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Abstract
Minority regime fast wave ICRF heating experiments have been conducted on

the Alcator C tokamak. The purpose of these experiments was to study ICRF
heating in a compact high-field device at RF power levels sufficient to produce
experimentally significant changes in plasma properties, and in particular to inves-
tigate the scaling to high density of the RF heating efficiency. Up to 450 kW of RF
power at frequency f = 180 MHz, was injected into plasmas composed of deuterium
majority and hydrogen minority ion species at magnetic field B 0 = 12 T, density

0.8 < A, 5 x 1020 m- 3 , ion temperature TD(O) ~ 1 keV, electron temperature

Te(0) ~ 1.5-2.5 keV, and minority concentration 0.25 < 77H 8%.

Deuterium heating ATD(0) = 400 eV was observed at fi, = 1 x 1020 m- 3 , with
smaller temperature increases at higher density. However, there was no significant
change in electron temperature and the minority temperatures were insufficient
to account for the launched RF power. Minority concentration scans indicated
most efficient deuterium heating at the lowest possible concentration, in apparent
contradiction with theory. Incremental heating jc = AW/AP up to 5 ms was

independent of density, in spite of theoretical predictions of favorable density scaling
of RF absorption and in stark contrast to Ohmic confinement times T= WIP which

increased from 5 ms at fi. = 0.5 x 10 20 m- 3 to 20 ms at f, = 3 x 1020 m- 3 .

After accounting for mode conversion and minority losses due to toroidal field

ripple, unconfined orbits, asymmetric drag, neoclassical and sawtooth transport,
and charge-exchange, it was found that the losses as well as the net power deposi-

tion on deuterium do scale very favorably with density. Nevertheless, when the net

RF and Ohmic powers deposited on deuterium are compared, they are found to be

equally efficient at heating the deuterium. This result is attributed to the ion ther-

mal conductivity, which becomes increasingly anomalous with increasing density on

Alcator C. This anomaly has been previously observed on Alcator C and is believed

responsible for the saturated confinement regime typical of high-density Alcator C
plasmas. If this anomalous ion confinement can be eliminated in future high-density

ICRF experiments, as has been done previously on Alcator C using pellet-fueled

Ohmic discharges, then these future experiments are likely to be successful.

Thesis Supervisor: Dr. Ronald R. Parker
Title: Professor of Electrical Engineering
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1.1: Introduction and Motivation

In order to produce thermonuclear fusion reactions, it is necessary to heat the
reactants to a temperature at which the cross section for fusion reactions is signifi-
cant. In order to achieve a net energy gain from the reaction, it is also necessary to

limit the loss of energy from the system to a sufficiently low value.[1] In a tokamak,
the reactants are in the form of a highly ionized gas (a plasma) confined inside a
toroidal vacuum chamber by magnetic fields, and are heated resistively by driving
a toroidal current through the plasma. The poloidal magnetic field associated with
the induced toroidal current, as well as a separately imposed toroidal magnetic field,

both play key roles in the confinement equilibrium and stability of the plasma.[2, 3]

Thus, in a purely ohmically heated tokamak, the heating and confinement mecha-
nisms are necessarily linked, and limitations involved with one of these mechanisms
can indirectly affect the other.

There are several phenomena which limit the effectiveness of ohmically heating
a magnetically confined plasma. Among the most basic of these is the nature of
Coulomb collisions of unshielded charged particles. Since Ohmic heating involves
Coulomb collisions, and since the cross section for Coulomb collisions decreases
with increasing particle velocity, the electrical resistance of a plasma decreases as

its temperature increases.4) Thus, the effectiveness of Ohmic heating degrades at

higher temperatures, in that a disproportionately larger increase in plasma current

is needed in order to effect any certain temperature increase. In fact, the dependence

of plasma temperature on current is complicated in many ways by the interactions

between magnetic fields, currents, and thermal transport properties, a discussion

of which would be quite lengthy and inappropriate to be included in this writing.

Nevertheless, based on these simple considerations, it is valid to say that the ef-

fectiveness of Ohmic heating is limited by the linking between the Ohmic heating

current and various stability and transport limitations. At the time of this writing,

it is doubtful (although by no means certain) that a magnetically confined plasma

can be brought to thermonuclear ignition by means of Ohmic heating alone.

These considerations motivate the exploration of alternative heating methods

for magnetically confined plasmas, i.e., for techniques that allow the heating and

confinement mechanisms to be decoupled. One possible strategy would be to give

substantial kinetic energy to neutral atoms before injecting them into the tokamak.

This technique of neutral beam injection (NBI) has been used successfully as an

auxiliary heating mechanism for several tokamaks. In NBI, an energetic beam of

neutral "reactant" gas is injected into a "target" plasma, where it is ionized while
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giving its excess (suprathermal) energy to the plasma through collisional equili-

bration. It might be considered a disadvantage that while heating and magnetic

confinement are no longer linked when using NBI, heating and fueling then become

linked. A property of NBI which is more clearly a disadvantage is the necessity to

inject the beam in the tangential direction, which imposes access requirements that

interfere with the design of efficient magnetic field systems.

Another possible auxiliary heating technique is to inject power in the form of

high-frequency electromagnetic waves, at frequencies and polarizations chosen to

interact with natural modes of motion of the plasma particles. In the electron cy-

clotron range of frequencies (ECRF), the injected waves interact with the Larmor

motion of the electrons. In the lower hybrid range of frequencies (LHRF), the inter-

action is with a resonant collective mode in which the ions and electrons oscillate

out of phase with one another. In the ion cyclotron range of frequencies (ICRF), the

interaction is with the Larmor motion of ions, and/or with the two-ion hybrid reso-

nance - a mode in which two ion species oscillate out of phase with one another. It

is also possible to heat the plasma with waves in the Alfven wave frequency range.

At this point, it is worth clarifying my use of the word "confinement" in the

preceding paragraphs. I am using this word to refer to the application of forces

to balance the kinetic pressure of the plasma by imposing magnetic fields. The

word "confinement" is also commonly used to describe the transport of energy (and

loss thereof) in a plasma, i.e., "energy confinement". My reference to decoupling

of heating and magnetic confinement, is not meant to apply to energy transport.

In auxiliary heating experiments, energy confinement time is typically observed to

degrade with the application of auxiliary heating power, even after accounting for

all known loss mechanisms. At the time of this writing, it is not clear whether

this degradation in energy confinement is a new effect introduced by the auxiliary

heating (thus heating and energy confinement linked), or if it is an effect that is

always present but is masked in purely Ohmic discharges due to the link between

heating and magnetic confinement (which would then be considered to have been

"unlinked" by the auxiliary heating). Due to the modesty of the heating results ob-

tained in the Alcator C experiments, it will certainly not be possible to address this

issue herein. In fact, after accounting for all known loss mechanisms in Alcator C,

is will not even be possible to conclude that there was any degradation in energy

confinement.

The work described in this thesis is concerned with heating in the ion cyclotron

range of frequencies in the compact, high-magnetic-field tokamak Alcator C. ICRF

heating has been successfully tested in the tokamaks TFR(-1 0 , ASDEX(- 22 ],

PLT 23- 33], JIPP T-II and JIPP T-IIU[34- 36], Microtor and Macrotor (37, 38], JFT-2



Section 1.1: Introduction and Motivation 9

and JFT-2M[39-43, JET[44-5 21 , and TEXTOR[5 3- 7 ]. Previous attempts at ICRF

heating in Alcator A and Alcator C have been somewhat disappointing[58-60], al-
though improved heating efficiency was observed during ion Bernstein wave heating

experiments [61], which were conducted in parallel with the fast-wave experiments
described herein.

The compact nature of the Alcator tokamak design imposes severe limitations
on the design of the ICRF launcher, and the previous ICRF experiments on Alca-
tor C were plagued by incessant electrical failures. One of the goals of the present
work was to improve the design of the RF system, in order to allow injection of the
total available ICRF power (- 400 kW) for long pulse-lengths (100 ms or more)

without electrical arcing in the antenna or transmission line, and thereby to elim-
inate launcher limitations as contributing factors to ICRF heating efficiency. By
redesigning the ICRF antenna and employing an improved high-power RF vacuum

feedthrough, which was designed by members of the PLT group[26], it was possible
to produce ICRF heating efficiencies comparable to those in the previous Alcator C
ICRF experiments, but to do so much more reliably.

Once the antenna design has been eliminated from consideration as a factor lim-
iting heating performance, it is necessary to study the physics of wave propagation
and absorption, and related energy transport in Alcator C. Unfortunately, because
of the amount of time necessary to devote to antenna development, programmatic
conflicts, and the limited port space on Alcator C, it was not possible to operate
with the full set of plasma diagnostics that would be desirable during an RF heat-
ing experiment. These factors, coupled with the modest heating results obtained,
make accurate data analysis impossible, so that it is difficult to speak unequivocally
about the various physical processes that are involved. Nevertheless, by examining
what data are available, both from the present experiments and from previous Al-
cator experiments, and by considering theoretical predictions based on numerical
computations, it is possible to assemble a reasonably self-consistent explanation of
the experimental results.

I will begin this thesis with an introductory review of the various theoretical top-
ics related to ICRF heating, including a few detailed derivations of some elementary
results. This will be followed by a review of some of the important experimental re-
sults from other machines. Then the design of the ICRF launcher will be presented
in Chapter 2. The data collected from the available plasma diagnostics during the
experiments will be summarized in Chapter 3, and an explanation of these results,
based on theoretical computations, will be presented in Chapter 4. A brief overall
summary and conclusions will be given in Chapter 5.
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Figure 1.2.1: Cyclotron motion in a magnetic field-A positively charged
ion gyrates in the left-hand sense with respect to a stationary observer looking
along the magnetic field line.

1.2: Terminology and Units

In this section, I would like to establish a few conventions of terminology and

introduce the system of electromagnetic units to be used in most of the discussions

in this thesis.

The well-known gyromotion exhibited by a charged particle in a magnetic field

is depicted in Fig. 1.2.1. The goal of an ICRF heating experiment is to transfer

energy to the charged particle by an interaction between the particle and the elec-

tromagnetic fields of an imposed wave. The sense of rotation shown in Fig. 1.2.1

shall be referred to herein as the left-handed (LH) sense. Because the cyclotron

motion of a positively charged ion is left-handed, it should not be surprising that

the left-hand circularly polarized (LHCP) component of the wave electric field is an

important quantity, and that the wave must have a significant LHCP component in

order to heat efficiently. Therefore, regardless of the direction of wave propagation,

the wave polarization is always defined in the plane perpendicular to the magnetic

field, with respect to a stationary observer looking along B.

As will be shown later, when a fast wave is launched into a tokamak plasma at

a frequency such that w = wd at the plasma center, there is very little LHCP com-

ponent of the electric field at the location of the cyclotron resonance. The reason

why the fast wave is of interest for ICRF heating is that it is not practical to couple

the slow wave (which is LHCP at w = wi) and there are ways to get around the

limitation imposed by the polarization of the fast wave. One technique that can be

used to heat effectively with the fast wave is to use a plasma composed of two (or

more) ion species with different charge-to-mass ratios (and thus different cyclotron

frequencies). If the species which is in cyclotron resonance is sufficiently dilute,

then the wave polarization will be determined primarily by the majority ion species



Section 1.2: Terminology and Units 11

and there will be a sufficient LHCP wave component to interact with the minor-

ity species. This technique is commonly referred to as the minority ICRF heating

regime. At higher minority concentrations, cyclotron damping again becomes ineffi-

cient, but linear mode coupling to another plasma wave (the ion Bernstein wave[62])
becomes dominant. It is often possible for the ion Bernstein wave (IBW) to heat

electrons via Landau damping and transit-time magnetic pumping. This technique

is the ICRF mode-conversion (MC) regime. Landau damping and magnetic pump-

ing can also be important for the fast wave in cases like the D-majority He3 -minority

regime, where a majority cyclotron harmonic resonance is not degenerate with the

main minority resonance.

Another technique by which it is possible to heat with the fast wave involves

launching a wave at a frequency such that w = 2 wc at the plasma center. If one

considers an ion gyrating at frequency wd in the presence of a spatially uniform

LHCP electric field at frequency 2wi, then it is obvious that the forces acting on

the ion will average to zero, and that no energy will be transferred. However, if the

gyroradius of the ion orbit is significant compared to the wavelength of the electric

field, then the electric field experienced by the particle will not be uniform and the

forces will not average to zero. Incidentally, this same effect also allows the ion to

absorb energy from a right-hand circularly polarized (RHCP) field, even at w = Wi,

but with less efficiency. Although the absorption from the RHCP component is less

efficient than from the LHCP component and is often neglected in calculations, it

can be important in situations where the.RHCP component of the wave is large

compared to the LHCP component.

Unfortunately the terminology used in the literature to refer to ICRF heating

at w = 2wi is inconsistent. The terms first harmonic ICRF and second harmonic ICRF

are both used. As the reader can probably tell, I believe that the second term is

preferable, for reasons that I am about to explain. I believe that the first expression

originated from the misconception that the word "harmonic" is a "modifier" in

the sense that it refers to a frequency other than the "fundamental" frequency.

However, the term "harmonic" is commonly used by scientists to refer to motion

that is sinusoidal in space and/or time. Any quantity whose motion is periodic with

some "fundamental" frequency can be expressed as a Fourier series, often referred to

as a sum of harmonics. In this respect, the fundamental is no less "harmonic" than

any of the other frequency components. Thus, I consider the term "first harmonic"

to be a synonym for the term "fundamental", and I will adhere to the convention

in this thesis that ICRF heating at w = 2 wi is called the second harmonic ICRF

heating regime. The reader is advised that when the word "harmonic" occurs in

the ICRF literature, heating at w = 2 wd is usually (but not always!) what is being

described, regardless of the ordinal number ascribed to it.
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In Sec. 1.1, I have used the term "Ohmically heated tokamak" to refer to a

tokamak in which the only source of plasma heating is the Ohmic dissipation of the

current used to confine the plasma. Heating of the plasma from sources other than

the confining current (such as RF or NBI) is often referred to as "auxiliary heat-

ing", and a tokamak which uses auxiliary heating is often referred to as an "auxiliary

heated tokamak". The expressions "additional heating" and "additionally heated

tokamak" are also used. Although it is difficult to argue that the latter expressions

are grammatically incorrect, there usage in the English language is somewhat awk-

ward. I suspect that they originated from a mistranslation into English from some

other language. Because the word "auxiliary" explicitly refers to something that

comes from an alternate source, I believe that the former expressions are preferable.

I have adopted what I call a rationalized dimensionless electromagnetic system

of units for this thesis. In this system, the Maxwell equations are

VxE 
(1.2.1)

V x H - + J (1.2.2)
at

V D =p (1.2.3)

V B =0 (1.2.4)

where the polarization and magnetization are given by

B=H+M (1.2.5)

D=E+P (1.2.6)

Here p represents the electric charge density and the other symbols axe the usual

electromagnetic fields. In plasma wave theory, all plasma currents are explicit, so

B = H. Like conventional SI units, there are no constants like 47r present, and

like cgs units, all electromagnetic field quantities have the same dimensions. This

system can be thought of as a modification of the SI system, in which /o = 60 = c =1

and can be obtained rigorously be choosing to measure time and distance in the

same units, as is often done in special and general relativity theory. But usually

this kind of system is used in a "non-rigorous" fashion, by simply omitting the

constants A0, co, and c from the starting equations. It is usually very easy to see

how to reintroduce them at the end of a derivation, but it is rarely necessary. In

plasma wave physics this is particularly easy to do because most of the expressions

used are written in terms of quantities like wej and wj and look the same no matter

what system of units was used to derive them.
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The advantage of using such a system is that one is spared alot of unneces-

sary writing when doing theoretical analyses, since the only quantities that have

to be manipulated are those that are mathematically (and hence in some sense

physically) relevant. I wholeheartedly disagree with anyone who believes that using

dimensionless units obscures the underlying physics - in fact I believe that the

opposite is true. I have even found this system of units convenient when making

laboratory measurements. For example, the transmission line parameters R, L, and

C of a strip line antenna are dimensionless quantities of order unity in RD units,

and laboratory measurements of reflection coefficients and wavelengths lead more

directly to the dimensionless parameters (which, incidentally, can be converted to

conventional laboratory units simply by multiplying by o, Ao, and co respectively).

The only quantities that appear in plasma wave physics calculations that are

non-trivial to convert from RD to SI units are the Debye length AD, the Alfven speed

CA 1/NA, and the plasma frequency wp. Since wpAD = VT and N = 1+ W /W2.,
it is only necessary to remember that the RD expression

2 n' (1.2.7)

translates into SI as

2 q 2  (1.2.8)

In this write-up, theoretical derivations will generally be given in RD units,

while expressions used directly in arithmetic calculations will generally be given in

SI units.

I also establish the following conventions regarding cyclotron frequencies and

thermal velocities: The cyclotron frequency of a gyrating charged particle is denoted

by

0 =qB (1.2.9)

where it is understood that q includes the algebraic sign of the electrical charge. If

the sign of the electrical charge is to be ignored, then the notation is

WC = Jill (1.2.10)

The thermal velocity of a species which is characterized by a Maxwellian velocity

distribution function is denoted by

12t =_ (1.2.11)2T
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or by

vT = - (1.2.12)

and temperatures are always measured in energy units.

1.3: Elementary Cold-Plasma Wave Theory

In the remaining sections of this chapter, I will present a general review of ICRF

heating theory starting from a fairly basic level, followed by a review of significant

results from other ICRF heating experiments. I will assume that the reader's back-

ground includes a basic knowledge of plasma physics and applications to controlled

thermonuclear fusion experiments, including a knowledge of plasma wave theory at

a very basic level, but that he is unfamiliar with the issues related to RF heating

experiments. That is, I am assuming that the reader has the same background that

I had when I received this research assignment. I hope that by doing so, I can

provide a useful guide through the bewildering array of ICRF-related literature, for

future newcomers to this field. More knowledgeable readers may wish to skip part

or all of the remainder of this chapter.

This section and the next will be concerned with elementary cold-plasma theory

and hot-plasma theory, respectively. A good general review of these topics was

given by Stix[ 63]. My presentation will be limited to topics directly relevant to

ICRF heating. Detailed derivations will be given of some very basic plasma wave

theory results, followed by a more abstract outline of the advanced topics treated

in the literature.

The simplest possible model that can be applied to wave propagation in a plasma

is the zero-temperature or "cold-plasma" limit, in which the plasma equilibrium

consists of a state in which all particles are motionless. The only particle motion

considered is motion that is directly associated with harmonic oscillations in the

plasma. From the discussion in Sec. 1.1, it should be clear that it will not be possible

to model second harmonic absorption in this limit. In fact, it is not possible to

correctly model minority absorption or mode-conversion in this limit either. Also,

the plasma will be considered to be infinite, spatially homogeneous, and immersed

in a uniform, straight magnetic field. Difficulties associated with spatial gradients

and magnetic shear will be discussed later. Nevertheless, cold-plasma theory is a

useful approximation to determine, e.g., regions of propagation and cutoff in an

inhomogeneous plasma. Cold-plasma theory provides an accurate estimate of the
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wavelength and phase velocity of the fast wave in most regions of the plasma, but

breaks down completely where mode conversion occurs and fails to predict cyclotron

damping.

The analysis is begun by writing the Maxwell equations:

aB
V x E= --- (1.3.1)

V x B = -- +J (1.3.2)

and seeking to express the electric current J in terms of the fields E and B. This
is easily accomplished by expressing the current in terms of the particle velocities

v3 (j is the species index):

J = njqjvj (1.3.3)

and expressing the velocities in terms of the fields using the Lorentz force equation:

-- j (E + vj X B) (1.3.4)
8t mj

Note that, strictly speaking, the current is non-linearly related to the fields, due

to the quadratic vj X B term in Eq. 1.3.4. Thus, even in the cold-plasma limit,

there is the possibility of nonlinear coupling between different plasma waves. If the

wave equations are linearized, by considering small sinusoidal perturbations about

equilibrium fields and dropping quadratic terms, then this nonlinear coupling is

eliminated from the mathematical model. This is done by considering B in Eq. 1.3.4

to be the equilibrium magnetic field only.

Defining space and time Fourier transforms via

& k
V -+ ik, -- -+ -U, N - (1.3.5)

where N is the vector refractive index, leads to the following algebraic wave equa-

tion:

N x (N x E) + K E = 0 (1.3.6)

where

K - E = E + -J (1.3.7)

There are only two distinguished directions in this problem: the direction of the

equilibrium magnetic field B and the direction of wave propagation N. Thus, it
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is convenient to choose a Cartesian coordinate system in which the equilibrium
magnetic field is in the z-direction (B = iB) and the wave propagates in the xz-
plane (N = iNj + iN1;). In this case, one easily obtains an explicit expression for

the matrix K:
S -iD 0

K= iD S 0 (1.3.8)
(0 0 P

where the notation S, D, and P is due to Stix[63 ]:

S = 2 (1.3.9)

D = L 2(1.3.10)
2

R=1 - Pi (1.3.11)
j I + 3j

L= 1- Pi (1.3.12)
j I 7g

P= 1 -Ep (1.3.13)
3

and I have introduced my own notation:

9j 3 -(1.3.14)

which I find significantly reduces the amount of algebraic tedium involved in wave-
physics calculations. The cyclotron frequency of species j is

q3 = B (1.3.16)

where it is to be understood that qj includes the algebraic sign of the charge, and
the plasma frequency is given by

(1.3.17)
Mi
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I also adopt the convention that

Wcj = IrIjI (1.3.18)

will be used to designate the cyclotron frequency without regard to the sign of the
species charge. Writing the double cross product in matrix notation and adding to
K puts the wave equation in the form

S - N 2

G.E= iD

N( NNI

-iD Nj NI E

S - N2 0 Ey 0
S-N2 E0 E

(1.3.19)

The propagation of electromagnetic waves through the plasma can now be de-
scribed by the dispersion relation

det G = 0 (1.3.20)

Eq. 1.3.20 is formally.a third order equation for N 2 , but a simple calculation shows
that the coefficients of N6 exactly cancel one another, yielding only two solutions
for N 2 . The mode corresponding to the smaller value of N 2 is the fast wave and
the other mode is the slow wave. If finite temperature effects are included in the
analysis, the coefficient of N6 is found to be nonzero. Thus, there is a third mode
whose expansion in terms of temperature is singular, and whose refractive index is
infinite in the cold plasma limit. This mode is the Bernstein wave. For frequencies
in the ion cyclotron range, the mode is called the ion Bernstein wave (IBW).

In order to study the propagation characteristics of plasma waves, it is useful to
evaluate the wave vector as a function of location throughout the plasma. Strictly

SLAB MODEL 1B
B in z-direction

Plasma homog
k in zz-plane I in.y-direction

y

Z Plasma parameters vary
but ae quasi-homogeneous
in x-direction

Figure 1.3.1: Slab Geometry-In this simplified slab geometry, the plasma
parameters are assumed to vary only in the a-direction.



18 Chapter 1: Introduction

speaking, this type of analysis requires a wave equation to be derived which explic-

itly accounts for the effects of spatial gradients of the plasma parameters. However,

one would expect the value of the homogeneous-plasma dielectric tensor (K) to have

some physical relevance, provided the spatial gradients are sufficiently weak. Con-

sider the simple slab geometry model illustrated in Fig. 1.3.1. One minor problem

which immediately crops up is that there are now three distinguished directions in

the plasma, including the direction of spatial inhomogeneity. Thus, one would like

to extend the wave equation to include the effect of an Ny component of the wave

vector. It turns out that the dimensions of a typical ICRF antenna (and particu-

larly the Alcator C antenna) are such that nonzero Ny is not really very important.

However, it is obviously not difficult to include it. A particularly elegant way to

express the cold-plasma wave equation with arbitrary propagation direction is to

resolve all vector components into parallel (to B) and perpendicular components,

and then to resolve the perpendicular components into right-hand and left-hand

circularly polarized components (with respect to a stationary observer looking in

the z-direction). Using the subscript + to designate LHCP and - to designate

RHCP yields the following:

N = N1 i + N 1  (1.3.21)

E = E 1 i + E± (1.3.22)

J = Jl i + J± (1.3.23)

Vj = Vli + vgj (1.3.24)

E = E±iE (1.3.25)
2

J2 (1.3.26)
2

V= 2g ( v"1.3.27)

N± Nx ± (1.3.28)
2

Using this notation, the relation between particle velocities and electric field is very

simple:

VE = El (1.3.29)

Vj+ = 2j E+ (1.3.30)
mjW 1 - gj



Section 1.3: Elementary Cold-Plasma Wave Theory

- - E~
3-=MW 1+ gj

and similarly for the current:

=El p.7

=+ E+ P
UA- gj

E P
Th y dl+g

This yields a dielectric tensor which is diagonal:

L
K = 0

(0

0
R
0

0

P

and the wave equation becomes

N+ 1 N

2N

2N 1N-

2N+2

2N 1N+

2N N+ E+

2N 1 N- E- =0

2(P - N2 ) 'El

For propagation parallel to the magnetic field, this reduces to

V-2

0

0

0

R- V0 E-

0 P) E' =

and for propagation perpendicular to the magnetic field it becomes

N 2+ 0
2NL 0 E+

0 ) =E)l

o P-Ni

(1.3.31)

(1.3.32)

(1.3.33)

(1.3.34)

(1.3.35)

(1.3.36)

(1.3.37)

2

R -
L - { N2L

2
2N

0

(1.3.38)

19
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N 2  0

N 2 -=0 N =
II -

log w

Fiur 1.3.2: Propagation Parallel to the Magnetic Field--The dispersionu
relation is shown for a single-ion-species plasma and purely parallel propagation.
In the ion cyclotron range of frequencies, the RHCP wave corresponds to the fast
wave.

The dispersion relation (N~ as a function of w) is shown in Fig. 1.3.2 for the

case of propagation strictly parallel to the magnetic field in a single-ion-species

plasma. As can be seen from Eq. 1.3.37, pure RHCP and LHCP waves propagate
independently of one another. For each wave, resonance occurs at the frequency
corresponding to the gyrofrequency of the species which gyrates in the same di-
rection as the rotation of the electric field. The ICRF fast wave corresponds to
the RHOP mode in this limit. Since the ICRF slow wave (LHCP) is resonant at

wa, this wave is useful for heating plasma in devices like mirrors or stellarators,
in which the magnetic field is inhomogeneous in the parallel direction. The slow
wave propagating parallel to the magnetic field is accessible to the ion cyclotron
resonance if it is launched from a high-field region, where w1a > w. The slow wave is
not useful for heating tokamak plasmas at the ion cyclotron frequency due to poor
accessibility. The slow wave propagates primarily along the magnetic field (must
have large N11), particularly at high density, would have to be launched from the

high-magnetic-field side of a tokamakc, and would tend to be absorbed by Landau
damping on electrons before it could propagate to the center.

The dispersion relation for the case of purely perpendicular propagation is shown
in Fig. 1.3.3. From Eq. 1.3.38, the 0-mode is seen to be linearly polarized with EIIB
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N2

X ie M r_0

Ni = o -i=

-L~C WL

CL X

SD

log w

Figure 1.3.3: Propagation Perpendicular to the Magnetic Field-The
dispersion relation is shown for a single-ion-specie. plasma and purely perpen-
dicular propagation. For plasma parameter. typical of tokamak plasmas, the ion

cyclotron frequency is well below WLH except possibly near the wall of the vacuum
chamber. Only the fast wave (which corresponds to the X-mode) can propagate
with Ng= 0 in thiv frequency range.

and has dispersion relation Ni = P, which is the same as the dispersion relation

for electromagnetic waves in a cold, uniagnetized plasma. Multiplying out the

upper-left 2 x 2 determinant yields

N 2 RL (1.3.39)

as the dispersion relation for the X-mode. The X-mode has cut-offs at wR (R = 0)

and WL (L = 0) and resonances at the hybrid resonant frequencies wLH and wUH

(S = 0). For parameters typical of tokamak plasmas with only one ion species,

the ion cyclotron frequency is well below wLH and wL, so that the ICRF fast wave

propagates throughout most of the plasma, except in narrow low-density regions at

the edge. Typically, the lower-hybrid resonance occurs very close to the wall in a

tokamak, or else not at all (i.e., at a density lower than the density at the wall).

But for finite Nil, the left-hand cut-off will usually occur farther from the wall than

the antenna, resulting in a layer of fast-wave evanescence at the plasma edge. Due
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Figure 1.3.4: X-mode Polarization-The X-mode is pure right-hand circu-
larly polarized at the ion cyclotron frequency and the right-hand cut-off, and is
pure left-hand circularly polarized at the electron cyclotron frequency and the

left-hand cut-off. The X-mode is linearly polarized at the hybrid resonances.

to the long wavelength of the fast wave, tunnelling through this layer will be very

efficient, provided N11 is not too large.

The electric field polarization of the X-mode is shown in Fig. 1.3.4. It is in-

teresting to note that the sense of rotation of the electric field is opposite that of

the ions at the ion cyclotron frequency, and is also opposite that of the electrons at

the electron cyclotron frequency. Thus, in the cold-plasma limit, there is no way to

transfer energy from the wave to ions (as mentioned in Sec. 1.2) or to electrons.

This phenomenon is analogous to the "shorting out" of El which occurs as a

result of the high electron mobility along the magnetic field. In order to maintain a

constant applied Ell field, electrons would be continuously accelerated to arbitrarily

high velocities (unless limited by collisional and relativistic effects, both of which

are ignored in this cold-plasma theory). This behavior is exhibited mathematically

by Eq. 1.3.29. At zero frequency, Ell must be zero in order foruji to be finite. Using

Eqs. 1.3.29, 1.3.30, and 1.3.31 and taking the limit as w -+ 0 yields

E w vl (1.3.40)
E Wc UI

Linearly Polarized

LH WUH

Pure RHCP
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Pure LHCP

1.0 -

0.8 -- -
V2

0.6 -- -- ----

tons
0.5 Linearly Polarized
0.4

0.2

0.0 Fure RHCP
Wci WP W R

log w

Figure 1.3.5s X-mode Perturbed Velocity Polarisation-The electron ve-
locity is pure RHCP at the ion cyclotron frequency, while the ion velocity is pure
LHCP at the electron cyclotron frequency. Both species velocities are pure LHCP
at the LH cut-off and pure RHCP at the RH cut-off.

from which it immediately follows that Ell --+ 0 as w -* 0 if vg is finite.

The same kind of secular acceleration can take place in the perpendicular di-
rection if the electric field rotates in synchronism with the particle at it's Larmor
frequency. This "shorting" effect occurs for any electric field which would drive the
particle along its unperturbed orbit. Using Eqs. 1.3.29, 1.3.30, and 1.3.31 again and
taking the limit as w --+ wc yields

(1.3.41)

from which it follows that E+ -+ 0 as w -+ wc for positively charged particles and

E -+ 0 as w -+ wc for negatively charged particles. Thus, the ions "short out" the

LHCP component of the electric field at w = w01 and the electrons "short out" the

RHCP component of the electric field at w = wc.

Note also that the X-mode is pure LHCP at the left-hand cut-off (LHCO) and

pure RHCP at the right-hand cut-off (RHCO), and is linearly polarized at the

hybrid resonances.

E ~ v- 1 :F 10)Ell -vl ( A
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The sense of rotation of the perturbed velocities for both electrons and ions is
shown in Fig. 1.3.5. It is interesting to note that the electron velocity is pure RHCP
at the ion cyclotron frequency, while the ion velocity is pure LHCP at the electron
cyclotron frequency. This effect is clearly exhibited by Eqs. 1.3.30 and 1.3.31. Both
species velocities are pure LHCP at the left-hand cut-off and pure RHCP at the
right-hand cut-off, as is the electric field.

To understand how finite-temperature effects allow wave energy absorption to
take place, note that the wave frequency will appear Doppler shifted in the reference
frame of an ion with thermal motion parallel to the magnetic field. Then the
condition for cyclotron resonance becomes

W - Wi - kflvi = 0 (1.3.42)

instead of w - wc = 0. Since resonance then occurs at a frequency that is slightly
different than wci, E+ is not exactly zero anymore. However, this effect is relatively
small because, since the wave is "fast" and propagates primarily in the perpendicular
direction, kU is "small" so that in order for the effect to be "significant", vil must

be "large", which means that the ions must be very "hot", unless other helpful
physical mechanisms are present.

In order to study the case of finite N11 analytically, it is helpful to introduce an

expansion in terms of the electron/ion mass ratio:

m!e < (1.3.43)

and to seek solutions for the electric field in the form of a regular perturbation
series:

E = Elo + eE+1 + O(E2 ) (1.3.44)

and similarly for Ell. For the case of a single ion species, one has

L = 1 - 1 + O(e) (1.3.45)
gi 1-gi

R1 + O(e) (1.3.46)
gi 1 + gi

1
P = -- pi + 1 - Pi + O(e) (1.3.47)

e

Substituting this expansion into Eq. 1.3.36, the leading order equation has only one
component

p;Ello = 0 (1.3.48)
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which says that, since P is large (O(mi/me)) compared to L and R, the parallel
electric field must be small (O(m,/mi)) compared to E_. This corresponds physi-
cally to the high parallel electron mobility. That is, since the electrons are free to
move along the magnetic field, parallel conductivity is high and Ell is "shorted out".

It is important to remember that El is only "shorted out" to zero order in me/mi,

and is nonzero if finite electron mass effects are important. It is also important to
note that the fast and slow waves are decoupled in the limit me/mi -+ 0, so that
linear mode conversion between the two waves cannot occur in this limit. Because
Elio = 0 the next order equation reduces to a 2 x 2 system:

L - ( N+2N2 E+
4 TI -I N N + ( + ) = 0 (1 .3 .4 9 )

2X! R- AN + I NiE

Going one order further yields a perturbative solution for the parallel electric field:

1 1  N N-2E+ + N+E-
-El = eNg (1.3.50)

2 N2 - 1-P;)

This separation of the parallel and perpendicular equations in the limit of small
me/mi is also valid for multiple ion species, and for the wave equation including
thermal effects, provided NI, is not too large. Multiplying out the determinant in

Eq. 1.3.49 yields the dispersion relation for an arbitrary angle of propagation:

(L - N11)(R - N f) (1.3.51)

Thus, for propagation at an arbitrary angle to the magnetic field, and to the extent
that the small-electron-mass approximation is accurate, the equation for the left-
hand cut-off becomes .. , = L, the equation for the right-hand cut-off becomes

N = R, and the equation for the resonances becomes ,= .

