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Abstract

Two major questions associated with the design and optimization of shaped tokamaks are
considered. (1) How do physics and engineering constraints affect the design of shaped toka-
maks? (2) How can the process of designing shaped tokamaks be improved? The first question
is addressed with the aid of a completely analytical procedure for optimizing the design of a
resistive-magnet tokamak reactor. It is shown that physics constraints - particularly the MHD
beta limits and the Murakami density limit - have an enormous, and sometimes, unexpected
effect on the final design. The second question is addressed through the development of a se-
ries of computer models for calculating plasma equilibria, estimating poloidal field coil currents,
and analyzing axisymmetric MHD stability in the presence of resistive conductors and feedback.
The models offer potential advantages over conventional methods since they are characterized
by extremely fast computer execution times, simplicity, and robustness. Furthermore, evidence
is presented that suggests that very little loss of accuracy is required to achieve these desirable
features.
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Chapter 1

Introduction

This thesis is concerned with the design and optimization of tokamaks, par-
ticularly those possessing relatively complicated cross-sectional shapes of the
type shown in Fig. 1.1. In the plot, a is the plasma minor radius, R& is
the plasma major radius, . is the plasma elongation, and 8. is the plasma
triangularity.

Two major questions will be addressed:

" How do physics and engineering constraints affect the design of shaped
tokamaks?

" How can we improve the process of designing shaped tokamaks?

The first question is an extremely basic one. Unfortunately, the answer
is quite dependent on the type of device being considered. For the purposes
of this thesis, we focus on the resistive-magnet tokamak reactor concept.
We will show, using a completely analytic procedure, that the physics and
engineering constraints have an enormous, and in some cases unexpected,
impact on the final design.

The answer to the second question is somewhat subjective. However, one
appealing argument goes as follows. In the process of designing a tokamak, it

15
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Figure 1.1: Shaped tokamak geometry.

is generally necessary to systematically vary a large number of parameters in

order to find the optimal set. With this thought in mind, it would be desirable

if the computer codes used to calculate a particular design were (a) fast, (b)

easy to use, (c) robust, and (d) accurate. In the fusion community today,

there exists a number of computer codes that very accurately solve many

problems related to the design of shaped tokamaks. Unfortunately, shaped

tokamaks are inherently very complicated devices. As a result, the computer

codes that scientists and engineers use to study them have necessarily become

quite complex as well. This complexity tends to make the codes relatively

difficult for users to learn and to use. Furthermore, even with the extreme

speed of modern supercomputers, execution times for many codes range from

several seconds to as long as several hours. All of these issues make the careful

examination of parameter space more difficult. Therefore, from the point of

view of the tokamak designer, it may be valuable to have access to codes

that are somewhat less accurate but much faster, simpler, and more robust.

16



In this thesis, we will propose methods for creating such codes in the areas

of

e Plasma equilibrium generation,

e Poloidal field coil current estimation,

o Axisymmetric Magnetohydrodynamic (MHD) stability analysis.

The various chapters in this thesis deal with these issues in detail. Chap-

ter 2 describes the design and optimization of the resistive-magnet tokamak
reactor. Chapter 3 presents a fast method for computing equilibria for shaped
tokamaks. Chapter 4 describes a fast and robust procedure for the computa-
tion of the poloidal field (PF) and ohmic heating (OH) coil currents needed
to support a specified plasma equilibrium. Chapter 5 presents an analysis

which leads to general relations relating to the behavior of a plasma in the

presence of a resistive wall. Finally, Chapter 6 describes a method for quickly

and accurately computing the axisymmetric stability properties of a tokamak

in the presence of a resistive wall, discrete resistive conductors, and feedback.

More introductory remarks regarding each of these topics will be made later

in this chapter. However, first, it is necessary to provide motivation as to

why we study shaped tokamaks in the first place.

1.1 Effects of Plasma Shaping

The advent of the tokamak concept [1] in the USSR in the mid 1960's greatly

enhanced the prospects for eventually developing magnetic fusion as a com-

mercial source of electricity. However, early on, a major concern was that

17



the circular tokamak might not prove suitable for a power reactor. This is

because the parameter 3t, defined as

plasma pressure

magnetic pressure

S2Lop (1.2)
B2

is typically quite low (<1 %) for conventional tokamaks. (In Eq. (1.2), p is

the average plasma pressure and BO is the toroidal magnetic field measured at

the plasma center.) Small beta values are undesirable because, in a simplistic

sense, they imply low performance (p) obtained at high cost (Bo).

To see this point in slightly more specific terms, consider the simplified

reactor power balance

PE = 7 PF, (1.3)

where PE is the desired electrical power, q is the thermal-electrical conversion

efficiency, and PF is the total fusion power which can be written

P = 1n2 (av)V EF- (1.4)
4

In Eq. (1.4), n is the average plasma density, (ov) is the Maxwellian reaction

rate parameter, V is the volume of the plasma, and EF is the energy pro-

duced by a single fusion reaction. Recognizing that p = 2nT (where T is the

average temperature), we can substitute Eqs. (1.2) and (1.4) into Eq. (1.3)

to give the plasma volume necessary to obtain a given electric power

) 64A4PPE T 2

P2V _ (1.5)
?I BO'EF ( (V) ) ,

18



The ratio T 2/(aV) is simply a function of temperature. Hence, the plasma

temperature can be chosen so as minimize that quantity. When this is done,
Eq. (1.5) implies that, for a given PS and BO, small values of Ot result in

correspondingly large values of V. Since, to some extent, the cost of a fusion

reactor scales with the volume of the plasma, we conclude that low values of

,3t are undesirable.

A similar conclusion applies to ignition experiments, but for a different

set of reasons. In order to achieve ignition, it is necessary to satisfy a power

balance between losses and production

PL = P., (1.6)

where PL is the power lost due to thermal conduction and P. is the power

carried by alpha particles that are produced in fusion reactions. A simple

form for PL can be written

3nT
PL= (1.7)

TE

where iE is the energy confinement time. The alpha power is simply

12
P. = n' (ev) V E.,(1)

4

where Ea is the energy carried by a single alpha particle. Substituting

Eqs. (1.7) and (1.8) and Eq. (1.2) into Eq. (1.6) gives

48 o TV

B Ea ("v) ,n

Here we see that low values of )3t increase the value of TE needed to achieve

ignition. Given the current uncertainties regarding the magnitude, or even

the form, of the energy confinement time, one again concludes that low Ot

values are undesirable.

19



In tokamaks, )3t is limited by a combination of high-n ballooning modes

and low-n pressure driven external kink modes [2]. The ballooning modes

represent localized perturbations that are driven unstable by the pressure

gradient in regions of unfavorable magnetic curvature. If this effect is aver-

aged over the entire plasma (where there are alternating regions of favorable

and unfavorable curvature), it can be shown that a limit on Ot alone results.

In contrast, the high-3 kink mode is driven unstable by both the pressure
gradient and the current parallel to the magnetic field. Therefore, one finds

that the pressure driven external kink modes yield a limit not only on O,
but also on I, (the total plasma current).

Since ballooning and kink modes depend on the curvature of the magnetic

field, one might reason that the / limits could be increased by modifying the

plasma shape from circular. As a result, a number of extensive numerical

studies have been performed to find the tokamak configuration yielding the

maximum stable value of Ot. One of the first studies, by Sykes, et aL [3],
showed that finite aspect ratio plasmas possessing both elongation and out-

ward pointing triangularity (as in Fig. 1.1) yielded higher maximum Ot values

than the large aspect ratio circle. Furthermore, this maximum /e value was

shown to scale according to a remarkably simple formula

= c , (1.10)

where co = 0.044 is a constant of proportionality. Note that in Eq. (1.10)

the units are a (m), I (MA), and Bo (T).

Equation (1.10) can be recast into a more useful form by defining the

"kink" safety factor

21ra2K.B 0qj = . (1.11)
SoRoI,

Substituting Eq. (1.11) into Eq. (1.10) yields
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=c (1.12)
qL

where cp = 5cp = 0.22 and e = a/Ro. Notice that Eq. (1.12) explicitly shows

the favorable scaling with inverse aspect ratio and elongation. A similar

study by Yamazaki, et aL [4] resulted in a slightly different scaling law that

additionally gave the (favorable) dependence of at on triangularity.

Sykes's analysis considered only the effects of ballooning and Mercier

modes. A later study by Troyon, et al. [5] considered ballooning modes,

Mercier modes, n = 1 internal kink modes, and high-,3 kink modes. Again,

it was found that finite aspect ratio, high triangularity, and high elongation

were desirable from the point of view of stability. In addition, a scaling law

of the form given in Eq. (1.10) resulted, but with a slightly smaller numerical

value for the constant of proportionality c' = 0.028. However, by virtue of

the fact that kink modes were included in the study, Troyon also found a

limit on I,. A similar analysis by Bernard, et aL [6] gave essentially the same

scaling law except that the effect of triangularity was explicitly included. The

Troyon scaling law along with the limit on total current have been verified

experimentally [7] in the Doublet-III experiment at GA Technologies, Inc.

though the data suggests that c' = 0.033.

Substituting various values for e, n, and q; into Eq. (1.12) suggests that Oe

values as high as 6-10 % are obtainable. This is supported by recent DIII-D

experiments where stable Oe's of 6 % have been obtained [8]. A number of fu-

sion systems studies [9-11] have shown that 1t's in this range are approaching

that which is required to build a cost-effective tokamak reactor. Therefore,

the importance, and indeed the necessity, of shaping is demonstrated.
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1.2 Desirability of Approaches to Achieving High
Beta

The simple arguments leading to Eqs. (1.5) and (1.9) imply that raising 3t
is always desirable. This would probably be a true statement in general if it
were not for the fact that the MHD scaling laws closely couple the maximum

achievable Ot value with the specific configuration of the plasma. This cou-
pling complicates matters greatly because the parameters that affect Ot - a,
RO, i., and q; - independently affect the performance of a tokamak to an

extent at least as large as the Oe value itself does. We must therefore conclude

that simple scaling arguments, such as those previously presented, have limi-

tations to their validity. In particular, more detailed calculations are required

to assess the effect of the MHD scaling laws on tokamak performance.

To examine this issue, we present in Chapter 2 a detailed design of a
resistive-magnet tokamak reactor. The goal of the design is to minimize C,
the cost/watt of electricity produced by the reactor. This minimization is, in

turn, carried out subject to power balance and MHD stability requirements

along with a number of additional straightforward physics and engineering

constraints. Perhaps the most appealing feature of the calculation is that it

is almost completely analytic in nature. Nevertheless, the results agree quite

well with more sophisticated calculations [10].

The major result of the calculation is that raising O3 does not necessarily

improve reactor performance. An illustration of this behavior is shown in

Fig. 1.2. Here, C is plotted as a function of e with x. = 2.0, qi = 1.5,
and co = 0.165. Initially, raising e reduces C. However, after some point

(e = 0.37), continued increases in e actually result in increases in C. This

result is unexpected given the monotonic variation in Ot with e implied by

Eq. (1.12). Similar behavior is seen Fig. 1.3 for the case of the elongation

1.. Here, C initially decreases and then saturates with increasing n.. The
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Figure 1.2: Variation in C with e for fixed values of x., cp, and qg.

overall conclusion is that shaping can be quite beneficial up to a point; after
that, stronger shaping yields no significant gains in performance and may, in
fact, result in a degradation of performance.

Another major result of the calculation is the extreme effect of a single
physics constraint - the Murakami density limit - on reactor performance.

By analyzing the data from a number of experiments around the world,
Murakami, et aL (12] found evidence of a hard density limit after which
disruptions would occur. This limit was found to scale as

3cu. 1 o
no < 2' (1.13)2Ro

where no is the central plasma density and cm - 0.8 x 10 20 m- 2 - T- 1 for

current experiments. Figure 1.4 shows the variation in C and To (the central
plasma temperature) with cm. It is seen that substantial penalties are paid if
the value of cM cannot be increased (presumably through clever experimental
techniques).
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Figure 1.3: Variation in C with n. for fixed values of cS, and q1.
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Figure 1.4: Variation in C and To with cm.
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1.3 Variational Equilibrium

Having discussed some important design issues associated with shaped toka-
make, we turn to the next major topic of this thesis: the development of new
tools for designing shaped tokamaks. The particular subject of Chapter 3 is
the fast calculation of plasma equilibria.

The problem of plasma equilibrium consists of solving the Grad-Shafranov
equation [13,14] in the presence of complicated geometry. Since the Grad-
Shafranov equation is non-linear, this represents an extremely difficult com-
putational chore so, despite the use of sophisticated numerical techniques,
most present-day equilibrium codes require 0.5-5.0 minutes to execute on a
Cray supercomputer. In this thesis, we propose a method that reduces this
time to less than 1 sec on a Vax (which is typically 10-60 times slower than
a Cray) at the cost of a small amount of accuracy.

The dramatic increase in speed is obtained through the use of variational
techniques. A Lagrangian representing the Grad-Shafranov equation is de-
rived and shown to represent a correct variational principle. Then, trial
functions or "guesses" for the solution are substituted into this Lagrangian
which, in turn, tells us which guesses are closest to the correct solution. Since
good trial functions are readily derived, the procedure for searching for the
optimal ones is extremely fast.

Despite the speed, the procedure is also quite accurate. Shown in Ta-
ble 1.1 is a comparison between the parameters computed using the varia-
tional techniques and those computed using an exact equilibrium code. In
the table, P,,. is the value of /3 computed using the pressure at the magnetic

axis R = R,,,8,, is the poloidal beta, q(0) and q, are the MHD safety factors
at the magnetic axis and at the plasma surface respectively, 00 is the flux
evaluated at the magnetic axis, and .0 is the elongation of the innermost flux
surface.

25



Table 1.1: Comparison Between Variational and Exact Equilibria

Parameter Variational [Exact
a (m) 1.7 1.7
Ro (m) 4.7 4.7

2.0 2.0
0.4 0.4

0.082 0.083
)3 0.224 0.222

O, 0.805 0.830
q(O) 1.03 1.04

q, 2.74 3.07

0 (Wb) -9.29 -9.19
Rm ( ) 4.95 4.94
IO 1.69 1.79
Cray CPU Time (sec) 0.03 31.0

In addition to accurately computing the global plasma parameters in

Table 1.1, the variational methods also yield good accuracy for such local

quantities as the flux surface shape. This is shown in Fig. 1.5.

1.4 Estimation of PF Coil Currents

Chapter 4 describes a method for quickly estimating the coil currents neces-

sary to support a specified plasma configuration in equilibrium. This method

employs efficient numerical techniques based on an application of the scalar

version of Green's theorem [15] to compute the tangential component of the

vacuum magnetic field at the plasma surface in the form

(1.14)B,(p) = b (A) + b (,2 ) Ij,,
=1
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Figure 1.5: Comparison between flux surface shapes computed exactly (solid
lines) and those computed using variational techniques (dotted lines).
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where A is a poloidal angular variable and I, is the (as yet unknown) current
in the j-th PF or OH coil. The currents are actually found by minimizing a

functional of the form

61 = ,(~ BP) 2 dS(1.15)
f5 , B2 dS

where B, is the poloidal field just inside the plasma surface. Equation (1.15)
represents an attempt to ensure that the discontinuity in the tangential com-
ponent of the magnetic field is as small as possible. The analysis explicitly

ensures that the normal component of the field is exactly continuous across
the plasma surface.

It can be shown that the set of currents that minimize e satisfy a simple

set of linear equations. Therefore, they can be found without the need for

a potentially fragile and time-consuming iteration process. As a result, the
procedure is extremely fast and robust, particularly when used in combina-
tion with the variational equilibrium methods from Chapter 3. For a typical

plasma-coil configuration such as that shown in Fig. 1.6, the approximate

solution of the Grad-Shafranov equation and the estimation of the required

PF coil currents often takes less than 0.5 sec of Cray CPU time.

1.5 Stability in the Presence of a Resistive Wall

As Fig. 1.3 demonstrated, elongated shapes with n =z 2 yield dramatic

increases in performance over circular shapes. However, elongated plasmas

possess one major disadvantage: they tend to be unstable to vertical axisym-

metric (n = 0) external MHD modes (16]. Clearly, this is unacceptable from

the point of view of either reactor or experiment operation since the MHD

instability timescale is on the order of microseconds. One way to prevent

this is to place a perfectly conducting wall (the vacuum chamber) close to
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Figure 1.6: Typical plasma and PF/OH coil configuration.

the plasma. Numerous studies [17-21) have shown that this will completely

stabilize n = 0 modes (along with n ? 0 modes). However, in practice,
vacuum chamber walls are not perfectly conducting. Instead, they tend to

be made of materials, such as stainless steel, that have relatively high resis-

tivities in order to allow for fast penetration of shaping and ohmic heating

fields. This resistivity unfortunately also leads to a de-stabilization of the

MHD modes. In particular, they begin to grow on a millisecond timescale

which, while much slower than the MHD timescale, is still too fast to be

acceptable in experiment or reactor designs. Therefore, understanding the

effect of resistivity on external MHD modes is very important. Chapter 5

deals with exactly this issue.

Although the analysis in Chapter 5 is motivated by concerns about toka-

mak vertical stability, the calculations presented are valid for arbitrary three-

dimensional perturbations acting on an arbitrary shaped plasma surrounded

by an arbitrary shaped, but thin, resistive wall. As in Chapter 3, variational

29



techniques are employed in the calculations. In particular, a Lagrangian de-

scribing the plasma dynamics in the presence of a resistive wall is derived.

This Lagrangian is then used to derive a very simple form for the growth

rate -y of modes de-stabilized by the resistivity of the wall

Tr w - (1.16)
bWb

where SW., is the ideal MHD 6W with a wall at infinity and 6W is the

ideal MHD SW with a perfectly conducting wall located at the position of

the resistive wall. The resistive diffusion time TD is written

TD = jiocrdb, (1.17)

where a is the electrical conductivity of the wall, d is its thickness, and b is

its average radius. Equation (1.16) is then used to investigate the effect of

peaked current profiles and triangularity on tokamak vertical stability. Also,

the effects of Finite Larmor Radius (FLR) and plasma rotation on stability

are discussed.

1.6 Vertical Stability of Tokamaks in the Pres-
ence of Resistive Conductors and Feedback

Building on the physics background developed in Chapter 5, Chapter 6 de-

scribes the development of computer models for analyzing tokamak vertical

stability. This turns out to be a very complicated problem because the ef-

fects of a resistive wall, discrete resistive coils, and feedback coupled with the

non-uniform vertical displacement of the plasma must be considered. Despite

this complication, efficient numerical methods are derived that require only

a few seconds of Cray CPU time in order to analyze the linear exponential

stability of the system. This represents an enormous saving over the time
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required to compute the exact time-dependent evolution. Often, hours of

Cray CPU time are required to solve that problem.

Again, variational methods are employed to speed up the calculation.

Specifically, a Lagrangian which describes the motion of the plasma in the

presence of J conducting wire loops is derived. The loops result from the

finite differencing of all components in the poloidal field circuit: the resistive

wall, the PF and OH coils, and any additional coils placed for purposes of

enhancing stability. An example conductor configuration is shown in Fig. 1.7.

In addition to the Lagrangian, a series of J equations describing the

inductive coupling between the plasma and the conductors is derived with the

aid of a vector version of Green's theorem [22]. These relations are combined

with the Lagrangian to yield a generalized matrix eigenvalue problem

R - i = -yM -6i, (1.18)

where -y (the eigenvalue) is the growth rate and 61 (the eigenvector) is the

set of currents induced by the plasma perturbation.

One of the most appealing aspects of this analysis is the fact that the

plasma is relatively realistically modeled using the equations of ideal MHD.

This allows the consideration of rather general plasma displacements of the

form

(R) = tz (R) ez, (1.19)

where 4z is a constant and v is a parameter controlling the non-uniformity

in the displacement. The assumption of non-uniformity in t turns out to be

quite important since, for finite aspect ratio dee-shaped plasmas, the growth

rate found when v : 0 is significantly higher than that for the case of a

uniform shift (v = 0). This point is illustrated in Fig. 1.8.
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Chapter 2

Desirability of Approaches
to Achieving High Beta

Both simple scaling arguments of the type that led to Eqs. (1.5) and (1.9)

and detailed fusion system studies [9-11] have indicated that tokamak reac-

tor performance can be substantially improved if operation at high values

of beta is possible. This realization has, in turn, provided motivation for

the formulation of scaling laws predicting the maximum achievable beta in a

tokamak [3-7]. These scaling laws provide a clear prescription for the means

of achieving high beta and, ostensibly, improving reactor performance. In

particular, they show [Eq. (1.12)] that beta scales favorably with increas-

ing inverse aspect ratio e, increasing vertical elongation n., and decreasing

safety factor q1. However, one should note that each of the parameters which

optimize beta may also have a comparably large (and sometimes adverse)

impact on other aspects of reactor performance. This suggests that certain

approaches to achieving high beta may be more desirable than others when

considered in the context of a complete reactor design.

In this chapter, we address these issues by means of a simple analyt-

ical model of a long-pulse, resistive-magnet tokamak reactor. The design
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is optimized to yield the minimum cost/watt of electricity subject to two

constraints:

9 Favorable plant power balance,

* First stability region beta scaling.

In addition, the design is required to satisfy a series of inequalities, derivable

from straightforward physics and engineering considerations, which further

limit the range of values that reactor parameters can assume. The model is

deliberately idealized in order to transparently show how these constraints

and inequalities affect the relative desirability of the various approaches to

achieving high beta. Even so, the results of this model agree well with more

sophisticated reactor systems code calculations (10.

2.1 Model

The design methodology to be discussed here is general in the sense that it can

be applied to a wide variety of toroidal fusion systems including reactors and

ignition experiments utilizing resistive or superconducting magnets. How-

ever, the results are necessarily device dependent. The present work centers

on the design and optimization of an idealized fusion power plant producing

a net electric power PE. The plant is assumed to consist of a resistive-magnet

tokamak reactor and its associated thermal conversion equipment.

Here, the bulk of the modeling effort focuses on the fusion island. In order

to allow the possibility of an analytical optimization procedure, we consider

an idealized configuration-consisting of a plasma region, an intermediate

region, and a coil region-shown in Fig. 2.1. Even with the simplified nature

of this description, the number of parameters needed to characterize the

behavior of the fusion island is relatively large. Therefore, it is useful to

list the relevant variables region by region and discuss, in some detail, the

assumptions that go into their derivation.
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Figure 2.1: Resistive-magnet tokamak reactor geometry.

2.1.1 Plasma Region

As Fig. 2.1 shows, Ro is the plasma major radius and a is the plasma minor

radius. Since the existence of a scrape-off region is neglected, a also rep-

resents the distance from the plasma center to the first wall. For the sake

of simplicity, in all geometrical calculations the plasma shape is taken to

be elliptical with a vertical elongation P.. Also, the effect of toroidicity is

ignored.

The plasma parameter of central importance to this analysis is the volume

averaged toroidal beta which, to lowest order, is defined as

4 1
i __ - nT dV ,(2.1)

B0 V fV,

where BO is the toroidal field at the plasma center and the integration is

carried out over the plasma volume. Assuming parabolic temperature and

density profiles, Eq. (2.1) gives
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4=on2To (2.2)
3BO

where no is the peak ion density and To is the peak plasma temperature.

The fusion power output of the plasma PF can be expressed as

P= (2.3)

where EF is taken to be 17.6MeV and (o) is the Maxwellian D-T reaction

rate parameter (approximated here using the results of Hively [23]). Using

Eq. (2.2) to eliminate no in favor of 3t yields

r2 n ,B0 ,(r). 2 B4. (2.4)

Here,

9EF jT.
W(TO) 9 T 2 (av) dT. (2.5)

64po~ " o

Of great tedmological importance is the neutron wall loading Pw which

is related to the fusion power according to

p- 1 + Ka -1/2
Pw- . (2.6)

5r2ROa -2 1

indicating that 80 % of the energy from a given fusion reaction is assumed to

appear in the form af 14.1 MeV neutrons.

The description of the plasma region is completed by specification of a

scaling law for the energy confinement time TE. Several experimentally deter-

mined expressions for this quantity exist in the literature. For completeness,

we will consider Neo-Alcator scaling [24]

TE,NA = 0.095 no aR,, (2.7)
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Mirnov scaling [25

TE,M = 0.39aIp, (2.8)

and Kaye-Goldston scaling [26]

TSE,KG = 0.055,n2 B& Ig 2 4P 0 P.-.a 4 P-- (2.9)

where I is the plasma current and P, is the alpha heating power given by

P= -F - (2.10)Pa5

Note that in all practical formulae the units are a (m), Ro (m), I, (MA),
Bo (T), PF,0 (MW), To (KeV), no (1020 m 3 ), and TE (sec).

2.1.2 Intermediate Region

The components between the plasma and the toroidal field (TF) coils-the
first wall, the blanket, the ohmic heating (OH) coils, and the poloidal field
(PF) coils-are assumed to make up the intermediate region.

The most important quantity describing the intermediate region is b: the

thickness of the intermediate region at the horizontal and vertical midplanes
of the device. On the outboard side b accounts for the space required for
the blanket and the PF coils while on the inboard side b accounts for the
space required for the OH coils and a thin inboard blanket. It is assumed
that acceptable tritium breeding can be achieved despite the thinner inboard
blanket.

The details of the blanket and thermal cycle design are largely ignored

in this model. Instead, it is simply assumed that thermal power can be

converted to electricity with an efficiency 71. Also, credit is given for energy-

producing neutron reactions in the blanket which multiply the thermal power
output of the plant by a factor M.
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Since the OH and PF coils are assumed to be placed inside the TF coils,
they are necessarily resistive. Therefore, the power dissipated in these coils

PPF can be significant and must be taken into account. In general, PPF
depends in a complicated manner on the plasma shape, the plasma current,
and the exact coil placement. These issues are outside of the scope of the
present model so, for simplicity, it is assumed that the PF and OH dissipated
power is some fraction of the power dissipated in the TF coils PTF:

PPF = !PFPTF. (2.11)

2.1.3 Coil Region

The remainder of the nuclear island consists of TF coils and support struc-
ture. As Fig. 2.1 shows, the thickness of each of the four legs of the TF coils
is represented by c. In addition, the inboard leg is assumed to fill the entire
distance between the intermediate region and the device centerline. Hence,

c = RO -a-b. (2.12)

Different thicknesses for each leg as well as the inclusion of a center-post have

been investigated. These effects make small quantitative differences in the

results, but greatly obscure the analysis. Hence, for purposes of simplicity,

we focus attention on the model illustrated in Fig. 2.1.

Finally, the coils are assumed to wedge (remain contiguous) out to Ro.

The choice of frame-shaped TF coils was motivated by a desire to be con-

sistent with designs that incorporate demountable coils. Demountable coils

may provide significant advantages in the areas of maintenance and machine

availability [10].
The power required to drive the TF coils is of fundamental interest in

resistive-magnet tokamak reactors. Neglecting the effects of start-up, this

can be written as
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PTF =TF , (2.13)

where

ITF 2rROB0  (2.14)
AO

is the current in the TF coils,

A = GT F( Ro, a, b, m.) ( 2.15 )ir(Ro - a - b)

is the resistance of the TF coils, and Eq. (2.12) has been used to eliminate c.

In addition, p is the coil resistivity and GTF is a function that accounts for
the specific geometry of the TF coils. Assuming a uniform current density
and straight current paths that follow the midline of the coils, GTF is found

to be

RO + (2r. - 1)a + b 2Ro RO + n.a + b
GT F = +2K ) + ±ln + &+-a (2.16)Ra --a-b RO - a - b Ro

The first term in Eq. (2.16) accounts for the geometry of the coil region on

the inboard side of the plasma. The second term represents the portions

of the top and bottom legs of the coils that wedge to RO. The third term

gives the contribution of the separated TF coils on the outboard side of the

plasma.

2.1.4 Summary

In summary, our simplified model of a resistive-magnet tokamak reactor is

described by the following parameters:
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Performance Parameters
PE net electric power
PF fusion power
Pw wall loading
PPF PF and OH dissipated power
PTF TF dissipated power

Plasma Parameters
A3  plasma beta
qi plasma safety factor
no peak density
TO peak temperature
BO toroidal field at plasma center
I,, toroidal plasma current
rE energy confinement time

Geometric Parameters
a plasma minor radius
Ro plasma major radius
b intermediate region thickness
c coil thickness
r. plasma elongation

2.2 Formulation

The formal optimization procedure used in the analysis is summarized as

follows. The first step is the selection and definition of a figure of merit.

This figure of merit, which is written in terms of a number of independent

variables, serves as the basic measure of the attractiveness of a particular

design. Next, constraints which give relationships between the independent

variables are imposed on the design. Each of these constraints allows one

independent variable to be eliminated from the calculation. Finally, a series

of inequalities that specify a range of allowable values for some of the re-

maining independent variables is provided. A particular choice of the figure

of merit and associated constraints and inequalities is not unique; however,
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once a choice is made, a unique optimized design can be found. In principle,
the design is optimized by varying the independent variables in order to find

the most favorable value of the figure of merit. When this variation would

require violation of an inequality, that inequality becomes an equality (i.e. a

constraint) and the optimization is repeated. One of the primary advantages

of the simple model presented in the previous section is that the number

of degrees of freedom is sufficiently limited to allow the optimization to be

performed essentially analytically. Having discussed the design methodology

in formal terms, we now consider the details of the calculation.

2.2.1 Figure of Merit

For the purposes of the analysis, we select C, the direct capital cost of the

plant per watt (electric), as the figure of merit which is obviously to be

minimized. C includes contributions from both the fusion island and the

balance of plant. This feature makes it more desirable as a figure of merit

than, for instance, the fusion island weight which focuses only on one part

of the plant. In addition, it is widely thought that fusion reactors will be

expensive and complicated devices. Since it is possible that the suitability of

fusion energy as a power source will depend on its economic attractiveness as

compared to alternative concepts, it seems a judicious choice to use a figure

of merit based on costs. Other studies have investigated the impact of the

choice of figure of merit on the optimized design [27].

