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Abstract

The properties of the pinch and bootstrap transport coefficients in axisymmetric systems are
investigated using a computer code which integrates the particle guiding center equations. Simple
models are developed for the magnetic field and electric field. Two dimensional cubic B-spline
interpolation is used to compute the magnetic flux coordinate. Collisions are modeled by a Monte
Carlo pitch angle scattering operator.

Comparisons to the Lagrangian formulation of neoclassical transport theory are made for
both the explicit and the implicit transport coefficients. In the ideal banana regime theory, the
explicit and implicit transport coefficients satisfy independent Onsager symmetry relationships. As
the scattering frequency is increased, it is predicted that the explicit symmetry relationship should
be broken, leaving the trapped particle pinch effect dominant. Also, the implicit processes, which
are dominant in the ideal banana limit, should be largely destroyed as the collision frequency is
increased.

For the trapped particle explicit pinch, it is found that the numerical results are in good
agreement with the ideal theory. The predicted outward flow of the circulating particles does occur,
however the circulating particle contribution does not cancel the trapped particle contribution to
the predicted degree. This difference can be shown to be due to particles in a narrow region of
phase space near the trapped-circulating boundary, which make the dominant contribution to the
circulating particle pinch coefficient. These particles do not make the expected contribution to the
circulating particle explicit pinch coefficient because of particular kinematic effects not included in
the ideal theory.

The explicit pinch coefficient calculations were repeated for several collision frequencies. As
predicted, the trapped particle pinch is found to be unaffected by a low level of collisions, while
the circulating pinch coefficient is reduced because of the scattering effects on the particles near
the boundary. The net result is an enhancement of the inward particle flux, which is the predicted
result of the breaking of the Onsager symmetry relationship for the explicit processes.

Both the circulating and trapped particle explicit current coefficients were studied. The
explicit currents are diamagnetic in nature. These transport coefficients were found to be in good
agreement with the predictions of the ideal theory, and to be unaffected by low scattering levels.

The implicit processes were studied by computing the Fokker-Planck coefficient (Ati$k) for
several scattering frequencies. At the smallest frequency studied, (%4*) is dominated by the
marginally circulating particles, as predicted by the finite collisionality theory. As the collision
frequency is increased, the marginally circulating particle contribution to (')*) decreases, leading
to a decrease in both the implicit pinch and bootstrap transport coefficients.
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Thesis Supervisor: Kim Molvig
Tide: Associate Professor of Nuclear Engineering
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Chapter 1

Introduction

One of the important concerns in magnetic confinement fusion devices is the transport of

particles, energy and charge. In this work we shall consider the conjugate processes of the pinch

effect and the bootstrap current. Neoclassical transport theory has predicted'l the existence of the

bootstrap current, driven by a radial density gradient and the pinch effect driven by the toroidal

electric field. Both of the these processes are of substantial practical interest. Experimentally, the

pinch effect has been observed[2',3 , but there is strong evidence that the bootstrap current does not

exist"5 1. This is surprising because the two processes are Onsager conjugates.

Recently, a Lagrangian formulation of neoclassical transport theory has been developed[6-81 .

In the Lagrangian formulation, the transport coefficients can be expressed as the sum of two

types of processes, termed explicit and implicit. The explicit processes are fluxes which do not

involve deviations of the particle distribution functionfrom a local Maxwellian. An example of an

explicit kinematic process is the trapped particle pinch effect, as described by Ware 9J. Examples.

of explicit scattering processes are the Fokker-Planck coefficients ( , ) and , . Implicit

processes involve the perturbed distribution function and are inherently collisional in nature. The

predicted bootstrap current is an implicit process. In the conventional, Eulerian formulation of

neoclassical transport theory, no distinction is made between the explicit and implicit processes.

The pinch effect is identified with the Ware effect, but the question of why a kinematic flow of

trapped particles should be Onsager symmetric to a collisional flux of the circulating particles has

never been adequately explained.

In the Lagrangian formulation, the explicit and implicit transport coefficients have separate

Onsager symmetry theorems. The conjugate process to the implicit bootstrap current is an implicit

pinch effect. The conjugate process to the explicit pinch effect is an explicit current. This current,

which is essentially diamagnetic in nature, can be shown to be of 0(el). The pinch transport

coefficient must also be of 0(J) if the. explicit transport matrix is. to be. Onsager symmetric. The

Ware effect leads to a transport coefficient of 0(J). but the ideal theory in the banana regime
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predicts that an outward flow of the circulating particles will cancel the inward directed Ware effect

to leading order.

The nonobservance of the bootstrap current can be explained using the Lagrangian formula-

tion. The dominant contribution to the implicit processes comes from a narrow region in phase

space near the trapped-circulating boundary. This same portion of phase space, henceforth called

the boundary layer, also provides the dominant contribution to the explicit circulating particle

pinch and bootstrap coefficients. Low scattering levels will have a large effect on the kinematics

of the boundary layer particles, yet will leave the trapped particle orbits relatively intact. Thus the

implicit pinch effect and the implicit bootstrap current, which depend strongly on the boundary

layer particles, will be destroyed. The explicit circulating particle pinch coefficient will also be

reduced because the boundary layer particles make the largest contribution to this coefficient. The

explicit trapped particle pinch and current coefficients will be unaffected by the low collisionality.

Thus the net effect of the collisions is to destroy the bootstrap current and reduce the circulating

particle explicit pinch coefficient, leaving the Ware effect as the dominant contribution to the pinch

effect. Thus the symmetry relationship for the explicit pinch and explicit bootstrap current will be

broken.

We will be studying both the ideal banana theory and the finite collisionality theory, which

are derived from the Lagrangian formulation of neoclassical transport theory. In the ideal banana

regime theory, limit of zero collisionality, v. -- 0 is taken, although the collision frequency, V, may

be finite. In the finite collisionality theory v. is not restricted to zero.

In this thesis, the pinch and bootstrap transport coefficients, both explicit and implicit, will

be investigated by numerical simulation of the the particle orbits. Scattering will be simulated

by a Monte Carlo scattering operator. In the next chapter, issues pertinent to the methodology

used in the numerical simulation, e.g. how the statistical averaging is done for the Monte Carlo

calculations and the initial particle distribution, will be examined. In Chapter 3, the predictions of

the Lagrangian formulation for the Lorentz model will be discussed. Both the ideal banana theory

(v. - 0) and the finite collisionality theory will be examined. A physical picture of the processes

involved will be presented, and expressions which can be evaluated for comparison to the data

obtained from the simulation will be derived. Details of the models used for the magnetic field,

density and scattering, as well as the method used to calculate the toroidal flux coordinate and

other components of the numerical simulation are presented in Chapter 4. The results from the

simulation are given in Chapter 5, and comparisons to the expressions derived from the theories

presented in Chapter 3 are made. A summary of the results and conclusions are given in Chapter

6.

-8-



Chapter 2

Methodology

Given the problem of computing transport coefficients by numerical simulation of particle

orbits, many issues remain which are not specified completely by the desire to compare the

numerical results to those predicted by theory. For example, the Lagrangian formulation (see

Chapter 3) demands little about the structure of the magnetic field except that it be axisymmetric.

The choice of a magnetic field model, or any of the physical processes which will be a part of the

simulation, will depend on many factors, including compatibility with theory, ease of numerical

evaluation and numerical accuracy. In this chapter, we will present a discussion of the methodology

used in the transport coefficient calculation.

