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ABSTRACT

Sources of high quality beams of spinning electron beams are critical to efficient free
electron devices including FELs, CARMs and gyrotrons. Bifilar helical wigglers can take a
beam with little perpendicular momentum and add perpendicular momentum, spinning
up the beam. The effect of the electron beam self fields on the beam quality will be
important. A computer simulation has been written which can simulate the behavior of
electron beams in the wiggler region including the effects of the beam self-electric fields.
The equations used in the code are described. Several tests of the code are presented.
Results of simulation of a bifilar helical wiggler are described.

Measurement of beam parameters is also necessary. A design for a capacitive axial
velocity probe is presented. The probe has been built but is still untested due to problems
with a leaky flange.

Thesis Advisor: Bruce Danly
MIT Plasma Fusion Center
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Chapter 1

Introduction

Free electron lasers (FELs), cyclotron autoresonsance masers (CARMs) and gyrotrons

employ spinning beams of electrons. The fundamental principle involved is that an

accelerating electric charge will give off electromagnetic waves. An electron orbiting in

a magnetic field will at all times feel a centripetal acceleration towards the center of its

orbit and will therefore radiate. This effect is known as syncrotron radiation. Under the

right conditions the electron beam will be in resonance with the electromagnetic wave

produced. The beam will be bunched by the electromagnetic wave and will then give

up energy to the wave more efficiently, producing coherent radiation. This is stimulated

emission between continuum states of unbound electrons, a non-quantum mechanical

laser interaction.

This class of free electron devices (so named since the electrons are not bound to

atoms in a gas, as in a conventional gas laser) has several properties which distinguishes

it from other types of microwave and laser light sources. FELs and CARMS can be run

at very high powers and at very high efficiencies as compared to other sources. Power

levels as high as 1 Gigawatt and at efficiencies of up to 35% have been reported for some

high-power FELs (See [13] and [7]). Efficiencies of up to 65% are possible in theory.

Such devices have obvious military applications, and may prove even more useful in a
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variety of industrial settings from cutting steel to removing tumors. FELs, CARMS or

gyrotrons may someday be used to heat plasmas in fusion reactors, or transmit power to

earth from orbiting solar satellites, paving the way to cheap energy.' They may also be

used as sources of RF power for linear accelerators.

In addition to possessing excellent power and efficiency characteristics, free electron

devices are tunable. Tunability can be achieved over a fairly high bandwidth by varying

the magnetic fields and electron beam voltages used in a device. This is a property

not available from other forms of coherent sources. Potential applications include use

as virtually unjamable pinpoint radars, as point to point communication systems with

extremely high bandwidths, and as important tools for research in plasma physics and

other fields.

These types of devices will require sources of high quality spinning electron beams.

The resonance interaction which occurs depends on the beam having a well defined

momentum, with a certain amount of momentum in the direction of travel and a certain

amount perpendicular to the direction of travel in the spinning motion. There also must

not be too much variation in the momenta of different electrons in the beam or the

interaction will become less efficient, or even fail to occur at all. There are several types

of sources of good-quality linear beams including electrostatic accelerators (as used in the

free electron laser used in the Center for Free Electron Laser Studies at the University

of California at Santa Barbara), pulse modulators (pulse forming networks connected to

large transformers, as used in a variety of gyrotron, FEL and CARM experiments at

MIT), and linacs (linear accelerators, both RF and induction type). Rotation can be

added to the beams from these devices using a type of magnet know as the wiggler.

One type of wiggler magnet consists of two wires wrapped around each other in a

bifilar helix, terminated by current loop (see Figure 1.1). Current shunts may exist which

2
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Figure 1.1: A section of a wiggler magnet. The light solid and medium solid lines are
the helical windings, and the heavy solid line is the loop termination. No current shunts
are shown. This figure is originally from [6].

allow input of additional current or removal of current to taper the field. The wiggler

shown has a current loop termination but has no shunts. The wiggler field is a vector

perpendicular to the axis of the coil which rotates around with the wires which define the

helix. Usually the wiggler in enclosed in a solonoidal magnet which provides a constant

axial guide field. Electrons in a certain energy range will interact will this type of field

construct and gain perpendicular momentum while losing axial momentum. Thus, the

wiggler 'spins-up' the beam.

Design of wigglers for use in free electron devices is no easy matter since predicting

the effect of the wiggler on a given electron beam, particularly a realistic, non-idealized

beam, is not possible analytically. 2 To this end computer simulations of electron beams

2Some recent work on analytic solutions for electron beams in wiggler fields has been done by F.
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in wiggler field regions have been written. Most of these do not take into account the

effects of space charge, the electrons repelling one another.' This effect can be quite

important as we shall see.

I have taken an existing code4 which did not account for space charge nor correctly

for tapered wigglers, and added these important features. I also fixed various bugs in

the original version. The code is now capable of handling different types of initial beam

equilibria including the rigid-rotor equilibrium and the immersed flow equilibrium, and

reports a wide variety of information about how the beam behaves throughout the wiggler.

The code is written such that it is easy to add additional types of loading and additional

diagnostic tests. The workings of the program are described in detail in Chapter 2.

The code runs on the CRAY supercomputers at the National Magnetic Fusion Energy

Computing Center at Lawrence Livermore National Laboratory.

I have also studied and designed a probe which, in theory, can measure the aver-

age axial velocity of a charged particle beam. The theory and design of the probe are

described in Chapter 3. Chapter 3 also describes some problems which occurred in the

construction and assembly of the probe, which will hopefully prevent others from making

the same mistakes.

Hartemann at the MIT Plasma Fusion Center [8].
3For an example of a code which does not account for space charge see R. Jackson and C. Sedlak

(1983) [10]. A code which does account for space charge has been written by M. Caplan, see (12].
'The original version was written by T.M. Tran, and was later worked on by Bruce Danly and Ken

Pendergast, all at the MIT Plasma Fusion Center.
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Chapter 2

A Particle Simulation Code

2.1 Overview

My program takes as inputs various data defining the wiggler magnet and data about

the electron beam which will travel through it. The beam is represented by a number of

'macroparticles,' each of which has a charge to mass ratio the same as that of the electron,

but which may have charge accounting for many electrons.' It then proceeds to integrate

the particle's position based upon the derivatives of the position and momenta with

respect to z, the axial coordinate. Various subroutines evaluate the derivatives based on

the magnetic and electric fields calculated by other subroutines. During the integration

loop various data are recorded by a diagnostic subroutine. After the integration has

proceeded all the way through the length of the wiggler, various information is written

to an output file, and a set of graph files is prepared which show such information as the

average positions, perpendicular and axial velocities, and the fractional spreads in these

values, all as functions of z. A copy of the code is included in appendix B.

10nly the relationship of charge to mass of a macroparticle is conserved, the total charge is not. The
current is the important parameter, as will be discussed in section 2.1.2.
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2.1.1 The Integrator

The code uses a very simple integrator. A derivative with respect to z is evaluated

at a particular point. This derivative times a small step Az is added to the original

functional value. The derivative is again evaluated at the new functional value at z + Az.

The average of the two derivatives is then multiplied by Az and added to the original

value of the function. The value of z is incremented by Az and the whole process is then

repeated starting with the new position and functional value, until the desired final z is

reached. This is a trapazoidal rule integrator, also known as an improved Euler method

integrator. Equation 2.1 is the formula which has been described by this paragraph:

yn.1 =:- yn + [Zf (-n, yn) + f (Zn+1, Un+1 (2.1)2

where y is the function being integrated and

-n+1 = y, + Azf(Z", y"). (2.2)

Other integrators exist which should do a better job than the improved Euler method

by allowing increased step sizes with improved accuracy. However, they do incur a cost

of calculating the derivatives more times. Since most of the computer's time is spent

calculating the derivatives this is not desirable. It is true that the increased step sizes

allowed should more than offset this problem, but a version of the code run with a forth-

order Runge-Kutta integrator performed less well than the current version. That version

of the code did have other deficiencies, and it is possible that the code's performance

could be improved with some work on a better integrator. For more information about

numerical integration, especially the Euler and improved Euler methods, the reader is

referred to [5].
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2.1.2 Assumptions

Two-Dimensionality

For the code to run in a reasonable amount of time several simplifying assumptions

have been made. These center around the use of a two-dimensional algorithm. A true

three-dimensional code would require the use of many more particles, greatly increasing

running time, especially if interactions between the particles are accounted for since these

are all order N2 processes. A two-dimensional slice of the electron beam is simulated

with derivatives with respect to z. The slice moves through z in steps of Az as discussed

above. If some of the particles in the slice are moving at different axial velocities than

others, they will in reality be in the slice at different times. We assume then that the

beam is uniform throughout z. Thus, even though the particles get to the slice at different

times there will be particles just like them in the slice at the instant the integration is

taking place.

Conservation of Current and Zero Axial Space Charge

Generally the current in an electron beam is known or at least can be measured. The

charge density or number density of electrons in the beam depends upon the magnetic

fields of the region the beam is in as well as the velocity of the beam. The current, how-

ever, must be conserved everywhere, or a build-up of charge would occur. Consequently,

it is the current that is used as an input to the code. The current is related to the charge

per unit length and axial velocity of the beam by:

I = Q17 (2.3)

where I is the current of the beam, Q is the charge per unit length and v. = v1 is the

average axial velocity of the beam. This relation also holds for an individual electron

or for a macroparticle. The code assumes that the current, not the charge, on each
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niacroparticle is conserved. The charge can be found using equation 2.3. A fast moving

particle therefore has less charge than a slow one. Slow moving particles exert more force

on other particles than fast moving ones do, and are also effected more by other particles.

Intuitively one can think of this effect in three dimensions as more of the equivalent slow

moving particles from nearby z steps bunching up together, increasing the total charge

density of that particle, while fast moving particles spread apart, decreasing their charge

density.

The calculation of space charge forces assumes no axial space charge. It would be

very hard to determine the axial space charge with a two-dimensional code. The real

axial space charge should be much smaller than the radial space charge for a beam which

is reasonably uniform in z. For a perfectly uniform infinitely long beam the axial space

charge will be zero (at any point the fields from charges on either side of the point must

cancel) while the radial space charge will depend on the charge density in the beam.2

It should be noted, however, that though the axial space charge may be small, it will

certainly exist in reality. Equation 2.3 tells us that there will be a higher charge density

in regions the beam is moving slowly than in regions it is moving faster. There will then

be a charge density gradient and, therefore an axial space charge, in any region where

the beam is experiencing a velocity gradient with respect to z. There will also be axial

space charge effects near the ends of the beam since real beams are not infinitely long,

either spatially or temporally.3

2.2 Equations of Motion

The program's goal is to determine the motion of the electrons in an electron beam in a

wiggler magnetic field. It does this by numerically integrating the differential equations

2This can be seen directly from Gauss's law.
3It would be possible to construct theoretical situations where this would not be true by using external

charges to counteract the space charge, but these charges do not exist in general.
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of motion which can be derived from first principles. I begin with a discussion of a single

electron in a magnetic field in free space. This eliminates the need, at first, to discuss

the effect of the electrostatic forces between particles.

2.2.1 Charged Particle in a Magnetic Field

A particle in a magnetic field must obey the Lorentz force equation

dfi
d - =qU x B (2.4)

in M.K.S. units. Here j = ymi is the relativistic momentum of the particle, q is the

electric charge on the particle, V is its velocity, B is the magnetic field at the particle's

location in space, m is the particle's mass and 1 is the derivative with respect to time.

is the Lorentz factor given by

1 1
(2.5)

1 -v 2 /c 2 = 1_32

where c = 2.99792 x O8m/s is the speed of light and 3 = v/c.

We wish to write separate equations for each of the spatial coordinates of the particle,

and to transform the derivatives with respect to time into a derivative with respect to z.

We know that
dx dy dz

Looking at only the x coordinate it is clear from the chain rule that

dx _ dx 1 V1 - (2.7)
- - - = -- = -. (2-dz dt Ttv 2  PZ

Here vx and v, and the x and z components of the particle's velocity and p., = ymv, and

Pz = ymvz are the x and z components of the momentum. Similarly one can write

dy -py (2.8)
dz PZ
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We can then write in complex form

d Px+ IPy
-(X iy) = (2.9)
Z PZ

i is the square root of -1. Equation 2.9 is the equation of motion for the particle position

as a function of z. It gives the x and y components of the position only. The need for

a relation for z component of the position is obviated by the fact that the derivatives in

equation 2.9 are with respect to z.