Next, consider the situation where there is a direction of inhomogeneity in the

plasma slab as illustrated in Fig. 1.3.1. For the case where the wave frequency is

equal to the ion cyclotron frequency at the center of the plasma, the dispersion
relation as a function of position in the plasma is shown in Fig. 1.3.6, and the
corresponding electric field polarization is shown in Fig. 1.3.7. As has already
been remarked, the absence of a LHCP component where w = wd is cause for
concern, and it is necessary to consider thermal effects in order to coriectly model

the cyclotron absorption process. Heating via thermal Doppler broadening is not
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Figure 1.3.8: Fast Wave Dispersion Relation Near the Fundamental Ion
Cyclotron Frequency-This is a plot of the N2 as a function of distance into
the plasma along the major radius. This plot and those that follow in this section
were calculated using the following typical Alcator C parameters: (1) parabolic
density profile with peak value of 4 x 12O m-3, (2) inhomogeneous 1/R variation
magnetic field profile with maximum at left side of graph, minimum at right, and
an ion cyclotron frequency (or harmonic) at the center, (3) a wave frequency of
fpAF = 180 MHz, (4) a fixed N11 =5. This calculation was done for a pure hydrogen
plasma.

effective in this case because an enormous value of v1 would be required to produce

resonant'cyclotron absorption at the locations near the peaks in Fig. 1.3.7. This is

the motivation for considering the second harmonic ICRF heating regime, in which

the wave frequency is equal to the second harmonic w = 2wc of the ion cyclotron

frequency at the center of the plasma, and the minority ICRF heating regime, in

which the wave frequency is equal to the fundamental (i.e. first harmonic) w = wi

of a very dilute minority ion species in a multiple-ion-species plasma.

Historically, attention was also drawn to the minority regime because of the

existence of the two-ion hybrid resonance, which introduces wave damping even in

the collisionless cold-plasma limit. In this case, the cold plasma wave equation has

a singular turning point. Solution of the equation5 shows that some of the wave

energy is depleted when a fast wave is incident on the resonance layer from the

low-field side, and that all of the wave energy is depleted for high-field incidence.

However, cold plasma theory does not show what happens to the depleted energy.

When thermal effects are included, it is found that the wave energy is actually cou-

pled to the ion Bernstein wave. Under certain conditions the IBW can be strongly

damped, resulting in efficient heating. It is also true that the effects of the hybrid
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Figure 1.3.7: Fast Wave Polarization Near the Fundamiental Ion Cy-
clotron Frequency-The quantity plotted here is E2 /E2 . As was seen in

Fig. 1.3.4, the polarization is pure RHCP at the fundamental ion cyclotron fre-
quency and at the right-hand cut-off, which occurs near the edge of the plasma.

resonance on the wavelength and polarization of the incident wave are such as to

greatly enhance kI_ and E+, leading to efficient cyclotron damping as well, provided

the hybrid resonance layer is close enough to the cyclotron layer that the doppler

broadened absorption region overlaps the hybrid resonance layer.

From Fig. 1.3.6, one can see that the fast wave propagates freely throughout

the plasma, except for a small evanescent region at the edge. If Ni is not too

large, tunneling through this layer is very efficient. In particular, the fast wave can

easily be launched from the low-field side of the plasma. This is one reason why it

is desirable to use the ICRF fast wave for plasma heating. In Fig. 1.3.7, one can

see the problem with the fast wave polarization. The LHCP component is quite

small throughout the central portion of the plasma, so that very strong Doppler

broadening of the resonance would be necessary for wave absorption, which one

might well expect to occur at the edge of the plasma. The location of the RHCO is

also evident in Fig. 1.3.7 near the plasma edge where E+ goes to zero. The sharp

increase of E+ just outside the RHCO is the effect of the lower hybrid resonance,

where the electric field is linearly polarized and hence contains equal amounts of

RHCP and LHCP components. This kind of behavior is typical whenever cold-

plasma cut-offs and resonances are adjacent.

In the experiments on the Alcator C tokamak that are described in this thesis,

heating was observed in the hydrogen minority regime in a two-ion-species plasma
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Figure 1.3.8: Fast Wave Dispersion Relation Near the Second Har-
monic Ion Cyclotron Frequency-This calculation was done by changing the
magnetic field to 6 T (as was done when hydrogen second harmonic heating was
attempted in Alcator C). The result is a narrower cut-off layer at the edge and
larger N_

with deuterium as the main species. Since wcH = 2wcD, the location in the plasma

of the hydrogen fundamental cyclotron resonance is always the same as the location

of the deuterium second harmonic resonance, and it is possible for both species to

absorb power directly from the wave. There is evidence that this may have occurred

in the Alcator C experiments, but the evidence is not nearly as conclusive and/or

direct as it was in the case of PLT[64 ].

The dispersion relation for a second harmonic hydrogen regime at 6 T is shown

in Fig. 1.3.8. The most noticeable effect in the cold-plasma model is simply that

the refractive index increases. This can easily be understood by noting that the

dispersion relation for the fast wave can be approximated by that of a compressional

Alfvin wave (NI w 1/w2 .) and observing that wd has been reduced by 1/2. The

dispersion relation for pure deuterium at the second harmonic at 12 T is similar to

the dispersion relation in Fig. 1.3.6.

Basically, the motivation for minority regime ICRF heating is to have the wave

propagation and polarization determined predominantly by the nonresonant ma-

jority species, so that the minority species can absorb power by fundamental ion

cyclotron damping. It is not really possible to show this using the cold plasma

model. As shown in Fig. 1.3.9, there is indeed a nonzero LHCP component to

the polarization for a pure deuterium plasma at the second harmonic of the ion

cyclotron frequency. The effect on the cold-plasma dispersion relation of adding

II
23
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Figure 1.3.91 Fast Wave Polarization Near the Second Harmonic Ion
Cyclotron Frequency-The cold-plasma model predicts a non-zero value of

B2/E4l at the second harmonic of the ion cyclotron fr-equency.
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Figure 1.3.10: Fast Wave Dispersion Neelation in a Two-Ion-Species
Plasma-The cold-plasma model predicts an additional cutoff (given by Nf = L)

and an additional resonance (given by Nr = S) when a second ion species is

introduced. This calculation was done for a hydrogen minority concentration of
10%,

a small concentration of hydrogen is shown in Fig. 1.3.10, and is quite significant.

The effect is to introduce a new cut-off, given by N2= L, and a new resonance
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Figure 1.3.11: Fast Wave Polarixation in a Two-Ion-Species Pamma-
The polarization is always purely RHCP in the cold plasma model at the fun-
damental ion cyclotron resonance regardless of the concentration of the resonant
species.

(N = S). The effect on the polarization is shown in Fig. 1.3.11. The polarization is

always pure RHCP at a (positively charged) ion fundamental cyclotron resonance,
no matter how low the concentration. The polarization at the new cut-off is pure

LHCP, as expected for a left-hand cut-off, and it is pure RHCP at the right-hand

cut-offs at each edge of the plasma.

The dispersion relation in Figs. 1.3.10 and 1.3.11 was calculated for a 10%
minority concentration, which is too high a concentration for efficient minority

regime heating in Alcator C, but results in a plot in which the locations of the

cyclotron resonance, LHCO and two-ion hybrid resonance are well separated and

easy to see. In Fig. 1.3.12 the polarization is shown for the more realistic case of

1% minority concentration. In this case it is easy to see that the LHCP component

is significantly enhanced by the presence of the majority species, even close to

the position of w = wcH, so that much less Doppler broadening is necessary for

efficient absorption than would be the case in Fig. 1.3.7. Another beneficial effect

is produced by the presence of the new two-ion hybrid resonance in the vicinity of

the cyclotron absorption layer. Fig. 1.3.10 shows that kj is significantly enhanced

near the resonance, while Fig. 1.3.12 shows that E+ is also significantly enhanced.

Both of these effects improve the efficiency of cyclotron absorption if the Doppler

broadened cyclotron absorption region overlaps the hybrid resonance region.

The geometry of the cold-plasma cut-offs and resonances in the poloidal plane

for tokamak geometry is shown in Fig. 1.3.13. The fast wave is evanescent in the
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Figure 1.3.12: Fast Wave Polarisation in a Two-Ion-Species Plasmt-
This is the same quantity an in shown in Fig. 1.3.11, except that it is calculated for
a minority concentration of 1%, which in more typical of the concentration that
would be used in a minority regime ICRF heating experiment.
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Figure 1.3.13: Cold-Plasma Dispersion Relation in 2D-The locations
of the cold-plasma resonances and cut-offs are shown in the poloidal plane for

tokamak geometry.
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near the top and the bottom. The fast wave propagates throughout the interior of

the RHCO contour, except for the crescent shaped region between the LHCO and

the two-ion hybrid resonance. This plot was done using the unrealistically high

values N11 = 12 and 15% minority concentration in order to exaggerate the features.

It is nice that it is possible to say so much about cyclotron absorption in the

context of simple cold-plasma theory. However, I must emphasize that cold-plasma

theory is not valid in the region near the hybrid resonance layer, which was discussed

in the preceding paragraph. For example, cold-plasma theory predicts the presence

of a LH cutoff and the absence of any E+ component, regardless of the minority

concentration - no matter how small. This seems somewhat counter-intuitive.

Also, a calculation of the energy flux associated with the plasma waves in the

presence of a cold-plasma resonance, as was done by Budden65], fails to show what

happens to the depleted energy. It will be shown in the next section that the

intuition developed in the preceding paragraph is approximately correct, except

that the effects disappear gradually as minority concentration tends to zero. In

hot-plasma theory E+ is not exactly zero at w = wcH and approaches the value it

would have in pure deuterium if the minority concentration is sufficiently low and

the minority temperature is sufficiently high, and the LH cut-off disappears for low

minority concentrations.

Another effect introduced by hot-plasma theory is the presence of waves which

do not exist in the cold-plasma limit. In particular, the energy depleted from the

fast wave at the two-ion hybrid resonance is accounted for. In hot-plasma theory

the resonance is replaced by a linear mode-conversion layer, where energy can be

coupled between the fast wave and the ion Bernstein wave.

Finally, it is worth mentioning that if finite electron mass effects are retained

in cold-plasma theory, then the fast-wave resonance given by N = S is replaced

by linear mode conversion to the slow wave, which then experiences a resonance at

S = 0. This resonance is located just slightly further from the plasma center than

the location where N 2 = S.
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1.4: Elementary Hot-Plasma Wave Theory

The basic plan in hot-plasma theory is the same as in cold-plasma theory: Use the

equations of motion to relate the perturbed electric current to the RF electromag-

netic fields and substitute the result into the Maxwell equations to yield a linear

wave equation. But the details are much more complicated. The essential difference

is that the Lorentz force equation that related single-particle motion to the electro-

magnetic fields is replaced by the kinetic equation which describes a distribution

function f of particles, and that an integration over f is necessary in order to relate

the current to the fields. In the simplest approximation, the plasma is assumed to

be spatially homogeneous as was done in Sec. 1.3, and collisions are neglected.

It is important to note that in the absence of collisions the plasma conductivity

is nonlocal. That is, the velocity of a particle at a particular time and place depends

on the entire time history of the forces experienced by the particle. And in the

presence of thermal motion, the particle was at different locations at earlier times.

This is in stark contrast to the well-known collision-dominated limit, in which the

electric current is determined locally by balancing the electromagnetic forces against

collisional drag. It is the randomizing effect of collisions that allows the plasma

response to be determined locally in the collision-dominated limit. For plasmas

of interest for fusion, the cyclotron frequency is large compared to the collision

frequency, so that the RF plasma response is a nonlocal phenomenon. On the other

hand, the plasma equilibrium is "zero frequency" and is therefore characterized by

a local plasma resistivity.

Even though the plasma is collisionless on the RF time scale, it is often useful

to do theoretical analysis based on a "local approximation." This is because the

randomizing effect of even rare collisions limits the sensitivity of the plasma response

to "old" and "distant" events. In other words, the plasma dynamics are nonlocal

on the oscillatory time scale, but they are approximately local on the equilibrium

and transport time scales. The same randomizing effect can be provided by plasma

turbulence, which is neglected from the analysis when the equations are linearized.

It turns out that, even when one is seeking a local approximation, proper formulation

of the problem with regard to non-local effects is important in order to obtain a

model with proper energy conservation properties.

In this section, I will present a standard derivation of the hot-plasma dielectric

tensor for a spatially homogeneous plasma. This well-known derivation has been

given before by several authors, including Stix[3 and Kennel and Engelmann66].

It is important to realize that most of the steps given are valid, at least in principle,

for the case of a non-uniform plasma. This derivation for the homogeneous plasma
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case is usually given in Fourier transform space, by assuming wave-like variations

of the form ei(k.x-wi). The reader is encouraged to perform the derivation by
explicitly carrying out the Fourier transformation of the wave equation, as this
makes more clear the connection between the homogeneous and inhomogeneous-
plasma derivations. My plan will be to show the details for the standard derivation
in the homogeneous case, followed by a more rigorous and formal, but less explicit,
treatment of the inhomogeneous case.

The kinetic equation neglecting Coulomb collisions is

df Of dx Of dv Of
dt Nt+dt + dt 0v

= f+V--+-(E+vXB)--=0 (1.4.1)
t ax m V

Linearization is accomplished by considering perturbations up to first order by
defining

f = fo(v) + f(x, V, ), f < fo

E = 0 + E(x, t), E(x, t) ~O(f(x, v, t)) (1.4.2)

B = B + B 1 (x,t), B1 ~O(f(x, v, t)) < B ~O(fo)

The zero order equation is then

vxB - O 0 (1.4.3)

and the first order equation is

t Ox Ov m '" v

Defining cylindrical velocity space coordinates as

v = (v±, a, V11) (1.4.5)

where a is the gyrophase angle, the velocity space gradient operator takes the form

Of . Of + Of +. f
--v= vj -+ + 01- (1.4.6)

so that the zero-order equation becomes
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-Ofo of0
vL X i---= -- = 0 (1.4.7)

&v ta

This equation admits as solutions any arbitrary function of the constants of the
particle gyromotion:

fo(v) = 2fo(vjg) (1.4.8)

It is very well-known that if Coulomb collisions are introduced in the kinetic equa-

tion, then fo will relax to the form of an isotropic Maxwellian distribution function.

It is only slightly less well-known that, in the presence of effects like a driven Ohmic

or RF current, the resulting distribution function fo can be expanded in a series of

the eigenfunctions of the collision operator, which can be written in terms of Leg-

endre polynomials. The leading-order anisotropic effects can then be approximated

by writing fo as a two-temperature Maxwellian distribution, with different tem-

peratures in the parallel and perpendicular directions. Therefore, in the derivation

that follows, the parallel and perpendicular velocity dependences of the equilibrium

distribution function will be retained, and the form of the dielectric tensor for a two-

temperature Maxwellian will be given. The leading-order nonthermal effects can be

approximated by writing the distribution function as a sum of Maxwellians, each

with different temperatures. Including this effect in the resulting dielectric tensor

will be completely trivial. It is only necessary to separate each plasma species into

two or more species, and assign different temperatures to each one.

The first-order equation can be solved by the method of characteristics, which

is a standard mathematical technique. According to the method of characteristics,

if one considers a so-called characteristic trajectory through phase space defined by

dx
- = V (1.4.9)

dv
-d v (1 (1.4.10)

then Eq. 1.4.4 says that the variation of f along that trajectory is given by the

following one-dimensional equation:

df ( q a!0  (1.4.11)-- =-(+ XB 1) - (..1

Eq. 1.4.4 says nothing at all about the variation of f in any direction other than

along the characteristic trajectories.

The method of characteristics can be quite confusing to someone who has not

seen it before, so I will embark on a brief conceptual discussion of it. Suppose the dis-

tribution function is known at some initial time to be given by f(x, v, t1 ) = F 1 (x, v),
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and one desires to know the function at some later time f(x, v, t 2 ) = F 2 (x, v). Given

some specific point (x2, v2) at time t2 , Eq. 1.4.11 can be used to determine the cor-

responding value F2 (x 2 ,,v 2 ) in terms of one of the known values Fi(x 1 , vi). To do

this, one chooses the constants of integration when solving Eqs. 1.4.10 and 1.4.9 such

that the solutions for the characteristic trajectories satisfy x(t2 ) =X2 and v(t2 ) =V2-

This allows one to determine which particular value FI(xl, vi) is needed, i.e., the

initial value used when solving Eq. 1.4.11 is given by f(ti) = F1(x(ti), v(ti)). Then
Eq. 1.4.11 is converted to an explicitly one-dimensional equation by substituting

the function v(t) for the variable v where it appears explicitly in Eq. 1.4.11, and in

the v-dependence of * and by substituting the function x(t) where x appears in

E(x, t) and B1(x, t). Once this is accomplished, Eq. 1.4.11 can be integrated from

t= t1 to t = t2 to determine the value f(x 2 , v2, t2). Repeating this procedure for ev-

ery possible endpoint in phase space (x2, v2) and every possible time t2 completely

determines the distribution function f.
Note that since the constants of integration of Eqs. 1.4.10 and 1.4.9 are functions

of the endpoint (x2, v2), the phase-space dependence of f comes from the explicit

dependence of these integration constants on the chosen endpoint. For this reason,
it is notationally convenient to choose un-subscripted variables to represent the

endpoint. The notation that I will use in the following derivation is to use primed

variables to represent the variations described by the kinetic equation and unprimed

variables to represent the endpoint. The initial point will be chosen to be at time

t' -+ -oo, and the contribution from the initial value at this infinitely remote

past time will be neglected. Thus, representing f by an integration along the

characteristic trajectory models the non-local behavior on the oscillatory time scale,

but neglecting the initial value term is consistent with the local approximation on

the equilibrium and transport time scales. In a driven system, this can be justified

by invoking the randomizing effect of collisions or turbulence, no matter how small.

In a freely oscillating system which may have been perturbed at t'= -oo, this can be

justified by first considering only unstable modes and then analytically continuing

the results to the case of stable modes. To the extent that the dependence of f on

the initial value term is "randomized", one can consider doing an ensemble average

over all possible values of the initial value term.t Since the first-order perturbations

are pure sinusoidal variations, the initial value term averages to zero.

Writing Eq. 1.4.11 using primed coordinates yields,

t Note that ignoring the initial value term will not be valid when treating phenomena

such as plasma wave echoes, which only occur if the initial value term is significant.
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df (x'(t'), v'(t'), t') K +f I't' -I 't)
dt' -t' 8 x'+vv'

=-[E(x'(t'), t') + v' (t') X Bi('t) e')] - qO (1.4.12)

and doing the same for the characteristic equations yields

cb~) V'( ') (1.4.13)
dte

dv'(t') V'(t') x (1.4.14)
de'

where (I is a constant for the case of a homogeneous plasma. Showing all variable

dependences explicitly, Eq. 1.4.11 becomes

df(x' (t'), V(t' ),t') = -[E(x'(e'), e') + V(t') X Bi(:x'(e'), t')] - fo (['W'],,())

dt' m 8v'
(1.4.15)

and the characteristics are vector functions of the single variable t, which depend

parametrically on the endpoint (t, v, x):

V'(' = '(et' ,V) (1.4.16)

x'(t') = x'('; t, v, x) (1.4.17)

Inverting Eq. 1.4.11 yields the following expression:

f(x, v,t) = df((t'; t'vx),v'(t';tv), ) dt' + f(x-o, v-o, -oo)

q[E(x'(t'; t, v, x), t') + v'(t'; t, v) X B (x'(e'; t, v, x), t')]

afo([V L(tl; t' V)12, , (l; t',V))
fo[ Otlv ) 11-- dt' + f(x-0, v--o, -oo) (1.4.18)

For a spatially homogeneous plasma, the solutions for the characteristic trajectories

are

V= vj cos(fl-r + a) (1.4.19)

V= vj sin(fZr + a) (1.4.20)
vz=tl ont(..1

V' = V11 = const (1.4.21)
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and

' = x -FT [sin(hr + a) - sin a] (1.4.22)

y' = y + [cos(flr + a) - cos a] (1.4.23)

z = z - Vflr (1.4.24)

where the integration constants v and x are expressed in cylindrical (vi, a, v11) and

Cartesian (x, y, z) coordinates respectively, and r = t - t'. It is a general property

of the method of characteristics that there is one more integration constant than

is necessary to match the boundary conditions (t in this case), and that its value

reflects an arbitrary choice of the origin of the variable that measures "distance"

along the characteristic trajectory (t' in this case).

Once the equations for the characteristics have been obtained and the initial

value term has been dropped, the next step is to substitute the expressions for the

characteristics into the equation

f(x, v, t) = - f[E(x', t') + v'(t') X Bi(x', t')] - ef.cdjr (1.4.25)

A problem arises at this point, because the explicit forms of E(x, t) and Bi (x, t)

are not known. Indeed, these expressions are formally obtained by integrations over

the distribution function f, which is the function that we are trying to calculate.

Of course this problem can immediately be overcome by expressing the functions

f, E, and B1 in terms of Fourier transforms. In this case the x and t dependences

are explicit, and the problem reduces to determining k and w dependences instead.

In the case of a spatially homogeneous plasma, the k and w dependences are purely

algebraic when Eq. 1.4.25 is transformed to Fourier space, and it is sufficient to

make the simple substitutions

f3 (x,V,t) = fi(k,v,w)ei(k'-X ) (1.4.26)

E(x, t) = (iE 2 + yEy + E,)ei(k-X-Wt) (1.4.27)

and similarly for B1 which, from Eq. 1.3.1, is given by

B 1 =NxE (1.4.28)

where
(1.4.29)N = iN- + iN11



Section 1.4: Elementary Hot-Plasma Wave Theory 39

Making all these substitutions yields

k.(x' -x) =kj(y'-y)+kll(z'-z)

= A)cos(11r + a) - cos a] - kj vjjr (1.4.30)

where
- kjv± _ Njv (1.4.31)O g

and

f(v) =- e-i{A(9in(nr+c)-sin a-(w-kg og)r}[E + v' x (N x E)] - dr

(1.4.32)
Now a major simplification occurs if one observes that, directly from Eqs. 1.4.19,

1.4.20, and 1.4.21 for the characteristics, and transforming V from Cartesian to
cylindrical coordinates, one obtains

Vi = Pu (1.4.33)

V12 Vi (1.4.34)

In this case, the equilibrium distribution function becomes

fo(v') = fo( 1, 2v,) = fo(v2,vti) (1.4.35)

and its velocity-space gradient can be written as

-~~~ 8fcv) fo (V)
xv &2 2 (1.4.36)

8af2(V') = 2 ,Ofo(v) (1.4.37)
&v' Y &2

8 fo(v') -2J8 fo(v)(I3)

S v OfO(V) (1.4.38)

and all quantities in which primed velocity variables were replaced by unprimed

velocity variables may be taken outside the integration in Eq. 1.4.32. The physical

significance of this is that v2 and vi are constants of the motion and, since the inte-

gration in Eq. 1.4.32 is over an actual particle trajectory in phase space, constants

of the motion are independent of the integration variable. Re-writing the integrand

to exploit the constants of the motion is done by writing
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[E + v' x (N X E). - 1 Av' + A2 v' + A3

where

A1 2 v (N 1Ex - NE) -

A2 = 2 [NtvlEy (o E '

A3 22E

Then Eq. 1.4.32 reduces to

9fo (v))+ Ea (v

- fo(v)) + E319
Of1v 1

q (A sin aiv +
AV) e AV-L +1i2±3TM \ A vj vi)

where the integral I is defined as

I = J eitsif(OT+a)(kloI)T1 dT

Further progress can be made using the Bessel function identities

eiXCOS(Oli+C1)

and

e-iAcoO -

00

= e(w/2-nr-a) J1(A)
l=-oo

=-00

Il=-oo

which allows explicit integration over r, yielding

-i(I-')a
f(v) = - E 1' - -

(+LgAl + A3vjj) Ji(A)J 1(X) - A2v±JI(A)Ji,(A)]

(1.4.47)

An expression for the electric current can now be obtained:

(1.4.39)

(1.4.40)

(1.4.41)

(1.4.42)

(1.4.43) .

(1.4.44)

(1.4.45)

(1.4.46)
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J = E nj q J davvfj(v)

One of the summations can be performed and the result further simplified using the

identities

j2i da e'(-L) = 2 1rSli,

d2w cos a ei(1-l')c = r(5 1 ,l + Si+1,zi)

j2w cda sin a ei(1l-)a = i(Si-.I,i - 5+1,')

/221
J1+I(A) + JI-I(A) = J(A)

J,+I(A) - J 1.. (A) = -2Jj(A)

yielding a wave equation of the form

N x (N X E) + K E = 0

where the dielectric tensor K is defined by

K - E e E + b

and is given explicitly by

(1.4.49)

(1.4.50)

(1.4.51)

(1.4.52)

(1.4.53)

(1.4.54)

(1.4.55)

1
dvj 1 - Igj - N jvjK=1+27r E Pj2v_ dv J

j I=-00,

x -i v±Ji JPj

N-L J

(V±J j) 2 pF -ivjVI JIJjQj

(vll J) 2 Qi3

(1.4.56)

where

(1.4.48)
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P 9fo + Ni f 3
Pi &\ 2 &

Aj aNLv
9j

- 1 g (
Ovjf

afoi

&Vj)

(1.4.57)

(1.4.58)

(1.4.59)-

(1.4.60)

It is useful to obtain an expression for the dielectric tensor in the case of isotropic

Maxwellian equilibrium distribution functions:

1 -
fo,(v) = 7 e

2/2thj

(1.4.61)

Using the Bessel function identities

J 00 e~J,2(23.fx) d = Ij(2#32)e-22

In(b)e-b 1
1=-ac

(1.4.62)

(1.4.63)

yields

p0

K =IZ ZEpj og e~
i 1=-00

xC

gI1 Z

il(I - I1)Z

-N eIg lZ'

-ii N vei

N- (4 I .V4)

(1.4.64)

Z Z(Cj)

I MY(b,)

(1.4.65)

(1.4.66)

and

where

19f0i
&V2

1 )

-il(ag - I )Z

V II + 2bi(Il - Ij) Z
iN Ie
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are the plasma dispersion function and modified Bessel function, respectively, and

bi 02 g2 (1.4.67)
__ =

is the argument of the modified Bessel function, and

~ -11 i = INvth (1.4.68)
k lvthj N19,th

is the argument of the plasma dispersion function, defined as

Z() = 1 COdz (1.4.69)

This dielectric tensor can be expanded in terms of a finite-Larmor-radius (FLR)

expansion. Using the asymptotic approximations of the plasma dispersion function

Z = Z, + iZi given by

(-2((1-3 is+44+- )ll<

Z ( -1 + 3 +C| >> 1 (1.4.70)

Z1 (() = V,/ sgn(kz)e~C2  (1.4.71)

and the modified Bessel function given by

e-'IO(b) ~ 1 - b + 3b2
4

e-bIl(b) b - 1b2 , b < 1 (1.4.72)
2 2

e-b12 (b) ~

e-bI(b) ~ 1 -4 + ,2(412 9) b> 1 (1.4.73)
2~'l8b 2!(8b)2

and
I(b) = I 1 (b) (1.4.74)

yields

K = KC + Ki1(kj) + KH(k (, :k1 )) + K2 (k) (1.4.75)
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where Kc is the cold-plasma dielectric tensor

S
Kc =iD

0

-iD 0
S 0)
0 P

(1.4.76)

KI contains the leading order contributions from Landau damping and fundamental

cyclotron damping
iL+,

Ki= L~

0

-L-. 0

iL+ 0

0 -'iL'

KH contains the leading order contributions from hot-plasma waves

KL

KH = -KH

-KE

KH

KH

-KHYw

1

KI = i2bjpj [
K H= i 2biiy

N2 1 + 34;

N2 V3(1 - g24)3J

1 N 2 3+ gI
- - 1 3

K =2± 2

K' = bp g,

N=(N

.7 = -(p3

1-44

N2  1+3gJ2111 2
N2j'(1 - 4)3J

and K2 contains the leading order contributions from second harmonic cyclotron

damping

(1.4.77)

where

(1.4.78)

(1.4.79)

(1.4.80)

(1.4.81)

(1.4.82)

(1.4.83)

(1.4.84)
2

1+



Section l4: Elementary Hot-Plasma Wave Theory 45

i( L - L+) -( L- - 2L-~g) - 91 x L-~4

K2 = b3  (L- - 2Lj-) i(2Loj +L+L) -~ (L+' - L' ~ )

Ng L_' N1 (L+ L'j) -IiLi' -Vg

(1.4.85)

where

L±= p, Co, (e~?i ± e~6l') (1.4.86)

= ± ( ~ -j e~ (1.4.87)

Note that KC is completely independent of the wave vector k. This indicates

that in the cold-plasma limit, the response is local, without the need for further

approximation. K1 depends only on k1 and is exponentially small except near a

Landau or fundamental cyclotron resonance. KH depends primarily on klj, and the

weak k11 dependence is often neglected in calculations. Similarly, for the second-

harmonic contribution in K2 , only the k2 dependence through bj is usually kept,

along with the kg dependence from the Landau and cyclotron damping terms. Also

note that KC and K1 are leading order in the FLR expansion while KH and K2 are

first order.

A calculation of the hot-plasma dispersion relation as a function of position for

a pure deuterium plasma is shown in Fig. 1.4.1. The deuterium second harmonic

cyclotron resonance occurs at the plasma center (x = 0). The dispersion relation

for the fast wave is similar to the cold-plasma case, except that some absorption

is evident from the small imaginary part of N., and there is a slight perturbation

of the fast wave polarization near the cyclotron resonance. Note the correspon-

dence between the slight enhancement of the polarization and the asymmetry of

the absorption region. The ion Bernstein wave, which is not predicted by cold-

plasma theory, is present and propagates only on the high-field side of the cyclotron

resonance. (In general, the IBW actually has regions of propagation between all

harmonics of the cyclotron frequency. (62]) There is the possibility of mode conver-

sion between the IBW and the FW at the point where the curves cross in the first

plot. Mode conversion is relatively weak in the case of a pure deuterium plasma,

compared with the following two-ion-species cases. The polarization of the IBW is

linear, except for a slight perturbation near the center of the plasma. This indicates

that the IBW is predominately electrostatic in nature.

The same calculation for the case of a 1% concentration of hydrogen is shown in

Fig. 1.4.2. There is now a nonzero E+ component of the FW at the position of the
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Figure 1.4.1: Hot Plasma Dispersion Relation for Deuterium Second
Harmonic-The real and imaginary parts of N. and the wave polarization are
shown for a pure deuterium plasma with Alcator C parameters. The cyclotron
resonance w = 2 waD (= w.m) is at z = 0 and the high magnetic field side is at the
left on these plots. The plasma parameters for this plot and those that follow are
the same as for the corresponding cold-plasma dispersion relation plots in Sec. 1.3,
except that all ion species have a central temperature of I keV and the electron
central temperature is 1.8 keV. The temperatures have a parabolic squared profile
shape. Peak electron density is n.o = 4 x 102* m-3 and a single plane wave at
No =5 is assumed. Only the central 5 cm is shown for a plasma with minor radius

a = 12.5 cm. (Dispersion relation code courtesy of Dr. A. Ram of MIT.)

cyclotron resonance, and there is significant enhancement of both Nz and E+ at

the position of the cold-plasma two ion hybrid resonance layer. The corresponding
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Figure 1.4.2: Hot Plasma Dispersion Relation for 1% Hydrogen Mi-
nority in Deuterium-With a very small minority concentration, N. and E+
are both enhanced in the vicinity of the cold-plasma two-ion hybrid resonance and
the "shorting out" effect of E+ is suppressed at the center, where the minority
species is at fundamental cyclotron resonance. The left-hand cut-off is completely
absent.

effect in Im N. for the FW is suggestive of enhanced absorption, an effect caused

by the overlap of the Doppler-shifted cyclotron absorption region and the hybrid

resonance layer. The IBW is still predominately electrostatic in nature.

The effect of raising the minority concentration to 2.5% is shown in Fig. 1.4.3.

In this case, there is a mode-conversion (MC) region in which N. is the same for

both waves, and strong mode conversion is to be expected. There is still no left-hand
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Figure 1.4.3: Hot Plasma Dispersion Relation for 2.5% Hydrogen Mi-
nority in Deuteriumm-As the minority concentration is increased, the disper-
sion relation exhibits coupling between the IBW and FW modes, but there is still
no left-hand cut-off of the fast wave.

cut-off of the FW. The effect on the wave polarization is quite pronounced. There

is even a point where the polarization becomes pure LHCP, which is suggestive of

the slow electromagnetic cold-plasma wave. As was mentioned in Sec. 1.3, the cold-

plasma fast wave mode-converts to the cold-plasma slow wave at this point (N2 =S)

and the slow wave then exhibits a resonance at S = 0. In hot plasma theory, the

identification of the modes becomes ambiguous. If one wishes, one can think of this

process as mode conversion of the fast wave to the slow cold-plasma wave, followed
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Figure 1.4.4: Hot Plasma Dispersion Relation for 10% Hydrogen MI-
nority in Deuterium-At high minority concentration, E+ is again "shorted

out" at the position of the cyclotron resonance, and the left-hand cut-off is present.

by transformation of the slow wave to the IBW. In this case, the wave would be

considered to be the slow wave where the polarization is LHCP and the IBW where

the polarization is linear. Some authors prefer not to distinguish between the cold-

plasma slow wave and the IBW, and instead speak of "electromagnetic corrections"

to the IBW dispersion relation.

The hot-plasma dispersion relation for the case of 10% minority concentration

is shown in Fig. 1.4.4. In this case, the behavior of the FW near the cyclotron

resonance layer is similar to the cold-plasma case. The FW is pure RHCP at
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the cyclotron resonance and there is a left-hand cut-off. In this regime, a FW
launched from the low-field side would be expected to be predominately reflected,
with relatively little absorption or mode-conversion. A FW launched from the high-
field side would be efficiently mode-converted.

A simple and very useful expression for estimating the distribution of RF power
between hydrogen fundamental cyclotron absorption and deuterium second har-
monic cyclotron absorption can be easily obtained analytically from the hot plasma
dielectric tensor. The procedure to be followed is to calculate the absorbed power
density in slab geometry using the expression

1
Q = -- iwE* - K - E + c.c. (1.4.88)

4

retaining only terms involving E+ and keeping terms from hydrogen fundamental
and deuterium second harmonic absorption separate. Making the small-electron-
mass approximation, so that only the upper left 2 x 2 submatrix of K is involved,
the terms involving E+ are

E* K - E = (Km2 + 2Ky + KYV)IE+12  (1.4.89)

Expanding the Bessel functions J1 and J2 to leading order in the FLR expansion and
performing the velocity integrations assuming Maxwellian distribution functions for
both species, one readily obtains

QH -pe |E+| (1.4.90)
2 ik/ NIvihH N - (lhH

w PD IE+12  1 )2 (1.4.91)
2 VF 1 Ng ]thD 1.N4.91

where

P ne (1.4.92)
MH w

eB (1.4.93)
mHw

7H nD

OD ~DTD (1.4.95)
A2
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And the fast-wave dispersion relation was approximated by that of a compressional
Alfvin wave in order to evaluate k2 Next, since g = OH/W = B/Bo = Ro/R, one

has 1 - g ; r/Ro, yielding an expression for the e-folding width, due to Doppler
broadening, of the absorption layer

8 = RON 11vih (1.4.96)

Now treating all quantities except 1 - g as constants and integrating across the
absorption layer yields

PH = A QH(r) dr = 'OPHIE+I2 RoA (1.4.97)

PD = A QH (r) dr = p# |E+ 12RoA (1.4.98)

where A is the cross-sectional area of the plasma slab, and taking the ratio between
these two equations yields simply

PD2 _ OD (1.4.99)
PH 17H

As long as the distribution functions for both species remain approximately Max-
wellian, and as long as the contribution to absorption from E+ dominates, Eq. 1.4.99
provides a very useful way to estimate the importance of direct deuterium second
harmonic absorption in an ICRF experiment.