Section 2.1 is devoted to notational issues. Here many variables and parameters which will be

used in succeeding chapters will be defined. The next two sections deal with the choice of magnetic

field, electric field and scattering models. In Section 2.4, the method of calculating the transport

coefficients is outlined. The final two sections deal with the questions of the initial distribution

of the particles and the averaging method used.with the scattering model. Discussion of specific

computational details of the models which were chosen will be delayed until Chapter 4.

2.1. Nomenclatire

B magnetic field. The magnitude of the magnetic field is expressed as JBI or sometimes B. The

toroidal field value at the major axis (RO) is denoted BO.

, electric field. The only non-zero component of ff in this work is E0.

e inverse aspect ratio.

1 particle velocity. The magnitude of ' is expressed as v.

H particle energy. H = imV 2 where m is the particle mass.

cos i cosine of the pitch angle. The ratio of the particle velocity component parallel to the field

line to the magnitude of the velocity.

-9-



o sign of the parallel velocity component. a = +1 refers to forward directed particles, or = -1

refers to backward directed particles.

M magnetic moment. u = cos 2 nHIBj.

X global pitch parameter. X = Bou/H circulating particles are in the region 0 < X < 1 - e,

trapped particles are in the region 1 - e 1 + e.

Wb poloidal bounce frequency. For a given particle Wb is the reciprocal of the amount of time

need to complete one poloidal orbit with EO = 0 and Y. = 0.

WbO wb of the X = 0 particles.

w2  poloidal frequency. Similar to wb except that the restriction v. = 0 is dropped.

4 toroidal flux.

# bounce (poloidally) averaged toroidal flux.

"radial velocity". The average rate of change of the flux coordinate during one poloidal orbit.

(g) statistically averaged radial velocity.

v collision frequency. Defined as the deflection collision frequency in reference 16. The defining

equation is given in subsection 4.2.1.

v. collisionality parameter. v. = v/wbO(2e)I

T13,, explicit pinch transport coefficient. The implicit pinch transport coefficient, T13 ,i, will not be

computed.

T31,, explicit bootstrap transport coefficient.

2.2. Choice of Magnetic Field Model

For a numerical simulation of this type, there are two general types of magnetic fields which

are used; the first is a "model" field, where the magnetic field is given by a relatively simple

analytic expression, the second type is a "real" field, where the field can be considered to be the

superposition of the fields from (possibly filamentary) conductors. The advantage of the analytic

model field is that it is simple to evaluate the magnetic field at an arbitrary point. The disadvantages

are that it may not be divergence free, there could be computational problems in evaluating the

toroidal or poloidal flux. The advantage to using a realistic field is that the curl and divergence

properties of the field will be exact, at least to machine precision. However, evaluatng the field

at an arbitrary point can be very costly numerically, and computation of the flux can be very

complicated.

-10-



We have chosen a magnetic field model which combines the advantages of both approaches

and minimizes the disadvantages. Our model consists of three elements: a 1/R toroidal field, a

poloidal field from a dipole, and a constant vertical field. The vertical field is adjusted to provide

a magnetic well (see Section 4.1). The advantages to this type of model are: the field is exactly

curl free, and divergence free to machine precision; the field can be evaluated at an arbitrary point

very easily; and the magnetic axis is known to be at the dipole radius.

The disadvantage is that computing # requires computation of the line integral of the vector

potential along the toroidal projection (0 = 0) of a field line. This can be a very costly process,

but use of two-dimensional cubic B-spline interpolation (see Section 4.3) simplifies the process

considerably. Instead of integrating the vector potential at each point, the integration is done for

a rectangular grid of points. This has to be done only once, after which p can be computed from

the grid values with very little cost. Use of a fast and accurate interpolation scheme to compute

,0 makes it possible to compute T and the kinematic bootstrap current; each of these calculations

involves thousands of i evaluations.

One further difficulty with the use of the realistic magnetic field model is apparent when

comparing the numerical results with those predicted by theory. The theory assumes that e does

not vary with poloidal angle, i.e. the flux surfaces are circular. In general, a "real", toroidal system

will not have circular flux surfaces. Such is the case with our model; e varies by - 1% for a

representative flux surface. This variation will have have an effect on the particle orbits which will

be examined in Chapter 5. The value of i used in the calculations is determined from the value of

X on the trapped-circulating boundary. This X value is easily computed, applying the definition we

have X = B/Bo. The inverse aspect ratio becomes 1 - B/Bo, this corresponds to e at the inside

of the torus.

2.3. Choice of Electric Field and Scattering Models

The ideal banana theory postulates a constant toroidal electric field. In the theory, the limit

of infinitesimal E0 is taken. In a numerical simulation, we must use a finite value of E& if we

are to recover any electric field related particle motion. If we make the field too small, we will

have two problems: the change in 0 due to the electric field will become the same size as the

error in the interpolated value of 0, and the statistical errors in the collisional calculations will be

larger than the values of the quantities of interest (see below Section 2.5). If we make the field too

large, backwards directed circulating particles will be swept into trapped space (see Section 2.4).

An intermediate value of 0.05 V/m was chosen.

We considered two different scattering models, pitch angle scattering at constant energy -and

energy scattering at constant u (see Section 4.2 for details). The purpose of the scattering in this

-11-



problem is to introduce an element of randomness which will modify the particle orbits. The

scattering is what distinguishes the ideal banana theory (v. -+ 0) from the finite v. theory. While

both models were used for qualitative verification of the predicted results, for the quantitative,

Monte Carlo transport coefficient calculation the pitch angle scattering model was chosen. In this

way we were able to exploit the energy dependence of the transport integrals (see Section 2.5 and

Chapter 3).

2.4. Calculation of the Radial Velocity

The radial velocity y will be an important quantity in the computation of both the explicit

pinch coefficient and the Fokker-Planck coefficient (2%'). To obtain the explicit pinch coefficient

T13,,, S must be integrated over phase space; the phase space distribution of particles used in the

calculation will be discussed in the next section. Computing the Fokker-Planck coefficient requires

that " be multiplied by the change in the magnetic moment and statistically averaged.

C.omputing = from a particle orbit is a relatively straightforward process. The particle

is followed for a time Ar, and then the difference between final and initial flux values, A0, is

computed. There are two possible problems with this simple calculation. First, the particle drift

surface will in general not coincide with the flux surface. Thus there will be a periodic variation

(with respect to 8) in Aip which should be averaged out of the " calculation. Second, as will be

discussed in Section 2.5, k is extremely sensitive-to electric field induced driftinX.

Both of these difficulties can be overcome by following he particle for some number of

poloidal orbits. Because the particle returns to the same 6 value, no correction (to first order) for

the periodic variation of A0 is necessary. The reason that one poloidal orbital period is chosen for

Ar is to minimize the drift motion in X space. One further advantage to this choice of Ar is that

the poloidal bounce frequency is just }. This is precisely the weighting factor needed calculation

of the transport coefficients.

2.5. Initial Particle Distribution

In this section, the distribution from which the particles are launched will be discussed. Given

a starting flux surface, these three parameters uniquely determine the particle's location in phase

space: the cosine of the pitch angle, the poloidal angle and the energy.

