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SUMMARY

Exploratory experimental studies were performed, and simple predic-

tion procedures were developed, to determine Young's moduli and yield

strengths of reinforced copper under inplane tension and under face con-

pression. The predictions are compared with the test data. Agreement

appears to be good enough to support the hypothesis that those properties

can be predicted by mixture rules. For the near-term, it appears reason-

able to employ the prediction procedures in Compact Ignition Magnet de-

sign. However, more testing is required to increase confidence in use of

the procedures. An example illustrates application of the method to CIT

magnet coil design.

The primary purpose of the study has been to explore the structural

response of reinforced-copper laminated composites when subjected to face

compression. Perhaps the most important results obtained so far are the

observations that the reinforced copper withstood face pressures much

greater than the copper yield strength, and that the copper did not ex-

trude laterally.
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SYMBOLS

b = arbitrary length

E = Young's modulus:

Ec - copper

Ei - composite under inplane tension

Ef - composite under face compression

Er - reinforcement

Et = Tangent modulus

Et,c - copper

Et,i - composite under inplane tension

Et,f - composite under face compression

Etr - reinforcement

E-B = Explosion-bonded (Composite)

L = Length of edge shear zone on finite width plate

R = Aspect ratio of copper in stack, w/tc

R-B = Roll-bonded (composite)

tc = Total Thickness of copper component in composite

tr = Total Thickness of reinforcement component in composite

w = Width of square plate in stack

Xi = "umerical value of i-th quantity in statistical analysis

C = tc/(tc + tr)

£ = Strain

ec - in copper, through thickness

E~r - in reinforcement, through thickness

Ej - general inplane

ec,i - inplane in copper

erji - inplane in reinforcement
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-f,y/cf,y

= Average of several numerical quantities

= Stress

af - face compression

ai - inplane tension

ac,i - inplane in copper

ar,y - inplane in reinforcement

c ,y - copper yield

af'y - face compression yield for infinite plate (mixture
rule value)

aiy - inplane tension yield

ar,y - reinforcement yield

af'- face compression yield for finite width plate

at- tresca, af - ac in copper, af - ar in reinforcement
(algebraic signs: + = tension in component,
- = compression)

= Parallel to interface wave ridges

= Perpendicular to interface wave ridges
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INTRODUCTION

Background

Compact Ignition Magnets are being designed with copper conductors.

The high central toroidal fields (9 to 10 tesla) induce fields of the

order of 20 tesla at the outer radii of the inner legs on the TF coil.

The average toroidal compression stresses are in the 450 MPa range. The

free-standing OH coil has a 24 tesla field inside the winding, which in-

duces average toroidal tension stresses of 440 MPa. The fields from the

PF coil system induce vertical compression equal to 80 MPa.

This situation requires a conductor with high strength. It also re-

quires good electrical conductivity to minimize temperature rise during a

pulse. One method of producing plates with that combination is to gener-

ate a composite structure by bonding high conductivity copper to a high

strength metal such as Inconel (or perhaps stainless steel). The struc-

tural properties of such a combination have been explored in both inplane

tensionl, 2 , and in face compression 3 , in connection with magnet design.

The tests of Reference 3 were performed on unbonded copper/steel stacks in

which the components were a few mils thick and about 2 inches in diameter.

Observed yield strengths were of the order of twice that of cold worked un-

bonded copper. That situation may exist in Alcator C, although the plate

thicknesses are much greater.

Prediction of inplane behavior appears to be reasonably straight-

forward. However, response to face compression had not been explored

enough to permit defining a design procedure. Furthermore, many magnet

engineers have assumed that face compression behavior is limited by the
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properties of the unreinforced copper, although evidence exists4 to indi-

cate that such an assumption may be overly conservative.

It is the purpose of this study to explore those types of structural

behavior and to reveal the gain in face compression yield strength when

copper is reinforced by a high strength metal.

