,0) = Po(r) + 1(r) cos 6 + Pp(r,8) + ... (2.9)
% ~e (2.10)
(1]

15-2- ~e (2.11)
1

Yo ~ rRoBy (2.12)

Choose F?(1) and p(y) most conveniently and Taylor expand these free functions about
Yo.

F? ~ R%(BZ + 2BoBz(¢)) (2.13)
4+ — + + +. 2.15
DY) 2= Vo) + (s + ) + 3 T b+ 9a)” (2.15)
Rewrite the Grad-Shafranov in toroidal coordinates

10 8% 18% _
rdr Or 12002

o AP L[ o6 smd oy
to(Ro + 7 cos ) - + = 03 50 (2.16)

dp dy 2 R
By substituting the expansions for v, p(¢), F(¢) and collecting terms of the same order in

€, three inter-related equations are obtained.

%g G%E) RzBoZIZ — poR2 d:l/f:, (2.17)

L0 () e A 2 (] B )

V24, = 1 (%ﬁl —~ k%aa‘ff’) cos? 0 + :210 sin® @ — R230d252¢2 - R‘2’23° ‘Zgzzpf cos? §
A R e .19

Equations 2.17-2.19 shall henceforth be referred to as the zeroth, first and second order
equations respectively. The zeroth order equation is a statement of radial pressure balance

and the zeroth order poloidal field is given by

5, = L dbo

s (2.20)
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Rearranging terms in the zeroth order equation, it is a simple matter to show that 73— ¢

m g. The first order equation can then be simplified and written in the following form

diy 1 pod 2por dp
r dr ( dr ) - [.,.2 Be ]¢1 Be - By dr (2.21)

Likewise, the second order equation can be cast in a more tractable form

Vi4hy — ﬁ%z——i 2 = R(r) + S(r) cos 26 (2.22)

By 1 dy; #07‘2 dp 2per d 1 dP ¢2 o dJ
R(T)‘zRo{ i ’/’ldr Badr) T 2By \ By dr

1 fdy ¥ por? dp 2#07‘ 1dp\ ¥ d (pod]
S+ { dr r 7 Be - By dr 1/) dr Bo dr * 28, 2By dr Bg dr

It is important to note that, as the complexity of each equation increases in proportion to

its order so does information content. In fact, Eq. (2.22) contains more information than
is required to derive the field amplitudes of the particular harmonics being sampled. Since
Bga(r) cos260 o dipa(r,8)/dr only, the S(r)cos26 term on the right hand side of (2.22)
will be needed. For all practical purposes R(r) can be ignored for the remainder of the

calculation.

To specify the problem completely, the boundary conditions on ¥,(a) and ¥2(a, )
must be imposed. Before turning to the detailed behavior of ¥ on the plasma boundary
r = a it is worthwhile to mention that ¢ must be regular at the origin. Whatever the
functional form given by the solutions of 2.21 and 2.22, an infinite flux at » = 0 is unphysical
and the coefficients of any terms that diverge as  — 0 must be set to zero in the region

r<a.

It was mentioned earlier that the boundary of the plasma is circular. That is only true
to zeroth order. Let the surface of the plasma be circular with small ellipticity. Assume

the surface of the plasma is described by r(8) where

(2.23)

T=a

The ellipticity is second order in e.
K—1~é (2.24)

10



Here it is implicitly assumed that the equilibrium has been so arranged to set the Shafranov
shift A, = 0. This is not a necessary condition and has only been assumed for the sake of
simplicity.

The surface of the plasma is also a flux surface; that is, ¥(a,8) = const. Therefore,
we can Taylor expand 1o(r) at the boundary, add the first and second order contributions

to 1, and set the entire sum equal to a conveniently chosen constant.

d’l/)g k—1
dr 2

(1 —cos28)| +v1cos0+12=0 (2.25)

Immediately, it becomes apparent that in order to satisfy the condition that (rs(8),0)

Y1(a) =0 (2.26)

RO BOa

1/)2(a,k0) =-a— (k —1)(1 — cos 20) (2.27)

To carry out this calculation analytically it is necessary to use very simple profiles for

p(r), J(r) and By(r). The following profiles are used to solve (2.21) and (2.22).

2

p=rpo(l — %5) r<c (2.28)
p=0 r2>c (2.29)

7
By = Bec—c- r<e (2.30)
Bo = BGCS r>c (2.31)
J=Jp r<c (2.32)
J=0 r>c (2.33)

See Fig. 2.2 for a depiction of these elementary profiles. This very simple model is intended
to replicate the behavior of plasmas with dense, current carrying cores, the ratio of ¢/a
being a measure of the peakedness of the actual smooth profiles that are measured in

experimental plasmas.

Before substituting these profiles into the first and second order equations, they are

used to calculate £; and (8, quantities which depend only on zeroth order quantities.

11



2
Here, let 3, = (p) 25* where (p) is the volume averaged kinetic pressure and g—:: is the
fa
edge value of poloidal magnetic pressure. Given the profiles outlined above 3, is simple to

calculate.

HoPo
B, = £ (2.34)
’ B
Now calculate £;, the internal inductance of the plasma per unit length normalized

to po/4m. Actually the determination of £; is merely a statement of the conservation of

zeroth order magnetic energy.

1 2 _ Bg(") 3
2LzIp _-/ 2o @ Volasma (2.35)
L; Ko
o Ho 2.
b 2rRy / 4w (2.36)

Breaking up the volume integral into two regions » < c and r > ¢, and substituting

Egs. (2.30) and (2.31) in the appropriate regions, £; is obtained.

&:%—2ma (2.37)
c

a=-

a
The dimensionless ratio a is a measure of how peaked actual, smoothly varying profiles
such as these realized in experiments might be. As a — 1 the profiles become flat and

as a — 0 the profiles become highly peaked. Intermediate values of a can be chosen to

approximate a given experimental situation.

Expressions for 3, and ¢; in hand, one is in a position to solve Egs. (2.21) and (2.22)

and obtain expressions for the field amplitudes to be measured.

12



2.3 The First Order Solution

Upon substitution of the given profiles into (2.21) in the region 0 < r < ¢ the ¥,

equation becomes

1d &b ¥1_ Be

rdr dr 72 c

(1+48,)r (2.38)

Setting the coefficient of any terms that diverge as » — 0 to zero, the solution of (2.38)

can be expressed in the form below

Ya(r) = B;‘Z (1+48,)r3 + cyr (2.39)

Repeat this procedure for (2.21) in the region r > ¢ keeping in mind that the decaying

solutions must now be kept in the form of the solution. Equation (2.21) becomes

S (r=2) - Ik = By, - (2.40)

Since 9;(a) = 0 the solution to (2.40) can be expressed as

cBg. a?

P = 5 rlng + cz(r — —r—) (2.41)

At this point in the calculation there are two undetermined coefficients, ¢; and c;.

Application of the and the jump conditions at » = ¢ determine these constants.

J(r) is a step function. i‘%ﬂ is a delta function at » = ¢. ¥; must be continuous at

r==~¢C.
dJ(r) 1 d
dr = ;L'O—r—d—;T‘Bg('r)é(T‘ - C)

d.](’f‘)_ 1 d 2BO¢:
dr ‘yordrr c 5(r —¢)

dJ(r) _ 2B
= Moi §(r —c) (2.42)
P1(c) — a(c) =0 (2.43)

13



Now examine Eq. (2.21) again integrating over the jump from r = ¢— to r = c+.

c+ c+ c+
/c 1d( ‘fo)d —/ -'/—’ld +/_ g¢1(r 6(r—-cdr—f (Bo _2"°’"dp)d (2.44)

_ rdr

The term on the right hand side of (2.44) is continuous. The first term on the left
hand side of (2.44) can be integrated by parts twice.

L R A TP T YR O
Wil B [Tl [T b, () (2.45)
dr r cw T2 - 12 c
c— c—
Applying the continuity of v, at r = c, it becomes evident that the delta function in d_.‘figﬁ
requires there to be a step in —;él at » = c.
d¢1 _ d¢1 _ _21/)1(6) (246)

dr dr c

Now apply the jump conditions to the solutions ¥; and ¥;. This gives two equations in

two unknowns.

2 B
cgocclna + e2(c — 2y = (1 +4B,)c2 — c1c =0 (2.47)
2 B

c; — el %) =S 29° [lna — —(1 +4,8c)] (2.48)

The algebra is sufficiently simple that the steps are omitted.

1
c; = BOc l: p 5(1 - (12)] (249)
Bocc £_1 2.50
C2 = ) [ﬂp + 2 2] ( )
11 is now completely determined.
B c cBg. g 1 2 .
Pi(r) = 8 (1 + 4[31,) ~ oz [ﬂp + 27 -2'(1 -—a )] T (2.51)
2

. ¢Bgcc r  cBec g 1 _a 2.52
Pi(r) = 26 Tln;+‘2—[p "2"“‘2}(7' 7‘) ( )

Having v¥; and 1, it is now possible to obtain the first order magnetic fields measured

by the probes at r = b. After the discussion in Chapter 1, the poloidal magnetic field is

14



exactly B, = Vi x e4. Taylor expanding the 1/R, substituting the perturbed solution
for ¢ = 1o + 41 + %2 + ... and collecting terms of comparable order, the first order fields

are given below.