The global pitch parameter, X, can be computed from the values of 0, cos 7 and 9. a is

just the sign of cos. In Chapter 3, we will show that the energy dependence of the quantities

of interest, e.g. ", is the same for both trapped and circulating particles. So while Wb, A and

the transport coefficients will all depend on the value of the particle energy, we can still compare

the results from a single energy to the ideal theory because the ratio of the circulating particle

-12-



explicit pinch coefficient to the trapped particle explicit pinch coefficient should be independent of

the particle energy. Use of only a single energy will reduce the amount of computation needed to

do the Monte Carlo calculations to a "reasonable" level. The energy value used in both the ideal

and finite v. calculations is H = 2.0 keV; the ideal calculations were repeated for H = 1.0 keV

and H = 4.0 keV to check the validity of the "single energy" distribution result. It is found that

the ratio of the circulating to trapped particle explicit pinch coefficients is constant to within 10%.

The values-of couiq used are widely separated for the trapped and well circulating particles.

The spacing of the coB1 values is reduced for the boundary layer particles to permit resolution of

the predicted boundary layer features.

There is a slight complication in this picture of the coB 7 distribution. In both the ideal

banana theory and the finite Y. theory, the limit EO - 0 is taken. This coupled with the use of the

bounce averaged flux, implies that there should be no difference between the forward directed and

backward directed particles. For the reasons discussed in the Section 2.3, a value of E, was chosen

that is small compared to values in current tokamak experiments, but definitely not zero. This will

cause the dynamics of the boundary layer to become extremely dependent on a. The electic field

will cause the a = +1 particles to accelerate, the a = -1 particles to decelerate. Because of the

acceleration/deceleration, the energy of the particle increases/decreases. If we consider the '. = 0

case, we have A as a constant of the motion, thus a change in energy causes a drift in X. As the

S== +1 particles accelerate, their energy increases, causing a decrease in X, i.e. the particle tends

to become well circulating. Similarly, a a = -1 particle tends to drift toward trapped space.

There are two important results of this effect which influence the choice of the initial X values

of the particles. The effect of the drift in X is that the forward particles have a bounce averaged

value of X which is smaller than the initial X value, while the backward particles have a larger

bounce averaged X. The result is the forward particles have a smaller value of 1 for example,

than the backward particles at the same. initial. value of X. In the ideal banana theory, the limit of

EO -- 0 is taken. Thus there are no drifts in X, and the "splitting" of the a = ±1 particles does

not happen. In order to observe any electric field induced effects, we must use a finite value for

E0. This will cause the splitting effect, so we have to follow both a = ±1 particles to compute the

transport coefficient; we can not simply multiply the forward particle contribution by two to get

the complete transport coefficient. It is found that the splitting of forward and backward particles

increases as EO is increased. This is expected because the change in X is inversely proportional to

the change in H caused by the electric field.

The second result of the non-zero electric field is an extreme case of the X drift problem.

For a given value of E0, the change in X will be large enough that some a = -1 particles will

actually cross the trapped-circulating boundary.. The: width in X of the band of particles which

undergo this transition is proportional to EO. Because the transition is not included in either
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the ideal banana or the finite collisionality theory, these particles should not be included in the

integration over phase space. Instead, an extrapolation is made from the last a = -1 particle that

does not cross the boundary, to the o = +1 particle at the boundary. This extrapolation is made

for comparison to the results predicted by the ideal theory. The extrapolated region accounts for

35% of the circulating particle explicit pinch coefficient in the v. = 0 case, this fraction decreases

as v. increases.

The remaining parameter is 6, or stated another way, how is the value of to be poloidally

averaged? One point to bear in mind is that the drift surface of the boundary layer particles is

not just shifted by the action of E4, the drift surface is actually stretched towards the inside of the

torus. In order to reduce the amount of computation needed, and to recover the y produced

by the stretching of the drift surface, it was suggested that particles be launched from the same

bounce averaged drift surface. Thus only two values of 6 would have to be considered; = T

on the inside of the torus for the circulating particles, and 9 = 0 on the outside, for the trapped

particle calculation. The poloidal averaging would already be accomplished by utilizing the bounce

averaged drift surface.

Unfortunately, this is not feasible. The problem is that the particles are no longer well

ordered with respect to X. Launching from the same 3 surface implies that the local value of

0 will not be the same for particles with different values of cos 7. The variation in 0 yields a

--different-major radius for the-particles and the 1/R dependence of JRI produces a variation in X.

For example, consider two particles with the same Ico ifl, but opposite values of a. If we launch

them from the same T surface, the initial 0 value of the o = +1 particle must be less than the

initial flux value of the a = -1. particle. This leads to a non-negligible difference in X.

The problem becomes acute when we consider the location of the boundary. The trapped-

circulating boundary is defined by the X value of the 9 = ir, coo 17 = 0 particle. As this particle is

barely circulating, only trapped particles should lie on the right side of the boundary. If particle

are launched from the same 0 surface, this is the case; however, if the particles are launched from

the same T surface, there will be circulating particles on the right (trapped) side of the boundary.

It is observed that the variation in 4 between particles with the same value of cos i but on the

bounce averaged 0 surface and the local p surface, is small, approximately 10% for the boundary

layer particles, less for the well circulating and trapped particles. So it was decided to launch the

particles from the two values of 8 as described above, but to launch from the same 0 surface, not

the same T surface.

To summarize: particles are launched from the same 0 surface with the same energy. The

particles have a uniform spacing in cos 77 in. the well circulating and trapped regions, but have a

smaller spacing near the trapped-circulating boundary. Both the a = ±1 particles are launched
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from the value of X determined by cos 7 unless the a = -1 is in the transition region near the

boundary. The same initial distribution is used for both the finite and infinitesimal v. cases.

2.6. Statistical Averaging

In this section, the methods used to compute quantities like (6) and (.!4 *) will be

discussed. Also, the means of obtaining an estimate of the statistical error in the Monte Carlo

calculations will be presented.

The scattering model consists of pitch angle scattering at constant energy; because the

scattering process changes coo7, it can be considered as scattering in X. The change in X inherent

in the scattering process pesents a difficulty: some of the boundary layer particles will scatter into

.trapped space and will not complete the one poloidal orbit necessary to compute e and the other

quantities of interest. This problem is ameliorated by following these particles for approximately

twenty bounce periods. In this time, the boundary layer particles have time to scatter across the

boundary several times, and one poloidal orbit can be completed. However, 5 to 10% of the

boundary layer particles (the number depends on V. and EO) become deeply trapped. These

are not included in the statistical averaging; the possible error in neglecting these particles is

approximately 10%.

As an example, consider the calculation of ( ). A large number of particles are launched

from the same point in phase space, 9 is computed for each particle unless it does not complete

one poloidal orbit as described above. ( ) is defined as the arithmetic mean of the values of ±.

The statistical error is computed from the variance' 0Ol:

o2 __ 1 (z 22(2.6.1)
n(n -1) X

where n is the number of data points, xi and Y are the data and the mean of the data, respectively.

The estimated error is the square root of the variance. Consideration of the estimated error

determines the number of particles which must be launched from each location on the phase space

grid; the error was also the limiting criterion on the value of EO chosen. In the calculation of the

kinematic pinch transport coefficient, the actual value of g will be proportional to Es. Because

the scattering mechanism is independent of E0, the estimated statistical error will be approximately

constant as EO is varied. To minimize the relative statistical error, or to keep n as small as possible

for a given level of relative statistical error, E, should be increased. Thus the estimated error is a

smaller fraction of the mean value, because the mean is increasing, while the error is not. If too

small a value of E# is used, the number of points will have to be increased drastically to improve

the relative error. It was found that a value of EO = 0.05 V/m produced acceptable statistical
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errors. For v. = 2.0 x 104 the number of points needed to keep the relative error below 10%

for the boundary layer particles was - 1500.