1.5: Inhomogeneous Plasma Wave Theory

In this section, a more careful treatment of the mathematical implications of plasma
spatial inhomogeneity will be given. The details of this derivation in its most
rigorously correct form are much too complicated to be given here, so I will instead
adopt a more formal and abstract approach than I have used so far. The purpose

here is not to cloud the mind with myriads of detailed mathematical expressions,
but rather to develop an understanding of the structure of the analysis.

The last expression written in Sec. 1.4 that was valid in general for a spatially
inhomogeneous plasma was the phase integral, given by

f(x, V,t) = [E(x', t') + v'(t') x B 1(x', t')] - dr (1.5.1)
m Jo V
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At this point, it is to be understood that fo is no longer a function only of v, but
depends on space too. For example, in general the zero-order distribution function
would be of the form fo(x, v), in slab geometry the form would be fo(x, v), and
in toroidal geometry the form would be fo(O, v). Now consider the velocity depen-
dence more closely. In Sec. 1.4 it was found to be very useful to write the velocity
dependence in terms of the constants of the motion for the unperturbed particle
orbits. For an inhomogeneous plasma, these constants are no longer (v2, vi), but

are now (E, 1L) where E = mv2 /2 is the particle kinetic energyt and /y = mv2/(2B)

is the magnetic moment.

Consider next what will happen when Fourier transformation is used in Eq. 1.5.1.
This transformation is defined by

f(x,v,t) - d3  e(k.x-wt)f(k, v, w) (1.5.2)
_= o (27r) 3 ___ 27r

f(k, v, w) = d3X dt ei(k.wi) f(x, v, t) (1.5.3)

and similarly for the quantities E, B 1 , fo, and also, in principle, v'. Fourier trans-
formation is useful here because when expressing B1 in terms of E, the differential
curl operator is replaced by a simpler algebraic cross product. When quantities are

expressed in terms of their transforms in Eq. 1.5.1, the product of E and 2 will
lead to a convolution integral, which introduces some complication into the anal-
ysis. Additional complication is introduced because in general V also depends on
x, which will lead to a double convolution integral. Simplifying approximations are
often made in which some complication is avoided by retaining spatial variation in

fo, but neglecting spatial variation in Bo (1-) or treating magnetic field gradients
in an approximate way by including VB-driven particle drifts when calculating the
unperturbed orbits, but assuming that both (I and the particle drifts are spatially
homogeneous. To see how this kind of approximation affects the analysis, note that
the magnetic field is the only driving term in the equations for the characteristic
trajectories:

dx v'(t') (1.5.4)
d't'

dt' a v'(t') x (1.5.5)

t Note that the symbol B is being overloaded. In the literature it is fairly common
to see E used to represent kinetic energy and E used to represent the electric field,
with surprisingly little confusion as a result.
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As shown explicitly in Sec. 1.4, if 0 is not a function of x, then the solution of
Eq. 1.5.5 is of the form v'(t'; t, v), and the only x-dependence in the solution of
Eq. 1.5.4 comes from a simple integration constant. However, if n = 0(x), then the
solution of Eq. 1.5.5 will be of the form v'(t'; t, v, x) so that the solution to Eq. 1.5.4
then becomes

/tle :=x -Jv'(s; t, v,x) ds=_x -X(;, v, x) (1.5.6)

In addition to the double convolution integral that results from the x-dependence
of v', complication is also introduced by the x-dependence of X. Thus, it is tempt-
ing to ignore either nonuniform particle drifts or nonuniform magnetic field when
calculating the particle trajectories. This approximation can be justified physically
by again invoking the randomizing effects of collisions or turbulence, so that only
the portion of the particle trajectory in the vicinity of x is important.

In the following simplified presentation, consider neglecting the x-dependences

of both v' and X, in which case Eq. 1.5.1 can be written formally as follows:

p00 , 9

f(xvt) =- F(x', V, t') - fo(v' x) dr (1.5.7)

Writing each spatially dependent quantity in terms of its Fourier transform, and

then inverse transforming both sides of this equation yields

f(k, v,uw) = - fdX dt ei(k-XWt) d'r J d> j +- x

F~~~k", ~ ~ 5 ',")& '~'*-fO(V' k')ek'-' (1.5.8)

At this point, one exploits the fact that fo depends only on the constants of the

unperturbed motion. By doing this, one can eliminate the r-dependence of fo which

comes from the r-dependence of V. In general, the constants of the motion Q' are

functions of both x' and v', but for simplicity I will assume only V dependence.

Thus, if the constants of the motion are denoted by Q''(v), then one can write

a , OQ'm(V') &fo(v)

-fo(v) = E (1.5.9)

Rearranging the integrations, making use of x' = x - X and t' = t - -r, and taking

advantage of the assumption that X is not a function of x, yields
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f(k,v,W) =djd- d3 k"j dw" d 3  eix[k"-(k-k')] eit(W-W")

6(k11-[k-k']) (-)

x - - - F(k(Q
m k') Ic')

dk' 0* dr e-i(kXw)F(k - k', v',w) - M OQm, )
(27r)3 fy, E -V AQ

(1.5.10)

The current J can now be written as

J(k, w) = njqj d3v vf(k, v, w)

= iW E(k, u) - - K(k, k'w) -E(k', w) (1.5.11)
(27r)3

where K is often referred to as the dielectric kernel, and the wave equation can be

written as

V x (V x E) - w2  d X' K(x, x') - E(x') = 0 (1.5.12)

or as

k x (k x E) + w 2f ) K(k, k'). E(k') = 0 (1.5.13)
(27r) 3

where K(k, k') is the double Fourier transform of K(x, x'). Thus, for a spatially inho-

mogeneous plasma, the wave equation is no longer a differential equation. Eq. 1.5.12

is a Fredholm integro-differential equation. As suggested here, the best way to solve

Eq. 1.5.12 is to stay in Fourier transform space, in which case the differential part of

the equation becomes algebraic, and one is left with Eq. 1.5.13, which is a Fredholm

integral equation of the second kind.

Straightforward discretization reduces Eq. 1.5.13 to an algebraic matrix equa-

tion. However, rather than directly discretizing Eq. 1.5.13, there may be advantages

in first making use of conventional Hilbert-Schmidt theory. In this method, solu-

tions for eigenfunctions and corresponding eigenvalues of a simple integral eigenvalue

problem are first obtained. Then, the dielectric tensor is written in terms of these

eigenvalues and eigenfunctions via a Hilbert-Schmidt expansion. Eq. 1.5.13 would

then be used to express the desired solutions in terms of the previously determined

eigenvalues and eigenfunctions. The advantage of the Hilbert-Schmidt expansion is
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that the dielectric kernel is expressed as a sum of products of functions of k only

and functions of k' only. This reduces the integral equation to a matrix equation

without the need (in principle) for numerical discretization and therefore could con-

ceivably yield approximate analytic solutions. To the best of my knowledge, this

technique has not yet been applied to this problem.

A very elegant technique for solving Eq. 1.5.13 is via an FLR expansion, which

allows the integro-differential equation (Eq. 1.5.12) to be approximated by a dif-

ferential' equation. This is done by transforming from real space to Fourier space

and then back again, using a variational formulation as described by Colestock

and Kashuba[68 1. This variational method was developed by Berk, et al.6 9 The

variational form of Eq. 1.5.12 is

dxr Et (x). V x [V x E(x)] + w2  d x' K(x, x') -E(x') = 0 (1.5.14)

where Et is the solution of the adjoint of Eq. 1.5.12. Eq. 1.5.14 can be rewritten in

terms of transformed quantities as

2 E(k) k X [k x E(k)] + w f A K(k, k') - E(k') = 0 (1.5.15)
1(2 3 Et-(27r) 3

The FLR expansion of the dielectric kernel (written in one dimension to avoid a

notational nightmare) is of the form

N
K(k, k') = E K(um) (0, 0)knk'" (1.5.16)

n,m

where the dielectric tensor has been Taylor expanded about k = 0, k' = 0. When

Eq. 1.5.16 is substituted into Eq. 1.5.15, the powers of k are brought outside the

k'-integration and instead grouped with the Et(k). When the resulting equation is

transformed back into z-space, derivatives of Et(x) are introduced via

dk'kmE(k)et1 = (-0)' (1.5.17)
27r dxm"

and, similarly, the powers of k' introduce derivatives of E. Partial integration is

used to eliminate the derivatives of Et, which can then be factored out of each term,

resulting in a differential equation of the form

G(x)a - E(x) + F(x) - - E(x) + H(z) -E(x) = 0 (1.5.18)
8x ax
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This method resolves an ambiguity which arises when one attempts to construct
a wave differential equation directly from the homogeneous plasma dispersion re-
lation. It is important to keep in mind that this derivation is based on an FLR
expansion, and therefore can yield inaccurate results for short-wavelength modes,
such as the IBW. Note also that the number of terms N kept in the Taylor series
expansion of the dielectric kernel is an arbitrary choice which influences the order
of the resulting differential equation. If more terms are kept in the expansion, non-
physical wave modes are introduced, which must be dealt with during calculations.
That is, one must make certain that higher order derivatives result in small correc-
tions to solutions that would be obtained with the lower order equations, and not in
introduction of new solutions. These nonphysical solutions would have very short
wavelengths, and the FLR expansion would not be valid for them. This problem
is quite analogous to what happens when one attempts to solve the transcendental
equation e = 0 by approximating it by an algebraic equation obtained by truncating
the Taylor series expansion of eO.

Note also that the key to the success of the FLR expansion in the variational

expression is that the dielectric tensor K is written as a sum of products of functions
of k and of k'. This again suggests that a method based on a Hilbert-Schmidt
expansion might be useful, perhaps in situations where the IBW wavelength is too
short to allow accurate solutions with the FLR expansion.

Results from the plasma wave code METS for typical high-density Alcator C
parameters are shown in Fig. 1.5.1. METS is a computer program which was written
by D. Smithe of the Princeton Plasma Physics Laboratory, and solves the one-
dimensional version of Eq. 1.5.18 using slab geometry. Explicit expressions for the
coefficients used in Eq. 1.5.18 are given by Eqs. 10 and A24 in Ref. 68. The code
described in Ref. 68 uses a Runge-Kutta numerical integration technique which is

very sensitive to contamination by the evanescent IBW on the low-field side of the
absorption layer. In METS, this problem is eliminated by using a spectral method

instead. The METS code is a so-called single-pass code, in which a particular wave
mode (the fast wave in these calculations) is assumed incident at the center of the

plasma, coming from either the high-field side or the low-field side. When the wave

reaches the absorption layer at the center of the plasma, it is partially absorbed, par-

tially reflected, partially transmitted to the other side, and partially mode-converted
to the IBW. Outgoing waves are assumed to propagate away without being reflected

from walls.

No physics relevant to antenna coupling is included in this calculation. Instead,

for each chosen value of k, a calculation is performed as if all the power was

concentrated at that particular value of k1j, i.e., separate calculations are done for
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Figure 1.5.1: METS Calculation for High Density-METS calculation
for density n. = 4 x 102s r- 3 , electron temperature T. = 1.5 keV, deuterium
temperature TD = 1.15 keV, minority concentration 1?H = 0.5%, and minority
temperature TH = 1.15 keV.

plane waves incident from various angles. To determine which values of kg are

actually launched by the antenna, it is necessary to include the antenna current

and vacuum chamber walls as boundary conditions. This is done in the Brambilla

code calculations shown in Chapter 4 of this thesis. From the Brambilla code, it is

found that most of the launched power is concentrated near 15 < k$ < 20 m- 1 .

The quantities plotted in Fig. 1.5.1 are the fraction of incident power which is

transmitted (T), absorbed (A), mode-converted (C), and reflected (R). Also shown

are the individual fractions of power absorbed on the hydrogen minority (H), the

deuterium majority (D), and the electrons (e). One can see that Alcator C is

characterized by very low single-pass absorption, with most of the power being
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102 M-3 , electron temperature T. =2 keV, deuterium temperature TD = 1.2 keV,
minority concentration qH = 0.5%, and minority temperature TH = 1.2 keV.

transmitted. Absorption by electrons (via Landau damping) is also quite weak. It
is important to note that it is possible for the mode-converted IBW to Landau-damp
efficiently on electrons if the value of kA1 changes as the wave propagates. This is

an effect that can be caused by parallel gradients (which are non-zero due to the

presence of the poloidal field) of the plasma parameters(70l and is not included in
this version of the code. Transit-time magnetic pumping is another effect that can
lead to absorption by electrons, and which is not included in METS.

Another METS calculation is shown in Fig. 1.5.2 for a low-density low-minority-
concentration case typical of the Ohmic target plasma in Alcator C, before the
minority temperature increases. Single-pass absorption is seen to be extremely weak
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in this case - significantly weaker than for the high-density case. Mode conversion

and reflection are also quite weak, and it is clear that it will be necessary to treat

the metallic wall surrounding the plasma as well at the boundary condition at the

antenna current in order to model absorption in any reasonable way in Alcator C.
The codes that will be used to do detailed simulations and analyses in Chapter 4

of this thesis were selected with this in mind.

The effect of raising the minority temperature to 10 keV, is shown in Fig. 1.5.3.
The effect is a very slight enhancement of the absorption and a decrease in mode

conversion. The effect of Doppler broadening is evident in the behavior of the

absorption coefficient as a function of ku. Although these changes appear to be
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quite small, note that the decrease in mode conversion is significant when compared

to the magnitude of the absorption. The electron absorption is still quite small.

The effect of raising the minority concentration to 5% is shown in Fig. 1.5.4. At

this concentration, large increases in minority tail temperature were not observed,

and so were not included in this calculation. Note that mode conversion is greatly

increased in this case, and absorption is markedly reduced compared to the other

cases. There is also significantly increased reflection. Significant electron absorption

is indicated at high kIc, but the results of the Brambilla code calculations to be

presented in Chapter 4 indicate that these values of ku are not launched by the

antenna except at high density.
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This treatment with the METs code lends important supporting evidence to the

conclusions reached using other codes in Chapter 4.

Before concluding this section, there are a few other treatments of wave propa-

gation in an inhomogeneous plasma that are worth mentioning. I will just present

a brief introduction to these treatments, referring the reader to the appropriate

references for the actual implementations and applications.

Beginning prior to the variational treatment of the wave equation by Colestock

and Kashuba, an important body of work was accomplished by Swanson, Perkins,

et al.[71~80] In these works, one-dimensional wave equations were usually derived by

inverse Fourier transformation of homogeneous-plasma dispersion relations. This

technique results in an ambiguity involving derivatives of terms exhibiting explicit

spatial dependence. This ambiguity was expected to be unimportant so long as gra-

dients of the wave fields were large compared to gradients of the plasma properties.

However, it was possible to resolve this ambiguity by deriving the wave equation di-

rectly from the Vlasov equation[77I, using a suitable extension of the method shown

in Sec. 1.4 of this thesis.

The derivation of such an equation, for the case of normal incidence (ki1 = ky =0)

including mode conversion without damping, is given by Swanson in Ref. 72, and the

solution of that equation is discussed in painstaking detail by Ngan and Swanson

in Ref. 73. This derivation begins with a fourth-order linear dispersion relation

including leading order thermal effects describing propagation of the IBW, but

excluding damping terms arising from the imaginary parts of the plasma dispersion

function. Two ion species are considered. The only spatially varying quantity

considered is the equilibrium magnetic field. This is reasonable, since the density

and temperature profiles are locally flat at the center of the plasma, while the

magnetic field is not. Spatial dependences are expanded to leading (linear) order in

Taylor series, and the following notation is defined:

-p r/R (1.5.19)

A 22 (1.5.20)

a n2/ni (1.5.21)

A m2/mi (1.5.22)

_ 4p(1 + a)(1 + pa) (1.5.23)
C(I - 1)2( + 1)

9 (;& + 1)([4 - p~f + ay(4A - f) (1.5.24)
(4pA - f )(4 - p~f)
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f M +p (1.5.25)

2(1 )1 + pa)

A 2(p +o) (I+jua) (1.5.26)
a(pA2 1 1)(0 - 1)(1 + g)

B 3 1 =,31- ( + (1.5.27)
2p(A + 1)(1 + g)

This results in the following expression for the dispersion relation:

\2 + ApAj + B(1 - Sp) = 0 (1.5.28)

Fourier transformation is then accomplished via kR8 -+ -d 2 /dp 2 and a new inde-

pendent variable is defined by z= -np, along with the following additional notation:

2(1 + a)
e aW piRo (1.5.29)

O( + a)(1 + 1) (1.5.30)
2p(l + g)(1 + cl)2,

2 2(p + a)(1 + pa) (1.5.31)
ra(1 + a)(1 + g)(.t - 1)2,3(

This leads to the so-called "fourth-order mode conversion-tunneling" differential

equation, given by

y v + X2zy" + (A2 z + _Y)y = 0 (1.5.32)

This equation was solved by Ngan and Swanson[73 using two different methods.

One method is a straightforward asymptotic method in which solutions are first ob-

tained for small z, and then again for large z. These solutions are then connected by
means of standard asymptotic matching in an intermediate convergence region. In

the other solution method, called the Laplace method, the solution y is represented

as a Laplace transform

y = jezY(p) dp (1.5.33)

where P is a suitable Laplace inversion contour in the complex p-plane. This method

is fruitful because the coefficients in Eq. 1.5.32, have only constant and linear terms.

When Eq. 1.5.32 is Laplace transformed, the constant coefficients become algebraic

functions of p while the linear terms introduce first order derivatives with respect

to p. Thus, Laplace transformation reduces a fourth-order differential equation to a

first-order differential equation. Four independent solutions are obtained by suitable
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selection of the inversion contour r. Laplace transformation of Eq. 1.5.32 yields

dlny p 4 -2A 2p+ -Y (1534)
dp A2(1+p 2)

which has solution

Y(P) = + exp [3 p + (1 + -) tan-' p (1.5.35)

Inverse Laplace transforming and introducing a new integration variable u tan-I p
yields

y(z) = r du exp 3 2 + Z 1 taniu + 1 + (1.5.36)

Equation 1.5.36 is then solved by the method of steepest descents. Transmission,
reflection, and mode-conversion coefficients are then derived from these solutions.
Selection of the appropriate contours corresponding to individual wave modes and
propagation directions is non-straightforward, unless one is armed with the solutions
obtained from the method of matched asymptotic expansions. The results of this
analysis are that reflection and transmission coefficients for high-field incidence are
given by

R=0 (1.5.37)

T = 6e~1  (1.5.38)

and for low-field incidence are given by

R = 1 - Oe-27 (1.5.39)

T = (1.5.40)

where

77 = ir(-y + 1)/2A2  (1.5.41)

6 is a complex phase-shift factor, and the mode conversion is given by C =1 - R - T.

This method has been extended to include treatment of nonzero ki and the

presence of absorption[75, 76]. New terms in Eq. 1.5.32 which represent absorption

and cannot be approximated as linear in the vicinity of the mode-conversion layer
are written on the right-hand side, yielding an equation of the form

y/V + \2ZY" + (A2 z + Y)y = g(y, z) (1.5.42)
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where g(y, z) is written as if it were an inhomogeneous term. Keep in mind that
g(y, z) depends on y as well as z. Once solutions for Eq. 1.5.32 are obtained, it is
possible to construct a Green function G(z, z'). Eq. 1.5.42 can then be inverted to
yield a Fredholm integral equation of the second kind:

y(z) = G(z, z')g(y(z'), z') dz' (1.5.43)

Whether Eq. 1.5.43 is ultimately homogeneous or not depends on the particular
problem to which it is applied. Because g(y, z) is a spatially localized quantity, one
is assured that the kernel of Eq. 1.5.43 is square-integrable, and that a solution by
simple iteration will converge.

The treatment of the mode-conversion problem using the fourth order equation
can be very tedious. It is actually possible to treat processes like wave coupling,
tunneling, and reflection using lower order equations. This involves techniques
where the modes of interest (e.g., an incident fast wave and transmitted IBW) are
modeled using differential operators while other modes (e.g., reflected fast wave and
evanescent IBW) are modeled using wave vectors. These theories were developed

by Cairns, Lashmore-Davies, Fuchs, Bers, et al.J81 8-86

As an example of the theory of Cairns and Lashmore-Davies[1, 82], consider
two wave modes which, in the uncoupled approximation, have dispersion relations
of the form

w2 = o(k, x) (1.5.44)

w2 = w(k, X) (1.5.45)

In the presence of mode coupling, these waves will come from a more general dis-
persion relation of the form

(w2 _ W2)(W 2 _ w) = (1.5.46)

which, for the sake of example, can be considered to be fourth order in k, (e.g.,
wl = cik, W2 = c2 k). The right-hand side quantity yi is a small coupling term,
which is usually negligible, except when both factors on the left-hand side are also
small. Suppose one is only interested in the waves corresponding to w = +wl and
w = +w2. This could correspond to the case where a fast wave is incident from the
high-field side and one is only interested in the returning mode-converted IBW. The

other two modes that are not of interest would then be the evanescent IBW and the

reflected fast wave. (It is commonly known that reflection is zero in this particular
case, but that is not important for this example.) In this case, Eq. 1.5.46 can be
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divided by (w + w1)(W + W2). Then, since the right-hand side is only important
when w = wl = W2, Eq. 1.5.46 can be well approximated by

(w - WI)(W - w2) = q (1.5.47)

where l = F/(4w2 ). Eq. 1.5.47 now describes only the two modes of interest.
Coupling between the two modes occurs in the vicinity of the point k = ko, z = X0,
defined by

w = W1 (ko, o) = w2 (ko, o) (1.5.48)

Taylor expanding the individual dispersion functions about this point yields

w ~ w + a6 +b (1.5.49)

W2 ~W+ f6 +9 (1.5.50)

where k = ko + 6, and x = zo + . Treating 77 = M as a constant at the value

corresponding to xo and ko yields

(ak - ako + be)(fk - fko + g9) = 7o (1.5.51)

This is then converted into a pair of differential equations by the replacement k-
-id/dc, yielding

d41 b 1=i0--- i ko - -a =(1.5.52)

dO2a

- i ko - 24 02 = i\01 (1.5.53)

where

A E(1.5.54)
af

This reduced second-order system is much easier to solve analytically than the
fourth order equation, Eq. 1.5.32.

A more general order reduction theory was developed by Fuchs, Ko, Bers, and

Harten[8I. In this theory, one begins with a general high-order dispersion relation

of the form
D(w; k, z) = 0 (1.5.55)

and it is not necessary to factor the dispersion relation into a form similar to
Eq. 1.5.46. This theory implicitly assumes that the system is driven at some fixed
frequency w, and does a-local analysis in k and z, where the spatial coordinate z is
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generalized to allow complex values. With z and k both complex, the general dis-

persion function of the form k = k(z) is a multi-valued surface with branch points

at the junctions of the various surfaces. Each surface corresponds to a different

wave mode, and each branch point corresponds to a coupling event. The branch

points z = zb and corresponding k = k, are determined from simultaneous solution

of Eq. 1.5.55 and

Dk = 0 (1.5.56)

A particular coupling event involves only two modes if

Dkk # 0 (1.5.57)

at (k,, zb). Expanding the dispersion function about this point then yields

D(kb) + (k - kb)2 Dkk(kb) = 0 (1.5.58)

(It is not necessary to also expand in z, in which case kb = kb(z).) A second order

equation describing the coupling event is then obtained via

y"(z) + Q(z)y(z) = 0 (1.5.59)

where

Q(z) = -2 D kb(z) (1.5.60)
Dkk s)

Applications of these techniques to the general problem of determining coupling

coefficients and to specific physical problems can be found in the references cited

above and references contained therein.

A more exact method of order reduction, analogous to the treatment of Cairns

and Lashmore-Davies, has recently been given by Swanson871. Instead of expressing

the dispersion relation as a product of two lower-order dispersion relations set equal

to a localized coupling term, Swanson performs the same kind of factoring on the

differential operator in the wave equation. That is, starting with a fourth-order

wave equation of the form

y + b(z)y" + a(-r)y = 0 (1.5.61)

Swanson rewrites this in the form

D+D-y = g(z, y) (1.5.62)
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where

D+ =o + k2(X) (1.5.63)
L2 +

D = d2 + k2 (X) (1.5.64)

ki = (b / 2 -4a) (1.5.65)

y = 2(k2 )'y' + (k2 )"y (1.5.66)

and g is the spatially localized coupling term. It is then possible to construct a
Green function from the four solutions to the two separate second-order equations

D+y = 0 (1.5.67)

Dy = 0 (1.5.68)

This then leads to an inhomogeneous Fredholm integral equation of the second kind,
from which the exact solutions may be obtained numerically.

1.6: Integration of Wave Theory and Kinetic Theory

So far, derivations have been given of equations which describe the propagation of
plasma waves, and the (linear) absorption and mode conversion of power from wave
to plasma and from one wave mode to another. What is needed now is a treatment
of the effects (hopefully heating) that this has on the plasma. Perhaps the simplest
approach one can take is to use the absorbed power calculated from a solution of
the wave equation as an input heating power in a calculation in which the plasma
is modeled as a fluid, with transport properties derived by assuming Maxwellian
distribution functions for all species. This is essentially what is done in the ONETWO
code analyses of deuterium heating to be presented in Chapter 4 of this thesis. The
present section, however, is concerned with exactly how the RF wave fields appear
in the kinetic equation that determines the particle distribution functions.

The treatment in this section is going to be extremely abstract, even more
so than the treatment in Sec. 1.5. Again, the details of the derivations are too

complicated to be included here, and they can be found in the references. One
particularly well-known explicit version of the steps outlined in this section was

given by Kennel and Engelmann(66], for the infinite homogeneous hot-plasma case.
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All of the steps illustrated abstractly in this section are done explicitly in Ref. 66,
except that the infinite homogeneous plasma derivation requires a limit to be taken
as the plasma volume tends to infinity, which is not required in bounded geometry.
When comparing my abstract notation with that of Kennel and Engelmann, note
that at my presentation does not necessarily involve Fourier transforms.

I will introduce my abstract notation by using it to describe the derivation of
the plasma wave equation in a very concise manner. The fundamental starting
equation is the kinetic equation in which the Vlasov operator, denoted herein as D,
is balanced against the Coulomb collision operator, denoted by C:

Df = Cf (1.6.1)

The linear wave equation is obtained by linearization, in which the distribution
function is separated into an equilibrium part and a small perturbation which os-
cillates at the wave frequency: f = fo + fi. The Vlasov operator is also linearized:
D = Do + D 1 . Note the omission of higher order nonlinear quantities composed
of other wave harmonics. (I use the expression "harmonics" in this section to refer
to oscillatory behavior either in space or in time.) The treatment here is "quasi-
linear" - a term which means basically that the only higher-order nonlinear terms
which are retained in the treatment are those with zero beat-frequency and zero
spatial average which arise from the nonlinear interaction of two first-order terms.
These terms are extracted from the second order equation by averaging over the

velocity gyrophase angle. Thus, second-order terms like Djfi have non-zero gy-
rophase average, but terms like Dof 2 do not. Physically, this kind of "quasilinear

truncation" of the small perturbation expansion corresponds to dropping nonlinear
coupling between different wave modes while retaining nonlinear coupling between
the wave and the plasma, which is exactly what we want. Note that, since all first

order terms oscillate at the wave frequency and average to zero, the leading order

contribution from the collision operator must be treated as a second-order effect,
to be balanced against the gyrophase-averaged effect of the RF wave fields, (unless

one wants collisions to be dominant). The zero-order equilibrium problem is then
denoted by

Dofo = 0 (1.6.2)

Once fo is known, it can be treated as a driving term in the first-order equation

Dof 1 = -Dlfo (1.6.3)

whose solution,

fi = -Do IDIfo (1.6.4)
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has been the primary subject of this chapter.

The next step is to allow slow, second-order evolution of the equilibrium solution

fo to occur. This could be done by introducing a quantity f2 as a second order
quantity. However, conventional notational usage would be that f2 is oscillatory,

and only the time and space-averaged part is wanted. This is usually done by

considering the quantity denoted by fo to be a "slowly varying equilibrium quantity"

and requiring that the gyrophase average of f2 be zero. Formally, one does a

multiple-time-scales analysis in which the fast time scale is oscillatory, via

af afo .-- -o i (1.6.5)
Ot at

where the ordering is such that

o- ~ fo < f < fo (1.6.6)at
or, more generally

Dof = Dofo + Dofi (1.6.7)

where

Dofo - Cfo < Dofi - fi < fo (1.6.8)

Going to second order and gyrophase-averaging in order to eliminate oscillatory

contributions yields

(Do) fo - (D 1 Do1Di) fo = (C) fo (1.6.9)

=Q

The quantity Q is the quasilinear diffusion operator. Note that, since D1 contains

the first-order wave fields, a solution of the linear wave equation is required in order

to evaluate Q. Eq. 1.6.9 is the well-known drift kinetic equation, with an added

quasilinear diffusion term to represent the RF absorption:

-- + ) fo = Cfo+Qfo (1.6.10)

where VDI represents the particle guiding-center drifts and vI is the velocity along

the particle drift orbit. The angle bracket notation () has been dropped for con-

venience, so that it may be used again later to represent the bounce-averaging

operation.
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For the case of an infinite homogeneous plasma, the general form for the quasi-

linear diffusion operator from Ref. 66 is

Q DQ = -D- (1.6.11)

where

_2 1 fdik __ _

D =lim -2 a*a (1.6.12)V--+00 0 E V (21r)3 w -k g-n

a = i [(E - L + il + El Jn 1  + S(q i)] - Viy) (1.6.13)

E+ei Jn+j + E-e-'O Jni . (1.6.14)

J = J(kjvj/w) (1.6.15)

where, in carrying out the k-integration, it is to be understood that w is a function

of k according to the dispersion relation. The angle 0 represents a rotation that

allows one to introduce nonzero ky, and is usually taken to be zero.

The first analytic and semi-analytic calculations of ICRF minority distribution

functions obtained by balancing RF-driven quasilinear diffusion against collisions

were done by Stix[88 ]. In Stix's analysis, as is usually done for RF quasilinear cal-

culations, the non-resonant wave-particle interactions are neglected, and the quasi-

linear diffusion operator takes the form

Qf lim a d Lvk (w - klivl1 - nf)Ie02viLf (1.6.16)
V--*00 n M2 V (27r)3

where

L 91 + ka(1.6.17)

e =E-eOJn+l + E+e~*J,-1 + -LE1 Jn (1.6.18)
vi

Stix neglects parallel velocity diffusion and terms containing E. and Ell and uses

-0 = 0 to obtain
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Qf = rq2 EI 2 1 (9 (k2 vj 2 [ , - ~0)] 1 8f
2m 2 I|k jF vj _ n[VI1 k1  J v I v

(1.6.19)
Among many other useful analytical results, Stix derives an analytic expression
for the minority distribution function using an isotropic approximation for f (lead-

ing order in Legendre polynomial expansion), a uniformly asymptotically matched

analytic approximation for the Coulomb collision coefficients, and a flux-surface-

averaged quasilinear diffusion operator. This yields an expression for the "effective

temperature", i.e., the negative of the reciprocal of the slope of the log of the dis-

tribution function:

Teff 4d f] 1 (1.6.20)

where

1 dIn f(E) (1.6.21)
Teff(E) dE

1 1+(RD(Te - TD+e) 1 (1.6.22)
Te( +) TD(1 + RD+ ) 1 +(E/ED)3/2

where

~1 (41ireo 2 m (p) 2T
8 n e2 2 me (1.6.23)

RD= Fa Te (1.6.24)
me TD

ED() = mHTD [3v1+/RD + 2 /3  (1.6.25)
MD [4 -1+(

The quantity (P) is the flux-surface average of the ICRF power density absorbed

by the hydrogen.

This analysis has been further refined in recent years by other authors. A more

detailed analytic treatment of the anisotropic effects and the extension to second

harmonic regime ICRF was done by Anderson, et al.[89l. The flux surface averag-

ing done by Stix does not accurately model the contribution from banana-trapped

particles, although it can be shown to be correct in the limit of centrally peaked

absorption. A better way to do this average is to weight the average according

to the amount of time a particle spends at each point on the flux surface. Note



72 Chapter 1: Introduction

that trapped particles spend zero time at certain locations on the flux surface. The

correct treatment of trapped (as well as passing) particles is thus accomplished by

replacing the flux-surface average by a "bounce average", also done by Anderson, et

al.[901. It was also pointed out by Anderson et al. that knowledge the high energy

distribution function itself is only an intermediate result used to obtain important

quantities such as collisional deposition to the other species and fusion reactivity,
and approximate expressions for those secondary quantities were worked out and

compared with numerical calculations[9193.

One problem that can occur when combining wave physics and Fokker-Planck

calculations is inconsistency that results if the absorption is calculated assuming

Maxwellian distribution functions while the kinetic effects result in highly non-Max-

wellian components. As was mentioned earlier in this Chapter, a non-Maxwellian

tail in the minority regime ICRF can be well approximated by splitting the ion

species up into "bulk" and "tail" species of different temperatures. This technique

was used by Morishita et al.[94] in a one-dimensional slab-geometry numerical treat-

ment. Four parameters, bulk and tail densities and temperatures, were determined

by fitting to the low and high-energy parts of the distribution function determined

from a Fokker-Planck calculation. These parameters were then used in a wave equa-

tion calculation to determine how the power deposition profile evolves. The two

calculations were iterated in order to determine the time evolution of this heating

process.

A crucial point discussed by various authors (e.g., Stix) is that the motion of

the ion must be decorrelated by the effects of collisions between transits of the

absorption region in order for quasilinear theory to be applicable. It was mentioned

earlier in this Chapter that this decorrelation could also be provided by the effects

of turbulence. A rigorous formulation of quasilinear theory in which this turbulent

decorrelation was employed was carried out by Yasseen and Vaclavik 951. They also

include the full quasilinear diffusion operator - both resonant and non-resonant

parts.
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1.7: Comparison With Other Experiments

A number of tokamak ICRF heating experiments predated the experiments dis-
cussed in this thesis, and met with varying degrees of success. In this section,
some of the important previous experimental results will be described briefly and
compared with the present results from Alcator C.

Results from several of these earlier experiments are summarized in Table 1.7.1.
Some of the early TFR results are quite comparable to the Alcator C results. In
the early TFR minority regime D(H) experiments, the antenna used was similar to
the Alcator C antenna, except that a current maximum existed only on the high-
field side (HFS), from which most of the power can be assumed to be launched.
However, for the low-nH minority regime, single-pass absorption is small, so the RF
field pattern in the plasma would not be expected to be much different regardless
of the launching direction. The electron density for this experiment is similar to
the low-density range explored in Alcator C and the Ohmic target temperatures are
only slightly lower. (The ion temperatures are more important than the electron
temperatures for this comparison.) Although the magnetic field was lower in TFR
(hence lower RF frequency and longer wavelength), the machine dimensions were
larger so that the plasma dimensions were comparable in terms of electrical wave-
lengths. Also, no carbonization was used in either experiment. However, global
energy confinement times are larger for TFR than for Alcator C (in this density
range), and the electrons and ions are more strongly collisionally coupled (due to

the larger plasma size). The deuterium heating per kW of ICRF power is approx-
imately the same for these two experiments. A small amount of electron heating
is shown for TFR, while no electron heating is claimed for Alcator C. However,

it would be impossible to detect an electron temperature change this small (65
eV) with the Alcator C Thomson scattering diagnostic and, again, the collisional
coupling between electrons and ions is stronger in TFR.