B _ 1 10%:(r,0)
Ror 08

B, = _i};i/’r—l sin 8 (2.53)

Bo= o = o ot (7 o ~ W) conf

Bio = [-}%—?—;T—I—ROBO(T)] cos 8 (2.54)

Substitute (2.52) and (2.31) into (2.53) and (2.54). Evaluate the expressions at r = b.

. a2
|Bir| = :,:12:, [(ﬁp 5~ -)(1 — ) +ln g] (2.55)
- I L; a?
| Bio| = :;:R}; [(ﬂp 4 5 %)(1 + 5‘5) + lns - 1] (2.56)

Note that both field amplitudes only specify the combination 8, + 521 uniquely. They give
the same information. It can be shown that taking the combination B, = | Bgy (b)|—| B,y ()|
subtracts out any shift information wrapped up in the first order fields. This combination

is included here for reference only as the Shafranov shift A, has already been set to zero

5 - _ Ml [ £i—-1
B, = 47TR0[ (,, “5— (2.57)

Again note that only the combination 8, + % can be found from the data. The first

for convenience.

order field measurements do not specify 3, and ¢; separately. Although it would seem that
having determined the plasma current I, from zeroth order measurements and knowing
the geometry, the two field measurements, B,, and By, are sufficient to determine Bp and
¢; separately, they are not. (8, and ¢; relate to the first order measurements in a linearly

dependent fashion.
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2.4 The Second Order Solution

Next, turn to Eq. (2.22) for ;. Perhaps the second order field measurements can
supply the additional information necessary to find 3, and £;. Focus on §(r) in the region
r < c. Substitute the expression for 1; in that region and the given profiles.

1 [dyy 1 por® dp  2perp d (1 dp ¥: d (po dJ
5(r) = 2Ro{ dr r rBo(r) Bg(r) dr By dr B, dr + 2Bg dr \ Bg dr

Since ‘fi" = 0, the last term on the right hand side vanishes.

S(r) { oc(l + 413}’) 2 + C1 — 6 (1 +4,3p)7‘ — Cy — Tor —_— “07- ¢ (_ P0r>

2Ro 8¢ Bor \_ &
) = g { 2o + gy - B 2aka}
S(r) = g {3 18— 1+4 2?{} 2
S(r) = 2};":6 {3;3,, _ ?I} 2
S(r) = gg:c {ﬂ" - %} rf o r<e (2.58)

For the purpose of calculating the amplitude of the second harmonic that appears in second

order, Eq. (2.22) becomes

Vi, = g}';zz (ﬂp — i) r2 cos 26 (2.59)

A solution of the form (r, 8) = 12(r) cos 28 is sought. Substituting this form of the
solution into (2.59) converts a second order partial differential equation into a second order

linear ordinary differential equation which is trivial to solve.

Py | dis 3B (, 1\ 2
—_ = - = 2.60
dr? + dr ¢2 2R c\'? 4 T ( )

Immediately one can write down the solution in the following convenient form

1/)2(7‘) 8R c (ﬂp b ") 7‘4 + b11‘2 (2.61)
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The same procedure is followed in order to find ¥(r,8). This time %;(r) and the
appropriate profiles for » > ¢ must be used to compute S(r) in this region.

_ 1 {d'»z’l o (r) por? dp  2poryy d (1 dP) P2 _‘i( po dJ

dr 7 %) T By(r)dr ~ Bg(r) dr \Bedr/) " 2Bsdr \ Be(r) dr

Again the last term on the right hand side vanishes because J(r) = 0 for r = ¢. Also

the pressure p(r) as well as its derivative 1%92 are zero in this region. S(r) simplifies

greatly.
56) = 5u {dj .. raem}
S(r)= El; {f_Bia_cgg + CI;GC ln£ + ¢z +cz:—: - CB;ec ln; — ¢ +62f"3 __.,._B:‘L}
S(r) = zio {2czg; — Cl;ec}
0= e 2[5 6532 )
S(r)zgg:{[p-{»é'—;—qg;—%} r>c (2.62)

For the purpose of calculating the amplitude of the second harmonic that appears in

second order in the region r > ¢, Eq. (2.22) becomes

~  Bg, 2 —
Viy = 2;: {[ﬂp 2 1} = %} (2.63a)

A solution of the form v, (r,0) = ¥ (r) cos 28 is sought. Substituting this form of the
solution into (2.59) converts a second order partial differential equation into a second order
linear ordinary differential equation.

d?py 1dpp 4,  Bgcc £ -1 1
lay, — £ _: 2.63b
dr? * r dr r? 2R, (ﬂp ) r2 2 (2.635)

The solution is expressed most conveniently below.

N Bg. ;-1 r2 b
Pa(r) = — 8;26 [(ﬁp + 5 ) a®+ — 5 In - ] +bor? + —3 (2.64a)
0

17



At this point in the calculation of 1, there are three undetermined coefficients by, b2 and
bs. Application of the jump conditions at r = ¢ and the boundary conditions at r = a will
fix these three coefficients. Up to this point in the analysis, the microscopic details of the
calculations have been omitted as they were for the most part trivial. From this point on
however the algebra becomes both subtle and cumbrous and therefore it is worthwhile to

include each step.

First, determine the jump conditions on 1, and 'gzvg across r = c¢. Again, return to

Eq. (2.22) and rewrite it in the following form.

d1hy + ldyy __¢ po dJ

a&r2 " rdr r2°° B o(r) dr
1 [dy;, 1 — rBo(r) — 28P  2por d 1 dp+ P2 d ( ﬂ]
2Ro | dr " o(r) = por’ dr By(r) dr Be(r)dr ' 2Bg(r) dr \ Be(r) dr

(2.64b)
Considering the step behavior of J(r) and %’T(;l, one finds that the jump conditions can

be determined quickly if ¥2(r) near r = c is expressed in the following form
Ya(r) = AJ(r) + Bp(r) + Po(ct) + smooth functions — 0 as r —c (2.64c¢)

Substitute this form of ¥5(r) into (2.64) in order to determine the constants A and B.

£J  1d] . po .dJ . d%p no . dJ dJ _
A= ol ¢p g Ko
dr? + Ar dr ABg(r)J dr + Bdr2 BBo(r) dr Bg(r)¢ 2(c )
1 | 2periy @ po? 1 d2J 1 dJ dBe)] (2.65)
2Ry | B2(r) dr? ~ 2Bg(r) \ Be(r) dr?  Bj(r) dr dr '

d’p  podJ podJ » o
@ T B d [zﬁ‘ﬁza—r”] 2 a(eh)
H0T1/)1 d2P #o¢% [ﬂ 1dJ  po JdJ]

T RoBZ dr? ' 4RoBZ |dr? ' rdr By dr

Find A and B in terms of ¢2, Bg., Py and the normalized first order flux Jl = Y;‘—B%l.

c

4
HoC —2

A= P 2.66
4R, "t ( )

p o T, ot b
dr?2 ~ Bg. dr R0B2 dr?
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Recall J = Job(c—r) and gf = —2P2g(c — r) where 8(c —r) is the heaviside step function.

Therefore, %% can be written in terms of %:—E.
dJ _ _chodp
dr ~ 2podr?
@p_ po (_ch\dpy  pec , Lp
dr? ~ Bp. \| 2po) dr? RoB2, "' dr?
B=— poco » _ N003$1
2Bg.po Ry B

Rewrite B evaluating By, with Ampere’s law around a circular contour at r = c.

2Bg.

pod = =2

po_ Y2t
Do RoBg.

The reason for writing () in the form of Eq. (2.64b) now becomes transparent.

o — Py = —AJo
dfs _da _ _pdp
dr dr dr
—2
‘$ _ ¢ _ _2Bgc u0c4¢1
2 2 HoC 4R0
A c2Bg.—2
Yo — P2 = — 5Re Yy
djy dips _2p0 [ Y2 poc®d
dr dr c Po RoBg.
dps  dps 2P 2c —
dr  dr ¢ Ry BocPp¥1

(2.67)

(2.68)

(2.69)

(2.70)

(2.71)

(2.72)

(2.73)

At this point in the calculation the jump conditions at 7 = ¢ given by Eqs. (2.72) and (2.73)

and the boundary conditions on v, at 7 = a given by Eq. (2.27) completely determine the
three unknown coefficients by, by, and bs. Equations (2.72), (2.73) and (2.27) can be written

as follows.