Program Goals

The primary goal of the Composite Test Program is to provide struc-

tural property data for magnet coil design. In the CIT Program the TF coil

will be loaded only in toroidal compression, radial compression, and ver-

tical bending. The PF coils will be loaded in toroidal tension, vertical

compression, radial compression, and possibly in vertical and radial

bending. Consequently, both inplane tension and face compression data

are required.

It is desirable to develop a procedure for predicting the structural

behavior of the reinforced copper composite, not only as a fundamental

scientific activity, but also to calculatb the impact of likely design

changes as the program proceeds.

Another program goal is to determine whether a predictable relation

exists between the yield strengths for inplane tension and for face com-

pression. Inplane tension tests require relatively small amounts of ma-

terial. Furthermore, they can be performed quickly using more-or-less

standard specimens and measurement techniques in conjunction with testing

machines that produce loads in the 10,000 lb (70 KN) range. Face compres-

sion tests require large amounts of material arrayed in stacks, and loads

in the Multi-Mlb (tens of MN's) range. Use of large machines for com-

pression tests often require long lead times. Furthermore, no standards
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exist for performing that type of test. As a result, there would be

value in being able to perform only tension tests to obtain both tension

and compression yield strength data.

Procedures

This program involves developmemt of methods for predicting composite

response to inplane tension and to face compression, conduct of tests to

reveal the general nature of the response, and comparison of prediction

with test data. Experiments were performed on roll-bonded, explosion-

bonded and unbonded composites. They included strip stress-strain tests

on the composite components and on the composites, as well as face com-

pression stress-strain tests on stacks of both bonded and loose plate

segments.

A simple procedure was developed for converting component tension

stress-strain curves into inplane tension stress-strain curves for a

reinforced copper composite. An hypothesis was employed that led to a

calculation method for face compression yield strength of an infinite

plane plate. A method also was developed for estimating the strength of

a finite width plate. Those procedures were combined into a method for

predicting the yield strengths of the test stacks. Measured yield

strengths were compared with the predictions for eight stacks with wide-

ly varying properties. The measured compression yields also were com-

pared with the measured tension yields of four bonded composites.

The results of the comparisons led to the conclusions at the end of

the report. Planned continuation activities also are presented.
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ANALYSES OF STRUCTURAL BEHAVIORS

Introduction

The following strength-of-materials analyses have been developed to

identify the structural interaction of the copper and reinforcement in a

composite, and to offer a relatively simple method of estimating the

structural behavior under inplane tension and under face compression.

Finite element calculations have been attempted to identify face compres-

sion behavior. However, to date they do not correlate with the test data.

No comparison is presented in this report. That analysis activity is ex-

pected to continue and will be reported when good correlation is achieved

with test results.

Elastic Moduli

The copper and reinforcement of the composite are considered to be

united so that the inplane strains in the copper match the inplane strains

in the reinforcement throughout the composite (Fig. la). Furthermore,

the inplane forces in the copper and reinforcement are balanced in the

direction perpendicular to an inplane tension load (Fig. lb), or in both

inplane directions perpendicular to a face compression load (Fig. 1c).
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Figure 1. Stresses and Strains in Composite Components.
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For determination of the inplane Young's modulus, it is assumed that

Poisson's ratio is the same for the composite components. As a result, the

lateral strains would be the same in each component from the portion of ap-

plied load that it carries. In that case, no transverse forces would exist

and the inplane elastic modulus could be determined by a simple parallel

mixture rule (Fig. 2),

Ei - aEc + (1 - a) Er (1)

If the interfaces were not united, and were frictionless in addition,

the simple series mixture rule

1/Ef = a/Ec + (1 - a)/Er (2)

would apply to face compression as shown in Fig. 3a. However, the be-

havior of a united composite under elastic face compression would be more

complex (Fig. 3b). The face compression, a, would be the same on both

components. Consequently, the copper inplane Poisson expansion, vaf/Ec,

would exceed that of the steel, vaf/Es. This would induce equi-biaxial

inplane tension in the steel and compression in the copper such that the

inplane forces would balance in both inplane directions. As can be seen

in Fig. 3b, the effective Young's modulus for face compression would be

found from

2v2a(1 - cg)(1 - Ec/Es)2

1/Ef = a/Ec + (1 - a)/Es - ( - a(1 - EcEs) (3)
(1 - v)Ec (I - a + (%EC/Es)