In general, C is a complicated function of several variables. Keeping the

philosophy of the analysis in mind, we present a simple model which analyt-

ically displays the relevant dependencies. We write C ($/watt) as the sum

of a balance of plant contribution CBP (S) and a fusion island contribution

CFI (s):

C = CBP + CF1 (2.17)
PE
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CEp includes contributions for such things as land and reactor buildings

but is assumed here to be dominated by costs for thermal energy conversion

facilities, specifically turbines and electrical switching equipment. Given this,
one expects CEp to scale with the thermal fusion power. We make the

simplest choice for this dependence, namely

CBP = KBPPF, (2.18)

where KBp is a proportionality constant.

With regard to the fusion island, we make the straightforward assumption

that the capital cost is proportional to its volume VFI. Hence, CFI can be

written

CFI = KFIVFI, (2.19)

where KFI represents the average unit cost of the entire fusion island and,

from Fig. 2.1,

VFI = 87rRg[Ro + (r. - 1)a}. (2.20)

Combining results gives the following expression for the figure of merit

C = KBp (-) + KFJ 1  ) (2.21)
Pe PE

This costing model is similar to that proposed by Spears and Wesson [28]

It could be argued that including the plasma region in Eq. (2.21) is un-

reasonable since it is mainly 'empty'.. We justify its inclusion by the fact that

the plasma region determines the requirements for the potentially expensive

auxiliary heating, fueling, and burn-control systems.

It is beyond the scope of the model to actually calculate the two quan-

tities Ksp and KFI. Instead, the values of CF1 and CBP were extracted

from systems code runs [29] for particular PE, PF, and VF1 . Given these,

Eqs. (2.18) and (2.19) predict that numerically,

42



KBp = 0.55 $/W,

Kpj = 0.20 MS/m 3 .

For the purposes of simplicity, we make the assumption that KBP and KFI

are constants. In reality, these quantities might be expected to be functions
of, for instance, Pr, Pw, and VFI. However, it will be shown later that the
design optimization process is actually not very sensitive to the exact values
of the unit cost coefficients.

2.2.2 Constraints

We now describe the constraints imposed on the design. These constraints
are necessary because the formulation so far does not fully distinguish be-
tween different classes of tokamak devices and operation in different regimes
of MHD stability physics. For instance, the model presented in the previous
section is equally valid for commercial reactors, ignition devices, or experi-
ments. In addition, the model makes no explicit assumptions regarding the
details of the 0 limit characterizing the device.

In order to place the model in the regime of the commercial tokamak
reactor, we impose the requirement for a favorable plant power balance

PE = i1MPF - PR, (2.22)

where PR is the total recirculating power which is assumed to be due entirely
to the dissipation in the TF, PF, and OH coils

PR = PTF + PPF- (2.23)

Equation (2.22) is- written by assuming near steady-state operation (i.e. high
duty factor) and neglecting radiation losses. It can be stated in the convenient
form
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Pr = r7MPF(l - R) (2.24)

using the recirculating power fraction fR defined as

PR
fA = P . (2.25)

77MPF

We further constrain the design by requiring that the device operate in

the first region of MHD ballooning-kink stability. It should be noted that

a second region of ballooning stability characterized by very large 0 values

has been theoretically predicted (30,31]. See Ref. [10] for a discussion of the

effects of this regime on resistive-magnet tokamak reactor performance.

In the first stable regime, the maximum allowable Ot obeys a scaling law

of the form given in Eq. (1.10)

cc - (2.26)
aBO

Note that in this context we are assuming that the plasma possesses some

triangularity. Equation (2.26), restated in a more convenient form, thus

becomes the second constraint

)3 = cO a-, (2.27)
Roq1

where cp is a constant and q, is the kink safety factor

q = B (2.28)
= s0R0 I

2.2.3 Inequalities

Having specified the model along with the engineering and physics regimes

of interest, we next consider the physical domain over which the design op-

timization can be performed. Many of parameters of interest are limited to

a range of allowable values by straightforward engineering and physics re-

quirements. These requirements lead to a series of inequalities which must

be satisfied by the design.
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Inequalities for Plasma Region Parameters

The performance of the plasma is largely limited by stability considera-
tions. In particular, one of the most important inequalities is due to MHD
kink/disruption limits which set a lower bound on the value of the safety
factor or, conversely, an upper bound on the plasma current. This limit is
usually written in terms of the MHD safety factor

q, > 2.0. (2.29)

Here, q, is defined:

1 r -B
q, =-,d, (2.30)

where the subscript 's' indicates that the integration is carried out over a
particular flux surface.

Stating the kink/disruption limit in terms of q. turns out to be a mislead-
ing choice from the point of view of the reactor designer. This is because the
actual 0 limit depends on q2 rather than q, and, except in the case of circular
low 3 plasmas, these two quantities do not have the same value. Further-
more, q, is strongly dependent on the proximity of separatrices and shaping
of the inner plasma edge. In fact, it is possible to satisfy the limit given in
Eq. (2.29) for arbitrarily large currents by placing a separatrix sufficiently
close to the plasma. This contradicts recent experimental results which sug-
gest a hard disruptive limit to the plasma current [7]. For these reasons, it
may be more accurate and appropriate to state the kink/disruption limit in
terms of q;. However, the form of this limit is currently unknown and one
might expect the limiting q; to be dependent upon the plasma shape (elon-
gation, indentation, triangularity, aspect ratio, etc) and, perhaps, Pt itself.
For the purposes of this analysis, we make the simplifying assumption that

q, > 1.5, (2.31)
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the limiting value being chosen to approximately correspond to q, = 2.0 given

the parameters in Troyon's paper.

Various values for the constant of proportionality in the beta limit have

been discussed previously in this thesis. We choose the maximum value of cs

to be that found experimentally by Stambaugh, et aL [7]. Consistent with

the Sykes q-prescription, this inequality is thus written

cs < 0.165. (2.32)

MHD stability considerations also provide an upper limit on the plasma

elongation. This limit results from analyses that suggest that elongated

plasmas are particularly susceptible to axisymmetric (n = 0) modes [32]. It

is assumed that these modes can be feedback stabilized for plasmas with

x, < 2.0. (2.33)

Murakami et aL [12] have suggested that, in order to prevent disruptions,

the central plasma density must be kept below some critical value. This leads

to an inequality of the form

3cMBO
n'< 2Ro (2.34)

where cM is a parameter that may depend on n. and q1. For simplicity,

we will assume that cM is a constant. Typically, cm ;t 0.8 x 1020 m-' -T-1

for current experiments. Given operation at some O3, Eq. (2.34) implies an

inequality for the temperature

To > .tLoCM (2.35)

Due to uncertainties with regard to the behavior of first wall materials

on exposure to large neutron fluxes, an upper limit is set on the neutron wall

loading
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Pw < 5.0 MW/M2. (2.36)

Finally, on the basis of the assumption of ignited operation, the confine-
ment time is required to satisfy a Lawson condition [33]

nOrE > 6.0 x 1020 m- 3 - sec. (2.37)

Inequalities for Intermediate Region Parameters

In contrast with the plasma region, engineering considerations largely ac-
count for the inequalities associated with the blanket and thermal cycle.
These inequalities depend sensitively on the blanket/first wall concept uti-
lized. For purposes of illustration, we assume a vanadium first wall and a
liquid lithium blanket. In the blanket, liquid lithium acts as both a coolant
and a tritium breeder. Given this choice, we can state the following inequal-
ities which are based on the results of detailed blanket design studies [34]:

7 < 42 %, (2.38)

M < 1.20, (2.39)

b > 1.0 m. (2.40)

The maximum value of 77 is a strong function of the blanket/first wall con-
cept and results from considerations of power plant thermodynamics. The
limit on M is consistent with the assumption of no fissionable materials in
the blanket. Finally, the minimum value of b is primarily determined on the
basis of shielding and tritium breeding requirements. Because the shielding
requirements for normal coils are much less stringent than for superconduct-
ing coils, the intermediate region thickness characteristic of resistive-magnet
tokamaks is significantly smaller than for superconducting tokamaks.

Since the present model does not include detailed plasma equilibrium
calculations, the power dissipated in the OH and PF coil systems must be
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estimated using results from more detailed analyses [10]. An inequality that

gives rough agreement is

fPF > 33 %. (2.41)

To keep the design in the regime of typical commercial power plants it is

finally required that the net electric power output not get unacceptably high

PE < 1200 MW. (2.42)

Inequalities for Coil Region Parameters

The value of p in a resistive tokamak is primarily set by the operating tem-

perature of the TF coils and the fraction of the coil cross-sectional area that

is available to carry current (the rest being required for cooling and struc-

ture). Here, operation at room temperature with coils that consist of 90 %
copper (by area) is assumed. With this,

p > 1.88 x 10-80 - m. (2.43)

2.2.4 Problem Statement

Given the previous discussion, it is now possible to formulate the design

optimization procedure in mathematical terms. But first, it is convenient to

make the change of variables

e = a/Ro, (2.44)

eb = b/Ro, (2.45)
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where e can be recognized as the plasma inverse aspect ratio and eb can be

thought of as a dimensionless thickness for the intermediate region. In terms

of the analysis, E replaces a and 4 replaces Ro as independent variables. This

set of variables is motivated by the fact that the beta limit depends directly

on e as opposed to a and Ro separately. Other choices of variables lead to a

much more complicated analysis.

Using the new variables along with Eqs. (2.20) and (2.24), the figure of
merit given in Eq. (2.21) becomes

C = KEP (M(1 fR)) + KFI (87b 3 [+ ±( K - (2.46)

It is possible to eliminate the 3 scaling constraint immediately by substi-

tuting Oe from Eq. (2.27) into Eq. (2.4). This gives the following expression

for the fusion power:

27 2W(To)c0b3Bge4 (4
PF - r 3 (2.47

PR can be also be written in terms of the new variables

PR = 47rpbB,(1 + fPF)G(F (2.48)
Pof(1 - E - f)

where GTF now becomes

GTF + n + K1± + Eb + 1- (2.49)

Eliminating Bo from Eq. (2.47) using Eqs. (2.25) and (2.48) allows us to

express the plant power balance constraint given by Eq. (2.24) as a function

of the independent variables
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G(,5,, n.);= E(q, co, 1, M, fPF, PE, b, p, fR) (2.50)
W(TO)

Here,

e4 (1 - 2 - e 3)2

G =E 2 K (2.51)
EbGTF

describes the geometrical aspects of the constraint and

(_ ( i p2(, + fpF)2)ig
E -4 ()2 [71P fR] (2.52)

pO c9 gMPb fI

describes the physics and engineering aspects of the constraint. The To de-
pendence is separated out due to subtleties associated with the application

of the Murakami density limit.

At this point, the mathematical basis for the design optimization is com-
pleted. Equation (2.46) is to be minimized subject to the constraint given in
Eq. (2.50). This minimization is performed over the independent variables

e, 6b, Ka, qi, cO, 7, M, fPF, PE, b, p, fR, TO

with the quantities

KBP, KFI

held fixed.

We show that C varies monotonically with respect to several of the in-

dependent variables. In such cases, the minimization can be simply accom-

plished by invoking the inequalities discussed in the previous section. Thus,
despite the relatively large number of variables and the complexity of the gov-

erning equations, the optimization can be performed essentially analytically.

However, of interest as well is the sensitivity of the cost/watt to variations in
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limiting values prescribed by the inequalities. Deriving this behavior requires

straightforward numerical calculations.

Once the independent variables are calculated they may be used to de-

termine the values of other important derived quantities given by

C, j3e, no, PF, PR, Pw, TE, a, a 0, C, B0, Ip.

In the context of our model, specification of the independent and derived

quantities fully describes the design.

2.3 Optimization I

One of the most important parameters affecting reactor performance turns

out to be the Murakami parameter cm. Due to subtleties associated with the

application of the Murakami limit, it is convenient to consider two separate

optimization procedures (leading to two different reactor designs). In the first

case (Optimization I), C will be minimized independent of the Murakami

limit and cM will be calculated so as to satisfy Eq. (2.35). In the second

case (Optimization II), C will be minimized with cm held fixed at a value

consistent with results from current experiments. We will see that the current

Murakami limit provides very stringent limits on resistive-magnet tokamak

reactor performance.

In Table 2.1, designs resulting from the assumptions of both optimiza-

tion procedures are displayed. These designs are quite dependent on the

inequalities and constraints derived previously: application of a different

set of assumptions could lead to a different and, perhaps, more desirable de-

sign. In the discussion to follow, we outline the analysis consistent with the

assumptions of Optimization I and examine the sensitivity of the results to

variations in the inequalities.
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Table 2.1: Base Design Parameters

Parameter Optimiza tion I Optimization II
E 0.37 0.40
a (m) 1.7 2.9
b(m) 1.0 1.0
c (m) 2.0 3.3
Ro (m) 4.7 7.1

2.0 2.0
gi 1.5 1.5
CO 0.165 0.165
,q 0.42 0.42
M 1.2 1.2
fPF (%) 0.33 0.33
PE (MW) 1200 1200
p (10" Q . M) 1.9 1.9
fA (%) 0.25 0.25
no (10 20 m-3 ) 3.5 0.88
To (KeV)) 17.5 57.6
CM (10 2 0 m- 2 

.T
1 ) 1.8 0.8

AN8.1 8.8
PTF (MW) 300 300
Pw (MW/m 2) 5.0 2.0
TE,NA (sec) 12 12
rEM (sec) 13 34
rE,KG (sec) 0.73 1.4
Bo (T) 4.5 3.9
I, (MA) 19 30
W(T 2.0 3.7
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Figure 2.2: Graphical representation of power balance constraint.

2.3.1 Application of Power Balance Constraint

The power balance constraint [Eq. (2.50)] allows one of the variables to be

calculated in terms of those remaining. For this analysis, we choose to solve

for 66. We see that Eq. (2.50) is a complicated transcendental equation

which, in general, must be solved numerically. However, it is possible to

gain qualitative insight about the behavior of eb, which will allow many of the

optimizations to be performed analytically.

Critical to the analysis is the observation that G [Eq. (2.51)] is a monoton-

ically decreasing function of e6 if c and re are assumed fixed. This behavior

is shown in Fig. 2.2. On this plot, the power balance constraint is satisfied

at the points of intersection between the decreasing function G(e 6,) and the

horizontal line G = E/W(T0 ). These intersections give the value Of eb for a

particular choice of the other parameters.

Two important facts can be inferred from Fig. 2.2. First, eF, is maximized

by reducing the value of E/W(T0 ). Second, the resulting value Of b varies
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less than linearly with E/W(To). These observations, which hold for all

values of e and r., will be used extensively in the optimizations to follow.

2.3.2 Optimization with respect to Inverse Aspect Ratio

For many of the independent variables, C is shown to vary monotonically.

Hence, it is possible to perform design optimizations by invoking the ap-

propriate engineering and physics inequalities. In the case of e, however, C

exhibits a minimum. By a straightforward calculation of the partial deriva-

tive of C with respect to e, it is possible to derive an approximate expression

for the value of the "optimum" inverse aspect ratio e.,,. First, we notice that

most of the ohmic power dissipated in the TF coils is due to the inner TF

leg. Hence, with little error, it is possible to neglect the contributions of the

top and outside TF legs. This yields the simplified expression for GTF

GTF __ 1 + (2K. - 1)E + b (2.53)

Plugging Eq. (2.53) into the plant power balance constraint and solving for

e5 gives

1rE (254
l=1b - {(1 + (2n. - 1)F + Fb)2fb} . (2.54)e W(To)r.

We now neglect the variation of the quantity (1 + (2r. - 1)e + Eb) 2 Eb since it

does not contribute in any fundamental way to the existence of the minimum

in C. This turns out to be a good approximation for a fairly wide range of

elongations and aspect ratios if we take (1 + (2n. - l)c + %)2eb a 1. With

this,

b E[ (2.55)
f W(To)K.3
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Finally, we note from Eq. (2.46) that, except at large elongations, the mini-

mum in C with respect to e largely corresponds to the maximum in eb. Thus,

setting the derivative of Eq. (2.55) with respect to e to zero yields the desired

result

WE (2.56)set*W(Tor. an .6

The existence of Ept is explained by Eq. (2.51) which suggests that as

e approaches either zero or one, eb must decrease accordingly in order for

the power balance constraint to be satisfied. Decreasing 4 is equivalent to

increasing Ro so the volume of the fusion island and C increase correspond-
ingly. Physically, in the limit of small e, both a and the allowed ge decrease.

Thus, a larger major radius is required to maintain a constant fusion power.

In the limit of large e, a smaller relative fraction of the space on the inboard

side of the device is available for the TF coil. Hence, a larger major radius is

required to keep the recirculating power constant. Figure 2.3 is a plot of C

vs. e with eb varying so as to satisfy Eq. (2.50) and all other variables taking

on the values shown in Table 2.1. This curve shows that the minimum in

cost/watt is quite strong.

The existence of an optimal aspect ratio is not a unique feature of resistive

tokamak reactors. Freidberg and Wesson (35] have demonstrated that in a

superconducting tokamak reactor the cost is minimized for eg,, = 1/6. This

result is a consequence of a constraint on superconducting magnets that

requires that the field at the coil be less than some critical field (usually

10-12 T).

On the basis of the 0 limit alone, one might conclude that it is desirable to

make the aspect ratio as tight as technologically possible [36]. However, the

introduction of the power balance constraint leads to an optimum c which,

for the parameters assumed here, generally lies in the range ept =z 0.3-0.5.
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Figure 2.3: Dependence of C and VFr on e for cm = 1.8 x 1020 m-2 .T
with es chosen to satisfy the power balance constraint and all other parameters
fixed at their base design values.

Furthermore, Eq. (2.56) shows that this value is a slowly varying function

of the other parameters so it would not be expected to change greatly upon

application of different assumptions. Alternatively, optimizations on other

reactor parameters can yield a significant reduction in the cost/watt without

the need for tight aspect ratio. Since operation at e., appears to be desirable

from the point of view of minimizing the cost, this model suggests that ultra-

tight aspect ratio might not be necessary for improving resistive tokamak

reactor performance.

2.3.3 Optimization with respect to Parameters Appearing
Only in the Physics/Engineering Constraint

From Eq. (2.46) we see that the variables q1, co, p, and fPF do not appear

explicitly in the expression for C. Instead, they enter the calculation only
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indirectly through 4. Since C is a monotonically decreasing function of eb,

the cost/watt can be be minimized with respect to these variables by max-
imizing e. From the discussion above, this is accomplished by minimizing
E. In particular, Eq. (2.52) implies that qi, p, and fPF must be minimized
and co maximized. Since E varies monotonically with respect to these quan-
tities, the inequalities given in Eqs. (2.31), (2.32), (2.41), and (2.43) must
be invoked. This leads to values qi = 1.5, p = 1.88 n - M, fPF = 33%, and
cA = 0.165 used in the base design.

A large value of the ratio co/qi is desirable because of the resulting favor-
able effects on the maximum allowed 1t. In particular, the sensitivity of C
to c0/q is given in Fig. 2.4. In this plot, C is seen to decrease monotonically
with co/qi with all other variables except for e and eb fixed at the values given
in Table 2.1. e6 is calculated numerically using Eq. (2.50) for e = e.,t at each
value of co/qi. Thus, each point on the curve represents an optimized design
for a given co/qi. Note, however, that not all of these designs are acceptable
since they would lead to violation of the wall loading inequality [Eq. (2.36)].

Figure 2.4 shows that C is a moderately strong function of qi and c's. Even
so, we see that there appears to be little improvement in reactor performance
to be gained by relaxing the limits on these physics parameters somehow

(possibly through the judicious use of plasma shaping and profile control).

On the other hand, if the base design values cannot be realized, a substantial

cost penalty must be paid. This point is particularly important given the

current ambiguity associated with the statement of the MHD kink limit. One

should note that q1 and co only appear in the calculation as a consequence of

the introduction of the first-stability 3 limit. Hence, in this case, increasing

flt actually does result in the total cost being lowered although the effect

becomes less pronounced once some minimum level of performance (more or

less specified by the base design values) is obtained.

Small values of p are clearly desirable since they reduce the coil volume

needed to achieve a given fR. One might thus be tempted to speculate
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Figure 2.4: Sensitivity of C to variations in celqi for cM =
1.8 x 1020 M- 2 T1  and all other parameters fixed at their base design values.

that resistive-magnet tokamak reactors with TF coils operating at cryogenic

temperatures would realize a large increase in performance in view of the

resulting large reductions in coil resistivity. The present formulation of the

model is unable to adequately address this question because of the additional

requirement to include the (adverse) effects of cryogenic cooling systems on

the cost and the power balance relations. However, more detailed studies

show this cost to be prohibitive [10]. Note also that the model presented here

cannot be applied to reactors with superconducting coils since an entirely

different set of inequalities and constraints would be required.

Decreasing fpF allows a larger value of PTF for a given value of fR thus

reducing the coil volume and C. This effect, although favorable, is relatively

small for reasonable variations in !PF.
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2.3.4 Optimization with respect to Net Electric Power

E decreases with increasing PE so, consequently, eF is an increasing function
of Pg. In addition, Eq. (2.46) shows that the cost/watt of the balance of
plant is independent of PE. As a result, we recover the usual result that the
cost/watt is minimized by setting PE to its maximum allowable value which,
from Eq. (2.42), is 1200 MW. The fact that e increases with PE is somewhat
surprising in that this implies that the fusion island volume actually decreases
with increasing P- This occurs because fR is held constant as PB is varied.
Hence, small values of PE necessarily require small values of PR. To attain
small recirculating powers requires a large coil volume. Since the volume
of the nuclear island is dominated by the volume of the coils, the fusion
island volume increases accordingly. The variation of C with PE is shown in
Fig. 2.5. In general, a fairly large penalty must be paid if operation at low
power outputs is desired. At the same time, C is not significantly reduced
by increasing PE over the base design value.

2.3.5 Optimization with respect to Intermediate Region
Thickness

From Eq. (2.52), E is seen to be a function of 1/b. This, in turn, implies
that Eb is a decreasing function of b. As previously stated, Eb(E) increases
at a rate less than linear. Hence, the ratio b/ 4 , which appears in the fusion
island contribution to the cost/watt, is actually an increasing function of
b. Thus, unsurprisingly, we find that minimizing b minimizes C. Invoking
the inequality given in Eq. (2.40) gives the design value b = 1.0 m. The
sensitivity of the cost/watt to b is shown in Fig. 2.6.
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Figure 2.5: Sensitivity of C to variations in PE for cM = 1.8
and all other parameters fixed at their base design values.
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Figure 2.6: Sensitivity of C to variations in b for cM = 1.8 x 1020 m-2 .T-1
and all other parameters fixed at their base design values.
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2.3.6 Optimization with respect to Thermal Conversion
Parameters

In Eq. (2.46) we see that maximizing the quantity t7M reduces the cost of

both the fusion island and the balance of plant. This, along with Eqs. (2.38)

and (2.39), leads to the choices 77 = 42% and M = 1.2 for the design. Large

values of iM are beneficial because they reduce the amount of fusion power

that must be generated to produce a given PE. This, in turn, reduces the

plasma volume and the turbine plant size.

2.3.7 Optimization with respect to Elongation

Equation (2.51) shows that eb increases with n.. Hence, Eq. (2.46) predicts

that C is minimized by operation at large vertical elongations. Referring to

Eq. (2.33)), the base design is characterized by re. = 2.0.

The Troyon limit suggests that values of n. above the vertical stability

limit might be beneficial for reactor performance in that larger Ot values are

then allowed. This has led to proposals for reactor configurations charac-

terized by extremely high elongations [37). However, vertical stability issues

aside, it may be too optimistic to assume that Pt increases linearly with n.

for large values of n.. Some authors have reported that the . scaling in the

Troyon limit may saturate or even eventually decrease with P. [4]. We model

this effect by writing the 3 limit in the form

,) ,(2.57)

where

+ (2.58)

and K, is a parameter that reflects the saturation of Ot with increasing r..

With this modification the power balance constraint takes the form
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Figure 2.7: Sensitivity of C to variations in m. and m, for CM =
1.8 x 102* m- 2 T-' and all other parameters fixed at their base design values.

4(- - E__)2 m3(1 + K,)2
O(ej, 1, Ka I ,) EbG rF(Ku+K.)2 (2.59)

Note that as m, approaches infinity (i.e. no saturation) we see that O reduces

to G.

Figure 2.7 shows that, in the case where K, = oo, increasing the elongation

always improves reactor performance. This is due to the favorable m. scaling

of the 3 limit. However, the decrease in C becomes less pronounced as m.

increases and C becomes almost constant when n. ~- 3. The reason for this

is that as the plasma elongates, the length of the inner TF leg also tends

to increase. The resulting increase in coil resistance partially cancels the

beneficial contribution of increased e.

Unsurprisingly, Fig. 2.7 also shows that the benefits of high elongations

are reduced as the value of the parameter K, decreases. In fact, for moderate

values of m, a broad minimum in the cost is observed; that is, there is an
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optimum n.. The observation that the C vs. . curve saturates or even

displays a minimum are, again, unexpected from cbnsiderations of the 3
limit alone.

2.3.8 Optimization with respect to Recirculating Power
Fraction

The value of C exhibits a minimum for some fR between zero and one. This

behavior is explained as follows. In the limit of large fR, C is dominated

by Cap which, from Eq. (2.46), is seen to increase with fR. Specifically,
increasing fR at constant Pv necessitates a corresponding increase in PR.

Power balance then requires that PF increase as well. This increased thermal
output leads to the need for larger thermal conversion facilities which, in turn,
causes CBp to increase. In the limit of small fR, Cp1 dominates C since the

TF coil thickness must be increased in order to attain small values of PR.

This leads to an increase in the volume and cost of the fusion island.

As Fig. 2.8 shows, C is minimized for a value fR = 0.32. Unfortunately,
this optimum design is characterized by a wall loading which exceeds the

maximum value given by Eq. (2.36). We thus choose fR = 0.25 to satisfy

that constraint. Because of the broad nature of the minimum, this choice

results in only a marginally higher value of C.
In the context of this model there are relatively large uncertainties asso-

ciated with the optimization of fn. First, the wall loading inequality used

here is not a sharp limit; there is a substantial variation in the maximum Pw

allowed by different scientists working in the field. Second, the exact loca-

tion of the minimum is actually not well known anyway since it is sensitive

to the details of the costing model which is highly idealized in this analysis.

Finally, the model does not consider factors (such as the cost of TF magnet

power supplies) which might further limit the desirability of large values of
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Figure 2.8: Sensitivity of C to variations in fR for cm = 1.8 x 1021 M-2 .T-1
and all other parameters fixed at their base design values.

fR. However, even with these considerations, the base design value fR = 0.25
is consistent with results obtained by more sophisticated studies [10].

2.3.9 Optimization with respect to Peak Temperature

We see from Eq. (2.50) that eb increases with W(To). Equation (2.46) then

suggests that W(To) should be maximized in order to yield the lowest cost.

Integrating Eq. (2.5) numerically shows that W(To) has a broad maximum

at To = 17.5 KeV where W(To) = 2.25 MW -m-' - T-'. Clearly, this is the

desired operating point in the absence of other constraints.

2.3.10 Calculation of Derived Variables

Given the independent variables, it is now possible to complete the design

by calculating the derived quantities (including, in this case, cm). These

values are shown in Table 2.1. These results show that resistive- magnet
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tokamak reactors possess several unique features. In particular, we see that

the base design is characterized by low field (Bo = 4.5 T), moderate beta

(,3t = 8.1 %), moderate wall-loading (Pw = 5.0 MW/rn 2 ), and large plasma

current (I,, = 19 MA). We also notice that both Neo-Alcator and Mirnov

scaling predict longer confinement times than that required by the ignition

constraint, Eq. (2.37). However, ignition is clearly not possible according

to Kaye-Goldston scaling. Finally, we see that resistive-magnet tokamak
reactors are particularly vulnerable to the Murakami limit due to the low
values of B0 . Specifically, cm a 1.8 x 1020 m-2 -T is required to allow

operation at the maximum W(To).

2.4 Optimization II

The value of cm calculated in the previous section is more than a factor of

two higher than that obtainable in present-day experiments. In view of the

experimental progress already made towards extending the Murakami limit,
it does not seem unreasonable to assume that eventually values of cm of

this magnitude might be achievable in tokamaks. If, on the other hand, cM

cannot be increased, then Eq. (2.35) becomes an additional constraint on

the design, To is eliminated as an independent variable, and the optimization

procedure is again performed. Qualitatively, the procedure is identical to

that just presented so the details are omitted. The results of this modified

optimization are shown in Table 2.1 for cm = 0.8 x 10 2 0 m- 2 -T-.

In Table 2.1 we see that a significant rise in To has accompanied the

decrease in cM. This effect is explained on the basis of Eq. (2.34). As cm

decreases no must decrease accordingly. Since PE is fixed, ,t is more or less

fixed and TO must rise to produce the necessary plasma pressure. Reducing

Ot (by raising qi for example) would lower To but, as the previous results have

shown (see Fig. 2.4 for example), this would lead to a large increase in C.
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Figure 2.9: Sensitivity of C and To to variations in cm with all other parameters
fixed at their base design values.

Table 2.1 also shows that, in addition to imposing stiffer requirements

on plasma heating technology, the temperature increase causes the reactor
to become larger and costlier due to a decrease in W(To). Despite this, the

ignition inequality is still satisfied if either Neo-Alcator or Mirnov scaling
applies although the ignition margin is smaller. The sensitivity of C to

variations in cm is shown in Fig. 2.9. The economic penalty for operation at

low values of cM is seen to be substantial.

2.5 Discussion

We have developed a simple analytic model which provides reliable qualita-

tive and semi-quantitative information about the design of a fusion reactor.

As a specific example, a resistive-magnet tokamak reactor has been investi-

gated. Our goal has been the design of a reactor, optimized with respect to
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cost and subject to the constraints of favorable plant power balance and first

region of stability beta scaling.