Also shown are some ICRF mode-conversion regime results from TFR. For the

same power as in the minority regime experiments, significantly more electron heat-
ing and less deuterium heating is observed, and the increase in impurity radiation

is smaller. Mode-conversion regime experiments at higher power exhibit significant

electron heating as well as ion heating. In Alcator C it is not possible to oper-

ate at an RF frequency low enough, or a magnetic field high enough, to perform
mode-conversion regime experiments.

Early attempts at minority regime ICRF using a low-field-side (LFS) antenna

in TFR were not very successful. It was not possible to operate at PIF > 150 kW

due to severe high-Z impurity production. However, significantly improved heating
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efficiency was observed in TFR both in the mode-conversion and minority regimes
after wall carbonization and replacement of the limiters by carbon limiters.

Efficient hydrogen second harmonic regime heating was observed during exper-
iments carried out on the Asdex tokamak. Significant reduction in metal impurities
when operating in a carbon environment was also reported. (All data reported
were taken with carbonization.) In other experiments (discussed in the references
but not included in Table 1.7.1) efficient D(H) minority fundamental and D(H) mi-
nority second harmonic regime heating was reported. Also, when a neutral-beam
preheated target plasma was used, ICRF heating efficiency was improved to a level
comparable to the Ohmic heating efficiency.

On the PLT tokamak, successful heating experiments were performed in the
D(H), 2 wCH, and D( 3 He) regimes - all at RF power levels significantly exceeding

1 MW. The most efficient heating regime was found to be the D( 3He) regime.
While the wave absorption is weaker in this regime than in the D(H) regime (due
to the frequency being closer to the majority fundamental cyclotron frequency),

the minority species is more strongly coupled to the bulk plasma, particularly to

the ions (Ecait is larger). Thus, a less energetic minority tail is required to couple

the RF power to the bulk plasma, and this minority tail is easier to confine. This

appears to be the reason for the improved heating efficiency.

A direct comparison between heating results with and without carbon limiters

was made during experiments on the JIPP T-IIU tokamak. When one considers the

difference in target plasma density and RF power in the data shown in Table 1.7.1,
a dramatic improvement in heating efficiency is evident. This improved heating

efficiency is due to the fact that low-Z impurities are fully ionized at the center of

the plasma, and hence do not emit line radiation. On the other hand, partially-

stripped high-Z impurities are highly radiative and can cool the plasma center,
resulting in decreased heating efficiency and possible disruption of the discharge.

Although appreciable heating was observed, early high-power ICRF heating

experiments on JET (always with carbonization) were plagued by severe carbon

impurities, with values of Zf often exceeding 3. Under these circumstances, de-

pletion of the majority ion species and direct cyclotron absorption by the carbon

becomes an issue. However, in more recent experiments on JET (not included in

Table 1.7.1) the impurity problem has been corrected and efficient heating at even

higher RF power has been achieved.

The Alcator C ICRF heating experiments described in this thesis were per-

formed at unprecedented high densities and magnetic fields. When one considers

the high densities and relatively low RF powers involved, these results compare fa-

vorably with the other experiments listed in Table 1.7.1. However, like most of the
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ICRF heating experiments, the RF heating efficiency is degraded when compared
with the Ohmic heating efficiency.

A revealing way to compare RF and Ohmic heating efficiencies is to compare the
incremental energy confinement time with the Ohmic confinement time. The Ohmic
confinement time (assuming steady state) is the ratio of the total plasma thermal
energy to the total plasma heating power during the Ohmic portion of the discharge.
The incremental confinement time is the ratio AW/AP where AW is the change in
total thermal energy content of the plasma during the RF and AP is the change in
total heating power. For Alcator C, the Ohmic confinement time increases linearly
with density over the range 0.5 < A,, ' < 3 x 1020 m- 3 from ~ 5 ms up to ~ 20 ms
and remains constant for higher densities (the saturated confinement regime). The
incremental confinement time exhibits a great deal of scatter, but is essentially
independent of density, with a maximum value of ~5 ms at any density up to li ~
6 x 1020 m- 3 . However, even this apparently unfavorable scaling does not tell the
whole story. Since there was no electron heating in Alcator C, it makes more sense
to compare the heating of the deuterium caused by collisional exchange power from
electrons in the Ohmic discharge with the heating due to collisional exchange plus
RF deposition during the RF heated portion of the discharge. Also, the efficiency
of the deposition of RF power to the deuterium is a strongly increasing function
of density. When this is accounted for, it is found that both the Ohmic (from
collisional exchange) and RE heating efficiencies of the deuterium are equal and

scale unfavorably with density. The data and calculations on which this conclusion
is based are presented in detail in the following chapters of this thesis.
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2.1: Introduction

The antenna design used in these experiments evolved directly from the antenna
design used in previous Alcator C ICRF experiments conducted by B. D. Blackwell.
This previous design consisted of a toroidal array of two conventional loop antennas

similar to the high-field-side launcher used in early ICRF experiments on TFR 5 -71,

except that the Alcator antenna had current maxima on both high and low-field
sides, and hence is considered a "two-side" launcher. The antenna conductor was
fed by a coaxial transmission line at the low-field side and shorted to the backplane
on the high field side. An unusual Faraday shield, designed to minimize the dia-
magnetic eddy currents in the shields, was used. This shield design was motivated

by the work of Faulconer[96 1 . The electrical design of all of the Alcator C antennas

was dominated by the physical constraints imposed by the compact dimensions of

the tokamak. In particular, since the largest access port on the tokamak is a 4 cm
wide slot, no part of the antenna can be wider than 4 cm unless one is willing to
assemble parts inside the vacuum chamber. In the previous attempts at fast wave

ICRF heating in Alcator C, there were recurring problems with electrical break-

down. This breakdown was believed to occur at the vacuum feedthrough, and/or

in the section of the power feed line within the 4 cm wide port. In order to reduce

the electric field strength within the feed line, a self-resonant loop antenna design
was developed. This design allows the antenna to present a matched load to the

feed line, and has the added benefit of increasing the bandwidth of the system as

viewed by the RF generator.

2.2: Antenna Construction

Three different fast-wave antennas were used during the experiments described

in this thesis. The first antenna that was constructed is illustrated in Fig. 2.2.1.

This antenna has a single radiating conductor, shorted to the backplane at each end,

with the feed tapped in near one end. This antenna is in a sense not well-matched

to the plasma because the toroidal spectrum of the antenna current is much wider

than the spectrum of accessible Nil for Alcator-type plasmas. However, this antenna

is very easy to install and remove. This feature was very important in the early
stages of the experiment, when it was necessary to make several trial-and-error

adjustments to the antenna in order to achieve a matched load.
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Figure 2.2.1: Single-Elemant Antenna-The basic antenna design consists
of a half-wave resonant loop, shorted at each end, with the feed tapped in near
one end.

The radiating conductor and backplane were machined from a single piece of
stainless steel. The center conductor of a coaxial transmission line enters through a

hole in the backplane and is threaded into a tapped hole in the radiating element.

A double-layer stainless steel Faraday shield is attached by screws to the backplane,
with a five-section ceramic shell between the antenna conductor and the Faraday

shield. The ceramic shell is'made of alumina (A 2 0 3 ) and is held in place by the

inner Faraday shields, by clamping against the backplane. The ceramic shell does
not contact the antenna conductor.

The antenna is installed through a side port, as illustrated in Fig. 2.2.2, and

held in place by the attached coaxial feed and by a threaded rod inserted through

the bottom port. Since the current pattern on this antenna is at a maximum at

each end, power is launched from both the high and low-field sides of the plasma.

The Faraday shield structure is replaced by a continuous conducting cover at the

center of the antenna, where the current is small.
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Figure 2.2.2: Antenna Installation-The antenna is installed through a side
port and rests on the bottom of the vacuum chamber.

Conceptually, it is necessary to adjust two physical parameters of the antenna

in order to achieve a matched load at the desired frequency. For example, the

resonant frequency can be controlled by varying the length of the antenna while

the input impedance can be controlled by varying the feed tap position. Designing

and constructing an antenna with remotely movable shorts was judged to be too

ambitious an undertaking, given the limited resources available for the project.

Also, the analysis presented later in this chapter suggests that an antenna with

fixed tap positions can match a fairly wide variety of plasma loads. The actual

adjustments of the antenna were made after collecting data from bench tests and

the preliminary plasma runs. To make adjustment possible, the shorting ends were

made thick enough that metal could be machined off later. Adjustment was also

possible by varying the number of ceramic pieces in the antenna and by varying the

number of inner Faraday shield elements used to hold the center ceramic piece in

the enclosed portion of the antenna.

Most of the heating data presented in this thesis were obtained using the double

element antennas shown in Figs. 2.2.3 and 2.2.4. In addition to providing a better

match to propagating modes in the plasma, the radiated power flux is spread out

over a larger antenna surface. The electrical design of the two-side launch antenna

was based on data obtained from the original single-element antenna (with suit-

able corrections for cross-coupling between the two elements and improved loading

due to the modified spectrum). When this antenna was first used in the tokamak

with plasma, it was found to be well matched to the feed at the desiredsoperating

frequency. The antenna in Fig. 2.2.4 was constructed to provide a pure low-field
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Figuure 2.2.3: Two-Side Launch Antenna-This antenna is similar in design
to the basic design shown in Fig. 2.2.1, except that two elements are connected in
parallel, resulting in a more favorable current spectrum.

side launch; however, it was not possible to achieve a self-resonant loop with this

structure.

Installation of these antennas was extremely difficult. It was necessary to insert

each half of an antenna individually into the torus. The first half that was inserted

had to be pushed toroidally out of the way in order to insert the second half. Then

both halves were physically manipulated into position using specially designed tools.

Support rods were then connected through the bottom port for the two-side launch

antenna, and through both top and bottom ports for the outside launch antenna.

After clamping the antenna into place, the coaxial feed was connected. Since it was

impossible to view the connection to the inner coaxial connector, it was necessary

to verify connection from electrical measurements.

In order to make room for the antennas inside the vacuum chamber, it was

necessary to reduce the minor radius of the plasma from the fairly standard 16.5 cm

to 12.5 cm by installing special limiters. Unfortunately, this resulted in degraded

plasma confinement and stability properties.
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Figure 2.2.4: Outside Launch Antenna-This antenna is non-resonant, and
launches power only from the low-field side of the plasma.

As previously mentioned, the Faraday shields were fabricated from stainless

steel. Significant melting of the shields was observed in preliminary experiments.

After this problem was discovered, new Faraday shields were fabricated, with a 0.020

inch coating of molybdenum on each outer surface. No melting of the molybdenum-

coated shields was subsequently observed.
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2.3: Electrical Modeling

A simple and useful way to model the electrical behavior of an ICRF loop antenna
is to treat the antenna as a section of lossy transmission line, characterized by a
specific (i.e., per unit length) capacitance C, a specific inductance L, and a specific
resistance R. An interesting work in which the validity of this model is apparent

was done by Fortgang and Hwangf9 7' 98] for the PLT ICRF antenna. Ideally, the
specific capacitance C is determined by solving a 2D electrostatics boundary-value
problem in which the Faraday shield is assumed to be an enclosed structure, while
the specific inductance L is determined by solving a 2D magnetostatics boundary
value problem in which the Faraday shield is ignored and the plasma can be assumed
to be a perfectly conducting surface. In a more refined model, the plasma can be
treated as an imperfectly conducting boundary with surface impedance obtained

from a solution of the appropriate wave equation inside the plasma, in which case
a value for R would also be obtained. The justification for this model is that the
antenna is highly reactive (large circulating power) so that the field configuration
will be approximately TEM, as in an enclosed line, and the coupling to the plasma
is through the magnetic field. One function of the Faraday shield is to shield out
the electrostatic components of the wave fields, thus ensuring that the coupling
is through the magnetic field. Thus, the loading experienced by the antenna is
determined by the antenna current, and not by the voltage on the antenna. This is
why the model contains a specific resistance R but no specific conductance G.

Since the antenna design for these experiments was somewhat similar to the
design of an antenna that had already been operated in Alcator C, and from which

coupling data were already available, sophisticated modeling of the present design
was not attempted. Several of the antenna codes that were available at the time
were run for Alcator C parameters, but they were unable to predict the antenna

loading that was observed on the previous antenna. It was therefore decided to

construct a bench prototype of the new antenna design and to use data from the
previous antenna for guidance (specifically, for an estimate of the expected plasma

loading R).

The simple lossy-line model used in the design of the Alcator C antenna will

be described below, and measurements from the bench tests will be summarized. I

will depart slightly from conventional lossy-line notation and define the line char-
acteristic impedance and wavenumber to be the purely real quantities given by

Zo = L /C and k =_w v'PL~. The effect of the nonzero specific resistance will be ex-

pressed explicitly in terms of the small dissipation parameter defined by e = R/wL.
The antenna input impedance will be denoted by Zi = R, + jXi = Zozi, where
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zi = ri + jxi and j = r:T is used instead of i for time variations e+j3t. The
phase velocity on the antenna is also defined to be purely real by v 1/VIL~U.

In terms of this notation, the input impedance of a lossy line of length I is

zi = jV/1T -jE tan( /i- je 6) (2.3.1)

where 6 = ki is the electrical length of the line. From this expression, the relation
between the characteristic resistance R and the lumped radiation resistance RL of
the previous antenna (which had electrical length 7r) is found to be

RL = -- (2.3.2)
4

i.e., half the length of the antenna times the specific resistance. The new resonant
antenna has electrical length a - 7r and has the feed line tapped in at an electrical
length 6 away from one end. Considering this to be two lossy lines connected in
parallel yields

zi . tan(v1 - je 6) tan[V1 -je (a - 6)]
v/1 - jE t an(v/1 -je 0) + tan[/1 -FjE (a - 6)]

As long as a does not deviate too much from 7r and e is not too large, this expression
can be approximated by

Z4 = sin2 0 (2.3.4)
Wre

If it is desired to match the antenna to a feed line of impedance Z (purely real),
then one selects the tap point from

Z sin 2 6 (2.3.5)
Zo re

From more detailed study of Eq. 2.3.3, one finds that a slight deviation of a from
the value r is necessary for the input impedance to be purely real.

Before presenting the measured values of the lossy-line parameters, I will discuss
qualitatively some of the non-ideal effects that can be introduced by the Faraday
shield. Ideally, the Faraday shield should have no effect on the coupling to the
plasma. That is, as far as the electrical characteristics of the antenna are concerned,
the geometry of the Faraday shield determines the specific capacitance C in the lossy
line model but has no effect on L or R. How well an actual shield approximates the
ideal case depends on both the geometry and electrical properties of the material
from which the shield is fabricated. Obviously, the shield elements should be parallel
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Figure 2.3.1: Faraday Shield Surface Currents--An RF magnetic field tan-
gent to the surface of the Faraday shield will induce a surface current in the shield.
This will have no effect on the magnetic field outside the shields but will cause
a decrease in the antenna specific inductance proportional to the magnetic flux
excluded by the shield.

to the confining magnetic field in order to avoid suppressing coupling to the fast

wave and the shield should have low resistivity in order to avoid absorbing significant

amounts of RF power.

Another important issue concerning Faraday shield geometry is the angle be-

tween the surface of the shields and the RF magnetic field. This effect is discussed in

detail by Faulconer(961. Consider the situation depicted schematically in Fig. 2.3.1.

This illustration represents the geometry of the fields in the region nearest the

plasma surface. In this region the RF magnetic field is tangent to the surface of

the Faraday shields. Under these circumstances, a surface current will circulate

around the edges of the shields as shown. If the shields are small compared to the

wavelength of the antenna field pattern, then this surface current will be uniform

in magnitude and electric charge will not build up at any point. In this case the

magnitude of the RF magnetic field outside the Faraday shields will be exactly the

same as it would be in the absence of Faraday shields, and there will be no effect on

coupling to the fast wave in the plasma. However, there will be an effect on the elec-

trical characteristics of the antenna - the specific inductance L will be decreased

because of the flux excluded from the interior of the Faraday shields. Obviously,

this effect can be made small if the Faraday shields are sufficiently thin.

The situation where the RF magnetic field is not tangent to the Faraday shield

is illustrated in FIg. 2.3.2. For the Alcator C ICRF antennas, this occurs on the

x x x x x x FIEL

CENTER
CONDUCTOf

ANTENNA CURRENT
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Figure 2.3.2: Naraday Shield Eddy Currents-An RF magnetic field normal
to the surface of the Faraday shield will induce diamagnetic eddy currents. This
will reduce the magnetic flux that reaches the plasma as well as reducing the
antenna specific inductance.

sides of the Faraday shields. In this case, diamagnetic eddy currents are induced in

the shields which reduce both the flux linked by the antenna radiating conductor
and the flux which would couple to the fast wave in the plasma. It is intuitively
obvious that this effect is more significant than the effect illustrated in Fig. 2.3.1.
In principle, this effect could be eliminated by designing a Faraday shield that is

everywhere tangent to the RF magnetic field, as was done for the ICRF antenna

used by Blackwell in previous Alcator C ICRF experiments. However, the Blackwell

design results in an open space near the backplane, and it was suspected that arcing
in that region was caused by plasma and/or neutrals present in that region. In the

present design, the Faraday shield is closed to the backplane in an effort to reduce

the amount of plasma present there.

A simple electric circuit model for the Faraday shield flux excluding effect is

shown in Fig. 2.3.3. In this model, I represents the current in the antenna conduc-

tor at some point along its length and 12 represents the surface and eddy currents

in the Faraday shields. Resistance of the antenna conductor, plasma loading, and

resistance of the Faraday shield are neglected in this model. The flux that links L1

is the flux between the antenna conductor and backplane. Thus Ll is the specific

inductance of the antenna with no Faraday shields. The flux that links L 2 is the
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IM r2

V1  Li L2 V2

Figure 2.3.3: Electrical Model for Lossless Faraday Shield-The flux-
excluding effect of the Faraday shields can be modeled by treating the shield as a
transformer with the secondary winding shorted.

Rt M R2  12

V, LI L2 V2

Figure 2.3.4: Electrical Model for Lossy Faraday Shield-Loss in the
antenna is modeled by the resistance R, and loss in the Faraday Shield is modeled
by R2 .

total flux excluded by the Faraday shield. Thus L2 is the inductance associated

with the surface currents and diamagnetic eddy currents (easy to estimate for the

surface currents, not so easy to estimate for the eddy currents). Once Ll and L 2

are known, the coupling between them, represented by M, is easily determined by

requiring that all the flux that links L2 also links L 1 . This implies that M = L 2 -
The actual specific inductance L of the antenna with Faraday shields would then

be the input inductance of the circuit in Fig. 2.3.3, which is found to be

Lin = Li - L2 = Li - M (2.3.6)

Here Lin is the specific inductance of the antenna with Faraday shields.

If dissipative effects are included in the model, one is lead to the circuit shown in

Fig. 2.3.4. In this case, R1 represents the sum of antenna conductor resistance and
plasma loading in the absence of Faraday shields, while R 2 represents the resistance

of the Faraday shields. The actual specific resistance and inductance of the antenna

with Faraday shields would then be the input resistance and inductance respectively

of the circuit in Fig. 2.3.4. This is calculated to be Zin = Rin + jwLin, where
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Parameter No Shields Inner Outer Both Ceramic

L /po 0.486 0.422 0.408 0.340 0.340

M/po 0.0 0.064 0.078 0.146 0.146
C/eo 2.57 7.95 6.08 6.11 13.0
v/c 0.895 0.546 0.635 0.694 0.5

Zo (0) 164.0 - 86.9 97.7 88.9 60.0
R (0/m) 2.06 0.208 0.486 0.218 0.218

Table 2.3.1: Parameters for Lossy-Line Antenna Model-These parame-
ters were determined from bench test measurements on copper and brass antenna
prototype antennas. The antenna was unloaded during these tests.

An = R1 + R+2 (2.3.7)1 +d 2

M
Lin = Li - (2.3.8)

1 + d2

and d = R 2 /wM. This corresponds physically to the resistive magnetic diffusion

that allows a finite amount of magnetic flux to penetrate the surface of the Faraday

shield. This results in less eddy-current generation, so that the increase in loading

and decrease in inductance is slightly less than proportional to the shield resistivity.

Lossy-line model parameters determined during bench tests are shown in Ta-

ble 2.3.1. Parameters were' measured with shields absent, with only the inner layer,
only the outer layer, with both shield layers, and finally with all shields plus the

ceramic cap present. The inductance L was measured by open-circuiting one end

of the antenna and applying a signal at a frequency of 1 kHz to the open end of the

antenna conductor, and then measuring the resulting lumped inductive reactance.

The measurement was then repeated at increasingly higher frequencies to eliminate

possible errors due to internal inductance and resistance of the antenna conductor.

The frequency was increased until distributed field effects appeared at frequencies

of a few MHz. The next step was to replace the short at the end of the conductor

and measure the fundamental resonant frequency of the antenna, from which the

phase velocity v was determined. The specific capacitance was then calculated from

V = 1/v/'W. The loading R was inferred from the feed tap position for matching.

The effect of flux exclusion by eddy currents is readily apparent in the measure-

ments of L, which is progressively reduced as additional shielding is added. The

corresponding values of M were inferred by subtracting the measurements of L from

the measurement in the case with no shields. The value of M for the case with both
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shield layers is nearly equal to the sum of the values for each shield layer alone,
reflecting the fact that the shields are staggered with only slight overlap. From a

simple cylindrical approximation of the antenna geometry, one can estimate that

the effect illustrated in Fig. 2.3.1 will contribute a value M - 0.035 so that the eddy

current effect illustrated in Fig. 2.3.2 is dominating. The value of L was reduced

significantly to L = 0.18 for the double-element antennas due to coupling between

the elements.

The measured values of C may seem somewhat counterintuitive at first. It

is reasonable to expect C to increase significantly as shields are added, and it

is reasonable to expect C to be larger for the inner shields alone than for the

outer shields alone. However, the relative increase in C for the inner shields alone

compared to that for the outer shields alone is larger than one would expect based

on a cylindrical approximation to the antenna geometry, and C for the case with

both shield layers is smaller than with the inner layer alone. It is possible to argue

that these values are plausible by considering more carefully the geometry of the

shields. The inner shields were fabricated from ~1 mm sheet metal, while the outer

shields were 1/8 inch thick with rounded corners. Thus, it is reasonable to expect

significant fringing fields to occur near the sharp corners of the inner shields. This

would result in more capacitance than one would expect if fringing were neglected.

This fringing effect would be expected to be less significant with the more rounded

edges of the outer shields. Moreover, when both shield layers are present, it is

reasonable to expect that the outer shields would function as "corona shields" by

relaxing the field lines that were previously concentrating on the sharp surfaces of

the inner shields.

Of the various parameters in the lossy-line model, the quantity which is the

least accurately known and most likely to vary during the experiment is the specific

resistance R. The physical antenna parameter that is most sensitive to R is the

location of the feed tap point. Since it is not possible to adjust the antenna once

it is installed, it is essential to determine how sensitive the antenna matching will

be to variations in R. In order to explore this issue, the feed-line VSWR calculated

from the lossy-line model is plotted in Fig. 2.3.5 as a function of tap position for

various values of loading R. If one is interested in maintaining the feed line VSWR

below 2, for example, then for any particular loading R, the range of acceptable

tap positions can be determined from the intersections of the curves with the top

of the graph. One can also see that the accuracy of the tap position is less critical

for larger loadings.

The specific resistance observed during the Blackwell experiments was typically

15 il/m. Assuming a loading of R = 15 0/m, a tap position of 3.2 cm would seem

to be an appropriate choice. Once this choice is made, the behavior of the feed-line
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Figure 2.3.5. VSWR Versus Tap Position and Specific Resistance-The
lossy-line model is used to calculate the expected voltage standing wave ratio in
the antenna feed line. The dependence of the matching tap position on loading
is shown here. For each loading (R), the range of tap positions over which the
VSWR would be less than 2 can be seen from intersections of the curves with the
top of the graph.

VSWR can be seen in Fig. 2.3.6. It can be seen that this antenna should be able
to provide a reasonable match to a wide variety of loads.

The RF source used to power the antenna during the experiments can operate
only within a fairly limited frequency range. The behavior of the feed-line VSWR
over this frequency range is shown in Fig. 2.3.7. It is clear that the antenna is
sufficiently broadband to operate at any frequency within the available range.

For sufficiently low values of antenna loading, such as during vacuum condition-
ing, the lossy-line model provides an estimate of the value of R. During vacuum
conditioning, the feed line VSWR was measured at several different frequencies.
The results are plotted in Fig. 2.3.8. Conditioning was begun at 175.5 MHz. At
each frequency, the loading was observed to decrease over time, and then to return
to a relatively high value when the frequency was changed. Conditioning at the two
highest frequencies was not continued long enough for the VSWR to stabilize, due
to lack of patience. By fitting a curve from the lossy-line model to these points, a
value of R - 3 fl/m is estimated. Fortunately, this value is significantly lower than
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Figure 2.3.6: VSWR Versus Loading-The losay-line model is used to cal-
culate the variation of reflection with loading for the tap point that was chosen
for the antenna.

the loading observed during the experiment, but it is also significantly higher than

the loading determined during bench tests. I would speculate that this loading is

produced by effects such as ionization of the residual gas in the vacuum chamber

by the antenna fields and multipactoring.

One might be tempted to assume that this loading is a measure of the "back-

ground" loading during the experiment, and to conclude that 20% would be a rea-

sonable estimate for the fraction of the RF power lost before coupling to the fast

wave. However, there is no reason to believe that the parasitic loading would be

similar at the much higher pressures and plasma loading involved during the experi-

ment. Nevertheless, numbers obtained this way are often used as an estimate of the

parasitic power lost during experiments. It is worth mentioning that the specific

resistance of the actual service antenna was measured during a bench test in which

the antenna was tightly wrapped with aluminum foil, in an effort to eliminate all

coupling to "vacuum". It was not physically possible to place a short circuit close

enough to the feed point to obtain a match, and the inductance of the shorting

device was probably significant. It is estimated from this measurement that the

resistive loading of the antenna is less than 0.7 fl/m. In order to account for the

behavior of the heating results in these experiments, it will be necessary to look for

much more severe loss mechanisms than this.
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Figure 2.3.7: VSWR Versus ftequency-The lossy-line model is used to
calculate the VSWR as frequency is swept for various loadings.

2A: Summary

Antenna designs have been developed which are capable of coupling the fast wave

reasonably well to the Alcator C target plasma while delivering the full available

ICRF power. This design was accomplished without the need to resort to extensive

numerical modeling by using a previous design as a starting point and taking ad-

vantage of loading data obtained during experiments carried out with the previous

design. The power-handling capability of the system was significantly improved

compared to the system used with the earlier antenna, so that electrical failures

were reduced to a tolerable level.

The resonant (matched) and non-resonant (unmatched) antennas had quite sim-

ilar power handling capabilities. The antennas were the only part of the system

that ever exhibited physical evidence of electrical breakdown (such as arc tracks).

It therefore appears that the improved vacuum feedthrough design is primarily re-

sponsible for the improved power handling capability.

Although the antennas were capable of handling the full (- 450 kW) available

ICRF power, the power handling capability was observed to degrade at high density.
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Figure 2.3.8: VSWR During Vacuum Conditioning-By fitting a curve
from the lossy-line model to experimentally measured points, an estimate of the
parasitic loading of the antenna during vacuum conditioning is obtained.

It therefore seems reasonable to presume that it would not have been possible to
handle significantly higher power at any density if more power had been available.
However, considering the space limitations, the power flux density at the antenna
surface was comparable to that which would be required for next-generation exper-
iments, with improved port access. From the results presented in the next chapter,
and from the analysis presented in Chapter 4, it is concluded that antenna power-
handling limitations are not the cause of the discouraging heating results observed
during the Alcator C ICRF heating experiments.
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Parameter Alcator ICRF

Ro (cm) 64 64
a (cm) 16.5 12.5
Bo (T) 5-13 12
Ip (kA) 50-800 140-410
fie (1020 m~3 ) 0.3-20 0.8-5
Te (keV) 1-3 1.5-2.5
Ti (keV) 0.5-1.5 1-1.3
rB (ms) 5-50 5-25

POH (MW) 0.1-1.5 0.2-1

Table 3.1.1: Experimental Parameters-Typical experimental parameters
for Alcator C in general, and for the target plasmas during ICRF fast-wave ex-
periments are shown.

3.1: Introduction

Results of fast wave ICRF minority regime heating experiments carried out on the
Alcator C tokamak are presented in this chapter. The majority ion species in these
experiments was always deuterium and the minority species was always hydrogen,
resulting in a required toroidal field magnitude of 12 T for the available generator
frequency of 180 MHz.

Typical plasma parameters are shown in Table 3.1.1, both for Alcator C in
general, and for the ICRF fast wave experiments in particular. It was necessary
to reduce the minor radius of the plasma, by installing special limiters, in order
to make room for the antennas inside the vacuum chamber. This may have been
responsible for some tokamak operational difficulties encountered. The toroidal field
of 12 T places the cyclotron resonance layer within 1 cm of the plasma center. This
toroidal field was used for most of the shots, except when conditioning the antenna.
Operation at lower field when bringing the antenna up to power required less time
between shots (to wait for the toroidal field magnet to cool down). The toroidal field
was also scanned downwards from 12 T during a controlled experiment, in which
the hydrogen tail formation was monitored. It is not possible to operate Alcator C
at toroidal field magnitudes significantly greater than 12 T.

It was not possible to vary the plasma parameters independently of one another
in an arbitrary manner during the ICRF experiments. The plasma current Ip =
140 kA corresponded to the lowest plasma density, and the plasma current Ip =
410 kA corresponded to the highest plasma density. With very few exceptions,
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Major Radius:
Minor Radius:

Central Toroidal Magnetic Field:
Toroidal Plasma Current:

Resistive Loop Voltage:
Line-Average Electron Density

Central Electron Density
Central Electron Temperature:

Central Ion Temperature:
Central Deuterium Temperature
Central Hydrogen Temperature:

Global Energy Confinement Time:
Gross ICRF Power:

Ohmic Heating Power:
Hydrogen Minority Concentration:

Global Effective Z:

Edge Safety Factor:

Ro
a
Bo

IP

VR
fie

neo

Te

Ti

TD
TH

PRF

POH IPVR

77 = nH/(nH + nD)

niZ 2

Zeff =

a2 Bo
g= 2LOrO

Table 3.1.2: Notation-Definition of symbols used in this chapter to represent
experimental quantities.

the variation of plasma current for intermediate densities was approximately linear
between these two values. The electron temperature was ~ 2.5 keV at low density
and decreased to ~ 1.5 keV at high density, while the deuterium ion temperature
was - 1 keV at low density, increasing to - 1.3 keV at high density. The Ohmic

heating power increased from ~ 200 kW to - 1 MW as density increased.

The notation used in this chapter to refer to various plasma parameters is shown
in Table 3.1.2. Most of these symbols are standard. The "gross ICRF power" is the
net forward power (i.e., forward minus reflected) measured in the antenna feed line,
without correcting for any losses that may be present. The line-average electron
density was averaged over a vertical chord through the center of the plasma (i.e.,
at R = Ro = 64 cm).

Significant changes in target-plasma density were often observed when the ICRF
was applied. When a significant density increase appears to be correlated with
the RF, the shot is termed a "rising-density shot". Data from such a shot, along
with introductory descriptions of the experimental diagnostics, are presented in
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Figure 3.2.1: Deuterium 'emperature for tising-Density Shot-Appli-
cation of 300 kW of ICRF power for 175 ms produced a 400 eV increase in deu-
terium temperature. This temperature measurement was derived from the deu-
terium charge-exchange spectrum.

the next section. A "steady-density shot" is shown in the following section for

comparison. When there is a significant density change during the RF, some heating

can be caused by changes in collisional coupling between electrons and ions, and

it is necessary to perform careful power balance analysis in order to evaluate the

effectiveness of the RF heating. Such analyses are performed using the ONETWO

transport code and are presented in Chapter 4.

3.2: Rising-Density Shot

The largest observed increase in deuterium temperature occurred during a rising-

density shot. The deuterium temperature for this shot determined from the charge-

exchange diagnostic is shown in Fig. 3.2.1. This measurement was obtained from
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Parameter Ohmic RF

TD 900 eV 1300 eV

Ip 154 kA 154 kA

qa 9.5 9.5

VR 1.5 V 2.15 V

POH 230 kW 330 kW

PRF 0 kW 300 kW

ne 0.84 x 1020 m- 3  1.35 x 10 20 M-3

neo 1.0 x 1020 m- 3  2.0 x 10 2 0 m-3

77H ~-0.5% -

Zeff 2.2 3.5

r0 7.7 ms 5.2 ms*

* Assumes 100% RF absorption.

Table 3.2.1: Parameters for Rising-Density Shot-Equilibrium data are
listed before and during the RF pulse for the shot in Fig. 3.2.1.

a horizontally and perpendicularly viewing charge-exchange neutral energy analyz-

er[991. The operation of this diagnostic and processing of the raw data was performed

by Dr. C. L. Fiore. By fitting a Maxwellian to the high-energy channels, a measure-

ment of the central ion temperature is obtained (assuming the ion temperature to

be centrally peaked). This analyzer can measure either hydrogen or deuterium, but

not both on the same shot. It can, however, be switched from one ion species to

another on a shot-to-shot basis. There is no tangential viewing access in Alcator C,

so it is not possible to scan the analyzer in the horizontal direction. However, it is

possible to obtain radial temperature profile information out to r ~ 7 cm by scan-

ning the viewing chord in the vertical direction. The central deuterium temperature

measurement from this diagnostic is typically accurate to within ±50 eV.

For this shot, 300 kW of ICRF power was applied for 175 ms, yielding a 400 eV

increase in deuterium temperature. The target plasma was a fairly low-density,

low-current shot, with Re = 0.84 x 1020 M- 3 and Ip = 154 kA. Some other plasma

parameters for this shot are shown in Table 3.2.1. The global energy confinement

time was calculated as the ratio of the total thermal energy content of the plasma

to the total heating power, where the total heating power was the sum of POH and

PRF without correcting for any RF loss mechanisms.