The above equation of motion is not, in itself, sufficient. Equations for p,, py, and p.

are also needed. Fortunately equation 2.4, the Lorentz force equation, provides us with

the relationships we need. Once again looking at only the x components from the cross

product, we see
dp,

= q(vyB, - v2By ) = -I-(py B - pzBy) (2.10)
dt Y

where B,, By and Bz are the components of the magnetic field at the particle. To convert

this to a derivative with respect to z we simply divide by v, as above. This yields

dz = (py B z - p By ) = q (pyB z -p, By). (2.11)
dz 7MT7Z PZ

Following the same logic, we find for dp1 and dPz thatdz dz

p= - (pB, - p.,B2 ) (2.12)
dz p2

and

-= - (p.By - pyB.). (2.13)
dz Pz

It is convenient to rewrite these equations in terms of the normalized coordinates

defined below:

p+ = pX + ipy (2.14)

B+ = B + iBY (2.15)

+= eie k (2.16)
mc
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2 (2.17)
771 C

k, ('kay-wiggle') is the wave number of the wiggler helix, or 2-, where A. (lambda-

wiggle) is the wiggler period. One reason for this normalization is that it saves math in

the integration loop since the constants don't need to be calculated over and over, but

the main reason is to help out the integrator. Electrons in a wiggler will tend to have

orbits in x and y which are one wiggler period long in z. The above transformations

define a frame which is rotating around with the wiggler. Thus the electrons will have

no rotation in this frame. This should help stabilize the integrator and an older version

of the code which did not employ the transformations did not work as well as the latest

version. A much smaller step size was needed to avoid exponential growth of particle

orbits due to numerical error.

It is now possible to write equation 2.9 the following nice form:

d iy) = _MCj+ ik _ P+ ik,z(.)
T x+ -= - e =e' (2.18

Z pz 7mcpz PZ

Next, combining equations 2.11 and 2.12 in complex form we obtain

(p. + ipy) = dp+ - -[Bz(p. - ipx) + p2(iB. - By)]. (2.19)
dz dz pZ

This can be rewritten in the form

dp+ -iq[
2 i(p- + ipy) - (B. + iBy)] = -iq(Bzp+ - B+) (2.20)

dz Pz PZ

To convert this into the rotating frame we note from applying the chain rule to equation

2.16 we have

dp+ - -ik~p+ e- z+ 1 e- . (2.21)
dz mc mc dz

Plugging in the result of equation 2.20 for l yields

Le-ik- [kp+ + iq( Bzp+ - B+) (2.22)
dz mc P

11



or

dp+ = -iksf+ - iqBz P-h iqB+ _ (2.23)
dz mc P,+ mc

The equation for E! (equation 2.13) must also be converted to the new variables.

This is fairly simple since
d- dp- (2.24)
dz mc dz

Therefore we find
dp3 q (p.By - pY B2) (2.25)
dz mcpZ

or

dz q nc)2 (p,By - pyB_ q (ByReal{+e k*-} - B.Imag{+e k-} (2.26)

where Real{p+} and Imag{jP+} denote the real and imaginary parts of P+ respectively.

The reader may by now be questioning the need for an equation for motion for p, at

all. After all, due to the cross product in the Lorentz force equation (2.4) the interaction

of the particle with the magnetic field can only change the direction of the particle's

momentum, while leaving it's magnitude unchanged. In other words, energy is conserved

and, if the energy is known, pz can always be calculated from p., and py directly without

the need for a differential equation of motion. This is true of course, however, when

the additional force due to the space charge interaction is added in the next section,

kinetic energy will no longer be a constant of the motion and the equation for p, will be

necessary. At that time we will need also an equation relating y (the energy) to p.,, p,

and p,.

It is worth noting that equations 2.23 and 2.26 depend on ratio q/m and not on

either q or m individually. Since the code models electron beams it is clear that this

ratio must always be -e/m, where e is the magnitude of the charge on the electron and

m, is the mass of the electron. This ratio must be preserved even if we model the beam

with 'macroparticles' consisting of many electrons if we expect the equations of motion



to correctly predict the particles' trajectories. We can then replace all instances of q with

-e and all instances of n with me. Thus it is natural to define the following additional

normalizations:

eB
B = k(2.27)

meck,

i = k", x (2.28)

= k, y (2.29)

and

kz. (2.30)

These normalizations result in the following equations of motion, the final set:

d
+ i9) = +e (2.31)

Pz

d 3+ B. --i[(1 - -- )p+ + B+e~"] (2.32)
dzP

and
dp 5Imag{+e"} -2 fReal{p+ei}] (2.33)
dz Pz

or

d pj d d
= 5-Jmag{ (z + i -) - dReal{ (i + ig)}. (2.34)di mg{ 7 ( d +; ii}BRa{-(

Equations 2.31 and 2.32 are the used in the original version of the code, which did not

account for space charge. The equations for P, were not necessary, as explained above,

but will be needed in the next section which will show how the space charge forces are

calculated.

2.2.2 Equations of Motion Including Space Charge Effects

The equations of motion derived in the previous section are those used in the original

version of the code. 4 To add the effects of space charge to the equations of motion from

4 Though the equation for !!L was not used because without space charge kinetic energy is conserved.
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the preceding section we will need to add terms proportional to the electric field.

It is assumed for the purposes of the simulation that there is no field along the wiggler,

i.e.

Ell = E = 0. (2.35)

The full Lorentz force equation is

d15
- =(E + 6 x B). (2.36)

dt

In equation 2.4 it was assumed that E = 0 everywhere. In this section we set B = 0

and calculate the additional terms which will need to be added by superposition to the

equations of motion calculated above. Thus, for the purposes of this section we have

dfi --- = qE. (2.37)
dt

Note that since we have assumed E, = 0 it is clear from equation 2.37 that there is no

contribution for the electric field to the force in the z direction. No changes need be

made to equation 2.34.

Applying equation 2.37 to p+ and multiplying by 1 to convert the derivative with

respect to time into a derivative with respect to z, we obtain

dp+ = q (E. + iEy) (2.38)
dz v,

or, in normalized coordinates

dp+ = qE4 = q- E+ (2.39)
dz V CP

where E+ has the natural definition

E+ = E, + iEY. (2.40)

Using equation 2.21 we see that

dP+ _-ikw+p+ 1 dp+ = -k + I d+ -(2.41
dz Mc m dz me dz

14



The first term of equation 2.41 serves to unrotate the coordinate system. This term,

which comes only from the chain rule and has nothing to do with the forces involved

in the motion, has already been accounted for in equation 2.23. The second term of

equation 2.41 breaks up into two parts, one from the force due to the magnetic fields,

and another due to the space charge. Since the magnetic fields are all zero in this section

we may replace ± in equation 2.41 with the result of equation 2.39, yielding

di+ _ qyE e-i . (2.42)
dz Inc 2

Once again noting that the ratio of charge to mass of the particles in an electron beam

(or a model of an electron beam) is always -e/m, it is natural to define

+ = eE+ (2.43)
mec 2 k w

and to rewrite equation 2.42 as
d _ _ + (2.44)

dzPz

Note that notation makes equation 2.43 a little unclear. The first e is the magnitude of

the charge on the electron; The second is the base of natural logarithms.

We may now combine equations 2.32 and 2.44 to obtain the complete form used in

the latest version of the program:

P-i[(1 - )p+ + B+eI] - + (2.45)
dz PZ PZ

Equations 2.31 and 2.34 remain unchanged. I repeat them here for convenience:

d 3
(i + iq) = e (2.46)

dp. - d d
= B+Real{( + i0. (2.47)

Equation 2.46 comes only from the definitions of momentum and velocity, and is therefore

unaffected by the addition of space charge forces. Equation 2.47 is not affected because

we have assumed there is no axial space charge.5

15
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2.2.3 Calculation of -y

It should be pointed out the the y in equation 2.45 is no longer a constant since the space

charge forces can add kinetic energy to the particles in the beam. y should be found from

the definition (equation 2.5). To find -y in terms of P+ and P, we start from the definition

off:

fp= ymF = ymcg. (2.48)

Then

2. 2 p p2

=2 2 =2 == 2  (2.49)
(-yMC) ( mc)l

or, in terms of normalized units,

2 2  . (2.50)

By squaring both sides of equation 2.5 we obtain

2 (2.51)

Substituting in the result of equation 2.50 for 02 and solving for Y2 results in

2 =p+ 12 + 2 + 1(.22Y (2.52)

or

S= 2P+ 2 + P 1. (2.53)

This is the formula for y which should be used in the equations of motion (equation 2.45).

Another form which we will find useful later on is an equation for 0. in terms of y and

/± = V3 +032 . We see that

/2 1 -(1 /72) 2 (2.54)

This equation follows directly from equation 2.52 and the definitions of the variables

involved.
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2.3 Calculation of the Magnetic and Electric Fields

In the above sections the equations of motion were derived in terms of the external

magnetic and the self (space charge) electric fields. It was assumed that these fields

were known at each particle at all times. The calculation of the fields is, however, fairly

complicated. In fact, more time is spent by the computer calculating the magnetic fields

than in doing anything else.

2.3.1 The External Magnetic Field

The magnetic field from any current-carrying wire can be calculated from the following

equation:

pJ 'Idl xdB - Io(Xr(2.55)
4irr2

where to = 47r x 10-7 is the magnetic permeability of vacuum, I is the current (in amps)

flowing in the wire, dl is the differential element of length associated with a differential

element of current, and pointing in the same direction, r is a unit vector pointing from

the element of current to the position at which we wish to evaluate the magnetic field

and r is the distance from the element of current to the position at which we wish to find

B. Equation 2.55 is known as the Biot-Savart law.

A subroutine library called COIL3, written by C.F.F. Karney, carries out a numerical

integration of equation 2.55 in an efficient manner. The code is quite fast when run on

a Cray supercomputer because it is fully vectorized.'

My program constructs a bifilar helical wiggler by dividing each wire into small seg-

ments of current 7 as an approximation to the actual wiggler magnet. The current shunts

are also divided up into segments for use by COIL3. I have found 32 bars per wiggler

'Vectorization is a kind of optimization which allows certain array operations to progress in parallel,
greatly enhancing the performance of the code.

7The current-carrying elements are called 'bars' by COIL3.
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period and 32 bars per semi-circular shunt to produce reasonable results. The number of

bars per wiggler period and per shunt is given as the program input parameter NSEG.

After the current bars, as well as any constant B2 offset have been defined, whenever the

program needs to know the magnetic field at a particle it simply calls the COIL3 sub-

routine MAGFIELD with the particle's position as an input. The subroutine returns the

magnetic field. MAGFIELD can operate on an array of particle positions in its vectorized

mode, and actually takes such an array as input, returning an array of field values.

2.3.2 The Electric Field Due to Space Charge

Poisson's Equation

The electric potential is calculated at any point from Poisson's equation,

2 (2.56)

where 4 is the electric potential, p is the charge density (as a function of position) and

fo = 8.8542 x 10- 2farads/m is the electric permeability of vacuum. The electric potential

is defined in terms of the electric field by

E = -V4. (2.57)

In the above equations V is the differential operator defined by

04',@ 04' _ 4' 1O4' 04'9
VO =-ioi+--o9+-az =-1+ 1 90+-tk (2.58)

Ox ay 0 z Or r To Oz

where 4 is a scalar function, ;, y and i are unit vectors along the coordinate axis in

Cartesian coordinates, r and 9 are coordinates in cylindrical coordinates, and t and 9

are unit vectors in the directions of r and 9 respectively. It can also be shown that

a2V +a2, aV, 1 0a 4 1 904 024',024' + +(r ) + + ± . (2.59)
TX 2 hy 2 Z2 v be ue a02 J ( )

These formulae have been quoted from Jackson (1975) [9].
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Since my program is a two dimensional code assuming no axial space charge we can

take ! = 0 and 2 = 0. Thus, the last terms of the above two equations drop out,

simplifying matters a bit. In the following sections all charges Q and q should be taken

to mean charge per unit length. The particles, which are infinitely small circles in two

dimensions, can be thought of as uniform cylinders of charge.

To solve equations 2.56 and 2.57 a boundary condition is also needed. In most wiggler

magnets the beam is contained within a cylindrical metal beam tunnel of radius R,. The

potential on this wall is usually fixed at an external voltage, usually ground. Thus the

needed boundary condition is

q(R.) = 4e = 0. (2.60)

Equations 2.56 and 2.57 and the boundary condition 2.60 are all that is needed in

principle to find the electric field everywhere. However, an analytic solution to these

equations for a many particle system in a conducting cylindrical tube is non-trivial, and

does not exist except in certain cases involving very restrictive assumptions. Because of

this problem the program solves the Poisson equation numerically. The numerical solu-

tion is done quite efficiently and might well require less time to perform the calculations

than would an analytic solution in terms of Bessel functions.'

The subroutine HWSPLR from the SLATEC math library exists which solves the two-

dimensional Poisson equation on a cylindrical grid using a finite-differencing scheme.9

HWSPLR takes as inputs an array containing the charge density p on each point on

the grid and also containing boundary condition information. On output it returns the

'Calculation of an analytic solution requires time proportional to the number of particles squared.
Calculation using a grid requires some fixed time (see below) for calculations by the grid solver, plus a
time proportional to the number of particles to assign them to gridpoints.

