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Abstract

The MHD Energy Principle is used to examine the stabilization effect

of a conducting wall located near to the plasma surface. The stabilization

effect is maximized when the normal components of the perturbed

magnetic field approaches zero (Qn-0) at the plasma surface. Under

this boundary condition, the eigen-equation of the plasma displacement

is solved for a two-step flat pressure profile model, which can

include both the non-hollow and a hollow pressure profile. Only the

rigid m1 mode is considered due to the FLR effect. For an isotropic

pressure component it is found that a hollow profile has better

stability than a uniform pressure when the integral of the radial pressure

profile is fixed. The implication for plasma experiments and fusion

reactors is discussed.



3

§1. Introduction

Recently Berk et al.[1,2] showed with a kinetic treatment that a con-

ducting wall located near to the plasma surface has a strong stabilization

effect on the m-1 mode in an axisymmetric mirror, which cannot otherwise be

stabilized by finite Larmor radius effects. An MHD approach has been

followed by several authors][3-5. For simplicity references [2,3]

assumed a flat pressure profile. However, the experiments on TARA[5]

and Phaedrus[7 1 showed that a hollow plasma profile can be formed

due to RF edge heating. On the other hand, the Mini MARS preliminary

studyf8l showed that a hollow edge stabilized plasma profile may

be desirable due to its favorable average curvature. Therefore, it

is interesting to see how the pressure profile affects the wall

stabilization. It is known that a plasma cannot dig a MHD stable

well for itself. A high B plasma reduces the local magnetic

field, the effective mirror ratio increases (Fig. 1). Although

a portion of the unfavorable curvature becomes favorable curvature,

the remaining unfavorable curvature portion becomes worse than before.

As a whole, plasma becomes less stable because the unfavorable curvature

region is located at lower fields where the higher B value gives more

weight than the favorable curvature region. However, the conducting

wall will limit the displacement of the plasma surface and introduce

a new weight factor. Particularly, when the wall is close to the

plasma and the B value is high, the conducting wall can limit the

displacement of the plasma surface in the unfavorable curvature

region. We analyze the plasma conditions necessary for this stabilization

to be effective. When we keep the integral f P(*)d* constant

(where P(M) is the plasma pressure profile as a function of the
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magnetic flux *) and make the plasma hollow, the 8 value on the

plasma surface increases. In the presence of a conducting all, this

increase in 8 improves the stability of the plasma.

In order to illustrate the physics involved, we discuss the

conducting wall effect first in 52, -then, we evaluate the different

aspects of the hollow plasma in S3. Finally, a brief discussion is

given in 14.
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§2. Conducting Wall Stabilization.

If a perfect conducting wall is put near to the plasma surface

(Fig. 2), any displacement of the plasma surface will perturb the

magnetic field in the vacuum region between the conducting wall and

the plasma surface. This perturbation is related to the magnetic

field line bending on the plasma surface. In the limit when the wall

approaches the plasma surface, the magnetic field line bending term

must be zero. This will in turn determine the displacement of the

plasma surface.

We start from the MHD energy principle. The variation of the

potential energy of the plasma-vacuum system may be written[9J as

6W - 8v + 6WF + 6Ws. (1)

6Wv, 6WF and 6Ws are the vacuum energy, plasma fluid energy and

the surface energy respectively. 6Wv is defined as

(6bv)2

6WV = f -- d3 r (2)
f2

(vacuum)

here 6S1 is the perturbed magnetic field in the vacuum region.

Linearizing the Maxwell equation, we have

V x S$v - 0 (3)

V - 6BV - 0 (4)

Equation (3) gives

6Bv = VX (5)

where X is a scalar potential in the vacuum region.
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Eq. (4) gives

V2X - 0 (6)

which means that X is a harmonic function. Later we will see that

the behavior of the harmonic function makes wall stabilization

effective only for low m-mode. Using Eq. (5) and (6), we change the

volume integration in Eq. (2) into a surface integration.