Deuterium temperature measurements are also available from the neutron di-

agnostic operated by Dr. C. L. Fiore during these experiments. The deuterium
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Figure 3.2.2: Deuterium Temperature from Neutron Measurement for
Rising-Density Shot-There was generally good agreement between deuterium
temperatures deduced from neutron measurements and charge-exchange spectra.
This measurement was from a rising-density shot similar to the one in Fig. 3.2.1.

temperature deduced from neutron measurements for a shot similar to the one in

Fig. 3.2.1 is shown in Fig. 3.2.2.t Normally, the accuracy of the deuterium tem-

perature measurement from the neutron diagnostic is ±50 eV - the same as for

the charge-exchange diagnostic. However, under certain circumstances which were

common during the ICRF experiments, the uncertainty can be greater. The rate

of production of thermonuclear neutrons from the D + D o-- He3 + n reaction

depends globally on the deuterium temperature and density. When the data anal-

ysis is performed, a power-law approximation is used for the reaction cross-section,
yielding

R oc n2TZ.611 x P (3.2.1)

where P represents an integration over the entire plasma volume, and thus con-

tains all the profile information. The power-law approximation is not a source

of significant error. The greatest source of uncertainty is from the measurement

of the bulk neutron production rate R, which is accurate to within ±25%. This

t The charge-exchange analyzer can only analyze one ion species per shot and was
measuring hydrogen during the shot in Fig. 3.2.2. These two shots were produced

consecutively.
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alone accounts for ±40 eV of uncertainty in the inferred TDO. Assuming no er-
ror in the profile shape P, the uncertainty in nDO brings the uncertainty in TDO
up to ±50 eV. The central deuterium density is inferred from the central electron
density and the central Zeff. In these experiments, carbonization was not used,
so deuterium depletion from impurities was not serious. However, there was often
significant density profile peaking during the RF, usually for shots in which the
line-averaged density was increasing. The software which analyses the neutron data
determines the central density by inputting the measured line-averaged density and
assuming a time-independent density profile shape. Ordinarily, this does not intro-
duce serious errors in the measurement. However, since the indicated deuterium
heating in these experiments was often extremely modest, this density peaking ef-
fect is cause for concern. For most of the shots during which there was density
profile peaking, the central-to-line average density ratio increased by less than 10%.
A simple calculation shows that if P is held fixed a 10% change in nDO changes R
by the same amount as a 30 eV change in TDO. Thus, density peaking increases
the experimental uncertainty to ±80 eV. Because the plasma becomes excessively
opaque to neutrals at high density, the charge-exchange diagnostic is only useful
for determining ion temperatures for the lower-density shots. Because of this and
the need to use the charge-exchange analyzer to measure the hydrogen tail, it was
necessary to rely heavily on the neutron diagnostic for deuterium temperature mea-
surements. Fortunately, density peaking tended to occur only for low-density shots,
for which it was-possible to cross-check many of the neutron measurements with
charge-exchange measurements.

In Chapter 4 a more accurate analysis will be done using 44 of the shots from
the database by running the ONETWO transport code. The ONETWO code includes
a more accurate calculation of the ion temperature from measured neutron rates

and can self-consistently include the effects of time-dependent temperature and
density profiles as well as depletion of deuterium density, using Zeff inferred from
the resistive loop voltage. However, use of ONETWO for data analysis is extremely
tedious and time consuming, so analysis of the entire data base was not feasible.
Nevertheless, the analysis of 44 shots to be presented in Chapter 4 shows no serious
discrepancy between the deuterium temperatures determined from ONETWO and

from the Alcator C diagnostic. ONETWO also provides detailed power balance and
energy transport information from analysis of measured data, but this analysis
must be deferred until after the RF power deposition calculations, which are also
presented in Chapter 4.

Electron density measurements during the experiment were obtained by Dr.

S. M. Wolfe from a five-chord far-infrared laser interferometer100). Interferometer
data for. the shot in Fig. 3.2.1 are shown in Fig. 3.2.3. When the smaller 12.5 cm
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Figure 3.2.3: Density Profile Data for the Rising-Density Shot-There
was significant peaking of the density profile for the rising-density shot. Although
the deuterium temperature increments were indeed higher for this type of shot
compared to steady-density shots, the density profile peaking would tend to exag-
gerate estimates of incremental energy confinement time which assume unvarying

profile shapes. The quantity called "effective radius" is -- ne(r) dr.

limiter is installed, one of the chords is completely outside the plasma, while another

of the chords barely grazes the limiter radius. Thus the radial profile information
in Fig. 3.2.3 represents only a "3 1/2-point fit". The measurement of line-averaged

density is accurate to ±5% or ±0.1 x 1020 m 3 , whichever is greater, but the inferred

peak density will be somewhat more uncertain. Since the local neutron production

rate is oc n 2 ,. 6 11, the neutron temperature diagnostic is far less sensitive to the

actual profile shapes than to the peak temperatures. Thus, a direct measurement

of the peak density would be preferred. Such a measurement is available from the

Alcator C Thomson scattering diagnostic(OI], which was operated by E. J. Rollins

under the direction of Dr. R. L. Watterson. This diagnostic provides central electron

density measurements of accuracy equal to that of the line-average electron density

measurement from the interferometer. The Thomson scattering diagnostic also

provides electron temperature measurements which are usually accurate to within

±100 eV. These data will be used in the ONETWO analysis to infer a density profile

by fitting a parabolic shape to the measured peak and line-average densities.
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Both a substantial density increase as well as a significant profile peaking ef-
fect are exhibited by the data in Fig. 3.2.3. Because the deuterium heating was
substantial for this shot, the uncertainty in the neutron-derived ion temperature
is not a problem. However, there is significant ambiguity introduced in evaluating
the efficiency of the RF heating because a density increase also increases the colli-
sional coupling between electrons and ions, increases the ohmic power, and alters
the transport properties of the plasma. This ambiguity is obvious if one considers
the time scale exhibited by the measurements shown in Figs. 3.2.1 and 3.2.2. If the
heating was caused only by an increase in the heating power to the deuterium, with
all other plasma parameters constant, then the time scale for the deuterium temper-
ature to reach equilibrium during the RF should be on the order of the deuterium
energy confinement time, which is - 10 ms for this shot. However, the heating seen
on this shot seems to take place on a much longer time scale. This time scale is in
fact the same as the time scale for the change in density during the RF, suggest-
ing that there is indeed a significant change in collisional exchange power during
this shot. These effects can be carefully considered when doing analysis with the
ONETWO transport code, but for the simpler analyses in this chapter it is best to
concentrate on shots without large changes in density during the RF.

The hydrogen charge-exchange energy spectrum for the shot in Fig. 3.2.2 is
shown in Fig. 3.2.4. The observed tail temperatures were generally quite modest,
ranging from a few keV to a few tens of keV. Charge-exchange spectra, both during
the ohmic phase and the RF, are always depleted for energies above -9-15 keV. This
behavior is not unique to the RF experiments and has been attributed to the effects
of toroidal-field ripple-trapping of high energy ions. A second region of depletion
is sometimes observed for energies localized around 2 keV. This depletion at lower
energy is observed only during the RF. Radial charge-exchange scans indicate that
this depletion takes place primarily in the outer (r > 7 cm) portions of the plasma.
This lower-energy depletion might also be caused by ripple-trapping. The ripple
amplitude in Alcator C increases rapidly with r in the outer portions of the plasma,
so that depletion at these lower energies might be expected if 2 keV hydrogen ions
were present near the edge. This would be expected for low-density shots. These
features of the hydrogen energy spectrum are not unique to rising-density shots.

It appears that this ripple-trapping phenomenon is a very serious problem for
the ICRF heating experiments on Alcator C. A significant amount of literature has

been written on this topic[102-119]. This effect is caused by imperfect toroidal ax-
isymmetry in the confining magnetic field. Normally particles are confined to move
on drift surfaces which are either circular toroids slightly displaced from the mag-
netic flux surfaces (passing particles) or "banana-shaped" toroids (banana-trapped
particles). If the toroidal field is not perfectly axisymnetric, this causes the drift
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Figure 3.2.4: Hydrogen Charge-Exchange Spectrum-The hydrogen spec-
trum typically showed modest tail formation and depletion for energies above
-9-15 keV. Depletion at 2 keV was not always observed.

surfaces to become slightly irregular, so that the orbits no longer close on them-
selves. The result is a process known as ripple diffusion, in which the particles
gradually wander away from the original drift surfaces. Ripple diffusion occurs for
both trapped and passing particles, but is more severe for trapped particles, when
the tip of the banana orbit is in the magnetic ripple well. It is also possible for or-
bits to be profoundly changed if a particle becomes mirror-trapped in the magnetic
ripple well - a phenomenon called ripple trapping. A particle can become ripple
trapped either by pitch-angle scattering into the ripple "loss cone" or by drifting into
a region of higher ripple magnitude near the banana tip due to the finite width of
the banana orbit (because ripple magnitude generally increases rapidly with minor
radius). Once in the ripple well, the particle reflects back and forth at the mirror
points and simultaneously drifts vertically out of the plasma due to the B X VB
drift. The particle can then either escape from the plasma or pitch-angle scatter
out of the loss-cone, back onto a confined orbit.

In complete analogy with neoclassical transport, this process has a collisional
regime in which particles scatter out of the loss-cone faster than the time between
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mirror bounces, a collisionless regime in which particles mirror-bounce many times
before pitch-angle scattering, and a plateau regime in between. In the literature,
it is the ripple plateau regime that receives the most attention, because most ex-
periments fall in that regime. However, because the ripple magnitude is so large

on Alcator C[118], Alcator C falls in the collisionless regime. Since this regime is
not well treated in the literature, it will be difficult to accurately treat the ripple-
trapping when analyzing the ICRF data. For this reason, the treatment of ripple
losses in this thesis will be somewhat ad hoc. It is difficult to justify spending time
to analyze this regime theoretically, since it is obvious that this regime should be
avoided in any experiment. Another disturbing fact concerning the toroidal-field
ripple in Alcator C is that there is a nonzero ripple well throughout the plasma
cross-section, including the location of the cyclotron absorption layer. Thus trapped
particles with banana tips in the resonance layer, which absorb most of the RF
power, are also most susceptible to ripple trapping. This interaction between the
effects of resonance localization and ripple trapping has also not been treated in the
literature, and again there is no strong motivation to study it. This is because it is
not necessary to have zero magnetic ripple in order to avoid a well in the resonance
layer. For any finite ripple magnitude, it is possible to "wash out" the ripple well
if the poloidal field is sufficiently strong. This effect occurs when the variation in
toroidal field strength due to motion of the particle in the major-radial direction is
greater than the variation of the toroidal ripple due to motion of the particle in the
toroidal direction. In Alcator C the ripple is too great for this to happen for the
plasma currents used in the ICRF experiments.

A simplified treatment of ripple-trapping in Alcator was given by Greenwald,

Schuss, and Cope[l14]. They find that, to a good approximation, the effect of ripple-
trapping is that the distribution function is truncated at an energy Etr given by

[8w e2 \2 Eaow /
Etr -4) nyrr-aRowj (3.2.2)

2t j7/2 4ZeM

and has a Maxwellian shape for E < Etr. In Eq. 3.2.2, A is the Coulomb logarithm

and 6 is the magnitude of the ripple well depth normalized to the magnitude of the

applied toroidal field. The magnitude of the toroidal field ripple in Alcator C was

documented by Schissel(118l. Using values of 6 from Ref. 118 and plasma parameters
typical of the ICRF experiments yields values of Etr ranging from ~ 10 keV at

ie = 1 x 102 0 m- 3 up to ~ 20 keV at fe = 4 x 1020 m- 3.

The time evolution of the hydrogen tail temperature, shown in Fig. 3.2.5, shows

a significant increase throughout the RF pulse, even though the RF power is held
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Figure 3.2.5: Time Evolution of Hydrogen Tail Temperature--The hy-
drogen tail is generated rapidly at the beginning of the pulse and equilibrates
rapidly at the end of the pulse. The gradual increase in the tail temperature
throughout the pulse suggests that the hydrogen may be seriously depleted by
losses during the RF.

constant during the pulse. This could indicate that the hydrogen concentration

is being depleted due to strong losses. If the concentration was decreasing during

the pulse, while collisional-exchange power was constant, then the hydrogen tail

temperature would have to increase. If this was true, then the amount of power

absorbed by deuterium second harmonic cyclotron resonance would be expected

to increase. In the next chapter, it will be shown that the hydrogen minority tail

is subject to severe losses. Thus a net increase in the fraction of power absorbed

directly by the deuterium would increase the heating efficiency. This could explain

the long time scale-for the increase in deuterium temperature shown in Figs. 3.2.1

and 3.2.2. However, as has already been mentioned, this effect (for the deuterium)

could also be caused by an increase in the collisional exchange power from electrons

to deuterium. An alternate hypothesis is that the loss mechanism from toroidal

field ripple trapping was gradually improving. It is known that the toroidal field
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ripple in Alcator C decreases in time as the current in the toroidal field windings
relaxeslll8. It is not possible to test either of these hypotheses using the available
experimental data.

It is possible to do a simple, rough analysis to estimate the importance of
hydrogen tail loss for this shot. Using the isotropic analytic approximation from

Stix[88 1, the slope of the hydrogen energy spectrum is given by

1 dln f(E) (3.2.3)
Teff(E) dE

1 r RD(TC -TD+{T) 1 11 1 + R(e-T+)32 (3.2.4)
Te(l + ) TD(1 + RD + ) 1 + (E/ED)3/2

where

1 47reo (P 2Te (3.2.5)
8/r \ e2 I 7T Hn2lnA Vme(.

RD = mD Te (3.2.6)
me TD

ED() = mHTD [3V'r1+ R+ (3.2.7)
MD 4 1+

The quantity (P) represents the flux-surface average of the ICRF power density

absorbed by the hydrogen (and therefore is a function of r). There is no way to
directly determine this power deposition profile from experimentally measured data.

For an extremely rough estimate, one can assume that the power deposition profile

is uniform, and estimate (P) as follows:

(P) = 2PR 2  .(3.2.8)

Clearly, if the power deposition profile is peaked in the center, then this will signif-

icantly underestimate the power density at the center as well as the calculated tail

temperature. Keeping this in mind, and using the data from Table 3.2.1, I obtain

(P) = 1.5 MW/m 3 , = 26.4, RD = 85.7, ED(4) = 2 keV, and

49 keV
Teff(E) = 28 (3.2.9)

1+ 1+(E/2) 3 /2

where E = EH is in keV. This predicts that there would be a minority tail tem-

perature of TH = Teff(oo) = 49 keV. In order to measure this tail, one would
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have to measure particles from the distribution function with energies such that

1 + (E/2)3 / 2 >> 28 (i.e., where Teff(E) is linear), which yields E >> E, = 18 keV.

It is now clear that the truncation of the minority distribution function caused
by ripple trapping should have a very profound effect on the RF heating effec-
tiveness. If this tail was really present, but for some reason the charge-exchange
flux above 10 keV was too weak to measure, then (ignoring the apparent depletion
between 8 and 10 keV) the minority tail temperature expected to be shown by
the charge-exchange diagnostic would be TH = Teff( 8 ) = 12 keV. Thus, even with
the pessimistic assumption that the power deposition profile is uniform, one would
expect much higher minority tail temperatures than were observed.

Before going on, it should be emphasized that the interpretation of the hydrogen
charge exchange spectrum is extremely ambiguous. Normally, if loss mechanisms are
not present, the hydrogen distribution function would approach the shape of a high-
energy Maxwellian (i.e., Teff -- T, independent of E) for energies E >> Ec a 1OTe.
There is also another condition that must be satisfied in a practical measurement
derived from a charge-exchange neutral analyzer. Even if the energy range that
is being sampled is high enough that the central Teff approaches T,, the charge-
exchange diagnostic actually samples data from a chord through the plasma cross-
section. Thus, the actual neutral flux will contain contributions from all minor
radii, at which there are varying values of Teff(r) (as well as To(r)). Assuming the
minority temperature to be centrally peaked, then one must measure the charge-
exchange flux in an energy range that contains contributions only from the central
part of the plasma-in order to obtain an accurate measurement. The energy range
involved will then depend on the actual temperature and density profiles of the ions
and the background neutrals. In general, this requires that the charge-exchange

spectrum be measured in the range E > 3-10T. 120 1

In the Alcator C experiments, there are no high-energy particles in that energy

range, so instead a fit was made in a much lower energy range. It is not at all clear
that the charge-exchange spectrum comes from a sufficiently localized part of the
sightline for this fitted temperature to be the same as the fit that would be obtained
if one could make a strictly localized measurement at the plasma center. It has

been impossible to correlate hydrogen temperatures determined in this manner in

any way with any other data, except for when minority concentration was scanned

to higher values, where the indicated hydrogen temperature approached the value
of the deuterium temperature. For the shot shown in this section, the indicated
hydrogen temperature is far too low to result in enough collisional deposition on
deuterium to account for the observed heating. A calculation of this collisional

exchange power based on the inferred TH(r) taken during a radial charge-exchange
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scan appears later in this chapter. In that case the indicated TH(0) was much
higher: 15 keV. The density was also higher. But the calculated collisional exchange
power was only 8 kW. If the charge-exchange spectrum in the energy range fitted is
not dominated by particles coming from the center of the plasma, then one would
expect the inferred temperature to underestimate the actual central temperature.
On the other hand, if the indicated temperature is greater than the estimated ripple-
trapping truncation energy, then it must overestimate the energy in the central
distribution function; i.e., the central distribution function must be truncated below
its thermal energy.

Based on the preceding considerations, I believe that there are only two things
that can be reliably said about the minority distribution function at low concentra-
tion and low density: (a) there are energetic particles for E < Etr - 10 keV, and
(b) there are no energetic particles for E > Etr. I will therefore take the follow-
ing attitude: In this chapter, I will present the data exactly as obtained from the
diagnostics, but in subsequent analysis done in Chapter 4, I will assume that the mi-
nority temperature for the low-density, low-concentration case is 10 keV. Presenting
the data exactly as obtained from the diagnostics will help emphasize the ambigu-
ity in the data interpretation. A 10 keV Maxwellian distribution function has an

e-folding width equal to the assumed truncation energy and is acceptable input to

any of the numerical codes used in the next chapter. As suggested by the discussion

in the introduction to this chapter, the uncertainty in the treatment of the minority

distribution function is not enough to alter the conclusions that will ultimately be

reached. For example, this will not alter the conclusion that a significant contribu-

tion from deuterium second harmonic absorption is necessary to explain the results.

The behavior of mode conversion versus minority temperature as determined by the

Brambilla code begins to saturate at temperatures below 10 keV. The split between

slowing down of hydrogen on deuterium versus on electrons is not seriously affected

by approximating a truncated distribution function by a Maxwellian with T = Et,.

What really matters here is not whether the tail temperature is 2.5 keV or 10 keV

or 15 keV, but that it is not the 62 keV that will be predicted by the FPPRF code

in Chapter 4.

Some other data for the rising-density shot are shown plotted in Fig. 3.2.6. A

rapid increase in the resistive loop voltage is always observed when the RF turns

on, indicating a prompt influx of impurities. The gas puffing was programmed

to maintain a steady density of A,, = 1.0 x 1020 m- 3 in the absence of the RF.

Unfortunately, the timing of the RF was such as to obscure this fact. Shots without

RF taken in the same series as this rising density shot exhibited density behavior

similar to the behavior of the steady-density shot shown in the next section. That

steady-density shot immediately preceeded the shot in Fig. 3.2.2.
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Figure 3.2.6: Plasma Evolution During Rising-Density Shot-Time evo-
lution of total loop voltage, resistive loop voltage, plasma toroidal current, and
line-averaged electron density are shown for the rising-density shot.

3.3: Steady-Density Shot

The deuterium temperature for a steady-density shot is shown in Fig. 3.3.1.

In this case, 220 kW of ICRF power was injected for 150 ms, producing a 175 eV

increase in deuterium temperature. After an initial rapid increase in deuterium

temperature when the RF turns on, there is a gradual further increase in tempera-

ture throughout the remainder of the RF pulse. As for the rising-density shot, this

could be related to a possible gradual drop in the minority concentration during

the RF or to a gradual decrease in the toroidal field ripple magnitude. However, in

this case it is less likely that the effect is caused by a change in collisional coupling

between the deuterium and the electrons. In fact, as long as the density is constant

in time, the collisional exchange power must decrease as the deuterium heats. Note

that the heating exhibited in Fig. 3.3.1 shows two distinct time scales. The initial

rapid time scale is comparable to the deuterium energy confinement time, while the

second slower time scale is comparable to the time scale exhibited in Fig. 3.2.5.
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Figure 3.3.1: Deuterium Temperature for Steady-Density Shot-Appli-
cation of 220 kW of ICRF power for 150 ms produced a 175 eV increase in deu-
terium temperature.

Interferometer data for this shot are shown in Fig. 3.3.2. For this shot there

was a slight movement of the plasma position and a slight increase in the density

throughout the shot, but these effects were due to imperfections in the adjustment

of the plasma controls and not caused by the RF. In particular, note that there was

no measurable change in the density profile shape. Although shots like this one, in

which the density was not quite constant but had no changes that correlated with

the RF, were classified as "steady-density shots", the small changes were included

when the data were analyzed. Shots with large density changes that were due to

poor plasma control were discarded.

In Fig. 3.3.3, one can again see a sudden increase in loop voltage when the RF

turns on. Other plasma parameters for this shot are shown in Table 3.3.1. For

this shot, the increase in ohmic heating power during the RF was only 50 kW,

compared with 100 kW for the rising-density shot. The change in loop voltage was

also smaller, .as were both the Zef of the target plasma and the increase in Zef

during the RF.
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Parameter Ohmic RF

TD 970 eV 1145 eV

IP 160 kA 160 kA

qa 9.25 9.25

VR 1.5 V 1.8 V

POH 240 kW 290 kW

PRF 0 kW 220 kW

iie 1.0 x 10 2 0 m- 3  1.0 x 10 2 0 m 3

neo 1.3 x 10 20 m- 3  1.3 x 10 20 m-3

77H -_0.5% -

Zeff 1.9 2.6

rB 8.6 ms 4.3 ms*

* Assumes 100% RF absorption.

Table 3.3.1: Parameters for Steady-Density Shot-Equilibrium data are
listed before and during the RF pulse for the shot in Fig. 3.3.1.



116 Chapter 3: Experimental Results

1200 
& During RF

1000 A Before RF

So a

600 -

400

200

0
0 1 2 3 4 5 6 7 8

Radius (cm) at Plasma Center

Figure 3.4.1: Deuterium Temperature Radial Profile-No significant
change in deuterium temperature radial profile shape is evident from this radial
charge-exchange scan. It is not possible to obtain accurate temperature measure-
ments from the charge-exchange diagnostic for r > 7 cm.

3.4: Radial Charge-Exchange Scan

The radial profile of the deuterium temperature, determined from charge-ex-

change measurements, is shown in Fig. 3.4.1, and the radial profile of the hydrogen

minority tail temperature is shown in Fig. 3.4.2. These data were taken by produc-

ing a series of similar shots, and varying the viewing angle of the charge-exchange

analyzer. These shots were similar to the steady-density shot of Fig. 3.3.1, except

that the density of the target plasma was somewhat higher, and the density ac-

tually dropped slightly during the RF. Due to wall reflections, it is not possible

to obtain accurate charge-exchange measurements beyond r > 7 cm. Some other

plasma parameters for this series of shots are shown in Table 3.4.1.

It is possible to estimate the collisional exchange power between hydrogen and

deuterium from these data. By treating both species as having Maxwellian distri-

bution functions at the indicated temperatures, the collisional exchange power is

found to be roughly uniformly distributed from r = 0 to r = 7 cm, and the total col-

lisional exchange power is found to be ~8 kW. Even though measurements are not

available for r > 7 cm, it certainly seems safe to say that there is a big discrepancy

between this power and the ~ 250 kW of RF power that was launched. In fact, it
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Figure 3.4.2: Hydrogen Tail Radial Profile-The hydrogen tail was fairly
localized in the plasma center. The deuterium data points are the same points
plotted with triangles in Fig. 3.4.1.

Parameter Ohmic RF

TD 1100 eV 1240 15 eV

Ip 165 kA 165 kA

qa 8.9 8.9

VR 1.6 V 1.9 0.3 V

POH 265 ± 5 kW 320 60 kW

PpF 0 kW 250 40 kW

fie 1.4 x 10 20 m- 3  1.2 x 10 20 m-3

12.5 ± 2.5 ms 6 ±3 ms*

* Assumes 100% RF absorption.

Table 3.4.1: Parameters for Radial CX Scan-Equilibrium data are listed
for the series of shots in Figs. 3.4.1 and 3.4.2. Entries shown as a range of values
indicate extent of shot-to-shot variation during the scan.

seems doubtful that this power is sufficient to account for the observed deuterium

heating. A more careful analysis using the ONETWO transport code shows that it is

necessary to include the contribution from deuterium second harmonic absorption
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in order to account for the observed heating. Thus, I have reached the surprising
conclusion that a major portion of the heating is caused by the contribution from
direct deuterium second harmonic absorption.

This conclusion may seem objectionable at first, because one normally expects
to see a strong non-thermal tail in the deuterium distribution function when second
harmonic heating occurs. Such tails were not observed in the charge-exchange
data collected during these experiments. However, since it is evident that only a
small portion of the RF power actually contributes to heating, and since severe
ripple trapping is known to occur, it is conceivable that the distribution function
of deuterium might not deviate far enough from a Maxwellian to exhibit a tail. To
investigate this, one can do an isotropic analytic approximation by extending the
treatment in Ref. 88 to the case of second harmonic absorption. This useful analytic

calculation was done by Hammett(120], who obtains

E3/2T + 0TT(E) = (3.4.1)
E3 /2 + E3

where

Ttaii = Te + 2 EPD (3.4.2)
5To 3nD

E, = 18.65 Te (3.4.3)

r, is the classical slowing-down time for a fast deuterium test particle on the elec-
trons, To is the "bulk" deuterium temperature (i.e., from fitting a Maxwellian to
the distribution function in the limit as E -+ 0), and E, is the energy at which the
drag forces experienced by the deuterium test particle on the electrons and on the
bulk are equal. The critical energy E, is larger in the case of second harmonic than

for the minority regime because the ratio of the masses of the test and field particles

is unity in the present case. The fast deuterium ion is more strongly collisionally
coupled to the bulk deuterium and less strongly coupled to the electrons than was
the fast hydrogen ion in the case of minority heating. Thus, it is already obvious
that the energy at which T~ Ti will be higher than in the case of minority heating,
and well above the ripple truncation energy.

Now to actually carry out the calculation requires knowledge of the power den-
sity PD of absorption by the deuterium. At this point, I cannot play the same trick I

used before of assuming a uniform power deposition profile, because I want to show
that the tail is small instead of large. Looking ahead to the next chapter, it is found
that the ratio PD/n 2 is largest for the low-density shots with n ~ 1 x 1020 m-3 .
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Figure 3.5.1: Deuterium Heating as a Function of Minority Concentra-
tion-The heating improved as concentration decreased. This trend continued to
the lowest concentrations measurable using the charge-exchange flux.

(n appears squared here because of the ne in the denominator of the expression

for -r.) For PRF = 220 kW (launched), PD is estimated to be 0.25 W/cm3 , and

with n = 1 x 10 20 m-3 , Te = 2 keV, To = 1 keV, I obtain T(E) = 1.005 keV for
E = 1 keV, T = 1.065 keV for E = 5 keV, and T = 1.179 keV for E = 10 keV.

These parameters are similar to those for the steady-density shot in Sec. 3.3, for

which a 175 eV increase in deuterium temperature was measured. It is therefore

not surprising that no non-thermal deuterium tail was observed.

3.5: Minority Concentration Scan

The behavior of the deuterium and hydrogen temperatures as functions of mi-

nority concentration are shown in Figs. 3.5.1 and 3.5.2, respectively. These data

were obtained from charge-exchange measurements by producing two or more sim-

ilar shots at each concentration, because the charge-exchange diagnostic can only

measure one ion species per shot. Due to difficulties controlling the RF power, it is

necessary to normalize the measurements by dividing by the RF power. The deu-

terium temperature shows a steady trend towards better heating as concentration
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Figure 3.5.2: Hydrogen Tail Temperature as a Function of Minority
Concentration-The hydrogen tail temperature was significantly greater than
the deuterium tail temperature at concentrations q7H < 3%; however, at higher
concentrations the hydrogen was essentially thermal at the same temperature as
the deuterium.

Parameter Ohmic RF

TD 1250 ± 50 eV -

IP 200 kA 200 kA

_a 7.5 7.5

VR 1.65 0.05 V 2.15 ± 0.15 V
POH 330 10 kW 430 ± 30 kW

PRF 0 kW 290 ± 80 kW
fie 1.25 x 10 20 m-3  1.45 x 10 20 m=~3

71 14 ± 3 ms 8± 1 ms*
* Assumes 100% RF absorption.

Table 3.5.1: Parameters for Hydrogen Minority Concentration Scan-
Equilibrium data are listed for the series of shots in Figs. 3.5.1 and 3.5.2. Entries
shown as a range of values indicate extent of shot-to-shot variation during the
scan.

is lowered which continues to the lowest concentration obtainable. The hydrogen

I I I I r I I "I
1 40
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tail temperature also increases as concentration is lowered, as one would expect.
For concentrations 17 H > 3%, the hydrogen is essentially thermal at a temperature
comparable to that of the deuterium. Other plasma parameters for this scan are
summarized in Table 3.5.1.

Stix gives a simple criterion for determining the optimum minority concentration
in Ref. 88. Since the quantity E2/E2 decreases as 77 increases, there should be
some nontrivial concentration at which the power absorbed by hydrogen, which is
proportional to nHIE+12, attains a maximum. Maximizing this quantity leads to
an expression for the optimum minority concentration:

opt = +NH L (3.5.1)77 3 1215 i7.6 n

where TH is measured in keV and n is the deuterium density in units of 1020 M- 3.
From the Brambilla code analysis in the next chapter, the Nil spectrum for these

shots is strongly peaked at Nl = 4. In this case, Eq. 3.5.1 leads to an optimum

minority concentration of ~ 2 %. Again, there is a contradiction with the experi-
mental results, which could be a result of incorrectly assuming that all of the RF
power is delivered to the deuterium through absorption on hydrogen followed by
collisional exchange. This is another piece of evidence that suggests that the hy-
drogen tail losses are so extreme that it is necessary to consider the contribution
from deuterium second harmonic absorption in order to explain the experimental
results. If that were the case, then it would not be surprising that heating efficiency
continues to improve at the lowest measurable minority concentrations, since the
fraction of power absorbed by deuterium second harmonic cyclotron absorption is
inversely proportional to minority concentration.

3.6: Toroidal Magnetic Field Scan

The hydrogen minority tail temperature is plotted as a function of toroidal
field in Fig. 3.6.1. Again, the rapid degradation in hydrogen tail temperature is

indicative of poor confinement of high-energy minority ions, which could be a result
of the toroidal field ripple trapping. This is also good supporting evidence that
the minority tail is really being produced in the center of the plasma by cyclotron
damping, and not by some other parasitic effect. As the toroidal field is scanned
below 12 T, the cyclotron absorption layer moves away from the center of the plasma
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Figure 3.6.1: Hydrogen Tail Temperature as a Function of Toroidal
Field-The hydrogen tail formation degrades very rapidly as the absorption layer
is moved away from the center.

Parameter Ohmic RF

TD 1110 ±90 eV

IP 160 ± 5 kA 160 ± 5 kA
q4 8 ±1 8±1

VR 1.6 0.1 V 2.5 ± 0.5 V

POH 255 25 kW 400 100 kW

PRF 0 kW 250 50 kW
fie 1.15 ± 0.15 x 10 20 m- 3  1.2 ±0.2 x 10 2 0 m-3

rz 10__ _±3ms 5 ± 2 ms*

into regions where the toroidal field ripple magnitude is larger. Other effects which
could contribute to this result are that the banana orbit width increases with r and
that the power is being deposited further from the plasma center and is therefore

Table 3.6.1: Parameters for Toroidal Magnetic Field Scan-Equilibrium
data are listed for the series of shots in Fig. 3.6.1. Entries shown as a range of
values indicate extent of shot-to-shot variation during the scan.

*Assumes 100% RF absorption.
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not as well "insulated" from the edge of the plasma. Other plasma parameters for
this scan are summarized in Table 3.6.1.
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Figure 3.7.1: Thermal Energy as a Function of Heating Power-In a well-
controlled power scan, the increase in thermal energy with RF power is consistent
with constant incremental confinement time.

3.7: ICRF Power Scan

Analysis of incremental energy confinement for a controlled power scan is shown

in Fig. 3.7.1. In this scan, the incremental ohmic heating power was always less

than 50 kW, so that the variations along the horizontal axis are primarily due to the

RF heating power. The solid line in Fig. 3.7.1 represents a linear least squares fit to

the six data points, and its slope is the incremental confinement time inc = 1.75 ins.

The ohmic energy confinement time for these shots was -rs = 9.6 ms, the slope of

the dashed line. The shot-to-shot variation of the ohmic points is indicated by the

error bars. If there was no heating at all during the RF, then the data points would

lie along the horizontal dashed line, labeled 0 ms, and the incremental confinement

time would be 0. On the other hand, if the heating was as efficient as ohmic heating,

then the data points would lie along the extension of the dashed line. Thus, there

was significant heating due to the RF, but the efficiency was degraded from the

ohmic value. The important question now is whether this can be accounted for in

terms of power loss mechanisms, or whether there is actually a real decrease in the

energy confinement time of the plasma. This question will be addressed in the next

chapter.
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Figure 3.8.1: Deuterium Heating versus Density-The measured aT0 is
shown versus line-averaged electron density for every shot in the database compiled
with the two double-element antennas.

3.8: Density Scans -

The most important issue to investigate during these experiments is the scaling

of heating efficiency with increasing density. To present an overall view of the raw

heating results, the observed deuterium temperature change is plotted against line-

averaged electron density for every 12 Tesla shot in the database. The results are

shown in Fig. 3.8.1. The maximum observed ATD decreases as density increases.

This behavior is not surprising, not only because there are more particles in the

plasma at higher density, but also because the power handling capability of the

antennas degraded somewhat at higher density. The maximum power delivered to

the antennas at low density was limited only by the capability of the RF generator

to ~ 400 kW. Power handling capability degraded linearly for fii > 3 x 1020 m- 3,

dropping to 100 kW at the highest density. Power was scanned from 0 kW up

to the maximum achievable at each density. Therefore, it is not surprising that

data points are scattered all the way down to the horizontal axis. However, one

might reasonably expect that this scatter would be eliminated by plotting a quantity

like incremental stored energy normalized to RF power. This turns out. not to be

the case. As shown below, this kind of simple-minded analysis yields a heating
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efficiency plo.t with data uniformly scattered between 0 and some maximum (which
is independent of density).

The shots depicted in Fig. 3.8.1 are grouped according to operational status.
The RF generation and transmission system is protected by a fault detection circuit.
If the reflected power in the transmission line exceeds a certain preset value, the
generator is automatically shut off. The reflected power in the line can change
suddenly if there is electrical breakdown somewhere in the system or if the plasma
loading changes suddenly. Shots in which this occurred are shown with solid circles
in Fig. 3.8.1. When the RF is shut off due to an electrical fault, it will attempt
to re-energize after a 10 ms delay. If unsuccessful (fault still present), the RF will
try again after another 10 ms. This will continue up to a maximum of four tries,
unless the time programmed for the RF pulse elapses first. Shots in which the RF
faulted but retried successfully are indicated with solid triangles in Fig. 3.8.1. Shots
which disrupted during the RF pulse, but which were stable long enough during the
pulse to show some heating are shown as solid squares. All other shots are shown
as open circles. In the case of disruptive shots, the value of A TD plotted is the
maximum achieved during the RF pulse. In shots which disrupted but subsequently
recovered during the RF, the deuterium temperature at the end of the pulse was
usually lower than before the RF, but the temperature plotted in Fig. 3.8.1 is the
maximum achieved before the disruption. Including these "defective" shots adds
nothing useful to further analysis, so all further analysis will be done using only the
"good" shots.