'The details of how HWSPLR works are beyond the scope of this paper, other than to note that
HWSPLR has an execution time on the order of MNlog(N) where M is the number of circular grid
lines and N is the number of radial grid lines. The documentation for HWSPLR references Swarztrauber
and Sweet (1975) [15].
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Figure 2.1: The polar coordinate grid system, showing the areas used for assigning charge
to the nearest gridpoints (from Langdon and Birdsall [2])

electric potential < on each point on the grid. Calculation of the charge density on the

gridpoints is not as simple as it may seem. The next section describes how it is done.

Finding the Charge Density on a Cylindrical Grid

The following discussion shows how to assign the charge from a particle to a charge

density at a gridpoint. This discussion follows Langdon and Birdsall (1985) [2].

Figure 2.1 shows a section of the polar coordinate grid system. The areas of regions

a, b, c and d are used to weight the charge of particle i to gridpoints A, B, C, and D.

The notation r; indicates the radial coordinate of the j"h radial gridpoint. Ok is similarly

the angle associated with the k"A angular gridpoint. The following formula, quoted from
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Langdon and Birdsall, gives the charge Q assigned to gridpoint A:

(r + r3)(9k+1 - Oi)
QA = Qj,- = qi r 2++ (2.61)

- rJ)(6k+1 - Ok)

where qi is the charge of the ith particle. It is easy to see how this formula is derived.

The charge assigned to gridpoint A is simply the charge of particle i times the area of

area a divided by the area of the whole region between the four gridpoints A, B, C, and

D. The formulae for QB, QC and QD are equivalently the charge qi times the proper

area divided by the total area of the region. This is known as area weighting. It should

be pointed out that at the origin these formalae become rather strange. This is a result

of using polar coordinates. There is a total of N gridpoints assigned to the origin, with

coordinates (j, k) of (0, 0), (0, 1), . . . , (0, k), . . . , (0, N - 1). Near the origin the diagram

shown in Figure 2.1 becomes degenerate and both point A and D are at the origin.

Equation 2.61 and the similar equations for the other three gridpoints still hold. It is

only necessary to add up the charge assigned to all the origins to calculate the actual

charge at the origin:
N-1

Qorigin E QO,k (2.62)
n=O

Another small oddity is that since the coordinate system wraps around a 0 = 2i, care

must be taken to ensure that charge assigned to angles greater than 27r is at some time

put where it belongs, i.e. back into the interval [0,21r].

Next the charges must be converted into charge densities by dividing by the local

differential area. The differential element of area is given by, in polar coordinates,

dA = rdrdO. (2.63)

On a quantized grid we can replace dr and d# by Ar and AO, where Ar is the distance

between adjacent circular grid lines and A# is the angular distance between adjacent

radial grid lines. Thus, at all angular gridpoints with a given radius r1 we have

AAjk = rArAO. (2.64)
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An alternate way of finding equation 2.64 is to think of AA as representing an area

like the one shown in Figure 2.2 which surrounds a gridpoint and extends halfway to the

next set of grid lines in each coordinate. This area is found by taking the difference of

the areas of two circles having radii defined by outermost and innermost boundaries of

the region and multiplying by the ratio of A9 to 27r to account for the angular portion

of the circle occupied by the region. In other words

1 1 2 A9
AA ,k = 7r[(rj + 1ZAr) 2 - (r - I Ar)2]- = r= r A. (2.65)

22 2-7r

We can now use equation 2.64 to find

P,k - (2.66)
AAI,k rARA

We have now finished calculating the charge density at the gridpoints from the charge on

the individual particles everywhere except for at the origin. Unfortunately, if we apply

equation 2.66 with r = 0 we find that the charge density goes to infinity. This is not

helpful and is incorrect. Obviously if we have a beam of uniform charge density we should

not find that the charge density is infinite at the origin and nowhere else. It is better to

continue in the line of thought presented in the preceding paragraph. If we think of the

local area at the origin as a circle of radius AR/2 the situation is much improved. This

circle accounts for all of the area not covered by the other regions described above. The

area of this circle is given by

A 2,A eorigin - r ( -2 (2.67)

and the charge density at the origin is then

Porin - - "i"in -_ _"_. (2.68)
AAorigin 7r(Ar/2)2

The charge density is now ready to be used to determine the potential by solving Poisson's

equation. This is handled by HWSPLR.
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Converting The Electric Potential to the Electric Field

The electric field is calculated from the potential by use of equation 2.57. On our grid

this means we can find the radial electric field E, and the angular electric field Ea by the

following equations:

E,.- 'j+,k - (2.69)

Ea ,k+jk+1 - '.(2.70)

Note that these equations calculate the fields halfway between grid lines. If we want the

fields on the gridpoints we can average the surrounding pair of field values. It turns out

that after a minimum of algebraic manipulation we have, with no loss of generality:

Erj, jk-O~,k (2.71)

and

0=k- - (2.72)
' j2rjA(

Here again care must be taken at the theta wrap-around and near the origin. When

k = Al - 1 the k + 1 in equation 2.72 should be replaced with 0. Similarly, when k = 0

the k - 1 should be replaced with N - 1. Near the origin equation 2.71 breaks down since

j - 1 is completely undefined. A similar problem occurs at the outer boundary where

the beam tunnel wall is. Langdon and Birdsall make the suggestion that we use at the

origin

Er k E, ;,k (2.73)

and

Eeo,k = Ee1,k. (2.74)

This solution is not entirely satisfactory as it is only approximate, but it is difficult to

do better. A distinction is now made between the N origins which represents approaching

arbitrarily close to the origin from each of the N directions. A similar method can be
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used to determine the fields at the boundary. The E, is taken to be its value halfway

from the second to last grid line to the last one. EO is taken to be 0. since this is the

boundary condition for all electric fields at the surface of a conductor. However, this is

not as important since if enough grid lines are used it is unlikely that a particle will ever

be near enough to the wall for us to need to know the field there. If a particle is found

at the boundary it is likely that something has gone wrong anyway.

It is now a simple matter to convert from E, and Es to E. and EY or to E+. If we

take

Er 9 = E, + iE9 (2.75)

it is easy to show that

E+ = E. + iE, = E,,ee. (2.76)

2.3.3 Self Magnetic Fields

Self magnetic fields arise from the moving charges in the beam. Moving charges are

currents, and a current generates a magnetic field. The effects of self magnetic fields

may be important in some devices. My code does not yet calculate the self-consistant

self magnetic fields. However, these fields may be calculated in a manner quite similar

to that used to find the self electric fields described above. It is simply necessary to

assign currents to a grid and to solve Poisson's equation three times to find the vector

potential A. The boundary conditions will depend on the magnetic penetration time of

beam tunnel wall. I have not worked out the exact methodology for calculating the self

magnetic fields, but it should not be especially difficult now that the method for finding

the self electric fields is understood.
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2.4 Tests

A particle simulation code is of no use if its results are not believed. To prove that the

code is reliable it can be tested against the analytic solutions which exist for various

simple cases. The next few sections describe some of these tests, and report how well the

code fared in comparison.

2.4.1 Single Particle with Axial Magnetic Field and No Space

Charge

One simple case is that of a single charged particle in an constant magnetic field ignoring

space charge effects. The particle must obey the Lorentz equation (equation 2.4). Since

the magnetic force is always perpendicular to the particle's direction of motion, the

particle must be in a circular orbit. Any particle in a circular orbit must feel a centripetal

force inwards given by:

F = (2.77)
r

where v1 is the velocity perpendicular to the magnetic field and r is the radius of the

particle's orbit. Equating equations 2.4 and 2.77 and solving for r we find

r = me-y= .mepLc (2.78)
eB, eBz

Here we take p, = y/3± to be a normalized perpendicular momentum. It is also easy to

show that the wavelength in z of the motion is given by

A 2rmy/3,c = 7 2 m, c 2. (2.79)
eB, eB

Figure 2.3 shows the result of running the code space charge disabled and with the

following parameters: y = 2.12907, B: = 1.7045 Tesla, p± = 1, and a single particle

starting at the origin. Initially all the perpendicular momentum is in the x direction.
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These numbers produce the nice result of r = .001m and A = .01m. This is nicely

confirmed by the results of the simulation.

2.4.2 Uniform Beam with no Magnetic Fields

Another case which can be analyzed analytically is that of a uniform beam moving in

free-space with no magnetic fields. The code can easily simulate this with a beam on

axis. 10 The electric field outside a uniform beam of charge per unit length Q is easily

found from Gauss's law to be

E, - . (2.80)
27rEor

This equation also applies at r = rbeam. We make the assumption that p± and 3_L are both

approximately equal to zero. Then, using equation 2.37 and manipulating derivatives into

a suitable form yields

rr" = '-2v = K. (2.81)
27re()mC2

The factor v is called Budker's parameter. K is the perveance. Here I have

been following Lawson (1977) [11]. We can use equations 2.3 and 2.54 to write K in

terms of the current I:

Ie 1 3
K = (1- )- (2.82)

2 reomecy 7

Equation 2.81 is not integrable in general. In the limit where K << 1 the solution

can be taken to be

r2 -K ro (2.83)

where r is the outer radius of the beam and ro is the initial value of r. Since K << 1 it

can be seen that r - ro in this limit. This condition is known as the paraxial limit.

' 0An off-axis beam would produce strange effects due to image charging on the beam tunnel walls.
Another solution would be to run with an extremely large beam tunnel radius, but this is not practical
in terms of computer time and quite unnecessary.
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Figure 2.4: Hyperbolic beam spread in the paraxial limit
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Figure 2.4 shows the result of a simulation for K = 10-8 A V- 3 /, -Y = 4, ro = 1 mm

and I = 3.0945 x 10-4 amps. These numbers result in a perveance of K = 10-8. At

z = 0.lm we should find that r - ro = 5.0 x 10~'m and the results from the code are

within 3% of that figure. The fact that there is any divergence at all is probably a result

of numerical error.

2.4.3 Immersed Flow

A beam with space charge and no initial rotation which then moves in a uniform axial

magnetic field is in a condition known as immersed flow. While no analytic solution

exists for immersed flow, others have done numerical simulations and predicted various

results which can be compared to those of my program. If we make the simplification

that 0, is constant it is possible to derive the following differential equation for the outer

electron of the beam, quoted from Brewer (1967) [4]:

dtmr 1 WH 2 1I+ r( )2(1 -- )= 0 (2.84)
d(OZ)2 2r w, r4

where w, = , WH = eB2/2m., and O, = w,/v. Note that this is a non-.~jrrv,

relativistic solution.

Brewer obtained solutions to this equation using an analog computer [3]. The particles

undergo sinusoid-like oscillations around a radius slightly larger than ro. The minimum

and maximum radii can be calculated from the zeros of the integral of equation 2.84,

itself a transcendental equation.

Figure 2.5 shows the result of a run of my code with I = 0.01 amps, B, = 4.9408 Tesla,

ro = 1 mm, and -y = 1.001 to insure a non-relativistic case. Initially there was no

perpendicular momentum. First notice the important qualitative result that all the

beam scalloping is outwards from the initial radius, a result which should always be

true when there is no initial perpendicular momentum. The maximum outer particle

excursion is 1.057 mm and the period of oscillation is 10 mm. These numbers are in
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fairly good agreement with Brewer's results of 1.07 mm maximum outer particle excursion

and a period of 9.7 mm. There are several possible sources of the small discrepancies.

Equation 2.84 assumes that 03, is constant; my code does not. This effect should be

minimized but not eliminated in the small current limit. Another source of error may

be Brewer's use of an analog computer over thirty years ago. An analog computer may

well be less accurate than five or ten per cent. Perhaps the most important source of

disagreement, however, is that I have only graphs of Brewer's results to work with, and

have to estimate his numerical values by eye.

2.4.4 Brillouin Flow

When an electron beam enters a region of an axial magnetic field from a region of zero

axial magnetic field, it will pick up a rotation given by w = Wh. The beam will be rotating

like a rigid-rotator, i.e. each electron has a tangential velocity proportional to its radius,

and has no radial velocity. It is also possible to show that Wh/wp = 1/sqrt2 (see Brewer

1967 [4]). This condition is known as 'perfect' Brillouin flow. The particles should simply

rotate around as they move forward in z, with no radial variation whatsoever.

Figure 2.6 shows the result of running my code with the following parameters, which

should produce a rigid-rotor equilibrium: I = 0.01 amps, B. = 1.7468 x 10-2 Tesla,

ro = 1 mm, and w = wh = 1.5362 x 107 radians/second. The beam envelope, despite

small variations, is about what is expected. The beam just flows along and does not

change size. However, the radius of the particle that initially had the largest radius

varies wildly. It should simply stay at the edge of the beam, behaving as a rigid-rotator.