An additional complication occurs in the computation of the kinematic pinch transport coefficients,

which does not occur in the Fokker-Planck coefficient calculation or the kinematic bootstrap

current calculation. In the latter two calculations, the electric field is set to zero, in the case of the

Fokker-Planck coefficients because they are due to scattering "cross processes", for the bootstrap

current because the driving force is the density gradient. It turns out that if E0 is set to zero

during the Monte Carlo calculation of (40), a non-zero transport coefficient is found. This can

readily be explained in terms of relationship between the Fokker-Planck cocfficients and the drag

coefficient. Recall that:

d) a + ) (2.6.2)

where AI is a jump in. phase space and the angle brackets refer to the statistical average. Without

an electric field, one would expect that the two terms on the right hand side should exactly cancel

(assuming a steady state distribution function). However, we have restricted the scattering operator

to pitch angle scattering - no energy scattering is allowed. Without energy scattering, the terms on

the right hand side will not cancel and we will obtain a non-zero (u). Because we are interested

in the part of ( ) which is driven by the electric field, for each location on the phase space grid

two complete sets of data must be taken; one with and one without the electric field. The E, = 0

data are then subtracted out to give ( ).
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Chapter 3

The Lagrangian Formulation

In this chapter, a broad overview of the Lagrangian formulation of neoclassical transport

theory wil' be presented. For a more complete discussion of the Lagrangian formulation see

references 6, 7 and 8. Special emphasis will be placed on the two processes of interest, the pinch

effect and the bootstrap current. The physical mechanisms for the two processes will be presented,

along with expressions which will enable the transport coefficients and other quantities of interest

to be comuted. Comparison of these expressions with the numerical results will be made in
Chapter 5.

The Lagrangian formulation of neoclassical theory is constructed from three actions: the
magnetic moment, the parallel invariant and the bounce averaged poloidal flux. By averaging over

the fast orbital time scales an equation of the Fokker-Planck type which involves the actions alone

is obtained. This action space representation of the kinetic equation contains two types of processes,

termed explicit and implicit. The explicit processes are processes which do not involve deviations
from a local Maxwellian, for example the Ware pinch or the explicit scattering processes mentioned

in Chapter 1. The implicit processes are due to perturbations of the distribution function.

The decomposition of the fluxes into explicit and implicit contributions is an important feature

of the Lagrangian formulation. These contributions have separate Onsager symmetry theorems for

their respective transport matrices. The conventional Eulerian theory does not make the distinction

between implicit and explicit processes. In the Eulerian theory the pinch effect has been interpreted

as the (explicit) Ware effect due to the trapped particles. Its conjugate process, the bootstrap current

is a collisional (implicit) process due to the circulating particles. Why two such fundamentally

different processes should obey an Onsager symmetry relationship has never been satisfactorily
explained within the Eulerian framework.

It has been suggested( 6 8] that the Onsager symmetry relationship would be broken by the

inclusion of turbulence or scattering effects. In this Chapter both the theory in the ideal banana

regime (v. -+ 0, v finite) and the finite v. theory will be summarized.
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In the Lagrangian formulation, the explicit pinch transport coefficient is a result of the Ware

inward directed flux of trapped particles, reduced by a competing outward flow of particles from

a narrow region in X space near the trapped-circulating boundary. The conjugate process is the

kinematic bootstrap current or banana current, which is essentially diamagnetic in nature. The

cancellation of the trapped and circulating explicit pinch coefficients results in a small net pinch

coefficient which is symmetric to the explicit current coefficient. The conjugate process of the

implicit bootstrap current is a collisional pinch effect which is dominated by the contribution of

the circulating particles in the boundary layer.

The addition of finite z/. to the problem will produce major changes in the transport

coefficients. Scattering will disrupt the correlations which give rise to the implicit processes. Also,

scattering will "smear out" the boundary layer, which will reduce the cancellation of th- Ware

effect by the circulating particle explicit pinch. The result is that collisions will leave the explicit

trapped particle pinch coefficient intact, but reduce the bootstrap current, the collisional pirch and

the explicit circulating pinch coefficient. Thus the Onsager symmetry relationship of the explicit

transport matrix is broken.

3.1. Particle Kinematics and the Explicit Pinch Coefficient

In this section, the expressions derived from the application of the ideal theory to the Lorentz

model for the (poloidal) bounce frequency, the rate of change of the particle's flux coordinate and

the explicit pinch transport coefficient will be presented. These expressions will not be derived

(see references 6, 7 and 8 for the derivation), but they will be manipulated into a convenient form

for comparison to the results of the numerical simulation, which will be given in Chapter 5. In

addition, a simple physical mechanism of the explicit particle fluxes will be presented.

In calculating the pinch transport coefficients T13,,, A must be integrated over the velocity-

like actions (denoted L_9), y and the parallel invariant. It is possible to make a change of variables

from the actions LI to the pitch parameter X and the energy H. This leads to the relationship: 18

d2  W = I HIdH dX (3.1.1)

where a multiplicative constant has been neglected. One of the goals of this section is to show

that the energy dependence of Wb and 4 is the same for both trapped and circulating particles.

This is to justify the use of a single energy in the numerical simulation, instead of a distribution of

particle energies (see Section 2.5). If the energy dependence can be neglected the pinch transport

coefficient can be computed by integrating a weighted by w;' over X.

First, expressions for wb for both trapped and circulating particles will be needed. These are:8]
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1+M (3.1.2)2 m K(k)

-+ H 1 (3.1.3)
M K(k)

where K is the complete elliptic integral of the first kind, m is the mass of the particle and

k2 2e(3.1.4)
1+ e-

Again, common multiplicative factors have been neglected. Notice that the expressions for wb have

the same energy dependence and that at the trapped-circulating boundary (X = 1 - W goes to

zero. The equation for wf"" can be simplified using the definition of k.

trap 1 H12 (3.1.5)
6 2 Vm K(J)

To simplify the expression of 9 and the integration to obtain the transport coefficients, the

function S13,,(X) is introduced.

S13,,(X)t rap = K() (3.1.6)

( ' 2 K(k) ir 1 + e - 'X2 K(k) K(k) (3.1.7)
S(1+ e - X)t 2 K2(k) [28X (1 + e - X)+ (1 + C -.X)i.J

Carrying out the differentiation with respect to X we have:

2 K(k) r X1+e- x E(k)1
S13,(X)cire = (1 + e-X)f 2 K(k) 1+1 - e- X K(k)j (3.1.8)

where E is the complete elliptic integral of the second kind. The expressions for e are given in

terms of S13,,(X)M81

= 2w -a2 S13,,(X)t- (3.1.9)

-- = - S1 3 t,(X)Crc (3.1.10)

where a multiplicative constant has been neglected. Notice that the energy dependence of = is

the. same as " c. Multiplying out the wb term, and eliminating the common energy dependence,
we have:
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= -X 121 EX[ X E() (3.1.12)
or K2(k) 1-c-XK()

There are several features of these expressions for 1 which should be noted. First, the

circulating particle expression is singular at X = 1 - e, i.e. the trapped circulating boundary. In

the boundary layer region, it is easy to see that A for the circulating particles have the opposite

sign from the trapped particles. Thus when the final integration is done to obtain the transport

coefficient, the circulating particle coefficient will tend to cancel the trapped coefficient.