As a general comment, the results show that resistive-magnet tokamak

reactors are somewhat more compact than their superconducting counter-

parts primarily because less shielding is required. The design is to a large

measure dominated by the ohmic losses in the central leg of the TF coil. To

keep the losses to an acceptable level, the toroidal field in the center of the

plasma is approximately 3-5 T, a noticeably smaller value than anticipated

in superconducting reactors. Thus, the resistive coils are not dominated by

stress or current density considerations. Also, the low field may require op-

eration at lower densities and higher temperatures than are optimal from the

(cr) reaction rate curve because of the Murakami density limit. These high

temperatures have been shown to have a significant adverse effect on overall

reactor performance. Experimental progress in raising the critical Murakami

density could greatly enhance the prospects for resistive-magnet tokamak

reactors.

The primary focus of the analysis has been the investigation of the de-

sirability of high beta in an overall reactor design as achievable by different

methods suggested by a first region of stability P limit [Eq. (2.27)]. The

results from the analysis are as follows:

1. Raising the coefficient c, is desirable. However, ca = 0.165 used in the

design is already near its maximum value since it has been determined

by an optimization over profiles and cross-sections. In practice, it is

more likely that co will be somewhat lower than 0.165 because the opti-

mized profiles may not be realized. If the achievable value is much less

than the base design value a large economic penalty could be paid. On

the other hand, once the design value is obtained further improvements

yield small cost savings.
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2. Increasing e raises the Oe limit but has a serious adverse effect when the
aspect ratio becomes too tight. Specifically, as e increases at fixed major
radius, the cross-sectional area of the central TF leg decreases. This, in
turn, raises the the ohmic power dissipated leading to an unfavorable

plant power balance. In practice, there is an optimum aspect ratio
which balances the favorable e scaling of Ot with the unfavorable e
scaling of PR. For our design, the optimum is a relatively steep function
of E and has a value e = 0.37.

3. Increasing i. raises the Ot limit and, for r. < 2, has a strong favorable
effect on overall reactor performance. However, these desirable effects

become less pronounced at high elongations. As r.. increases, the center

leg of the TF coil becomes longer. This leads to an increase in the
ohmic dissipation. For very large re., the gains in fusion power due
to increased r. are essentially canceled by the increased ohmic losses.
Consequently, once r. > 3, the net gain in reactor performance due to

elongation saturates and further increases in r. do not lead to reduced

costs. The benefits of elongation are further reduced by the possibility

of a saturation in the Ot limit for large r.. In this case there is an

optimum elongation although the optimum is quite broad as a function

of r.. Finally, high elongation may be difficult to achieve in an actual

experiment because of axisymmetric (n = 0) modes.

4. In general, operation at low qj is desirable for improved reactor per-

formance since increased toroidal current leads to higher values of 0,.

This effect is relatively strong until the base design value, qi = 1.5, is

obtained. Then, lowering qi does not significantly reduce plant costs.

However, there are large uncertainties as to whether the base design

value could be obtained in practice. First, large plasma currents could

greatly complicate the design of the PF and OH coil systems. This
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effect will be illustrated in Chapter 4. Second, and perhaps more im-

portant, there is some confusion as to whether, qj or q. is the critical

parameter for stability. In large aspect ratio circular plasmas these

quantities are identical. In tight aspect ratio non-circular plasmas they

are quite different and can lead to dramatically different design strate-

gies. Because of arguments concerning the presence of a separatrix near

the plasma surface, it appears that qi is the relevant stability parame-

ter. Finally, the scaling for the minimum of q; for stability is not well

established at present. The determination of the true form of the MHD

kink/disruption limit, which might be a function of e and K., remains

an important problem for the fusion physics community.

In summary, our simple analytic model demonstrates how theoretical and

experimental physics laws impact the design of a tokamak reactor. We have

investigated various paths to high beta based on first stability scaling laws

and determined which of these is most promising from the viewpoint of overall

reactor desirability. Perhaps surprising to some, our results show that, in

certain cases, raising Ot can lead to a negligible or even adverse effect on

overall reactor performance.

69



Chapter 3

Variational Equilibrium

Due to its obvious relevance to tokamak performance, the calculation of

toroidally axisymmetric equilibria has long been the object of intense the-

oretical interest. In its simplest form, this problem consists of solving the

Grad-Shafranov equation [13,14]

A'V = -pORJ,(R, ) (3.1)

subject to the boundary condition

sb 4,= 0 (3.2)

(5, denotes the surface of the plasma) and the constraint that the flux func-

tion 0 remains regular at the magnetic axis. Since it is assumed that the

plasma shape does not vary during this calculation, this is often called the

"fixed boundary" equilibriwn problem.

The A" operator is defined

- 81  &3+ '
A*O(RZ)=R I R + (3.3)

and the toroidal current density J, is written
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poJ,(R, t) = poRp'(b) + 1FF'(V;), (3.4)

where p(0) and F(Vi) are the usual free functions relating to the pressure

and toroidal field profiles. Note that we have adopted the convention that

the prime-operator (') denotes differentiation of a function with respect to

its argument.

Since the A operator is elliptic and the boundary condition is of the

Dirichlet form, we can conclude that the problem is mathematically well-

posed [38]. However, for most realistic choices of p'(0) and FF'(0), the

Grad-Shafranov equation is nonlinear. Also, for reasons of MHD stability,
plasma cross sections tend to have complicated dee or bean shapes. As a

result, solving the Grad-Shafranov equation in general is quite difficult.

Nevertheless, analytic solutions have been found for special choices of

geometry and/or profiles [39]. For instance, inverse aspect ratio expansions

have been employed to describe conventional and high-beta tokamaks with

circular cross-sections [40,41]. Also, judicious choices for the form of the

free functions (p'(V) = -A, FF'(7) = -C where A and C are constants)
have produced good results for rather complex geometries [42,43]. Finally,

by assuming that current flows only on the surface of the plasma, Freid-

berg and Haas were able to develop an analytic equilibrium model valid for

arbitrary shapes [44]. These calculations have been very successful at yield-

ing qualitative and semi-quantitative information regarding the properties of

toroidal equilibria. However, in order to accurately analyze most present-day

tokamaks, it is necessary to solve the Grad-Shafranov equation with all of

its generality. This can be accomplished only through the use of numerical

techniques.

Over the years, a number of computer programs have been written to

solve for tokamak equilibria. Three of the most commonly used codes today

are NEQ [45], developed at Oak Ridge National Laboratory; PEST [46,47],
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developed at Princeton University; and GAEQ [48J, developed at GA Tech-
nologies, Inc. These three codes employ sophisticated finite-difference tech-
niques to solve the Grad-Shafranov equation to high accuracy. As a result,
they have been very successful in predicting experimental equilibrium prop-
erties of tokamaks.

Despite their accuracy, there are some applications for which the exact
equilibrium codes are simply not suitable. As an example, consider the classic
problem of inverse equilibrium determination. Here, the goal of the analysis
is to reconstruct the shape of the plasma flux surfaces and the toroidal cur-
rent density profile from experimentally obtained magnetic probe and x-ray
tomography data. Furthermore, in order to be a useful on-line experimental
tool for between shot analysis, it is necessary that results be obtainable in a
few seconds on a non-vectorizing mainframe computer such as a Vax 11/780.
Unfortunately, a typical equilibrium calculated by NEQ, PEST, or GAEQ
requires 20-400 secs of CPU time on a Cray-XMP supercomputer. Since a
Vax is typically 10-60 times slower than a Cray, the wait for results would
be unacceptably long.

Clearly an extremely fast equilibrium solver would be desirable for the
purposes of inverse equilibrium calculation. Another application where speed
is particularly important is the problem of scanning a range of plasma pa-
rameters to determine an optimal design. Suppose, for instance, one wished
to incorporate equilibrium information into the resistive-magnet tokamak
reactor design optimization discussed in the last chapter. To thoroughly in-
vestigate the variation of C with respect to even a few parameters could
potentially require hundreds of equilibria which, even on a Cray, could re-
quire a prohibitive amount of computer time. Even if the computer time
was available, the conventional equilibrium codes might still not be desir-
able for this purpose because of the obvious desire to accomplish the scan
in a semi-automatic fashion. Specifically, NEQ, PEST, and GAEQ typically

have complicated input files and their convergence to a reasonable answer
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is relatively sensitive to various initial parameter specifications. Hence, it is

not clear that a wide variety of cases could be considered without significant

human intervention.

On the basis of the above examples, one can conclude that there are appli-

cations where the speed, ease-of-use, and robustness of an equilibrium solver

are of primary importance. However, it should also be realized that these

qualities cannot be obtained without cost since NEQ, PEST, and GAEQ

use state-of-the-art numerical techniques to find the exact solution of the

Grad-Shafranov equation as efficiently as is currently possible. In particu-

lar, dramatic increases in execution speed can be achieved only by giving

up some accuracy in the solution. In many cases, this is a desirable trade-

off. For example, in the case of the inverse equilibrium determination, it

is probable that equilibrium errors on the order of the expected experimen-

tal measurement errors could be tolerated. This reasoning also holds for

the resistive-magnet tokamak reactor design optimization where small errors

in the equilibria would be offset by the fairly rough approximations made

elsewhere in the model.

In this chapter we discuss methods, based on variational techniques,

through which an approximate fixed boundary equilibrium-valid for general

choices of geometry and profiles-can be obtained in less than one second

on a Vax 11/780 and in a few minutes on a Macintosh personal computer.

We then demonstrate that, despite the computational speed at which they

are obtained, these approximate equilibria agree very well with exact calcu-

lations.
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3.1 Variational Formulation

Variational techniques [49] are concerned with the search for functions that

minimize an integral relation called a Lagrangian. When the Lagrangian is

correctly defined, these techniques prove to be quite powerful tools for the

solution of very complicated differential equations.

In the case of the Grad-Shafranov equation, the Lagrangian is written

=Af LdRdZ, (3.5)

where the integration is over the cross-section of the plasma and L is the

Lagrangian density defined

L = 1(VO)2 - 2poRp(O) - 1F2(V). (3.6)

We can take the variation of the Lagrangian with respect to ik by letting

--* 4 + 6b. This variation in 0 produces a corresponding variation in L of

the form

R aR aR +Z 9Z

(AoR2pIiV) - FF'(k)) e5Ob]I dRdZ. (3.7)

Integrating Eq. (3.7) by parts and applying the condition that 6 = 0 on the

surface of the plasma yields

ME = -2 L. 11 [& + po R2p'(,O) + F F'(0)] 6V;} dR dZ. (3.8)
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On the basis of Eq. (3.8), we can see that since 6V is an arbitrary variation,
the only choice for b that will make the Lagrangian stationary (i.e. 6r- = 0) is

a solution of the Grad-Shafranov equation. Hence, finding the stationary val-

ues of the Lagrangian is equivalent to solving the original partial differential
equation.

For finding the exact solution to the Grad-Shafranov equation, varia-

tional techniques offer no obvious advantages over conventional techniques.
The power of the method lies instead in the ability to use the Lagrangian

to construct accurate approximate solutions. This is accomplished by sub-
stituting a set of trial functions or "guesses" into the Lagrangian. It is not
necessary that the trial functions satisfy the Grad-Shafranov equation or even

the boundary conditions though the closer they are to the correct solution,
the better the final approximation will be. If the set of trial functions is gen-
eral enough to include the exact solution, the discussion above demonstrates
that this result can be identified since it causes the Lagrangian to be station-

ary. If, on the other hand, a limited set of trial functions is used, the one

that causes the Lagrangian to be stationary represents the best guess for the
solution out of all the trial functions considered. Moreover, it can be shown

that should the optimal trial function be used to calculate certain integral

quantities, their accuracy will be greater than that of the trial function itself.
The ability to use the Lagrangian to pick out optimal trial functions

offers the potential for an enormous reduction in the difficulty associated

with solving the Grad-Shafranov equation. This is because a small set of trial

functions that very accurately approximate the exact solutions of the Grad-

Shafranov equation can be readily deduced. As a result, the process of finding

the optimal trial function turns out to be very simple and quick. For example,
Lao, et aL (50,511 employed a variational approach to reduce the tokamak

equilibrium problem to that of solving a set of coupled ordinary differential

equations. Also, Choe and Freidberg [52] applied variational techniques to

analytically compute stellarator and high beta tokamak equilibria for use in
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ballooning calculations. In this thesis, a series of trial functions will be used
to enable us to find accurate, approximate solutions to the Grad-Shafranov
equation by simply minimizing a function of a few variables.

3.1.1 Introduction of Normalized Flux

In practice, it is not convenient to solve the equilibrium problem as it is
formulated above (Eqs. (3.1) and (3.2)]. This is due to the nonlinear appear-
ance of 4' in Eq. (3.4). Experience has shown that this nonlinearity tends to
introduce instabilities into the numerical algorithms used to search for the
optimal 4'. Since code robustness is a major goal of the present calculation,
this behavior is unacceptable. Also unacceptable are problems associated
with the accurate specification of profile shapes. For purposes of illustration,
assume the pressure profile is written in the form

p(O) = po' 2(1 + a#bj2 )

While it is clearly possible to guarantee that p = .0 at the plasma edge,
it is very difficult to specify the pressure at the magnetic axis (ostensibly
controlled by po) or the width of the pressure profile (ostensibly controlled
by a) since the magnitude of 0 on axis is not known initially. Clearly, it
would be desirable to be able to exercise more control over the profiles than
this.

With minor modifications, it is possible to state the problem in an equiv-
alent manner that alleviates the above concerns. Since the flux label in p
and F is arbitrary, Eq. (3.4) can be re-written in the following manner

J,(R, 0) = [b, h'() + (1 - b.,) h'()], (3.9)

where C and b, are constants; h'(4) and h',( ) formally replace p' and FF'
respectively; and 4 is defined
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- =(3.10)

V;o specifies the flux at the magnetic axis which, for future reference, is as-

sumed to be located at R = R,, Z = 0. Hence, , represents a version

of the flux function normalized to unity at the magnetic axis. Substituting

Eqs. (3.9) and (3.10) into Eq. (3.1) yields

?koA*4 = -poRJ,(R, 4) (3.11)

as the new, but equivalent, form of the Grad-Shafranov equation which must

be solved subject to the transformed boundary condition

, P = 0. (3.12)

The major advantage of the modified form of the problem is that the free

functions now depend only on the shape of the flux rather than its magnitude.

This allows much greater control over profiles to be exercised while at the

same time improving the numerical robustness of solution algorithms.

Another consequence of the reformulation is that the Lagrangian describ-

ing the Grad-Shafranov equation must be modified. Referring to Eq. (3.6),
we can see that the modified Lagrangian takes the form

L=L LdRdZ, (3.13)

where

, (V )2 + 2C bp h,(4) + (1 - b,) Rh(4) . (3.14)
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Furthermore, if we vary 4, we can see that this yields a correct variational
principle for Eq. (3.11), assuming that 0o is held fixed.

In the original problem, 7/O was calculated as a natural result of the
minimization of L with respect to k. In the modified problem, ?o cannot
be varied. This fundamentally different behavior can explained as follows.
Suppose we minimize t with respect to a class of trial functions for 0 that
is completely general, satisfying only the boundary condition 4 = 0 on the
surface and = 1 at the magnetic axis. Since we have shown previously that
the problem is mathematically well-posed, a that minimizes i will be found
for any value of o. However, in general, the calculated i will not satisfy
Eq. (3.11). Specifically, only one particular value of 0o will result in the Grad-
Shafranov equation being exactly satisfied. Hence, in the modified problem,
,0 acts as a normalization constant that must be chosen in accordance with
Eq. (3.11).

When the class of trial functions is general, tPo can be chosen to ensure
exact equality of the left and right sides of Eq. (3.11) throughout the entire
plasma. However, in this thesis, a finite set of trial functions will be used
to obtain approximate solutions; so, Eq. (3.11) will usually not be satisfied
everywhere inside the plasma. Hence, the correct choice of 00 is less clear.
One possibility is to multiply Eq. (3.11) by t"-where n is a constant-and
integrate over the plasma cross-section (i.e., take the nth moment). This will
yield an infinite number of correct relations; but, due to the approximate na-
ture of the solutions for ', each will also give a slightly different value of
0. The accuracy of the 00 values resulting from a number of these mo-

ment equations has been investigated and it has been found that an iterative
procedure based on the n = 1 moment

f C b, ,h'() + (1 - b,)jjh'(0)] ' dRdZ
no = -C (3.d5)0 0 = -C P (V )2 d R dZ ( - 5
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gives extremely good agreement with exact equilibria while, at the same time,
being easy to implement in a computational sense. This procedure will be
described in Section 3.1.4.

The last step required in order to completely define the modified problem
is the specification of the free functions. A convenient choice that models a
wide variety of profiles is

, exp[-a,,j(1 - @)] - exp(-a,,j) (316)
1 - exp(-a,,)

where a,, and af are parameters that control the steepness of h'(,) and h' (,)
respectively. As Fig. 3.1 shows, the more negative these values become, the
flatter the profiles get. In any event, h'(k) and h' (0) are constrained to
vary between 0 (indicating that the plasma current vanishes smoothly at the
plasma edge) and 1.

The two constants b, and C represent normalizations for the pressure and
toroidal current profiles. From Eq. (3.9), we can see that b, is related to the
poloidal beta and that C is related to the total plasma current

f -C rf
I= - b,- h'(V) + (1 - b,) h' ( ) dR dZ. (3.17)
ILO A, R Rf

3.1.2 Transformation to Inverse Coordinates

A few more manipulations are required to cast the problem into a form

convenient for numerical computation. This extra work is required because

the usual cylindrical (R, W, Z) coordinates make evaluation of the Lagrangian

difficult for the complicated plasma shapes we wish to study. It would be

desirable to transform the equations to a coordinate system more closely tied

to plasma and flux surface shape. Luckily, a suitable set of so-called "inverse"

coordinates exists (53].
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Figure 3.1: Dependence of Profile Shape on qj.

The inverse coordinates form a right-handed system consisting of p, a

radial coordinate; cp, the usual ignorable toroidal angle coordinate; and y,
a poloidal angle coordinate. Without losing any generality, it is possible to

parameterize the plasma surface by the expression p = 1 and fix the location

of the magnetic axis at p = 0. Furthermore, we can assume that as IL varies

from 0 to 27r, a single poloidal circuit is completed. A typical set of inverse

coordinate contours for a dee-shaped plasma is depicted in Fig. 3.2. Note

their close connection with plasma shape.

For now, we will assume that is a general function of both p and yi and
examine the transformation to inverse coordinates in mainly formal terms.

In the next section, the exact form of the coordinates employed in this thesis

will be detailed.

To transform the Lagrangian, it is first necessary to transform the area

element dR dZ. This is readily found to take the form

dR dZ = J dp dy, (3.18)
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where J represents the jacobian for the transformation

J R R, =RpZ - RmZp, (3.19)

and we have adopted the convention that partial differentiation with respect

to p and A is denoted by a subscript. The components of V4 can be similarly

transformed (See Appendix A.):

S -z", (3.20)
R J P J

9 ,P + ATO. (3.21)

Substituting into Eqs. (3.13) and (3.14) yields

.. . 2,r 1

J = L dp dM, (3.22)C o
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where

"0 [((Zui, Z" M)2 + ( Ra, - R, , )2] +

2CJ , () + (1 - bp) -h()] . (3.23)

Since t is a scalar, its value should not be affected by a change of coordi-
nates. In particular, the that makes the Lagrangian stationary should still
be the one that solves the Grad-Shafranov equation. This can be verified by
taking the variation of Eq. (3.22) with respect to b. After a little algebra
involving several integrations by parts we find

= f2 I 6V dpdy, (3.24)

where

-1 a - 4 1 09 Z R 8 ]
I =R aZ R Z R_ OZ

CJ [bR h'(i) + (1 - b,) .h' (3.25)

Equation (3.24) shows that I = 0 is the condition required to make d sta-

tionary. From Appendix A, this condition is seen to be exactly equivalent to

the Grad-Shafranov equation written in inverse coordinates.

The fact that Z, as a scalar, is unaffected by a coordinate transformation

has a final very important implication. Namely, variations in R and Z-

which are now functions of p and A-subject to the constraint that the plasma

shape doesn't change (i.e., SR = SZ = 0 on S,), result in Si = 0 only when

, satisfies the Grad-Shafranov equation. Specifically,

6f) = -2 I SR dpdp, (3.26)
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()= -2 f I 6Z dpdp. (3.27)
fo " o aR

These results are important because they imply that if we substitute trial

functions for the shape of the flux surfaces, the variational principle will tell

us which ones are optimal for approximating a solution to the Grad-Shafranov

equation.

3.1.3 Choice of Trial Functions

Assuming up-down symmetry and topologically nested magnetic surfaces, it

is possible to write R and Z in Fourier series in p and p:

R(p, A) = E r,(p) cos my, (3.28)
M=O

Z(p, p) = E zn (p) sin np. (3.29)
n=1

This representation turns out to be quite general. For instance, by truncat-

ing the series at m = 3, n = 1, it is possible to model very exotic shapes

ranging from spherical shells to "peapods" [54]. However, for this thesis, we

will limit consideration to m = 2,n = 1. Nevertheless, as Fig. 3.3 shows,

this choice includes the majority of shapes considered for experiments and

reactors today: finite aspect ratio circles, ellipses, dees and beans.

The coordinate parameterization in Eqs. (3.28) and (3.29) is especially

convenient if we also assume that p is a flux surface label. This corresponds

to choosing the class of trial functions characterized by

ik=ik(p). (3.30)
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Then, ro(p) describes the shift of the flux surfaces, rj(p) and zi(p) describe

their elongation, and r 2(p) describes their triangularity. In many cases, this

is an excellent approximation to the shape of flux surfaces in a tokamak.

Making p a flux surface label has the additional benefit of simplifying the

form of the Lagrangian density in Eq. (3.23)

L = 00 + ['(p)]2 + 2CJ [b h,( ) + (1 - b,) ( . (3.31)

This drastically reduces the computational effort required to evaluate the

Lagrangian and is probably the single most critical assumption with respect

to achieving the desired fast calculation speeds.

Before specifying the form of the shape functions rm(p) and zi(p), it is

necessary to discuss their behavior near the magnetic axis and at the plasma

surface. Near the magnetic axis, it is well known that the flux surfaces are

very nearly shifted ellipses. In other words,

lim R(p, ;) = Ro + ac + ap cos 1 + O(p 2), (3.32)
p-to

lim Z(p, IA) = acop sin i + 0(p2 ). (3.33)
P-0O

In the relations above, c represents the shift of the innermost flux surface

and "o represents its elongation. At the plasma surface, we choose the pa-

rameterization

aS. a
Rv(p) Ro - + ap cos p + cos 2p, (3.34)

Z,(1A) = aK, sin pi. (3.35)
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As was mentioned before, the set of shape functions that makes the La-

grangian stationary represents the optimal choice. If we do not further specify

the functional form of the shape functions, the calculus of variations tells us

that this optimal choice can be found using the Euler-Lagrange equations

derived from Eq. (3.23). In this problem, these relations take the form of a

set of coupled nonlinear ordinary differential equations whose boundary con-

ditions are given by Eqs. (3.32)-(3.35). This type of system can be solved

very efficiently on a vectorizing computer such as a Cray. However, an even

simpler and potentially faster approach is to specify the functional form of

the various shape functions in terms of a small number of parameters. Then,

the Lagrangian can be minimized with respect to these parameters to find

the optimal set.

For most applications, the following shape functions prove quite sufficient:

aS
ro(p) = Ro + aa(1 - p2) - ap 2[n1 + (1 - q)p 2], (3.36)

2

r,(p) = ap, (3.37)

aS (.8
r2(P) = - p2[ + (1 - 7)p2], (338)

z1(p) = ap[ro + (.. - .)p 2]. (3.39)

The variational parameters are o, 77, and r.O. The shape function ri(p) has no

variational parameter associated with it because the flux surface elongation

is completely specified by Eq. (3.39) alone. Hence, any information imparted

from Eq. (3.37) would be redundant.

The above choice of shape functions turns out to be very convenient. In

particular, no iteration or searching is required to ensure that Eqs. (3.32)-

(3.35) are satisfied: the construction of Eqs. (3.32)-(3.35) automatically guar-

antees that. Moreover, it is possible to continue to satisfy the boundary
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conditions even when more variational parameters are introduced to achieve
higher accuracy. For example, to obtain more information about flux surface
elongation we could write

zi(p) = ap[no + (n. - ,-o)p 2 + Ap 2(l - p2 )], (3.40)

where A is the new variational parameter. Notice that the additional term
vanishes at both the magnetic axis and the plasma surface. This property
also makes it easy to incorporate external information about flux surface
shape. For instance, if no were known from experimental measurements, that
variational parameter could be eliminated directly. Then, with no additional
cost, a new variational parameter (such as A) could be introduced.

In tokamaks, the normalized flux function is known to vary mono-
tonically between the magnetic axis and the plasma surface. Furthermore,
Ampere's law demands that V'(0) = 0 so that the poloidal magnetic field
vanishes at the magnetic axis. This simple behavior suggests the parameter-
ization

= 1 - p2 - (1 - v)p 4 , (3.41)

where v is a variational parameter controlling the radial shape of the flux
function. Note that this representation automatically satisfies the constraint
that k(0) = 1 and the boundary condition Eq. (3.12).

3.1.4 Formal Statement of Solution Procedure

After many necessary theoretical preliminaries, it is now possible to summa-
rize the solution procedure. In order to completely define the problem, there
are nine inputs required. These are

Ro, a, n., a, Bo, ~f, 7 ,,v I,, b,.
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Also, initially we must supply estimates for the variational parameters no, (,

77, and v. On the basis of these estimates, it is possible to calculate initial

values of C and 'o using Eqs. (3.15) and (3.17):

1 27r

S & b h' ( ) + (1- b.,) &h'()] J d dp
~o b * f ,, ( . 2

j j ff2V1 )2 J dydp

1 ff~ [b, h' () + (1 - b,) h'(i)] J dA dp. (3.43)

With all other quantities being held fixed, the Lagrangian is formally only

a function of the variational parameters

£ = (nO, a, 4Y, v).

The optimal choice of variational parameters is found by finding the station-

ary point of the Lagrangian, which for this case turns out to be a minimum.

(The particular procedure for numerically finding this minimum is discussed

in the next section.) Once this information has been obtained, an updated

value of 00 can be found using Eq. (3.42). Since the original V5 was cal-

culated on the basis of estimates, the updated iko will converge towards its

exact value. To obtain a more accurate set of variational parameters, the

minimization of i can be repeated with the updated ?o. Usually, a few

iterations of this procedure yields 00 to excellent accuracy. After the final

variational parameter values have been obtained, a final value of C can be

obtained from Eq. (3.43) and a corresponding value of io can be computed

from Eq. (3.42). Since C and io are both scaled by the same amount, there

is no need to calculate a new set of variational parameters as Eq. (3.22) is

seen to be invariant to such scalings.
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The calculation of r.0, 0% 17, v, 4o, and C completely specifies the equilib-

rium solution. These values can now be used be used'to compute a series of

additional quantities which further characterize the equilibrium.

To obtain the pressure and toroidal field profiles, h'(0) and h' (4) are

integrated to yield

h = exp[-a,,1 (1 - k)] - exp(-a,,f)(1 + ,,j4) + const. (3.44)
c,,j[1 - exp(-o,,j)]

This result can then be used in the relations [obtained by comparing Eq. (3.4)

and Eq. (3.9)]

p() = - h(,(), (3.45)
Ro

F 2 (ip) BTR 2 = -CboRo(1 - b,)hI(k) + B2R.. (3.46)

The constants of integration have been chosen to satisfy the boundary con-

ditions p(Vk) I,= 0 and F2 (0) Is,= B .
The poloidal field is computed using

B, = (3.47)

along with Eqs. (3.20) and (3.21). Hence, the components are given by

BR = R ob,, (3.48)
R J

BZ = -A"oP, (3.49)
Ri

so the total poloidal field is written
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B, = R J # 0 ,. (3.50)

The profiles and fields may, in turn, be used to calculate such things as

the MHD safety factor

F(O) 21r R2 + Z2
()- R 2 B, A (3.51)

21r 0 R 2 Bp

the kink (Sykes) safety factor

q = aB* (3.52)

the volume averaged toroidal beta

2=o(p) 
(3.53)/ B2~

and the volume averaged poloidal beta

P= 21Lo W (3.54)
f32

where

2r 27r I

(p) - p()J R dpdy, (3.55)
V fo fo

, = OI, (3.56)

and

21r 1
Vp= 21r - JR dp dy, (3.57)

12r+ ZdM. (3.58)
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Table 3.1: Representative Execution Times for ePFC on Various Systems

Computer Ellipse Dee
Cray X-MP 0.023 sec 0.025 sec
Vax 11/780 0.67 sec 0.72 sec
Macintosh Plus 105 sec 124 sec
Amiga 13 sec 14 sec

3.2 Computer Implementation

The ideas of the previous section have been implemented in a computer pro-

gram called "ePFC." This code, written in the C programming language

[56], has been adapted to run on systems ranging from Cray X-MP super-
computers to Macintosh personal computers. Table 3.1 shows approximate

execution times needed to calculate representative elliptical and dee-shaped

equilibria. The times for elliptical equilibria are smaller because symmetry

dictates that the variational parameter q is identically zero throughout the

plasma so it need not be solved for. Table 3.1 shows that the desired <1 sec

execution time for the Vax is readily achieved. In addition notice that, even

when running on personal computers, ePFC is competitive timewise with

conventional equilibrium codes that run only on supercomputers.

The fast execution times are largely attributable to simplifications result-

ing from the introduction of the normalized flux and the transformation to

inverse coordinates. However, some equally important numerical optimiza-

tions were also applied. These are described below.

In a computational sense, our equilibrium problem consists of evaluating

a function (the Lagrangian) many times. Since the Lagrangian is a double
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integral, it is relatively time-consuming to compute; so, for speed, it is ob-

viously desirable to minimize both the number of times the Lagrangian is
evaluated and the amount of time required for a single evaluation.