The deuterium heating data from Fig. 3.8.1 are plotted again in Fig. 3.8.2,
grouped according to whether there was a density increase or decrease that ap-
peared to be caused by the RF. The separation of the data into this grouping was
sometimes somewhat subjective. Shots for which the line-average density shows
an obvious change that was correlated with the RF pulse were classified according
to that change. Shots which had a significant change in line-average density that
was not correlated with the RF (due to poor plasma control) were discarded. All
other shots were classified as steady-density shots. Rising-density shots tended to
occur primarily for the lower density target plasmas and tended to exhibit more
deuterium heating than steady-density shots. As has already been mentioned, this
rising-density behavior renders the evaluation of the RF heating efficiency some-
what ambiguous. The more sophisticated analysis in Chapter 4 using the ONETWO
transport code is able to resolve this ambiguity.

The electron and ion temperatures for the ohmic target plasmas are shown
plotted against line-average density in Fig. 3.8.3. Unfortunately, the only electron
temperature diagnostic available during the experiments was the Thomson scatter-
ing diagnostic. This diagnostic yields a reasonably accurate measurement of the
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Figure 3.8.2: Deuterium Heating versus Density-The data from Fig. 3.8.1
are re-plotted, grouped according to the behavior of the density as correlated to
the timing of the RF.

central electron temperature, but with limited time resolution - only one point
every ~ 20 ms. Thus, it is not possible to observe sawtooth behavior in the electron
temperature, which might have yielded useful information about the electron power
balance. Even more unfortunate is the complete lack of electron temperature data
for the highest densities. This severely limits the amount of analysis that can be
done for the highest-density shots. In the next chapter, it will be possible to model
RF deposition and loss mechanisms for these high densities by assuming a value for
the electron temperature, but the transport and power-balance analyses using the
ONETWO code are too sensitive to electron temperature to allow this.

In general, the electron temperature showed no trend to either increase or
decrease during the RF, but often exhibited random fluctuations of magnitude

~ ±200 eV during the RF. Data from the Thomson scattering diagnostic show-
ing this effect for a typical RF heated discharge are shown in Fig. 3.8.4. There were
no diagnostics available during the experiment from which total radiated power or
impurity line radiation power could be obtained. Since the limiters and Faraday
shields were fabricated from molybdenum and carbonization was not applied to
the walls of the vacuum chamber, a reasonable hypothesis would be that high-Z
impurity radiation was responsible for the lack of electron heating. During the ear-
lier ICRF heating experiments performed on Alcator C by Blackwell, a study of
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Figure 3.8.3: Ohmic Temperatures-Electron temperatures were determined
from the Thomson scattering diagnostic and ion temperatures were determined
by both charge-exchange and neutron measurements.

impurity generation and radiation was carried out by Manning et al.1591 In these

experiments, the plasma was limited by a 12.5 cm graphite limiter, but the an-

tenna Faraday shields and the vacuuta chamber wall were stainless steel. Also, the

normal 16.5 cm molybdenum limiters were left installed in the torus during the

experiment. During the ohmic portions of the discharges, the primary impurity

component was carbon, and the impurity radiation was greatly reduced compared

to operation with molybdenum limiters. However, when the RF was applied, the

impurities were again dominated by high-Z elements (mainly iron and chromium).

The sources of these impurities were identified as the antenna Faraday shields, the

vacuum chamber wall, and the 16.5 cm limiter. Electron heating was not observed

in those experiments, as in the present experiments. In the Blackwell experiments,

T, usually remained constant during the RF, but often was observed to decrease by

175 eV.

In addition to ohmic heating and impurity radiation power, the electron power

balance is also affected by collisional exchange with the ions (both majority and mi-

nority) and possible absorption of power from the mode-converted IBW via electron

Landau damping and magnetic pumping. Because of the truncation of the minority

distribution which was indicated by the charge-exchange diagnostic and hypothe-

sized to be caused by ripple-trapping, electron heating via collisional exchange with
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Figure 3.8.4: No Electron Heating-Data from the Alcator C Thomson scat-
tering diagnostic are shown for a steady-density shot with fi. = 1.45 x 1030 M-,
Ip = 210 kA, TDO = 1070 eV (Ohmic), and A TDO = 100 eV.

the minority tail will not be expected. Although the analysis to be presented in the
next chapter does not predict significant electron Landau damping of the IBW, the
models used do not include all the relevant physics for this effect and cannot rule
this out. However, the amount of power in question is not sufficient to dominate
the electron power balance. Because of the lack of diagnostic information necessary
to study the electron power balance, and considering the lack of significant electron
heating, it will turn out that the most rewarding way to analyze the data will be to
concentrate on analyzing the deuterium power balance, treating both the RF and
the electrons as known sources of power. This is the method of analysis that will be
pursued in Chapter 4 using the RF deposition model to be developed in Chapter 4
and the ONETWO transport code.

While reading this thesis, it is worth remembering that the deuterium temper-
ature never equals or exceeds the electron temperature during the RF.

Once the densities and temperatures are known, it is trivial to calculate the
heating efficiency figure of merit ft.ATD/PRF. This quantity is shown in Fig. 3.8.5.
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Figure 3.8.5: Deuterium Heating Effciency versus Density-The figure-
of-merit fi.ATD/Php shows no correlation with density.

From this plot one can see that, although the raw deuterium temperature data might

at first sight appear to scale poorly with density, the deuterium energy increment

per particle per kilowatt of RF power is independent of density. Although there is

a great deal of scatter, the best efficiency that was observed was roughly the same

at each density. However, the fact that the scatter is so severe suggests that this

figure of merit is not a good parameter for characterizing the heating results. A

slightly better figure of merit is the incremental confinement time, which is discussed

below. In addition to deuterium temperature increase, the incremental confinement

time calculation accounts for changes in density and electron temperature (in the

rare cases when Te changed). It also models the dependence of temperature profile

shapes on plasma current.

The effect of the R.F on energy confinement time is shown in Fig. 3.8.6, in which

the global energy confinement time -rs is plotted against density. The degradation

in energy confinement time during the RF is fairly small, but this is simply because

the RF power is also small. The net change in plasma thermal energy is always

small, and therefore Fig. 3.8.6 would not look much different even if there were no

heating at all during the RF. It is important to note that these energy confinement

times were calculated assuming that the net forward RF power in the antenna feed

line was equal to the net power deposited into the bulk plasma. If significant losses
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Figure 3.8.6: Energy Confinensat Time versus Density-The degradation
of the global energy confinement time was typically fairly small; however, the RF
power was always smaller than the ohmic power.

are taken into account, then the calculated energy confinement time during the RF
will be closer to the ohmic value.

Since detailed profile information was not available from experimental data, a
simple model was used to estimate the temperature profile shapes in these energy
content calculations. In order to do this analysis, what amounts to a 3-point fit
was done by assuming that the temperature profiles of ions and electrons had the
same shape, which was represented by a parabola raised to some power. The edge

temperature was assumed to be zero and the central temperature was taken from the

appropriate diagnostic measurement. The power to which the parabola was raised

was determined by assuming classical resistivity to relate the electron temperature

profile to the total measured plasma current, and determining the plasma current
profile by assuming that the sawtooth instability requires that the central MHD
safety factor q not differ very much from unity. It was also assumed that the

temperature profiles were significantly more peaked than the density profile. This

well-known procedure is described as follows.

The temperature and current profiles are assumed to have the following shapes:

T.(r) = Teo[l - (r/a)2lar (3.8.1)

TD(r) = TDo[l - (r/a) 2 ]T (3.8.2)
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J(r) = Jo[l - (r/a)2JaJ (3.8.3)

The 3 parameters that will be adjusted to fit the electron temperature to measured
data are aT, Jo (central toroidal current density), and TeO. Assuming classical
resistivity yields

[ Te(r)1 /
J(r) = o(r)E = o e E (3.8.4)

Teo

from which it follows that

aJ 3 aT (3.8.5)

Note that the electric field E was also assumed to be spatially uniform. Application
of the Ampere equation then yields

J r )2, a2 Jo 1 - [I - (r/a)2]aj+l
Bp(r) = - [1 - (x/a) [1xdx = - (3.8.6)

r o 2r aj+1

Evaluating this expression at r a and again asymptotically in the limit as r -+ 0,
and using

q rB0  (3.8.7)
q=RBp

yields

aj =a -- (3.8.8)

If the density profile is sufficiently broad that a., < aT, then the volume-averaged

thermal energy obeys the relation

(nT) i f (T) = n T (3.8.9)
1 + aT

The plasma thermal energy content is then given by

3 -Teo + TiO2
W - 3 e T + aT 27r 2a2 Ro (3.8.10)

and the energy confinement time is

w
7-B P (3.8.11)

PRF + POH

In the ONETWO transport code analysis in Chapter 4, a more sophisticated

version of this fitting will be done. In that case, the electron temperature profile
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Figure 3.8.7: Incremental Energy Confinement Time versus Density-
The incremental confinement time scales quite unfavorably with density, when
compared with the ohmic confinement time. Incremental energy confinement time
appears to be constant as a function of density.

will be treated the same way, but the ion temperature profile will be determined by
assuming the ion thermal conductivity to be a constant multiple of the neoclassical
thermal conductivity and adjusting the multiplier to match the measured central
ion temperature. This will yield ion temperature profiles somewhat broader than
the electron temperature profiles, with aTp ;z 0 .6 3 5 aT.. The density profile will be
adjusted to match both the central density determined by the Thomson scattering
diagnostic and the line-average density determined from the interferometer. This
will verify the validity of the approximation a,. < aT.

When the incremental plasma thermal energy is relatively small, a much more

revealing measure of the RF heating efficiency is the incremental confinement time,

defined as the ratio of the incremental thermal energy to the incremental heating

power. Since the change in ohmic heating power during the RF is not negligible

compared to the RF power, the change in ohmic heating power is included when

calculating the incremental power. Otherwise, the RF heating efficiency would be

exaggerated.

A comparison of the ohmic and incremental confinement times is shown in

Fig. 3.8.7. The total energy confinement time, shown with solid circles, scales quite

favorably with density. As density is increased, the ohmic confinement time initially
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Figure 3.9.1: CO 2 Laser Scattering Data-Measurement of power scattered
from the mode-converted ion Bernstein wave indicates that the wave is toroidally
localized and that mode conversion increases with density.

exhibits neo-Alcator scaling (rE cc n), and then shows a tendency to saturate at

higher densities. This tendency for the ohmic confinement time to saturate has

been studied before, and has been attributed to a degradation of the ion energy

confinement with increasing density. On the other hand, the incremental confine-

ment time does not scale so favorably with density. Not only is the incremental

confinement time much lower than the total confinement time, but its scaling with

density is not much better than neutrally favorable.

3.9: Mode Conversion

Data obtained by Dr. Y. Takase from the C02 laser scattering diagnostic1211

are shown in Fig. 3.9.1. In this scan, the diagnostic was adjusted to detect density

perturbations associated with the mode-converted ion Bernstein wave on the high-

field side of the ICRF absorption layer. This diagnostic was very important for

the IBW heating experiments performed by Moody, but is somewhat less useful for
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the fast-wave experiments primarily because of the inability to obtain absolutely

calibrated measurements of the IBW power. Precise interpretation of data from

this diagnostic is complicated by the fact that the scattered power depends in a

complicated way on the plasma density and the Nil of the IBW.

The scattered power, which is a measure of the power carried in the mode-

converted ion Bernstein wave, is plotted as a function of line-average electron den-

sity. For the ranges of N1 predicted by the Brambilla code simulations in the next

chapter, it is valid to conclude that the mode-converted power is increasing with

density. Two ICRF fast-wave antennas were used in this scan, one installed on

C-port and the other installed 1800 away toroidally on F-port. The CO2 laser was

installed on F-port. Data taken when ICRF power was fed to the antenna on F-

port are shown with solid circles, while data taken when ICRF power was fed to the

antenna on C-port are shown with open circles. From these data, one can see that

mode-conversion is a strong function of density, increasing significantly magnitude

over the density range scanned. However, it is not valid to conclude that the IBW

is either absorbed or toroidally localized from the behavior of the open circles, be-

cause of the possibility of large upshifts in the value of N11 as the wave propagates

in the toroidal direction. The fact that mode conversion increases with density is

important supporting evidence for the results of the Brambilla code calculation in

the next chapter.

3.10: Summary

Data taken during fast wave hydrogen minority regime heating experiments in Al-

cator C have been presented in this chapter. Significant deuterium heating was

observed during the experiments, but electron heating was not observed and the

hydrogen minority distribution function exhibited a suprathermal tail that was far

too weak to account for the launched RF power. Because the hydrogen distribution

function is truncated at relatively low energy, by an effect that has been attributed

to toroidal field ripple trapping, the minority tail temperatures that were derived

from the charge-exchange data may not accurately describe the actual distribution

function at the centermost point of the viewing chord, as is customarily assumed.

Thus, interpretation of the minority charge-exchange data is ambiguous.

Scaling of the heating efficiency with minority concentration has been found to

be in contradiction with well-known theoretical results which predict an optimum

minority concentration of a few percent. Instead, heating was found to improve as
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concentration was lowered, and to continue this trend as concentration was scanned
from 8% down to the lowest concentration obtainable. However, the theoretical
result that there should be an optimum concentration at some non-trivial value is
based on equating the collisional exchange power between hydrogen and deuterium
with the RF power, without considering the possibility of other loss channels to
which the power might flow.

Electron heating was not observed during the experiments. Although diagnostic
data are not available from which the electron power balance can be studied, this
result is not very mysterious. The source of electron heating power from the RF
will be weak due to the truncation of the minority distribution function, but there
might still be contributions to electron heating power from the mode-converted IBW
and from a reduction in the electron-deuterium collisional exchange power as the
deuterium heats up. However, the experiment was carried out in a high- Z-impurity
environment. Based on an impurity radiation study carried out during earlier fast
wave experiments on Alcator C, it seems reasonable to presume that it is radiation
from high-Z impurities that is responsible for the lack of electron heating.

A simple type of power balance analysis was done, in which the thermal energy
content and total power input to the plasma were estimated from experimental
data. It was found that the incremental plasma heating was much less efficient
than Ohmic heating, and that the scaling of the incremental heating with density
was not favorable.

Because the hydrogen tail is so weak and the distribution function appears to
be truncated at an energy consistent with previously studied results that have been
attributed to toroidal field ripple trapping, it is hypothesized that the inefficient
heating results are caused by severe losses associated with the hydrogen minority.
The fact that energy losses from the hydrogen must be severe is clear, and it is

obvious that some way must be found to estimate these losses in order to explain

the heating results and to do any further analysis. However, it is also intuitively

obvious that the losses from the minority alone cannot account for all the features
observed in the data. This would not seem to explain the results from either the
minority concentration scan or from the density scan. In either case, as minority
concentration increases or as density increases, a less energetic hydrogen tail would
be required in order to channel all the RF power to the deuterium. Thus, it would be

expected that heating efficiency should improve at high minority concentration or

majority density, in apparent contradiction with the experimental results. In fact,
since this intuitive discussion suggests that ICRF power deposition should actually
improve with increasing minority concentration and density, it is necessary to look
for even more severe loss mechanisms whose scaling with concentration and density

will dominate over the expected improved power deposition.
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As has just been suggested, it is now necessary to embark on a study of the.
ICRF power deposition efficiency that takes into account, at least approximately,
the effects discussed intuitively in the preceding paragraph. There is no adequate
way to determine either the global RF power deposition or its profile from the avail-
able experimental data. In other experiments, RF power deposition on electrons
is often studied by examining the sawtooth behavior of the electron temperature.
However, in the present experiments, only the Thomson scattering diagnostic is
available to study electron temperature, and this diagnostic does not have sufficient
time resolution to resolve sawteeth. In analogy with the sawtooth technique, RF
deposition on deuterium is sometimes studied by examining the slope of a TD ver-
sus time plot. However, this method is too error prone to be used in the present
study, and there is not sufficient profile information in the data either. Both of these
methods involve the assumption that the slope of the temperature-versus-time plot
can be measured over a time interval sufficiently short that none of the plasma
properties vary significantly over the interval. It is possible to take the estimated
power deposition to deuterium for the low-density case modeled in the next chapter
and "work backwards" to figure out what the initial slope of the TD versus time
plot should be when the RF turns on. If this is superimposed on Fig. 3.3.1, it will
be seen to be consistent with the measurement, but the uncertainty in starting from
the plot and determining the slope will be obvious.

The one obvious exception to the statement that RF power deposition cannot
be determined experimentally is the calculation done for the charge-exchange radial
scan. The results from that one case are helpful in evaluating, at least qualitatively,
the uncertainty in the model developed in the next chapter. Although the inter-
pretation of the hydrogen charge-exchange diagnostic is ambiguous, the hydrogen
temperatures from the radial scan happen coincidentally to be the same as the
temperatures that would be obtained by my ad-hoc assumption TH = Etr.

Thus, there is at least a limited amount of experimental data that can be com-
pared with a theoretical RF deposition model. The development of such a model

for Alcator C is the subject of the next chapter.
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4.1: Introduction

In this chapter, a theoretical model will be constructed in order to study the power
balance in more detail than was done in Chapter 3. Up to this point, the power
balance was studied by treating the plasma as a "black box". That is, the total
amount of RF power launched into the plasma was compared to the total Ohmic
heating power, and the heating efficiency was evaluated by comparing the total
thermal energy content of the plasma before and during the RF. It was noted that
a large fraction of the RF power was lost due to inadequate confinement of the
hydrogen minority. It was also noted that there was no electron heating during

the RF and that, while this fact was not very mysterious, there was insufficient
experimental data available to study the electron power balance. Thus, when the

thermal energy of the "black box" plasma increased during the RF, it was predom-
inately the thermal energy of the deuterium that was increasing. The Ohmic input

power is deposited directly on electrons, not ions. And the amount of Ohmic power

that contributes to deuterium heating depends directly on the plasma density and

the temperatures of the ions and the electrons. The temperature of the electrons

is dependent on the electron confinement properties, Ohmic input power, and the
electron radiation processes about which there are no experimental data. Thus the

total Ohmic heating power is not a good measure of the amount of power input to

the deuterium before the RF, nor is it a measure of the Ohmic contribution to the

ion heating power during the R.F. Also, the total launched RF power is not a good

measure of the amount of RF power that is actually deposited to the deuterium. It

is therefore not the least bit surprising that the power balance analysis performed

in Chapter 3 cannot adequately explain the experimental results.

What is really needed is an analysis which concentrates more closely on the

power sources and confinement of the deuterium, in isolation from the other plasma

components. That is, it is desired to treat the hydrogen and electrons as known

sources of collisional exchange power to the deuterium, add in the contribution

from direct deuterium second harmonic absorption, and then model the various loss

mechanisms from the deuterium. If some way can be found to model the various

loss mechanisms associated with the hydrogen while at the same time calculating

the collisional exchange power associated with the non-Maxwellian hydrogen distri-

bution function, then the uncertainties associated with the electron power balance

will have been effectively bypassed. This is possible because, even though data

concerning the electron energy loss mechanisms are lacking, direct measurements

of the electron temperature and density are available, and that is all one needs to
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Figure 4.1.1: Power Balance-This block diagram shows the various power
flows to and between the different species and defines the terminology that will
be used in this chapter to refer to them.

know about the electrons in order to calculate the collisional exchange power from

electrons to ions.

The procedure that has just been suggested is outlined in Fig. 4.1.1. This

illustration also serves to define notation that will be used throughout this chapter

to refer to the various power channels. The total RF power launched by the antenna

is denoted by PRF. Resistive losses in the antenna system will be neglected, so

PRF will be taken to be the net forward power measured in the antenna feed line.

This power will be distributed among three separate channels: mode conversion to

the ion Bernstein wave (PMc), hydrogen fundamental cyclotron absorption (PH),
and deuterium second harmonic absorption (PD). Although it is possible that

the mode-converted power is deposited on the electrons via Landau damping, the

computer programs to be used in this chapter do not model all the physics relevant

to this process, so it will not be determined conclusively what happens to PMC-

Since experimental data necessary to model the electrons are not available, there

is absolutely nothing lost from the analysis by not knowing what happens to PMC-

The power PH absorbed by the hydrogen is then either collisionally deposited on

deuterium (PHD), or on electrons (P.), or lost from the plasma (PF,,). The

code FPPRF which will be used to model the hydrogen energy balance can calculate
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components of PL, resulting from unconfined orbits, neoclassical transport, charge
exchange, sawtooth transport, asymmetric drag, and toroidal field ripple diffusion.

It cannot, however, calculate losses from toroidal field ripple trapping. Once this
part of the model has been completed, the deuterium second harmonic absorption
will be combined with the collisional exchange between hydrogen and deuterium to
obtain an estimate of the net RF power Pnet = PH + PHD deposited to deuterium.

This power deposition profile Pnet(r) will then be used as input to a transport code,
along with data from experimental measurements. The transport code will then
treat the electrons as a known source, by calculating PeD(r), along with the given

power source Pnet(r), and proceed to evaluate various loss mechanisms associated

with deuterium. Then the heating efficiency (of deuterium only) resulting from

Pnet + PeD during the RF will be compared with the heating efficiency of PeD alone

before the RF, and it will be found that both power sources are equally efficient at

heating the deuterium. That is, no additional loss mechanisms or increased anomaly

in known loss mechanisms is necessary in order to explain the experimental data.

It is important to realize that just because a great deal of simulations are going

to be done using four highly sophisticated numerical codes, that does not necessarily

mean that a highly accurate answer is going to be rigorously obtained. As far as

the calculation of Pnq is concerned, it must be emphasized that the treatment

will be very ad-hoc in some respects. Of course, when running numerical codes,
it is always important to understand what physical phenomena are modeled and

what approximations are used in the codes, and any resulting limitations. But

the authors of these codes did not necessarily have Alcator C in mind when the

codes were developed, and Alcator C has some unique problems that were not

considered when the codes were developed. One problem with Alcator C plasmas

is that single-pass ICRF absorption is very weak. Because of this, codes were

used to calculate the RF wave fields which self-consistently include the reflecting

boundaries and antenna current source (assumed current distribution). However,
the most serious problem encountered when modeling Alcator C with these codes

is the presence of the ripple-trapping effect. It is clear that there are serious loss

mechanisms associated with the hydrogen which must be modeled, and the Fokker-

Planck code chosen to model the hydrogen treats most of them. Unfortunately, the

code does not include the effect of ripple trapping. I am not aware of the existence

of any code that includes ripple trapping while doing a Fokker-Planck calculation

of the minority heating, with or without the other loss mechanisms. It turns out

that the collisional power deposition from hydrogen to deuterium is dominated by

contributions from suprathermal hydrogen ions which are not lost due to ripple

trapping. That is, hydrogen ions with E > Etr would tend to slow down on electrons

rather than deuterium. Because of this, the inability to model ripple trapping will
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Figure 4.2.1: Slab Geometry for Brambilla Code-A plasma whose param-
eters are allowed to vary in an arbitrary manner in the x-direction exists between
the Faraday shield and the far wall. The antenna was modeled as a toroidal
(perpendicular to this page) array of two center-fed loops, driven in phase.

result in uncertainty in the distribution of power between ]A,.. and P. rather than
uncertainty in the calculation of PHD.

The interpretation and limitations of the codes will be discussed in further detail
in the individual descriptions of each code that appear in the following sections.

4.2: Coupling, Absorption, and Mode-Conversion in Slab Geometry

A ID, full-wave, hot-plasma code has recently been developed by Brambilla[122].

This code was developed for the purpose of modeling direct excitation of ion Bern-

stein waves by ICRF antennas, which is not the purpose for which it is being used

here. However, this code is -convenient because it provides a way to calculate cy-

clotron absorption and mode-conversion of the fast wave to the IBW using an N11-
spectrum determined self-consistently by including the antenna coupling problem

as a boundary condition when solving the wave equations. It also allows a reflecting

boundary condition to be imposed at the far wall without also requiring the IBW
to be reflected. It is very important to emphasize that, since the code was written

primarily to study phenomena which occur at the edge of the plasma, it omits some

physics that can be important in the center. In particular, the code does not model
magnetic pumping nor does it allow N11 to evolve (due to non-zero poloidal field)

as the IBW propagates. This will not be a drawback for the present application.
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The geometry used by the Brambilla code is illustrated in Fig. 4.2.1. The

plasma is assumed to be enclosed in a box of dimensions 2a + 6 in the x-direction,
27ra in the y-direction, and 27rRO in the z-direction. Here S is the distance from

the limiter to the vacuum chamber wall. The hot-plasma wave equation is solved

by the method of finite-elements (using cubic Hermite polynomial basis functions)

in the x-direction, and Fourier series in the y and z-directions. Periodic boundary

conditions are imposed in the y and z-directions and reflecting boundary conditions

are imposed at both walls in the x-direction. An artificial damping term was added

to the IBW to prevent reflection of the IBW at the far wall. This is necessary

because the wave equation used is not valid for the IBW at the far edge of the

plasma, where the IBW wavelength is so short that the FLR expansion used to

derive the equation is not accurate. This has essentially the same effect as imposing

a radiating boundary condition that affects only the IBW, somewhere on the high-

field side of the absorption region. Within the limiter radius, the electron density

profile was assumed to be a parabola and the electron and ion temperature profiles

were assumed to be parabolas squared. In the scrape-off region between the limiter

and the Faraday shield, the density and temperature profiles were assumed to be

exponentials, using edge values and scrape-off lengths typical of measurements made

by Wan in earlier experiments[(123]. In the code, analytic vacuum solutions are used

for the fields behind the Faraday shield, and these are matched to the numerical

solutions at the location of the Faraday shield. The code allows arbitrary angles

of orientation between the magnetic field, Faraday shield, and antenna, but in the

results presented here, the Faraday shield was always assumed to be perpendicular

to the antenna and parallel to the magnetic field.

Using notation similar to that in Ref. 122, the wave equation is approximated

by the following 6th-order system:

- +N) -Ny (Ex+iEy)] +(N +N2-S)Ez

+ iNy OEE + iDE- - iNz 8Ez = 0 (4.2.1)

i +N) - Ny) (Ex +iEy)] +iNy -iDEz

- 2E +(N - S)Ey - NVNzEz =0 (4.2.2)

iN, - NyNzEy - ( + (N - P)E =0 (4.2.3)

where
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L=1+-" 1 * 2 oiZ(x14) (4.2.4)

PH

R = 1 + 1 + (4.2.5)

2

2 Oe Z'(xo,) (4.2.6)

ELD

S = R+L D R-L (4.2.7)
2 D 2

1 2
4 =Vt -- o oiZ(x2i) (4.2.8)

IBW+P

Pv **e-u2 X2

Z(x) = -_-+ (4.2.9)

ni = w-nl (4.2.10)
kzvthi

Included in these equations are the leading-order (in FLR expansion) contributions
from fundamental cyclotron absorption by hydrogen (in L), second harmonic cy-
clotron absorption by deuterium (in o), electron Landau damping (in P), and mode
conversion (in a). Once the wave fields are determined, the local power absorption
is calculated from

P= [Im(a) -Ny) (E+iEy) +Im(L)E+iE2+IM(p)Ez2

PH ELD

(4.2.11)

where the contributions from deuterium second harmonic cyclotron damping (PD),
hydrogen fundamental cyclotron damping (PH), and electron Landau damping
(ELD) are indicated.

The most important information to be gained by running the Brambilla code
is the amount of power that is mode-converted to the IBW. By running a large

number (350) of cases using simple (but reasonable) prototype plasma parameters,
the behavior of the mode-converted power as a function of density, minority con-

centration, and minority temperature is determined. This information is important
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Figure 4.2.2: Absorbed Power Spectrum for Low-Density Case-The
N11 spectrum of absorbed and mode-converted power is shown for the low-density
case. The dominant contribution to absorbed power comes from components in
the vicinity of NI - 3.5, and there is very little mode-conversion.

to resolve an ambiguity introduced because the 2D code SHOOT, described in the

next section, cannot distinguish between mode conversion and deuterium second

harmonic absorption.

Large scans of plasma parameters were done with the Brambilla code, SHOOT,

and FPPRF. In addition to presenting the results of these scans, more detailed

information will be shown for two prototype cases. These two prototype cases will

be referred to hereafter as "the low-density case" and "the high-density case". The

parameters assumed for the low-density case were fie = 1 x 1020 m- 3 , TD = 1 keV,

TH = 10 keV, Te = 2 keV, Ip = 160 kA, iH = 0.5 %, and PRy = 220 kW, and the

parameters assumed for the high-density case were fii = 4.5 x 1020 m- 3 , TD =1 keV,
TH = 1 keV, T, = 1.65 keV, Ip = 400 kA, 77H = 0.5 %, and PRF = 175 kW.

The power spectrum determined by the Brambilla code for the low-density case

is shown in Fig. 4.2.2. These powers are functions of the Fourier series variables

N2 = Nii and NY. In Fig. 4.2.2, the powers are summed over Ny and plotted

as functions of N.. The power launched by the antenna is found to go primarily

to cyclotron damping on hydrogen and deuterium, with a small amount of mode

conversion. Most of the power is found to be concentrated in peaks near NiI -- 3.5,
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Figure 4.2.3: Electric Field Pattern and Power Deposition Profile in
Slab Geometry for the Low-Density Case-The high-field side is on the left
in these plots, and the antenna geometry is that of the two-element low-field-side
launcher. The electric fields are calculated assuming 1 MW of launched ICRF
power.

but one should realize that this result is somewhat dependent on the assumed
geometry.

The power absorbed by electron Landau damping was found to be completely

negligible for this case as well as for most other cases studied. This was checked

by removing the artificial damping term on the IBW and imposing a true radiating

boundary condition (for both waves) on the high-field side. However, this result is

uncertain because the Brambilla code does not model all the relevant physics. The

question of how much IBW power actually damps on electrons could be treated more

carefully using a ray-tracing code. However, due to the experimentally measured

lack of electron heating and the lack of diagnostic information regarding electron

power loss, there is not much that could be done with the results of a ray tracing
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Figure 4.2.4: Absorbed Power Spectrum for High-Density Case-The
spectrum peaks have shifted to N11 - 5 and mode-conversion has become more
significant.

analysis. As was mentioned previously, the approach to be taken in this work will
be to treat the electrons as a known source of collisional-exchange power to the
deuterium, and concentrate on analyzing the deuterium power balance. Therefore,
this uncertainty about the fate of the mode-converted power is not a problem for
the forthcoming analyses.

More Brambilla code output for the low-density case is shown in Fig. 4.2.3.
Shown are the power deposition profiles and the real and imaginary parts of the
three Cartesian components of the wave electric field. It will turn out that the fast
wave is not focussed into a small spot at the plasma center in Alcator C. Because
of this, Fig. 4.2.3 contains somewhat limited profile information, because the power
deposition profile in two dimensions will actually have a large vertical extent. The
shape of the part of the profile indicated as PFic is determined by the strength of
the imposed artificial damping and contains no physical information.

It can be seen that the fast wave contains primarily E* and Ev components
while the IBW contains primarily E. and E, components. The small-electron-mass
effect E11/E. O(m./mi) is also apparent. The Ey field shows that the fast

wave has a very high standing wave ratio (i.e., weak absorption), with only a small
inward propagating component on the low-field side. This weak absorption was
verified when running the Brambilla code in single-pass mode, with true radiating
boundary conditions on the high-field side.
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Figure 4.2.5: Electric Field Pattern and Power Deposition Profile in
Slab Geometry for the High-Density Case-The width of the absorption
region is narrower compared to the low-density case, due to the lower minority
temperature, and the perpendicular wavelength of the fast wave is shorter as
expected from cold-plasma theory.

The power spectrum for the high-density case is shown in Fig. 4.2.4. Signifi-

cantly more mode conversion is evident here compared to the low-density case. Also

evident is a shift of the spectrum peaks to higher values of N11.

The power deposition profile and electric field components for the high-density

case are shown in Fig. 4.2.5. The power deposition profile is narrower compared to

the low-density case, because the assumed minority temperature is lower, resulting

in less Doppler broadening. The fast wave exhibits a shorter wavelength in the

x direction, as expected from cold-plasma theory. The fast wave also shows a lower

standing wave ratio than in the low-density case, indicative of stronger single-pass

absorption. These results are comparable to the METS calculations shown in Sec. 1.5.

PH + PD
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Figure 4.2.6: Mode-Conversion from Slab-Geometry Calculation-The
fraction of power mode-converted is shown as a function of plasma density, mi-
nority temperature, and minority concentration. It is necessary to produce an
elevated minority temperature in order to avoid significant mode-conversion. At
high density and/or minority concentration, where it is not possible to produce
an elevated TH, a large fraction of the power can be mode-converted.

Results from a comprehensive Brambilla code scan are shown in Fig. 4.2.6. The
fraction of power mode-converted is shown for all of the values of density, minority
temperature, and concentration of interest to the experiment. Basically, it is found
that it is necessary to have at least a modestly elevated tail temperature in order
to avoid significant mode conversion.

In the experiment, data on minority tail temperature was very difficult to inter-
pret, because of the TF ripple trapping effect previously discussed. There was also
a great deal of scatter in the TH data. Also, measurements of minority concentra-
tion were rare, due to the need to produce two similar shots in sequence in order to
measure it. For most of the shots in the data base, when hydrogen was not being
injected into the vacuum chamber, it is assumed, based on measurements of a small
fraction of the shots, that the concentration was 77H = 0.5 %, with an uncertainty of
±0.5%. For shots in which extra hydrogen was injected, more careful measurements
were made, but these shots occurred only within a limited density range. Additional
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uncertainty is introduced by the sharp peaks in the mode-converted power plotted

in Fig. 4.2.6, which are a result of geometry-dependent wave coherence effects which

occur because the wave phase fronts and the absorption layer are both planar in

shape (in the assumed slab geometry). This would not be expected to occur in a

more realistic geometry.

Because the measured minority distribution functions were truncated at

10 keV for low densities (5, < 1 x 1020 m-3) and elevated minority temperatures

were not observed for high densities (e > 4 x 1020 m- 3), and because of the un-

certainties just discussed, it will be assumed that 10% of the RF power is mode

converted at neo = 1 x 1020 m-3, 40% is mode converted at n, = 6 x 1020 m- 3 ,
and linear interpolation will be used for intermediate densities. This is indicated

by the broken line in Fig. 4.2.6. The uncertainty in this ad-hoc assumption can be

estimated in an equally ad-hoc manner from inspection of the 17H = 0.5% plot in

Fig. 4.2.6. It should be noted that the uncertainty introduced by the sharp peaks

is caused by the choice of boundary conditions, which is the most reasonable choice

to use given slab geometry, and not by the code chosen. It is clear that if one is

very concerned with accurately modeling mode conversion in a plasma with weak

single-pass absorption, then a better way to treat this problem would be to modify

the SHOOT code to allow PD and PMc to be determined separately. A few simple

comparisons were made by using PD/PH = 3D/77H in combination with SHOOT in

order to separate PD from PMc, and no serious discrepancies were found.