Why it does not as well as how the beam envelope works out correctly without the

individual particles behaving correctly, remains a mystery.
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2.5 Simulation of an Actual Wiggler

My code has been used to model the wiggler for the 35 Ghz CARM at the MIT Research

Laboratory of Electronics (RLE). I did simulations both with and without accounting for

space charge effects. Figure 2.7 shows the magnitude of the tapered magnetic field profile

for this wiggler, as calculated by my code using COIL3. There is also an axial guide field

of 0.7 Tesla in the direction of increasing z. The beam tunnel wall has a radius of 0.8

cm and the wiggler helix has a radius of 2.24 cm and a period of 7 cm. The maximum

current in the tapered wiggler is 3750 amps. The beam itself has a radius of 0.2 cm, and

initially has a vanishingly small perpendicular momentum. The electrons in the beam

begin with -y = 4. The beam current is 300 amps.

Figure 2.8 shows the calculated mean value of a = OL// 3i without accounting for

space charge. Figure 2.9 show this value accounting for space charge. The space charge

has increased the mean value of a from 0.32 to 0.34. It has also increased the spread

in a, defined as the standard deviation of a over the average value of a, from less than

1.5% to nearly 24%. The spread with space charge can also be written as Ay1/y1 = 20%.

This is a very large effect on the spread. In fact, according to work done by Bekefi,

DiRienzo, Leibovitch, and Danly (1989) [1], a spread as large as the one calculated

including space charge should result in CARM efficiencies for the RLE CARM of only

about 3%. Ignoring the spread, which is about the same as ignoring space charge since

most of the spread is due to the effects of space charge, they predicted efficiencies of up

to 15%. Experimentally they have found the CARM efficiency with an older wiggler to

be about 3%. Unfortunately my results indicate that the new wiggler will not perform

significantly better. Space charge effects are clearly of primary concern in wiggler design.
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Chapter 3

A Capacitive Velocity Probe

Now that there is a code which can predict the motion of an intense relativistic (or non-

relativistic) electron beam in a wiggler magnet, it is desirable to check the results of the

program experimentally. Such experimental results are also useful in the absence of a

code, but are all the more helpful when a simulation adds understanding to empirical

data.

3.1 Theory of the Capacitive Velocity Probe

3.1.1 Basic Theory

One possible result to check is the average vIl of the beam. A probe to measure this

has been described by Shefer, Yin and Bekefi (1983) [14]. The probe is essentially a

cylindrical capacitor made out of two concentric cylinders (see Figure 3.1). The idea

is that when a charged particle beam passes through the probe there will be a voltage

induced between the two cylinders (later referred to as capacitor 'plates') due to the

presense of charge inside. The voltage can be calculated by integrating the electric field
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between the plates.

V = Edr (3.1)

where a and b are the radii of the inner and outer plates. Now, assuming an infinitely

long capacitor and an infinitely long beam with uniform charge density in z, we can use

Gauss's law to calculate E,:

QE,(r) = Q . (3.2)
27rfor

This equation is true everywhere outside the beam (in vacuum at least). Q is the charge

per unit length in the beam. We can then plug into equation 3.1 and find:

V, = - dr = ln(b/a). (3.3)
27rfor 27rEO

We can then solve for Q yielding

Q = .7-O (3.4)ln(b/a)(

We also know that the charge per unit length of the beam Q is related to the average

parallel velocity vIl by equation 2.3, repeated here:

I = Qv, = QvII. (3.5)

Solving for vt' and plugging in the result of equation 3.4 for Q we find

Iln(b/a)
VII = .7rE (3.6)

But we also know that the capacitance per unit length C of a cylindrical capacitor is

given by

C .27ro (3.7)
V ln(b/ a)

This is easily derived if we take equation 3.4 to be the charge on the plates of the

capacitor' and divide by V since the definition of capacitance is C = Q/V. We then

have the nice result

V~C (3.8)

'Here we are simply placing a voltage V on the plates and noticing that the derivation of the charge
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or

V =-. (3.9)
Con1

One nice feature of this result is to notice that if we solve for V in terms of v11 the

voltage is independent of the actual length of the capacitor, at least ignoring end effects.

Thus a very short cylinder (a ring) will do and the probe need not take up much space

in an experiment. The voltage is also independent of the cross section of the inner

conductor, so long as its outer radius remains equal to a, because all of the derivation

using Gauss's law remains unchanged.

To actually calculate v11 using such a probe will require an accurate knowledge of the

current I and the capacitance C. The current can be measured using a collector and

a current-viewing resistor after the beam has passed through the probe, or by using a

Rogowski coil. The capacitance can be measured with a precision capacitance bridge.

Note that the length of the capacitor must be also be known. Even though the final result

is independent of the length, a capacitance bridge will measure the total capacitance

which is proportional to the length. Thus we must divide by the length to eliminate this

dependence and find the capacitance per unit length.

3.1.2 Other Considerations

The above discussion makes analysis of data from the probe seem extremely simple. All

is not so simple. Terry Grimm, a graduate student at MIT, has built such a probe and

found the analysis to be much less straightforward. One problem is that it is unclear

how to handle end effects. For a capacitor of finite length the field lines from the beam

Q proceeds as it did when the voltage was induced by the beam rather than imposed by an external
voltage source. In fact, the charge on the plates of the capacitor when a beam is passing though is the
same as the charge in the beam. This is to satisfy Gauss's law both inside the inner plate (where E = 0
and just outside it where the flux must be the same as if the inner conductor didn't exist. Thus a charge
of -Q is induced on the inner surface of the inner plate and a charge of +Q on the outer surface. This
equivalence is what causes the nice result we are about to find.
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Figure 3.2: The bending of the field lines by a probe of finite length.

will bend in towards the ends of the probe as in Figure 3.2. This is because of the

boundary condition at the surface of a conductor which states that the field lines must

all be perpendicular to the surface. These additional field lines will distort the above

discussion of Gauss's law by adding flux. This will certainly change the capacitance of

the probe, and will perhaps have other effects on equations 3.8 and 3.9.

It is not clear whether the result of this field-line distortion will be simply that the

actual value of the capacitance for the probe must be used instead of the theoretical

result obtained for an infinitely long one, or if some other effects occur. The situation

is further complicated by other conducting surface which may exist in a beam tunnel

designed for an experiment other than to simply measure the velocity of a beam. It

would seem that the basic functional form of equations 3.8 and 3.9 should be preserved

to within a constant of proportionality based on the geometry of the probe and beam
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tunnel since the basic derivation depends on Gauss's law. The electric fields calculated

from Gauss's law still must depend on the total charge enclosed in a gaussian surface.

Hopefully then, there will be no effects on the voltage proportional to anything other

than the charge (or 1/v 11 ). Even this, however, is unclear at this time.

Terry Grimm has been working on solving this problem analytically or numerically.

A numerical solution is not wholly satisfactory for a probe which is supposed to provide

an experimental rather than theoretical result. Another solution is to send through a

beam with a known vjj to obtain a calibration. Such a beam can be generated with

some electron guns by running at very low current. This will minimize space charge

effects which might add perpendicular velocity and subtract parallel velocity.2 Since the

perpendicular velocity is very low and the gun accelerating voltage is known, vjj can easily

be found. Naturally the wiggler field will have to be off while such a calibration is being

done as a wiggler field would also add perpendicular velocity. In some experiments this is

not practical due to the use of a fixed permanent magnet wiggler. Fortunately, however,

it is usually possible to run with a -Y far out of resonance with the wiggler so not much

perpendicular velocity will be induced.

Another problem with the simple analysis of the preceding section is that the assump-

tion that the beam is of uniform charge per unit length along its axis. In a wiggler region,

not to mention in the interaction regions of many interesting types of devices (such as

free electron lasers, gyrotrons, cyclotron autoresonance masers, etc.) the electron beam

will be slowing down or speeding up. This necessarily results in a non-uniform charge

per unit length due to equation 3.5. This effect could have significant implications on

the accuracy of the capacitive velocity probe.

Still another consideration is that of the effect of the probe on the beam itself. Shefer,

Yin, and Bekefi call the probe a "nonperturbing diagnostic," but this is not really true in

2This is a relativistic effect. If the perpendicular velocity increases the parallel velocity must decrease
to avoid a resultant total velocity greater than the speed of light.
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most practical applications. The inner conductor of the probe will generally reach several

hundred volts or even higher with respect to the beam and beam tunnel walls (the walls

are often at ground). The presence of such a region of high voltage may very well interfere

with the beam. Even without high voltage the geometry of the probe will be important.

If it is not carefully designed it could act as a resonant cavity for a spinning electron

beam wreaking havoc with the expected behavior of the device it is in. Probably both

of these effects can be minimized with careful design of the probe, but the probe is by

no means non-interfering under all conditions. A discussion improvements to the design

of such a probe beyond those outlined above is beyond the scope of this paper.

3.2 Design of a Probe for the Gyro-BWO

Figure 3.3 shows the design drawings of a capacitive velocity probe for Bill Guss's Gyro-

Backwards Wave Oscillator (Gyro-BWO) experiment. The stainless steel ring is the inner

conductor of the capacitor. It fits inside the larger piece of macor. The smaller piece of

macor fits in the end of the larger piece as an end cap, providing insulation, Corning

macor ceramic was chosen for the insulating pieces due to its high dielectric strength

(- 1000 - 3000 volts/mil, depending on the frequency of the applied voltage), its relative

machinability, and its fairly constant dielectric constant over a wide range of frequencies

(5.92 at 10kHz, 5.68 at 8.6GHz).

The outer conductor of the capacitor is a tube, much longer than the rest of the

probe. The tube is actually the beam tunnel which holds beam scrapers as well. The

beam scrapers are designed to minimize the chance of the beam finding a resonant cav-

ity before it reaches the Gyro-BWO interaction region. The beam scrapers alternate

between insulating macor and conducting stainless steel. The macor parts of the probe

are designed to have the same shape as the macor beam scrapers. The entire probe is

designed to take the place of three beam scrapers in the beam tunnel (two macor scrapers
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Figure 3.3: Design Drawings of Probe for the Gyro-BWO
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Figure 3.4: The Probe for the Gyro-BWO. The nickel shows scale.

and the stainless steel scraper between them).

A thin, single conductor teflon wire is spot-welded onto the inner conductor of the

probe. It runs through the axial hole in the smaller macor pieces, turns and runs out

radially, and then goes through the matching radial hole in the larger macor piece. It next

runs down a slot in beam tunnel until it finally reaches a vacuum feed-through mounted

in a flange. It is spot-welded to the copper conductor of the feed-through. Spot-welding

was chosen instead of solder to avoid outgassing which could ruin the high vacuum. The

teflon insulation on the wire was chosen for the same reason. Figure 3.4 is a photograph

of the assembled probe before it is put in the beam tunnel. The nickel is there for size

comparison.

The Gyro BWO runs with -y = 1.2 and a current of about 4 amps. Using equation 2.54,

and assuming that $= we find that vj = 1.66 x 10"m/s. Solving equation 3.6 for V

yields

V = .l~ba (3.10)
27 ov~l fmacor
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The Emc in the denominator is the dielectric constant of macor, which has been added

because the capacitance of a capacitor with a dielectric between the capacitor plates has

its capacitance multiplied by the dielectric constant of the material.

From Figure 3.3 we can see that a = 0.258 inches = 0.654 cm and b = 0.288 inches =

.730 cm. The expected voltage is then found to be V = 8.2 Volts. This answer is only

approximate since it assumes the probe is infinitely long and suffers from the all the

problems discussed above. Still, it can serve as a guide in designing the probe. The

probe was designed to have the capacitor plates quite close together to keep the voltage

down to a minimum. A mistake made when converting from CGS to MKS units caused

the mistaken belief that the voltage would be 100 times higher than it is. The probe

was designed with this in mind, causing the macor piece to be much thinner than it

needs to be. Future probes need not have such thin walls which should facilitate their

manufacture and improve structural strength. Strength is an important consideration,

as will be seen in the next section.

Another consideration for a real probe is that of the capacitance of the electric leads.

The capacitance of the leads of order 10 picofarads/foot. The capacitance of the probe

is given by the result of equation 3.7 multiplied by the length of the probe in meters.

The inner conductor measures 0.127 inches or 0.323 cm. The capacitance is found to be

approximately 1.6 picofarads. This is smaller than that of even very short leads! This

is a major problem, especially considering that it will be nearly impossible to measure

the capacitance of just the probe since leads will have to connect it to the capacitance

bridge. It is even harder to measure this quantity with the probe installed in the beam

tunnel which is where it really should be measured since the beam tunnel geometry will

have a perhaps major effect on the probe's capacitance, as discussed above.

What now is the expected voltage at the end of the leads? Charge will flow off the

probe and onto the leads, which behave as a capacitor in parallel to the probe. The

measured voltage at the ends of the leads will simply be the result of distributing a
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charge Q over the combined capacitance of the system. Thus the expected voltage is

simply multiplied by the factor Cprobe/(Cprobe + Cleads). This voltage will appear after

an RC time constant has allowed the original expected voltage to fall off exponentially

as charge flows onto the leads. The time constant, however, is very small since the

capacitances involved are on the order of picofarads. The time constant will be less than

a 10 picoseconds if we take the resistance of the leads to be less than about 1 ohm. Most

devices operate on pulse lengths significantly longer than this.