Another interesting point is that 9 and change sign as X nears zero (the well circulating

part of phase space). If we interpret trap to be an inward directed flow of trapped particles, then

we have the well circulating particles also moving inward, while the particles near the boundary

move outward.

If we consider the discussion of the trapped particle pinch in reference 9, we see that the

result quoted above for =t'F is consistent with the Ware effect. The expression for the trapped

particle velocity is:19!

dr H-
(3.1.13)

dt Bp.j

where r is the minor radius and Bpj is the magnitude of the poloidal magnetic field. For a given

value of E, and a given starting value of r which fixes BO,, i should be constant for all trapped

particles, without regard to X. There is an implicit assumption made here about the nature of the

magnetic field. It is assumed that B,, is a constant along the particle orbit, such will not be the

case in practice. The above expression should be considered to be correct in the limit of a zero

banana width or equivalently, the limit of e = 0.

All that remains is to integrate " over d2 Jj. Leaving out common multiplicative factors,

trap and Tec can be written as:(81

T'r", = 2nT d(fl VE exp (H f S13 ,e(X)"tr dX (3.1.14)

Tj () = nT exp ( S13,,(X)c" d (3.1.15)
13,c T T
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where T is the plasma temperature, n is the plasma density and E is a sum over the forward

and backward directed particles. This sum introduces a factor of 2 into the circulating integrall1],

as the integrand is independent of the sign of the particle's parallel velocity component. Thus the

effects of a finite EO on the particle orbits have been neglected. Again, the energy dependence of

the integrand is the same for both circulating and trapped particles. The energy integration can be

done, and the results[81 are:

trap 3T', = -nTIt'a, (3.1.16)

T ,= nTICT, (3.1.17)

,where:

/14, = __ Si3 ,,(X)t"a dX (3.1.18)

13, Si,(X)" d (3.1.19)

All that remains to be done is to integrate S13 ,,(X). These integrals can be perfonned in part using

tables of elliptic integration formulae such as those found in refe-ence 11. We first consider the

trapped particle integral; changing the independent variable from X to k' = 1/k, and substituting

in for SI3,,(X):

=t'ap = k'K(k')(-4e) dk'

k'K(k') dkl' (3.1.20)

8V2i

The circulating particle integral is a good deal more complicated. It will have to be broken
up into smaller pieces which will be integrated separately. If we consider just the first term of
equation 3.1.8:

P1 = 2 1- 2 K(k) (3.1.21)
3o r /1+ e - dX

Switching the variable of integration to k, we have:
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Pi = -- j K -k3d

8 - K(k) dk
P 1= f 4e

3r4 1 
(3.1.22)

8V2 r E(k)]
-31 k

8V E( )
3r a )

where 0 2 = If we convert the remaining piece of equation 3.1.8 so that the integration is

over k instead of X we have:

P2= -rf' 4 1 + 1-+ e+-2fE~)43 '(3.1.23)

2rV2'e 1 1 2e( k2  (1+ 2e)E(k) dk
3 1o k4K(k) 2 E+1- k2(1+ dk

Equation 3.1.23 will have to broken up into three parts to make evaluation of P2 simpler. Leaving

aside the constant, we have

P2a= f dk (3.1.24)

P2b= k2{1 -k) K2k (3.1.25)

-2e EWkP2c= 4 k4(1 - k2) K 2(k)dk (3.1.26)

Leaving P2a aside for the moment, the following formulae (not found in reference 11) will be of

utility in integrating P2b and P2c:

S KE(k) dk = - (3.1.27)
f k2 (1 - k2)K2(k) kK(k)

dk + I E(k) dk=-.128

k4K(k) k k4(1 - k2)K 2(k) k3K(k) (3.1.28)

P2b can be integrated using equation: 3.1.27.
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P2b =-(1+ kK(k)
(3.1.29)

1+6 1
9 K(O

P2c can be simplified using 3.1.28.

P2C J dk +e2
= 4K(k) dk+2 k3K(k)

I dk e 1 1(3.1.30)I dc2e 1

=4efa k4K(k) T3 K(A)

Finally, we can express Rirc in terms of the quantities P1, P2a, P2b and P2c:

8v3j E(#) _1 1- _ dk
13,e = 31T 0 1 3 PK(P) + 6e fo VK(k) (3.1.31)

where the last integral will have to be done using numerical quadrature in the absence of a suitable

integration formula. Using the definition of g, the second term vanishes.

Ig3 =31 - 41reV2- k4 k) (3.1.32)

The equation 3.1.32 can thus be evaluated numerically (using the approximations for the complete

elliptic integrals given in reference 12, see also Appendix A), and compared to the result for the

trapped particles derived in equation 3.1.20. The result (for e a g) is that the outward circulating

particle flux cancels 94% of the inward flux of trapped particles.

An explanation-of the physical mechanism of the explicit fluxes is given in reference 8; what

follows is a brief paraphrase. Consider an axisymmetric tokamak geometry. The toroidal field,

B6, the poloidal current, and the electric field, E4 > 0, are all aligned in the positive direction.

a = +1 corresponds to motion in the direction of the magnetic field which is mostly in the

direction. Because of the non-zero electric field and the gradients of the magnetic field, the guiding

center of the particle will drift away from the original flux surface. The drift velocity, to first order

in the Larmor radius expansion is given by:

R = -ub x ( (3.1.33)

where fl is the (signed) gyrofrequency and yu and H are constant. The parallel velocity u can be

written (for time independent fields) as:

ls a O( (H - yB - q<>) (3.1.34)
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where q is the particle charge and 0 is the electric potential, which can be expressed as:

= -ROEO (3.1.35)

Taken the projection of v on the direction orthogonal to the flux surface gives,

Yd ' = UlaaQ - uRBa, ) (3.1.36)

where,

oa, =A- V, = R4 1-, = RB, (3.1.37)

and s is the direction along the field line. In the axisymmetric system, the Hamiltonian is

independent of 0 for trapped particles, since they can not accelerate indefinitely. A circulating

particle can, in the limit of a collisionless plasma, accelerate indefinitely. In a collisional system

this can never happen, except for the phenomenon of "runaway" particles. If the Hamiltonian

is considered to be applicable to the representative circulating particle, which can not accelerate

indefinitely, then the Hamiltonian is a constant, equal to H the particle energy. Therefore the

Hamiltonian can be considered independent of 4 for both circulating and trapped particles. Using

this result, we can write:

= uioa., - RE4 (3.1.38)

where da = u dt Expressing this in differential form:

d7 = Ia d( - RE, dt (3.1.39)

The first term on the right hand side is always positive. For q > 0, u will increase / decrease as

the particle is accelerated / decelerated by the electric field for a = +1/ - 1. If q < 0, u will

decrease / increase as the particle is decelerated / accelerated by E0. The second term is always

negative, because EO is by convention positive.

For a trapped particle, the first term in dO contributes nothing, because u periodically passes

through zero. Therefore in a time r ; w1 the trapped particle drifts inwards

O(T) = f RE4 dt (3.1.40)

This is the trapped particle pinch effectM. Briefly, the electric field accelerates or decelerates the

particles, forcing them to spend more time in the region where there is an inward component of

the b x VB drift.