The first two terms are the same as the RHS of Eq. (2). The third term

will vanish when a = 1 or 0. It would be small in any case. For example,

if v = 0.3, a = 0.5, and Ec/Es = 1/2, then the term would be equal , ap-

proximately, to 0.02/Ec, which would have little effect on Ef.
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Inelastic Moduli

The local slope of the composite stress-strain curve can be found

from Et = da/de. For inplane loads on a narrow strip (small w/t),

Et,i = Et,c + (1 - a) Etr (4)

Et,i will be zero for an elastic-plastic copper in the yield range. In

that case

Et,r = Et/(1 - a) (5)

In any case, the parallel mixture rule would apply at all strain levels.

A wide plate (w/t >> 1) will have inplane stresses perpendicular to

the load direction due to the different Poisson's ratios of the inelastic

copper and the still-elastic reinforcement. The theoretical prediction

of that behavior is being investigated. Intuitively, however, the tresca

stress in the reinforcement could be increased because of that condition.

As a result, the composite strain at any stress would be expected to in-

crease.

Face compression tangent moduli also could be computed from Et = da/

de. In that case

1/Et,f = a/Etc + (1 - a)/Et,r (6)

However, the problem is identifying Et,c and Et,r at any stress level

using the stress-strain curves of the composites. That problem also is

being investigated.



It it possible to determine ai,y from the parallel mixture rule if

Et,c is small. Another theroretical method is to construct the stress-

strain curve from th-e curves of the components, using the procedure de-

scribed above, and then finding the 0.002 strain offset stress level.

Yield Strengths

There can be little doubt that the joining process and subsequent

treatment will alter the yield strengths of the composite components.

Consequently, from a practical standpoint, the best way to determine the

composite inplane tensile yield (and ultimate, also) may be to measure

that property on samples of the composite with component proportions in

the range of anticipated design values.

Determination of the face compression yield may present a problem, as

discussed below. If a relation can be established between inplane tension

yield and face compression yield, the difficulty might be circumvented.

There may be a basis for believing that both those yield values would be

the same.

It is hypothesized that tresca yielding would occur in an infinite

composite plane plate under face compression when both components yield

simultaneously. That is, the tresca stress1 in the copper would reach

the uniaxial copper yield strength at the same time that the tresca stress

in the reinforcement reaches the uniaxial reinforcement yield strength

It should be noted that the equi-biaxial inplane stress field in each
component, under face compression, leads to the same effective stress
whether the tresca or the von Mises criterion is used.
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(Fig. 4). When the inplane force balance is included, it is found that

the face compression yield strength is

af,y ~ Iac,y + (1 - I)ar,y (7)

It is like the mixture rule for a parallel system, which could pertain

to the inplane tension yield strength of the composite. That implies,

that the face compression yield strength for an infinite plane plate

would be the same as the inplane tension yield strength of a narrow strip.
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Figure 4. Derivation of Yield Strength Relation for an Infinite
Composite Plane Plate Under Face Compression.
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Effect of Finite Width on Face Compression Yield Strength

The aspect ratio, R = w/tc, of the copper component will determine

how closely the composite face-compression yield strength can approach

the mixture rule value in Eq. (7). An estimate of the effect is devel-

oped in this section. Use is made of that procedure subsequently in com-

paring predictions with test data.

An important factor is the ratio of reinforcement yield strength to

copper yield strength, as can be seen from the equations in Figs. 5 and 6.

If ar,y >> ac,y, that could offset the advantage of larger R.