It will turn out that as far as the density scan is concerned, mode conversion

is not the dominant effect and uncertainties in the amount of mode conversion will

not alter the conclusion that will be reached. However, as one might guess from

inspection of Fig. 4.2.6, this will not be the case for the concentration scan. For-

tunately, careful minority concentration measurements were made when concentra-

tion was scanned in the experiment. Moreover, the magnitude of the sharp peaks in

Fig. 4.2.6 is reduced as concentration is increased. In fact, the high-concentration,

low-minority-temperature cases are where SHOOT encounters numerical difficulties,

and thus these cases are the ones for which the Brambilla code is most useful.

In the experimental data, the minority concentration was scanned at a density of

5, ~ 1.45 x 10 20 m~3, and TH decreased to values comparable to TD (i.e., > 1 keV)

when 1H reached 3%.

In summary, from the Brambilla code it is learned that there is a significant

increase in mode conversion as density is increased and a major increase in mode

conversion as minority concentration is increased. This effect is caused by the in-

ability to produce an elevated minority temperature at high density or high minority

concentration.
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4.3: Calculation of Power Deposition Profile in Cylindrical
Geometry

The SHOOT code[124] was used to determine the profile of power absorption in
cylindrical geometry, taking into consideration the vertical extent of the absorption
region. The SHOOT code solves a fourth-order wave equation in two dimensions
(the poloidal plane) by using an order-reduction technique, analogous to that used
to obtain Eq. 1.5.47 from Eq. 1.5.46, to reduce the wave equation to second order.
The zero electron mass approximation is used. To accomplish this mode reduction,
Smithe et al. begin with a fourth order wave differential equation obtained from
using an FLR expansion in the full integral wave equation. This equation is of the
form

V 1 x (V 1 x E) = w2(K(o) - n.I) - E - K( VE (4.3.1)

PH IBW+P

where K(0) contains the cold-plasma contributions and the leading-order terms de-

scribing hydrogen fundamental cyclotron absorption, and K() contains the leading-

order contributions from deuterium second harmonic cyclotron absorption and
finite-temperature terms which describe propagation of the IBW and mode conver-

sion of the fast wave to the IBW. The order reduction is accomplished by making
the following substitution on the right-hand side of Eq. 4.3.1:

V2E -- (4.3.2)

Here the quantity v is the fast-wave root of the homogeneous hot-plasma dispersion

relation. In this way, the IBW is treated as a dissipative load experienced by the
fast wave, but the fields associated with the IBW are not actually generated when
the wave equation is solved. It is therefore not necessary to resolve the fine detail of

the short-wavelength IBW, and a major reduction in computing expense is realized.

A "reduced" or "truncated" dielectric operator KFW is then defined via

KFW = K (0) _ n21+ V2 K() (4.3.3)

PH PD+PMC

leading to the following second order system:

V 1 x (V 1 x E) =w 2 KFW - E (4.3.4)

At the time of this writing, the validity of this order-reduction technique (in two

dimensions) has not been rigorously proven. However, comparisons of SHOOT results
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with other codes (including the Brarnbilla code) seem to give good agreement. It is

emphasized that the total powers PH, PD, and PMC are taken from the Brambilla
code, while SHOOT is used only for the profile shape. This effectively side-steps any
uncertainty in the validity of this order reduction technique.

The method used to solve this system is finite differencing (specifically, a pre-
dictor-corrector method) in the radial (r) direction combined with Fourier analysis
in the tangential (9) and axial (z) directions. Since the plasma properties (K)
are functions of 9 as well as r, Fourier analysis in 9 leads to a system of coupled
equations, whose order is twice the number of poloidal modes used. This method
is often called "poloidal mode expansion". In the solution technique, the antenna
current is first Fourier expanded in 9 and z. Then the finite difference algorithm
is begun at r = 0, where a regularity condition is imposed, and stepped to the
antenna location, where appropriate jump conditions are imposed on the various
poloidal modes, and then stepped to the wall location, where perfect conductivity
is assumed. There is no Faraday shield in the model.

Output from the SHOOT code is shown in Fig. 4.3.1 for the low-density case.
Contours of Ey and power density (power per unit volume) are shown. (Negative
values of Ey are shown by broken contours. The value on the outer contour is
~15-20% of the maximum, depending on how the plot was auto-scaled.) The
quantity called "radial power density" is power per unit length in the r direction,
i.e., integrated over 0 and z. Thus, the radial power density is always zero at r = 0
for SHOOT output. The profile is significantly broader than in the slab calculation
due to the vertical extent of the absorption region.

The SHOOT calculation for the high-density case is shown in Fig. 4.3.2. The
shorter fast-wave wavelength is apparent in part (a). In part (b), the blackened
area indicates the area within the outer contour. The power-deposition profile is

much narrower than for the low-density case, but the broadening effect from the

vertical extent of the absorption region is quite significant.

In the next section, a Fokker-Planck code (FPPRF) will be used to determine
the fate of the absorbed power. In those calculations, the inputs to the code will be
adjusted so that the amount of power deposited to hydrogen is consistent with that

determined by the Brambilla code, and the shape of the deposition profile will be

that determined by the SHOOT code. The version of FPPRF used has SHOOT inter-

faced with it, in order to self-consistently determine the absorption and distortion
of the distribution function. Therefore, the results of parameter scans using SHOOT

will be presented in the next section, along with the FPPRF results.

There are some minor differences between this "standalone" version of SHOOT

and the version of SHOOT which is interfaced with FPPRF. In FPPRF SHOOT, the
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Figure 4.3.1: SHOOT Calculation for Low-Density Case-The electric
field contours are shown in Part (a), and the power absorption contours are shown
in Part (b). The resulting radial power deposition profile is shown in Part (c).
The low-field-side is on the right in these plots, and the positions of the limiter,
antenna, and wall are indicated. These results are for the two-side-launch an-
tenna. For the low-field-side launch antenna, the field pattern is different, but the
resulting deposition profile is similar.

antenna current is assumed to be independent of 0 within -0o < 9 < 90 and zero

outside this range, whereas the actual antenna current is better approximated as

sinusoidal in 9 and centered about 0=0 for the outside-launch antenna and 0= -1r/2

for the two-side launch antenna. Standalone SHOOT was modified to include this

more accurate model of the antenna current. The result is that FPPRF SHOOT

produces slightly narrower absorption profiles than the standalone version, such

that the peak power absorption densities are over-estimated by - 20 %. This is of
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Figure 4.3.2: SHOOT Calculation for High-Density Case-The electric
field pattern is finer than in the low-density case and the power deposition profile
is narrower, although still broadened compared to the slab calculation due to the
vertical extent of the absorption region.

no consequence for the calculation of PH because the subsequent calculation of PHD
is dominated by broadening due to radial transport mechanisms, except for the two

highest densities modeled. However, at high density, none of the loss mechanisms

included in FPPRF are important, so it was a simple matter to replace FPPRF by an

analytic calculation for these cases. Standalone SHOOT does not separate PH from

PD, but FPPRF SHOOT does. The profile shapes used for PD(r) were obtained by

applying PD/PH = OD /7H to the PpF (r) profiles determined by standalone SHOOT.

This yields PD(r) profiles which are only slightly broader than those from FPPRF

SHOOT, as was just mentioned. As discussed above, there is no way to determine

the shape of the PMC(r) profile using SHOOT, so this uncertainty is not resolved.

However, in FPPRF, profiles can be calculated both for the target plasma and also for

RF-heated plasmas in which the minority temperature is high enough to suppress

most of the mode-conversion. No significant change in this profile shape is seen in

the FPPRF calculation as the plasma heats up.

GD
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4.4: Fokker-Planck Calculations

Once the profiles of power absorption on hydrogen and deuterium have been calcu-
lated, it is necessary to determine how much of the power absorbed by hydrogen is
collisionally transferred to deuterium and how much goes to other channels. This is

accomplished using the bounce-averaged Fokker-Planck code FPPRF[120]. SHOOT is
included as a subsystem in this code, and is used to determine the power absorbed
by hydrogen. Once this power is known, a Fokker-Planck calculation is done to
determine the evolution of the hydrogen distribution function and the amount of

power collisionally transferred to the electrons and deuterium. The electron and

deuterium temperature and density profiles are assumed fixed, i.e., transport and

Fokker-Planck calculations are not carried out for them. Several other effects are

also treated, including neoclassical transport of the hydrogen and losses caused by

unconfined orbits, ripple diffusion, asymmetric drag, and charge exchange.

A simplified discussion of the theory on which FPPRF is based follows. The

starting point is the drift kinetic equation:

8 8 8 Z
+ V - +vil- +-Ell 1 fo = Cfo + Qfo + Sfo (4.4.1)

8t xi&lm Zefr 0J

-Xfo -Vfo

where fo is the zero-order distribution function (no RF perturbations), vDI is the

particle guiding-center drift velocity, v11 is the velocity and i is the arc length along

the guiding-center drift orbit, C is the Fokker-Planck collision operator, and Q is

the resonant part of the RF quasilinear diffusion operator. The velocity coordinates

are usually expressed in terms of the particle energy E and magnetic moment 0 via

mV2 = E - B (4.4.2)

VDI = -vb X Vi (4.4.3)

The term Sfo includes sources and sinks of particles (not necessarily all of which

depend on fo) such as charge-exchange, and an artificial source imposed to maintain

the density at the specified value (i.e., a simple model of re-cycling). Neutral beam

injection can also be included in S as an option. The second term on the left-hand

side of Eq. 4.4.1 represents radial transport processes such as neoclassical transport

and ripple diffusion and is denoted by X, as indicated. In the version of FPPRF

described in Ref. 120, the term X was not included. In the present version of
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FPPRF this term is included but is not derived rigorously by including it in the
bounce averaging described below. Instead, random-walk test-particle arguments
were used to obtain simple models for neoclassical diffusion, asymmetric drag, and
ripple diffusion. The effect of a parallel Ohmic electric field is denoted by V. The
next step is to perform a bounce-averaging operation on each term in Eq. 4.4.1.

This operation is defined as () = and is an average over the particle guiding-

center trajectory that is weighted by the amount of time the particle spends at each
point. Performing the bounce averaging operation yields an equation of the form

8
5fo = (Cfo) + (Qfo) + (Sfo) + (Vfo) + (Nfo) + (Rfo) + (Afo) (4.4.4)

For the first four terms, the bounce average in Ref. 120 is performed in the zero-
banana-width limit, in which the integration is performed on the flux surface con-
taining the banana tips, ignoring the fact that the particle actually drifts away from
the flux surface during an orbit transit. Because of this, the asymmetric drag effect
is not included in (Cfo), and instead is represented by the additional term (Afo)
on the right hand side. The terms (Nfo), and (Rfo) are intended to show that the
X operator can be separated into a neoclassical diffusion operator N and a ripple
diffusion operator R. In principle, these radial transport terms can be derived by
performing the bounce average as suggested in Eq. 4.4.4. Such a derivation has

recently been done by C. S. Chang, G. W. Hammett, and R. J. Goldston[1 251 . How-
ever, in the present version of FPPRF radial transport is modeled using random-walk
test-particle arguments. The treatment of asymmetric drag and neoclassical trans-
port in this manner can be found in Section 4 of Ref. 126, and the treatment of
ripple diffusion can be found in Ref. 115.

Finite orbit width effects are not important in (Qfo) because absorption is
localized at the banana tips, and they are not important for (Vfo) because that term

is quite small to begin with. The contributions from charge exchange in (Sfo) are
calculated in the zero-banana-width limit when solving Eq. 4.4.4, but finite-banana-
width effects are included when simulating the charge-exchange spectrum. Terms
describing direct RF-driven radial diffusion are not included in FPPRF. Derivations

of these terms were done by Chen, et al.[12 6 1, and it was shown that these terms were

generally negligible. Thus, flux surfaces are decoupled from each other when only

the first four terms are retained, and radial transport is included in the last three

terms. Eq. 4.4.4 is essentially the equation solved by FPPRF. It is two-dimensional

in velocity space (v2 and v1 or E and p) and one-dimensional in physical space

(r). Explicit expressions for the first four operators in Eq. 4.4.4 can be found in

Ref. 120.
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The non-ideal effects included are unconfined orbits, asymmetric drag, TF ripple
diffusion, and charge-exchange losses. Unconfined-orbit loss occurs when a particle
gains sufficient energy that its banana-orbit width increases to the point where the
orbit intersects the limiter radius, at which point it is assumed to be lost from
the plasma. This effect is included in the Fokker-Planck calculation by imposing
the boundary condition f(EL.m) = 0, where ELO. is the energy at which the
orbit becomes unconfined. Note that this boundary condition is a function of JA
because the energy EL.. is dependent on pitch angle. This pitch-angle dependence
is included when the boundary condition is imposed. Asymmetric drag occurs
when a banana orbit is large enough that the plasma parameters (density and
temperature) vary significantly over the particle trajectory. For example, a particle
initially banana-trapped at a small minor radius can absorb RF energy, causing the
banana orbit to widen so that the particle travels through the outer portions of the
plasma on the outside part of the orbit. In the outer part of the plasma, where
the plasma is cooler and more collisional, the particle can lose significant energy so
that its orbit becomes narrow again. Since the particle is at the outside part of the
orbit when the banana width decreases, this causes the banana tips, and thus the
flux surface about which the orbit is centered, to move outward. The TF ripple
effect included in FPPRF is only the diffusion effect caused by non-closing of the
drift orbits, and not the more severe ripple-trapping effect to which the truncation
of the ion distribution function in Alcator C has been attributed.

In order to render the calculation computationally feasible, the following pro-
cedure is followed. The time span over which the simulation is to be performed is
first divided into a number of intervals (typically 40 for the calculations described
herein). Over each time interval, FPPRF first advances the distribution function by
solving the equation

a
-fo = (Co) + (Qfo) + (Sfo) + (Vfo) (4.4.5)

By keeping only these four terms, the flux surfaces are decoupled. The plasma is

divided into a number of radial shells (typically 10) and Eq. 4.4.5 is solved separately

on each shell. Then, starting with the value of fo determined from Eq. 4.4.5, another
integration is performed over the same time interval using the equation

a
-- fo = Nfo + Rfo + Afo (4.4.6)

(The bounce averaging operation () is not shown in Eq. 4.4.6 to emphasize the

fact that these operators were not really obtained from a rigorous bounce-averaging
procedure.) The value of fo determined by Eq. 4.4.6 is then used as a starting value
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Figure 4.4.1: FPPRF CX Sim-lation for Low-Density Came-The charge-
exchange neutral flux that would be seen by a perpendicularly viewing analyzer
is shown as a function of energy for the low-density case. If ripple trapping is
not accounted for, then the predicted tail temperature is T(oo) = 62 keV. At
E = E, ;z 20 keV, the inferred Tff would be 20 keV. For energies in the range
E <i 10 keV, which were seen in the experiment, the inferred Tfr is only 2.5 keV.
In general, any time the actual central temperature is not much less than the
energy at which the charge-exchange spectrum is fitted, the inferred temperature
will not be an accurate indication of the real central temperature.

for the next time interval, and to infer a hydrogen tail temperature to be used in

SHOOT to update Q for use in the next iteration of Eq. 4.4.5. This sequence is

repeated for each time interval.

The fact that FPPRF does not properly treat the ripple trapping effect makes in-

terpretation of the results somewhat complicated. Fortunately, while the omission of

ripple trapping is expected to result in significant overestimation of the high-energy

part of the distribution function, it appears that the calculation of PHD is still

approximately correct. To understand why this might be so, begin by considering

the FPPRF charge-exchange simulation for the low-density case shown in Fig. 4.4.1.

The quantity called fcx is given by Eq. 1.4 in Ref. 120. The quantity Jcx = ofc

is the velocity distribution of the neutral flux that would enter a charge-exchange

detector and thus, except for an area element factor and an instrument calibration

factor, is a simulation of the signal that would be produced by a charge-exchange

neutral analyzer.. In general, this signal contains contributions from all points along

the detector sight line, although it is usually assumed that the high-energy part

of the signal comes from an area localized at the part of the sight line nearest the

plasma center.
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The point to be made here is that this assumption is invalid for the measure-

ments made during the Alcator C ICRF experiments. In order for this assumption

to be true, it is generally necessary to look at high energies -3-10 times the central

ion temperature[ 120. In the Alcator C experiments, the energy range for the fit

was 4-8 keV while the inferred ion temperatures were in the range 2-10 keV, with

a few cases that were significantly higher. Thus, even the inferred temperatures

were too high for the range seen by the charge-exchange analyzer. In this case,
the actual temperatures at the plasma center would have to be considerably higher

than the inferred temperature, assuming that the distribution function is in fact

Maxwellian. It is also true that, unless the actual hydrogen temperature is < T,

the resulting distribution function is only Maxwellian in shape for energies in the

range E > E,, which does not include the energy range observed in the experiment.

Thus, it is likely that the actual distribution function present at the plasma center

is both distorted in shape and truncated due to ripple trapping.

The results of the FPPRF charge-exchange simulation are plotted in Fig. 4.4.1

for energies up to 20 keV, which is the energy Ec at which ion drag equals electron

drag. The actual minority temperature at r = 0 determined by FPPRF for this case

is 62 keV but, as was previously mentioned, it is necessary to fit to energies E > E,

in order to measure it. For example, as shown in Fig. 4.4.1, a fit at E = Ec ~~20 keV

yields TH = 20 keV and a fit in the same energy range used for the measurements

in the experiments yields TH = 2.5 keV.

Since the charge-exchange spectrum is probably not a good measure of the cen-

tral minority temperature in this energy range, there are really only two conclusions

that can be drawn from the charge exchange measurements: (a) there are probably

high-energy ions up to E = Etr (the estimated truncation), and (b) there are no

high-energy ions at energies greater than E = Etr. A reasonable approximate model

for the behavior of the distribution function would then be to assume a minority

temperature TH = Etr for all cases where FPPRF predicts a minority temperature

in excess of this value. The distribution function is then being approximated by a

Maxwellian f(E) whose value is down by 1/e times the peak value at E = Etr.

It is well-known that the Fokker-Planck drag force from slowing down of supra-

thermal ions on a background plasma composed of electrons and ions is as shown

in Fig. 4.4.2. This result can be obtained analytically by assuming that the deu-

terium is cold (TD = 0, use a delta function for fD(v)) and that the electrons are

hot (vthH < vthe) and evaluating the drag terms in the Fokker-Planck collision

operator. These approximations are well satisfied for the energy range of interest

here. It turns out that Etr - E,, with the approximation being pretty rough at

low density, but improving at higher density. Thus, the suprathermal ions which
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Figure 4.4.2: Kinetic Friction Drag Force for Fast Ions-This generic
calculation comes from an analytic apprarimation in which the bulk ions are
assumed to be "cold" and the fast "test particle" has a velocity significantly less
than the electron thermal velocity.

produce the dominant contributions to PHD are those that are least affected by
ripple trapping. Moreover, the neoclassical transport and asymmetric drag effects
treated by FPPRF cause higher-energy suprathermal ions to spread out to larger mi-
nor radii, so that the ultimate effect on deuterium heating from their contributions
to PHD is reduced. Also, when these higher-energy ions spread out to larger minor
radii, the electron temperature and thus Ec is smaller there, so their contribution
to ion heating is further reduced. Thus, it appears that the best way to run FPPRF
for Alcator C is to simply forget about ripple trapping, and ignore the P. calculated
by the code, which is not needed anyway since the electron power balance is not
being modeled.

It is possible to demonstrate this effect when running FPPRF by lowering the
value of the plasma current to a level at which unconfined orbit loss occurs at the
assumed ripple-trapping truncation energy. That is, the plasma current is selected
by requiring that the width of a banana orbit at E= Etr be equal to the plasma minor
radius. This is done using the equation on page 83 of Ref. 120. This equation does
not depend on the large-aspect-ratio approximation often used in the calculation
of the banana width, but instead uses the model for the plasma current profile
discussed in Sec. 3.8. Before examining the results of this test, first consider the
following simple isotropic analytic treatment. If each species is considered to have
an isotropic Maxwellian distribution, then the collisional exchange power between
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Figure 4.4.3: Simple Analytic Collisional-Exchange Model-Equations
4.4.8, 4.4.9, and 4.4.11 are evaluated using n = 1, ijE = 0.5, and P" = 0.

two species (a and 3) is given by

Poo, = 415 2r ( 2' VKIOT A. # (44.741reo)(mT + m ,Ta)3/2

Since the density dependence in Eq. 4.4.7 is very simple, it is helpful to express the
ratio P/n2 as a function only of T in practical units as follows:

HD =TH-TD
n2 (TD + 2TH)3 / 2

Pe = -17H TH - T
2 25.3 (Te + TH/1836) 3 / 2

where all powers are in W/cm3 , n is the local electron density in 1020 m-3, 7 H is

the hydrogen concentration in percent, and all temperatures are in keV. The type

of power balance analysis that FPPRF does can then be modeled by

PH = PHD + Pe + 1Aoas (4.4.10)

or, equivalently,

H F" = PHD + P(4.4.11)

where one can model a variety of different density cases with a single calculation if

the results are written in terms of P/n2 .

The results of this simple isotropic model are plotted in Fig. 4.4.3. They were

calculated using PLc,, = 0, and A. = 1 x 1020 m- 3 . If variation of the electron

I
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temperature with density is neglected, then other densities can be modeled by
replacing any power quantity (P in W/cm3) by P/n2 with P in W/cm 3 and n in

units of 1020 m- 3 . From Eq. 4.4.3, one can see that PHD is very weakly dependent
on TH or PH and cannot exceed a certain limit under any circumstance. (Note,
however, that this limit is directly proportional to 77H which is not known very
accurately.) However, there is a significant peak in the PHD curve for values of
TH in the vicinity of the assumed truncation energy. Thus, one might suspect
that PHD is underestimated by blindly taking the value as given by FPPRF. An
analogous treatment with the isotropic approximation would be to use the second
plot in Fig. 4.4.3 by assuming the electron power to be a measure of the quantity

P, + PL. at some given PH while PHD is independent of P" so long as PH
is held fixed. A more reasonable treatment would be to subtract PL. from PH

first, and then use the values of P, and PHD that correspond to this reduced value
of PH. That is, the difference between these two treatments is whether P". is
subtracted from P, or PH. These two treatments yield approximately the same

results if Pe ; PH, which is true except at very low values of TH.

One might try to argue that the uncertainty introduced is comparable to that

resulting from the uncertainty in the measurement of 77H (a true statement), but it
is actually possible to do better than this. In fact, an attempt to model this effect
with FPPRF be reducing the plasma current suggests that the significant peak in

PHD in the isotropic approximation is not realistic. The reason for this is that the
distribution function is highly anisotropic. In Fig. 4.4.4, the minority distribution

function is calculated for the low-density case using the actual plasma current and

several lower values. Although this technique does not exactly reproduce the desired

correspondence between truncation energy and fitted temperature, it is possible
to eliminate most of the electron power without seriously affecting the deuterium
power.

In Fig. 4.4.4(a), using the full plasma current, the inferred values of TL and

Tpek are well above the TH corresponding to the peak PHD in Fig. 4.4.3, but the

inferred value of T is near the peak. When plasma current is lowered, T 1 decreases

towards the value corresponding to the peak in Fig. 4.4.3 while T decreases away

from it, and it turns out not to make much difference in the inferred value of PHD.
In Fig. 4.4.4(b), with Ip = 45 kA, the value of T1 is equal to the ripple-truncation

energy but the actual truncation from the artificially enhanced unconfined-orbit loss

is somewhat higher. The value of PHD increases only slightly from 17 to 19 kW

while P, is significantly reduced. In Fig. 4.4.4(c), with Ip = 40 kA, the value of

Tp..k is equal to the ripple-truncation energy, P, is further reduced, and PHD is
unchanged. Intuitively, one can think of the calculations in the anisotropic case
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Figure 4.4.4: 'runcation of Distribution Function by Reduced Plasma
Current-The actual central distribution function (not CX simulation) is shown
for the low-density case as calculated by FPPRF using the actual plasma current
(Ip = 160 kA) and four lower values of Ip. The notation oLj/ 9 56 keV means that

v_ is normalized to the velocity given by v = /2E/n where E= 956 keV is the

highest energy considered in the calculation.
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Figure 4.4.4: Truncation of Distribution Function (continued)-Radial
"cross-sections" of the distribution function and corresponding temperature fits
are given for the parallel direction, the perpendicular direction, and the direction
for which the fitted temperature is maximum. The value 4 = vi /v (the cosine of
the pitch angle) which corresponds to this maximum is indicated.

approximation. Further increases in unconfined-orbit loss in Figs. 4.4.4(d) and (e)

result in reduced values for PHD. In Fig. 4.4.4(e), further truncation was obtained

by reducing the major radius rather than plasma current. (This results in more

banana-trapped particles, which have wider drift orbits.)

There was concern that this technique of reducing the plasma current would

also significantly increase the neoclassical transport. This was easily investigated

by turning off the neoclassical transport part of the calculation, which made only a

- 1 kW difference in the inferred values of PHD and Pe. Thus, the primary effect

of ripple trapping appears to be a shift of power from P to PL., with only a

small change in PHD. The profile shapes PHD(r) are also similar for the cases of

full and reduced plasma current. Note that changing the plasma current this way
will distort the shape of the drift orbits and change the orbit bounce and transit

frequencies. Because of these considerations, it is felt that the best way to model

(d)

i

)
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Alcator C with FPPRF is to use the actual plasma current in the simulation, and
not worry about ripple trapping. One should keep in mind that when values for P,
are given in this chapter, those powers are likely to be predominately losses due to
ripple trapping.

Finally, recall the estimate of PHD directly from the charge-exchange data taken
during the radial scan described in Sec. 3.4. From these data, it was estimated that
the collisional exchange power PHD for the inner portion of the plasma (r < 7 cm)
was ~ 8 kW. This number is entirely consistent with the results of the FPPRF cal-
culations. It is clear that FPPRF is not ideally suited for these calculations, because
this code contains a great deal of computational overhead involved in determining
the exact angular dependence of the distribution function while it lacks the ability
to model the most important loss mechanism in Alcator C. The purpose for which

FPPRF was originally developed was to explain the "negative-temperature" features

seen in the PLT CX spectrum for certain tangential viewing angles[120]. For that
purpose, an accurate calculation of the angular dependence is important. On the
other hand, ripple-trapping is not important in PLT because the toroidal-field ripple

magnitude is not strong enough in that machine to form local magnetic wells along

the field lines. This suggests an idea for a new code with features specifically cho-
sen for the purpose of analyzing experimental heating data. Rather than perform

a full 2-velocity-dimentional Fokker-Planck calculation, the distrubution could be

represented by a truncated spherical harmonic expansion, as was done in Ref. 88.

Stix's treatment could be extended to include the same loss mechanisms that are

included in FPPRF, including the ability to specify a truncation energy indepen-

dent of any other input parameters (such as plasma current). For the treatment of

high-density plasmas like Alcator C, CMOD, and CIT, an accurate calculation of

the power deposition profile is essential. This could possibly be accomplished by

solving the wave equation using the Hilbert-Schmidt technique suggested in Sec. 1.5
of this thesis and including an accurate antenna model in the calculation.

The simulation of ripple trapping also gives some assurance that the wave

physics (SHOOT calculation) is not adversely affected by overestimating the minor-

ity temperature. The calculation of the wave fields is not expected to be erroneous

because the cold-plasma screening of E+ is insignificant regardless of whether the

minority temperature is 10 keV or much higher. However, overestimation of Tg

will probably result in an overly broad PH(r) profile. This is still not a problem,

because the extra Doppler broadening of PH is caused by suprathermal particles

which slow down predominately on electrons (or, more likely, are lost), so that the

resulting PHD(r) is still expected to be correct.



166 Chapter 4: Numerical Simulations and Analyses

5 P

4-
PLos

3-

ci 2

0 P -I
0 2 4 6 8 10 12 14

r (cm)

Figure 4.4.5: FPPRF Calculation for Low-Density Case-Hydrogen tail
losses are extremely severe at low density. Only a small portion of the power
absorbed by hydrogen is collisionally deposited on the deuterium. The resulting
profile of PHD(r) is very broad. This calculation wus done using n, =1 x 102 0 m-3

and PfW = 220 kW.

At high density, these considerations are much less important because then the

tail temperatures determined by FPPRF are below the ripple-trapping truncation

energy.

The FPPRF calculation for the low-density case is shown in Fig. 4.4.5. As ex-

pected, the loss mechanisms are extremely severe in this case, and only a small

fraction of the power PH absorbed by hydrogen is deposited on deuterium (PHD).
The deposited power PHD has a very broad profile, comparable to the experimen-

tal results from the radial charge-exchange scan data, and is roughly uniform in

r compared with the other power components. Note, incidentally, that the power

Pe which is believed to be mostly lost due to ripple trapping, has a hollow profile,

which is even more unfavorable. Even if this power were deposited on electrons, it

would not be expected to have a large effect on the power balance. (P ~ 60 kW,

hollow - POH ~ 300 kW, peaked)

The FPPRF calculation for the high-density case is shown in Fig. 4.4.6. The

loss mechanisms are now much less severe, and PHD is the largest component of

PH. The deposition profile is now much more centrally peaked, so much so that the

coarseness of the radial grid is somewhat annoying. The power Pe, whose fate is not
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Figure 4.4.6: FPPRY Calculation for High-Density Case-Hydrogen tail
losses are much less important at high density, compared to the low-density case.
A majority of the power absorbed by hydrogen is deposited on the deuterium and
PHD(r) is nicely peaked. This calculation was done using A, = 4.5 x 10 20 m-3
and PyF = 220 kW even though the case of experimental interest has only PhF =
175 kW, to allow comparison with the calculation in Fig. 4.4.5. There is no
significant difference in these profile shapes for 220 kW versus 175 kW.

conclusively resolved in these simulations, is negligible compared to the low-density

case.

It is now possible to combine all the results from the Brambilla code, SHOOT,

and FPPRF to construct estimates of the net power Pnet = PHD + PD deposited

on deuterium. Such results are shown in Fig. 4.4.7. It is interesting to note how

large a part is played by the deuterium second harmonic absorption in both cases.

For the low-density case, PD is quite small compared to PH (see Fig. 4.4.5), but,

since the losses are so severe, PD turns out to be comparable to PHD. For the

high-density case the losses are smaller, but PD is larger, so PD and PHD still end

up being comparable. The deposition is also much more favorably peaked at high

density than at low density.

The power deposition profiles for a six-case density scan are shown in Fig. 4.4.8.

The general trend is for PD to be more sharply peaked than PHD and for all profiles

to become more peaked with increasing density, which is not surprising. These Pnet

profiles will be used for all 17H = 0.5 % shots to be analyzed with the ONETWO
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Figure 4.4.7: Net Power Deposition Profiles-The power deposition to
deuterium, including contributions PMD from collisional exchange with hydrogen
and PD from direct deuterium harmonic absorption is shown for both low and
high-density cases. The contribution from PD is significant in both cases. The
reason for this, in the low-density case, where this would normally not be expected,
is that most of the power absorbed by hydrogen is lost. The reason in the high-
density case is because # is higher. These calculations were done using ft. =
1 x 10 2 0 m-3 with PMy=220 kW for the low-density case, and A. =4.5 x 1020 m-3

with PRF = 175 kW for the high-density case. The case for Pp = 220 kW at
high density is the n.o = 6 x 1020 m-3 case in the following illustration.

code in the next section. For shots with non-integral values of n.0 the assumed

deposition profile will be obtained from an appropriate interpolation.

The entire process involved in constructing these power deposition estimates is

summarized in Fig. 4.4.9. The ways in which the various power components add

together to give the total power (PRF = PD + PH + PMC, PH = PHD + Pe + PLoss,

Pnet = PD + PHD) are indicated. At low density, the losses are due primarily to
unconfined orbits and ripple trapping, whereas at high density the losses are due

primarily to mode conversion. As mentioned in Sec. 4.3, the highest two density

points were calculated analytically, rather than using FPPRF. The reason for this

is that the power density PH/n 2 falls very close to the peak on Fig. 4.4.3. Because

FPPRF SHOOT produces slightly narrower profiles than standalone SHOOT, a high-
energy minority tail temperature of ~ 15 keV was predicted. Standalone SHOOT,

with the more accurate antenna current model, predicts a sufficiently lower power

density that this tail would not be expected. It is felt that such a tail would be

observable in the experiment if it had been present, but none was seen. Therefore,

FPPRF, was replaced by the analytic calculation for these points, with the result

Pme

PD
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Figure 4.4.9: OD Density Scan-The separation of the total RF power into
the various channels is shown as a function of density.

that P, and PLO,. are both reduced to negligible amounts at high density. However,
if the RF power is increased by 20% above the value assumed here, then significant

electron power P, would be predicted by either FPPRF or the analytic model, and

PHD would not increase significantly for densities above 4 x 1020 m-3

After expending a major effort to come up with reasonable estimates of the

power deposited to deuterium as a function of density, and modeling several dif-

ferent RF loss mechanisms, it is now clear that this in not going to explain the

discouraging heating efficiencies observed at high density in the experiment. Al-

though the loss mechanisms appear to be quite severe, their scaling with density is

very favorable, and the profiles are nicely peaked at high density. In the ONETWO

transport calculations to be done in the next section, it will be shown that there is

an effect involving ion energy transport that scales unfavorably with density and is

severe enough to account for the observed heating efficiency scaling in spite of the

favorable scaling of the loss mechanisms.

Deposition profile calculations for a minority concentration scan are shown in

Fig. 4.4.10. The parameters for this concentration scan were those of the low-density

prototype case, in which only the minority concentration was varied. Numerical

difficulties were encountered which made it impossible to run FPPRF for cases for

which riJ > 2 %. The reason for these difficulties has to do with the way SHOOT
and FPPRF calculate power deposition. SHOOT uses a dielectric tensor derived for
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Maxwellian distribution functions and uses only leading order terms oc E+ 12 to de-
termine absorption. SHOOT first calculates the electric field components throughout
the plasma based on the specified antenna current shape. Then PH is calculated
based only on E+ and the electric field is scaled in magnitude in order to match
the value of PH specified as input to the program. On the other hand, FPPRF

calculates absorption from the actual distribution function (initially a Maxwellian)
but including terms from E+ as well as supposedly smaller terms from E_. As the
minority concentration is increased, the magnitude of E+ can become so small at
the location of the cyclotron resonance that absorption is dominated by the E_
terms. Then SHOOT and FPPRF can disagree drastically about the amount of power
that is being absorbed. FPPRF will then proceed to calculate a distribution function
that is overly energetic. The contribution to absorption from E+ may then begin
to dominate, and it is possible for the algorithm to either converge to a steady state
in which FPPRF and SHOOT power absorption calculations agree, or to converge to
a steady state in which they disagree, or to diverge.

In spite of the inability to model all the cases that were attempted, enough seems
to have been accomplished to offer an explanation as to why the heating efficiency
in the experiment decreased monotonically with increasing minority concentration.
From Fig. 4.4.10, one can see that as the concentration decreases to very low values,
the loss mechanisms associated with hydrogen become increasingly severe, as one
might expect. However, the contribution from deuterium second harmonic absorp-
tion increases to the point where it becomes dominant. Since the deuterium is not
subject to such severe losses, the heating efficiency would be expected to increase.