6W v I X V X d3r
2 )

1 ~
- - [V (X yV X) - X yV2 X] d3r
2J

Using its Euler-Lagrangian equation, Eq. (6), we have

(6Wv) f X V X . dA (7)
min 2 surface

Since the conducting wall requires that the field lines near the wall

remain unchanged, we only need to calculate the surface integration

in Eq. (7) on the plasma-vacuum interface. Denoting the perturbed

magnetic field by Q, we have

Qn M VX * n (8)

Here, n is the normal vector at the interface. We show in the

appendix that

2m
R

21 L + --
22w f 22

(6WV) - - dZ R2Q (9)
min M -L 2m

R

Rw)

where m is the azimuthal mode number, R and Rw are the radius of the

plasma and conducting wall respectively.
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As we have seen from Eq. (2) 6W, is always positive and so

is (6Wv)min, and is therefore always stabilizing. The harmonic

function X is uniquely determined by its boundary value Qn. Thus

both VX and X are proportional to Qn, and (SWv)min is proportional

2
to (Qn) . This characteristic is important because the variation

of the plasma fluid energy 6WF may in certain cases be linearly

proportional to Qn.E4 1 Therefore, the vacuum energy increases much

faster than the plasma fluid energy when Qn is increasing. This is

the essence of the Haas-Wesson effect.

From Eq. (9), it is clear that wall stabilization is weak for

high mode number, m, since the required vacuum field perturbation

decreases as m increases. Any perturbation on the plasma surface,

Qn A 0, will decay to zero on the conducting wall surface. The

transition of the 6Bv is determined by the harmonic behavior of X,

which has an associated radial and azimuthal dependence. The faster

the X changes azimuthally, the faster the X changes radially. High

m number means a rapid variation in azimuthal direction and therefore,

a rapid decay behavior in the radial direction. Thus only a small vacuum

region is affected by the perturbed plasma surface and wall stabilization

effect decreases.

The expression of (9) gives an interesting conclusion when

the wall approaches plasma, i.e. Rw-+R. In order to keep (6Wv)min

finite, Qn must be zero. In the vicinity of the plasma-vacuum interface,
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there is a general expression for Qn [

Qn - (B * V) ( ) - (, n) n * (n - V)B (10)

Here C is the displacement of the plasma-vacuum interface, n is its

normal. In the long-thin approximation

a a
Qn = Bz - tr - tr - Br (1)

az ar

Since on the plasma-vacuum interface,

ar Br
- - - (12)
az Bz

and Be - 0, V * B - 0 gives

1 a aBz
-- (rBr) + - - 0 (13)

r ar az

we have

aBr 8Bz  aBz  ar
r - - r -- - Br - r -- - Bz (14)

ar az az az

Therefore,

a1 a
Qn Bz - r + tr - - (r Bz)

az r az

1 a
- - - (r Bz Cr) (15)

r az

and Qn+0 requires

r Bz tri - constant. (16)
r-R

Or the displacement of plasma surface is

1
r o< (17)
r-R Bz R
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Notice that Qn in the equation (9) is the perturbed magnetic field

in the vacuum side of the interface. Now we calculate the quantity

in Eq. (17) using the vacuum field By with the long-thin approximation.

At the minimum of the vacuum field, Bz becomes small but the plasma radius

R gets large. We need to consider how R varies with By for a given pressure

profile. As we know

R2 *R d*
- --- (18)

2 0 B

here, *R is the flux inside the plasma surface. Assuming a flat

pressure profile, we have

R2 1
- - - --- R (19)
2 B rBv

Here C is the ratio of 8 corrected field, B, to the vacuum field By.

In the long-thin approximation

C - / I (20)

2 Po
- - (21)

B2
v

where Po is the plasma pressure. Thus

2

2 OC 1

r (#7R -LA4r*Bv 1 C

B2 $ 2$R Bv

When By is decreasing, C is decreasing also. Thus we need to calculate

the derivative with respect to z.
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(E ) -- -2 - - (22)
CBy

Here, the prime denotes the derivative with respect to z. Assuming

PO is constant along the field line, we have

- T (23)

We introduce here the quantities o and T which are related to the 8 effect

and the vacuum field variation respectively.