3.3 Problems with the Probe

The probe was built, thus beginning a long series of mishaps (well, two anyway). The

first problem was that as drawn there is no way to assemble the probe. Once the wire is

attached to the inner conductor and threaded through the holes in the two macor pieces

there is no way to insert the smaller macor piece into the larger. The wire gets mashed

between them. To solve this problem a notch was filed carefully from the edge of the

larger piece of macor to the radial hole. Unfortunately, this apparently weakened the

piece such that when it was placed in the ultrasonic cleaner (which was used to keep the

probe extremely clean before installation in the high vacuum of the Gyro BWO beam

tunnel) it developed a crack from the radial hole outward in a sort of a bite-like shape.

The crack is clearly visible in Figure 3.5. Fortunately the damage should have little effect

on the functioning of the probe. It is in such a location as to not decrease the probe's

resistance to arcing since the easiest path is the one the wire takes and all path lengths

through the cracked region are at least as long.

The other main problem with the probe at the time of this writing is that the feed-

through flange had a leak. When the whole assembly was installed, the system would

not stay at high vacuum and the leak was eventually traced to the weld which connects

the feed-through to the flange. The flange has not yet been successfully repaired. It is
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Figure 3.5: The Probe for the Gyro-BWO showing the cracked area.

unlikely that it will be completed in time for useful data to appear in this document.

The experience gained from the design of this probe should help with the design of

future probes. Probes may eventually be installed on the 35 GHz CARM at the MIT

Research Laboratory of Electronics and the 140 GHz CARM at the MIT Plasma Fusion

Center.
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Appendix A

The Need for Space Charge

A good question to ask is whether space charge will be of importance at all in a wiggler

magnet where one might expect the magnetic field interaction to eclipse any other effects.

However, the space charge forces are proportional to the current density of the beam,

and many free electron devices are run at extremely high currents over small areas.

Our main equation of motion is the Lorentz force equation, equation 2.36, repeated

here:

=q(E + 6 x B). (A.1)
dt

When the first term is of comparable magnitude to the second space charge effects will

be important. The magnetic fields in a wiggler magnet are typically around 0.1 Tesla and

the electrons are traveling close to the speed of light. The second term will then have a

magnitude of order 5 x 10"2 Newtons.

The electric field at the edge of a uniform beam with charge per unit length Q was

given by equation 2.80 to be

E, Q (A.2)
21rEorbeam

The can be put in terms of the current by using equations 2.3 and 2.54, yielding

E, (A.3)
27rEoo2c 27rEoc 1 - (l/-Y) 2

50



if we assume O_ = 0. A typical beam might have a radius of 1mm, y = 4 and a

current of 100 amps. The first term of equation A.1 then has an order of magnitude of

10-1 Newtons as large as the factor from the magnetic field contribution. Clearly such

a large factor should not be ignored.
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Appendix B

The Actual Code

The following is the actual code. It is written as Historian source code. Historian is a

program which preprocesses FORTRAN source to ease the burden of writing common

blocks repeatedly and to facilitate making changes. The code needs to be linked to the

following libraries: SLATEC, TV80LIB, DISSPLA, and COIL3. TV80LIB and DISSPLA

are needed for the graphics output which may not be compatible with all machines.

COIL3 is probably not available on all machines.

*cd param
C-----------------------------------------------------------------------

implicit complex(c)
parameter(nzmax=8192, npmax=512, pi=3.14159265359,

+ esubmc=586.6655,twopi=2.*pi,nhpmax=40,
+ numrmax=128,nthmax=128, esubmc2-1. 95751e-06,

+ epsilonO=8.854187818e-12,echarge=1.6021892e-19,
+ lspeed=2.99792458e+08)

*cd combla
C-----------------------------------------------------------------------

common// xarry(3,npmax), barry(3,npmax), px(npmax),
+ py (npmax), pz (npmax), alpha(npmax) ,pp (npmax),

+ betap(npmax) ,gammas(npmax) ,acurrent(npmax)

*cd comwig

C-----------------------------------------------------------------------
common/comwig/ wlamda, nwigg, rhelix, xcur, xcurO, nseg, bzO,

+ epsbz, xlamdf, f(nhpmax), xcs(nhpmax),
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+ xch(nhpmax),phiwall,rpipe

*cd combea

C -------------------------------------------------------------------------------------------
common/combea/ npart,rbeam,gamma,delpp,ild,beamcur,omega

*cd comint

C-----------------------------------------------------------------------
common/comint/ zmin,delz,nz,zO,zl,bint1,bint2,

+ numr,ntheata

*cd comdia

C-----------------------------------------------------------------------
common/comdia/ zp(nzmax), bx(nzmax), by(nzmax), bperp(nzmax),

+ bxref(nzmax), byref(nzmax), bpref(nzmax),

+ xref(3,1), bref(3,1), ipaxis, ipoff,

+ palpha(nzmax), ppz(nzmax), pdelal(nzmax),

+ bzmean(nzmax), bpmean(nzmax), pdelbp(nzmax),

+ pdelpz(nzmax), pxaxis(nzmax), pyaxis(nzmax),

+ pxoff(nzmax), pyoff(nzmax), rgaxis(nzmax),

+ rgoff(nzmax), pdelbz(nzmax), bpaxis(nzmax),

+ bpoff(nzmax), thaxis(nzmax), thoff(nzmax),

+ rax(nzmax), roff(nzmax), thzbar(nzmax),

+ thtarl(nzmax), thtar2(nzmax), xxm(nzmax),

+ yym(nzmax),pertrbs(nzmax),phi(numrmax),phi2(nthmax+1),

+ esave(numrmax),phi3(nthmax+1),beamenv(nzmax),beamenip(nzmax),

+ ptrace(10,2,nzmax),ntraces(10),ptemp(nzmax),ntrace

*dk main

c
c WIP-----Wiggler Integration Program

c
c Authors:

c T.M. Tran Orginal Version, August 1987

c B.G. Danly and K.D. Pendergast,

c Revisions: Wiggler shunts, more graphics

c J.A. Smolin Major Revision, April 1989:

c Self-electric fields,

c self-consistant space charge calculation

c ---------------------------------------------------------------

c Runs on Cray II and Cray XMP

c Compile with CFT77 version 2.X until version 3.0 is upgraded

c (version 3.0 works on Cray II, hangs on XMP)

c Link to the following libraries: SLATEC, TV80LIB, DISSPLA, COIL3.

c COIL3 by C.F.F. Karney should be available somewhere at NMFECC.

c
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C---------------------------------------------------------------

c Electron trajectories in the wiggler field

c

*ca param
*ca combla
*ca comwig
*ca combea
*ca comint

*ca comdia
c-----------------------------------------------------------------------

character*1 lmore

dimension cyO(2*npmax), cyl(2*npmax), cypl(2*npmax),
+ cyp2(2*npmax),pzpl(npmax),pzp2(npmax),pzold(npmax)

namelist /newrun/ wlamda, rhelix, xcur, nseg, gamma,
+ bz0, epsbz, xlamdf, npart, rbeam, ild,
+ delpp,zmin,delz,nz,f,nhalfp,nplots,ntrace,
+ numr,ntheata,spacchrg,phiwall,rpipe,beamcur,
+ omega

c -----------------------------------------------------------------------
c

CALL LINK( "i=tty, unit5=(i,open),
+ o=tty, unit6=(o,hardcopy),
+ e=tty, unit59=(e,text)//" )

call gfsize (3,127000)
call fr80id ('film-only',0,1)
call keep80 (1,3)

call dders (-1)

c----------------------------------------------------------------------
cl 1. Read input

C
c... Default input values

c Wiggler
wlamda=0.06
nhalfp=13
do 23 i=1,nhpmax

23 f(i)=0.
rhelix=0.02
xcur=400.

nseg=32
bz0=0.38
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epsbz=0.0

xlamdf =1.0

c Electron beam

npart=32

rbeam=0.005

gamma=2.37

delpp=0.001

ild=0

omega=O.

beamcur=4.

C Integration parameters

zmin=-0.08

delz=0.005

nz=128

nplot s=0

ntrace=0

c Poisson solver parameters

numr=64

ntheata=64

phiwall=0.
rpipe=0.

c spacchrg=0. means no space charge calculated

c spacchrg .NE. 0. means space charge calculated

spacchrg=1.

10 continue

C

c Read input data

read(5,newrun)

iflag=0

do 11 i=1,nhalfp

if(f(i).ne.0) iflag=1
11 continue

if(iflag.eq.0) f(1)=1.

if(iflag.eq.0) f(nhalfp)=-1.

write(6,newrun)

nwigg=(nhalfp-1) /2

beta=sqrt (1.-i . /gamma**2)

bt=107.174*gamma*beta/wlamda

C-----------------------------------------------------------------------
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cl 2. Define wiggler

C

c Set units
call setunt('B')

C

c Define the (const.) guide field
call dfcnst(0.,0.,bzO)

C

c Define the wiggler geometry
C

zt=O.
xcs (1)=xcur*f (1)
xch(1)=xcs(1)
call termin(zt,rhelix,xcs(1),nseg,0.)
call dhelix(zt,rhelix,wlamda,nwigg,nseg,0.,xch(1))
call dhelix(zt,rhelix,wlamda,nwigg,nseg,pi,-xch(1))
zt=zt+wlamda/2.
do 51 i=2,nhalfp-1,2

xcs (i)=xcur*f(i)
xch(i)=xch(i-1)+xcs(i)
if(f(i).eq.0.) goto 40
call termin(zt,rhelix,xcs(i),nseg,pi)

40 call dhelix(zt,rhelix,wlamda,nwigg,nseg,0.,xch(i))
call dhelix(zt,rhelix,wlamda,nwigg,nseg,pi,-xch(i))

zt=zt+wlamda/2.

c
xcs(i+1)=xcur*f(i+1)
xch(i+1)=xch(i)+xcs(i+1)
if(f(i+1).eq.0.) goto 41

call termin(zt,rhelix,xcs(i+1),nseg,0.)
41 if(xch(i+1).eq.0.) goto 50

call dhelix(zt,rhelix,wlamda,nwigg,nseg,0.,xch(i+1))
call dhelix(zt,rhelix,wlamda,nwigg,nseg,pi,-xch(i+1))

50 zt=zt+wlamda/2.

51 continue

c-----------------------------------------------------------------------
cl 3. Initialization
c

c Initialize the particles

call inital
call pack(cyl)

56



C-----------------------------------------------------------------------

cl 4. Integration loop

C

c Integrate along z-direction
delzn=twopi/wlamda * delz

delzh=0.5*delzn
cdelz=cmplx(delzn,O.)

cdelzh=0.5*cdelz
npt2=2*npart
nplt=1000
if(nplots.ne.0) nplt=int(nz/nplots)
iiz=1

c
zp(1)=z1
do 99 ij=2,nz

zp(ij)=zp(ij-1)+delz
99 continue

do 100 iz=1,nz-1
if(iiz.ge.nplt.and.nplots.ne.0) then

call psplot(iz,1)
call psplot(iz,2)
call psplot(iz,3)
call psplot(iz,4)

iiz=0

end if
iiz=iiz+1
call diagno(iz)
zo=zl
zl=zO+delz
call ccopy(npt2,cyl,1,cy0,1)
call ccopy(npart,pz,1,pzold,1)
call parsim(zO,cy1,cyp1,pzp1)
if (spacchrg .eq. 1.) then

call poisson(zO,iz,cypi)
endif

call caxpy(npt2,cdelz,cypl,1,cyi,1)
do 105 ip=1,npart

pz(ip)=pz(ip)+delzn*pzpl(ip)

105 continue
call unpack(cyl)

call bfield(zi)
call parsim(zl,cyl,cyp2,pzp2)
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if (spacchrg .eq. 1.) then

call poisson(zI,iz,cyp2)

endif

do 110 i=1,npart

cyl(i)=cyo(i)+cdelzh*(cypl(i)+cyp2(i))

cyl(i+npart)=cyO(i+npart)+cdelzh*(cypl(i+npart)+

+ cyp2(i+npart))

pz(i)=pzold(i)+delzh*(pzpl(i)+pzp2(i))

110 continue

call unpack(cyl)

call bfield(z1)

100 continue

call diagno(nz)

c-----------------------------------------------------------------------
cl 9. Output

c
c Ouput on listing

write(6,'(2(a,f12.5))') ' Betaz =',ppz(nz),

+ ' rel. spread [%] =',pdelbz(nz)*100.

write(6,'(2(a,f12.5))') ' Alpha =',palpha(nz),

+ ' rel. spread [%] =',pdelal(nz)*100.