The number of Lagrangian evaluations necessary to find the solution is
largely a function of the efficiency of the numerical minimization algorithm
employed. Several standard procedures - Powell's method, the Simplex
method, and the Quasi-Newton method [55] - were investigated and dis-
carded for various reasons. Instead, an intuitive procedure, consisting of the
repeated minimization of the Lagrangian with respect to each of the vari-
ational parameters, was chosen. Specifically, the Lagrangian is varied with
respect to one of the parameters with the others held fixed. Once a minimum
is found, another parameter is varied with the previous parameter being held
fixed at the value that minimized the Lagrangian. The parameters are cy-
cled through in this manner until the Lagrangian stops decreasing. Though
quite robust, this method is highly inefficient in general. However, it works
well for this problem because very good initial guesses for the variational

parameters can be supplied. For a typical problem requiring calculation of

0O, t, 71, and u, approximately 30-60 Lagrangian evaluations are required
to find a minimum accurate to 0.01 %. (Here accuracy is defined as follows.
Assume we have calculated two consecutive values of the Lagrangian: b' and
,d"+1 where n+1 <t,". Each represents the minimum C with respect to two

different variational parameters. The minimum Z is considered determined

if 1" - n+1 < 0.0001|C"I.) Each time the Lagrangian is minimized, o is
recalculated using Eq. (3.15) and compared to the previous Vo. Generally 1-
3 iterations are required to reduce the change in b0 to less than 1 %. Thus,

for most cases, 60-180 Lagrangian evaluations are needed to calculate an

equilibrium.

The time required to evaluate the Lagrangian has been optimized pri-
marily through the precalculation of many terms in the Lagrangian density.
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This optimization is best described by example. Consider the fact that at a

given (p, IL) position, it is possible to write schematically

R(p, 1A) = R( ) + R(U)o- + R(n), (3.59)

where R(O), R("), and RO) are functions only of p, A, RO, a, ., and S.. Since,

these values do not change during the minimization, they can be computed

once initially and stored for later use. Then, for any given set of variational

parameters, R can be computed using only two multiplications and three

additions. Similar expressions can be written for Z, R,, Z,, R., and Z.. By

precalculating these quantities, thousands of unnecessary arithmetic opera-

tions and transcendental function evaluations can be saved. This optimiza-

tion is extremely important. Its implementation results in nearly a factor of

20 speed increase over the case where no precalculation is performed.

3.3 Comparison with Exact Equilibria

To test the accuracy of the analysis just described, we will compare the results

from ePFC with those from the exact two-dimensional code NEQ. Two cases

will be focused on:

" A conventional (,, = 1) tokamak somewhat modeled on the Versator

experiment at M.I.T.,

* The resistive-magnet tokamak reactor base design presented in the pre-

vious chapter.

These cases were chosen because they straightforwardly illustrate the suc-

cesses and limitations of the models.
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Table 3.2: Input Parameters for Conventional Tokamak Case

Parameter F Value
Ro (m) 0.40
a (m) 0.13
6 0.33

1.00
0.00

Bo(T) 0.70

aP -5.00
af -3.32
I, (MA) 0.01
b, 1.0

3.3.1 Conventional Circular Tokamak

The input parameters for the conventional tokamak case are shown in Ta-

ble 3.2. The plasma shape is that of a finite aspect ratio circle. Despite the

simple geometry, this equilibrium cannot be calculated analytically due to

the fact that the pressure profile is peaked. Another point of interest is the

relatively large value of b,: since this parameter is related to O,, one expects

that a finite Shafranov shift will result.

Various output parameters from ePFC and NEQ are compared in Ta-

ble 3.3. Despite the large disparity in execution time, the results are seen to

differ by no more than a few percent. This good agreement is also displayed

in Fig. 3.4 which shows the flux surface shapes calculated by the two codes

superimposed. The fact that the flux surface shapes agree well suggests that,

despite their relative simplicity, the variational shape functions [Eqs. (3.36)-

(3.39)) do an accurate job in modeling the plasma. This point is confirmed

by Fig. 3.5 which shows that the relative flux surface shift
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R..,. + R.., -2& (3.60)
2a

computed with ePFC and that computed by NEQ are almost identical. (Note

that in Eq. (3.60) R_ and R,,4,. describe the radial position at which the

inner and outer edges of a specified flux surface cross the plasma midplane.)

Finally, it is apparent from Fig. 3.6 that the flux function 0 is computed

quite accurately. This supports the contention that, despite not being unique

or variational, Eq. (3.15) represents an acceptable way to calculate 0o. It

also implies that, in this case at least, Eq. (3.41) describes a reasonable

parameterization for the radial variation in the flux function.

This case demonstrates that ePFC is capable of obtaining results in good

agreement with those computed by NEQ. Furthermore, Table 3.3 shows that

the ePFC results were calculated much faster than those from NEQ. How-

ever, one point regarding this comparison must be made. Namely, NEQ

does not, in fact, solve the fixed boundary equilibrium problem described in

Eqs. (3.1) and (3.2). It actually solves the more complicated "free boundary"

problem which consists of the solution of the Grad-Shafranov equation and

the simultaneous calculation of PF coil currents. For the cases displayed in

this chapter, it is estimated that approximately 30 % of the execution time

listed for NEQ is spent calculating the PF coil currents.

3.3.2 Strongly Shaped Tokamak

The achievement of high accuracy in the case of the circular tokamak is

an important requirement for the validity of these variational techniques.

However, this does not guarantee that the models will be successful in pre-

dicting equilibria for shaped tokamaks. Therefore, to assess this concern,

we will compare ePFC and NEQ results for the case of the resistive-magnet

tokamak reactor base design discussed in the previous chapter. This con-

figuration should provide a good test for the variational method since, as
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Table 3.3: ePFC and NEQ Results for Conventional Tokamak Case

Parameter ePFC NEQ
3  4.94 x 10-4 5.03 x 10-4

1.24 x 10-3 1.23 x 10-3

OP 1.03 1.05
q(O) 9.28 9.05
q, 18.0 18.2
10o (Wb) -5.00 x 10-4 -4.98 x 10-4

0.20 0.19
R, (m) 0.426 0.425
rO 1.04 1.06
Cray CPU Time (sec) 0.03 31.0

OS
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02 F

02

0.1

0.0 F
N
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-02 1-

-0.4

-0.5
00 02 0.4

R (7n)
04 0A8 1.0

Figure 3.4: Comparison of flux surface shapes computed by ePFC (dotted
lines) and NEQ (solid lines) for conventional tokamak case.
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Figure 3.5: Plot
(dotted lines) and

T

of relative flux surface shift vs. p as computed by ePFC
NEQ (solid lines) for conventional tokamak case.
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Figure 3.6: Plot of flux function vs. p as computed by ePFC (dotted lines)
and NEQ (solid lines) for conventional tokamak case.
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Table 3.4: Input Parameters for Strongly Shaped Tokamak Case

Parameter Value
Ro (m) 4.70
a (m) 1.70
C 0.37
K, 2.00
S. 0.40
Bo (T) 4.5

aP -3.32
a1  -3.32
I (MA) 19.0
b, 0.8

Table 3.4 shows, it is characterized by tight aspect ratio, peaked profiles,
high elongation, high triangularity, and high beta.

A comparison of the output parameters from ePFC and NEQ [Table 3.5]
again shows that, for the most part, the codes are in relatively good agree-
ment. This is also confirmed by Figs. 3.7-3.11: Fig. 3.7 displays the flux
surface shapes calculated by the two codes, Fig. 3.8 shows the radial varia-
tion of flux surface elongation

E 2Z. (3.61)Router - ir

Fig. 3.9 shows the radial variation of flux surface triangularity

R4.. + R~r. - 2 R
T M +(3.62)

Fig. 3.10 shows the radial variation in the relative flux surface shape, and
Fig. 3.11 shows the radial variation of the flux function. In the above for-
mulae, (R,.., Z,,..) is the location of the point on a particular flux surface
that is farthest away from the plasma midplane.
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The only result from the two codes that disagrees by any significant

amount is the MHD safety factor at the plasma surface. The value cal-

culated by ePFC is lower than that calculated by NEQ by approximately

10 %. This disagreement can be traced to inaccuracies in the poloidal field

as calculated by the variational techniques. Specifically, Fig. 3.12 shows that

the B is over-estimated in the region around yi = t1 (i.e., the area around

the tips of the dee). Bz, on the other hand, is calculated quite well every-

where. Thus, the variational principle predicts a larger B, than is correct.

Since q, f emphasizes the regions where the field is small, this inaccu-

racy affects the MHD safety factor by a relatively large amount. However,
the plasma current is calculated correctly since I, ~ f Bdt emphasizes the

regions where the field is large.

This example points out a limitation in the current variational treatment.

Namely, the poloidal field is calculated inaccurately in the region near a

separatrix. This can be traced directly to the simple radial variation assumed

for the trial functions. In particular, Eqs. (3.36)-(3.39) and Eq. (3.48) show

that it is not possible for BR to vanish at u = ±1. Since this is exactly

what is required when the separatrix moves close to the plasma, the error

in B, is not surprising. More elaborate trial functions would be required to

accurately model the plasma edge in a vicinity of a separatrix. This could

prove to be an interesting area for future research.

For many applications, the inaccuracy in B, around the separatrix is

not a major concern. Two such applications are the topics that will be

discussed later in this thesis: the estimation of PF coil currents and the

calculation of axisymmetric stability. It will be shown that the estimation

of PF coil currents depends on the magnitude of B, on the plasma surface.

Since the equilibrium errors are in the region where the field is small, they

affect the answers only marginally. In the case of the axisymmetric stability

calculations presented here, the same result holds since all of the relevant

integrals are of the form f B7 dS. In any event, it should be emphasized that
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Table 3.5: ePFC and NEQ Results for Strongly Shaped Tokamak Case

Parameter ePFC NEQ
0.082 0.083

Aa 0.224 0.222

13, 0.805 0.830
q(0) 1.03 1.04
q, 2.74 3.07
Vo (Wb) -9.29 -9.19
er 0.149 0.142
R,, (i) 4.95 4.94
KO 1.69 1.79
Cray CPU Time (sec) 0.03 31.0

in the interior of the plasma the fields are calculated quite accurately. This

contention is supported by the result (shown in Table 3.5) that the MHD

safety factor at the magnetic axis as found by ePFC agrees well with the

exact answer.
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Figure 3.7: Comparison of flux surface shapes computed by ePFC (dotted
lines) and NEQ (solid lines) for strongly shaped tokamak case.
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Figure 3.8: Plot of flux surface elongation vs. p as computed by ePFC (dotted
lines) and NEQ (solid lines) for strongly shaped tokamak case.
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of flux surface triangularity vs. p as computed by ePFC
NEQ (solid lines) for strongly shaped tokamak case.
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Figure 3.10:
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Plot of relative flux surface shift vs. p as computed by ePFC
and NEQ (solid lines) for strongly shaped tokamak case.
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Figure 3.11: Plot of flux function vs. p as computed by ePFC (dotted lines)
and NEQ (solid lines) for strongly shaped tokamak case.
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Figure 3.12: Plot of BR, Bz, and Bp vs. yt as computed by ePFC (dotted
lines) and NEQ (solid lines) for strongly shaped tokamak case.
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Chapter 4

Estimation of Poloidal Field
Coil Currents

One of the major uses of equilibrium information is in the design of poloidal
field (PF) systems. In this application, the plasma is assumed to be sur-
rounded by a number of external conductors located in a vacuum region of
infinite extent. Each of these conductors can represent a particular winding

of PF coil or even an entire PF coil. The goal of the analysis is to calculate

the set of conductor currents needed to hold the plasma in equilibrium.

To compute the conductor currents exactly requires the self-consistent

solution of Maxwell's equations for the magnetic fields in the plasma and in

the surrounding vacuum. The plasma field may be obtained by solving the

Grad-Shafranov equation and the vacuum field may be obtained by solving

Laplace's equation. The two solutions are then connected through a series

of boundary conditions applied at the plasma surface. Since we will assume

that the plasma current and pressure both vanish smoothly at the plasma

edge, the exact boundary conditions are simply that the normal and tangen-

tial components of the fields must be continuous across the plasma-vacuum

interface.
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When the plasma shape is fixed and the conductors are placed in fixed
locations, it is not generally possible to find a finite set of conductor currents
which yield self-consistent solutions satisfying both the governing equations
and the boundary conditions. This is because a finite set of conductor cur-
rents is insufficient to ensure that both boundary conditions are satisfied at
an infinite number of points along the plasma surface. Hence, it is necessary
to introduce another degree of freedom into the problem. The usual way
of accomplishing this is to allow the plasma shape to vary along with the
conductor currents. Since the plasma surface can move, this calculation is
often called the "free boundary" equilibrium problem.

The major advantage of the free boundary method is that it enables us to
exactly and self-consistently solve for the plasma and vacuum fields and the
conductor currents. The major disadvantage is that this procedure represents
an extremely difficult and time-consuming numerical chore. In fact, much
of the complexity and relative slowness of NEQ, GAEQ, and some versions
of PEST is derived from the fact that these codes attempt to solve the free

boundary equilibrium problem. Moreover, for many applications - most
notably stability calculations - this added complexity is unnecessary since

conductor current information is not required.

As in the previous chapter, it turns out that many of these difficulties can

be circumvented if some accuracy in the solution for the conductor currents
can be sacrificed. In particular, it is advantageous to give up the notion of

exact self-consistency by assuming that the plasma boundary is fixed. The

major implication of this assumption is that it is usually not possible to find

a set of conductor currents that result in the tangential component of the
magnetic field being continuous across the plasma surface. Nevertheless, for

any configuration .of conductors, there will generally exist a set of currents

that minimizes the jump in the tangential component of the field, at least in

an integral sense. In many cases, these conductor currents are quite close to

those that would have been found by a full free boundary calculation.
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In this chapter, we will describe a procedure for estimating the PF coil

currents in the above manner. A large part of this procedure consists of an

involved, but relatively straightforward, calculation of the tangential com-
ponent of the vacuum magnetic field at the plasma surface. Specifically,
Green's theorem will be used to derive an integral equation for the scalar
magnetic potential at the plasma surface. Then, using Fourier analysis, this
integral equation will be transformed into an equivalent linear algebraic sys-
tem that can be solved by standard matrix methods. Once computed, the
scalar magnetic potential can be used to represent the tangential component
of the vacuum magnetic field in terms of the unknown conductor currents

which are then found by minimizing the jump in the tangential field across
the plasma surface. The chapter will conclude with a discussion of the accu-
racy of these conductor currents particularly when they are calculated using

plasma fields obtained from approximate equilibria such as those described

in the previous chapter.

4.1 Problem Statement

Before proceeding to the details of the calculation, it will prove worthwhile

to concisely state the problem in formal mathematical terms. This can be

accomplished with the aid of Fig. 4.1. As the figure indicates, we assume

the existence of a toroidally axisymmetric plasma, the surface of which is

parameterized by the equations

R = R,(it) (4.1)

Z = Z,(), (4.2)
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where A is an angular coordinate. R,, and Z,, may, for instance, be specified

by Eqs. (3.34) and (3.35). However, this is not necessary, and, in particular,
the calculation does not assume an up-down symmetric plasma.

On the basis of the above parameterization we can define a number of
useful quantities including the outward facing unit normal vector,

e. = 1[Z,eR - Rez], (4.3)

and the unit tangent vector,

et = I[ReR + Z~ez], (4.4)

where eR and ez are the unit vectors in the R and Z coordinate directions

and

Q = R2 + Z2. (4.5)

Using the definitions of the unit vectors, the operators expressing differenti-

ation normal and tangent to the plasma surface can be written as follows:

6 8 8
Qe, - V -- =Z - -R -- , (4.6)

on R BZ'

8 8
Qe V -=R, + Z-- (4.7)

ap aR 8Z

Finally, we can write the incremental arc length in the form

di = Q du (4.8)

and the differential surface area element as

dS = Rdtdp = RQdydW. (4.9)
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The plasma is assumed to be completely surrounded by vacuum. Further-

more, in this vacuum region are suspended J external conductors located at

the points (R,, Z,). Like the plasma, these conductors are toroidally axisym-

metric. For the purpose of calculating fields, these conductors are assumed

to be infinitely thin filaments. However, in order to calculate the resistance,
it is necessary to assume that the cross-section of each conductor is a rect-

angle of width w3 and height h, where w3 < Ri and h, < R. The overall

goal of the analysis is to estimate the set of currents I flowing through these

conductors.

For purpose of calculating the conductor currents, all that is needed are

the plasma and vacuum fields at the surface of the plasma. Inside the plasma,
the field B is calculated from the flux function k which, in turn, is found by

solving the Grad-Shafranov equation using methods such as those described

in the previous chapter. In the vacuum region, the field is written

= + Bc, (4.10)

where B is the induced field due to the plasma and B, is the applied field

due to the external conductors.

The induced field satisfies

V -f= 0, (4.11)

VxB3=0 (4.12)

and is required to remain regular everywhere throughout the vacuum. Hence,

f can be written

B = + Bi, (4.13)

where, by virtue of Eqs. (4.11) and (4.12), 4 is the scalar magnetic potential

which, of course, satisfies Laplace's equation
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V 20 = 0.

Later, we will solve for 0 using Fourier analysis so it is desirable that 0
be single-valued. This necessitates the introduction of the additional field
Bi so as to ensure that an application of Ampere's law around the plasma
boundary correctly yields the plasma current. There is no unique requirement
for choosing B;; the field produced by any set of currents, distributed or
discrete, can be used as long as the total current is given by I,. For the sake
of convenience, we will simply choose B; as the field produced by a single
filament carrying a current I, located at the plasma magnetic axis (R, Zm).
Then, using a classic result from magnetostatics, we can write

B=R , (4.15)

where

(R R)"/ 2 (2 - k 2 )K(kp) - 2E(k )
P - 27r I k] (4.16)

K and E are the complete elliptic integrals, and

24RR (4.17)
kg= (R + R.) 2 + (Z - Z.) 2

The applied field is found in a similar manner since the conductors are
assumed to be thin and the fields are to be calculated at points far away
compared to the spatial dimensions of the conductors:

Be= E pOIj Rj x e, (4.18)
j=1R

where
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(RR) 1 / 2 (2 - kj)K(k) - 2E(k) (4.19)
27r kj

and

k 2 = 4RR. (4.20)(R+ R,) 2 +(Z - Z) 2

As a consequence of the MHD model, the plasma is assumed to have

infinite electrical conductivity. Therefore, the component of the magnetic

field normal to the plasma surface is required to vanish both inside and just

outside the plasma:

en - B Is,= en -$ L,= 0. (4.21)

The solutions to the Grad-Shafranov equation naturally possess this property

(i.e., on the plasma surface B = B,(A)). However, in the case of the vacuum

solutions, it is necessary to apply Eq. (4.21) as an explicit constraint.

In the section to follow, it will be shown that this will allow us to write

the (purely poloidal) vacuum field at the plasma surface in the form

b,(p) = b(')(p) + b(2)(,A) _ i, (4.22)

where i and b( 2) are column vectors of length J whose elements are the set

conductor currents I, and the set of geometrical coefficients b 2) respectively.

In the full free boundary calculation, it is necessary to vary b) and the b(2)

by moving the plasma surface in order to find a set of conductor currents

that result in the boundary condition

B, = b, on S, (4.23)

being satisfied. However, in this analysis, the plasma surface will remain

fixed and Eq. (4.23) will be discarded. Instead, we will choose the I, so as

to minimize the functional

112



fS, (B _, BP)2 d S
f, B) =dS (4.24)
fs,BdS

This is not the only choice for el that could be made. In particular, other

analyses [45,57] have minimized a functional of the form

N'~)> [1 (t_ V) 2+ C2 -9 2] _

n)(-)+ + C3 'I, (4.25)
= ( n 3=1

where cl, c2, and c3 are weight coefficients and the index n corresponds to

evaluating the various quantities at a series of points around the plasma

surface. Equation (4.25) is equivalent to minimizing the jump in both the

normal and tangential field across the plasma surface subject to a conductor

current smoothing constraint.

However, Eq. (4.24) has a few very desirable features. First, the normal

component of the field is made to exactly vanish. This is desirable since the

plasma is assumed to be a perfect conductor. Second, the minimization of

el in Eq. (4.24) has a tangible physical meaning. Namely, it is equivalent to

minimizing the net deviation from exact radial pressure balance around the

plasma boundary. Third, the form of el makes it quite simple to determine

the optimal set of conductor currents. In a later section, it will be shown that

this can be accomplished by simply solving a small set of linear equations.

Finally, the results are not dependent on a set of relatively arbitrary weighting

coefficients. The variation of n, c1 , c2, and c3 in Eq. (4.25) can lead to

a correspondingly large variation in the resulting conductor currents, even

without changing the plasma shape or B,.
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4.2 Calculation of Vacuum Field

The procedure for determining the vacuum field will be based on an appli-

cation of the scalar version of Green's theorem (15]. This is a natural choice

since the field must be calculated only on the plasma surface. Also, a number

of analyses [58-61] have demonstrated that the Green's theorem formalism

lends itself quite well to fast numerical computation.

Green's theorem for the scalar magnetic potential is written in the classic

form

cO4(r) ± [O(r')(e' -V'G(r, r')) -

G(r, r')(e' - V'O(r'))] dS' = 0. (4.26)

Here, r' (R', V', Z') and r = (R, c, Z) where, to simplify the notation, we

write R' = R,(') and Z' = Z,(A'). r denotes the observation point while

the primed coordinates represent integration variables. Also, O is the infinite

space Green's function

d(r, r') = - 1 (4.27)
47rlr' - r|

where

|r = (R2 + R'2 - 2RR'cos(p' - w) + (Z' - Z)2 1 2 . (4.28)

Finally, o is a quantity that depends on the location of the observation point

in relation to the plasma surface

1 if r outside plasma,

1/2 if r on S,, (4.29)
0 if r inside plasma.

Since the goal of the analysis is to find 0 on the plasma surface, we choose

a = 1/2 and accordingly R = R,(A) and Z = Z,(ps). The rest of this section

will be largely concerned with the efficient solution of Eq. (4.26).
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4.2.1 Simplification of Green's Theorem

Green's theorem can be dramatically simplified by invoking the assumption of

toroidal axisymmetry. Then, the W-dependence of the infinite space Green's
function can be analytically integrated. A short calculation yields

1 [2W [ B~G( - )8(4 ) (.0
2 (P) + f ' (p') " (i, ') - G(p, s') (p') R'd ' = 0, (4.30)

where Eq. (4.6) has been used to simplify the notation and G is the reduced

Green's function defined by

G = j G d'. (4.31)

Upon performing the integration in Eq. (4.31), we find

kK(k) (4.32)
27r(RR')1/

2 '

where

k24RR' (4.33)
42 (R' + R)2 + (Z' - Z)2. 4.3

In order to solve Eq. (4.30), it is necessary to specify the normal deriva-

tives of G and 4. Using the identities (62],

dE _ E(k)-K(k) ()
dk, 4.34

dK _ E(-k) K(k) (4.35)
d k(1 - k 2) k,

along with Eqs. (4.6) and (4.32) gives
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R' 1[AkE(k) + Ik(K(k) - E(k))], (4.36)

where

A= Z)(4.37)(R' - R)2 + (Z' - Z) 2

I = Z. (4.38)

The boundary condition on the normal component of f can be used to

write the normal derivative of 0 in a very convenient form. Specifically, using
Eqs. (4.15) and (4.18) along with Eq. (4.10) in Eq. (4.21) gives

(94 '
R' = - oIP 'IP + AoIj , . (4.39)

(9p j=1

It should be noted that this constraint can be applied for arbitrary plasma

shapes and conductor configurations. In other words, it is always possible to

ensure that the normal component of the vacuum field exactly vanishes at

the surface of the plasma.

4.2.2 Conductor Grouping

In many applications, several of the J conductors will be constrained to carry

the same current or will have their currents fixed at values set from external

considerations. As a result, the number of conductor currents that must be

calculated is often significantly less than J. Accounting for these cases now

can therefore save a significant amount of computation.

In general, a set of conductors can be constrained to carry the same

current for one of two reasons. First, the conductors can be located in such
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a manner that symmetry demands that they carry the same current. This
usually occurs in the case of up-down symmetric plasmas where conductors
are placed in symmetric positions above and below the plasma midplane.
Second, the conductors can be electrically connected in series. This is the
case for conductors that represent individual windings of a particular PF coil
and for conductors that are considered part of the ohmic stack.

Conductor currents can be fixed at set values for a number of reasons.
One example of particular interest is start-up. Here, it is often the case
that the currents in an ohmic stack are programmed to follow a pre-defined
evolution in order to optimize volt-second consumption. In order to calculate
the currents needed in shaping coils at various times during a shot, the
currents in the conductors representing the ohmic stack would be fixed at
their programmed values for a given time and the currents in the shaping
coils would be allowed to vary.

Mathematically, the notion of grouping is very easy to implement. In
particular, we assume that the currents in F conductors, where F < J, will
be fixed at prescribed values. Then, the rest of the conductors are assumed
to be members of G groups of conductors with each conductor in each group
being constrained to carry the same current I. It is these G currents that

are actually solved for. Based on this discussion, we can write the vacuum

field in the form

B=~+ 0 IVWFXe G 79X
$ = vo + OP 'P x e. + 110 p T, xR e, (4.40)R +Ei~ Rg=1

where

-1
F = P +ojF (4.41)

AoIP j=1

and
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'I' = J 6 1)Xg. (4.42)
j=1

XPF accounts for the toroidal flux from the conductors with fixed currents

and the filament representing the plasma current. '1' accounts for the total

toroidal flux from the g-th group of conductors. The functions S5jF) and

which are defined

6(F) 1 if Ij is a fixed current, (4.43)
j 0 otherwise,

1 if conductor j is in group g, (444)
0 otherwise,

simply select the fixed-current conductors and grouped conductors out of the

complete set of conductors.

Based on Eq. (4.40), the normal derivative of 0 in Eq. (4.39) takes the

form

_' , 8 I,,F + E1Og . (4.45)an' (P, O /g=1

4.2.3 Fourier Analysis

The solution to Eq. (4.30) can be found by standard Fourier analysis tech-

niques. This is accomplished by expanding 0 and its normal derivative in

Fourier series

M
= ame'"*, (4.46)
m=-M-

cm + DG q e (4.47)
n m = Ig)
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In principle, the sum over m should extend over the range -oo < m < oo.
However, practical considerations require that the sum be truncated after a

finite number of terms given by m = ±M.

The coefficients c,, and D,, are assumed known. Using Eq. (4.45), they

can be calculated as follows:

- 2 = pol,, P de p, (4.48)

D, = T po Tg e' d/t. (4.49)

The goal of the Fourier analysis is to solve for the coefficients am. This

can be accomplished by substituting the expansions in Eqs. (4.46) and (4.47)
into Eq. (4.30), multiplying by e-'r"', and integrating. A standard problem

in matrix algebra results, namely

[I+ A] - a = C - [c + D - i], (4.50)

where I is the identity matrix and the elements of the matrices A and C are

given by

I f2r2w '9G , j6G '-mAmmn' = - (R')e''-"' d dp', (4.51)

12w 27r

CmM' = -1 j Ge "''t'M dA dA'. (4.52)

The ranges on m and m' are -M < m < M and -M < m' < M so A and

C are of dimension (2M + 1) x (2M + 1).

Equation (4.50) can be solved numerically to yield

a =d + E - i, (4.53)

where
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d = [I + A]~' - C - c, (4.54)

E =[I+ A]-' C.D. (4.55)

Equation (4.53) can, in turn, be used in Eq. (4.40) to write the tangential

component of the vacuum field in the desired form

-,(p) = b(F ) + b(G)() - i, (4.56)

where b(F)(p) represents the contribution due to the conductors with fixed

currents and b(G)(p) represents the contribution due to the grouped conduc-

tors. These functions are written

b = M(imd, e""4) + popW, F (4.57)

b( = (imEge") + pi (4.58)

4.2.4 Analytic Removal of Logarithmic Singularities

An important numerical issue associated with the solution of Eq. (4.30) con-

cerns the evaluation of the matrix elements of A and C. In particular, the

integrands of Eqs. (4.51) and (4.52) possess integrable logarithmic singulari-

ties when M' = /i. Despite being integrable, these singularities must be dealt

with specially because they lead to problems with numerical accuracy in the

calculation of A and C.

The singularities can be traced to the first complete elliptic integral in the

reduced Green's function [Eq. (4.31)]. This is seen by writing Sp = p'-I < 1

and expanding R' and Z' about R and Z respectively:

R' = R + RSp + RmW +.. --- ,(4.59)
2
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Z' = Z + ZA + Z 6p + --- (4.60)
2

Substituting these expressions into the first complete elliptic integral yields

[63]:

1 Q2 g2
K ' in -- + In LSO, (4.61)

2 161R2 2 4

where Q is defined in Eq. (4.5). The first term in Eq. (4.61) is continuous

but the second term clearly diverges in the vicinity of p' = p.

A simple way of dealing with the singularities is to modify the Green's

function in such a way that the part of the integrand that diverges can be

integrated analytically. By noting the asymptotic behavior of K illustrated

in Eq. (4.61), we see that this can be accomplished by writing

G(p, A') + 1 In sin 2, (4.62)

OG 00 Z p'__
R'a-G (IL, p') = R' , - In sin 2 , (4.63)

On' On' 87rR 2 ,

where

G(4, ') = G - In sin A 2) (4.64)

On' On' 8ir

R' l (p, IA') = R' ,G + Zo In sin2 2 .(4.65)80W 57G- Z-- 2

Now, when u' = p, the logarithmic singularities cancel and each modified

Green's function remains finite
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1 (4.66)
47rR 16R2

R' (, ) RZw - ZZt - 2 + In 2  (4.67)

Using these relations, the elements of A and C can be written

Ame = R'2w (1 eIi'i~""d, djp' -

CMO= j e" '" dys dy' -

Fm , 2J ± eit''~" d y, (4.69)
7roR

where

Fm, = l n sin2  in'(,'-)d.' (4.70)

can be integrated analytically to yield

f -1n2 m'=O0,
= 1 m'#0 (4.71)

21rI

In the above form A and C can be computed straightforwardly since the

integrands remain finite for all values of !t and ps'.
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4.3 Solution for Group Currents

The end result of the rather involved calculation of the previous section is

given by Eq. (4.56). Here, b is written in terms of the purely geometri-

cal quantities b(F)(;L) and b(G) (j) and the conductor currents. When this

expression is substituted into Eq. (4.24), we obtain

61(i) = i -M - i - 2n - i + p, (4.72)

where M is a (G x G) symmetric matrix, n is a column vector of length G,
and p is a scalar. These quantities are defined

f02' RQb (Gb( d p
Mgg'= f bgb) 1  (4.73)

fWRQ B2 dy

21 RQb()(B, - b(F)) 4t
ng = 0R g - (4.74)

*f0 7r RQBP2 dp'

f" RQ(Bp - b(F))2 d(
f 2 RQBp2 d

We can minimize the field jump with respect to the group currents by

formally taking derivatives and setting them to zero

aE,
I, - 0, g, G. (4.76)

Since Eq. (4.72) represents a quadratic form, the relations in Eq. (4.76) reduce

to a simple linear system

M - i = n (4.77)
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that can be solved for the group currents using standard matrix techniques

[64]. Since G ; 4 - 10 for typical tokamak configurations, Eq. (4.77) repre-

sents a trivial numerical task for modern day computers. Finally, it should be

noted that the entire calculation can be accomplished without any iteration

or searching. These factors suggest that a numerical implementation of this

procedure will be extremely fast and robust.