As minority concentration is increased to higher values, one might expect that
a less energetic minority tail would form, so that the losses would become less
severe and the heating efficiency would increase. Inspection of the ?H = 2 %
case in Fig. 4.4.10 shows this not to be the case. From Fig. 4.4.11, it is clear
that the reason for this is that mode conversion increases drastically with minority
concentration. Recall that the calculation of mode conversion is done using the
Brambilla code, and that the interpretation of the results is least ambiguous at
high minority concentration. This problem is obviously caused by the inability
to produce an elevated minority temperature at high concentration. When this
occurs, the E+ shielding effect (from cold-plasma theory) is effective at the location
of the cyclotron resonance, and there is not sufficient Doppler broadening to allow

absorption at the hybrid resonance layer (where E+ is enhanced). (The hybrid layer
also moves farther away from the cyclotron resonance as concentration increases.)
Thus, mode conversion will be favored.

The behavior of this power deposition model as a function of RF power is also

of interest. The results of a power scan, using the parameters of the low-density
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Figure 4.4.11: OD Concentration Scan-The separation of the total RF-
power into the various channels is shown as a function of minority concentration.
These calculations were done using fixed values Ppp = 220 kW and ft. = 1 x
1020 m- 3 .

prototype case, are shown in Fig. 4.4.12. As one might expect, the loss mechanisms
become more severe with increasing power. Note that an order-of-magnitude in-

crease in launched RF power only increases the central power density by a factor

of two. The deposition profile broadens significantly as power is increased, but the

effect saturates as the losses become so severe that absorption is again dominated

by deuterium second harmonic.

The effect in terms of bulk power quantities is shown in Fig. 4.4.13. This effect

may explain some of the scatter in the experimental data. In the transport analysis

to be done in the next section, most of the shots used will have PRF between 200

and 300 kW, so this power dependent effect will not be very important.

4.5: Transport Analysis of Deuterium Heating

Having finally arrived at estimates for the RF deposition on deuterium Pnet, it

is now possible to analyze the deuterium power balance. This is done using the

ONETWO transport code[1 27]. In this analysis, the electrons, hydrogen, and ICRF
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Figure 4.4.13: OD Power Scan-The separation of the total RF power into
the various channels is shown as a function of JPj. These calculations were done
using fixed values in, = 1 X 1020 M- 3 and ill = 0.5 %.

will be treated as known sources of heating power for the deuterium (PeD, PHD, and

PD respectively). Then, several loss mechanisms associated with energy transport

will be examined. The energy balance equation solved in these ONETWO runs is

38 18 'rTD
_25(nDTD) = r DX - TD D)]

- T(nDT) - PCX + PeD + Fdep (4.5.1)

The term on the left-hand side of Eq. 4.5.1 is the rate of increase of the thermal

energy content of deuterium (i.e., the deuterium heating). The term containing XD
is the heat transport due to thermal conduction, and the term containing I'D is the

heat transport due to convection. The term containing r, is the work done on the

ions by the electrons as they flow against the ion pressure gradient. The loss due to

charge exchange of deuterium ions with deuterium neutrals is denoted by PCX, the

heating source from collisions with electrons is PeD and the net deposition of RF

power on deuterium is Pdep. The electron flux r, is determined from the equation

on 1 (5
--+ (rr.) = S. (4.5.2)Wt r X

17 5
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where Se includes the effects of ionization and recombination of impurities. The
electron source rate S, is calculated via a neutral transport package which is in-
cluded as a subsystem of ONETWO. The boundary condition for this calculation
is derived from an assumed global particle confinement time. The results of these
analyses are insensitive to the exact choice of this parameter. A single impurity
species is allowed in ONETWO, which was taken to be oxygen in the calculations to
be presented in this chapter. Impurity transport is treated kinetically. The ion flux

rD is then determined from ambipolarity. All ion species, including impurities, are
required to have the same temperature in ONETWO. This makes it impossible to

include any realistic treatment of effects due to the presence of the minority species.

This is not expected to be a problem since the minority concentration was small in

all cases studied. For all of the cases analyzed, the conduction, electron collision,

and RF deposition were the dominant terms. The convection, charge exchange, and

work, though insignificant, were included in the calculations.

All the source and loss terms in Eq. 4.5.1 are evaluated according to appro-

priate models, using experimental data. For each experimental discharge that is

analyzed, the evaluation is performed as a function of time, both during the Ohmic

and RF heated portions of the shot, and the results are evaluated for consistency

with and without RF. The experimental parameters used as input to the code are

the electron temperature T,(r, t), electron density n,(r, t), toroidal field B0 , tor-

oidal current Ip(t), resistive loop voltage VR(t), fusion neutron production rate

Rf(t), and an assumed value of the central safety factor qo(t) (unity or slightly less

depending on whether sawteeth were evident in the soft x-ray signal). The cen-

tral electron temperature was taken from Thomson scattering data, and the profile

shape was determined using the model discussed in Sec. 3.8. The electron density

profile was determined by fitting a parabola raised to an adjustable power to the

central density from Thomson scattering and the line-average density from the in-

terferometer. The ion temperature and profile shape, and the current density profile

shape were determined automatically and self-consistently by ONETWO. The Zeff

profile was fitted by a parabola raised to a power. The central and edge values of

the profile were adjusted to match the specified resistive voltage and central safety

factor, and the power to which the parabola was raised was chosen manually to

be large enough to avoid values of Zeff at the edge which would imply negative

ion densities. The impurity charge state was determined from coronal equilibrium

using the specified electron temperature, and the deuterium density was calculated

from charge neutrality. Finally, both the central deuterium temperature and the

deuterium temperature profile were determined by solving the ion heat transport

equation (Eq. 4.5.1) assuming an ion thermal diffusivity of the form
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XD = WneoXDH + Dbf(q) (4.5.3)

where xCH is the Chang-Hinton neoclassical diffusion coefficient[(128, 129], which is
multiplied by an adjustable scale factor W 0e., Db is the Bohm diffusivity and

f(q) = 1 1+(1/q-1)2, q < 1 (4.5.4)
t0, q > 1

models the time-averaged effect of sawtooth activity. The contribution from Db was
found to be completely negligible in all cases studied. The neoclassical multiplier

Wneo(t) is adjusted dynamically so that a fusion neutron production rate calcu-
lation matches the experimental measurement. The electron-deuterium collisional
exchange power was determined classically, from the expression

PeD = 3 neveD(Te - TD) (4.5.5)

where

)veD = - - (4.5.6)
3 mD (47reo r- /2

and the RF deposition to deuterium was calculated using the model developed in
the preceeding sections of this chapter.

All of the parameter adjustments discussed in the preceeding paragraph are
done by ONETWO using a PD (proportional-differential) feedback law in real time
(i.e., transport time). The neoclassical multiplier Wnw is adjusted by comparing
the calculated fusion neutron rate and its time derivative with the specified input
value. The central and edge values of Zeff are adjusted by comparing the values
of resistive loop voltage and central safety factor and their time derivatives with
the specified input values. The resistive loop voltage and central safety factor
are determined from the current and resistivity profiles calculated in the code.

The resistivity is calculated neoclassically, including corrections due to banana-
trapped particles. Then the electric field and current profiles are determined from
the magnetic diffusion equation.

It is possible for ONETWO to experience some difficulty when adjusting param-
eters dynamically to match input specifications, and one must watch out for cases

where erroneous results are produced due to failure to converge on the specified

parameters. This tended to occur often in the runs at the time when the RF turns

on and parameters try to change quickly. This did not pose much of a problem,
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however, because ONETWO always managed to converge on the specified parame-
ters for most of the transport simulation time. In the analysis runs, parameters
were specified at typically 9-15 time points, spaced approximately 20 ms apart.
(The time points used were the times when the Thomson scattering diagnostic laser
pulsed.) Because of this, and because of uncertainties in the timing of the Thomson
data, there could easily be as much as a 20 ms discrepancy in the timing of the
input data. This is likely to be the reason for the problems that occur when the RF
turns on. This kind of timing error would result in temporary errors in the power
balance which ONETWO would try to correct by making inappropriate adjustments
in the neoclassical multiplier.

The ONETWO analysis was performed for 44 shots from the experimental data-
base. The results for three representative shots are shown in Fig. 4.5.1. Case (a) is
a relatively low-density shot in which the density increased during the RF. Case (b)
is a medium-density shot in which the density decreased during the RF. And case
(c) is a high-density shot in which the density was relatively constant during the
RF. Values which have been determined to be erroneous due to failure of ONETWO

to match the input value (usually of the fusion neutron rate) are shown with broken

lines. The actual values of densities for these shots can be read from the next two

illustrations. For these analyses, experimental data were used to evaluate the terms

in Eq. 4.5.1, representing heating, convection, work, charge exchange, and colli-

sional exchange from electrons. Since the convection, work, and charge exchange

are small compared to the collisional exchange, it makes sense to use the adjustable

parameter Wneo in the conduction term to achieve power balance. For each of the

three shots in Fig. 4.5.1, the resulting value of WaeO is plotted as a function of

time for three different values of the Pdep term in Eq. 4.5.1. Each case was run

three times, assuming the power deposited to deuterium to be zero, Pnet from the

model developed in this chapter, and the total launched power PRF respectively.

For the Pdep = PRF cases, the RF power was assumed to be uniformly distributed

for r < a/2, and zero for r > a/2.

When it is assumed that no RF power at all is deposited to deuterium, a no-

ticeable drop in the calculated value of Wneo occurs during the RF. This behavior

was observed for all 44 of the shots that were analyzed, regardless of whether or not

there was any peaking of the density profile, and regardless of whether the density

increased, decreased, or remained relatively constant during the RF. It therefore is

reasonable to conclude that some amount of RF power must have been deposited

on deuterium in order to produce the observed deuterium heating. If the RF power

deposition model developed in this chapter is used, the resulting values of Wneo

remain reasonably constant throughout the shot. If all of the RF power is assumed
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to be deposited on deuterium, then the inferred value of We. always increases sig-

nificantly during the RF. This is strong evidence that the RF deposition estimates

developed in this chapter are approximately correct.

It is important not to be misled about the meaning of the Pdep = PRF plots.
Obviously, the purpose of those calculations is to get some idea of what might

happen in an idealized case where the RF absorption was 100% efficient. However,
if that were the case, then some of the RF power would be deposited on electrons.

On the other hand, if impurity radiation were brought under control by eliminating

high-Z impurities, and if ripple trapping and unconfined orbits were significantly

reduced, so that a high-energy minority tail could be produced, then the electrons

would be expected to heat, thereby depositing a significant amount of the power on

deuterium. Also, if higher RF power was applied, so that a ~ 10 keV tail could be

produced at low deuterium density with high minority concentration, or so that a

~20 keV tail could be produced at high deuterium density, (or if the target plasma

was significantly hotter), then mode-conversion as well as minority slowing-down on

electrons would be greatly reduced. Thus it is possible to conceive of a situation in

which most of the RF power could indeed be deposited on deuterium. Since a model

for electron heating by the RF has not been developed, and since experimental data

related to the electron power balance are lacking, it is difficult to think of any more

appropriate way to model an idealized "perfect absorption" case than the one shown

here.

The behavior of the neoclassical multiplier Wneo is shown for all 44 of the shots

that were analyzed in Figs. 4.5.2 and 4.5.3. These points were calculated using the

value of Pdep = Pnet from the estimates developed in this chapter. An explanation

for the unfavorable scaling of the RF heating efficiency with density now begins

to appear. For the Ohmic target plasma, the deuterium thermal energy trans-

port is not much worse than neoclassical at low density, but becomes increasingly

anomalous with increasing density. Moreover, the observed deuterium heating is

consistent with no significant change in the thermal transport properties during the

RF, in spite of the fact that the net RF deposition from the estimates developed in

this chapter increases significantly with density. In other words, after accounting

for known RF loss mechanisms according to theoretical models, the net RF power

deposited to deuterium heats with the same efficiency as the net ohmic power de-

posited via collisional exchange with electrons. It should be noted, however, that

for these modest heating results the deuterium distribution function would not be

expected to be distorted significantly from a Maxwellian (as was assumed when

calculating the deposition).

It should be emphasized that the effect of increasingly anomalous ion conduc-

tivity is quite a significant effect compared to the neoclassical prediction. Numerical
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Figure 4.5.2: Neoclassical Multiplier-The inferred W.. is shown for 44
shots as a function of line-average electron density. The values during the ohmic
portion of the shot (excluding start-up) are shown with open circles and the values
during the RF (after temperatures reached equilibrium) are shown with solid
circles. Each ohmic point is connected to the corresponding RF point by a straight
line. The small error bars indicate variations in the inferred W.. during the
relevant portion of the shot. The two bold error bars were calculated by varying
the input data over the ranges of experimental uncertainty in the most unfavorable
manner. These bold error bars correspond to cases (b) and (c) in Fig. 4.5.1.

values for the actual ion thermal conductivity and diffusivity and the Chang-Hinton

neoclassical diffusivity (all taken from the ONETWO code results) for the three cases

from Fig. 4.5.1 are shown in Table 4.5.1. Note that the neoclassical ion thermal dif-

fusivity x,7H is not strongly dependent on density. Thus, the neoclassical thermal

conductivity ,,qH = nmXH increases linearly with density. From Fig. 4.5.2, one
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Figure 4.5.3: Neoclassical Multiplier-This is an expanded view of the some-
what cluttered region in Fig. 4.5.2. The bold error bar shown here corresponds to
case (a) in Fig. 4.5.1.

can see that the anomalous behavior of Wneo is also proportional to n, resulting

in an actual thermal conductivity for Alcator C which scales as the square of the

density.

An expression for the neoclassical ion thermal diffusivity which can be found in

Ref. 128 or Ref. 129 is
2

xiH = K 2 1/29 (4.5.7)

where pie is the "poloidal gyroradius"

2miTi
Pie ZZ 2B2

(4.5.8)



Section 4.5: Transport Analysis of Deuterium Heating 183

Case Weo Ki(O) (r*) r*/a Xj(O) Xi(r*) x,9H(0) XHr*
(a) 2.0 0.87 0.30 0.4 0.37 0.18 0.18 0.089
(b) 3.1 1.08 0.45 0.4 0.47 0.26 0.15 0.085
(c) 5.3 3.01 1.24 0.5 0.80 0.43 0.15 0.082

Table 4.5.1: Thermal Conductivity and Diffusivity-Numerical values for

KD and XD are shown for the shots in Fig. 4.5.1. These values were taken at the
end of the RF pulse, but did not vary greatly during the shots. Values are given
for the plasma center r = 0 and again at the point r = r*, where r* is chosen as
the point where T.(r*) = T.(O)/2. Thermal conductivities are given in units of

10 20 /(m-s) and thermal diffusivities are in units of m2/s.

and
K[ 1 1/2(c2/b2)vi*f3/2

K2 1=K + +/c2i.3/2 (4.5.9)
1 + a2vi,/ 2 + b2v 1 + C2L.E 3 / 2

where K0 = 0.66, a2 = 1.03, b = 0.31, and C2 = 0.74. The neoclassical collision-12
parameter

Roq
R = (4.5.10)

is essentially the ratio of the orbit transit time to the collision time, where the

collision time is given by

3 47rEo , 2faiT/2
(4 = (4.5.11)

4 Vr Z? e2 Ani

The behavior of the neoclassical thermal diffusivity exhibited in Table 4.5.1 is

characteristic of the plateau regime, for which 1 < vi,. < E-3/2. In this case, one

has
K20

K 2 -: b2 (4.5.12)

In that case, the r-dependence when Eq. 4.5.10 is substituted into Eq. 4.5.12 cancels

the ri-dependence in Eq. 4.5.7, resulting in a thermal diffusivity which is indepen-

dent of density. Near the magnetic axis, several of the quantities in Eq. 4.5.7 tend

to zero or infinity, but if the limit is taken asymptotically, it can easily be shown

that

xH(0) = K 1 vth4(0) (4.5.13)&2V2 RO !
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Figure 4.5.4: Ion Heating Power-The total ion heating power P.D + P,,.
is shown as a function of density. The Ohmic points are shown with open circles
and the RF points with solid circles. The vertical lines descending below each RF
point are not error ban. Their function is to show the split between P.D and
Pr.t. The length of each vertical line corresponds to Pa.t, so the height of the
short horisontal line at the bottom represents PD.

where flio is the ion cyclotron frequency in the toroidal field at the magnetic axis.
Thus, in the plateau regime, the neoclassical thermal diffusivity is independent

of density both in the bulk of the plasma and at the magnetic axis, confirming
the thermal conductivity scaling discussed above. In the lower density ranges, the

Alcator C discharges typically enter the banana regime, in which case an extra factor
of n-dependence is introduced in the scaling. However, it is the plateau regime
scaling that is of interest over most of the density range. Note that the effect of

anomalous ion thermal conductivity in Alcator C is to produce banana-regime-like
density scaling in plasma that is actually in the plateau regime.

Another way to compare the effectiveness of Ohmic and RF heating of the deu-
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terium is to directly compare the net RF power deposited on deuterium with the
collisional exchange power from electrons. Such a comparison is shown in Fig. 4.5.4.
The total ion heating power is shown both before and during the RF. The split be-
tween collisional exchange and RF deposition is also shown during the RF. Changes
in the convection, work, and charge exchange (which are small to begin with) are
insignificant, but the collisional exchange power decreases significantly during the
RF due to the decrease in temperature difference between electrons and deuterium
as the deuterium heats up. However, the total ion heating power does not increase
very much, and occasionally even decreases. Thus, the main effect on the deuterium
of applying RF power to the Alcator C target plasmas is a replacement of collisional
exchange power with RF power.

It is possible to run ONETWO to directly calculate the amount of deuterium
heating that would be expected for a given Ohmic target plasma under the assump-
tion that the transport properties, density, and electron temperature do not change
during the RF. The results of such a calculation for the low and high-density cases
are shown in Fig. 4.5.5. To obtain these results, ONETWO was first run in analysis
mode, as has been done for the results presented so far in this section, using the
Ohmic values (just one time point) assumed for these standard cases. This deter-
mines the value of Wn,, which is consistent with the Ohmic target plasma. Then a
second simulation-mode run is performed, in which Wne. is held fixed at the previ-
ously determined value, the RF power Pnet is input to the code, and the resulting
ion temperature is calculated. The electron temperature and density is held fixed.
These results are comparable to the experimental data shown in Fig. 3.8.2. It is
noted that the calculation of Wneo for the high-density case is very sensitive to the
value assumed for the electron temperature. However, if the electron temperature
is held fixed during the calculation, the resulting value of A TD is only weakly de-
pendent on the assumed electron temperature. But at high density, the electrons
and ions are very strongly collisionally coupled and it is not necessarily reasonable
to assume that the RF power will not affect the electron temperature. Thus, the
simulation for the high-density case is considered to be only a rough estimate of the
expected heating.

Finally, the calculation of Zeff from the resistive loop voltage, as determined by
ONETWO, 'is shown in Fig. 4.5.6. Normally, Zeff for Alcator C is determined from
a diagnostic which measures visible bremstrahlung radiation, but that diagnostic
was seriously affected by RF interference during the experiments. Therefore, the
measurement in Fig. 4.5.6 is the best Zegf measurement available for these shots.

A few comparisons were made with the visible bremstrahlung measurement, by
looking at the value of Zeff indicated immediately after the RF turned off, and no
cause for concern was found. There is nothing surprising about the results shown
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Figure 4.5.5t Ion Heating Sirnulations-ONETWO heating simulations are
shown for the low-density case (ft. = 1 x 1020 M- 3 ) and the high-density case

(fi. = 4.5 x 1020 M- 3 ). After running ONETWO in analysis mode to determine the
value of W., during the Ohmic part of the discharge, a new simulation-mode run
was set up, in which W.. was held fixed at the Ohmic value and the deuterium
heating was calculated for the given RF power input. These heating results are
comparable to the steady-density experimental points in Fig. 3.8.2.

in Fig. 4.5.6. There is a tendency for Zef to increase significantly during the RF,

and high-density shots are less susceptible to this effect.

The behavior of Wn.. versus density found herein has been observed in previ-

ous non-ICRF Alcator C experiments and has been reported.[1 30-1 33] It has been

blamed for the so-called saturated confinement regime in which energy confinement

progressively degrades compared to neo-Alcator scaling (r oc fte) with increasing

density in the range ft. > 3 x 1020 m-3(1301 .
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Figure 4.5.8: Z-Effective-The volume-average Zff determined by ONETWO
from the resistive loop voltage measurements is shown using open circles for the
Ohmic points and solid circles for the RF points.

During pellet injection experiments performed using high-density target plasmas

in the saturated confinement regime[131], it was found that pellet injection resulted

in a significant improvement in energy confinement time. The post-injection plas-

mas had energy confinement times consistent with a decrease in the ion thermal
diffusivity to the neoclassical value (Wneo = 1). However, at those high densities

the electrons and ions are so strongly collisionally coupled that it is not possible

to determine unambiguously whether the improvement was a result of suppression

of anomalous ion losses or of anomalous electron losses. To resolve this ambiguity,

further experiments were performed at moderate density (1 x 1020 m-3 < ii

3 x 1020 m-3)[13 3 ]. For these densities, the electron and ion temperatures are suf-

ficiently separated that the loss channels can be distinguished. Using the ONETWO

code, Wolfe et al. determined unambiguously that the ion thermal diffusivity was

reduced to the neoclassical value following pellet injection.

1.0 1.5 3.02.0 2.5 3.5
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It was emphasized in Ref. 133 that, because of the ambiguity due to the strong

collisional coupling in the saturated confinement regime, it was still conceivable that

it could have been a suppression of anomalous electron losses that was responsible for

the earlier pellet injection results. It could then be interpreted that the confinement

saturation mechanism was analogous to the appearance of enhanced electron losses

in L-mode neutral beam heated discharges, and that the improved confinement

in pellet-fueled discharges might then be interpreted as a transition to H-mode

resulting from a decrease in electron thermal conductivity.

While this possibility cannot be ruled out, I feel that the available evidence

more strongly indicates that it is the ion transport that is dominating the results.

The physical explanation for the confinement behavior would then be as follows:

For low-density Alcator C discharges, the ion transport is neoclassical while the

electron transport is strongly anomalous. Neo-Alcator scaling then implies the

scaling rce independent of density so that xe oc 1/lie. As density increases, xe is

decreasing while xi is continuously increasing. At the same time, the ions and

electrons are becoming more strongly collisionally coupled. Eventually, a point is

reached at which the ion loss dominates, and the saturated confinement regime

begins. Thus, the saturated confinement regime is to be expected if the previously

known behavior of the ion and electron transport is simply extrapolated into the

regime where data interpretation is ambiguous. On the other hand, attributing this

effect to the electrons requires a reversal in the previously observed trends.

In Ref. 133, it was found that the most apparent difference between pellet

and gas-fueled discharges is that post-injection plasmas typically have more peaked

density profiles. Density profile peaking and decreased fueling at the edge are

indeed typical of H-mode discharges. However, as pointed out in Ref. 133, the result

of their study was that this profile peaking was correlated with improvements in

ion transport, and not electron transport - another feature that would have to

"reverse" if the electrons were responsible for the high-density behavior. Wolfe et

al. introduce the so-called ion mixing mode (or v7;-mode)(134-13 8] as an effect which

is related to ion physics and could be responsible for the experimental results. The

critical parameter for 7i;-mode stability is given by

7; = dlnTi (4.5.14)

i.e., the ratio of the ion density gradient scale length divided by the ion temperature

gradient scale length. The 7i-mode becomes unstable when this parameter exceeds

a critical value, given approximately by[137]
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r 1 + 1 + 113 (4.5.15)

where r,, is the local density gradient scale length. Since peaking of the density
profile reduces the local maximum value of the density gradient, it is reasonable
that such an effect could stabilize the 77i-mode. Since profile data were not much
more detailed in the experiments analyzed in Ref. 133 than in the present ICRF
experiments, the determination of 7i from experimental data is very error prone.
No experimental correlation between i/lct and Wneo was found in Ref. 133;
however, the calculated values of ?7i/ijert were all close to unity. It would still be
reasonable to blame the anomalous ion confinement on i-modes if the nonlinear
saturation mechanism for the instability had the effect of driving the profile shape

toward marginal stability. Such an effect is to be expected theoretically[138l.

At any rate, whatever the cause of this anomalous ion confinement, the resulting
values of Wneo, which are very similar in the present ICRF experiments to those
found by Wolfe et al., are responsible for the observed density scaling of the ICRF
heating efficiency.

4.6: Summary

In this chapter, existing numerical models were used to treat the RF absorption,
mode conversion, and collisional deposition in the presence of severe minority losses,
in order to determine the net power deposited to deuterium. It was found that mode
conversion plays a significant but not a dominant role in the scaling of deposited
power with density. As expected, the deposition of power on deuterium becomes
significantly more efficient at high density, offering no obvious explanation for the
results from the experimental density scan. In particular, it is not necessary to
generate an elevated minority tail in order to achieve efficient absorption at high
density. However, the deposition calculations do offer an explanation for the results

of the experimental minority concentration scan. It was found that mode conversion
becomes dominant at high concentration, resulting in significantly reduced power
deposited on deuterium. Since the target plasmas during the concentration scan

were all similar, this was accepted as the explanation without performing analysis
with the ONETWO code specifically for this purpose. This mode conversion behavior
is attributed to the inability to produce an elevated minority tail at high minority
concentration. Note, however, that the Brambilla code results predict that this
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effect is less severe at high density. (No minority concentration scan was attempted
at high density in the experiments.)

To further investigate the results of the experimental density scan, the deu-
terium power balance was studied in more detail using the ONETWO transport code.
It was found that the dominant loss mechanism for the deuterium is conduction,
and that the behavior of the conduction power becomes significantly anomalous
at high density. After accounting for serious loss mechanisms associated with the
minority, whose density scaling is quite favorable, it was found that the unfavorable
density scaling observed in the experiment could quite reasonably be attributed to
the behavior of the ion thermal conduction. Since the inferred ion thermal con-
duction during the Ohmic and RF heated parts of the discharge were in very good
agreement, there is no need to postulate the existence of other loss mechanisms,
such as a large increase in the previously insignificant convection power.
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5.1: Summary

The work described herein began with an effort to develop a more electrically robust
ICRF antenna than was used in previous Alcator C fast wave heating experiments.
These antennas allowed more reliable operation compared to the previous exper-
iments, but did not result in improved heating efficiency. The feed-line standing
wave ratio was greatly reduced by using a resonant antenna design, but an improved
vacuum feedthrough (originally designed for experiments on the PLT tokamak) al-
lowed reliable operation at high feed-line standing wave ratio with the non-resonant
low-field-side launcher. There were no significant differences in the experimental
heating results obtained with the two antennas.

Minority regime ICRF heating experiments were then carried out in a plasma
composed of a deuterium majority and a hydrogen minority. Several plasma param-
eters were scanned during the experiments, but the main results analyzed in this
thesis concern a density scan at (assumed) fixed minority concentration 7 H = 0.5%,
and a minority concentration scan at fixed density A, a 1.4 x 1020 m 3 . Signifi-
cant plasma heating was observed during the experiment, but the only significant
contribution to the increase in thermal energy content (other than density changes)
was an increase in deuterium temperature. The electrons were typically observed to
neither heat nor cool during the RF; however, it should be noted that the absolute
experimental uncertainty in the electron temperature measurement is higher than
for the ion temperature measurement. Suprathermal hydrogen ions were observed,
but they were not sufficiently energetic to collisionally deposit more than a small
fraction of the total RF power onto the deuterium (or the electrons for that matter).
Therefore, it was hypothesized that the hydrogen energy balance was dominated by
losses.

The scaling of the heating efficiency, as quantified by the incremental energy
confinement time, with density was not favorable. In contrast, the Ohmic energy
confinement time was significantly higher than the incremental confinement time,
and increased markedly with density. Since the losses associated with an energetic
minority tail would be expected to scale quite favorably with density, this suggested
that some other process was also involved. The scaling with minority concentration
was also difficult to understand. Heating efficiency improved as minority concen-
tration was lowered to extremely low values. In the presence of severe hydrogen
losses, this could be understood if the contribution from deuterium second har-
monic cyclotron absorption was dominating. However, as minority concentration
was scanned upwards, heating efficiency continued to degrade even at concentrations
for which the minority temperature was comparable to the majority temperature,
at which point minority tail losses would be expected to be minimum.
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Further progress in understanding the experimental results was gained through

the coordinated application and careful interpretation of four sophisticated numeri-
cal codes. Three recently developed codes were used to model the RF wave physics
and study the hydrogen minority energy balance. Using the RF deposition estimates
obtained from these results, a well-established transport code was used to model the
deuterium energy balance. It was found that the scaling of the heating efficiency
with minority concentration could be understood as a result of greatly enhanced
mode conversion at high minority concentrations. In turn, this mode conversion
was a result of the inability to produce an elevated minority temperature at high
concentration. A similar but less significant behavior of the mode conversion as a
function of majority density was found, also a result of the inability to produce an
elevated minority temperature. However, the density scaling was not dominated by
this effect, and the net result of the deposition calculations was a very favorable
scaling of RF absorption and deposition with increasing density. Therefore, more
work needed to be done in order to understand the density scaling. By studying the

power balance of the deuterium, it was found that the density scaling result could

be attributed to an increasingly anomalous ion thermal confinement at high den-
sity. This ion confinement anomaly is a well-known property of Alcator C plasmas

and has previously been invoked to explain the high-density saturated-confinement
regime.

Before concluding, it is acknowledged that it cannot be conclusively proven that

the preceding explanation of the experimental results is correct. Note that the entire

analysis presented in Chapter 4 is dependent on the assumption that all of the RF

power is absorbed either by fundamental or second harmonic cyclotron absorption
on the hydrogen or deuterium respectively, or mode converted to the ion Bernstein

wave. One might also attempt to explain the results by postulating that some kind
of loss mechanisms prevent the RF power from ever reaching the interior of the

plasma. Possible candidates for such loss mechanisms could be resistive losses or

electrical breakdown in the antenna, or nonlinear absorption mechanisms (such as

parametric decay) in the plasma edge. The significant increase in antenna loading
by the plasma compared to the loading seen during vacuum conditioning or bench

tests suggests that resistive losses in the antenna are not important. Intermittent

electrical breakdown in the antenna was observed during the experiments, and usu-

ally resulted in tripping of the RF fault detection apparatus and/or disruption of

the plasma current. Although one cannot rule out the possibility of some kind of

steady breakdown phenomenon during the RF which might well depend on plasma
density, it seems unlikely that such a phenomenon would depend on minority con-

centration. Parametric decay has been seen during other ICRF heating experiments
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(e.g., ASDEX[139]) and it has been suggested that it might result in direct RF ab-
sorption in the edge. Attempts to detect evidence of parametric decay during the
ICRF experiments on Alcator C were inconclusive.

Nevertheless, the explanation that has been put forth in this thesis is based on
predictions consistent with contemporary theory, and offers plausible explanations
both for the amount of heating observed and for the density and concentration scal-
ing behaviors. Moreover, the effect attributed to the density scaling behavior is a
well-known property of Alcator C plasmas. Thus it appears that the explanation
for the Alcator C fast wave ICRF heating results can be summarized by the follow-
ing statement: Heating efficiency was limited by poor confinement of the minority
species at low density, and of the majority species at high density.

5.2: Prospects for Future High-Density Experiments

If very efficient RF heating had been observed during the Alcator C experiments,
then evaluation of the prospects for future high-density experiments, such at CIT,
would be easy. Lacking that, it is worth considering the various mechanisms that
seem to be responsible for the Alcator C results, and speculating on how important
they may be for future devices.

Consider first the electron losses. It was not possible to study them during the
present experiments, but they were studied in earlier Alcator C experiments and
in experiments carried out on other tokamaks. It is well established that the key
to eliminating impurity radiation is to operate in a low-Z environment, for exam-
ple by using graphite limiters and Faraday shields and using wall carbonization.

This is well-known to result in higher values of Zeff which increases losses due to
bremstrahlung radiation and displaces a significant fraction of the "reactant" ions

- an effect which, for a given Zff, is worse for low-Z impurities than for high-Z

impurities. This also reduces the fusion reaction rate. Although the net result of

carbonization has been favorable in experiments to date, large values of Zeff must
be avoided in an ignition experiment. This impurity problem is not unique to high-

density plasmas, and may even be less severe at high density. (See Fig. 4.5.6 in this

thesis.)

Next consider the minority losses. There is no question that toroidal-field ripple-

trapping must be avoided in an ignition experiment because, even if RF heating
is not used in the experiment, it will be necessary to confine high-energy fusion

reaction products. This requires that the toroidal field ripple be reduced to a
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sufficiently low but nonzero value. This is an engineering task and is more difficult
(but, in principle, not impossible) to achieve with compact high-field devices than
with low-field large devices. All the other significant hydrogen tail losses that were
considered in this thesis are finite-banana-width effects that can be minimized by
operating at lower q (higher plasma current), and/or at high density. Since high-
energy fusion reaction products are susceptible to these same loss mechanisms, they
must be avoided in any fusion device, regardless of the auxiliary heating method.
Consider the simulation results shown in Figs. 4.4.8 and 4.4.9 in this thesis. If
ripple trapping can be avoided, then the total loss associated with the hydrogen
minority is PL. in Fig. 4.4.9. Note that this quantity becomes quite small at
high density in Alcator C. Thus, if electron losses as well as ripple trapping were
brought under control, then the results in Fig. 4.4.9 would imply very efficient
RF absorption and deposition. Of course, this does neglect possible RF losses in
the antenna and the edge plasma. It also has not been shown how the absorbed
power density in Alcator C compares with what would be needed in an ignition
experiment, so the ratio P"/PRF may not be the same in an ignition experiment
as in Alcator C. Nevertheless, the fact that the very favorable RF deposition scaling
shown in Figs. 4.4.8 and 4.4.9 are theoretical predictions which also agree with
experimental results is quite encouraging.

Thus, it appears that the anomalous ion thermal conductivity is the only seri-

ous disadvantage for high-density operation. The key to successful ICRF heating of
high-density plasmas would then be to find a way to eliminate this anomaly. When
this effect was studied previously on Alcator C, it was suggested that it could be a
result of ion-temperature-gradient-driven instabilities (so-called ni-modes). It was
also found that pellet injection experiments resulted in improved energy confine-
ment, that might have been caused by altering the density profile in a manner that
stabilized the 9i;-modes. This suggests that one should plan on performing pellet
injection experiments using ICRF heated target plasmas in the C-MOD and CIT
tokamaks. If the anomalous ion confinement is indeed caused by 7i-modes, then

there might be other ways to alter the profile in order to stabilize them. For ex-

ample, flattening of the temperature profile should provide another way to reduce

the quantity 74. This might be possible by heating the plasma edge, perhaps us-
ing ECRH. Of course, the net effect of non-central heating for this purpose might
be energetically unfavorable, i.e., it might use up more power than it saves. The
density profiles obtained using a diverted instead of a limited plasma might be

more favorable towards i9i-modes. It is also conceivable that this anomalous ion

confinement may not occur in high-density H-mode plasmas. Better yet, if the
high density results were caused by an electron-related effect analogous to L-mode

scaling, then the achievement of H-mode in a high-field compact device might still
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eliminate the effect. These possibilities should be investigated theoretically and/or
experimentally.

Thus, as for any research project, there are both compelling motivations for at-
tempting an ICRF-heated compact high-field ignition experiment, and uncertainties
about its prospect for success. I conclude that it should be attempted.
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