S--- (24)
1 -0

T - - (25)

()1- 2 (a -)Tgr r

(26 -1)
-~ (26)

(1 -8)

When 8 is greater than 1/2, (9 ) has the same sign of the

(Bv)'. That is, Er takes its minimum where By is minimum. When

8+1, C-+0. Consequently, E2-90 at the (Bv )min where the curvature of magnetic

field line is unfavorable. The significance of this behavior is that

high 8 plasma may dig a well by itself with the MHD stability due to

the conducting wall.

In the next section we want to calculate quantitatively how the

high 8 plasma digs a well and avoids the unfavorable curvature in the

(Bv)min region. At the same time we can see how the hollow pressure proftle-

helps in reducing the necessary pressure integral value.
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53. Pressure Profile Effect.

To illuminate profile effects we will fix the pressure integral

f Pd*, proportional to the plasma energy content, and consider an

idealized profile illustrated in Fig. 3. Thus we can model either a uniform

or a hollow cyclindrical plasma shell. We further assume the pressure

is isotropic and thus independent of position along a field line. Inside

the flux tube J - *i, plasma pressure is assumed to be zero. The edge

of the plasma is at * - R. The pressure is assumed to be a constant

P - Pk in the region *1 ' ' ( *R. Therefore

f P(*)d* - Pk(R - *0
0

*R Pk (1 - f). (27)

Here, f is defined as *1/*R. We may keep the product Pk (1 - f)

constant and change f to examine the pressure profile effect. Reference [3]

has derived a basic equation for the radial MHD displacement Er

*R*Rrlo*R pw2 *R 1 0 E
2E d* - - P -- rr" +f d$ - - -r2

f B I* r 8z B az r
0 0

Q a a 1a
+ rB - - - rBJ - - RBv - A(z) -RBvE (28)

8z r2B3 3z 3z 8z

We have dropped the subscript on E. Here, w is the frequency of the

mode, p and P are the mass density and pressure of the plasma.

Q - B2 + P - P1 B - 2P (29)

1
P - - (P + P ) (30)

2
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1 1
- - 1 + -- (* - *1)

Bv B

- -- $ - (1 - C) ]

I

- -- D(#, C, *i) (39)

Here we introduce a new quantity

D(e, C, *0 1 (-Cli(40)

For a non-hollow plasma *1-90 and

D(#, C, *1) -* * (41)

In this case D(4, C, *1 - 0) is not a function of z. However,

for the hollow plasma *1 # 0, D(*, C, *1) is a function

of z through C(z). Hence,

2
r2 I D' D' 121 2 1

rr" -- -- - -±+1 --- - -
2 2 D D 2 2 C2

22

+ T 2 ) (43))+

-- T2- t 1 ) + 1 a - - (0 + a ) + - -1 (42 )
(2 21C

When 0 - 0 (F - 0) and 0, this reduces to the vacuum curvature result

rvrv T . , . 2 T

2 2

- --- -- T2 - -- (43)
2 2 B v

It is positive except in the region T w 0 and B" > 0 which is just the retkon*

close to the (Bv)min - unfavorable curvature region.
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When 8 # 0 and *1 - 0, we have

r2 15
rr" -- -- 2 - .- 2 (44)

22 2 2

The plasma digs a well, and increases the mirror ratio. Some

unfavorable curvature is converted into favorable curvature (Fig. 1).

This effect is represented by the second positive-definite term in

Eq. (44). We may call this a cusp-like effect, since the strong

diamagnetic current in the (Bv)min region will form two cusp

configurations in cooperation with the mirror coils in both sides.

When 8 ->1, this cusp-like effect becomes stronger. However, no

matter how close to I the B is, the curvature becomes unfavorable near the

point where By - (Bv)min (i.e* T - O) Because the cusp-like

effect bows out the field line, the unfavorable curvature at the T - 0

point becomes worse at high 8, which is expressed by the factor C-2

in Eq. (44).