One additional desirable feature of Eq. (4.72) is that various constraints

on the group currents can be introduced quite naturally. These constraints

can result from a number of different factors. For instance, if a tokamak pos-

sesses an iron core transformer, the high permittivity of iron requires that the

sum of the conductor currents and the plasma current equal zero. As another

example, it is sometimes the case that power supply limitations require that

some conductor group currents be proportional to others. Finally, there are

often volt-second requirements that set the flux that a certain group of cur-

rents must produce at a given point. All of these constraints can be written

in the form

U - i = y. (4.78)

Since Eq. (4.72) represents a quadratic form, standard numerical methods

[65,66) can be used to minimize er subject to Eq. (4.78) without the need for

iteration.

Once the optimal set of group currents i., is found, they can be be used

to compute a number of important quantities. Two of the most important of

these are the the average tangential field error b. and the total PF dissipated

power PPF which are defined

b, = Vc, (i;), (4.79)

J

PPF = ErjI, (4.80)
j= 1
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where r3 is the resistance of the j-th conductor defined

1 hp, Rj + !wj7- OjIn (R 1 w.) (4.81)
ri 21 2w

and 03 is the resistivity of the material making up the j-th conductor.

4.4 Solution Procedure Summary

The calculations described in this chapter are fairly involved. However, they

can be summarized relatively simply. The solution procedure assumes that

the following information is known:

" Equilibrium Information:

1. The plasma shape,

2. The total plasma current,

3. The tangential component of the magnetic field on the plasma

surface B,.

* Conductor Information:

1. The locations of J conductors surrounding the plasma,

2. Possibly, the currents in F of the J conductors (i.e., the conductors

with fixed currents),

3. Possibly, the symmetry or electrical characteristics of some of the

conductors (i.e., the grouped conductors) that would cause them

to carry the same current.
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These are the only inputs required by the solution procedure. The output of
the procedure consists solely of G estimates for the group conductor currents.
The group currents are calculated as follows. The plasma shape information
is used to compute the matrices A and C using Eqs. (4.68) and (4.69). The
plasma shape information and conductor locations are used to compute c
and D using Eqs. (4.48) and (4.49). These matrices can, in turn, be used to
compute b,. This along with B, can be substituted into Eqs. (4.73)-(4.75)
to compute M and n. The group currents are then found by solving the
small set of linear equations given Eq. (4.77).

4.5 Computer Implementation

The ideas of the previous sections have been implemented in a computer
program called "cPFC." This code, written in the C programming language,
currently can find an estimate for the PF currents for a typical up-down
symmetric tokamak configuration (J = 20) in 0.5-1.0 sec of Cray CPU time.
In this section, we will discuss three numerical issues relating to this code:
the use of fast Fourier transform (FFT) techniques to improve performance,
the verification of the code's correctness, and the interpretation of the field
error b,.

4.5.1 FFT Techniques

To a large extent, the relatively fast execution time is owed to the fact that
the integrals needed to find the matrix elements of A, C, c and D can be
expressed in terms of discrete Fourier transforms. To see this, consider the
numerical calculation of the elements of c. When the interval 0 < it < 27r
is discretized into-N equally spaced subintervals, the trapezoidal rule can be
used to rewrite Eq. (4.48) in the form
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im N-1
CM = N1 LOp %F(27rn/N) e-2 mn/N (4.82)

which is seen to be proportional to the discrete inverse Fourier transform of

TF. The matrix elements for A and C can be similarly expressed. The only

difference is that the transforms in those cases are two-dimensional. For this

application, the trapezoidal rule gives very accurate estimates of the integrals

because the integrands are continuous and periodic. Recall that for for many

of the integrals, the continuity of the integrands was ensured by analytically
removing various logarithmic singularities.

Discrete Fourier transforms can be numerically computed extremely effi-

ciently using FFT techniques [67]. These techniques make use of the period-

icity of the circular functions to reduce the number of operations required to

calculate a set of Fourier coefficients from O(N 2 ) to O(N log 2 N). In this cal-

culation, we take N = 32 so, especially for the two-dimensional transforms,
the savings are enormous. Note that our choice for N requires us to truncate

the Fourier series [Eqs. (4.46) and (4.47)] at M = 16 to be consistent with

the Nyquist sampling theorem [67]. However, experience has shown that this

number of harmonics is sufficient to represent the fields of interest.

4.5.2 Code Verification

Of obvious importance in any numerical calculation, especially one as in-

volved as this one, is the verification of the correctness of the computer

models employed. In general, this is extremely difficult, if not impossible, to

prove rigorously. However, here, we will present two pieces of evidence that

seem to compellingly indicate that cPFC is functioning properly.

As the first test of the code, we consider the symmetry properties of the

matrix factor

S = [I + A]-' - C (4.83)
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that appears in Eqs. (4.54) and (4.55). In general, both A and C are non-

symmetric matrices. Despite this, it has been proven [59] that S is a symmet-

ric matrix in the limit M -+ o! In practice, S is not expected to be exactly

symmetric because the Fourier sums are truncated at finite M. Nevertheless,

this remarkable fact, which comes about because S is related to the magnetic

energy of the system, can be used as a guide as to whether the matrix ele-

ments of A and C are being calculated correctly because those elements must

be computed correctly in order for S to end up nearly symmetric. For a typ-

ical cPFC run, the asymmetry of S (given by max Su - SjiI/I max(Si,)j) is

in the range 10-'-10-". Experience has shown that computer coding errors

associated with the calculation of A and C result in a matrix asymmetry for

S on the order of 10'. Therefore, it appears that the matrix elements are

indeed being computed correctly.

Clearly, the correct calculation of A and C is necessary in order to obtain

correct conductor currents. However, this does not demonstrate that cPFC

does, in fact, compute correct conductor currents. This fundamental issue

will be addressed using the example problem depicted in Fig. 4.2. The figure

shows a number of conducting filaments located at various places in a vac-

uum region. These filaments carry the specified currents given in Table 4.1.

The filaments with the "Plasma" label collectively represent the current dis-

tribution of a 3.0 MA plasma. Similarly, the other filaments represent PF

and OH coils respectively. When the fluxes due to all of these filaments are

summed, they produce a number of closed surfaces, one of which is shown in

Fig. 4.2. By summing the fields from all the conductors, it is clearly possible

to calculate the purely tangential field on this flux surface.

With this background in mind we can now state the example problem as

follows:
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Figure 4.2: Sample problem geometry for cPFC code verification.

Table 4.1: Input Filament Currents in cPFC Sample Problem

Label R (m) Z (m) Current (MA)
Plasmal 0.619 0.000 -1.0
Plasma2 0.719 0.000 -0.1
Plasma3 0.595 ±0.050 -0.1
Plasma4 0.668 ±0.055 -0.7
Plasma5 0.619 ±0.101 -0.1
PF1 0.469 ±0.604 -0.587
PF2 1.020 ±0.506 +0.934
PF3 1.025 ±0.403 +0.934
OH1 0.350 ±0.055 +0.990
OH2 0.350 ±0.165 +0.990
QH3 0.350 ±0.274 +0.990
OH4 0.350 ±0.384 +0.990
OH5 0.350 ±0.494 +0.990
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Using only the known flux surface shape, the total enclosed cur-

rent, and the tangential field on the surface, can the methods of

this chapter - as implemented in the code cPFC - accurately

reproduce the currents in the PF and OH coils that were origi-
nally used to generate the shape?

This would seem to represent a very good test of the code for a number of
reasons. First, the problem geometry is realistic. The filament arrangement
in Fig. 4.2 was devised to closely model a tokamak configuration, specifically
that of Alcator C-Mod. Furthermore, the shape was deliberately chosen
to be quite triangular in order to model the effect of a nearby separatrix.
Second, the problem is basically quite simple. No complex calculations, which
themselves might be prone to error, are required; only fields and fluxes due to
filaments need be computed and summed. This also eliminates the common
uncomfortable problem of comparing the results from one code with those
of another, perhaps unfamiliar, code. Finally, largely due to its simplicity
and generality, the sample problem provides conclusive proof as to the basic
correctness of the code.

Three solutions to the sample problem, obtained from cPFC runs, are
shown in Table 4.2. The first column of currents was found by using the
original set of plasma filaments (Plasmal-5 in Table 4.1) and their currents

to compute the the field B; in Eq. (4.13). Since this corresponds to having

exact knowledge of the plasma current distribution, it would be expected that

the PF and OH coil currents would be reproduced extremely well. Table 4.2

shows that this is indeed the case.

The second column of currents in Table 4.2 corresponds to the more usual

case when the plasma current distribution is assumed to be not well known.

Then, as was previously stated, we represent this unknown distribution with

a single filament, carrying the total plasma current, located near the magnetic

axis. The geometry of this situation is shown in Fig. 4.3a. As Table 4.2 shows,
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Table 4.2: Output Filament Currents in cPFC Sample Problem

Label Exact Case 0.64m Case 0.70 m Case
PF1 (MA) -0.593 -0.618 -0.537
PF2 (MA) +0.935 +0.933 +0.940
PF3 (MA) +0.931 +0.928 +0.934
O11 (MA) +0.988 +0.975 +0.939
OH2 (MA) +0.988 +0.975 +1.017
OH3 (MA) +0.988 +0.975 +1.017
OH4 (MA) +0.988 +0.975 +1.017
OH5 (MA) +0.988 +0.975 +1.017

the currents are again reproduced well with the largest error being 5 % on
the conductor (PF1) carrying the least amount of current. The currents in
the outer filaments, particularly PF2 and PF3, are computed much more
accurately. The fact that the error is smallest on the conductors located on
the outboard side of the plasma is predictable since they provide the largest
amount of shaping field. Finally, for this case, b, = 0.0032 so it is expected
that the the tangential field on the plasma surface is being matched very
well. This contention is confirmed by Fig. 4.4, which compares the known
and computed fields.

The third column of currents in Table 4.2 correspond to the extreme case
where the filament representing the plasma current distribution is displaced

outward to an R-coordinate of 0.70 m. This geometry is shown in Fig. 4.3b.
Since the current weighted centroid of the plasma filament current arrange-

ment is at R = 0.64 m, this case tests the performance of the code when the
exact plasma current distribution is poorly modeled. Again, Table 4.2 shows

that the currents are reproduced quite well.

On the basis of these results presented here, we conclude that the basic

correctness of cPFC has been verified.
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single filament at R = 0.64 m, (b) single filament at R = 0.70 m.
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4.5.3 Field Error Limits

One final point about this procedure should be noted. Namely, for a given
plasma shape and conductor configuration, the methods of this chapter are
quite robust and always find the "best" estimate of the conductor currents
needed to hold the plasma in equilibrium. However, this does not guarantee

that these currents will produce the desired plasma in a real experiment. For
example, this procedure could, in principle, be applied to a problem where
a dee or bean shaped plasma is to be supported by a single PF coil current.
The procedure would yield an estimate for the current in this coil; but, it is
obviously extremely unlikely that this would yield a viable plasma.

In the example with the plasma supported by a single coil, it is fairly
obvious that the cPFC solution does not correspond to a real equilibrium so-
lution. However, one can easily imagine cases where it is not so obvious that a
particular set of conductors cannot, in reality, support a given plasma shape.
Therefore, it is necessary to state a condition that can be used as a guide for
determining when a cPFC solution corresponds to a viable equilibrium.

Obviously, one would expect that the field error b, would be extremely
large for the case of a plasma supported by a single wire. Similarly, one might
expect that, in general, there might be a threshold in b. such that if the field

error is larger than the threshold value, the specified conductor configuration

cannot support the desired shape.

The determination of the critical b, has been addressed in a limited fash-

ion in this thesis. In particular, we examine the issue using the following

procedure. We first calculate a plasma equilibrium supported by 32 coils

using the exact equilibrium code NEQ. We then take the equilibrium infor-
mation and use it as input for a series of cPFC runs. Specifically, we calculate

the optimal coil currents predicted by cPFC to support the specified shape

using first 32 coils, then 16 coils, then 12 coils, and finally 8 coils. Then, for

each case, we take the cPFC coil current estimates and use them as inputs to
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NEQ. When fixed coil currents are used as input to NEQ, the code performs

a free boundary calculation and returns the exact plasma shape obtainable

using the specified currents. We can conclude that the cPFC currents repre-

sent a reasonable approximation to the free boundary calculation if the shape

NEQ returns is close to the desired shape.

The above procedure is depicted graphically in Fig. 4.5. The desired

equilibrium corresponds to the resistive-magnet tokamak reactor plasma dis-

cussed in Chapters 2 and 3. In Fig. 4.5a, 32 conductors are used to support

the equilibrium. Due to the large number of coils, the cPFC field error b,

is quite low and the shape that results when the cPFC currents are used

as inputs to NEQ (dotted surface) match the desired shape (solid surface)

very closely. In Fig. 4.5b, the number of conductors has been reduced to 16.

As expected, the agreement between the cPFC shape and the desired shape

is somewhat worse and the field error b, is larger. This trend continues in

Fig. 4.5c where the number of conductors has been reduced to 12. However,
in Fig. 4.5d, we see that the cPFC free boundary shape does not correspond

well at all to the desired shape. This is an indication that the value of b, for

that case (b, = 0.10) is too large to yield a viable free boundary equilibrium.

On the basis of the above test, we recommend that only coil current

estimates characterized by b, < 0.05 be accepted as valid approximations

for true free boundary calculations. In any event, special attention should

be given to reducing b, to the smallest feasible value in order to increase

the robustness of the resulting equilibrium. Based on the work of Helton,

et at (68,69], this can be accomplished by locating the PF coil set relatively

close to the plasma (usually within a plasma minor radius) and employing a

sufficiently large number of PF coils. Finally, it should be emphasized that if

the exact numerical values of the PF coil currents are critical, the estimates

from this procedure should be verified with a full free boundary calculation.

Even in this case, the coil current estimates could be useful for preliminary

design work and/or initial parameter scans.
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Figure 4.5: cPFC field error analysis: comparison between desired shape (solid
lines) and shape actually obtained by substituting cPFC current estimates into
NEQ (dotted lines). The number of coils used to support the equilibrium varies
from plot to plot.
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4.6 Effect of Approximate Equilibrium Informa-
tion

Since the procedure presented in this chapter requires only fixed boundary
equilibrium information, it would be extremely desirable to be able to employ
the fast variational techniques described in the previous chapter to generate
this information. However, in view of the approximate nature of these tech-
niques, a legitimate concern is whether the equilibrium information is ac-
curate enough to yield reasonable estimates of the conductor currents. This
question will be addressed with the aid of the two sample equilibria presented
in the previous chapter.

4.6.1 Conventional Circular Tokamak

We first consider the conventional circular tokamak whose equilibrium pa-
rameters are summarized in Tables 3.2 and 3.3. For purposes of illustra-
tion, we will assume that this plasma is surrounded by the relatively simple

conductor configuration depicted in Fig. 4.6. To examine the effect of the

approximate nature of the equilibrium on the PF coil current calculation,

cPFC will be used to compute two sets of current estimates. The first set

will be calculated using B, as found by ePFC as an input and the second set

will be calculated using the exact field produced by NEQ as an input.

The results from the two cPFC runs are shown in Table 4.3. It is seen that

the currents in the outer shaping coils match very well whereas the agreement

of the currents for the coil on the inboard side is less good. This is due to

two effects. First, as mentioned previously, the largest discrepancy between

the ePFC and NEQ fields is localized at the top and inboard side of the

plasma. This discrepancy would naturally be expected to affect the current

estimates in the nearby inboard conductor the most. Second, conductors on

the inboard side of the plasma generally produce a smaller contribution to
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Figure 4.6: Plasma-conductor geometry for conventional tokamak case.

the total field at the plasma surface than the outboard conductors. Hence,

el(i) is less sensitive to errors in the currents in those conductors than to

errors in the conductors on the outboard side of the plasma. On the basis

of these considerations, it is not surprising that the currents in the outboard

conductors match most closely.

Also listed in Table 4.3 are various other quantities characterizing the

conductor current estimates. These are b,, Ppp (computed assuming all of

the conductors have square cross-sections of area 6.25 x 10-' m2 ), F_ Ij, and

E I-. All of the values resulting from the ePFC data agree relatively well

with those resulting from the NEQ data.

As a final point, Fig. 4.7 shows a comparison of the input tangential

magnetic field at the plasma surface (as computed by NEQ) with the output

field resulting from the calculated conductor currents. Despite the lack of

smoothness in the input field (probably resulting from the finite differencing

scheme that NEQ employs), the output field matches quite well.
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Table 4.3: Output Current Data for Conventional Tokamak Case

Quantity ePFC Input NEQ Input
PF1 Current (KA) 1.420 1.640
PF2 Current (KA) 1.980 1.994
PF3 Current (KA) 1.712 1.720
b, 0.0075 0.0194
PpF (KW) 1.672 1.761
E I (KA) 10.23 10.70

_jI (KA 2 ) 17.74 19.24

0.030

0025

0o4

0.015

0.010 I

0.006

0.0000 0.7W4 17s= 2.3586 3.1416

Figure 4.7: Plot of input tangential field from NEQ (solid line) and output tan-
gential field computed with cPFC (dotted line) vs. 1L for conventional tokamak
case.
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4.6.2 Strongly Shaped Tokamak

We now consider the strongly shaped tokamak case (corresponding to the

resistive-magnet tokamak reactor base design from Chapter 2) whose equi-

librium parameters are summarized in Tables 3.4 and 3.5. Due to this strong

shaping, the conductor configuration surrounding the plasma is necessarily

more complicated than that for the conventional circular tokamak. This

configuration is depicted in Fig. 4.8.

Again, we will compare the conductor currents found using ePFC equilib-

rium data with those found using NEQ equilibrium data. This comparison is

shown in Table 4.4. The agreement between the two cases is not as close as

that for the conventional tokamak, but it is still quite good considering the

discrepancy in the input fields. (See Fig. 3.12). In any event, Fig. 4.9 shows

that, despite the strong plasma shaping, the field produced by the calculated

conductor currents matches the input field quite well.
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Table 4.4: Output Current Data for Conventional Tokamak Case

Quantity ePFC Input NEQ Input
PF1 Current (MA) 3.255 3.839
PF2 Current (MA) 2.254 1.679
PF3 Current (MA) 3.617 3.703
PF4 Current (MA) 2.282 2.684
OH1 Current (MA) 5.676 6.552
OH2 Current (MA) 5.676 6.552
OH3 Current (MA) 5.676 6.552
OH4 Current (MA) 4.183 3.954
0H5 Current (MA) 4.183 3.954
b. 0.0186 0.0224
PPF (MW) 358 416
E Ij (MA) 73.61 78.94
E IJ (MA 2) 331 397

These examples of relatively good agreement would seem to confirm the
contention, made in the previous chapter, that the PF current calculation is
fairly insensitive to errors in the fields near the separatrix. Hence, the use
of approximate equilibrium data does not appear to introduce unacceptable

errors in the PF coil current calculation.

As a final point, it should be noted that the conductor configuration

in Fig. 4.8 has not been optimized in an engineering sense. In particular,

the large values of PPF are a concern since the resistive magnet tokamak

reactor base design (Table 2.1) assumes PPF = 125 MW. This issue has been
investigated and a number of conductor configurations consistent with the

base design value for PPF have been found. However, these configurations

also suggest that the assumed intermediate thickness b =1 m may be too

optimistic with regard to fitting both the blanket and the PF/OH coils in

the available space. The issue of the required intermediate region thickness
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Figure 4.9: Plot of input tangential field from NEQ (solid line) and output
tangential field computed with cPFC (dotted line) vs. y4 for strongly shaped
tokamak case.

will not be addressed in this thesis; but, using the techniques introduced in

the this and the previous chapter, it is expected that the answer could be

gained relatively quickly and easily.
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Chapter 5

Stability in the Presence of
a Resistive Wall

It is a well known from ideal MHD theory that external kink modes can be
completely stabilized if a perfectly conducting wall is located sufficiently close
to the plasma [17-21]. Furthermore, several authors have shown that when
the perfectly conducting wall is replaced by one possessing finite resistivity,
modes that were initially stable begin to grow on a timescale comparable to
the resistive diffusion time associated with the wall rD [71,72].

The vacuum chambers of many modern fusion devices are constructed of
materials, such as stainless steel, which possess large resistivities (and corre-
spondingly small resistive diffusion times) in order to allow quick penetration
of the fields produced by external shaping and ohmic heating coils. Hence,
improvements in confinement have led to situations where experimental life-
times are potentially much greater than rD. This means that the estimation
of growth rates for unstable modes in the presence of a resistive wall takes
on great practical importance.

In this chapter, we will describe a procedure, again based on variational
techniques, for estimating the growth rate of an arbitrary three-dimensional
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external mode for an arbitrarily shaped plasma in the presence of an arbi-

trarily shaped thin resistive wall. This procedure will be derived in five parts.

First, the ideal case where no wall is present will be examined with the aid

of the Extended Energy Principle. In general, it will be found that 6W < 0

indicating instability on the ideal MHD timescale. Second, the case where a

perfectly conducting wall is present will be considered. Here, it will be found

that if the wall is sufficiently close to the plasma, SW can be made positive

indicating ideal wall stabilization. Third, the effect of placing a resistive wall

in place of the perfectly conducting wall will be derived. This will be seen

to take the form of jump conditions for the tangential electric and magnetic

fields across the wall. Fourth, the information gained in the previous three

steps will be compiled to yield a variational principle describing the dynam-

ics of the plasma in the presence of a resistive wall. Finally, trial functions

for the fields in the vacuum regions inside and outside the the resistive wall

will be substituted into the variational principle to yield an estimate for the

growth rate. The chapter will conclude with a discussion of non-ideal ef-

fects on resistive wall instabilities and an application of the theory to the

important special case of axisymmetric (n = 0) stability of tokamaks.

5.1 The Ideal Case

As a point of reference, consider the stability of an arbitrary three dimen-

sional plasma configuration with and without a perfectly conducting wall.

The stability of such a system can be tested by means of the Extended En-

ergy Principle [70].
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5.1.1 The Wall at Infinity

When the conducting wall is moved infinitely far away the Energy Principle

has the form

6W = 6WF + 6Wy, (5.1)

where

SW, = - - ( - (J x 6B) + rPIV. -12 + (5.2)
v Ap O

((-Vp)V - dV,

6Wy = dV. (5.3)
2 , A0(53

Here, SWF is the fluid energy integrated over the plasma volume and 6Wv is

the vacuum energy integrated over the vacuum region exterior to the plasma.

Also, it has been assumed that no surface currents flow on the plasma bound-

ary so that the surface energy 6WS = 0.

Wall stabilization, with either ideal or resistive walls, involves the study of

external plasma instabilities (e.g. external kinks, axisymmetric modes, etc).
For such modes, one specifies the normal component of plasma displacement,

evaluated on the plasma surface S,:

(S,) = e. - 15, . (5.4)

Once (S,) is specified, SWF and SWv can, in principle, be independently

minimized. Stability is determined by examining the sign of the combined

SW after carrying out a final minimization with respect to (S,) itself.

For present purposes, it is useful to assume that 6WF has been minimized

with respect to the given (S,) and to then focus attention on SWy. The

vacuum energy is found by writing
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6 =VxSA (5.5

with &A satisfying

V X V x 6k =0. (5.6)

The boundary conditions (with the wall at infinity) are given by

6AI = 0, (5.7)

e, xA ,= -(e,, - )B Is, . (5.8)

Equation (5.8) is the linearized form of the jump condition [e, x E]s, = 0.

The linearized pressure balance jump condition [p + B 2/2ioJ]s, = 0 has

the form

B - V x A Js,= B - V x ( x B) I, . (5.9)

As is well known, Eq. (5.9) appears as a natural boundary condition in the

minimization of 8W. Thus, for the true minimizing solution, Eq. (5.9) is

automatically satisfied. Conversely, for any other trial function, Eq. (5.9) will

not be exactly satisfied. However, since the energy principle is a variational

principle, the minimization of SW (with respect to the variational parameters

in the trial function) will "do as good a job as possible" in satisfying Eq. (5.9).

Whether the exact solution, or a trial function, is used for , we shall

assume that the vacuum energy is minimized exactly with respect to by

solving Eqs. (5.5)-(5.8). Under this assumption, the potential energy corre-

sponding to the wall at infinity can be written as

6W. = 6WF + 6W ), (5.10)

where

Wj =(e, x A e, x (e x V x )dS (5.11)6wv 5
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and the notation has been changed so that 3A is replaced by 6A,., (indicating

that Eq. (5.6) has been satisfied).

Wall stabilization plays an important role in systems which are unstable
with the wall at infinity. Consequently, we shall hereafter consider

sw". < 0. (5.12)

5.1.2 The Wall a Finite Distance from the Plasma

Consider now the situation where a closed, perfectly conducting wall of arbi-
trary shape is located a finite distance from the plasma. The surface of the
wall is denoted by Sb. In addition, assume that the plasma surface pertur-
bation (S,) is identical to that used in the evaluation of 6W..

Under these circumstances, the potential energy can be expressed as

5W, = SW' + SWII), (5.13)

where WF has the same value as in Eq. (5.10) and

W = J(e, x 6A6 )- e, x (e, x V x 8 Ab) dS. (5.14)

The vector potential 6A6 satisfies

V X V X 6Ab = 0 (5.15)

subject to the boundary conditions

e, x 8Ab IS& = 0, (5.16)

e, x 8Ab IS, = -(e, - ()B 5 ,. (5.17)

As might be expected, the only difference in the calculation of SAb compared

to SA, is that the boundary condition given by Eq. (5.7) is replaced by

Eq. (5.16), indicating the presence of a perfectly conducting wall.
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The situations of interest for resistive wall problems are characterized by

values of SW which are wall stabilized by a perfectly conducting wall. Hence,
hereafter we shall assume that

6W 6 > 0. (5.18)

5.1.3 Summary of Ideal Stability

In summary, a resistive wall is expected to play a major role in the stability

of external MHD modes when the system is unstable with the wall at infinity

but stable with a perfectly conducting wall a finite distance from the plasma:

sW. = 'WF + 6W ") <0, (5.19)

SW, = 6W,+ 6W V > 0. (5.20)

The values of SWF inEqs. (5.19) and (5.20) are identical since the same (S,)

has been assumed for each case.

The evaluation of the vacuum energies SW) and SWfb is nearly identi-

cal. Both corresponding vector potentials 6A,., 6Ab satisfy the same equa-

tion and the same boundary condition on the surface S,. They differ only in

the outer boundary condition.

SA.. = 0, (5.21)

e, x Ai 5| = 0. (5.22)

Ultimately, the growth rate of unstable modes in the presence of a resistive

wall will be expressed explicitly in terms of SW. and SW.
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Figure 5.1: Plasma-resistive wall geometry.

5.2 The Resistive Wall Case

In this section, we replace the perfectly conducting wall at Sb with a thin

resistive wall characterized by a conductivity a and thickness d. See Fig. 5.1.

By exploiting the thin wall assumption, we will then derive a relatively simple

variational principle describing the stability of external modes in the presence

of a resistive wall.

5.2.1 Time and Length Scale Orderings

The critical insight in the analysis of resistive wall MHD problems is the

recognition that instabilities, if they exist, will be slowly growing modes

with growth rates -y comparable to the resistive diffusion time of the wall rD:

(5.23)
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Here, ro = p-oabd and b is a measure of the average radius of the vacuum
chamber. Due to the scaling in Eq. (5.23)

y < YMHD, (5.24)

where -YngD = --6W./K is the characteristic ideal MHD growth rate with
the wall at infinity. For the Alcator C-Mod tokamak b ~ 0.4 m, d ~ 0.025 m,
and 1/o - 69.5 x 10-[0 -m so -y - 55 Hz. Typically -yMHD - 2 x 10 Hz so
Eq. (5.24) is usually well satisfied.

The thin wall model assumes

d < b (5.25)

but it is necessary to ensure that d is not so small that Eq. (5.24) is violated.
The orderings given by Eqs. (5.23)-(5.25) imply that plasma inertial ef-

fects are negligible on the time scale of interest. This leads to a substantial
simplification in the analysis. In particular, the equation describing the lin-
earized plasma behavior is just

F( ) = 0, (5.26)

where F is the well-known force operator of ideal MHD. Consequently, the ex-

act minimizing solution for the ideal MHD SW is also the exact eigenfunction

for the resistive wall eigenvalue problem. Similarly, the use of an approximate

trial function to evaluate the ideal MHD 6W represents an equally accurate
approximation for the resistive wall eigenfunction.

5.2.2 Magnetic Field Solutions

As Fig. 5.1 shows, the volume surrounding the plasma is divided into three

parts: an inner vacuum region, the resistive wall, and an outer vacuum region.