Figure 7 illustrates how the various parameters atfect the tinite

width connection factor. The relations are

L (1 + c) + (1 - a)(ar,y/ac,y) (8)
w + (1 - a)(ar,y/ ac,y)

where

L/w = (L/tc)/(w/tc)

and

L/tc = (0.866)(1 - c)(ar,y/ac,y -1) (9)

-1 %
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From the mixture rule,
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Figure 5. Approach to estimating order-or-magnitude of copper
edge shear region, using simplified model.
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Assumed Linear
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From face compression force balance,
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Figure 7. Sample curves of finite width correction
factor.



TEST DATA AND DISCUSSION OF RESULTS

Introduction

Experimental results are presented, and are compared with predic-

tions. There are many possible sources of inaccuracy in the measured be-

havior. Appendix 3 contains a discussion of some of those sources. It

contains indications of the accuracies inherent in the load and deflec-

tion measuring devices, and identifies the possible role of specimen im-

perfections on observed specimen behavior.

The behavior of a face-compression composite depends upon compression

stress-strain data in combination with inplane compression data for the

copper, and with inplane tension data for the reinforcement. However, in

this exploratory stage of the program it was convenient to confine the com-

ponent material property testing to inplane tension. Compression testing

of component material properties has been deferred to a later stage.

Specimen Structural Properties

The composite test specimen material and dimensional data appear in

Table 1. Inplane tension stress-strain curves for the component materials

are in the Appendices. They are the sources of the yield strengths and

Young's moduli shown in the table.
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Inplane Tension Tests

Inplane tension stress-strain curves for the reinforced copper com-

posites appear in Figs. 9 through 12. Yield strengths and moduli are

presented in Table 2.

COMPOSITE
TABLE 2

INPLANE TENSION TEST AND ANALYSIS RESULTS

YIELD YOUNG'S
STRENGTH, MODULUS,

ajts i (MPa) msi (GPa)

SPECIMEN FIGURE
NUMBER MEASURED CALCULATED MEASURED CALCULATED

A B E_ E2 El E?

Ti 9 86.6 1 1 20.3 20.3

T2 10 79.2 82.0 83.9 20.5 23.4

T3 11 99.7 108.0 114.3 21.0 24.7

T4 12 88.3 88.3 90.4 20.4 15.9 23.1 15.2

A From the prediction (dashed curve) determined by calculating acomp
aac + (1 - a) ar at selected strains on the component stress-strain
curves in Appendix 1.

B From the mixture rule oay = aoc,y + (1 - ) ary using the yield
strengths shown in Table 1.

1 Steel stress-strain curve not available at strains in the yield region.
Specimen too small to grip properly.



All theoretical curves were constructed from the parallel mixture

rule

'comp =aac + (1 - a) Gr (10)

which was applied at several strains to obtain the starred curves shown on

Figs. 9 through 12. In addition, primary moduli were calculated tram

Ei I = aEc + (1 - a)Ee (11)

Secondary moduli (for low-yield-strength copper) was found from Ei,2 ~

(1 - a)Er. However, only T4 exhibited a secondary modulus (Fig. 12.).

For the other composites, the copper strains at 0.002 offset yield were

within the yield region of the reinforcements, which prevented identifi-

cation of a secondary modulus.

The TI modulus and tension yield strengths agreed well with the pre-

dictions if assumed values for ac,y and Or,y are 50 ksi (345 MPa) and

200 ksi (1380 MPa) for the heavily cold rolled R-B strip. The component

properties could not be measured. The measured values for the E-B I-C-I

specimen were somewhat below the predictions. It is conceivable that the

interface wave may have been a factor, since the effect of the reinforce-

ment stiffness bond strengths would be less than the average perpendicular

to the waves and greater than the average parallel to the waves, causing

orthotropic behavior instead of isotropic behavior (Fig. 8). This condi-

tion did not exist in the roll-bonded specimen, T1, for which theory

agreed well with experiment. The wave-induced orthotropicity also may

have affected the behaviors of the face-compressed stacks.