Now let us see the hollow plasma effect. When *1 A 0,

D' # 0, we have two additional terms in equation (42). Since

D- - (45)

and
r2  1 1

- - - - , (46)

2 D B

r2/2 (D'/D) is independent of * in the model of Fig. 3 and

the second term in Eq. (42) will disappear in calculating the finite

integral Q2 of Eq. (36). Hence,
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fdL 2Pk I C (,1

Q2 2 -N 1) d 2 -. __ (OT)2 +

(RBV) B4 2 DR
-L

+ -- 1T2 - T) + ---- T2} (47)
2 2

Thus we find a positive term due to the hollow effect ($I # 0).

Here DR is the D value when *R - R- Compared with the other

terms in Eq. (47), this hollow effect is always small. Since when 8 is

low, a < 1, (OT)2 term is always smaller than (OT) terms..

When 8 is high, 0 > 1, but the C factor (-,./ ) makes it smaller.

Physically, the pressure gradients at the inner and outer surfaces of

the hollow plasma are always of opposite signs; therefore, any curvature

change will have opposite effects on the two surfaces. There is a

cancellation between them, so the net effect is small.

The more important factor is the weight factor in the integrand of

Q2, i.e. the factor of 1/(RBv)2 which comes from the displacement 9 and

the scale factor of the flux coordinate system. As we discussed in

52, when 8 is higher than 0.5, 1/(RBV)2 will decrease with By and take

the minimum at (Bv)min. This weight factor suppresses the contribution

from the region near (Bv)min where the curvature is unfavorable.

Now let us check the stabilization effect due to Q3e After integration

by parts, we have

L *2 21
Q Q / rB

Q3 - f dz d* {-r2 [_-- -- + (48)
3 B R; - 2B3 3Z
-L 0 

v
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This is always negative, therefore stabilizing the plasma. The

physical reason of this is the field line bending effect. Although

the conducting wall forces the field line bending term to vanish on the

plasma surface (i.e. Qn - 0), the finite Larmor radius effect keeps

the displacement constant inside the plasma. Therefore the line

bending term will not vanish inside the plasma and in the vacuum hollow

region, and can be expressed as Q31 and Q32, respectively:

L 2
2 Q 1 D1 Di1

Q3 -~ 'R - *1) - - (at) 2  1 - - + ------- (49)
(RBv) B 2 DR 2 DR

-L

L
2 B2 1 DD

Q3 2 - ~ (*R *1) dz -- 2 (aT 2  - 1 - (50)

J (RBv) B 4 DR DR
-L

Here

DI E DI -011 (51)

DR E Df - R 0 -( 1  1 (52)

Compared with the curvature drive term, they are small. The physical reason

is as follows. In the high 8 case, the magnetic field inside plasma is

small (Q - B2 +0); in the low 0 case, the lines do not bend very much

(a2 << 1), so the Q31 cannot be very large. For the vacuum field

in the hollow region, its size is determined by $1. When *1 is

large, the plasma shell is thin and thus the normal components of the

perturbed field is small at the inner surface. Hence the line

bending effect is small for the inner vacuum region also. When *1 is
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small, although the plasma shell is thick, the size of the hollow region

is small and this contribution is still small. However, if we keep the

pressure integral f P(*)d* constant, the hollow plasma still has a

big impact on the MHD stability. Since we keep

Ip - P(*)d* - Pk(*R - *i)
0

- Pk *R(-

*R

- constant (53)

Pk must increase while *1/*R is increasing. Hence the 8 value

will increase when plasma becomes hollow (keeping Ip constant).

Consequently, we know that the major effect due to the hollow is on the

drive term, i.e. the variation of the curvature at the outer surface of

the plasma. Combined with the conducting wall, a hollow plasma with the

same pressure integral, Ip, will have better MHD stability. In order

to have some quantitative result we need to assume a field configuration.

A sinosoidal configuration is selected since it ensures the boundary

condition (34).

Bo 
zw

Bv(z) - -- (M + 1) - (M - 1) Cos -(54)
2 L

Here M is the mirror ratio, Bo is the vacuum magnetic field at the

bottom of the mirror cell, 2L is the distance between two mirror peaks.