Before solving for the plasma dynamics, it will be necessary to state the

governing equations and boundary conditions for the fields in those three
regions.
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Vacuum Region Analysis

The vector potentials for the inner and outer vacuum regions 6Aj and 5A,
satisfy

V x V x 6A; = 0, (5.27)

V X V x 6A, = 0. (5.28)

Furthermore, at the plasma surface, the boundary condition on 65A; is given
by

e, x 6A1 I5,= -(e, -t)B, (5.29)

while, far from the wall, the corresponding condition on kSi has the form

6A, I.= 0. (5.30)

For a real wall, no surface currents exist on either face of the shell. Con-
sequently the tangential components of both 6E and 6B must be continuous
across both interfaces. In terms of 6A these boundary conditions are given
by

[e, x 6A]. = 0 [e, x 5AJs = 0, (5.31)

[e, x V x 6A]s = 0 [e, x V x 6A]., = 0.

Here, Si and S. represent the interior and exterior faces of the conducting
wall respectively.
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Resistive Wall Analysis

The fields within the resistive wall are calculated as follows. First, the electric

and magnetic fields are expressed as

_E = - A, (5.32)

B. =V x 6A,, (5.33)

indicating that 4 = 0 has been chosen as the gauge condition. The wall
itself is considered to be a thin metallic shell of uniform thickness d and
uniform conductivity c. Hence, in the wall 6J, = o6E.. Using the fact that
all perturbed quantities vary as 6Q(r, t) = 6Q(r) exp(yt), it follows from
Ampere's law that 6A, satisfies

V x V x 6A. = -pzoa-y6A.. (5.34)

The solution for 6A, can be found analytically for an arbitrarily shaped

wall by exploiting the thin wall assumption. Two steps are required, one

which separates normal from tangential derivatives, and the other which

results in the expansion of 6A, with respect to the perpendicular distance

into the wall.

Consider the separation of normal and tangential derivatives. To do this

in a convenient manner we will represent points within the wall using the

parameterization

r = ri + uden, (5.35)

where ri is a constant vector representing the inner surface of the conducting

wall and, in this context, e, is the unit vector normal to the inner surface

of the wall. The normalized length u represents perpendicular distance mea-

sured outward from the inner surface of the wall. Thus, u = 0 and u = 1

correspond to Si and S, respectively.
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Using the coordinate transformation in Eq. (5.35) and invoking the thin
wall assumption [Eq. (5.25)) allows the gradient operator to be written

eO
V - e s, 19(5.36)

where Vs only involves derivatives tangent to the surface of the wall.
In the limit of a thin wall, it is assumed that 6A, varies much more rapidly

normal to the wall than tangent to it. Therefore, we formally introduce a
small parameter 6 - d/b and assume the following ordering for the derivatives

(9
~ , 1(5.37)

bVs5 ~1- (5.38)

The above ordering can now be used to define an expansion for 6AW in
a manner entirely analogous to the "constant-p" approximation of tearing
mode theory [73]. The appropriate expansion is given by

SA,(u, S) = 8Awo(S) + SA,.(u, S) + - -- (5.39)

where 6AW1/6A .o - 8 and F(S) denotes a functional dependence only on

tangential surface coordinates. The corresponding maximal ordering for y
requires

jLooybd - 1 (5.40)

which is seen to be compatible with Eq. (5.23).
After a short calculation, it can be shown that the leading order contri-

bution to Eq. (5.34) reduces to

(2

(e. x 6A. 1 ) = oa-yd2(e, x 6Awo). (5.41)
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The solution of Eq. (5.41) is easily found to be

e, x 6A. 1 = a1(S) + c1(S)u + poa-yd 2(e, x 6Auo)(u 2/2), (5.42)

where a, and c, are integration constants, each of order 6.

A set of jump conditions involving 6Ai and 6A0 can be found by applying

the boundary conditions given by Eq. (5.31). The results can be written,

correct to leading order, as follows

e, x SA; |i= e, x 6Amo, (5.43)

e, x 6A. ISO= en x 6AO, (5.44)

1
en x V x 6Ai 1s= s e, x cl, (5.45)

1
e, x V x 6A, IS= en x cI + toayden x (en x 6A,,). (5.46)

By subtracting Eq. (5.43) from Eq. (5.44) and Eq. (5.45) from Eq. (5.46) we

see that the effect of the resistive wall explicitly appears only as a contribution

to the jump conditions on 6i; and 6ik across the wall. Specifically, we obtain

en x 6i I5,= en x 8i, 15,, (5.47)

en x (en x V x6i)j = en x (e, x V x 6.A) 15, + (5.48)

pooyd(e, x 6A) .
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5.2.3 Resistive Wall Variational Principle

In analogy to the derivation of the Energy Principle, Eq. (5.26) can be used

to define a Lagrangian representing the dynamics of a plasma in the presence

of a resistive wall:

tC= f -F( )dV=O. (5.49)

This Lagrangian can be rewritten in the more familiar form

Z = 6WF + - (en () ( dS. (5.50)
2 , AO

For the purposes of this analysis, it is convenient to write L in still another

way. This is accomplished by noting the following identities

=W + IV x 6.A 1 2 dV

1 f f - 6b)

(e,, -t) (AO dS -

1  (e, x 6A)e x (e, x V x Ai) dS, (5.51)
2pio is,

6W J 1 V x 6kI2 dV
2po V.

(e, x 6A.) -en x (en X V x 6 0 ) dS, (5.52)

where V and V refer to the vacuum regions inside and outside the resistive

wall respectively (See Fig. 5.1). In addition, the relevant governing equations

and boundary conditions [Eqs. (5.27)-(5.30)] for 6A1 and 6A have been

applied in the derivation of Eqs. (5.51) and (5.52).

Using the resistive wall jump conditions in Eqs. (5.47) and (5.48), the

desired form of L can be obtained
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Z = 8W, + SWi + 6W*) + -- - en x &&12 dS. (5.53)

As usual, to verify the validity of the variational principle, we evaluate
6C and set it to zero. A relatively lengthy calculation yields

M = 6( ) - F(V) dV +

56SA) -V x V x 6A dV +

odS+1 f 6(6A)) V x V x A) dV +
Ao %.

(e,-6)(($ -6b - B -6B) d
Yo

(e, x 6(A)-[e,, x (e,, x V x 6A.)+
/to "6

pjo-yd(e x 65A) - e, x (e, x V x 6A) dS. (5.54)

From Eq. (5.54), it can be seen that for the volume contributions to vanish,

Eqs. (5.26), (5.27), and (5.28) must be satisfied. In addition, the surface

contributions give rise to the two natural boundary conditions

f -6b is, = B -6B Is,, (5.55)

e, x (e, x V x 6,) Is, = en x (en x V x A.) IS6 +

poa-yd(en6A Is, . (5.56)

Finally, Eq. (5.54) was derived assuming the boundary conditions

en x S6 is,= -(en -()B IS,, (5.57)
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e, x 8A, Is,= e, x 6A, I,, (5.58)

&A. I= 0, (5.59)

are exactly satisfied. Since the set of relations that causes L to be stationary

corresponds to the previously described governing equations and boundary

conditions, we conclude that Eq. (5.53) represents the desired variational

principle.

5.3 Resistive Wall Marginal Stability and Growth
Rates

The resistive wall variational principle can be used to resolve two important

questions of physical interest: (a) the condition for marginal stability, and

(b) the determination of an accurate estimate of the growth rate for unstable

cases.

5.3.1 Marginal Stability Criterion

The marginal stability criterion is easily found by considering the limit

7TD -- 0. (5.60)

Physically, this corresponds to a situation where the plasma beta, current,

elongation, or other physical parameter happens to have a value such that

6W, + 6W) + 6W(O) -+ 8W. -+ 0; in other words, the system is nearly

marginally stable with the wall at infinity.

In this limit 6W,. is minimized by choosing

A;- -+ 6 A, 6AO -+6 + . (5.61)
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If 6A. or &A, was significantly different than 6A ., then sum SW(6A) =

W, + 6W( + 6W( *) would also differ significantly from zero. The sum
6W(SA) corresponds to the ideal MHD Energy Principle. Since the Energy
Principle is a minimizing principle it follows that

6W(6A $ 6A.) > 6W(6SAL) -+ 0, (5.62)

that is, 6W(6A . 5im) > 0 and the system would be stable.
Consequently, near marginal stability, Eq. (5.61) applies and the growth

rate, obtained by setting C = 0 in Eq. (5.53) is given by

-yo-d 28W (5.63)
fs e" x 6A.12 dS

As expected, the threshold for marginal stability in the presence of a resistive
wall coincides with that of ideal MHD with the wall at infinity.

5.3.2 Growth Rate Estimate

In situations where 6W. is not near zero, we can obtain an accurate estimate
of the growth rate by the use of trial functions. A convenient choice for 65iA
and &k. that takes into account the nature of the boundary conditions can
be written as

6A, = c16A. + C26 Ab, (5.64)

6A 0 = c36A. (5.65)

The coefficients ci, c2 and c3 are initially arbitrary. However, two constraints
are imposed on 6Aj and 6A, by the conditions described by Eqs. (5.57)-
(5.59). First, since SA. and S6i satisfy the same boundary condition on S,
as given by Eqs. (5.8) and (5.17), Eq. (5.57) implies that
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Next, since e, x iAb IS6= 0 from Eq. (5.16), it follows that Eq. (5.58) requires

C1 = C3 . (5.67)

The last condition, corresponding to Eq. (5.59), is automatically satisfied

since 6 1.= 0 as required by Eq. (5.7). Thus, of the three coefficients-

cI, c2, and cs-only one is independent.

Using the properties of the vacuum solutions, one can easily evaluate C
as given by Eq. (5.53). A short calculation yields

C = +W. + c1(cI + c2)SW(") + c 2(c1 + c2 )SW) -

(g2 _ C2g
(en X 6A) - en x (en x V x S,,.) dS-

CIC 2 f (e- x X) en x V x 6.k) dS+
2po s,

cyad sen x 6A,,,2dS. (5.68)

This expression can be simplified by eliminating cl and c3 in terms of c 2 by

means of Eqs. (5.66) and (5.67) and making use of the identity

V(A x V x 6A + 6Abx V x 6A.) = 0. (5.69)

Upon integrating Eq. (5.69) over the V, one obtains

(en x 6Am) - en x (e, x V x SAb) dS =

- j.(e; x 6Ab) . en x (e, x V x 6A,,.) dS. (5.70)
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Since e, x 6A. |s,= 6A Is, it follows that

(en x 6A 0 ) -en x (e, x V x kA6 ) dS =

2po(SWb - 6W.) > 0. (5.71)

Substituting these results into Eq. (5.68) leads to

= 6W0 + c _(6W6 - 6W.) + 2yd(1 - c2) ekx6A.12 dS. (5.72)

Observe that Z is a simple quadratic equation in terms of the variational
parameter c2. It is now straightforward to determine c2 by setting Af = 0.
The resulting value of c2 is substituted back into L which is then set to zero.
The equation C = 0 can be solved for the growth rate y yielding

SW;77D - ~6W, (5.73)

where, as usual,

,rD = pooA, (5.74)

and b is explicitly written

b = sIe, X se|6A . 2 dS
(6Wb - 6W.) '

f5s Ie, x A2 dS

fs, (e, xSA. -e, x (e, x V x SAi) dS(

The expression in Eq. (5.73) represents a generalization of the result originally

derived by Freidberg for the circular RFP [74].

Equations (5.73)-(5.76) provide an accurate estimate of the resistive wall

growth rate in terms of the properties of the ideal system with a perfectly
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conducting wall. An important conclusion from Eq. (5.73) is that a system

which is unstable with a wall at infinity 8W. < 0 but stable with a per-
fectly conducting wall near the plasma $W, > 0 will always be unstable to a
slow growing mode if the wall is resistive. The characteristic growth time is

comparable to the resistive diffusion time through the wall.

A subtle point is the following. The trial functions that minimize 6W

with the wall at infinity and at Sb are not in general identical. However, the

analysis assumes the same trial function for both cases. In practice the dif-

ferences in (S,) are not large. Still, to the extent possible, one should choose

a trial function most closely related to 6W. when considering marginal sta-
bility. For growth rate problems it is desirable, in principle, to calculate -Y
by two methods-one with (S,) corresponding to 6W. and the other with

(S,) corresponding to SWb-and to then select the fastest growth rate.

5.4 Non-Ideal Effects on Resistive Wall Instabil-
ities

The analysis just presented shows that a resistive wall leads to slowly growing

modes with zero real frequency. It has been argued that the addition of non-

ideal effects into the plasma model may cause the natural modes of the system

to develop a real part in the frequency. In this situation, the resistive wall

must respond to an AC signal. If the frequency is high enough so that the

skin depth is smaller than the wall thickness, the resistive wall would behave

as a perfect conductor; wall stabilization would persist even in the presence

of a resistive wall. Finite Larmor radius (FLR) and plasma rotation are two

such effects which produce a real frequency for unstable ideal MHD modes.

This appealing argument does not apply to resistive wall instabilities.

To show, this consider the analysis of Pearlstein and Freidberg (75] who

derived the following variational principle for MHD stability including FLR

and plasma rotation in arbitrary near 6 pinch geometry.
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Z =,6W - J pt± -D - ± dV. (5.77)
2 v,

Here, (j must satisfy V - = 0 and D is given by

D = ( T 2 )/M i(T - )/m (5.78)-i(T _ 2/ T'

where m is the dominant poloidal harmonic mode number and

T = (w - mO) W - m(SI + 11.j) - 0 M.. (5.79)

.j= -(1/enrB) (dpi/dr) is the ion diamagnetic drift velocity representing

FLR effects and 0 represents the rotation velocity of the plasma. For ideal

MHD =f2.i =0 and T=w 2

The critical point to recognize is that the new effects enter the calculation

as modifications to the inertia term. Thus, if one again considers slowly

growing modes, wj - 1/r < YMIHD then FLR and rotational effects are

unimportant if

SI.i/D < uH, (5.80)

f2/rD < -Y .(.1

Specifically, when Eqs. (5.80) and (5.81) are satisfied, as they are in most

practical applications, FLR and rotational effects modify T from its ideal

value

T = 2 ~1/r', 0 (5.82)

to

T e m 2![p + (1 + 3/2)fI.j], (5.83)
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that is, FLR and rotation produce small corrections to the potential energy
6W but do not modify the frequency dependence of the eigenvalue problem.

The situation is summarized in Fig. 5.2 where we have illustrated typical
spectral plots for the systems under discussion. Figure 5.2a shows the situa-
tion with the wall at infinity predicting instability (Imw > 0). In Fig. 5.2b
an ideal perfectly conducting wall is brought close to the plasma providing
wall stabilization (Imw = 0). Figure 5.2c shows the effect of substituting
a resistive wall in place of the ideal wall. The ideal wall stabilized modes
become slightly damped (Imw < 0). This is the "AC wall stabilization" pre-
viously discussed. However, a new, purely growing unstable mode develops
out of the origin (Imw > 0), corresponding to the resistive wall instability.

The conclusion is that FLR effects and plasma rotation do not produce
any significant modification to resistive wall instabilities. A similar conclu-
sion applies to electron diamagnetic effects characterized by the parameter
W., = mf.., although for a different reason; that is, since unstable ideal
MHD modes satisfy E1 = 0, parallel electron dynamics do not play an im-
portant role. Hence, w.. does not effect ideal MHD instabilities. However, for
resistive tearing modes, which depend sensitively on Ell = iJ, : 0, parallel
electron dynamics play an important role, causing a real part to the fre-
quency of order Rew - w... For these modes, AC wall stabilization should
be an important stabilizing influence.

5.5 Axisymmetric Stability of the Straight Toka-
mak

As an application of the preceding analysis, we will consider the stability of
tokanaks against sxisymmetric (n = 0) MHD modes. First, ideal stability
boundaries will derived by assuming the presence of a concentric perfectly
conducting wall surrounding the plasma. These results are will be used in
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Figure 5.2: Spectral behavior of Resistive Wall Instabilities: (a) wall at infinity,
(b) perfectly conducting wall nearby, (c) resistive wall nearby.
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Eqs. (5.73)-(5.76) to calculate the growth rate of modes driven unstable by
the presence of a resistive wall. The question of how much passive stabiliza-
tion can be expected from resistive vacuum vessels is a particularly important
problem since several current or proposed experimental devices are charac-
terized by relatively large plasma elongations and discharge times. The size
of the passive growth rate resulting from a given vessel configuration gives an
estimate of the requirements for an active feedback system or additional pas-
sive stabilizers needed to keep the plasma position within acceptable bounds.
The details of this more complicated problem will be addressed in the next
chapter.

A number of assumptions will be made to simplify the analysis. First, to
enable the analytic solution for the vacuum magnetic fields, we will consider
stability only in the straight (e -+ 0) limit. Second, to allow the neglect of

the Shafranov shift of the flux surfaces, we will assume low beta (p -+ 0)
operation. Finally, to reduce the complexity of the energy integrals, we will
take

= zez (5.84)

(where 4z is assumed constant) as our trial function for the plasma displace-

ment.

The ideal vertical stability of the straight elliptical tokamak with a flat
current density profile has been studied by several authors [17-21]. The
additional effects of a specific peaked current density profile and finite beta
were modeled by Laval and Pellat [76] and Haas [19] respectively. Wesson

[71] included the effect of a resistive wall while retaining the assumption of
a flat current density profile. Here, we extend these analyses to include the
effects of arbitrary current density profiles and a resistive wall.

The ideal stability of triangular plasmas was originally studied by Rebhan
[77]. Later, Ramos [78] examined the effects of combined elongation and
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triangularity. Here, we extend these results to include the effect of a resistive

wall.

5.5.1 Formulation

The analysis to be presented here is analogous to that required to apply the
Extended Energy Principle. First, the equilibrium fields are used to compute

the fluid energy eWF. Second, the fields in the vacuum are solved for by

choosing a convenient parameterization for the shape of the resistive wall.

Third, the vacuum fields are used to evaluate SW(") and SW2"). Finally, the

minimum plasma-wall separation to ensure stability and an estimate for the

resistive wall growth rate will be calculated.

Calculation of Fluid Energy

In the case of the rigid vertical shift, 6WF [Eq. (5.2)] takes on the particularly

compact form

_2
SWF Z (en -ez)(B -V(ez - B)) dS. (5.85)

2po fs,

For consistency with the variational equilibrium formulation, we will use

Eqs. (3.34) and (3.35) to parameterize the plasma surface:

R(p) = Ro + a(cos 1 - 6. sin2 ,), (5.86)

Z(p) = at. sin ;, (5.87)

where p is the usual angular coordinate and a < Ro. Rewriting Eq. (5.85)

in terms of this parameterization, taking the straight limit, and integrating

by parts gives

7r4? RoWF
,WF = (5.88)

PAO
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where the quantity WF has the form

_F 121r RMZ, - ZORwWF Q2 [ B dA. (5.89)

WF is computed for specific choices of geometry later.

Calculation of Vacuum Energy: Perfectly Conducting Wall

Due to the rigid vertical shift assumption, the vacuum energy [Eq. (5.14)]
takes on a simple form as well

6W =(e -ez)(et - 5b)B, dS. (5.90)

To evaluate Swv!') it is necessary to solve for 5b in the vacuum region
between the plasma and the wall (here assumed to be perfectly conducting).
Even in the straight limit, this is generally a difficult task due to the com-
plexity of Eq. (5.15). However, if attention is focused on a special class of

wall shapes, Eq. (5.15) can be transformed into a very simple form and solved

analytically.

This transformation is accomplished by introducing the following vacuum

coordinate system [78]:

R(u, 1) =Ro - + a' sinh u cos +

60 sinh u. cosh[2(u - u.)] cos 2p), (5.91)

Z(u, ) = - a' (cosh u sin p +

6u
2sinh u. sinh{2(u - u.)] sin 2p, (5.92)
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where, by comparison with Eqs. (5.86) and (5.87), it is seen that u = u.
parameterizes the plasma surface if

Ua = coth-K K, (5.93)

a' = a/ sinh u.. (5.94)

For the sake of convenience, it will be assumed that the wall surface also lies
on a constant-u surface: specifically, u = Ub where Ub > u.. Examples of the
wall shapes produced by this parameterization are shown in Fig. 5.3. In the
figure, the plasma-wall separation is labeled using the quantity (originally
suggested by Haas [19])

t _ e( (5.95)

Note that t is related to the ratio of the cross-sectional area of the plasma
to the area enclosed by the wall. Hence, t = 1 corresponds to the wall lying
on the plasma surface while t = 0 corresponds to the wall being located at
infinity.

In the above coordinate system Eq. (5.15) simplifies to

a2 A 826A. (596
2 + = 0 (5.96)

and the boundary conditions [Eqs. (5.16) and (5.17)] become

6A = zRmB, (5.97)
Q

6ZA, I= 0. (5.98)

Since, Eq. (5.96) is simply Laplace's equation in "rectangular" coordi-
nates, it can be solved analytically using standard Fourier analysis tech-

niques. These methods give
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Figure 5.3: Wall geometry as function of Haas position parameter.

00 sinh[m(u - ub) s
SAMp = z E -Wym- sin mp,(

=l sinh[m(u, - ub)]

where

1f 2w B,
WVM= ] RB sin mydy. (5.

7r o Q

Equation (5.99) can be substituted into Eq. (5.90) to finally obtain

C Wl = acu2 m E MWy No Wall2/,o m=1 1 - tn(5

Calculation of Vacuum Energy: No Wall

5.99)

100)

101)

By a very similar set of calculations, it is straightforward to analyze the case
where no wall is present. We find
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lZ = t,/2WVm sin mp, (5.102)
m=1

-W = mWV . (5.103)
2Ao m=1

5.5.2 Stability of the Straight Ellipse

The straight elliptical tokamak has been extensively studied because its sim-

ple geometry allows many calculations to be performed analytically. That

will prove to be the case here as well. Recall from Chapter 3 that five

variational coefficients - .0 (central elongation), a (shift), 17 (triangularity

variation), v (flux shape), and 7bO (flux normalization) - were defined. For

the purposes of considering vertical stability of the straight ellipse only no

enters into the calculations. This is because o ; 0 by virtue of the assump-

tion of zero beta, 77 = 0 identically due to the elliptical plasma boundary,
and v and 4'o will be shown to scale out of the problem.

On the basis of the above observations, it is possible to write

BpI/Q , - (1) (5.104)
Ro(1+ 2A sin2 /) dp

to a very good approximation. In Eq. (5.104), the parameter A is defined

A = Ka . (5.105)

By considering a number of ePFC equilibria run with the parameters shown

in Table 5.1, it is possible to associate large values of A with peaked current

density profiles. This is seen in Fig. 5.4 which shows that A is a monotonically

decreasing function of the normalized current profile width
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Table 5.1: ePFC Input Parameters for Straight Ellipse

Parameter Value
b, 0.001
a (m) 0.5
Ro (m) 10.0
Bo (T) 3.14
I, (MA) 1.0

OM

Ojs

'0.10

Omw

0.00
0.7 Is 0.9 f.0

w

Figure 5.4: Plot of A vs. w for straight ellipse.
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~ a=[ J ( )] 1/2 . (5.106)

Using Eq. (5.104), it is possible to calculate 6 WF, 5W,(), sW,'), A,., |,
in terms of A

6W 7r2 2 J O ) 2 / ,1
WF = a2RO& Idp1 + 1 + 2A)2 (5.107)

5W$**) = 4r 2 r 2()11 (5.109)
poa 2RoKn(1 + 2A + V1 +2A)2 dp '

d = aRo.(+ 2A + + 2A) I '(1)]. (5.110)

Note that in Eqs. (5.108) and (5.109) only the m = 1 term of the sum in

Eq. (5.101) was kept due to the fast convergence of that series.

Marginal Position for Perfectly Conducting Wall

We will now derive a condition giving the maximum distance a perfectly

conducting wall can be placed while still ensuring at least marginal stability.

This is found by setting SW = 0 and solving for t. The result is

t > K"G(A) - 1 (5.111)
r.G(A) + 1

where G(A) is a monotonically increasing function of A defined

G(A) = 1 + A +
G()=4(1 + 2A) 3 / 2 (I ±2A + -,1+ 2). (5.112)
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Figure 5.5: Plot of marginal Haas position vs. A for straight ellipse.

As previously mentioned, the marginal wall position in Eq. (5.111) does not
depend explicitly on the shape of the flux function. Instead, the axisymmetric
stability of the straight ellipse is only a function of the topology of the flux
surfaces as specified by n and A

Equations (5.111)-(5.112) extend the results of Laval and Pellat [76] to
arbitrary current density profile. In the limit A -4 0 the flat profile result ob-
tained by Haas [19] is recovered. For non-zero values of A, corresponding to
peaked current density profiles, G(A) represents an effective enhancement of
the plasma elongation. Figure 5.5 shows that elongation represents a desta-
bilizing factor for the straight ellipse since the marginal wall position moves
closer to the plasma as elongation increases. Hence, the peaking of current
profiles represents a destabilizing effect as well. This result is reasonable on
physical grounds since the peaking of the current profile effectively moves
the plasma current farther away from the stabilizing effects of the wall.
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Growth Rate Estimate for Resistive Wall

If a configuration with a perfectly conducting wall satisfies the stability con-

dition given in Eq. (5.111), the substitution of a resistive wall results in a

mode growing at a rate given by Eq. (5.73). Using Eqs. (5.104)-(5.110) in

Eqs. (5.73)-(5.75) leads to a simple analytic expression for the growth rate

2 (K.G(A) - 1)
TrD = - . 1 (5.113)

D O d (1 -0 .G() - (1 + t)'

where

-b 2w
b i2 P cos 2 A + sin 2 p, (5.114)

and b = a sinh ub/ sinh u. is the minor radius of the wall and .b = coth ub is

the elongation of the wall.

Note from Eq. (5.113) that as t approaches its marginal position -y ap-

proaches infinity. This is a consequence of the neglect of plasma inertial

effects in Eq. (5.26). Neglecting plasma inertia is formally accomplished by

letting the plasma mass density p approach zero. In this limit, the Alfven

velocity VA OC 1/p1/2 -+ oo hence the YMHD -+ oc.

Consider again the plasmas specified by Table 5.1. Assuming a 0.025 m

thick stainless-steel wall located at t = 0.45, it is possible to use Eq. (5.113)

to construct a plot of -y as a function of A for various plasma elongations.

This is shown in Fig. 5.6. Note that while peaking the current profile has a

relatively small effect on the condition for marginal stability, it can substan-

tially increase the growth rates of passively stabilized axisymmetric modes,

especially at larger elongations.
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Figure 5.6: Plot of -y vs. A for straight ellipse.

5.5.3 Stability of the Straight Dee

Unlike the straight ellipse, the geometry of the straight dee-shaped toka-
mak is sufficiently complicated so as to make analytic evaluation of 6WF,
swN, 6w(, 64,I, unwieldy. However, these quantities can be numer-
ically calculated in a straightforward manner for plasmas characterized by
the parameters in Table 5.1 and substituted into Eqs. (5.73)-(5.76) to yield
Fig. 5.7. This plot shows the variation in -y with 6, for a e. = 2 plasma

with a flat current density profile (al = -25.0). The resistive wall is again
assumed to be 0.025m thick stainless-steel located at t = 0.45. It should
be noticed that triangularity appears to have a strong stabilizing influence.
This is consistent with the ideal results of Rebhan [77] and Ramos [78] who
found that triangular plasmas possess larger marginal plasma-wall distances
than elliptical plasmas.

Also shown on Fig. 5.7 is the curve obtained from Eqs. (5.73)-(5.76) in the
case when the B, used in Eqs. (5.85) and (5.90) is that from NEQ rather than
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Figure 5.7: Plot of -y vs. 6. for straight dee.

ePFC. Notice that the resulting growth rates agree relatively well. This is a

consequence of the fact that 8 WFV oc B'. Hence, the regions of low field near

the separatrix where the field error for the ePFC equilibrium is the greatest

(see Fig. 3.12) contribute the least to the energy integrals. This supports the

contention made in Chapter 3 that the calculation of axisymmetric stability

is not greatly affected by inaccuracies in the equilibrium.
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Chapter 6

Vertical Stability of
Tokamaks in the Presence
of Resistive Conductors and
Feedback

Many currently operating and proposed tokamaks are characterized by rela-
tively large plasma elongations. For instance, the JET tokamak at Culhan
Laboratory in the United Kingdom regularly operates at . = 1.6 and the
DIII-D tokamak at GA Technologies, Inc. has achieved elongations as high

as 1c = 2.1. Also, the proposed Alcator C-Mod (1. = 1.8), CIT (P. = 2.0),

and ITER (n. = 2.3) designs all feature large plasma elongations.

As the analysis in Chapter 2 demonstrated, large plasma elongations are

desirable to maximize performance in tokamak reactors by raising the O

value allowed by the Troyon limit [Eq. (2.27)] and, hence, the amount of

fusion power generated by a plasma of given dimensions. Since ITER is

a design for an engineering test reactor, this reasoning provides motivation

for the large elongation for that proposed device. For the case of CIT, an
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experiment designed to demonstrate ignited tokamak operation, the large
elongation also results from a desire to raise j3 . However, in this case, the goal

is to minimize the TE required for ignition. This possibility was demonstrated
in Chapter 1 by the scaling argument that led to Eq. (1.9).

Large values of x. do, however, have a major drawback. Namely, elon-
gated plasmas are usually found to be unstable to axisymmetric MHD modes
[16]. This point was illustrated in the previous chapter when it was shown
that, lacking a close perfectly conducting wall, elliptical plasmas with #. > 1
are unstable on the ideal MHD timescale to rigid displacements. This is also
the case for more realistic plasma geometries despite the stabilizing effects
of increasing triangularity (see Fig. 5.7) and increasing inverse aspect ratio

(see Ref. [77]). Furthermore, it was also shown in the previous chapter that
the wall stabilization phenomenon, even in the presence of FLR effects and
plasma rotation, is not sufficient to completely stabilize the axisymmetric
modes when wall resistivity is taken into account. In particular, the modes
were shown to be unstable with a growth rate -y - - < 7MHD.