The possibility of a wave effect requires measurement of E-B com-

ponent and composite properties parallel and perpendicular to the wave

directions, which was not done in this phase of the test program.
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Face Compression Tests

Perhaps one of the most important features of the face compression

tests was the observation that the face compression yield strengths were

greater than the copper yield strengths (a ratio of 8/1 for C8). Another

important feature was the inability to detect visually any indication of

large bulging of the copper at the plate edges. At the most, it appeared

to be of the order of a few thousandths of a inch (possibly as much as

0.010 inch), including stack C5 which was loaded to 4.4 percent face-com-

pression strain. That observation would seem to bolster the view that

copper yielding is inhibited by the reinforcement.

The face compression tests were performed on stacks of composite with

no insulation between plates (except for C4 for which the plates were ce-

mented together). The tests data and predictions appear in Table 3. The

yield strengths and Young's moduli were obtained from the stress-strain

curves in Figs. 13 though 20.

The eight stack face compression tests produced an average ratio,

u = 1.05, of measured effective yield strength to theoretical effective
I I

yield strength, * = af,y(meas)/If,y(calc). The standard deviation (z[xi

- u]2/8, was 0.03.
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The Young's moduli were derived from the linear regions of the stress-

strain curves. The low values (relative to the theoretical value) may

have resulted from the often-observed phenomenon of interface effect be-

tween plates. It could consist of general out-of-flatness and nonuniform

thickness of the stack plates possibly augmented by surface roughness of

each plate face. The relatively flat initial portion of the stress-strain

curves for C2 and C3 (Figs. 14 and 15) may reflect the influence of those

phenomena. The variations of initial slope among the eight face compres-

sion stack curves could indicate the uncertainties in the magnitudes of

those influences.

The first two runs on C5 (Fig. 17) indicate good reproducibility of

the "linear" slope at 19.3 msi (133 GPa), which is 94% of the theoretical

value of 20.5 msi (150 GPa). However, the initial nonlinearity persisted

in all three runs. The curve for the third run had an elastic-region

slope of 17.7 msi (122 GPa). That change from the 19.3 msi value may have

been due to use of the single extensometer, in addition to the other

stack imperfections. In any case, it is 86% of the theoretical value.

The composite stress-strain curves do not appear to indicate second-

ary modulus behavior. Nonlinear behavior of C4 (Fig. 16) did not begin

before 20 ksi (138 MPa), which is well beyond the copper yield of 16.4

ksi (113 MPa) in that plate.

Table 3 shows that most of the measured face compression yield

strengths exceeded the predicted values. That reveals inaccuracy in the

edge correction factor, 0, and in the mixture rule strength calculation,

af,y. The two specimens, C6 and C7, had large aspect ratios (R = w/tr)
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and high copper yields relative to the reinforcement. They revealed spec-

imen yield strengths close to af,y. However, the C8 yield was 23 percent

above prediction with R = 23, but with ar,y/ac,y = 17.5. If C6 and C7

can be assumed to substantiate the mixture rule (which applies to an in-

finite plate), then the 23 percent error may be an overestimate of the

edge correction factor, p. A similar situation occurred for C4 (with

ar,ylac,y = 9.6, a = 0.51 and w/tc = 7.8) which exhibited a face compres-

sion yield strength 15 percent above the predicted value. Those cases

were balanced by C2 and C5, for which the measured strengths were below

prediction.

The results from C1 through C8 appear to indicate that afy/af,y in-

creases with ar,y/ac,y. It may be argued that 8 tests are two few to per-

mit reliable identification of trends. In any event, it is clear that

more study of 0 is warranted. It also follows that only test data on full

scale configurations should be used for final design.