write(6,200) 'transition field BT = 1,bt,1[G]'
200 format (10x,a23,f8.2,1x,a3)

call cputim

c Graphics

call dhist('Z[m]','xoff,yoff',pxoff,pyoff)

c call histry('Z[m]','pertrbs',pertrbs)

call plotgen(phi,numr,0.,rpipe,'R[m]','phi(R)')

call plotgen(phi2,ntheata+1,0.,twopi,'theta','phi2(R)')

call plotgen(phi3,ntheata+1,0.,twopi,'theta','phi3(R)')
call plotgen(esave,numr,0.,rpipe,'R[m]','eperp(R)')

call plotfp('Z[m]','Bfields')
call histry('Z[m]','bpmean',bpmean)

call histry('Z[m]','pdelbp',pdelbp)

call histry('Z[m]','bzmean',bzmean)

call histry('Z[m]','pdelbz',pdelbz)

call histry('Z~m ','almean',palpha)
call histry('Z[m)','pdelal',pdelal)
call dhist('Z[m]','bpax,bpoff',bpaxis,bpoff)

call dhist('Z[m]','rgax,rgoff',rgaxis,rgoff)

call dhist('Z[m]','thax,thoff',thaxis,thoff)

call dhist('Z[m]','x,y mean',xxm,yym)
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call dhist('Z[m]','rax,roff',rax,roff)

call dhist('Z[m]','roff,maxr',roff,beamenv)

call histry('Z[m]','Beam Envelope',beamenv)

call histry('Z[m] ','ipMax' ,beamenip)

if (ntrace.NE.0) then

do 350 i=1,ntrace

do 300 j=1,nz

ptemp(j)=sqrt(ptrace(ntraces(i),1,j)**2+

+ ptrace(ntraces(i),2,j)**2)

300 continue

call histry('Z[m] ', 'rtrace' ,ptemp)

350 continue

endif

c Call graphics terminating routines

call donepl

call exit(1)

end

*dk dhelix

subroutine dhelix(zwl,rhelix,wlamda,nwigg,nseg,zphi,xcur)

c Define a helical current

c

*ca param

real cur

c-----------------------------------------------------------------------
c Initialization

xkw=2.*pi/wlamda

delzw=wlamda/nseg/2.

zb=zwl

xb=rhelix*cos(xkw*zb-zphi)
yb=rhelix*sin(xkw*zb-zphi)

c

c Define the helix

do 100 iz=1,nseg

za=zb

xa=xb
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ya=yb
zb=za+delzw

xb=rhelix*cos(xkw*zb-zphi)

yb=rhelix*sin(xkw*zb-zphi)

call dfbara(xa,ya,za,xb,ybzb,xcur)

100 continue

C-----------------------------------------------------------------------

return

end

*dk termin

subroutine termin(z,rhelix,xcur,nseg,thb)

c
c Termination loop

c

*ca param
real cur, ccur

c-----------------------------------------------------------------------
dth=2.*pi/nseg
xb=rhelix*cos(thb)
yb=rhelix*sin(thb)
cur=-xcur/2.
do 100 i=1,nseg

tha=thb
xa=xb
ya=yb
thb=tha+dth
xb=rhelix*cos(thb)

yb=rhelix*sin(thb)
call dfbara(xa,ya,z,xb,yb,z,cur)
if(i.eq.nseg/2) cur=-cur

100 continue
return

end
*dk inital

subroutine inital

c Initialize the particles

c

*ca param
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*ca combla

*ca comwig

*ca combea

*ca comint

*ca comdia

C-----------------------------------------------------------------------

dimension p1(2*npmax), p2(2*npmax)

c-----------------------------------------------------------------------

c set up radius of beam tunnel

if(rpipe.EQ.0.) then

rpipe=rhelix

endif

c Load a homogeneous cylindrical electron beam

if(ild.eq.0) then
c load in a square, then only keep those in circl

c ratio of area of square to area of circle is 4j
ratio=4./pi

c npload is number of paticles loaded into square

npload=nint(ratio*npart)

call loduni(1,npload,pl)

call loduni(2,npload,p2)

do 100 i=1,2*npart

p1(i)=2.*p1(i)-1.

p2(i)=2.*p2(i)-1.

100 continue

ip=0
do 110 i=1,npload

r2d=p1(i)**2+p2(i)**2

if(r2d.lt.1.) then

ip=ip+1

xarry(1,ip)=rbeam*pI(i)

xarry(2,ip)=rbeam*p2(i)

end if

110 continue

npart=ip

write(6,*) 'Actual number of particles us

else

xarry(1,1)=0.

xarry(2,1)=0.

xarry(1,2)=rbeam/sqrt(2.)

xarry(2,2)=rbeam/sqrt(2.)

end if

pi

ed ',npart
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c Initialize all particle ganmas to gamma
do 120 i=1,npart

gammas(i)=gamma
120 continue

C
c Fluctuations in (px,py)

if(omega.NE.0.0) then
c Rigid-Rotor loading
C

c namelist parameter omega is rotation rate of beam
c all particles get bz determined by gamma and particle on axis
c which is the paticle with zero perp momentum

bztemp=sqrt(1-(1/gamma)**2)
do 175 i=1,npart

bxtemp=-xarry(2,i)*omega/lspeed
bytemp=xarry(1,i)*omega/lspeed
gammas(i)=1/sqrt (1-bxtemp**2-bytemp**2-bztemp**2)
px(i)=gammas(i)*bxtemp

py(i)=gammas (i)*bytemp
pz(i)=gammas(i)*bztemp

175 continue
else if(delpp.eq.0.0) then

c Zero perp. velocity beam
call resetr(npart,px,0.0)
call resetr(npart,py,0.0)
call resetr(npart,alpha,0.0)

do 150 i=1,npart
pz0=sqrt(gammas(i)**2-1.0)
pz(i)=pzO

150 continue
else

call loduni(3, 2*npart, p1)
call loduni(5, 2*npart, p2)
do 200 i=1,2*npart

p1(i)=2.*p1(i)-1.
p2(i)=2.*p2(i)-1.

200 continue
ip=0

do 210 i=1,2*npart
r2d=pl(i)**2+p2(i)**2

if(r2d.lt.1.) then
ip=ip+1
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px(ip)=delpp*p1(i)

py(ip)=delpp*p2(i)
pp(ip)=sqrt(px(ip)**2+py(ip)**2)

betap(ip)=pp(ip)/gmmas(ip)
pz(ip)=sqrt(gammas(ip)**2-1.0-px(ip)**2-py(ip)**2)

alpha(ip)=sqrt(px(ip)**2+py(ip)**2)/pz(ip)
if(ip.eq.npart) goto 211

end if

210 continue
npart=ip

211 continue
end if

C **************************************

c Assign uniform current to each particle. Total current

c is beamcur. Also normalize the current. multiply by e/mccubedkw

c first make beamcur negative since we are using electrons in the

c beam
beamcur=-beamcur

do 250,i=1,npart
acurrent(i)=beamcur*esubmc2*wlamda/(npart*lspeed*twopi)

250 continue
c
c The magnetic fields

zl=zmin
call bfield(zi)

c
c Indexes of on axis and off axis particles

zrmin= . elO

zrmax=0.0

do 300 ip=1,npart
zr2=xarry(i,ip)**2+xarry(2,ip)**2
if(zr2.gt.zrmax) then

ipoff=ip
zrmax=zr2

end if
if(zr2.lt.zrmin) then

ipaxis=ip

zrmin=zr2
end if

300 continue

c
c indexes of other particles to trace
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c this works because particles' inital x's are uniform and in order

c because of the way LODUNI works on the 1st Hammersley sequence

if (ntrace.NE.0) then

do 400 i=1,ntrace

ntraces(i)=i*npart/(2*(ntrace+1))

400 continue

endif

c Initialize the diagnostics

thaxis(1)=pi/2.

thof f(l)=thaxis (1)

return

end

*dk pack

subroutine pack(cy)

c-==================================================================
c Pack simulations variables

c
*ca param

*ca combla

*ca combea

*ca comwig

c-----------------------------------------------------------------------
dimension cy(*)

c-----------------------------------------------------------------------
xk=twopi/wlamda

cexpo=cexp(cmplx(0.,-xk*z1))

do 100 ip=1,npart

cy(npart+ip)=cmplx(px(ip),py(ip))*cexpo

cy(ip)=cmplx(xarry(1,ip),xarry(2,ip))*xk

100 continue

return

end

*dk unpack

subroutine unpack(cy)

c Unpack simulations variables

c

*ca param

*ca combla
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*ca combea

*ca comwig

*ca comint

C-----------------------------------------------------------------------

dimension cy(*)

C-----------------------------------------------------------------------

xk=twopi/wlamda

cconst=cexp( cmplx(0.,xk*zl) )
do 100 ip=1,npart

xarry(1,ip)=real(cy(ip))/xk

xarry(2,ip)=aimag(cy(ip))/xk

px(ip)= real( cconst*cy(npart+ip) )

py(ip)=aimag( cconst*cy(npart+ip) )

pp(ip)=sqrt(px(ip)**2+py(ip)**2)

gammas(ip)=sqrt(pz(ip)**2+pp(ip)**2+1)

alpha(ip)=pp(ip)/pz(ip)

betap(ip)=pp(ip)/gammas(ip)

100 continue

return

end

*dk parsim

subroutine parsim(z,cy,cyp,pzp)

c Define equations of motion

c

*ca param

*ca combla

*ca comwig

*ca combea

C-----------------------------------------------------------------------

dimension pzp(*),cy(*),cyp(*)

complex cexpo,cpplus

c-----------------------------------------------------------------------
zbar=twopi/wlamda * z

cexpo=cmplx(cos(zbar),sin(zbar))

c

c The derivatives

do 200 ip=1,npart

cpplus=cexpo*cy(npart+ip)/pz(ip)

cyp(ip)=cpplus

cyp(npart+ip)=cmplx(0.,-1.)*((1.-barry(3,ip)/pz(ip))*
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+ cy(npart+ip)+conjg(cexpo)*cmplx(barry(1,ip),barry(2,ip)))

pzp(ip)=barry(1,ip)*aimag(cpplus)-barry(2,ip)
+ *real(cpplus)

200 continue
C

return
end

*dk bfield
== = === == == ==== == ====== === =====

subroutine bfield(z)

c Calculate the mag. fields using COIL3
c

*ca param
*ca combla
*ca comwig
*ca comdia
*ca combea
c-----------------------------------------------------------------------
c Calculate the magnetic fields

do 100 ip=1,npart

100 xarry(3,ip)=z
call magfld(npart,xarry,.false.,.false.,barry,dummy,dummy)

c
c Simulate the fluctuations in Bz

if(epsbz.ne.0.) then
zcos=epsbz*bzO*cos(twopi*z/xlamdf)/xlamdf*pi
zsin=epsbz*bzO*sin(twopi*z/xlamdf)/xlamdf*pi
zdb=epsbz*bzO*sin(twopi*z/xlamdf)

do 110 ip=1,npart
barry(1,ip)=barry(1,ip)-zcos*xarry(1,ip)

barry(2,ip)=barry(2,ip)-zsin*xarry(2,ip)
barry(3,ip)=barry(3, ip)+zdb

110 continue

end if
C

c Normalize the fields

fnorm=esubmc/(twopi/wlamda)
do 200 i=1,3
do 200 ip=1,npart

200 barry(i,ip)=fnorm*barry(i,ip)

c
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return
end

*dk diagno

subroutine diagno(iz)

c Calculate the mag. fields using COIL3

*ca param

*ca combla

*ca comwig

*ca combea

*ca comdia

*ca comint

C-----------------------------------------------------------------------

dimension xx(512),yy( 5 1 2)

real gmmamean,pzmean

C-----------------------------------------------------------------------

C

c The electrons

xkw=twopi/wlamda

call xmean(alpha,npart,almean)

palpha(iz)=almean

call stdef(alpha,npart,alsig)

if (almean.EQ.0.) then

almean=1.e-12

endif

pdelal(iz)=alsig/almean
call xmean(pz,npart,pzmean)

call xmean(gammas,npart,gmmamean)

bzmean(iz)=pzmean/gmmamean

bpmean(iz)=1.-bzmean(iz)**2-1./gmmamean**2
if (bpmean(iz).LT.O.) then

bpmean(iz)=O.
endif

bpmean(iz)=sqrt(bpmean(iz))

bztemp=pz(ipoff)/gammas(ipoff)
call stdef(betap,npart,bpsig)

if (bpmean(iz).EQ.0.) then
bpmean(iz)=1.e-12

endif

pdelbp(iz)=bpsig/bpmean(iz)
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call stdef(pz,npart,pzsig)

pdelbz(iz)=pzsig/pzmean

pxaxis(iz)=xarry(1,ipaxis)

pyaxis(iz)=xarry(2,ipaxis)

pxoff(iz)=xarry(1,ipoff)

pyoff(iz)=xarry(2,ipoff)

rax(iz)=sqrt(pxaxis(iz)**2+pyaxis(iz)**2)

roff(iz)=sqrt(pxoff(iz)**2+pyoff(iz)**2)

do 6 i=1,npart

xx(i)=xarry(1,i)

yy(i)=xarry(2,i)

6 continue

call xmean(xx,npart,xxmean)

call xmean(yy,npart,yymean)

xxm(iz)=xxmean

yym(iz)=yymean

c Find farthest off-axis particle. This is not the same as

c ipoff since that particle only started out farthest off-axis.

beamtemp=0.

do 50 i=1,npart

beamt2=xarry(1,i)**2+xarry(2,i)**2

if (beamt2.GT.beamtemp) then

beamtemp=beamt2

beamenip(iz)=i

endif

50 continue

beamenv(iz)=sqrt(beamtemp)

C

c Save information about traced particles

if (ntrace.NE.0) then

do 60 i=1,ntrace

ptrace(ntraces(i),1,iz)=xarry(1,ntraces(i))

ptrace(ntraces(i),2,iz)=xarry(2,ntraces(i))

60 continue

endif

c The guiding centers

crg=cmplx(pxaxis(iz),pyaxis(iz))

if(bz0.ne.0.)