£; —1

A=06p+ 5

19
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bs cBg c? By 1 c®Bg.—2
boc® 4+ 2B _ c 2, ¢ _ _ Deée iy s__ e
2 2 8R0 (A + 2 lna) blC 8Ro(ﬂp 4)c 2R0 ¢1
bs cBgc c By.c? 1
2b 2— — 1 -} —2bc— - )=
2€7 %3 7 B8R, ( ot 2) 2= SRy P g
2c Bg 2 b3 CBg 62
=z 2 b, + =) — ¢ 24
R Bpy [( 2 2) &R, Aa” + 3 Ina
bs cBy cBg
bya? + = — —=Xa? = € Ro(k —
o + (1,2 8R0 2 Q(KI 1)
Write these equations in matrix form.
b8
b262 -+ —2 — b162 =C
c
2b202 - b162 = C2
b2a2 + b—; = C3
a
2¢2Bg. . —~ ¢ ¢Bgc c.c Bg.? 1l.¢
2= ——p—Ppbi5 + g, (ot )3 T 2R, Br— 3)3
CBoc 9 c2
i LA SN l
+ SRO( + 5 Ina)
B | — 1 1 a2 1
cp = T -—2ﬁp¢1 8(lna+ )+ (ﬂp )+ 12 + = 3 lna]
3By | 1 1 1 a?
= - S 4z ks 2.7
co 3R | 2ﬂp'¢1 lna-l— 16+2( ) 4c2] (2.75)
_ SB[ g2 A0 e 18- 1) (2.76)
T DRy |V T a2 TP ‘
c®Bg. -R% 1 a2
= D —1)+ == 2.77
s 2R, _cz('g )+4c2 } (277)

Solve for bac?,bs/c?,byc?. That is, write the system of equations developed above as a

1 1 -1 b262 C1
2 0 -1 b3/62 = | C2 (278)
a?/c c*/a® 0O b, c? cs

¢1,c2¢3 are known and given by (2.75-2.77). Repeated application of Kramer’s rule to

single matrix equation.

(2.78) wll solve for the column vector on the left hand side. However, since the present
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calculation is aimed at determining Bzo(b) and Bzr(b), it will only be necessary to solve
for b, and b3. The second order magnetic fields are uniquely determined inside the plasma

but are not of interest here.

It is a simple matter to calculate the determinant of the 3 x 3 matrix on the left

hand side of (2.78). Then, two applications of Kramer’s rule give b, and bg, completely

specifying Pa. . . .

4, 4
p=2 o -1/=-1C*+ (2.79)
a?/c? /a2 0 ase
(4] 1 -1 2
c
1)1)2C2 = |C2 0 —1|= —[Ca + —‘2’(02 - Cl)] (2.80)
cz c?/a® 0 a
1 cg —1
b ! a?
D;% = 22 , @ —1|=—[cs — c—z(cz — 1)) (2.81)
/[ e O
Note the combination c; — ¢; appears in both (2.80) and (2.81).
c3 B - 1 1 1 Aa?
—ey = ) il — )+ 22
@797 2R, [-26:8, + 4ln°‘+16+2(ﬂ Ptia
—2 Aa? 1 1 1
g "élna“z(ﬂp“ J)
caB
¢ — 1 = Oc [¢1 28,9, + 1na+ ﬁp] (2.82)

At this point in the calculation it is possible to obtain analytical expressions for the second
order field amplitudes measured by the probes. Again the poloidal field can be expressed
exactly B, = -I%Vip X e4. As before, substitute the perturbed solution for ¥ = ¢ + 91 +
12 ... and Taylor expand the 1/R

, 1 8¢

Br=- %50

B = — [¢ 0 + 29 smze] 1— 2 cost ..
r bRo 1 sin 2 ROcos

Keep only second order terms with sin 260 dependence.

. A b1 (b
Bab) = - |20(8) - A (2.83)
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Repeat the same procedure to find f?og(b).

ng = Ili [_3_61% + ?(;b%cosa-i— ?ai;gcos201| :1 - }%cose-}- }%%cosze
Be(b) = Elo' [a(;/i? B 2:20 a(';f'l 21;:3 at';/i'o:
Turn to Eq. (2.83) and evaluate each term.
_ 5_;.{_%;51@) - “5%3 [f%bmg +b(1 - %;)cg* ,\]
_ 511?51/31(1)) - f:ﬁg‘ [m% +(1- %-22-),\}
- z—lﬁgzzl(b) = —Sﬁ%’;]—% [mg +(1- ‘-;;),\}
i)%%(b) - 312%3 [bzc2 (i—i) + i—‘;- (g) - csif: (Aa? + glng)

2 .
—¢2(b) = Ta. + Tb

bRo
where
_ 2 b2 2 C2 b3
T. = EE;) [gz-bzc -+ —2';-2-]

_ 2
T, = 2 B [11n9+,\9—]

~ bRy 8R,

Evaluate T,, then T;.

2 a b?

2 a2
B (es = Solen— ) + s + Syl )

[ 1,2 2
o 2 [t
DbR, | 2 2
2 [ b+t B a?
Ta = Dbry | B2 7 (EE B b—z) (e2 =)
T = -2 [bt+ct
>~ DbR, | B2z

b4__a4 ]

a2b? (€2 = e1)

22

(2.84)

(2.85)

(2.86)
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T, =

—2 1b*+c*c®By. (R 1a?
c? 4c

By HLI)
Dir. | B 2R, \2 =Dt

b*—a csBoc

+ 2252 2R (¢1 2ﬁp¢1 "lna+ ﬁp)]

s dlied (B 1)

*  27nRg Rpa*+ctb?2| b2c?
b* —at [ - 1 1
+ “a2b2 (’/’1 — 26,9, + 3 Ina + Zﬂp)] (2.89)
—[l,oI b 1 b (12
T —Iln— + A= 2.90
b= 81rRoRo<n+b2 (2.90)

Recall from Eq. (2.66) that ¢, = _;é:_)

1 1 a?
5111(1-}-5(1— g)A (291)

Y, =

~

1 -
Bya(b) = —Eﬁg%(b) +T,+ T,
Define the dimensionless quantity b,s.

Boa(b) b

bry = mRo (2.92)
— [¢1 26,3, + gt ﬂp] (255
brp = —>1n 3—“4:1124 > [f;( ~1)+ ‘1—1%,\] +4b:“z ;: [‘1 26,9, + lna + ﬂ,,]

(2.94)
For the interesting case when b = a, that is when the probes are on the plasma surface,

br2 reduces to the following simple form.

2
bro = 45—(#: -1) b=a (2.95)
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It is also useful to examine the opposite limit b >> a, the case when the probes are located

far away from the plasma surface.

3. b 4b*a? 1 2 1, 4c? — 1 1
by =~ —5 In - A+m T [RO(K - 1) + Za, A] 4 T ['l/)l 2,3p‘¢’1 + glna + Zﬂp:l
3. b 4a* Ri(k-1) 4ct Bp A
mr i tEwTa & Tasre [“’ ~ %+ ‘““+Z“z] b>a

(2.96)
Now unfold the algebra in Eq. (2.84) in order to obtain analytic expressions for the second

order second harmonic tangential field.

1 82 b 8, b o
Bao(b) = %- [ar T 2R, r | 2RI or

T, = %%’éﬂ b (2.97)
T, = —Ez%gaa_il b (2.98)
Ty = Rio%% b (2.99)
T, = 4‘:’}; }—;’; (2.100)
Ty = “%g’ [CB;‘“ (m% + 1) + (1 + ';2> CB;“ A]

- _2_%%_ cgoc [mg F14(14 b:),\] (2.101)
Ty = Rio [—68%": (bln—b +2) +2bb 2;;3]

e o ot 3]

[J,oI b b 1
Ty=—-t 2 qp24 2
3= TR R, T )

2 b2 c? c? a?
~ DbRe g(cs — ;2'(02 —ca))+ 55(-'03 + ‘c‘z‘(cz - 01))]
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[,LoI b b
T3 =— —
5= ~T6nRy Ro\"a T 2 )

- i [(— et (G e —-cl):l

pol L‘_( b l)

161\'ROR0 a
2 1,42_c c3Bo, Eﬁ( _1)+1a>‘ +b4+a4caB,,c
DbRy | ¢2b2 2R, a’h? 2R,

pol b, b 1
—(ln - -
167\'R0 Ro( na + 2)

ol bl:cr.2 ¢t br-ct (Rg(n—1)+1a_2>‘)

3:

(1/’ ”zﬂp¢1 lna+ ﬂp)

Ty = —

27 Ry Ry b2 g% + ¢t c2b? c? 4 c?

a2 ¢t bt+at

1
+ 35 at+c* a2b? (¢ 2,3p¢1 lna + Zﬂp)}

ol b b 1
8- 167'I'R0 Ro (l )

a? b* R? 1a?
35——_a4+c4(b2 1)+:1b_2)‘)
ct bt + ot

+ 'I;‘Im I:$1 2ﬂp¢1 lna + ﬂp] (2102)

pol b
2TI'R0 Ro

Bo(b) =Ty + T + Ts
Define the dimensionless quantity bga.

Bgy(b) b

— 2.103
pol /87 Ry Ro (2.103)

bo2 =

Combining terms and normalizing properly bgz can be written in the following form.

3 3. b a? 4(12 b4 c* [ R:
boo = = — = Iln— — O — - 1
2= ;5 In - (1 + 5 A+ — ( T (k—1) + 15 A) (2.104)

4c4 b* + a* 1 Be

b4 at +c 4(¢1 2:Bp¢1 lna+ )

Before examining bg» in the limits b = a and b >> a, it is necessary to simplify b,o and bgz

once more.
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Combine ) terms in (2.94) and (2.104).

a* b* + ¢* (b* — a?) c*
bro A [— +g;a4+c4] = A [—mp] (2105)
a? at bt — c* a®? (b*+a*)ct
be2 : A[—b—z —1+FW] = A [—Z; — (a4+c4)g; (2.106)
Simplify A.
Azﬂp—i—éi—%:ﬂp—lna—-}i (2.107)
Also
ﬂp 1

4

%, can also be simplified.