Specimen C5 was loaded beyond yield in an attempt to determine the na-

ture of a possible compression failure mode. At 80 ksi (552 MPa) the test

was stopped. The strain was 0.044, which approached the 5% limit of the

extensometer. Also, the specimen exhibited the onset of buckling, which

was anticipated to be one possible failure mode. The observed half-cosine

buckle shape, and approximate slope of the stress-strain curve (0.2 msi,

or 1.4 GPa), provided reasonable correlation of the observed value with

an order-of-magnitude estimate of the plastic critical stress.

Table 3 indicates that afy may be equal to, or greater than, the

product of the inplane tension yield and the edge correction factor,

0ai,y. Again, it may be too early to define trends.



CONCLUSIONS

1. The copper cannot begin to display large strains that are associated
with yielding until the reinforcement does so.

2. Composite tension stress-strain curves can be constructed with reason-
able reliability using the mixture rule

ai =4 ac + (1 -a)ar

at several simultaneous strain levels on the copper and reinforcement
stress-strain curves. Young's moduli and yield can be measured on the
constructed curve. However, the reliability of the procedure might
be degraded for an E-B composite if the interface wave height is. a
large fraction of the thickness of either component.

3. Composite face compression yield strength apparently is determinable
by using the mixture rule for an infinite plate,

af,y = mac,y + (1 - a)ar,y

together with the finite width correction factor, *, shown in Eqs.
(8) and (9).

4. Inplane tension yield strength of a narrow composite strip should
agree with compression yield strength of an infinite plate com-
posite if the finite width correction factor is applied to the in-
plane value.

5. More testing is required to broaden the data base from which those
conclusions were drawn.



DESIGN EXAMPLE

Assume that a tapered plate of the CIT TF coil can be modeled at the

throat region as a constant-thickness plate with tc = 0.375 in (9.52 mm)

and tr = 0.250 in (6.35 mm). Assume, also, that those dimensions occur

in the midsection of the 7.55 in (192 mm) tapered zone, so that w = 3.775

in (95.88 mm). Then a = 0.60 and w/tc = 10. If the inconel yield strength

is 177 ksi (1218 MPa) and that of the copper is 44.7 ksi (308 MPa) at

293 K, then ar,y/ac,y = 4.

Enter Fig. 7 (repeated on the following page) with ar,y/ac,y 4,

a = 0.6, and w/tc = 10. It is found that 0 = 0.85. From the mixture

rule,

afy = 0.6x44.7 + 0.4x177

= 97.6 ksi (673 MPa)

then
afy = Oaf,y = 0.85x97.6

= 83.0 ksi (572 MPa)

If the allowable stress were to be chosen at 85% of yield, then

aall = 0.85x83.0

= 70.6 ksi (487 MPa)

The above calculation may be conservative since the actual plate width is

twice the value arbitrarily selected for the example. A full scale test

on an actual plate would be required to identify the real behavior.
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APPENDIX 1

INPLANE TENSION
STRESS-STRAIN CURVES

NOTE: Tension stress-strain curves for composite components are dis-
played on Figs. 10, 11, and 12.

The stress-strain curves in this report were generated by straight

line segments joining load-deflection data points (scaled appropriately)

as measured by the various testing machines at MANLAB, INC. The plots

were produced by GraphMG, a graphic package installed on the MIT Alcator

Vax.
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APPENDIX 2

FACE COMPRESSION
STRESS-STRAIN CURVES

(NOTE): Tension stress-strain curves for composite components are dis-
played on Figs. 14 through 20).
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APPENDIX 3

SOURCES OF TEST INACCURACIES

Force Measurement

The various tests were performed in several machines at Manlabs.

Their Mlb (7 MN) and 0.3 Mlb (2 MN) presses were used to apply face com-

pression to the stacks. The 60,000 lb (0.4 MN) Baldwin Universal lester

and the 20,000 lb (0.14 MN) MTS testing machine were used for loading com-

posites and composite components in tension. All the machines were cali-

brated to an accuracy of better than one-half percent throughout the re-

spective load ranges. The minimum direct reading on the Mlb press was

2,000 pounds. It was 1,000 pounds on the 0.3 Mlb press. They were noted

visually and recorded. The loads on the other two machines were display-

ed as ordinates on the X-Y recorder used to acquire load deflection data.