For a circulating particle, in addition to this inward flow, there is a competing outward flow

from the first term of equation 3.1.39. If the particle accelerates or decelerates enough during
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the period of time r, then this term can be the dominant term. The particles that undergo the

largest change in velocity, relatively speaking, are the ones in the boundary layer. For the well

circulating particles, the inward term may still be dominant, and this is why the expression for

cc (equation 3.1.12) changes sign. It can be shown[g] that the acceleration of the marginally

circulating particles produces a large outward flow. This is most easily shown from the requirement

that toroidal canonical angular momentum be conserved:

P0= mRalulb. q 0 (3.1.41)
C

For example; if we have a particle with q > 0, and a = +1, then the acceleration due to EO

means that Jul increases. The requirement that P0 be conserved means that the value of 7 must

increase. If q > 0 and a = -1, then lul decreases, but 1P must increase if P0 is to be conserved. If

q < 0 and o = +1, the Ej will decelerate the particle and Jul decreases. This implies an increase

.n 7k. If a = -1, then Jul will increase because the electric field accelerate the particle and again

*tk increases to conserve P0. These four cases are shown in Figure 3.1. For each of the cases,

the solid circle represents the flux surface from which the particle is launched. The dashed line

is the toroidal projection of the orbit that the particle would follow if E0 = 0. The spiral line

lerminating in an arrow denotes the particle orbit with a finite EO. (Note: these plots are not to

scale, they have been exaggerated to show the boundary layer effect).

The effect of collisions on the boundary layer particles can be understood by further

examination of equation 3.1.39. As we have seen, the first term on the right hand side makes

no contribution towards do for the trapped particles, because u passes through zero periodically,

i.e. there is no continuous acceleration or deceleration. Consider now the case of the marginally

circulating particles with a low level of collisionality. On the inside of the torus, the cos 17 of

these particles will be near zero, thus a scattering event could easily make a considerable change

in magnitude of the parallel velocity, as well as changing a. This change in the direction of the

parallel velocity again means that there is no continuous acceleration or deceleration, thus we would

expect that the dik value for the marginal particles in the finite v. case should not exhibit the same

behavior as in the ideal banana case.

A detailed calculation of 113,, as a function of the dimensionless collision frequency v. is given

in reference 6. The trapped particle contribution is unaffected by scattering, and the circulating

contribution can be written as:

IT
2

1irc = 1 - (3.1.42)

This expression has been normalized to the trapped particle contribution, i.e. at Y. = 0, Jarc = 1

and I, = -1. The collisionality parameter v. is defined by the expression:
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V. = (3.1.43)
WbO( 2e)f

where v is the collision frequency and wbo is the bounce frequency of the X = 0 particles.
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3.2. The Explicit Currents

In this section we will present the ideal theory expressions for the explicit current transport

coefficients. Both the trapped and circulating currents are essentially diamagnetic in nature. The

trapped particle contribution is sometimes called the banana current. Its origin is similar to the

diamagnetic current arising from the gyration of particles in the presence of a density gradient. In

this case, the banana motion of the trapped particles combined with the density gradient produces

a net toroidal current. The circulating particles also produce a toroidal diamagnetic current. It may

be large locally, but it changes sign as one moves from the inside to the outside of the torus. The

poloidal averaging of this process produces a small net current. It will be shown that the trapped

and circulating contributions are of order ei. In the previous section, we have seen that the pinch

coefficients are of order ef, but they cancel to leading order, leaving a small order e6 net result.

Thus the explicit pinch and explicit current transport coefficients, in the limit v. -+ 0, obey an

Onsager symmetry relationshipl-1l.

The explicit current transport coefficient T31,, can be expressed in a manner analogous to the

pinch coefficient in the preceding section[l:

'ra, = 2nT] d) exp S3,,.(X)"* dX (3.2.1)

Tit, nTE T T xp Si,',(X)ci'c ax (3.2.2)

where

S31 ,e(X) trp = vre(E(k-1) - K(k) (3.2.3)

S31,,( )"'' = 1+ -c- X( E(k) - (3.2.4)
yr 2K(k)j

k has been defined by equation 3.1.4. As in the previous section, note that the energy dependence

of the transport coefficient is the same for both trapped and circulating particles. The energy

integral can be done, and the result is:

Tp = !nTI tra (3.2.5)
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where

1+4

Ita = S3,,(X)'*3 = 27r j1 (3.2.7)

1-e
I = 27r j 33,,(%)c'r dX (3.2.8)

All that remains to be done is to perform the 13j,, integrals.

31,' = 27r 2 (E(k') - (1 - (k') 2)K(')) dX (3.2.9)

where k' =1/k. Changing the integration variable to k', we have:

p1

I = = 16EcV2i (E(k') - (1 - (k') 2)K(k')) k' di'

- cv/ed((4(k')2 - 2)E(k) - (1 - (k') 2)(3(k') 2 - 2)K(k')]' (3.2.10)

90

Turning to the circulating particle current:

= 2v -+ e- (!E(k) - 2 A3)

==,3k~K(k)
(3.2.11)

16.v2 + 4.3r2 2 (1-c2 -
3 (2(k2 - 2)E(k)+(1 - k)K(k))]P - 4 f k4(k)

= e(-2 +#-'((4 - 2#2E# -( )K(#))) - 4#2k k9. fo k4K(k)

where 02 = - and the last integral will have to be done numerically. Notice that the result will

be of order cf. If we evaluate these expressions for 131,, we see that the trapped current is the

dominant contribution. The circulating contribution is difficult to evaluate; it is a small number

resulting from the near cancellation of two large numbers. Because one of the large numbers is

the result of a numerical integration, there will be some error in the result calculated for Icir. For

the value of e used in our model, we find that the circulating particle contribution is approximately

30% of the trapped particle explicit current.
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3.3. The Implicit Processes

The implicit transport coefficients are the result of collisional processes. The implicit flows

arise from the cross prwcessesil in the collision operator, that is they are the result of coupling

the space-like action 0 with the two velocity-like actions A and J. The trapped particles make no

contribution to the implicit transport coefficients7 ',1 .

The physical mechanism behind the implicit pinch can be understood by considering two,

initially well circulating, particles moving in opposite directions on the same bounce a eraged flux

surface 0 (see Figure 3.2). As the particles scatter towards trapped space, the a = -1 particle

scatters to an orbit which is shifted inward relative to 1k, while the a = +1 particle scatters in

the opposite direction. This is the origin of the correlation between velocity and radia scattering.

A current, driven by the toroidal electric field, means that the plasma not have equal aumbers of

a = ±1 particles. The imbalance of forward and backward particles will cause a radial flow of

particles. This is the implicit pinch effect.

The mechanism behind the implicit bootstrap current is the reverse of the procesi described

above. Take two marginally circulating particles, oppositely directed along the magnetic field, and

scatter them back towards the well circulating state. The a- = -1 particles will scatter out towards

T, while the a = +1 particles scatter in. If the plasma has a normal (i.e. Vn < 0) density

gradient, there will be more a = -1 particles than o = +1 on the final average flux surface '0.

This is the implicit bootstrap current. It is the precise microscopic inverse to the implicit pinch

effect[6], which accounts for the Onsager symmetry of the respective transport coefficients.