A numerical integration code is used to calculate the following five

integrals.
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L

f dz

-L

L

f dz

-L

fL

-d

-L

2

('v) 2B

2

(RBV)2B

2

(RBv) 2B

1
Pk - ()2T

2

1 T2
Pk -

2 (2

L
2

f dz
(RBV)2B

-L

fL

-d

-L

2

(RBv) 2 B
Q (OT)2 1 -

1 Di

2 DR

1 D1  2

2 (DR

L

f dz

-L

2 1

(RBv)2 B
B2 I (OT)2

v 4

DI

D R

D1

DR

We have assumed an isotropic pressure such that

P, =Pl. , p.

hence

Q - B -_ 2p - B2

For the assumed sinosoidal configuration

-- (6sin3
L Lf

A
QI

A

Q21

A
Q22

(55)

D1

DR
(56)

(57)

23 -

1
-- Pk

C2 k

5

2
OT

2

A
Q31

(58)

(59)

(60)

(61)

(62)

By
(63)

M + I o z i-M- co, -
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T' - - T2  
(64)

BV

2
Bo W Z'f

B - - ) - cos (65)
2 L L

The sign of

IA A
S = -- (Q21 + Q22 + Q23 + Q31 + Q32) (66)

Qi
A

will determine the MHD stability of the plasma. Here, Qi is the inertial

term; Q21 is the hollow effect on the drive term; 122 is the only

negative integral which represents the average unfavorable curvature

and drives system unstable; Q23 is the major stabilizing term which

A A
comes from the cusp-like effect of the high 8 plasma; Q31 and Q32 are

the line bending term of the plasma shell and the hollow region,

respectively. Fig. 4 shows the results of the numerical calculations.

+#R
For every given pressure integral value f P(*)d* ,

0

we increase the hollow size *1 until the S changes its sign. In Fig.

4 the abscissa is the *1 normalized to *R, and the coordinate is the

P(*)d* normalized to - B *R which is the maximum of
0 2

this integral. We can see that for the same value of the integral J P(*)d.
0

hollow plasma is more stable. The hollow plasma has greater stable region

than the non-hollow plasma.

When the mirror ratio is decreasing, the stable region is increasing,

This is due to the cusp-like effect which is stronger when the mirror ratio
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is smaller. When the mirror ratio is 8, the stable limit of the integral

IP value is 0.82 for the non-hollow case (f - 0). This agrees well with

Kesner's result(11J.

It is noticed that although the stable Ip value is decreasing when

f approaches 1, the stable 0 value is increasing. In Fig. 5 the stable

region in 8 is shown as a function of f. It is clear that plasma

pressure profile has a big impact on the MHD stability. This impact

is due to the cusp-like effect of the high 8 plasma combined with the

conducting wall.
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14. Discussion

Conducting wall stabilization is a kind of "surface stabilization."

We have shown that a high-$ plasma shell can be stable with a minimum

of input power. Between the conducting wall and the high 8 plasma,

there must be a low 8 region with a width of Larmor radius (Fig. 6).

This tiny gap is important for it allows the displacement to grow from

zero at wall to non-zero at the plasma interface. An ideal model for

this gap is a vacuum region between wall and the plasma. In order to

keep the magnetic energy in the vacuum region finite, the
1

mode of the displacement of the plasma surface is forced to be --.
RBv

Because of the FLR effect, this displacement is transferred into the

inner side of the plasma such that all the line bending terms become

not important. For this mode, when the 8 is high, the displacement in

the unfavorable curvature region is suppressed, and the cusp-like effect

creates more favorable curvature region. As long as the 8 is high

enough, the plasma is MHD stable.

The original theory of wall stabilization showed that the conducting

wall makes plasma stable when the 8 value of the hot component satisfy:

.2 2

c h -(Oh)<< 1. (67)

Here Oc and Oh are the 8 value for the cold and hot components of

the plasma. rp is the radius of the plasma and Lh is the axial length

of the hot components. Starting with the MHD equation,[3,4 ,p] we have

tried to extend it to the higher 8 region with modified pressure profiles.