The precision was 10 pounds on the Baldwin and 20 pounds on the MTS.

The crossheads on the presses were not free to swivel, which could

have caused some unevenness in pressure across a stack face. The anvil

faces were ground, and were oriented parallel, as closely as possible.

Also, several sheets of fiberglass were inserted between each loading an-

vil and stack face to help distribute the load evenly across a stack

face.



Deflection Measurement

Compression deflections were measured with an Instron one-inch

gauge-length extensometer which senses movements that are multiples of

10-5 inch. They are displayed digitally for hand recording. Tension de-

flections were acquired as the abscissa of the X-Y recorder. The pre-

cision was 4x10- 4 inch on the Baldwin recorder and 10-4 on the MTS. The

extensometers were calibrated several times during the program and were

found to agree with the reference micrometer that read to 10- 4 inch.

Effects of Specimen Imperfections

The force and deflection measurement accuracies presumably were good

enough to provide reliable data on specimen behavior. It is likely that

specimen imperfections led to such stress-strain curve features as non-

linearity at low stresses and deviations of measured Young's moduli from

commonly reported values. The extensometers were mounted on one side of

each specimen. That could result in a nonlinear stress-strain curve for

a thin strip that was not perfectly flat, or that was not gripped proper-

ly in the testing machine. In a compression stack, tolerances could be

built up making one stack edge higher than another. Plate waviness

(particularly in explosion-bonded plates) could have been the cause of

uncertainties in Young's modulus values, and also may have affected 0.002

offset yield strengths. The Specimen C4 plates, for example, were found

to be as much as 0.012 inch (1/3 mm) out of flat relative to the edges

of the 2-inch squares from which the stack was constructed.
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The interface waves on the E-B plates made it difficult to measure

reliably the thicknesses of the components in the composite. The mid-

line of the wave was chosen for that purpoose. It was identified by

magnification of a region polished as for metallurgical analysis. That

thickness agreed to a few percent with the value obtained by removing the

copper from an Inconel face strip, weighing the strip, and calculating

the volume using the specific gravity of the Inconel as obtained from a

flat strip. It is not known how that geometric thickness relates to the

"structural" thickness of the component in a composite. Furthermore, the

effective thickness for inplane loads parallel to the wave ridges would

be greater than the effective thickness for inplane loads across the

ridges. That would lead to orthotropic structural behavior in both stiff-

ness and strength.
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APPENDIX 4

FUTURE PROGRAM

The test data and theory/experiment correlations in this report are

encouraging, but only can be considered preliminary. The specimens were

smaller than the full scale dimensions of CIT TF coils. hull scale E-B

plates have not yet been produced.. All tests were performed at 293 K

under short-time static load. All component stress-strain curved were ob-

tained in inplane tension although the stack tests were conducted in face

compression. Compression stress-strain data must be obtained. It .i s

necessary to determine the impact on E-B properties of scale, elevated

temperature, and cyclic loading. E-B bond strength must be measured. Fu-

ture goals will be addressed to those problems. In addition, the role of

insulation must be explored.

Face compression tests will be performed on stacks with several

widths in the range from 100 to 200 mm. A few preliminary creep tests

have been performed and will be reported shortly. Cyclic compression and

tension tests will be performed, simulating CIT performance. Stacks of

copper plates and inconel plates wil I be compressed to obtain Young's

modulus and yield strength data for the composite components. Bond shear

strength will be measured in combination with various amounts of face

compression, for which a test specimen has been designed. Tension and

compression tests will be performed at 393 K. Throughout the program,

the effect of insulation on face-compression behavior will be studied.
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Prediction methods will be reviewed critically, and limitations of

use will be identified. Inevitably, there will be feedback from the mag-

net design activities, which may require parameters outside the range of

parameters explored to date and currently planned for the additional

tests.
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