The quantity (if) is related to D13 in reference 7. When the expressions for D13 from

references 7 and 8 are evaluated, we have:

1 E2(k)D"= -V 4W 1 - -kK2(k) (3.3.1)

= 0 (3.3.2)

where v is the collision frequency and k2 = ?L. One important thing to note is that the

derivation of D13 is carried out in the limit v -+ 0, much as the derivations of 113,, and 7 were

done in the limit E0 -+ 0. The reason why the trapped particles do not make any contribution

to D13 is easy to see; a scattering event will increase or decrease A, which will lead to a larger

or smaller banana respectively. This leads to a jump in the value of 0. However, the bounce

averaged flux, T will not show this jump. The ideal theory is in terms of ;, not 1p, so the trapped

particle contribution to D13 is zero.
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Figure 3.2: Representative orbits for circulating particles
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3.4. Onsager Symmetry Breaking

In this section, the predictions of both the ideal banana theory and the finite Y. theory, with

respect to the Onsager symmetry of the pinch effect and bootstrap current will be summarized.

In the ideal banana theory, both the explicit and implicit transport matrices are exhibit Onsager

symmetry. The implicit pinch and bootstrap processes have been shown to be the microscopic

inverses of each other (see Section 3.3 and reference 8). The explicit symmetry relationship is

between the banana and Pfirsch--Schluter currents and the kinematic pinch effect. The explicit

currents are diamagnetic in nature, and the resulting transport coefficient is of 0(ef). The kinematic

pinch coefficient is the result of the cancellation of the inward trapped particle pinch (the Ware

effect[91) by an outward flux of circulating particles (see Section 3.1). Most of the circulating

particle flux comes from a narrow region in X-space near the trapped-circulating boundary. Both

the trapped and circulating contributions are of 0(J), so the net explicit pinch coefficient is of

C(Si).

The addition of scattering produces several effects. The implicit transport coefficients, while

still maintaining their Onsager symmetry relationship, greatly decrease with increasing v.. This is

due. to the destruction of the "cross processes" (see Section 3.3), which couple the velocity-like

and space-like actions. The trapped particle explicit pinch coefficient is unaffected by low levels

of scattering, but the circulating particle contribution to the kinematic pinch will be reduced by

collisions. This. is because the marginally circulating particles will tend to scatter towards a well

circulating state, thus "smearing but" the boundary layer. Reduction of the outward flow of

circulating particles leaves the inward trapped particle pinch as the dominant effect. To summarize:

the finite v. theory predicts that -scattering will destroy the implicit pinch effect and bootstrap

current and reduce the circulating particle contribution to the explicit pinch effect. The result (to

0(J)) is that the bootstrap current is largely destroyed and the pinch effect is dominated by the

Ware effect.
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Chapter 4

Model Description and Numerical Methods

In this chapter, the details of the models used in the numerical simulation of particle orbits

are presented, along with a discussion of the numerical methods used to integrate the particle

equations of motion and to determine the toroidal magnetic flux. In Chapter 2, the reasons behind

the choice of magnetic field, electric field and scattering models were presented. Here the actual

numerical means of evaluating the magnetic field for example will be given.

In Section .4.1,. the axisymmetric magnetic field model is presented, and some of its properties,
such as the magnetic well, safety factor and flux surfaces are described. The next two sections

describe the scattering and density models respectively. Section 4.4 contains a description of the
method by which the toroidal magnetic flux 0 is calculated at an arbitrary location, and Section
4.5 discusses the problem of particle following, and a brief description of the computer code is
given.

4.1. Magnetic Field Model

The model of the magnetic field is made up of three parts; a 1/R toroidal field, a constant
vertical field, and a poloidal field from a current loop. In this section, the expressions for the
vector potential, magnetic field, and the gradients of the magnetic field will be derived. Also, the
properties of the model such as the safety factor (inverse rotational transform) and the depth of

the magnetic well will be discussed. In the final subsection, a listing of the parameters used in the
model will be given.

4.1.1. Magnetic Field Calculations.

The magnetic field from each of the three components is calculated from the Biot-Savart Law.

In addition to the magnetic field B. VB and the vector potential A will be needed for particle

following and the flux calculation respectively. The Biot-Savart Law can be written as:P 1
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A =LO dr' (4.1.1)
41r f z

where z is the distance from the current element to the point ! and r' is the dummy volume

element of integration.

The toroidal magnetic field can be considered to be generated by a current flowing in the

i direction located at the origin. Analytic expressions for A. and 130 can be obtained by using

equation 4.1.1 and differentiating.

To apply equation 4.1.1, an expression for the current density J, is needed. If we consider

the cu:rrent to flow through an infinitely thin filament, the r and 0 dependence of J, are expressible

as delta functions. Thus equation 4.1.1 can be written as:

A, = dz (4.1.2)

where L is one half of the length of the filament, and z' is the dummy variable of integration in

the i direction. The denominator of the integrand is found from the geometric relation

2 (i) 2  t2  (4.1.3)

Equation 4.1.2 can be re-written as:

AA 0 fL di (4.1.4)

This can be integrated, and inserting the limits, the result is:

A, = [log(L + + L2) - log(r)] (4.1.5)

If we consider the limit of L2 > r2 equation 4.1.5 can be simplified to:

A. = -ALlog - (4.1.6)
27r r

The toroidal magnetic field can be calculated by taking the curl of equation 4.1.6:

BO= -a (4.1.7)ar

BO = m(4.1.8)
2irr

The only derivative of BO which is not identically zero is the derivative with respect to r.

Differentiating equation 4.1.8 we have:
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aBO AAOI (4.1.9)
=r 2rr2

The poloidal field will be generated by a circular current loop in the z = 0 plane. The

complete calculation of A, the poloidal field and VB is presented in Appendix A; the results are:

AO =OI a (2K(m) - 2 E~m -K(m)) (4.1.10)
((a+ r)2 + Z2)i m m

K + 2 - m (4.1.11)
27rr N/(a + r)2 + z2 2(1 - m)

B 4 1 K - (1 - -(a + r))) (4.1.12)
2 2 2 1-m 2r

57S , -B (4.1.13)

aB, Bz +.A0I 1 -K+ 2-m \
az (a+r)2 +z 2  2rr( +r)2 2 ( 2(1-m) J

~/(a 4(1 m) -K +(4.1.14)
+____ _ 1 amK+ 1 + m

27r r Vr- +- r+Z- y4 ( 1-m) 61z -MIS

ar (a+r)2 +z 2 4 27rry+224(11 - m) K

(4.1.15)

aB2  B. B(a + r) IMOI 1 1~ raa)
(a r)2+Z2 a r)2 +52 4r(1 -m) Ir -. )

(4.1.16)

+E(a+r- 2(r - E2am]

where K and E are the complete elliptic integrals of the first and second kind, a is the dipole

radius, I is the dipole current, and m is defined by:

4ar (4.1.1T)
(a + r)2 + Z2
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A vertical field will be ued to shift the magnetic surfaces. A very simple model of a vertical

field will be used: a homogeneous field in the -1 direction. This will shift the outer surfaces

inward and produce a magnetic well (see subsection 4.1.2). If we let B, be the value of the vertical

field (B, < 0), the vector potential associated with B, will be composed of and P components.

The constraint of axisymmetry leaves only A,, which can be expressed as:

11O (4.1.18)

where the constant of integration has been eliminated by the desire for a finite value of 4 at

r = 0.