Looking at the basic equation (28), one may take (rr") - * and conclude
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that the drive term is proportional to the integral f P(*)d'

and therefore, the pressure profile P(*) has no effect on the

instability. In fact, looking at Eq. (42), (39) and (40), one may see

that (rr") - 4 is true only for the non-hollow plasma (*I - 0).

The more important effect is through the enhancement of 8 value which

is higher for hollow plasma with same pressure integral Ip. When the

conducting wall is close enough, the high 8 plays the dominant role for

plasma stabilization. Ref.[5 1 concludes that a hollow plasma is

less stable due to the added freedom of displacement at the inner

surface of the plasma. In that work rigidity of the mode is not

assumed due to the lack of FLR effect present in a square pressure

profile. On the contrary, we consider that the FLR effect makes the

plasma "rigid," consequently, there is no additional freedom of displacement.

In reality, the plasma will always have some pressure gradient which

ensures the FLR effect, except in the region where the pressure gradient

equals zero. Thus, although the flat pressure profile is

assumed for simplification, we still keep the "rigid" feature to include

the FLR effect. In fact in our calculation the displacement , is assumed

to be rigid even in the inner vacuum region. This is an approximation to

the real situation where the pressure gradient is enough to keep rigidity

but the pressure does not contribute significantly to the pressure integration

f P(*)d*.

The cusp-like effect is seen to bow out the field lines and change

the curvature locally. This may lead to the invalidity of the long-thin

approximation (particularly, when the anisotropic pressure is used).

More work is needed in this line.
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For the reactor start-up, we may initially use less power to heat

the plasma surface only first, and then gradually heat the inner side

of the plasma, in this way we may keep the plasma MHD stable during the

start-up.
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Appendix: Azimuthal mode number dependence of
the vacuum field energy

The scalar potential, x, in the vacuum region satisfies the harmonic

equation:

V2X - 0 (A-1)

In the axisymmetric case, it is

1 3 ax 1 32X a X
- - r - + - - + - - 0 (A-2)
r 3r 3r r2  2 Z2

The general solution is

x(r) - [C Im (kr) + D Km (kr)] ei(kz + m8) (A-3)

Here, Im and Km are the modified Bessel functions, m and k are the

azimuthal and axial mode number. C and D are two constants determined

by the boundary condition. At the conducting wall surface, the normal

component of the perturbed magnetic field should be zero, i.e.

-I 0 (A-4)

r -Rw

Hence

C Is (kRw) + D K% (kR,) -0 (A-5)

Prime is the derivative with respect to the argument. Therefore

D Im' (kRw)
-- - - i(A-6)
C Kl (kRw)

Assuming the normal component of the perturbed magnetic field at the

plasma surface is Qn, we have
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ax
Qn -

r - R

- k [C Is (kR) + D Km' (kR)]

Therefore,

1
Qn

X(R) -
k

Im (kR)

IA(kR)

Im' (kRw) Km (kR)

Im (kR) KMI (kRw)

I' (kRw) K4 (kR)
1 - (kR) KI (kR)

IA1 (kR) KA1 (kRy)

In the long-thin case,

kRw << 1

Using the asymptotic expressions

Im (kR) - (kR)m

Km (kR) - (kR)_

we have

2m

Qn kR 1 +!R
x (R)

k m 2m

I - L --

Thus the vacuum energy is

6Wmin Mf
plasma
surfac

- 2w

X VX *dA

e

-L 
;

L
2w

m f
-L

2
Qn

1 R) 2a
+ --

R )2m

R ---

dz (A-13)

(A-7)

(A-8)

(A-9)

(A-10)

(A-11)

(A-12)

dz

r - R
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From Eq. (A-3), (A-10), (A-1l) and (A-13), we see that the m-dependence

of the 6(1 in is due to harmonic behavior of the X(r), the faster

the change in azimuthal direction is, the faster the change in radial direction.
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