P, = -;- [(1 - é) (ﬂ,, - %) + %lna] (2.109)

Rewrite b, and bgy using (2.105-2.109).

€

3.0 b*+a*\ a* (k-1
brz——ilnz+4<a4+c4>?ﬁ< €2 )

a
Ro

bt — 1
4 (a4 s ) 7 [¢1 2,8,,1&1 lna =+ ﬁ]
(2 110)

—+

3. b 3 a2 br—ct\ a* (k-1 b* + ot 1
bz =303 +1“bz“4<m)b“4( z )*4(a4 ) [‘Pl 2p9: + 1“‘”16]

(2.111)

Consider b >> a, that is when the measurements surface is far from the edge of the plasma.

3. b 4 (k-1 4a 1
2N —ln - 112
bra~ —5lng +1+a2< €2 )+1+ 4['/’1 2Bp91 + lna+16] (2.112)

3. b 3 4 k—1 — 3 1
b me 1223 2 —| (2113
02 2lna+4+1_+_a2( = )+1+ 4[¢1 2,3p¢1+81na+16] ( )

Notice that b, and bgy have exactly the same dependence on & (also unknown) B,, and
a. Hence, profile effects cannot be separated from the ellipticity for measurements of Bpo

and By, far away from the plasma edge. 3, and ¢; are still not uniquely determined.
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Consider b — a, the opposite limit, when the magnetic probes are placed close to the

plasma edge.

k-1
b,2=4( = ) (2.114)
bpr= > —araf o) (rzl), 8 P 28,9, + Slna+—| (2115)
02 = 4 1+ at €2 1404 |t Pr1 8na 16 '

Consider (2.114) and (2.115) in the limit o x 1 flat profiles. Let =1 — 6,6 < 1.

Ty ~ % (=64 A(1—1+26)] = -;-(2,\ ~1)6 (2.116)
Rewrite (2.114) and (2.115) in this limit.
4 -1
bp = ( 3 ) (2.117)

3 166 [k —1 1 3 1
boz_z——)\—i-——z—( S )+4[i—6+§(—5)—2ﬂ,§(2,\—1)5]

b,,2=1'—,\+6[8 (”;1) —3—4(2,\—1)(,\—411)] (2.118)

For flat profiles, @ ~ 1, b,, gives no information about o and hence ¢; and by, gives
information but is is a small correction of order § compared to 1 — A, already a small

quantity. This will be difficult to measure in practice.

Hence, even resor ting to second order magnetic field measurements does not uniquely

specify £; and G, in the circular limit.

2.5 Summary

The equations of interest are summarized below.

Ao ILOIp _ ?12_ 2,- -1
B, = y——y [1 7 Bt —5— (2.57)

Forb > a

3. b 4 k—1 402 [-2 — 3 1
b~ ——In-~ —_ — — 2.112
2 2lna+1_{_o‘2( 3 )+1+a4 [1/)1 2ﬂ,,¢1+81na+16] ( )

27



b 4 -1 4a? [ - 3 1
bgzz—gln;+§+ (n )-I- 2 [¢§_2ﬂp¢l+§lna+_] (2.113)

4 14 a2 €? 1+ ot 16
For b — a
4 —1
b,.2=—(—-€—i—)- (2.117)
k—1 3 1
b92—1—1\+6[8( 3 )—5—4(2/\—1)()\——2)] (2.118)

It has been shown that for plasmas with circular cross sections with small, second order
ellipticities, first order, first harmonic field measurements determine only the combination
Bp + £;/2. Second order, second harmonic field measurements when taken far away from
the plasma, cannot separate the ellipticity from the profile effects. The same measurements
if taken close to the plasma edge depend so sensitively on already small quantities that
experimental errors invalidate them. Therefore, we conclude that even appealing to second
order, only the combination 3, +£;/2 is available to practical magnetic diagnostics for near

circular cross sections.
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Figure 2.1: Idealized Circular Tokamak
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Figure 2.2: Simple Shafranov Profiles
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Chapter 3
The Elliptic Limit

3.1 Introduction

In this chapter the Grad-Shafranov equation will be solved to first order in the ohmic
tokamak expansion. Then, having explicit formulas for the flux functions 1,50 and 1/;1 outside
the plasma, the magnetic fields available to an idealized set of probes are calculated. The

dependence of these field amplitudes on 3, and ¢; are sought.

3.2 The Zeroth Order Solution

Consider a tokamak of elliptic cross section as illustrated in Fig. 3.1. An elongated
plasma limited at a horizontal distance z from its center is surrounded by magnetic probes
conveniently located on an ellipse characterized by the elliptic coordinate u,,. Before
proceeding further, it is useful to review the system of elliptic coordinates that will be
used throughout the calculation. The elliptic coordinates are u,v, and ¢. ¢ is the familiar
toroidal angle. Surfaces of constant u are ellipses and v is an angular coordinate varying
from 0 to 2r. The transformation from rectangular coordinates to elliptic coordinates is
given below.

z = csinhu cosv (3.1)
y = ccoshusinv (3.2)

c is a length factor that for the remainder of the problem will be considered determined
by the actual dimensions and ellipticity of the measurement surface. Solving the two
transcendental equations that appear below, knowing the height yn,, and width z,, of the

measurement surface, uniquely determines ¢ and uy,.
Ty, = csinhu,y, (3.3)

Ym = ccoshu,, (3,4)
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For use later in the calculation the two operators V and V2 are given below.

1 Aa‘()b Aalp 1 A 6¢
V")b = c( cosh2u2:|_—c052v)1/2 (ué;; + 'U'a—l";) + "R‘etﬁég (35)
Vi - 1 Oy 4], 18% 1 9ROy A OR oY
- c2(cosh2u2j:c032v) uZ | 2 R? §¢2 cz(mzyz_;t.cgs&) R|[Oudu Ov Ov
(3.6)

As in Chapter 2, the following five plasma parameters are sought.
e I, total plasma current.
e A, Shafranov shift.
e (3, the poloidal 5.
e £; the normalized internal inductance.
e k the plasma elongation.

The magnetic probes on the measurement surface u,, sample the tangential and nor-
mal magnetic fields during the flat top portion of tokamak operation. It is the aim of this
part of the calculation to obtain analytic expressions for the field amplitudes sampled in
terms of the plasma parameters sought, thereby trying to uniquely determine 3, and ¢;

from the field measurements.

Again, the Grad-Shafranov equation describes the plasma equilibrium inside the toka-
mak.
dp dF

A% = —,UoRz@ - E’Z (38.7)

p = p(¢) and F = F(¢) are free functions that describe the pressure and toroidal field
profiles respectively. As in the circular case, assume ohmic tokamak operation and use the
appropriate scalings (2.5-2.12) when expanding (3.7) order by order. A perturbed solution
for 1(u,v) is sought.

P(u,v) = Yo(u,v) + ¥1(u,v) +... (3.8)
P
— ~€ 3.9
o (3.9)
This time, however, ¢, the aspect ratio, is given by the expression below
c
=—<1 3.10
€=g < (3.10)
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Analogously to the circular case, p(¢) and F?(1) are expanded about their 1, values and

are linear in ;.

dp

p(¥) = p(vo) + b (3.11)

2 2 de
F*(3p) = [Bg + 2BoBx(v0) + 2B0d_¢0¢1 cel] (3.12)
p(to) = po[l ~ f—"—i—l’—v)] (3.13)
Ba(bo) = Boal1 - 22022) (3.14)
J=Jo u < up (3.15)
J=0 u > ug (3.16)

Po is the plasma kinetic pressure on axis. By is the toroidal field applied at the edge of
the plasma. « represents the paramagnetic rise of toroidal field inside the plasma that
characterize ohmic discharges. a@ ~ O(€2). As before, the plasma is modeled as having
a hot, current-carrying core and a more diffuse outer region, the area of the former to
the latter being some measure of the peakedness of actual, smooth profiles encountered in
experiments. 1), = const defines the edge of the current carrying core. The core of the
plasma is modeled as an ellipse u = ug, of area mx.a®. The z,y coordinates of the core
follow immediately.

z. = a = csinhug (3.17)
Ye = Kca = ccoshug (3.18)

At this point in the calculation the dimensions of the core and hence k. and u¢ are un-

known.

%o is not as obvious here as in Chapter 2. In fact, the behavior of 1, is markedly
different from the circular case if the ellipticity is zeroth order. Examine (3.7). Expand
the right hand side to zeroth order.
aBZR2

Ya

Ao = —oR3(~ 1) +
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) R2  oBiRZ
A*tpg = ”°p°z_bf + —d)‘i-g

R?  oB2R}
Let Q= uopo;-/)f + —¢°—°

= const
Ao = Q
Now expand the A* operator in the left hand side of (3.19).

2
V2o — ZVR- Vo = Q

(3.19)

(3.20)

The second term on the left hand side of (3.20) is first order and hence should be neglected.

Vo =Q

(3.21)

Curiously, (3.20) is most conveniently solved for the elliptic problem in rectangular co-

ordinates. First boundary conditions must be given on the boundary uq and at the origin.