Despite the fact that axisymmetric modes grow on a timescale slow from
the point of view of ideal MHD theory, this instability cannot be tolerated in
either experiments or reactors since rD is almost always much shorter than
the desired discharge lifetime. Hence, special techniques must be employed
to control axisymmetric modes. For virtually all tokamaks, these techniques
consist of the use of passive conductors [72] to slow down the modes and

feedback [79] to stabilize them.

The idea of passive stabilization is easily explained. When the plasma

moves due to an axisymmetric instability, toroidal currents can be induced

in nearby conductors. If the conductors are judiciously located, the resulting

induced field can provide a restoring force acting to retard the plasma's

motion. The net restoring force due to several conductors can significantly
reduce the growth rate of the instability. However, it is important to note

that no matter how many passive stabilizers are employed, they will never
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completely stabilize the mode. This is because the induced currents decay

on a timescale related to the LIR time of the conductors where L is the

conductor inductance and R is the conductor resistance. Since this time is

also close to the timescale of the instability, the stabilizing currents eventually

vanish and the mode continues to grow.

Feedback techniques consist of actively driving currents in one or more

PF coils to provide restoring forces which retard the motion of the plasma.

These currents are usually directly based on plasma position measurements

and are programmed so as to exert the maximum favorable force on the

plasma. Furthermore, since the currents are driven by an external power

source they do not decay. Therefore, as one might expect, this method is

quite effective in controlling axisymmetric instabilities. In fact, unlike passive

techniques, feedback can be used to completely stabilize axisymmetric modes.

This capability has been very successfully demonstrated in several studies

[80-84].

Based on the success of feedback techniques for the purpose of controlling

axisymmetric modes, one might be tempted to suggest that similar methods

be used to control other MHD instabilities. This is quickly seen to be infeasi-

ble from a practical viewpoint. Specifically, the axisymmetric instability can

be controlled so well because it represents a single mode with a very simple

mode structure. As such, the controlling apparatus, consisting merely of a

series of axisymmetric loops and sensors, is simple as well. This would not

be the case with n 0 0 modes. The plasma displacement would have to be

sensed at several toroidal locations and the stabilizing coils would have to

be formed into a helical shape reflecting the toroidal mode number. Even

worse, one could not be guaranteed that only one n-number would be excited

so feedback systems for each n would have to be constructed. This is clearly

an undesirable task so, in general, we must assume that all MHD modes

other than the axisymmetric mode are at least marginally stable with a wall

at infinity.
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Due to the widespread use of large plasma elongations to improve Rt,
the problem of analyzing axisymmetric stability in the presence of active
and passive stabilization is an important one. However, it is also relatively
complicated since it is necessary to simultaneously model the effects of the
plasma, the PF coils, the OH coils, the resistive vacuum chamber wall, and
the feedback loops and sensors.

A number of approaches have been employed for studying the tokamak
axisymmetric stability problem. One of the most common and physically ap-
pealing methods represents all elements of the system, including the plasma,
as a series of wire loops [72,84,85,86]. As a result, the coupling between
the plasma, the vacuum chamber wall, and the various coils can be easily
modeled using a series of easily derivable circuit equations. In addition, the
stability of the system can be considered by analyzing the normal mode ver-
sion of the linearized force equations for the loops representing the plasma.
The major advantage of this technique is its speed; relatively accurate es-
timates of growth rates and feedback system requirements for complicated
wall and coil geometries can be computed very quickly and inexpensively.
For this reason, this method has been used extensively in the design of the
Alcator C-Mod experiment [86]. The major disadvantage of this approach
is its relatively primitive plasma model. Representing the plasma with wire
loops results in the neglect of such important effects as plasma beta and flux
conservation. Also, the wire loop model is largely limited to modeling rigid
vertical plasma displacements.

At the other end of the computational spectrum is a computer code named
TSC developed by Jardin, et aL [87] at Princeton Plasma Physics Laboratory.
This extremely elaborate code calculates the time evolution of a plasma in
the presence of very complicated feedback systems and passive conductor
geometries. It also self-consistently includes the effects of plasma resistivity
and transport. The major advantage of this code is its generality; it can be
used to accurately analyze the axisymmetric stability properties of virtually
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any tokamak configuration. The major disadvantage of TSC is its complexity

and cost. For example, typical TSC runs require hours of Cray CPU time to

complete.

For many applications, it might be desirable to have a method for solving

the tokamak axisymmetric stability problem that incorporates more physics

than does the wire loop model but, at the same time, is faster and simpler to

use than TSC. One possibility is to use a standard ideal MHD stability code

such as GATO [88] or PEST [46,47] to compute values of 6W. and SW for

use in Eq. (5.73). Since the exact eigenfunctions would be employed in the

calculation, the resulting growth rate would be expected to be quite accurate.

However, there are two drawbacks to this method. First, Eq. (5.73) along

with GATO or PEST cannot model the effects of discrete coils or feedback.

Second, GATO and PEST are quite general codes able to compute stability

for n 5 0 modes. This generality is not required for the axisymmetric stabil-

ity calculation and, in particular, large increases in computational speed can

be achieved by exploiting the axisymmetry of the mode.

In this chapter, we will describe a method for quickly and easily ana-

lyzing axisymmetric tokamak stability in the presence of active and passive

stabilization. In this method, all of the PF/OH coils along with the vacuum

chamber wall and any passive conductors will be modeled using resistive wire

loops. However, unlike the wire loop model, the plasma will be treated as an

ideal MHD fluid. As such, the linear stability of the system will be studied

using a Lagrangian very similar to that proposed in the previous chapter. In

addition to the realistic plasma model, this method also has the advantage

that arbitrary axisymmetric perturbations can be studied. Furthermore, it

will be shown that these desirable features can be implemented in a computer

program that executes in times comparable to those for the wire loop model.
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6.1 Problem Statement

As in previous chapters, we begin with a discussion of the problem to be
solved and the quantities to be calculated. The geometry of the system to
be considered is shown in Fig. 6.1a which depicts a tokamak plasma whose

surface is parameterized by R = R,(A), Z = Z,(ji) surrounded by a thin

resistive wall of thickness d along with a number of PF coils, OH coils, and
passive conductors. The inner surface of the resistive wall is parameterized
by R = R.(A), Z = Z.(A).

Using a simple finite-differencing scheme (described in Appendix B) the
coil/wall/conductor geometry in Fig. 6.la can be accurately represented using
J circular cross-section conductors, each of radius a,, located at the points

(R1 , Zj). The resistivity r3 and external self-inductance 41 of each conductor

are chosen to reproduce the particular poloidal circuit element the conductor

replaces. This configuration is shown in Fig. 6.1b.
We assume that the plasma is initially in equilibrium supported by the

steady state (or at least slowly varying) conductor currents I. In general, we

would expect that the only conductors carrying non-zero currents are those

representing PF or OH coils. However, during start-up, it is possible for

the vacuum chamber wall to carry substantial eddy currents. These currents

could be included in the analysis if desired.

We further assume that the plasma eventually undergoes a displacement

4(r, t). This, in turn, causes perturbed currents to flow in the J conductors.

For most of the conductors these perturbed currents are produced by induc-

tive effects associated with the motion of the plasma. However, for some,

part of the perturbed current is driven by an externally applied feedback

voltage 6v,.

The overall goal of the analysis is to calculate the linear growth rate of

the displacement -y and the set of perturbed conductor currents 61. This
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Figure 6.1: Geometry for axisymmetric stability calculation: (a) original sys-
tem consisting of plasma, PF/OH coils, passive conductors, and resistive wall
and (b) transformed system consisting of plasma and J circular conductors.

will be accomplished in three parts. First, a Lagrangian describing the dy-

namics of the plasma will be defined and evaluated in terms of 4 and the 61.
Second, a series of equations describing the coupling between the plasma

and the external conductors will be derived. Finally, all of the relations will

be combined to yield a generalized matrix eigenvalue problem which can be

solved for -y and the SIj.

6.2 Lagrangian

In the previous chapter, there was a single timescale - the resistive wall dif-

fusion time rD - that characterized the instability. However, in the present

problem the situation is much more complicated since each conductor can

have a different resistance and inductance and, hence, a different character-

istic time. Nevertheless, it is still reasonable to assume that
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It <Y . (6.

If this were not the case, the plasma would be uncontrollable using any

realistic feedback system.

Given that the instability is slowly growing, it is again possible to neglect

plasma inertial effects. As a result, the linearized equation describing the

motion of the plasma is

F( ) = 0. (6.2)

Hence, in direct analogy with the calculation in the previous chapter, we

define the Lagrangian

=f ,- F(() dV =, (6.3)

and rewrite it in the more familiar form

C=6WF+6Wv, (6.4)

where

SWF = -J--(Jx5B)+I'piv-12+ (6.5)
2 fV I A(

(-Vp)V -d dV,

6Wy = - (en -)dS. (6.6)
2 f, yIO
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6.2.1 Symmetric Form of Lagrangian

Since SWF and WV are energy integrals they must possess certain symmetry

properties [59]. However, from Eqs. (6.5) and (6.6) these properties are by

no means obvious. Therefore, these relations will be transformed into yet
another form to demonstrate this theoretically interesting point. At the

same time, it will be seen that the new form has two desirable features.

First, it will allow us to readily demonstrate the validity of Z as a variational

principle. Second, it will illustrate the conservation of energy in the system.

Symmetric Form of Fluid Energy

The symmetric nature of the fluid energy will be demonstrated using a special
form for the displacement. Specifically, we will write

(r, t) = (R)e&vez, (6.7)

where

N

(R)= E af(R). (6.8)
n=1

Note that this particular form was chosen for its applicability to succeeding

calculations in this chapter. The properties to be demonstrated are valid for

arbitrary .

Since V - ( (R)ez) = 0 by construction, Eq. (6.5) can be simplified to

6WF =-- BI 6B + po x J] dV. (6.9)
2pjo V'.(69

Furthermore, using Eq. (6.8) along with the expressions

6B = V x ( x B), (6.10)

= (B - V) - ( - V)B, (6.11)
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V( - B) = pe( x J + B x (V x ) + (B - V) + ( - V)B,

in Eq. (6.9) gives

6 WF = a - (V + S) -a, (6.13)

where a is a column vector of length N consisting of the weight coefficients
a, and V and S are (N x N) matrices whose elements are given by

1 f dfm) df'- 21
V.1 = BR dV, (6.14)

r 2 RRZ - Z(RRm + R) 2
S"'" f~ fp.o 2Im BP d p21LO Q2

Sfm fn-(RBBz) dp. (6.15)

Note that in Eq. (6.15) all quantities are evaluated at the plasma surface.
In addition, see from Eqs. (6.14) and (6.15) that V and S are symmetric
matrices. This is the desired property.

Symmetric Form of Vacuum Energy

To accomplish the transformation of 6WV we note that in the vacuum region
surrounding the plasma and the various conductors the perturbed vector
potential satisfies the equation

V x V x 6A = 0, (6.16)

and that inside each of the conductors it satisfies

V x V x 6A = -oo A- -A 6e,. (6.17)
2 rR
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Equation (6.17) has been modified from the usual form to include an
additional term that accounts for the possibility that a feedback voltage 6v
may be applied to some of the conductors. For the purposes of this thesis,
we will write

6v e, = G(SA). (6.18)

In Eq. (6.18), G is a linear operator that specifies the feedback control law
for a conductor in terms of the perturbed vector potential. We will soon see
that G must have self-adjoint property

f A -G(6A 2 ) dV = 6A 2 . G(6A1) dV (6.19)

in order to ensure that C represents a variational principle. Later in the
chapter the exact specification of G will be discussed.

The boundary conditions corresponding to Eqs. (6.16) and (6.17) are
simply

e, x 6A Js,= -(e, - )B '5, (6.20)

8A 1.= 0, (6.21)

[e,, x 6A],, = 0, j = 1, ...- , J, (6.22)

[e, x V x 6A]s, = 0, j = 1,...,J, (6.23)

where S stands for the surface of the j-th conductor.

186



Using Eqs. (6.20)-(6.23), it is straightforward to derive the following iden-

tities

SWVE) 12 f Vx6AIV

I V x6AI dV

2po J

= -fenl dS -
2 s, (e.

-' 1
E ~(e, x 6A) - e,, x (e, x V x 6A ) dS, (6.24)

6Wll) =I V x 6A 12 dV
S2pto v

= 2 e, s x 8A) - x (e,, x V x 6A) dS +

E6A -V x V x 6A dV, (6.25)
=1 2puO v

j
WVD) = E6A12 dV, (6.26)

&WyVF) = - O 6A -Gj(6A) dV, (6.27)

where V represents the volume of the vacuum region (not including the con-

ductors) and V represents the volume of the j-th conductor.

Combining the above relations and invoking Eq. (6.17) allows us to finally

write

6WV =6WEE) +6WV) + WD) + WF)(6.28)

which, by virtue of Eqs. (6.24)-(6.27), is seen to have the desired symmetric

form.
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6.2.2 Verification of Variational Principle

Formally taking the variation of Z gives

M4 =f 6 -F(i ) dV +

- 6(6A) -V xV x 6A dV+

- 6(SA) - V x V x 6A + pocrj (6A -
j= AO1

2
6, e dV +

L(en ) (b - 6 - B - 6B) dS +
S, pO

( x f(5A ))e [en x (en xV x 6A) -
j=1 IL OS

en x (en x V x 6A)] dS. (6.29)

Equation (6.29) shows that setting 6C = 0 does, in fact, recover the
correct set of equations and boundary conditions. In particular, the volume

contributions require Eqs. (6.2), (6.16), and (6.17) as the governing equations;

the surface contributions give Eqs. (6.20) and (6.23) as natural boundary

conditions; and the analysis assumes that Eqs. (6.19), (6.21), and (6.22) are

exactly satisfied. Hence, Eq. (6.3) represents a proper variational principle

for the problem at hand.

6.2.3 Conservation of Energy

An examination of Eqs. (6.24)-(6.27) reveals that the terms in Eq. (6.28) can

be associated with various forms of energy. In particular, 6 WV(E) represents
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the change in inductive energy in the vacuum region surrounding the plasma
and the conductors due to the motion of the plasma and the time variation in
the perturbed currents. In other words, 6W(E) can be written schematically
as

SW(E) = 6 1 , (6.30)
j=1 j=1 k=1

where Mj, and My, are the mutual inductances linking the plasma to the
conductors and the conductors to themselves respectively.

The next term, sW1 ) represents the change in internal magnetic energy
of the conductors. It can be written

6W() ='61 J
V= 6 (7LI) , (6.31)

2j=1

where L, is the internal inductance of the j-th conductor.
Using a few straightforward manipulations 6WP() can be written as

D1 J
6Wl =6(- E riji ) (6.32)V ( 2-y j=1 .7

Hence, this term is seen to represent the energy dissipated in the conductors
during the instability.

The final term represents the energy input into the system from the feed-
back voltages. It can be written in the form

&W&F) = 6 (
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where vo is the voltage applied to the j-th conductor.

With the above associations in mind, C is seen to take the form

,c Change in ) Change in Ext.
Fluid Energy Magnetic Energy

Change in Int. ( Dissipated (Source (3
(6.34)Magnetic Energy ' Energy Energy]

Hence, L = 0 is seen to be a statement of conservation of energy.

6.3 Plasma Model

6.3.1 Displacement Trial Function

In its most general form, the plasma displacement is a function of both r
and t. As such, (r, t) can, in principle, be solved for using an initial value
approach. Here, the plasma is given an initial velocity which causes the
plasma to move from its equilibrium position. However, the time evolution
of the system could not be followed very far because the expansions used to
derive the linearized force operator F would be violated relatively quickly. In
addition, our neglect of plasma inertia is really only valid in an asymptotic

theory since kinetic energy accounts for most of the system's total energy
near the start of the instability. Therefore, we will limit our attention to
exponential stability:

(r, t) = (r)et. (6.35)

Even with the neglect of the full time dependence of the displacement,
the study of completely arbitrary spatial variation for is a difficult task.

Luckily, several simplifications can be made on the basis of straightforward

physical considerations.
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The first simplification results from observations that the most unstable
modes tend to be mainly vertical. This has been confirmed by analyses
ranging from simple arguments based on current loops to detailed numerical
calculations using sophisticated computer methods. We illustrate this point
in Fig. 6.2 which shows the exact eigenfunction (as computed by the GATO
ideal MHD stability code) for a finite aspect ratio dee-shaped plasma. Hence,
on the basis of this consideration, only displacements of the form

(r) = (r)ez (6.36)

will be analyzed in this thesis.

A second simplification is due to the fact that the most damaging modes
also tend to be incompressible (i.e. V -. = 0). This can be proven rigorously
for n 5 0 modes but is not necessarily true for n = 0 modes. Nevertheless,
a number of GATO runs have suggested that compressibility normally plays
a negligible role in axisymmetric stability. There are, however, at least two
cases where compressibility can be important. First, if horizontal displace-
ments are considered, plasma compressibility does in fact play a major role.
Second, even in the case of vertical displacements, there are extreme cases
where plasma compressibility is important. For instance, Hoffmann, Turn-
bull,and Marcus [89] demonstrated that the existence of a close fitting wall
near the top and the bottom of the plasma could lead to complicated "con-
vective cell" instabilities with a highly compressible nature. For the purposes
of this thesis, only vertical incompressible displacements will be considered.
With this assumption, the most general form of e is given by

t(r) = e(R)ez- (6.37)
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In many calculations, including those presented in the previous chapter,
it has been further assumed that (R) = const. This rigid vertical shift
assumption has the very desirable feature that it leads to great simplifications
in the analysis. In addition, it has been rigorously demonstrated that the
exact eigenfunction for the straight elliptical tokamak with a flat current
profile is, in fact, the rigid vertical shift [17]. However, for more realistic cross-
sections, such as the finite aspect ratio dee, it turns out the displacement is
far from uniform. This point is illustrated by Fig. 6.2 which shows that (R)
is largest on the inboard side of the plasma. Based upon this observation we
will focus on displacements of the form

(R) = z (R ' (6.38)

where 4z is a constant, R, is the radial location of the magnetic axis, and
v is a parameter controlling the non-uniformity in the displacement. Equa-
tion (6.38) has several desirable features. First, it closely models the radial
variation shown in Fig. 6.2. Second, it includes the rigid shift as a special
case obtainable by setting Y = 0. Finally, it is simple enough to allow effi-
cient numerical calculations. A major goal of this chapter will be to assess
the effect of non-uniform displacements on tokamak vertical stability in the
presence of a resistive wall and feedback. Rebhan and Salat [90] investigated
similar displacements in the context of the study of ideal stability using the
sharp boundary model [59].

6.3.2 Evaluation of Fluid Energy

By comparing Eq. (6.8) with Eq. (6.38), we can immediately write

6 WF = Z W Z, (6.39)
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where WF = V + S and

v = BR dV, (6.40)

= -r 2- RRAZ$W - ZO(RRMRS + R2) (R) 2B
2A ~ 2o Q2 R B,, dy -

r j (a) (RBRBz) d. (6.41)

6.3.3 Evaluation of Vacuum Energy

Despite the appealing physical interpretation of Eq. (6.28), it is actually more

convenient from the point of view of computation to use Eq. (6.6) to evaluate

6Wv. Using Eq. (6.38), this can be written

WV Z 7 ,(QBp)dp, (6.42)
I-o 0

where

60, = RRBp "' (6.43)

and Si, = et -6$ is the tangential component of the perturbed vacuum field.

Notice that the w-component of perturbed vacuum field does not appear

in Eq. (6.42). This is because SB,Is,, = 0 identically for vertical incompress-

ible displacements. To see this, we can use Eq. (6.11) to explicitly calculate

6BO

-B = -( (R) d (6.44)
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In Eq. (6.44), F is the current free function introduced in Chapter 3. Recall

further from that chapter that, in order to ensure that the toroidal current

density vanishes at the plasma boundary, dF/db Is,= 0. Hence, 6B, is, = 0

which, in turn, implies that 6$, Is, = 0 to ensure pressure balance. It should

be emphasized that this would not be the case for radial displacements. Here,
6B , would be expected to make a major contribution to SWy.

In order to evaluate SWV it is necessary to compute 6, as a func-

tion of A on the plasma surface. In principle, this can be accomplished

by solving Eqs. (6.16) and (6.17) subject to the boundary conditions given in

Eqs. (6.20)-(6.23). However, this is a very difficult task given conductors of

finite extent. Therefore, we will assume ac -+ 0. In this limit, we can write

to high accuracy

+ po x e, (6.45)
j=1

where 64 is a scalar magnetic potential satisfying Laplace's equation and TP

is the flux due a thin conductor given by Eq. (4.19).

The perturbed field 6$ must satisfy Eq. (6.20) on the plasma surface and

must also vanish at infinity. Using Eq. (6.45), the relation at the plasma

surface can be written as follows

8Sq4 8/R-- = a IzS +ZpSI 'i -. (6.46)
49/A j=1

Because we are restricting attention to axisymmetric modes, we are able

to use the fast and efficient Green's function techniques described in Chap-

ter 4 to compute 64. As in that chapter we expand the scalar magnetic

potential and its-normal derivative in Fourier series

M

6 = E am e"", (6.47)
m=-M
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R + Dm1 6Ij) e'im , (6.48)
c =-M j=1

where c is a column vector of length (2M + 1) whose (known) elements are
given by

im 2 .
Cm = 6ie~"""dy, (6.49)

and D is a (2M + 1) x J matrix whose elements are written

im 21r
Dj = - 0 po je-"PdA. (6.50)

We further recall from Chapter 4 that the application of the scalar version

of Green's theorem [Eq. (4.30)] yields a simple matrix equation which can be

inverted for the Fourier coefficients of the scalar magnetic potentials

a = zd + E -6i, (6.51)

where

d = [I + A]-' C c, (6.52)

E = [I + A]- C -D, (6.53)

and A and C were originally defined in Eqs. (4.51) and (4.52).

On the basis of Eqs. (6.52) and (6.53), we therefore see that we may write

6B, in the form

6B(p) = 4zbE(p) + b()(pt) - -Si, (6.54)

where bW((p) represents the contribution to the perturbed field from the

movement of the plasma and bM(p) represents the contribution from the

currents induced in the conductors. The functions are explicitly written
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1 M
b(f() = - m imdme'"*, (6.55)

M=-M

- +(p)1 8'p)+ (6.56)QR On'

where

1imp
( = - E imEme". (6.57)

We can finally substitute Eqs. (6.55) and (6.56) into Eq. (6.42) to obtain

-Wy = z Wye z + wz W yo -w 1, (6.58)

where

= 1 6p,(Qb(I)) dyi, (6.59)
p~o 0

WVg) = 7 j 6O,(Qb ')) d1A. (6.60)

6.3.4 Plasma Equation of Motion

Combining Eqs. (6.39) and (6.58) gives the Lagrangian in the form

A = Z (WF + Wy))Z +4ZW(o -6i =0. (6.61)

Equation (6.61) describes the energetics of the plasma motion. However,

stability cannot yet be assessed since the perturbed currents are unknown.

This problem will be addressed in the next section.
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6.4 Plasma-Conductor Coupling

The derivation of Eq. (6.61) yielded no constraints with regard to choosing

the perturbed conductor currents. However, on physical grounds, one would

expect that the conductor currents cannot be chosen arbitrarily since they

must be strongly coupled to the displacement of the plasma through induc-
tive effects. In fact, this coupling was ignored when Eq. (6.45) was written

since no mention was made of the governing equation inside the conductors

(Eq. (6.17)] or the boundary conditions at the surfaces of the conductors

[Eqs. (6.22) and (6.23)]. When these relations are considered, a series of
equations relating the perturbed conductor currents to the plasma displace-

ment are obtained. The derivation of these equations is the subject of this

section.

6.4.1 Derivation of Circuit Equations

In order to derive the plasma-conductor coupling equations, it is convenient

to consider the time-dependent form of Eq. (6.17)

V x V x A = -poaOA- e.) . (6.62)/a rA v~( - Ti (662

Rather than self-consistently solving Eq. (6.62), we will make the simplifying

assumption that the current density in the j-th conductor can be written

Jj = Jje,, (6.63)

where J, = const. Due to the fact that the conductors are thin and the

problem is entirely axisymmetric, it is expected that this represents a very

accurate approximation. Scalar multiplying Eq. (6.62) by J1, integrating
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Figure 6.3: Conductor coordinate system and fields.

over the volume of the conductor, and performing a series of straightforward

algebraic manipulations gives

3 J. dV = - Jj2 dV +
fv-27rR V

1 BO dV + - B dS, (6.64)

where 6 is the polar angle coordinate defined in Fig. 6.3.

We can now linearize Eq. (6.64) by writing all quantities as

Q(r, t) = Q(r) + 6Q(r) e. (6.65)

A simple calculation yields

6v I, = r6II +

2 Be SBe dV + f B SA, dS. (6.66)
AO Ai O s
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Note that the fields making up the integrands in Eq. (6.66) result from

contributions from the plasma along with all of the conductors. However, in

the limit a, -+ 0, many of these contributions vanish upon integration. This

leaves

6v 3I = r'6I3I +

'Y J Be, 6Bo, dV + j Bq 6A, dS. (6.67)
AO Jv yo 10 sj

As Eq. (6.67) shows, the only B-field contribution comes from the j-th

conductor. This is explained by considering Fig. 6.3. In that figure, the B-

field produced by the plasma and other conductors is seen to approximately

have a constant magnitude and direction over the entire cross-section of con-

ductor j. Hence, the 9-component of those fields oscillates along surfaces of

constant radius in such a way to cause all of integrals involving them to van-

ish. This is not the case for the field produced by j-th conductor. That field

almost entirely points in the 9-direction with a magnitude well approximated

by the relation for a straight wire

Bol - .2* (6.68)

Since the magnitude of Bg does not oscillate, finite contributions to the

integrals are made.

In the case of the vector potential present in the last term in Eq. (6.67),

the contributions from the plasma and the other conductors do not vanish.

This is because the 6A. from those sources is approximately constant on S,
in the limit a. -+ 0. Furthermore, this constant magnitude is not expected

to be ignorable in comparison to 6Aj, since the vector potential varies loga-

rithmically with distance.

Substituting Eq. (6.68) into Eq. (6.67) and canceling out the equilibrium

currents gives finally
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6vj=r6I + 7 'L I +2,r6-0 , (6.69)
Sk4

where we have again introduced the flux function 64' = R 6A,. Versions of
Eq. (6.69) clearly can be written for all of the external conductors. These

J equations along with Eq. (6.61) completely describe the dynamics of the
system. However, to make practical use of Eq. (6.69), it is first necessary to

provide a specification for the feedback voltage S6v and to derive an expression

for the perturbed flux at the surfaces of the conductors 6 &i

6.4.2 Feedback Control Laws

So far we have treated the form of the feedback voltage in purely mathe-
matical terms. Recall from Eq. (6.18) that the voltage was written in terms

of an operator G required to possess the self-adjoint property depicted in

Eq. (6.19). In a practical sense, this requirement places virtually no limita-

tion on the usable types of feedback laws. To see this, consider the following

fairly realistic form for 6v,

v E = + n 6A,(r,). (6.70)
n=1 1 + to.1Y

In Eq. (6.70), the points r, are simply a series of places at which to sample

the vector potential. In a real experiment or reactor, these points would

correspond to the locations of flux measuring loops. As long as the sampling

points are not inside any of the conductors, it is easy to show that Eq. (6.19)

is satisfied.

Equation (6.70) illustrates three important features of feedback control

laws: gain, delay, and compensation. These are represented in Eq. (6.70) by

the parameters G,,, tD,, and tc, respectively. The gain is simply the degree to

which a measurement of plasma motion is amplified and fed back to reduce

the growth rate. Delays are time lags that effectively result in a plasma
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movement at time t not being responded to until a later time t = t + tD.

Compensation represents an attempt to anticipate the motion of the system

by feeding back on the rate at which the measurements change in order to

offset some of the performance loss brought on by delays.

Delays reduce the speed at which a control system for a tokamak can

respond to an axisymmetric instability These delays can result from a number

of factors. First, realistic measurement devices require a finite amount of time

to sense a movement of the plasma, process the measurement, and send a

demand to a power supply to respond. Furthermore, realistic power supplies

generally require some time to respond to a demand for power. In realistic

experimental configurations, power supply delays are on the order of 0.1 msec

while measurement delays are much smaller [911.
In addition to the external delays just described, there are also a se-

ries of inherent delays present in the system. For instance, the current in a

conductor cannot change instantaneously. Instead, this occurs on the LIR

timescale. Also, since feedback coils are usually located outside of the vac-

uum chamber, the fields produced by those coils diffuse through the wall on

resistive diffusion rD timescale. These effects are actually included in the

circuit equations given by Eq. (6.69) so they need not be modeled by adding

terms to the feedback control law.

To design a robust axisymmetric stability system, careful attention must

be paid to the accurate estimation of delays and the optimization of feedback

laws and sensor locations to provide compensation. Luckily, very powerful

mathematical techniques exist for dealing with these issues and other authors

have, in fact, applied these techniques to tokamaks [92].

Since this thesis is not concerned with the detailed design of vertical

stability systems, we will assume a fairly un-realistic, but simple, feedback

control law of the form

Svj = G,(1 + tc37). z (6.71)

202



This corresponds to ignoring all external delays and choosing G,(r) to sample
the vector potential at the plasma surface (where 6A. oc ).

As a final point, it should be emphasized the analysis does not require a
control law of the form given in Eq. (6.71) or even in Eq. (6.70). Different

laws based on measurements of magnetic field or induced conductor currents
with different dependences on -y can, in fact, be easily constructed so as to

be consistent with Eq. (6.19).

6.4.3 Calculation of Perturbed Flux

As was the case for the perturbed scalar potential, it will be convenient to
consider the perturbed flux to be made up of two contributions: one due to
the motion of the plasma and one due to the induced conductor currents.