+ crg.=crg+cmplx(O.,1./(esubmc*bz0))
+ *cmplx(px(ipaxis),py(ipaxis))
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rgaxis(iz)=cabs(crg)

crg=cmplx(pxoff (iz) ,pyoff (iz))
if(bzO.ne.0.)

+ crg=crg+cmplx(O.,1./(esubmc*bzO))

+ *cmplx(px(ipoff),py(ipoff))

rgoff (iz)=cabs (crg)

c Obtain B-field for particle on,off axis

xref(1,1)=xarry(1 ,ipaxis)

xref (2,1)=xarry(2,ipaxis)

xref(3,1)=zp(iz)

call magfld(1,xref, .false.,.false.,bref,dummy,dummy)

bpaxis(iz)=sqrt(bref(1,1)**2+bref(2,1)**2)

xref(1,1)=xarry(1,ipoff)

xref (2, 1)=xarry(2,ipoff)

xref(3,1)=zp(iz)

call magfld(1,xref,.false.,.false.,bref,dummy,dummy)

bpoff(iz)=sqrt(bref(1,1)**2+bref(2,1)**2)

c Calculate slowly-varying phase for innermost and outermost particles

if(iz.gt.1) then

z=(iz-1)*delz+zmin

zbar=xkw*z

if(px(ipaxis).ne.0.) then

targl=atan(py(ipaxis)/px(ipaxis))
else

targl=pi/2.

end if

if(px(ipoff).ne.O.) then
targ2=atan(py(ipoff)/px(ipoff))

else

targ2=pi/2.

end if

xl=nwigg*wlamda

if(z.lt.O.) zbar=O.

if(abs(z-xl).lt.delz) zbarl=zbar

if (z .gt. xl) zbar=zbarl

thl=zbar-targl+pi/2.

th2=zbar-targ2+pi/2.

psil=thl-int (thi/twopi)*twopi

69



psi2=th2-int(th2/twopi)*twopi

if(psil.ge.pi) psil=psil-pi

if(psil.le.0.) psil=psil+pi

if(psi2.ge.pi) psi2=psi2-pi

if(psi2.le.0.) psi2=psi2+pi

thaxis(iz)=psil

thoff(iz)=psi2

thzbar(iz)=zbar

thtarl(iz)=-targl

thtar2(iz)=-targ2

end if

c Obtain B-field for reference on z-axis

if(iz.eq.nz) then

xref(1,1)=0.

xref(2,1)=0.

do 100 i=1,nz

xref(3,1)=zp(i)

call magfld(1,xref,.false.,.false.,bref,dummy,dummy)

bxref(i)=bref(1,1)

byref(i)=bref(2,1)

bpref(i)=sqrt(bxref(i)**2+byref(i)**2)

100 continue

end if

c

return

end

*dk loduni

SUBROUTINE LODUNI(NBASE,N,Y)

c ----------------------------
c
c Load an uniform distribution using the Hammersley's sequence.

c (NBASE=0 ==> Random sampling !)
c

c-------------------------------------------------------------------------
DIMENSION Y(*)

c-------------------------------------------------------------------------
c

c Random and Quasi-Random Loading

c

IF(NBASE.EQ.0) THEN

C
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Random

DO 100 I=1,N
100 Y(I) - RANF(DUMMY)

First elemenent

ELSE IF(NBASE.EQ.1)

DO 110 I=1,N

110 Y(I) = (I-0.5)/N

of Hammersley's sequence
THEN

Radical-inverse Function in base NBASE

ELSE IF(NBASE.GT.1) THEN

DO 120 I=1,N

XS = 0.
XSI = 1.0

J2 = I

I XSI = XSI/NBASE
J1 = J2/NBASE

XS = XS + (J2-NBASE*J1)*XSI
J2 = J1
IF( J2.GT.0 ) GOTO 1

120 Y(I) = XS
END IF

c
RETURN

END
*dk resetr

SUBROUTINE RESETR(KN,PA,PVALUE)

c -------------------------------
c

c Set real array PA to PVALUE.

c

c------------------------------------------------------------------------

DIMENSION PA(*)

c-------------------------------------------------------------------------
DO 100 K=1,KN

PA(K) = PVALUE
100 CONTINUE

c

RETURN

END

*dk reseti

SUBROUTINE RESETI(KN,KA,KVALUE)
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c -------------------------------

c

c Set integer array KA to KVALUE.

C

C -----------------------------------------------------------------------------------------------

DIMENSION KA(*)

C--------------------------------------------------------------------------

DO 100 K=1,KN

KA(K) = KVALUE
100 CONTINUE

c

RETURN

END

*dk resetc

SUBROUTINE RESETC(KN,CA,CVALUE)

c -------------------------------

c Set complex array CA to CVALUE.

C

c--------------------------------------------------------------------------

COMPLEX CA(*), CVALUE

c--------------------------------------------------------------------------

DO 100 K=1,KN

CA(K) = CVALUE

100 CONTINUE

C

RETURN

END
*dk cputime

SUBROUTINE CPUTIM

C

c Display cpu-time used so far

c

CALL SECOND(USETIM)

CALL RVAR('CPU-TIME USED SO FAR ',USETIM)

RETURN

END

*dk daytim

SUBROUTINE DAYTIM
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c Display current time and date

C

CALL TIMEDATE(TIM,DAT,MACH,SUFIX)

WRITE(6,9900) DAT, TIM, MACH, SUFIX

9900 FORMAT(5X,'CURRENT DATE AND TIME',A10,2X,A1O,2X,

F A1,'/',A1)

RETURN

END
*dk rvar

SUBROUTINE RVAR( LABEL, PVAR )

C

CHARACTER*(*) LABEL

C

WRITE(6,'(5X,A,E12.4)') LABEL, PVAR

C

RETURN

END

*dk plotfp

C-=--===================--------=-== --======----== == == ============ =====- =

subroutine plotfp(xlabel,ylabel)

c
*ca param

*ca comdia

*ca comint

C

character*(*) xlabel,ylabel

C

C----------------------------------------------------------------------

call aminmx(bxref,1,nz,1,yminl,ymaxl)

call aminmx(byref,1,nz,1,ymin2,ymax2)

call aminmx(bpref,1,nz,1,ymin3,ymax3)

ymin=ymin1

ymax=ymax1

if(ymin.ge.ymin2) ymin=ymin2
if(ymin.ge.ymin3) ymin=ymin3
if(ymax.le.ymax2) ymax=ymax2
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if (ymax . . ymax3) ymax=ymax3

if(ymin.eq.ymax) then

ymin=0. 95*ymax

ymax=1.05*ymax

end if

ymin=ymin-(ymax-ymin)*.05

ymax=ymax+(ymax-ymin)*.05

call maps (zmin,zp(nz) ,ymin,ymax)

call setch(15.,1.,0,0,2,0,0)

call crtbcd(xlabel,1)

call setch(0.5,40.,0,0,2,1,0)

call crtbcd(ylabel,1)

call setpch(1,0,3,0,100)

call tracep(zp,bxref ,nz)

call tracep(zp,byref,nz)

call trace(zp,bpref,nz)

call frame

RETURN

END

*dk histry

subroutine histry(xlabel,ylabel,y)

c

*ca param
*ca comdia
*ca comint
c

character*(*) xlabel,ylabel
dimension y(*)

c---------------------------------------------------------------------

call aminxmx(y,1,nz,1,ymin,ymax)

if(ymin.eq.ymax) then
ymin=0 .95*ymax

ymax=1.05*ymax
end if
ymin=ymin-(ymax-ymin)*.05

ymax=ymax+(ymax-ymin)*.05

call maps (zmin,zp(nz) ,ymin,ymax)
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call maps (zminzp(nz) ,yminymax)

74

jI

[

F F
F F FF F

F IF

F I

F I~ I F

I F

F F

F F

F IF~ IF



call setch(15.,1.,0,0,2,0,0)

call crtbcd(xlabel,1)

call setch(0.5,40.,0,0,2,1,0)

call crtbcd(ylabel,1)

call setpch(1,0,0,0,1)

call trace(zp,y,nz)

call frame
RETURN

END

*dk dhist

=================== === === === == = = == == == = = == = = ===

subroutine dhist(xlabel,ylabel,xl,y)

c

*ca param

*ca comdia

*ca comint

c
character*(*) xlabelylabel

dimension y(*),xl(*)

C----------------------------------------------------------------------

call aminx(xl,1,nz,1,xmin,xmax)

call aminmx(y,1,nz,1,ymin,ymax)

if(xmax.ge.ymax) ymax=xmax

if(xmin.le.ymin) ymin=xmin

if(ymin.eq.ymax) then

ymin=0.95*ymax

ymax=1.05*ymax

end if

ymin=ymin-(ymax-ymin)*.05

ymax=ymax+(ymax-ymin)*.05

call maps(zmin,zp(nz),ymin,ymax)
call setch(15.,1.,0,0,2,0,0)

call crtbcd(xlabel,1)

call setch(0.5,40.,0,0,2,1,0)

call crtbcd(ylabel,1)
call setpch(1,0,0,0,1)

call trace(zp,xi,nz)

c At least a temporary change so that both graph linesc

c are visable. Dotted lines don't come out on QMS printers
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c call tracep(zp,y,nz)
call trace(zp,y,nz)

*ad
call frame

RETURN
END

*dk psplot

subroutine psplot(iz,icontrol)

C

*ca param
*ca combla

*ca combea
*ca comdia
*ca comint
c----------------------------------------------------------------------

dimension yy( 4 0 9 6 ),xx(4096)

c----------------------------------------------------------------------

zout=zp(iz)
if(icontrol.Eg.1) then

do 105 i=1,npart
xx(i)=xarry(1,i)*1000.
yy(i)=xarry(2,i)*1000.

105 continue
xlabel='x [mm]'

ylabel='y [mm)'

else if(icontrol.EQ.2) then

do 200 i=1,npart

xx(i)=xarry(1,i)**2+xarry(2,i)**2
xx(i)=sqrt(xx(i))*1000.
yy(i)=sqrt(py(i)**2+px(i)**2)/gammas(i)

200 continue

xlabel='R [mm]'
ylabel='BetaP'

else if(icontrol.EQ.3) then

do 300 i=1,npart

xx(i)=xarry(1,i)**2+xarry(2,i)**2
xx(i)=sqrt(xx(i))*1000.

theata=atan2(xarry(2,i),xarry(1,i))

yy(i)=cos(theata)*py(i)-sin(theata)*px(i)
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yy(i)=yy(i)/gammas(i)
300 continue

xlabel='R [mm]'

ylabel='BetaTh'

else if(icontrol.EQ.4) then

do 400 i=1,npart

xx(i)=xarry(1,i)**2+xarry(2,i)**2

xx(i)=sqrt(xx(i))*1000.

theata=atan2(xarry(2,i),xarry(1,i))

yy(i)=cos(theata)*px(i)+sin(theata)*py(i)

yy(i)=yy(i)/gammas(i)

400 continue

xlabel='R [mm]'

ylabel='BetaR'

endif

call aminxmx(xx,1,npart,1,xmin,xmax)

call aminmx(yy,1,npart,1,ymin,ymax)

if (xmin.eq.xmax) then

xmin=0.5*xx(1)

xmax=3.*xmin

else

xmin=xmin-(xmax-xmin)*.05

xmax=xmax+(xmax-xmin)*.05

end if

if (ymin.eq.ymax) then

ymin=0.5*yy(i)

ymax=3.*ymin

else

ymin=ymin-(ymax-ymin)*.05

ymax=ymax+(ymax-ymin)*.05

end if
call maps(xmin,xmax,ymin,ymax)

call setch(15.,1.,0,0,2,0,0)

call crtbcd(xlabel,1)

call setch(0.5,40.,0,0,2,1,0)

call crtbcd(ylabel,1)

call setpch(1,0,0,0,1)

call pointc('*',xx,yy,npart)

call setch(10.,.5,0,0,1,0,0)

write(100,1000) zout

call frame
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1000 format (35x,'Z = ',e1O.3,'m')

RETURN

END

*dk stdef

subroutine stdef (x,n, sigma)

c
dimension x(*)

C-----------------------------------------------------------------------
c
c First calculate the arithmatic mean

C

call xmean(x,n,y)

c Now calculate the variance

c
varsum=0.

do 200 i=1,n

varsum=varsum+(x(i)-y)**2

200 continue

var=varsum/(n-1)

sigma=sqrt (var)

RETURN

END

*dk xmean

subroutine xmean(x,n,xm)

c
dimension x(*)

c----------------------------------------------------------------------
c

xm=0.

do 100 i=1,n

xm=xm+x(i)

100 continue

xm=xm/n
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RETURN

END

*dk poisson

C========== ======== = == ==========

subroutine poisson(z,iz,cyp)

c Calculate space charge effects by solving

c Poisson's equaition on a polar grid using

c HWSPLR in the SLATEC3 library.

c Operates on xarray (lab-frame coords) so UNPACK should

c be run before use

c Returns array cyp filled with normalized coordinate

c derivitaves of paricle momentum with respect to z

c (adds the effects from space charge forces to whatever

c is already in cyp)

c
c note: numr is number of concentric grid lines including origin and wall

c ntheata is number of radial grid lines. note that HWSPLR thinks there

c are ntheata+1 radial grid lines, but line number ntheata+1

c overlaps line number I becuase of theata wrap-around. This

c leads to some differences in the way r and theata are handled.

c be careful. Look at formulae for deltar and dtheata to see what

c I mean....