The boundary of the plasma core uo, is to be modeled as a flux surface up to and including

first order. This specifies the following two conditions on ¢ and 'Z‘o-

~

Yo(uo,v) = Yo(uo,v) = Yo = const

Fo

8o| _ Byo
Oou

uo,v— au

Uo,V

o must also be regular at the origin.

The equation of the ellipse after which the core is modeled appears below.

[ V]

y2

=1
242
Kéa

+

le 8

Immediately the solution of (3.21) becomes obvious.

(22 y?
Yo=¢ (;—2' + n§a2>

Equation (3.25) is regular at the origin and constant on the u, ellipse.

Yo(uo,v) =¢
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(3.23)

(3.24)

(3.25)
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The constant € can be determined quite simply from (3.21).

V2¢o=5(;2§+ 22)=Q

kZa
_ Qa? K2

The Grad-Shafranov equation can then be expressed as
A*p = —poRoJo = Q (3.28)

Observing the convention of defining a positive valued flux function (3.25) can be rewritten

in the following form.

I c 2 2
%o = poRo 2 < = ) [Z; + —1—’—] (3.29)

k2+1 Kk2a?
The zeroth order flux function inside the plasma is fully determined.

The zeroth order flux function in the outer region u > uo, is most conveniently ex-

pressed in terms of the coordinates u and v.

Note that in an axisymmetric torus, %% =0, and in the outside region d% = ﬁ'— =0.
Equation (3.7) can be written in an extremely simple form to zeroth order.
8o |, o

5uz T ez

=0 (3.30)

Equation(3.30) is satisfied by an infinite set of orthogonal complete functions natural to

elliptic coordinates.

Po(u,v) = Z(A" sinh nu + B, coshnu)(C, sinnv + D, cosnv) + Eu + Fv (3.31)

Since the problem is up-down symmetric, F' = 0 and all C,, = 0. Keeping in mind the
criteria that 1o(uo,v) = ¥o(uo,v) and that their derivatives must also be matched on the
boundary, choose the form of the solution listed below.

‘!/;o = Ez(u - UQ) + ¢3 sinh 2[‘!!. - UO] cos 2v -+ 54 (332)
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Apply (3.22) to (3.32)

I, Ke
Ca = o 2 3.33
ce #ORO27r (rzg + 1) (3:33)
Now apply (3.23).

?—¢—0 = €y + 2c3 cos2v

au o

a2 y?
o = C4 [5 + n§a2]

N

2

(o]

Yo =704 | sinh? v cos? v + 55
a k2a

cosh? u sin? v

-2 2

o . c : .
—| =c4 —22 sinhuq coshug cosZ v + 273 2 cosh ug sinh ug sin® v
Ou lu, la K2a

O _ [¢®2sinhug coshugcos?v 22 coshug sinhug sinv
PR — c4 -

Ou luo i 2 sinh? u, ¢2 cosh? ug

Mo [ coshug sinh ug

——1—/)—— = ¢4 |2— cos?v + 2 sin?v

Ou luo | sinhug cosh ug

o 1
— | =2¢4 |Ke cos’v + — sinv

au uo fic

o 11
= = €4 |Ke+ KccOS20+ — — —cosv

ou luo Ke Ke
O o [e2+1 KZ2-
——| =4 cos 2v

Ou lue Ke Ke

2
_ _ | wi+1
Cy=10C4 | — (3.34)
Ke

1n§-1] (3.35)

C3=1¢C4 |5
[2 Ke

o(u,v) is now uniquely determined.

I, ke [nf—{-l 1x2—

- C
2r k2 +1 Ke [ u0]+2 Ke

1/30(1!, v) = poRo 1 sinh2[u — uo)cos2v + 1|  (3.36)

Note the cos2v behavior of 1/30 and hence of BOu and Bo,, disappears as k. — 1, corre-

sponding to the circular limit.
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3.3 Beta Poloidal and the Internal Inductance

Before calculating the zeroth order fields, develop expressions for £; and 3, for the

profiles given. First consider ;.

The internal inductance (un-normalized) of the plasma, L;, is determined from a
poloidal magnetic field energy balance inside the plasma.

1

1
ZL.I2 = —
2 vp 2;1.0

/Bpo * Bpodav;:laama (337)

Since the exact shape of the plasma boundary is not a simple ellipse if one models the
core as such, Eq. (3.37) can be tricky to evaluate. Making use of the vector potential A

simplifies matters considerably.

1 .
Bpo = 'R—vao X €g (338)
By =V x Aéy (3.39)
lnr= /v x A -V x Ad*V,
2 4 2”0
2; (V.(AxVxA)+A-VxVxAldY, (3.40)
0
Let
Tl——/V (A x V x A)d*V,
2[1,0
Tz————/A V x V x Ad®V,
240
Examine T;. Apply Gauss’ theorem.
1 .
Ty = — [ #-A x V x AdS,
210
2#0
plasma boundary
= 3. fB -dl,2T Ry A
Ko plasma boundary
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Now employ Ampere’s law § B, - d¢ = poI, and 1/30 = — ARy = const.

1 N
T, = Eu—oﬂofpzﬂbo

plasma boundary

Ty = mlo (3.41)
plasma boundary
Examine T5.
T, = / A -V xVxAd,
2I»Lo
Again the differential form of Ampere’s law gives
V xV x A.d, = ﬂOJé¢ (342)
1 3
T2 2#’ A€¢ MOJ6¢d V
Recall, however that J = J; inside the core and is zero everywhere else.
1
T2 AIJ'O J027"R0 dscore
240
= 7!'J0 / AROdScore
I; = “WJO/'(/)OdScore (343)
Equation (3.37) simplifies tremendously.
1 -
EL"II? = TI’IP‘(,[JO —WJo/¢o(u,v)dScore (344)
plasma boundary

Equation (3.44) is very easy to evaluate since g@o and 19 are uniquely determined and
the only integral to be evaluated spans the core and not the entire plasma. Examine the

integral on the right hand side of (3.44).

= /¢o(u,v)d5co,., (3.45)

27 K2 22 y? ] 2
/ / poRoJo— ( T ) [—2 + —;Z—GEJ 3(cosh2u + cos 2v)dv du

C a C
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2 c? k2(k2 — 1) 1
/ / ———y,oRoJo——- 2l [sinh2 ucosZ v+ — cosh? u sin? v} [cosh 2u + cos 2v] dv du
C NC
2 2(" —1) 2 2
/ / 5 poRoJo S sinh? u cosh 2u cos? v + sinh? u cos 2v cos? v
C
1 9 1
+ F cosh? u cosh 2usin?v + — cosh ucos2vsin® v | dv du
C
o 2 2 -1 [ 1 1
I= / —-p,oRoJo— —-—(-’—gﬁ—lw Lsinh2 u cosh 2u + 3 sinh? u + —? cosh? u cosh 2u pe u] du
2 k2(k2 - 1) 2 2 K2 k241
I= /; 5 poRoJo— Py cng cosh® u cosh 2u + 4;2 cosh2u — a2 ] du
po 2 a? k2(k? —1) k2 +1 1—r2 k2 +1
I - — —_— C 2 C _ o}
/0 5 poRoJo RS o2 cosh” 2u + z cosh 2u pre ]du
c? a? k2 2 k2411 1, 1—k2 k241 "
I= —2—y0R0J0? o 1('% — 1) o i(u +2 sinh 4u) + Zc sinh2u — a2 u 0
2 a2 K2 K241 . — K2
I= —2—uoRoJo—é— 3 j_ l(frc:cz - 1)m [ lc6n2 sinh 4ug + :‘ smh2uo]
[ [ [od
a? K3 K241 1— k2
I = uoRaJo— c 2 _ c 4 st 2 c
poRoJo P 1('% )T [ 16n2 (1 + 2sinh” ug) a2 }
a* K3 k24+1 11—k k2 +1 1
I R J = c 2 1 c c
Hoftoo™y k2 + 1(nc ) [ 4k? 4K 2k2 (k2 — 1)}
I, k. mrea? [K2—1 K241
I = uoRg-E ——< < < < 3.46
Hofoor k2+1 2 [ 4x2 2k32 ] (346)

Now it is possible to obtain an expression for £;. Evaluate (3.44). Modeling the plasma

core as an ellipse does not guarantee that the actual boundary of the plasma will also be an

ellipse. In fact, casual examination of (3.36) reveals that the actual plasma boundary (alsoa

flux surface) will not be an ellipse, but some other elongated shape approximately elliptical.

Therefore in evaluating (3.44), $o|pza,ma boundary Will be evaluated at @ = x5,y = 0 to

which correspond the elliptic coordinates u = u; and & = 0 even though the flux surface

upon which z; lies is not itself an ellipse.