&0 = 60) + 6101). (6.72)

Consistency with the governing equation in the vacuum region [Eq. (6.16)]
and the boundary condition at the plasma surface [Eq. (6.20)] demands that

A-6 R = 0, (6.73)

60) Is,= - Z6Pp', (6.74)

and

_WI) = 0, (6.75)

(I) Is,= - o *k&Ik Is,, (6.76)
k=1

where &e/() is defined via

- + I p k k . (6.77)
k=1
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Vector Green's Theorem

Since 60) and 6em are only required on the plasma surface, we are again led

to consider Green's theorem techniques as the method of solution. However,
since we are computing fluxes rather than scalar magnetic potentials, we

must employ the vector version of Green's theorem [22] which is written in

greatest generality as

aSi(r) + [(e' (r'))V'O(r, r') +

(e' x 6A (r')) x V'd(r, r') +

d(r, r')(e' x V x &(r'))] dS' = 0, (6.78)

where the various quantities are the same as those originally defined in Chap-

ter 4 for the scalar version of Green's theorem. In particular, G is the in-

finite space Green's function [Eq. (4.27)], r denotes the observation point,
r' denotes the integration variables, and o- is the weight function depending

on the location of the observation point with respect to the plasma surface

[Eq. (4.29)].

Equation (6.78) can be greatly simplified by making use of the assumption

of toroidal axisymmetry and the fact that only the p-component of the 6.

is non-zero. A straightforward calculation gives

cr5t(r) + , (') [6tk(r')(e',, V'H(r, r')) -

H(r, r')(e' V'&k(r'))] dS' = 0, (6.79)

where

R'R cos(W' - W)
H(r, r') = . (6.80)

47r r' - rl
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with Ir' - ri as given by Eq. (4.28).

As was the case for the scalar version of Green's theorem, it is possible

to perform the p'-integration in Eq. (6.79) analytically. This yields

s1,i7' H3 - ___55

5 + -2 (5 -- a H dp' =0, (6.81)

where

1 f 2-R'Rj cos (W' pH=- = p . (6.82)
47r 0 | r'- ri|

Note that in Eqs. (6.81) and (6.82), the observation point has been chosen to

be at the location of the j-th conductor (R,, Z,). Hence, a has been taken

to be unity. The integration points remain on the plasma surface.

Evaluating the integral in Eq. (6.82) gives the very simple result

Hj = - Ti. (6.83)

Therefore, using Eqs. (4.19) and (4.20) we find

1 0H 1 R, 1/2 [(2 -k'2)E - 2(1 - k' )K

R' an' , \ j' I k'K +

Ajk'3(E - K)}, (6.84)

with

k 4R'R, (6.85)j (R' + R3 )2 + (Z'- Z)2'

Z'(R'- Rj) - R'(Z'- Zj)
A =A (6.86)

(Rl'- Rj)2 +(Z' - Z)2

Z .(6.87)=2R?'
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Evaluation of Perturbed Flux due to Plasma Displacement

We can now use Eq. (6.81) along with Eqs. (6.55) and (6.74) to evaluate
610. We obtain

6 1 s,= =z L, (6.88)

where

L2W [0b ' H ) + H Q'b()(/')] dp. (6.89)

Evaluation of Perturbed Flux due to Conductor Currents

Similarly, we can use Eq. (6.57) to write

p. J
6Ij + 27r60') IS,= L(1)I, (6.90)

k=1

where

L 2o k (' 1 + H, Q'')(p') d', (6.91)

when j # k and

L " + i, (6.92)

when j = k.

6.4.4 Plasma-Conductor Coupling Equations

Having defined all quantities, we can now write the equations that govern

the coupling between the plasma and the conductors in the following form

Gj(1 + tcj-t) z = rj6Ij + , [ z 0L + L(.k 61,]s (6.93)
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6.5 Solution for the Growth Rate and the Per-
turbed Currents

Using Eq. (6.61), it is possible to write tz in terms of SI

Z= w y)W2 5Ik. (6.94)
W, + W'(1

This can, in turn, be substituted into Eq. (6.93) to yield a generalized matrix

eigenvalue equation

R -Si = yM -Si, (6.95)

where -y is the eigenvalue and 8i is the eigenvector. The elements of the

matrices R and M are given by

Ri= - r6k, (6.96)
WF + W

(Gjtc, - L0)W() L(
Mlik = + k4 Lq) (6.97)

WF+WyeP

In Eq. (6.96), 8j, is the Kronecker delta function.

6.6 Solution Procedure Summary

The analysis needed to derive the various equations in this chapter is rela-

tively complicated. However, the procedure for analyzing tokamak vertical

stability is actually quite simple. Specifically, we assume that the following

is known:

* Equilibrium information:
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1. Plasma shape,

2. BR and Bz throughout plasma.

* Conductor information:

1. Location and composition of resistive wall,

2. Locations and compositions of resistive PF/OH coils and passive

stabilizers,

3. Possibly, feedback control laws for some of the coils.

" The displacement non-uniformity parameter v.

These are the only inputs required by the solution procedure. The output

of the procedure consists of the growth rate y and the corresponding per-

turbed conductor currents 6I. These quantities are calculated as follows.

First, Eqs. (6.40) and (6.41) are used to evaluate WF. Second, the meth-

ods of Appendix B are used to finite-difference the wall, the coils, and any

passive stabilizers into J thin circular conductors. Third, the scalar version

of Green's theorem is used to evaluate the tangential component of the per-

turbed vacuum field at the plasma surface. This is then substituted into

Eqs. (6.59) and (6.60) to yield WP and Wr. Fourth, the vector version

of Green's theorem is employed to evaluate LO and L 1) using Eqs. (6.89)

and (6.91). Fifth, all of these quantities can be substituted into Eqs. (6.96)

and (6.97) to give the elements of the matrices R and M which make up

the generalized matrix eigenvalue problem depicted in Eq. (6.95). Finally,

this problem can be solved using standard numerical techniques for -y (the

eigenvalue) and bI (the eigenvector).
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6.7 Computer Implementation

The ideas of the previous sections have been implemented in a computer
program called "vPFC." This code can analyze the vertical stability prop-
erties of a typical tokamak configuration (J -: 32-64) in 3.0-6.0 sec of Cray
CPU time. In this section, we will discuss a number of issues which illustrate
various numerical properties of the vPFC code and also provide evidence as
to the code's correctness.

6.7.1 Verification of Finite Difference Convergence

One of the major assumptions in the analysis is that the finite differencing
scheme presented in Appendix B yields an acceptable representation for a
continuous vacuum chamber wall. In particular, it is necessary to verify that

the growth rate converges to a known value as the number of conductors
making up the wall increases. This concern is addressed as follows. We

consider a straight elliptical tokamak with zero beta and a flat current density

profile surrounded by a thin resistive wall parameterized by Eqs. (5.91) and

(5.92). We also assume a uniform shift displacement so v = 0. This case

was analyzed in the previous chapter using the variational formula given

in Eq. (5.73). The resulting growth rate is plotted in Fig. 6.4 along with

the variation in the growth rate computed by vPFC with the number of

conductors used to represent the wall. The graph shows that as the number

of conductors increases the vPFC result does indeed quickly converge to the

analytic result.

More complicated plasma and wall shapes have been investigated. For

most configurations, it has been found that no more than 30-50 conductors

representing the wall are required to achieve high accuracy in the growth

rate. There is, however, one practical situation where this may not be true.

Specifically, when flux loops and magnetic probes are placed along the inner
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Figure 6.4: Plot Of - vs. J to illustrate finite difference convergence. Plasma
parameters: i. = 2, a1 = -25.0, b, = 0.001. Wall parameters: t = 0.45,
d = 0.025 m stainless steel.

surface of the vacuum chamber, it is possible for the discreteness of the finite

differenced wall to introduce large errors into field measurements. There-

fore, special care must be taken to ensure that the number of conductors is

sufficiently high to reduce these measurement errors to acceptable levels.

6.7.2 Comparison with Known Results

Figure 6.4 demonstrated that vPFC is capable of recovering a single known

result assuming a sufficiently large number of conductors are used to rep-

resent the vacuum chamber wall. It is necessary to further show that this

good agreement is achievable for a variety of plasma shapes and current pro-

files. To this end, we will reconsider the two configurations analyzed in the

previous chapter for the case of the uniform shift: (a) the straight ellipse

with a peaked current density profile and (b) the straight dee with a flat

current density profile. Recall from Figs. 5.6 and 5.7 that it was found that
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Figure 6.5: Plot of -y vs. A showing comparison between vPFC results (dotted
line) and analytic results (solid line) for a straight elliptical tokamak with k. =
2.0. A 0.025 m stainless steel wall is located at t = 0.45.

peaking of the current density was destabilizing and that triangularity was

stabilizing. These results are reproduced in Figs. 6.5 and 6.6 along with

vPFC results obtained using exactly the same equilibrium information and

wall configuration (modeled using 32 conductors). Note the extremely good

agreement over the entire range of A and 6. respectively.

6.7.3 Normal Modes for the Passive Case

So far, we have shown that "the" growth rate computed by vPFC agrees well

with results obtained previously in this thesis. This represents a desirable

observation regarding the overall correctness of the code and the formulation.

However, the reference to a single growth rate needs to be explained in more

detail. This is because the solution to Eq. (6.95) actually consists of J growth

frequencies and J corresponding perturbed current distributions representing

the normal modes of the system.
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Figure 6.6: Plot of- vs. 5. showing comparison between vPFC results (dotted
line) and analytic results (solid line) for a straight dee-shaped tokamak with
k. = 2.0. A 0.025 m stainless steel wall is located at t = 0.45.

For purposes of illustration, we will consider the straight elliptical toka-

mak configuration shown in Fig. 6.7. The plasma has an elongation n = 2, a

flat current profile, and zero beta. A stainless steel wall is located at t = 0.45.

This wall is finite differenced into 32 conductors, labeled in the figure with an

index k that increases in a counter-clockwise direction around the surface of

the wall. The figure also shows two PF coils but, for now, we will assume that

they are not functioning (even with regard to passive stabilization). Again,

we take v = 0.

The arrangement of y's found by solving Eq. (6.95) is shown in Fig. 6.8.

Notice that all of the frequencies are purely real. This is because the matrices

R and M are exactly symmetric in the absence of feedback. This symme-

try, in turn, is a manifestation of the symmetric nature of the Lagrangian

demonstrated earlier in this chapter.
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Figure 6.7: Illustrative tokamak configuration for purposes of discussing nor-
mal mode behavior.

Another feature of the frequency distribution in Fig. 6.8 is the fact that
all of the y's but one are negative, indicating damped solutions. The single

positive y is the growth rate that was used in the previous comparisons.

Also of interest are the perturbed currents induced in the wall. Recall
that these are the eigenvectors of Eq. (6.95). Three of the J perturbed

current distributions are shown in Fig. 6.9 as a function of the angular index

k. Note that the maximum magnitude in each case is normalized to unity.

This is necessary because eigenvectors are indeterminate within a constant

multiplier.

The 61 corresponding to the single growing -y is shown in Fig. 6.9a. Note

that the angular distribution takes the form of a sine wave. This is an

an expected result on the basis of the analysis in Chapter 5. Specifically,

Eq. (5.32) implies that the perturbed current density in the thin wall will

be proportional to the perturbed vector potential at the wall. Furthermore,
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Figure 6.8: Eigenvalue (-) distribution for straight elliptical tokamak case.

Eq. (5.110) shows that the perturbed vector potential at the wall is written

as a fourier sine series with m = 1 as the dominant contribution.

If each of the J sets of perturbed currents is substituted into Eq. (6.94), it

is found that the largest relative value of z is associated with the single grow-

ing mode whose perturbed current distribution is shown in Fig. 6.9a. The

perturbed current distribution corresponding to the (damped) mode giving

the next largest relative displacement is shown in Fig. 6.9b. This distribu-

tion is seen to be approximately proportional to sin 3A. Again, reference to

Eq. (5.110) shows that this is the expected result. Similarly, the m = 5 and

m = 7 poloidal mode numbers yield the two next largest values of z. In

general, the m = 1 mode always dominates; however, the relative sizes of the

m > 1 modes increase as the current distribution becomes more peaked.

Figure 6.9c shows the i that corresponds to the smallest relative value of

the displacement ( z < 10"). Notice that the parity of this perturbed cur-

rent distribution is even. This is in contrast to the distributions in Fig. 6.9a
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and 6.9b which have odd parity. On the basis of the even parity of the
perturbed current distribution, it is not surprising that this eigenvector cor-
responds to essentially zero plasma displacement. Furthermore, due to the
highly oscillatory nature of the mode, it is not surprising that the mode is
highly damped (-y < 200 Hz).

It should be noted that the well-defined mode structure illustrated in
Fig. 6.9 is largely a result of the simplicity of the plasma and wall shapes used
in this example. For more complicated configurations, extensive coupling
between the m-numbers is observed.

6.7.4 Normal Modes in the Presence of Feedback

To investigate the effect of feedback on the normal modes, a feedback voltage
of the form given in Eq. (6.71) is applied to the upper PF coil (k = 32) shown
in Fig. 6.7. No corresponding voltage is applied to the lower PF coil (k = 33).
Both coils are assumed be made of copper and to have square cross sections
with 0.05 m sides.

Figure 6.10 shows the effect of feedback on the distribution of normal
mode frequencies. In the plots, the gain is increased from G 32 = 0 to G3 2 =

1800 V/m with the compensation held fixed at rC32 = 0.05 sec. Note that

the plots only include those modes with IRe yI < 150 Hz and JImrI < 150 Hz
in order to better resolve the variation of the frequencies around Re-y = 0
(the stability threshold). The modes not shown are all strongly damped.

With G 32 = 0 (Fig. 6.10a) the PF coils both simply provide passive
stabilization. This results in a slight reduction in the growth rate com-

pared to the case when no coils are present. Increasing the gain to 200 V/m
(Fig. 6.10b) leads to a further decrease in the positive growth rate. However,
at the same time, the figure shows that a damped mode originally located

at Rey = -12 Hz has moved in the positive direction to Re-y = -7 Hz. As
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Figure 6.10: Eigenvalue (-y) distributions for the straight elliptical tokamak
case with feedback. Compensation held fixed at rC3 2 = 0.05 sec. Gain varies
from plot to plot.

217

goi . ....

A

G32 =200

'W'

A



the gain is further increased, this mode continues to move in the positive di-

rection. In fact, when G3 2 a 300 V/m the mode actually becomes unstable.

For purposes of identification, these modes are called "feedback modes."

When G 32 ~ 370 V/m, the originally growing mode and the formerly

damped mode coalesce at -y ; 9 Hz. As the gain is further increased, the

modes move away from the Re y axis as a complex conjugate pair. This is

shown in Fig. 6.10c. Note as well that the real part of the growth frequency

has continued to decrease.

Increasing the gain to 600 V/m (Fig. 6.10d) causes the real part of the

frequencies to become negative. Hence, there are no more growing modes
in the system. This shows that feedback can indeed give complete stability

with respect to axisymmetric modes.

Further increases in the gain cause the imaginary parts of the modes to

begin to decrease (Fig. 6.10e) until the modes eventually rejoin the Re -y axis

at -y = -41 Hz and begin to move in opposite directions along that axis

(Fig. 6.10f). As the gain is increased to very high values, one mode moves

to -y = -20 Hz = - 1/-rC32 and the other moves to y = -2780 Hz.

The initial spectral behavior of these feedback modes is consistent with

results obtained in other studies. The behavior of the modes once they be-

come damped is a complicated function of the various mutual inductances

and resistances that characterize the system. For other types of systems, it

is sometimes found that increasing the gain to extremely high values eventu-

ally causes the modes to become unstable. This behavior, which is illustrated

in Fig. 6.11, occurs because the inductances of the system eventually cause

the feedback voltage to become out of phase with the displacement. Hence,

rather than providing a restoring force, the feedback voltage actually be-

comes a driving force for the instability. The details of the spectral behavior

at high gains have not been investigated in this thesis. In particular, the

circumstances that result in the behavior shown in Fig. 6.10 as opposed to

that shown in Fig. 6.11 have not been identified. However, it is suspected
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Figure 6.11: Spectral behavior of feedback modes for a hypothetical system.
The arrows give the direction the feedback modes move as gain is increased.

that two factors that might be important are plasma inertia and vacuum

chamber wall geometry.

As Fig. 6.10 showed, the f's associated with the feedback modes display

relatively complicated behavior as the gain is increased. However, many of

the other modes move very little or not at all. The slowly moving modes

were first identified by Humphreys and Hutchinson who named them 'quasi-

constant' modes [93]. The exactly constant modes correspond to even-parity

eigenvectors of the type shown in Fig. 6.9c. They are not affected by feed-

back since they correspond to normal modes of the vacuum chamber alone.

Furthermore, the movement of the feedback modes in unaffected by the ex-

actly constant modes since they represent orthogonal or unobservable modes

of the system.

In addition to affecting the frequencies of the feedback modes, increas-

ing the gain also has a large effect on the perturbed current distribution in

the vacuum chamber wall. This is shown in Fig. 6.12 which displays the
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Figure 6.12: Eigenvector plots for straight elliptical tokamak case with feed-
back: (a) no gain, (b) G32 = 350 V/rm.

perturbed current distributions corresponding to the growing feedback mode

when G32 = 0 (Fig. 6.12a) and when G32 = 350 V/m (Fig. 6.12b). No-
tice that even with no gain the distribution is modified somewhat from that

shown in Fig. 6.9a. This is due to the substantial passive effects associated

with the PF coils. Figure 6.12b shows that even a modest gain dramatically

affects the perturbed currents, especially in the top half of the wall.

6.8 Effect of Non-Uniform Plasma Displacement

Up to now, all of the calculations have assumed a uniform vertical shift

(V = 0) for the plasma displacement. In this section, we will investigate the

physics and the effects of non-uniform displacements.

The physics of the non-uniform displacement can be explained quite sim-

ply using Fig. 6.13. This plot shows the vacuum field contours for a typical

dee-shaped tokamak. Also shown are three current filaments ('a', 'b', and 'c')
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Figure 6.13: Vacuum flux contours for a typical dee-shaped tokamak

located on different field lines. The relative directions of the currents and the

magnetic fields are set to ensure that the Lorentz (J x B) force points radially

inward. Assume now that filament 'a' is displaced by a small amount verti-

cally upward. As the result of this displacement, the filament will be acted

upon by a Lorentz force between the filament current and the R-component

of the magnetic field. Since BR points in the positive R-direction, the force

acts upward, thus enhancing the instability. Therefore, the curvature of that

field line is of a destabilizing nature. In contrast, the force acting on filament
'c' as a result of an upward vertical displacement points downward. Hence,

the curvature of that field line is of a stabilizing nature. Similarly, the field

line that filament 'b' lies on is seen to be neutrally stable.

The situation depicted in Fig. 6.13 is a common one; many tokamaks

possess regions of good and bad field line curvature. The bad curvature is

usually present on the inboard side of the torus and the good curvature is

present on the outboard side. As the result of this observation, one might
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Table 6.1: Equilibrium Parameters for Investigation of Non-Uniform Displace-
ments

Parameter Value
a (m) 0.21
Ro (m) 0.64

2.0
0.35

Bo (T) 9.0

aP -3.32
Qf -2.0
I, (MA) 2.7
b, 1 0.001

expect that displacements peaked near the inboard side of the torus might

be potentially more destabilizing than uniform shifts.

The expectation that non-uniform displacements are more destabilizing

than uniform shifts is proven correct by Fig. 6.14. This plot shows the

variation of -y with v for a dee-shaped plasma (whose ePFC equilibrium

parameters are given in Table 6.1) surrounded by a stainless steel wall with

a shape parameterized by Eqs. (5.91) and (5.92). For this particular case,

we take t = 0.4. Note that -y increases by almost a factor of three before

reaching a maximum at v = 1.9. The effect of this displacement on the

plasma shape can be seen by arbitrarily setting z = 0.2a and superimposing

this perturbation on the points making up the plasma surface. The result is

shown in Fig. 6.15.

Since the non-uniformity in the plasma displacement increases the passive

growth rate, one-might expect that the feedback gain required to stabilize

the system would increase as well. This question is addressed using Fig. 6.16.

Here, we assume the existence of two PF coils located at R = 0.64 m, Z =
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Figure 6.14: Variation of -y with v for dee-shaped tokamak.
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Figure 6.16: Variation of Rey with feedback gain G32 for dee-shaped plasma
for v = 0 and v = 1.9.

±0.7m. Each coil is made of copper and has a square cross-section with

0.05 m sides. A feedback voltage is applied only to the top coil (k = 32) and

the compensation is fixed at rC32 = 0.05 sec. The figure shows the real part

of y plotted as a function of the feedback gain for two values of v: v = 0 and

v = 1.9. We see that the non-uniform shift requires a significantly larger gain

to reduce -y to zero-(i.e. stabilize the mode). This means that consideration

of only uniform shifts could lead to a large underestimation of the feedback

power supply requirements.

The amount of de-stabilization associated with v is a complicated function

of wall geometry and plasma shape. However, one parameter that seems to

have a particularly strong effect is triangularity. To assess the impact of tri-

angularity on vertical stability in the presence of a non-uniform displacement,

we will consider a series of equilibria with parameters as given in Table 6.1

but with 6. varying between 0.0 and 0.5. These plasmas are assumed to be

surrounded by walls parameterized by Eqs. (5.91) and (5.92). In Fig. 6.17,
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Figure 6.17: Plot of marginal wall position (t) as a function of 6. for dee-
shaped tokamak. Three curves are shown: (a) ePFC equilibrium, vPFC sta-
bility, v = 0 (dashed line); (b) ePFC equilibrium, vPFC stability L chosen to
maximize -y (dotted line); (c) NEQ equilibrium, GA TO stability (solid line).

we plot the minimum value of t necessary to ensure ideal stability - the
marginal wall position - as a function of 5.. Three curves are presented.
The first curve was generated using ePFC to compute the equilibrium and
vPFC to compute the stability with v = 0. The second curve was also gen-
erated using ePFC and vPFC; however, the value of v used is that which
maximizes 7. The third curve was generated using the exact equilibrium
code NEQ to provide input to the ideal MHD code GATO. Hence, for this
curve, the plasma displacement is in some sense "exact."

For the ePFC/vPFC curve with v = 0, the critical value of t decreases
with 6. indicating that the marginal wall position moves outward with in-
creasing 6.. Hence, this curve implies that triangularity has a stabilizing
effect on stability. This is consistent with the results of Fig. 5.7 which shows
that y decreases with & in the straight limit.
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Figure 6.18: Variation of v leading to maximum -y with 6..

The ePFC/vPFC curve with v chosen to maximize -y again shows that

triangularity is a stabilizing effect. However, in this case, the stabilizing

influence is reduced, especially at high values of 6.. This occurs because the

plasma displacement becomes non uniform as 6. increases. This is shown

in Fig. 6.18 which displays the value of v that maximized -y as a function

of 6.. Note that, as expected, the most unstable disolacement is a uniform

shift only for the case when 6. = 0. As 6. is increased, v also increases

(though at a much smaller rate for 6. > 0.35). It should be emphasized that

at high triangularities the effect of the non-uniformity in the displacement

is substantial. In particular, for some range of wall positions, the uniform

shift model predicts stability on the resistive wall time scale when, in fact, the

plasma is unstable on the ideal MHD timescale to non-uniform displacements.

The ePFC/vPFC curve with v # 0 scales relatively closely to the NEQ/

GATO curve for 6. < 0.4. On the other hand, the Y = 0 curve deviates
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dramatically as 6. is increased. This is another example of the inaccuracies

associated with the uniform shift model.

One of the most striking features of Fig. 6.17 is that, in contrast to the

ePFC/vPFC curves, the NEQ/GATO curve shows that increasing triangu-

larity is actually a mild destabilizing effect. This behavior is probably not

due to artificial numerical errors since special care was taken to avoid such ef-

fects. Furthermore, this result is supported by the work of Bernard, et aL [20]

who used the ERATO [94] MHD stability code to conclude that triangularity

is detrimental to the stability of n = 0 modes. The discrepancy between the

ePFC/vPFC and NEQ/GATO results is probably due to a combination of

three factors.

The first possible cause for the discrepancy between the ePFC/vPFC and

NEQ/GATO results is the approximate nature of the ePFC equilibrium. It is

plausible to expect that the differences between the ePFC and NEQ equilibria

could affect the stability results. However, Fig. 5.7 suggests that these errors

are probably relatively small. The second possible cause for the discrepancy

is the error associated with sensing the marginal wall position using vPFC.

This error ultimately results from the neglect of plasma inertia in the vPFC

formulation. As a result of this assumption, the marginal wall position is

found by locating the value of t that causes - to become infinite (or at least

very large). Since the neglect of plasma inertia is clearly invalid at large, but

finite, values of -y it is not possible to know exactly when -y has grown large

enough to to signal ideal instability. Luckily, the variation of -f with t near

the marginal point is extremely fast. This allows us to estimate that this

effect gives an error in t no more than At < 0.02. We would not expect that

these two sources of error would yield opposite trends in the variation of t

with 6..

The third, and probably major, cause for the discrepancy between the

ePFC/vPFC and NEQ/GATO curves is the difference between the exact

GATO displacement and the simple displacement trial function given in
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Eq. (6.38). Examination of the unstable GATO displacement eigenfunctions

indicates that Eq. (6.38) is a relatively good approximation when S. < 0.4.

However, experience has shown that subtle differences is the displacements

can lead to a finite variation in the marginal wall position. One way to inves-

tigate this effect would be to substitute the exact GATO displacement into

vPFC. Unfortunately, current versions of the vPFC code cannot accommo-

date such general displacements. When 6. > 0.4, the simple trial function

in Eq. (6.38) becomes a less accurate approximation. This is illustrated in

Fig. 6.19 which shows the GATO displacement eigenfunction for the 6. = 0.5

case. Note that the displacement appears to peak along the plasma surface

and to vary with the Z-coordinate. Moreover, the displacement is not purely

vertical everywhere. This suggests that to accurately model strongly shaped

plasmaa more elaborate trial functions are needed.

As a final note, approximately 3-5 minutes of Cray CPU time were needed

to generate each of the points for the NEQ/GATO -curve. This corresponds

to a single run of NEQ to generate the equilibrium followed by 3-6 runs of

GATO with different wall positions to find the marginal point. The corre-

sponding CPU requirement for the ePFC/vPFC curves is 10-20 sec for the

v = 0 points and 25-40 sec for the v A 0 points.

228



A b

tt

II

t t o

*~tt\ ' 9

',*t 9

*ff ' t

t99 'I Pf'

Opff,

1,* f tf

Figure 6.19: Exact GATO eigenfunction for dec-shaped plasma (K. =2,
S. = 0.5). The arrows give the local direction and magnitude of .

229



Appendix A

Derivation of the Inverse
Grad-Shafranov Equation

In this appendix we transform the Grad-Shafranov equation from normal

cylindrical (R, V, Z) coordinates to inverse (p, W, 14) coordinates. Recall

that the Grad-Shafranov equation can be written

$0 {4Ra + zz - y = -me RJ,(R, ), (A.1)

where, for simplicity, subscripts have been used to denote partial differenti-

ation.

Using the chain rule, we can simply obtain relations between derivatives

in cylindrical coordinates and inverse coordinates:

_ = a8 Z, a (A.2)
OR J. Op J 01'

19 R a R,08 _ J 8p + , (A.3)
hr is th + -01r d

where J is the Jacobian for the transformation defined
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J = R,Z4 - ZR,-. (A.4)

With these relations, we can easily compute the first partials of 4

R = (, ,(A.5)

z = (R,,-RNM) (A.6)

Furthermore, a little algebra yields the second partials

1a = Ra + -Z ] [Z (A.7)

~R I[R bz] [Rnz]} (js

Ozz =-- R4 R ( A.8)

By substituting Eqs. (A.7) and (A.8) into Eq. (A.1) we finally obtain the

inverse Grad-Shafranov equation

Za R Rz _ Zo, - Rpz] = -oJ J,(pqV,), (A.9)

where IPR and ?z are given by Eqs. (A.5) and (A.6).
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Appendix B

Poloidal Field Circuit Finite
Differencing Procedure

In this appendix, we describe the straightforward procedure used to finite

difference various poloidal field circuit elements into a series of thin circular

conductors. The cases of the PF/OH coils and the vacuum chamber wall are

considered separately.

B.1 PF/OH Coils

The finite differencing of the PF and OH coils is extremely easy. For sim-

plicity, we replace each PF/OH coil with a single thin circular conductor

located at the same position (R,, Z3) as the original coil. Higher accuracy

could be achieved by using more than one conductor to represent a given

coil; however, for most applications, a single coil suffices.

The goal of the procedure is to reproduce the resistance and the external

self-inductance of the original coil. Assuming that the coil has a rectangular

cross-section of width wl and height h,, the resistance is found to be
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1 = hLjInR+ i (B.1)
r3  2 \ R> 1 j

where a- is the conductivity of the material making up the coil. In principle,
the external self-inductance is much harder to compute. However, we simply

use the value that would be obtained if the rectangular coil were replaced

with a large aspect ratio circular conductor with the same cross-sectional

area:

FI = 2o \( In 2] . (B.2)

B.2 Vacuum Chamber Wall

It is only somewhat more involved to finite difference the vacuum cham-

ber wall. We assume that the inner surface of the wall is parameterized by

R = R.(p), Z = Z.(iA) where IA is the usual angular coordinate. We further

assume that the wall has a thickness d and that d < 6 where b is the av-

erage radius of the wall. This is simply the thin wall assumption originally

discussed in Chapter 5.

To finite difference the vacuum chamber wall into J conductors, it is neces-

sary to break the wall into a number of segments. This is shown schematically

in Fig. B.1. We replace each of the segments with a single conductor.

The conductor is located at the centroid of the wail segment it replaces.

The coordinates of this centroid are given by

Rj = I &(IA) Q,(p) dp, (B.3)Li

Zj = - Z()Q,.(p) dg, (B.4)
Lj mi
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(Rn., Zt,)

d

Figure B. 1: Vacuum chamber wall finite differencing scheme.

where

QW( d j dZ) 2
\ dy d

and

Lj = Q. (p) dp.

The resistance of the conductor is simply written

21rRf

whereA, is the cross-sectional area of the segment given by

Ai = L, d.
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The external self-inductance of the conductor is again written using the

thin circular assumption

Ij = AoRI [In (-/2 ) -2] (B.9)
27r A'/
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