*ca param

*ca comdia

*ca combea

*ca comwig

*ca comint

*ca combla

real z,drsquard

integer i,j,k,n,ierror,izpartjk(2,npmax)

dimension cyp(*)

c can I dimension grid(numr,ntheata) on the fly or must it

c be static?

real grid(numrmax,nthmax+1),rtheata(2,npmax),deltar
real dtheata,dummy,workspc(3500)

c real workspc(4*(nthmax+1)+(13+

c + int(log2(nthmax)))*numrmax)

real pertrb,origin,area,subxk,zbar,charge,roe

complex cegrid(numrmax,nthmax+1),certh(npmax),cexpo
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c cegrid(j,k)=Eradial at r=j, theata=k plus i* Etheata at r=j,theata=k
c
c First assign the charge from each particle to the
c surrounding grid points

C
c initialize the grid

do 2 j=1,numr+1

do 4 k=1,ntheata+1

grid(j,k)=0.

4 continue

2 continue

c

c figure out distance between grid points

deltar=rpipe/(numr-1)

" no -1 next to ntheata since theata wraps around

dtheata=twopi/ntheata

c change to r-theata coordinates

do 10 i=1,npart

rtheata(1,i)=sqrt(xarry(1,i)**2+xarry(2,i)**2)

rtheata(2,i)=atan2(xarry(2,i),xarry(1,i))

if (rtheata(2,i).LT.0.) then

rtheata(2,i)=rtheata(2,i)+twopi

endif

c atan2 returns value -pi<ang<=pi

c I want things in the form 0<=ang<2*pi

o The above makes the form 0-<=and<pi

c which will be ok whne the next couple of lines

c makes the angle into an integer grid point k

10 continue

c

c This loop actually assigns charge to gridpoints

drsquard=deltar*deltar

c tcurrent=0.

c tcharge=0.

do 20 i=1,npart

c

c Convert from r-theata to j-k (integer) coords

c do I need the plus ones?

" does the HWSPLR want from 0 to n-1 or from 1 to n?

j=int(rtheata(1,i)/deltar)+1

k=int(rtheata(2,i)/dtheata)+1

c save particle grid coords

80



partjk(1,i)=j
partjk(2,i)=k

C

c calculate charge density from current on each particle

charge=acurrent(i)*gammas(i)/pz(i)

c tcurrent=tcurrent+acurrent(i)

c tcharge=tcharge+charge

c minus sign since delsquared phi= minus roe/eO right??

c
c assign normalized charge to grid points based on

c area. see page 337 of Birdsall and Langdon

c Plasma Physics via computer simulation

c normalized charge is e/mcsquared per particle

area=drsquard*(j*j-(j-1)*(j-1))*dtheata

c
grid(j,k)=grid(j,k)+charge*(j*j*drsquard-

+ rtheata(1,i)*rtheata(1,i))*(k*dtheata-

+ rtheata(2,i))/area

grid(j+1,k)=grid(j+1,k)+(rtheata(1,i)*

+ rtheata(1,i)-(j-1)*(j-1)*drsquard)*

+ (k*dtheata-rtheata(2,i))/area*charge

grid(j,k+1)=grid(j,k+1)+charge*(j*j*

+ drsquard-rtheata(1,i)*rtheata(1,i))

+ *(rtheata(2,i)-(k-1)*dtheata)/area

grid(j+1,k+1)=grid(j+1,k+1)+charge*

+ (rtheata(1,i)*rtheata(1,i)-(j-1)*(j-1)*

+ drsquard)*(rtheata(2,i)-(k-1)*dtheata)

+ /area

20 continue

C

C

Now fix things up. All angles at r=0 should get

total charge density at r=O as per HWSPLR instructions and

charge assigned to k=ntheata+1 should get added in

to k=1 row since the angle really wraps around.

Also, charge density assigned to j,ntheata+1 should be
made equal to that at j,1.

This should be faster than a MOD ntheata in the above loop.

origin=0.
do 30 k=1,ntheata+1

origin=origin+grid(1,k)
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30 continue

C

c do 40 k=1,ntheata+1

c grid(l,k)=origin

c40 continue

C

do 50 j=1,numr

grid(j,1)=grid(j,1)+grid(j,ntheata+1)

grid(j,ntheata+1)=grid(j,1)

50 continue

c

c Now convert all of this to charge density from charge

do 55 j=2,numr-1

do 58 k=1,ntheata+1

grid(j,k)=-grid(j,k)/(epsilonO*drsquard*(j-1)*

+ dtheata)

58 continue

c origin is done differently

55 continue

grid(1,1)=-origin*4/(epsilonO*pi*drsquard)

do 59 k=2,ntheata+1

grid(1,k)=grid(1,1)

59 continue

c
c Put in boundary conditions

do 60 k=1,ntheata+1

grid(numr,k)=phiwall

60 continue

c

c All set to call HWSPLR

c

c

c Call HWSPLR to solve for phi (potential)
call hwsplr(0.,rpipe,numr-1,5,dummy,dummy,O.,

+ twopi,ntheata,0,dummy,dummy,0.,grid,numrmax,

+ pertrb,ierror,workspc)

c Now check for errors, etc.

if (ierror .ne. 0) then

write(6,*) 'warning *****'

write(6,*) 'IERROR=',ierror

write(6,*) 'in HWSPLR'
endif
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c save pertrb to be graphed later to check for largeness

c see HWSPLR instructions and think about this somemore

pertrbs(iz)=pertrb

c save a copy of phi along a radius at start

c to help see if this is working ok

if (z .eq. zmin) then

do 70 j=1,numr

phi(j)=grid(j,i)

70 continue

do 72 k=1,ntheata+1

phi2(k)=grid(8,k)

phi3(k)=grid(48,k)

72 continue

endif

c Calculate e from phi

call phitoe(grid,cegrid)

c

c save a copy of E along a radius to help see if this is working

c ok.

if (z .eq. zmin) then

do 75 j=1,numr

esave(j)=real(cegrid(j,1))

75 continue

endif

c

c

c Assign E's to particles based on area

c first initialize array

do 80 i=1,npart

certh(i)=0.

80 continue

c now loop on particles and assign the E's

do 90 i=1,npart

drsquard=deltar*deltar

c retrieve particle grid coords

j=partjk(1,i)
k=partjk(2,i)

c now assign the fields

area=drsquard*(j*j-(j-i)*(j-1))*dtheata

cc write(6,*) 'i,area',i,area

cc write(6,*) 'j,k',j,k

weight1=(j*j*drsquard-
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+ rtheata(1,i)*rtheata(1,i))*(k*dtheata-

+ rtheata(2,i))/area

weight2=(rtheata(1,i)*

+ rtheata(1,i)-(j-1)*(j-1)*drsquard)*

+ (k*dtheata-rtheata(2,i))/area

weight3=(j*j*drsquard-rtheata(1,i)*rtheata(1,i))

+ *(rtheata(2,i)-(k-1)*dtheata)/area

weight4=(rtheata(1,i)*rtheata(1,i)-(j-1)*(j-l)*
+ drsquard)*(rtheata(2,i)-(k-1)*dtheata)

+ /area

certh(i)=weightl*cegrid(j,k)+weight2*
+ cegrid(j+1,k)+weight3*cegrid(j,k+1)+

+ weight4*cegrid(j+1,k+1)

90 continue

c Convert Er, Etheata to normalized E in rotating frame (Epluswiggle)

c Epluswiggle is e/mcsquared (Ex+iEy)exp(-ikwz)

c and figure out effects on dp/dz 's

c add this result into cyp()

subxk=wlamda/twopi

zbar=z/subxk

do 100 i=1,npart

cexpo=cexp(cmplx(0.,rtheata(2,i)-zbar))

cyp(npart+i)=cyp(npart+i)-cexpo*certh(i)*
+ gammas(i)/pz(i)

100 continue

c all done believe it or not

return

end

*ad

*dk phitoe

c

subroutine phitoe(grid,cegrid)

c calcule E from phi. E=-grad phi
c the equations for this in polor coords from

c pages 332-335 of Birdsall and Langdan Plasma Physics

c via computer simulation

c

*ca param

*ca combla

*ca comwig
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*ca comint
dimension grid(numrmax,nthmax+1)
complex cegrid(numrmax,nthmax+1)
integer i,j,k
real deltar,twodr,dtheata,twodth,er,eth

C

deltar=rpipe/(numr-1)
dtheata=twopi/ntheata
twodr=deltar*2
twodth=dtheata*2
dr2dth=twodth*deltar

C

c question** does HWSPLR rerturn grid(1,k) all equal to phi(0)?
c do it for all grid points except near origin and wrap-arounds

do 10 j=2,numr-1
do 20 k=2,ntheata-1

cegrid(j,k)=cmplx((grid(j-l,k)-grid(j+1,k))/twodr,
+ (grid(j,k-1)-grid(j,k+1))/(dr2dth*(j-1)))

20 continue
10 continue

C

c fixup fields near theata wrap-around
do 30 j=2,numr-1

cegrid(j,1)=cmplx((grid(j-1,1)-grid(j+1,1))/twodr,
+ (grid(j,ntheata)-grid(j,2))/(dr2dth*(j-1)))

cegrid(j,ntheata)=cmplx((grid(j-1,ntheata)-grid(
+ j+1,ntheata))/twodr, (grid(j ,ntheata-1)-grid(
+ j,1))/(dr2dth*(j-1)))

30 continue
c
c fixup Er amd Etheata near origin and near boundary

do 40 k=1,ntheata
cegrid(1,k)=cmplx((grid(1,k)-grid(2,k))/deltar,

+ aimag(cegrid(2,k)))

cegrid(numr,k)=cmplx((grid(numr-1,k)-grid(numr,k))
+ /deltar,0.)

40 continue

c copy fields at j,k=1 to j,k=ntheata+1 so to avoid MODs when assigning
c E's from grid to particles.

do 50 j=1,numr
cegrid(j,ntheata+1)=cegrid(j,1)
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50 continue

c all done
return
end

*ad

*dk plotgen
C

subroutine plotgen(y,numx,xmin,xmax,xlabel,ylabel)

c plots array y from xmin to xmax. numx is number of points
c to plot
*ca param

character*(*) xlabel,ylabel

dimension y(*)
real xmin,xmax,r(nzmax) ,ymax,ymin
integer numx

C

call aminmx(y,1,numx,1,ymin,ymax)
if (ymin .eq. ymax) then

ymin=0 .95*ymax
ymax=1.05*ymax

endif
ymin=ymin-(ymax-ymin)*.05
ymax=ymax+(ymax-ymin)*.05

c write(6,*) 'ymin,ymax',ymin,ymax
r(1)=xmin
deltar=(xmax-xmin) /(numx-1)
do 10 i=2,numx

c write(6,*) y(i)

r(i)=r(i-1)+deltar
10 continue

call maps(xmin,r(numx) ,ymin,ymax)
call setch(15.,1.,0,0,2,0,0)

call crtbcd(xlabel,1)
call setch(O.5,40.,0,0,2,1,0)

call crtbcd(ylabel,1)
call setpch(1,0,0,0,1)

call trace(r,y,numx)
call frame

return

end
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