—L I = 7rIpp,oRo Ly

Ke

nf—i—l

2+1

Py [u — UQ] +
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2.2 2
—WJO#OROIP Ke TKca [nc 1 K,c+1]

2r k241 2 42 2x2

1. 5 )1 k. [K2+1 1xk2-1 ,
ELiIP =“0R0Ip{§nf+l [ py [u—u0]+-2— cnc sinh2[u — uo) + 1
1 ke kK2—-1 K241
4k24+1| 4x2 K2
2 2
Ke kK:E+1 1xsi-1 .
Lt—-uoRo{ 3-}-1[ cnc [u—uo}+ = cnc smh2[u—uo]+1]
1 ke nf—1+n§+1
2k2+1 | 4k2 2k2
2L;
¢ = - 3.47
FoRo (3.47)
2c. [KZ+1 1x2-1 k24+1 k2-—-1
£i=n2+l[ cn [u-—uo]+—2- - sinh2{u — uo] + 1 — jlnz — ‘énz
c C Cc C [+
2k [KZ2+1 1k2-1 3kZ2+1
;= n§+1[ oy [u—u0]+2 Y sinh2[u —uo] +1 — 82 (3.48)

This expression for £; is exact. Since the limiter position z; is known, the corresponding

point in toroidal coordinates u = up and v = 0 can be determined from the equation below.

xp = csinhu, (3.49)
26 [KZ2+1 1x2-1 . 3k2+1
= [ Ty o] 4 5 sinh2fus —ue] 41— Ty (3.50)
Examine (3.50) as x, — 1.
0 = 2[uy — o) + -;- (3.51)

Consider the plasma boundary to be at » = b and the core boundary to be at » = a. Then

as the circular limit is approached u;, and uo approach the following values
2a

Ug ~ In — (352)
Cc
2b
Ei = 21!1'11 + ']: (354)
a 2

Ke — 1
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Equation (3.54) is the old circular result found in Chapter 2. Next obtain an expression

for B,.

8
b= / pdS, (3.55)
P
8n o
b= [ (1-52) 45
8m 5k2 -1
Bp = #olgponncaz [——891—%?_] (3.56)

3.4 The Zeroth Order Fields

Now it is necessary to evaluate the information contained in the zeroth order field

measurements. The poloidal field at the measurement surface can be expressed as

B, (tum,v) = 1—1%\71/3 X €4 (3.57)

U,V

ﬁp has both 9 and # components in the elliptic limit.

. 1 .
|Boy| = & Vito (3.58)
0

A 1 -

B w| — —Vf, 3059

[Bou| = - Vit (3.59)
Evaluate (3.58) and (3.59) on the measurement surface u,p,.

. 1 IJ‘OIP Kz -1
IBow(m, v)| = o(hZgicaTnyia on T e

cosh 2[u,, — ug) cos 2v (3.60)

1 polp k2 -1

: m - i m i .61
IBOu(u ’v)l c( coshZumzicos2v)1/2 2 ng +1 sinh 2[u ‘u.o] sin 2v (3 6 )

Suppose that the data from the magnetic probes located on the measurement surface wn,
is Fourier analyzed. To measure the zeroth harmonic or “dc” component of the field,
theoretically only one probe is required. To measure higher harmonics, proportionally

more probes are required. To compensate for measurement errors and random fluxuations
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in the data, this minimum number of probes must be supplemented. Therefore, it is
advantageous to measure the lowest harmonics accessible to the diagnostics with as much

redundancy as is practical. This consideration motivates the remainder of the calculation.

oo

- 1
pr(umva = § :c(coshZumicos2v)1/2 (
2

n=0

B, sinnv + C, cosnv) (3.62)

If the zeroth order fields are so decomposed the following three amplitudes are measured.

, I
Bopec =Co=E22 (T -m) (3.63)
2w
Boos= Cp = M2 1 hotun —ug] (T —m) (3.64)
o2 = ULy = —— o K,2+1COS U9 .
B B, — Holp K h '
Ugy = Do = 2” K,2 n 1 sm 2[ - uo] (T - m) (365)

Expectedly, as k. — 1, the second harmonic behavior of the zeroth order fields (i.e. Bugy —
Bug, — 0) disappears. As one approaches a circular cross section, k. — 1, the zeroth order

fields lose their angular dependence. Information is lost.

It is useful to take the difference of the squares of (3.64) and (3.65) applying the

identity cosh?z — sinh®z = 1.

B2v 32 HOIp ? 12: 1 (T2 2) (3 66)
— Bfugy = —m .
02 02 o P
Hence, Buoz and Bug; are not independent quantities. In fact, casual examination of (3.64)
and (3.65) reveals that in the limit of large u,,, that is, when the measurement surface is
far away from the plasma, Buvgs — Bug, and the combination BvZ, — Bu2, cannot be used

to find k.. Let

. . 1/2 2x
= ( Bv2, — Bu? 3.67
v ( 02 02) pol, ( )
I, can be determined immediately from the Bvpc measurement and Eq. (3.63).
27 Bv
I, ="—2¢ (3.68)
Ho
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Assuming that the measurement surface is not extremely far from the plasma edge, and

having determined I,, measuring Bugs and Bug, uniquely determines 7.

re—1 .y
k2+1
1 1/2
Ke = (l—f—:’;) (3.69)

The ellipticity of the hot, current-carrying core is determined. Having ., the ug coordinate
that describes the boundary of the core can be found by solving the transcendental equation

below.

tanhug = 1 (3.70)

Kc

The actual dimensionality of the core follows.
a = csinhug (3.71)

At this point in the calculation, the dimensionality, area, elongation, and current of the

core have been uniquely specified by zeroth order measurements.

Returning to the actual edge of the plasma specified by the limit position z; given,
the elliptic coordinate of that point, us, can be determined by solving the transcendental

equation given below

xp = csinhuy (3.72)

ug, K¢, Uy are known quantities. £; follows immediately from Eq. (3.48).

2k, [K2+1 1x2~-1 3k2+1
- —uo]+ > h2[up — o] + 1 — 8
k2+1 Ke [us — uo] + 2 ke sinh 2{up — o] + 8k32

£; (3.73)

Because of the additional information available in the zeroth order field measurements, £;
can be determined independent of the first order fields and 3, for a finite ellipticity. It can
be demonstrated from the formulae above that the ability to determine £; independently

from zeroth order measurements disappears as one approaches the circular limit.

Before moving on to determine 3, from the first order field measurements, it is neces-
sary to extract yet another plasma parameter from the zeroth order flux function 1/;0. The

plasma boundary is also a flux surface. This implies the following.
a0 N
Yo(ds, 5) = Po(us, 0) (3.74)
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241 1k2-1 241 12—
e T Be sinh 2[t;, — uo) = e + up + = Fe
KC 2 nc KC 2 KC

1 sinh 2[uj — ug] (3.75)

Solve (3.75) numerically for 4;. The elongation of the plasma x, as distinct from the

elongation of the core k., is then uniquely determined

cosh i,

sinh u, (3.76)

3.5 The First Order Solution

So far, before appealing to first order measurements, £;, x, and I, have been determined
from zeroth order measurements. Now return to the Grad-Shafranov equation and solve
it to first order obtaining v, and ;. Bp lies buried in the first order field measurements.

Inside the core, 1; is most easily obtained using rectangular coordinates. In the R, Z plane

. 1 8¢y %y
A= RaR (R aR) + 522 (3:77)

. 10y 62¢ 8%
AY=—%or Tore T 522 (3.78)

In the R, Z plane make the following transformation
Z=y (3.79)
R = Ro +z

Keeping the large aspect ratio limit in mind, /Ry < 1, the first order Grad-Shafranov

equation inside the plasma can be cast in the following form.

2py - — 20 2 gD 3.8
VT R Be - R Tog, (3.80)
V? is now the familiar 8%/8z2 + 8/8y>.
p=po(l - %)
d
@E; = _gﬂ (3.81)
_ /-‘OROIp K¢ _:1)3 y2
Yo = 2 (nz-{— 1) (a + k2a?
6‘¢’0 ;l.oRoI 2f€c T
8z~ on : (n2+1> a? (3:82)
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Combine (3.80-3.82) to generate the 1; equation.

o 2 (S 2 [ BT
Vi, = (’; °aI2" ;-—fﬁ +47r1;—: ”3’: 1) 2 (3.84)
Using (3.56), eliminate po in favor of 3,.
Bp = %}%Powncaz [SNEK; 1} (3.85)
%:— - 87:{"330,2 [51@8;—3— 1] B (389)
V24, = (’:r °f2” n;j_ = 4w“§7{” Mlcaz [ 5:;5 1] By K'z,:: 1) z
V2¢’1 =Zz (3-88)
2= (it e ) (@259

In order to solve (3.88), boundary conditions are needed. The first is that 1, must be
regular, i.e. does not diverge at the origin. Also, the edge of the core, the u, ellipse, is
modeled as a flux surface even to first order. Thus v; is constant on that surface. Choose

a convenient value

P1(uo,v) =0 (3.90)

A function that satisfies both conditions appears below.

wz y2
Y1 =Qz [;2- + - 1} (3.91)

242
kia

Plugging the Ansatz for v; back into (3.88), it is a trivial matter to fix the value of Q.

a2 nz
= — c A 3.92
Q 2 (3&2 + 1) (3.92)
Q . /"’OIP K’Z Ke + 4(“"3 + 1),8 (3 93)
T 2w 3k2+1\Kk2+1 0 Bk2-—-1"7 '
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Finally v, is uniquely determined.

polp K¢ ke | AUKZ41) 22y
- - - < 94
V= s\t e o1 )% @ e Y] uSe (3.94)

It is useful to check these results against those obtained in Chapter 2 by taking the circular

limit k. — 1.

_ kolp1 (1 2 +y? _
P = om 4(2+2,Hp T p 1 (3.95)
x =rcosb
y =rsinf
22 4 y? = 72
3
Pi(r, 0 :’LOIP 1448 T 1) cos 3.96
8w P/ \ a2

Equation (3.96) agrees nicely with (2.39). The next step involves solving the first order

Grad-Shafranov equation outside the core for 1. Again, u,v coordinates serve best in this

region.
3212’1 3212’1 ¢ 51/30 . . 31,50
5z T B = E(coshucos Va T smhusmv-b?) (3.97)
c
= — 3.98
== (3.9)
T; = ecoshu cosv% (3.99)
Ou
T, = esinhu sinv% (3.100)
Ov
Evaluate T;.
2 2 _
Ty = ecoshu cosvC, <n° 1 + "‘cﬂ ! cosh 2[u — ug) cos 2v) (3.101)
Ke c
c, = toftelp _ ke (3.102)

2r K2+1
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2
K, —

coshu cosv +

1
cosh u cosh 2[u — ug] cos v cos 2v}
K’c EC

2
1
T, = C,e{ Ke + coshu cosv

cosh u [cosh 2ug cosh 2u — sinh 2uq sinh 2u] cos v cos 2v}
C

T, = C,e{ Ko +1 cosh u cos v

- [cosh 2ug cosh 3u + cosh 2uq cosh u — sinh 2uq sinh 3u — sin 2ug sinh u] cos v cos 2v}

2

1
T, = C_’,e{mc + coshu cosv

K¢

2 .
+ Klz [cosh 2ug cosh 3u cos v + cosh 2uq cosh 3u cos 3v + cosh 2ug coshu cos v

Ke

+ cosh 2uq coshu cos 3v — sinh 2uq sinh 3u cos v — sinh 2ug sinh 3u cos 3v

— sinh 2uq sinhu cos v — sinh 2u, sinh u cos 3v] } (3.103)
Evaluate T5.
N (ke —1) :
T, = eC, sinhusinv - sinh 2[u — uo] sin 2v (3.104)
[
'52 - 1 . . . . . .
T; = —eC,—= {[cosh 2ug sinh u sinh 2u — sinh 2ug sinh u cosh 2u] sin v sin 2v}
c
k2 -1
T, = —€C, ‘:2 {[cosh 2ug cosh 3u — cosh 2uq coshu
Ke

— sinh 2u sinh 3u + sinh 2u( sinh u]sin vsin 2v}

2
K. —1

T2 = - GC, 4K,c

{cosh 2ug cosh 3u cos v — cosh 2ug cosh 3u cos 3v — cosh 2ug cosh u cos v

+ cosh 2ug cosh u cos 3v — sinh 2ug sinh 3u cos v + sinh 2ug sinh 3u cos 3v

+ sinh 2uq sinh u cos v — sinh 2u¢ sinh u cos Bv} (3.105)
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Calculate the combination Ty — T5.

2
1
T, - T =€C, |:n° + coshu cosv
Ke
k2 -1
+ jln 2 cosh 2ug cosh 3u cos v + 2 cosh 2ug cosh u cos 3v — 2 sinh 2ug sinh 3u cos v
C
— 2 sinh 2ug sinhu cos 3v }:l
K2 +1 k2 —1 ) )
T, — Ty = €C, - coshucosv + 5 [cosh 2ug cosh 3u — sinh 2uq sinh 3u]cosv
(4 K"C

+ [cosh 2uq cosh u — sinh 2ug sinh u] cos 3v }:|

2
1
T, - Ty = €C, I:”c + coshu cosv
Kc
K2 _ K2 —
+ = cosh[3u — 2up]cosv + — cosh[u — 2ug) cos 3v (3.106)
2K 2k

Equation (3.97) simplifies tremendously.

2., 2., 2 2 _ 2 _
———%ﬁl + aale = eC,{ ke +1 coshu cos v+ ’%2 ! cosh[3u—2ug] cos v+ K’cz - cosh(u—2u,] cos 3”}

K;c K/c KC
(3.107)
It can be shown that for equations of the form
0% | 84
= 1
5.7 + 5o C cosh mu cos nv m#mn (3.108)
Pip = o cosh mu cos nv (3.109)

The particular solutions for the non-resonant terms in (3.107) can be written down imme-

diately.

The first term on the right hand side of (3.107) is somewhat troublesome. It is
resonant. Equations with resonant forcing terms of the form

9, N 824,

5 502 C coshucosv (3.110)
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have particular solutions of the form
» 1 . .
Yip = ZC(usmhucosv+vs1nvcoshu) (3.111)
However, since 1/311, must be single valued, solutions linear in v are not allowed.
” 1 )
Yip = ECu sinhu cosv (3.112)

At this point, the particular solution of (3.107) is fully determined.

P eC fe usinhucosv + e cosh([3u — 2uo] cosv ke — 1 cosh[u — 2ug] cos 3v
= u — — —
I 2k, 16k, ° 16k, °
(3.113)
The homogeneous solutions must be chosen carefully to match v, and v¥; at the core
boundary. The particular solution (3.113) represents a toroidal correction to the essen-
tially straight elliptic plasma column solution 1%,. Notice it only depends on the plasma

current and core dimensions, not on g,.
Y1 =Y1p + Y1n (3.114)
Choose a convenient form for the homogeneous solution 1&1 he

Pyp = A cosh[u—1uo) cos v+ B cosh 3[u—wu] cos 3v+C sinh[u—ug) cos v+ D sinh 3[u—uo) cos 3v

(3.115)
1/;1;z = Acosv + Bcos3v (3.116)
a;'blh = Ccosv + 3D cos v (3.117)
u
uo

The jump conditions across the core boundary uo will fix A, B,C, and D. Since in this
problem the core boundary is modeled as a flux surface to first order and there are not

surface currents, ¥; and its derivatives are continuous across ug.

[1!31 - zh] =0 (3.118)
%o,v=0
o1 Oy B
2]
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Recall 1, was so chosen so that 1, (ug,v) = 0.
$1(uo,v) = 0 (3.120)

Equation (3.120) in combination with (3.116) and (3.113) specifies A and B.

2 1 2 _ 1
A= —eC, {n':: ug sinh ug + Ee cosh uo}
c Ke
_ ¢ poRol, & kK2+1 k2 -1
A= Ro 2r r2+l { o up sinh ug + - cosh ug

csinhug =a

ccoshug = K.a

moal, [uo = Ke k2 -1
A= Yo | Ke 3.121
27 { 2 + 16 k2 +1 ( )
2
-1
B = eC, ch o coshug

¢ poRolp, K. k2 —1

Ry 2m k241 16k,

B =

cosh ug

_ poalp K. k2 —1
=516 e (3.122)

Next, match the derivatives. Calculate 8y, /8u

uo,v

¢1=Qw[£+ ”22—1}

2 2
a Kéa

Use the chain rule.
9 00 oyo
Ou  Oudz Oudy
OYy Oz 2z 12_ y? Oy ., 2zy
_au(Qwa2+Q[a2+n2a1-1 +3uQ

242
Ou 2 k2a

(3.123)

— +

2 2
a?  k2a?

—1:|=0 U = Ug

50



0 2 sinh? 2 sinh
—1/2— = 2Q | ccoshug cos vw cos? v + ¢sinh uoc—s-lﬂ—ﬂ coshug cosvsin® v
Ou a? k2a?
Uo,v
0
42} =2Q (c coshug cos v cos? v + ° cosh ug cos v sin’ v)
Ou K2
U0, v
0
—¢—1 = QQaK, cosv (1+cos2v+—1—--——1—cos2v
Ou k2 K2
Up,v
8 241 k2-1
73% = Qakr. cosv ("c:g‘ + ncng cos 2v>
Ug,v
0 kK2+1  K2-1 k2 —1
—61/;1 = Qak, ([ ) + ;ng ] cosv + chc;_."- cos 3v>
Uo,v
o 3k2+1 21
—5‘2—1 =Qa < K;;: cosv + ncch cos 3v> (3.124)
Uo,V
j 241 3 k21 2.1
%%i = eC, { n“'z’:; (uo coshug + sinh ug) cosv + 16 K'cnc sinhug cosv + nl‘:chc sinh uq cos 3v}
UuUo,v
+C cosv + 3D cos 3v (3.125)

Together, (3.124) and (3.125) specify C and D. Match the cosv terms.

241 3 k21
eC, {"cz: (wo coshug + sinhug) + 16 KCR
[ C

3n3+1

2K,

sinhuo} +C =Qa

2 2 2 2
C= Qa3'€° +1_ eC, e 1u0 coshug + re + 1 sinhug + 3 K sinh ug
2K, 2K, 16 &,

C= poal, K2 < Ke 4(k? + 1)[3 > 3k2+1
= P

2m 3”3 + 1 K'z -+ 1 5&3 -1 2;gc
c poRol, kK. K2+ 1 K241 321 .
B Fo 2r k241 { cznc uo coshuo + o, sinhug + 16 cnc sinh ug

_ poalp ke [ ke 4(k? +1)
¢= 2r 2 <n3+1+ 5&3—1'3”

moal, K¢ k2 +1 +nf+1+_3_n§—1
o 2411 2 °7 2. 16 ke
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poal, [ Keug K2 1 2k(kZ+ 1) 3k2-1
C = — c - = —_—— 12
2m 2 2(k2+1) 2 5k2 — By 16 x2 + 1 (3.126)
Match the cos 3v terms.
K2 — -1
eC, smhu +3D = QaZ
16k, 0 @ 2nc
k2 —1 k2 -1
D = < -
Qa 6 eC, 48, sinh ug
-1
6n [Qa - —eC smhuo]
—1 [poa Kec 4(k2 +1) 1 ¢ poRol, K.
B Gnc [ 2m 3n2+1<n§+1+ 5k2 — ﬂp " 8R, 2n n2+1s1nhuo
poal, k2 — 1 K2 Ke 4(k2+1) 1 ke
D= 12
2r 6k, |3kZ2+1\kKZ2+1 + 5k2 — ,3,, 8nc+1 (3.127)
¥1(x,v) is now fully determined.
pocl, k. |JrKZ4+1 |
P1(u,v) = om K2t 1{ o usinhu cos v
9= oehi3u — 2uq) e =1 oshfu — 2uo cos 3
Tom, CSh{3u — 2uo] cosv — —Fom coshlu — Zuo] cos 3v
+A cosh(u — ug] cosv + B cosh 3[u — ug] cos 3v
+C sinh[u — ug] cosv + D sinh 3[u — ug] cos 3v (3.128)

The coefficients A, B,C and D are given by (3.121), (3.122), (3.126) and (3.127), respec-

tively.

In order to have confidence in the calculation of ¥, (u,v), it is necessary to examine

its behavior in the circular limit. Let k. — 1.

poaly, Up

A—— o (3.129)

B—0 (3.130)
poalp | uo 1

C— = { 5 ~17 ﬁ,,] (3.131)

D—0 (3.132)
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As k. — 1, all third harmonic (cos 3v) behavior disappears. The cosv behavior persists.

This is in perfect agreement with the circular limit.

Evaluate (3.128) in the limit k. — 1 on the plasma boundary (us,0).

_ boclp Tus _ poalp uo _ poalp [ uo 1 ) B
k1= T [ 7 smhub] = 5 cosh(up —ug] + Py 5 "1 + B, | sinh[up — uo)
(3.133)
In this limit, @ and b approach the following.
ce"°
an = (3.134)
ce™®
b~ (3.135)
2
eub—uo
sinh[u) — uo] & coshup — uo| = (3.136)
b = poblp up poaIpy_ge[“b‘“"] N poaly | ug 1 3 elus—vo]
Ke—1 27 2 2r 2 2 2w 2 4 P 2
. ”‘Opr [ _1_
Kol 4m _ub_u°—4+ﬂ”
j, —Mbp [ b 1 imi - s
kY17 T -ln o + Bp| Eliminate Inb/a in favor of £; using (3.54).
j bl [ 1 1
ke >1 4 |2 4 2 TP
- bBgy ¢, 1
W= [ﬂ,, +3 - 5] b (3.137)

Recalling that in Chapter 2 the boundary of the plasma was at r = a and that in taking
the limits (3.134-3.136), the decaying exponentials al/r were ignored, Eq. (3.137) is in
perfect agreement with Eq. (2.52). %;(u,v) checks out.
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3.6 The First Order Fields

Fewer probes are needed to accurately sample the first harmonic than to sample the
third. Analyzing the signals as before, the poloidal field at the measurement surface un,

can be expressed in the form Eq. (3.62).

. > 1
By(um,v)| = B, sinnv + C,, cosnv
I p( ’ )l 1;) c(cosh2ul,_,2j:c052v)1/2 ( )

Measure only the first harmonic. Two amplitudes corresponding to the tangential and

normal fields are found.

, I, 1 1 2 _
B,,=C; = FoClp = {%um coshu,, + = sinhu,, + E— re — 1 sinh|[3u,, — 2uo]}

o Ro 2 1612 + 1
1 . 1
+ — Asinh[u, — ug] + —C cosh[um, — ug] (3.138)
Ry R,
~ pocl, 1 1 . 3 k2-1
Bu = =—2Lr 3= m m —— m
a =By or R {211, sinhu,, + 6r2 41 cosh[3u,, — 2u]
1 1.
+ — Acosh[up, —ug] + = C sinh{um — o) (3.139)
Ro RO

The constant C is linear in 8,. Equations (3.138) and (3.139) give the same information.
Therefore, only B,,u, the first order tangential field amplitude, need be considered. Once

B,,, is measured, 8, can be calculation directly from (3.138). As in Chapter 2, the

Shafranov shift A, was set to zero for simplicity.

Bp is determined from first order measurements for a plasma with finite elongation.
Notice, however, that if the magnetic probes are far away from the plasma edge, the large
Uy, limit, the third term on the right hand side of Eq. (3.138) dominates and the G,

information is lost.
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3.7 Qualitative Behavior of the Model

A qualitative picture of how the model derived above behaves in a tokamak with C-
Mod-like parameters is shown in Figs. 3.2-3.4. The parameters used in these calculations

are listed below.

a=.25m (3.140)
Ry = .75m (3.141)
e=1/3 (3.142)
I, =4MA (3.143)

The elongation of the plasma x was varied from k = 1 to x = 2.

Figure 3.2 illustrates the dependence of the second harmonic field on the elongation of
the plasma. Notice that the second harmonic field B,o, quickly disappears as the plasma
cross section approaches a circle. Remember, the information contained in the second

harmonic led directly to the evaluation of ¢;.

Figure 3.3 demonstrates how ¢; could possibly be measured from Buoz. It is only
meant to show that these particular values of field could be used to infer ¢; for conditions

(3.140-3.143) using this simple model.

In principle, having ¢;, 8, can be determined from the first harmonic. Figure 3.4
illustrates how this might be accomplished. Notice the linear dependence of Euu on 3,
and that even at very low 3,, By persists as £ — 1. This agrees with the results obtained

in Chapter 2.

In conclusion, it has been shown analytically for this model problem that for finite
ellipticity, magnetic measurements can be used to measure 8, and ¢; separately. This
ability is lost as the plasma cross section approaches a circle. Then only the combination

Bp + £;/2 is available to the diagnostics.
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3.8 Summary

The equations of interest that describe the fields available to the diagnostics in our

simple model problem are summarized below.

, pol,
B =—F - .
wDC = - (T —m) (3.63)
n o polpr?—1 _ _
Byoz = o w211 cosh 2{um —uo] (T —m) (3.64)
5 _ POIp '93 -1, _ _
B2 = o ~————n3 1 sinh 2[u,, —up] (T —m) (3.65)
2k [KZ+1 162-1 32 +1
¢ = 211 [ py [up — uo] + 2 sinh 2[up —uo] +1 — 82 ] (3.73)
g, = Hocky 1 L 3=l _
B,,, = on Ry {2um coshu,, + 5 sinh u,, + 16 m2 + 1 sinh[3un, — 2u)
1 . 1
+ — Asinh[u;, — uo} + = C coshupm —ug] (T —m) (3.138)
R, Rq

It has been shown that in the circular limit, when k. — 1, 1,51 and hence B,,u only

depend on the combination 3, + £;/2.

In the elliptic limit, when the measurement surface is far away from the plasma bound-
ary, um, > 1, the combination B2,, — B?;, can no longer be used to accurately determine
k. and hence £;. From far away, the plasma looks circular. Also in the large u,, limit
examination of (3.138) reveals that §, information is lost as non-3, dependent terms that

make up B,,, dominate.

vit

Finally, for both finite ¥ and u,,, £; and I, can be determined from B,os and Bv DC

respectively and the 3, information resides in the B,,u measurement.

56



Ro

Figure 3.1: Idealized Elliptical Tokamak
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Bv02 (T)

Figure 3.2:

Bv02 versus Plasma Elongation
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Inducatnce
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Figure 3.3: Bv02 vs. Internal Inductance
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Poloidal
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Figure 3.4: Bvi1l vs. Beta Poliodal
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Chapter 4

Conclusions and Suggestions for Future Work

For tokamaks with circular cross sections, only the combination 8, +¢;/2 is obtainable
from first order measurements. Second order field measurements are found to specify 3,

and ¢; separately, but are too sensitive to be used with any confidence.

For a certain class of idealized tokamaks with elliptical cross sections, it is shown that
finite ellipticity introduces robust second harmonics into the zeroth order magnetic fields.
From these second harmonics it is possible to deduce £;. 3, can then be separately deter-
mined from the measurement of the first harmonic component of the magnetic field that
appears in first order. The second harmonics that determine £; disappear as the elliptical
cross section approaches a circle. Concurrently, the combination 8, +£;/2 reappears in the

first order flux function and hence the first harmonic. The circular degeneracy is recovered.

Future work along these same lines might take the form of solving the Grad-Shafranov
equation in an elliptical tokamak under less restrictive, less idealized conditions. General-
ization of the calculation to include an arbitrary Shafranov shift and a circular measure-

ment surface would be highly desirable.
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