4.1.2. The Safety Factor and the Magnetic Well

Calculating the safety factor (or inversely, the rotational transform) is a trivial process in this

axisymmetric geometry. Integrating the equations given in the previous subsection, the toroidal

angle that the line traverses while completing one poloidal orbit, AO, is computed. The safety
factor q is the ratio of the number of toroidal orbits to the number of poloidal orbits. Thus:

q 2v (4.1.19)

Determining if there is a magnetic well or an anti-well is a little more complicated; first we
must clarify what we mean by a magnetic well. According to Taylor[14l a magnetic well is present

when there is a point (or a simple closed curve) such that the value of B2 increases as you move

in a "radial" direction (it should be noted that in general the contours of B2 are not the flux

surfaces). When this condition is satisfied, there is said to be an absolute magnetic well, or a
min-B configuration. With the addition of Ioffe bars to a simple axisymmetric mirror, an absolute
magnetic well is produced.

Because of the 1/R toroidal field in most toroidal geometries, an absolute magnetic well: is
not possible. However, an average magnetic well can be produced if on a given flux surface, the

average value of B2 is larger than on a flux surface closer to the magnetic axis[1'5.

There remains the question of what the proper average along the flux surface should be.
Because of the axisymmetry of our geometry, the flux surface average is just an average along
a field line for one poloidal period. Examination of the equations describing the field line (see
subsection 4.4.2) yields the following flux surface average:

(Y) f- (4.1.20)

where Y is the quantity to be averaged, and the f refers to the one poloidal period. Using this

definition to calculate the average of B2 we find:
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A vertical field will be used to shift the magnetic surfaces. A very simple model of a vertical

field will be used: a homogeneous field in the - direction. This will shift the outer surfaces

inward and produce a magnetic well (see subsection 4.1.2). If we let B" be the value of the vertical

field (B, < 0), the vector potential associated with B, will be composed of and r components.

The constraint of axisymmetry leaves only AO, which can be expressed as:

= irB, (4.1.18)

where the constant of integration has been eliminated by the desire for a finite value of A at

r = 0.

4.1.2. The Safety Factor and the Magnetic Well

Calculating the safety factor (or inversely, the rotational transform) is a trivial process in this

axisymmetric geometry. Integrating the equations given in the previous subsection, the toroidal

angle that the line traverses while completing one poloidal orbit, AO, is computed. The safety

factor q is the ratio of the number of toroidal orbits to the number of poloidal orbits. Thus:

e (4.1.19)

Determining if there is a magnetic well or an anti-well is a little more complicated; first we

must clarify what we mean by a magnetic well. According to Taylor['4I a magnetic well is present

when there is a point (or a simple'closed curve) such that the value of B2 increases as you move

in a "radial" direction (it should be noted that in general the contours of B2 are not the flux

surfaces). When this condition is satisfied, there is said to be an absolute magnetic well, or a

min-B configuration. With the addition of Ioffe bars to a simple axisymmetric mirror, an absolute

magnetic well is produced.

Because of the 1/R toroidal field in most toroidal geometries, an absolute magnetic well is

not possible. However, an average magnetic well can be produced if on a given flux surface, the

average value of B2 is larger than on a flux surface closer to the magnetic axis 151.

There remains the question of what the proper average along the flux surface should be.

Because of the axisymmetry of our geometry, the flux surface average is just an average along

a field line for one poloidal period. Examination of the equations describing the field line (see

subsection 4.4.2) yields the following flux surface average:

(Y) = (4.1.20)
i #

where Y is the quantity to be averaged, and the f refers to the one poloidal period. Using this

definition to calculate the average of B2 we find:
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(B2 ) = (4.1.21)

4.1.3. Model Parameters

Only a few parameters are needed to completely specify the magnetic field used in this thesis.

The toroidal field can be specified by two quantities; the current in the filament and the length of

the filament. The poloidal field model can also be described by two parameters: the current in the

dipole and the radius of the dipole, which is the magnetic axis of the system. For the vertical field

there is only one parameter; the field strength.

In Figures 4.1 and 4.2, the safety factors, magnetic wells and flux surface.s are compared for

the cases of B, = 0 and B, = - 0.008 Tesla. The major radius is 10.0 meters and the toroidal

current is 0.2 MA. The current which produces the toroidal field is 200 MA, which gives B0 =
2.0 T at the major radius. The length of the current filament is 10 km; the length only enters into

the A calculation, the large value of the length is to avoid any "end effects".

The reason why a vertical field is necessary is apparent from Figures 4.1 and 4.2. Without the

vertical field, the flux surfaces are shifted out relative to the magnetic axis by the toroidal effects.

Hence there is an anti-well. With the addition of the small vertical field, the outer flux surfaces

are shifted inward, producing a well. There is still an anti-well in the center; this is unavoidable

because a vertical field strong enough. to create a well here would destroy the outer flux surfaces.

The central anti-well should not be*a problem, as our transport studies will be confined to the area

where there is a magnetic well.
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4.2. Scattering Models

In this section, a brief description of the methods used to model collisions will be given. We

have considered two kinds of models for the scattering process, pitch angle scattering (at constant

energy), and energy scattering at constant magnetic moment.

4.2.1. Pitch Angle Scattering

Pitch angle scattering is modeled by a Lorentz collision operator:

af(1 - C 2 (4.2.1)
at 2 a(cos? a Cos 7

where f is the particle phase space density, v is the collision frequency, and q is the pitch angle.

Ip reference 16, a Monte Carlo equivalent operator based on the binomial distribution is defived.

cos t7 = cos 70(1 - vr) + z (1 - coa2 7o)vr (4.2.2)

whee 7 is the pitch angle after scattering, 7o is the pitch angle before scattering, and r s the

time step. z is randomly chosen to be ±1. The advantage to using this collision operator is

that lcosif will never exceed 1. If r is chosen to be smaller than the integration time step (so

the scattering operator is applied several times for one time step), the net result will approach a

Gaussian distribution. Instead of following this procedure, we chose z to be a normally distributed

random number (a2 = 1), which is obtained using the Box-Muller transformation1 T]. Thus the

scattering operator resembles those described in references 18 and 19. The advantage is that this

is much faster, however it will be possible for lcos tel to- exceed 1. Fortunately, for small v, the

problem with Icos ni only. occurs. for particles. with jou q[ m 1, i.e. the well circulating particles.

These particles make little contribution to the transport coefficients; so in practice, if the value of

z yields a nonphysical result for cos for these particles, a new z is chosen.

This scattering operator was tested by following a particle for several hundred thousand

time steps, using a large value of v to simulate the actual collision frequency calculated from the

Braginskii collision frequency. It is expected that the distribution of the particle's coBq values

should approach a uniform distribution, and this is indeed the case.

4.2.2. Energy Scattering

The energy scattering model is similar to the pitch angle scattering algorithm above. An

energy step, AH, is used as the standard deviation of a normally distributed jump in energy. The

energy jump is then added to the parallel energy of the particle, keeping A constant. The new

value of the parallel velocity, which is a dependent variable in the calculation is then computed

from the new parallel energy. It should be noted that the parallel energy is signed, so that if the
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energy jump should cause the parallel energy to change sign, the effect is to make the parallel

velocity change sign.

This scattering model has been used only for comparison with the pitch angle scattering

model. The results presented in the next chapter were obtained using the pitch angle scattering
method; qualitatively, the same results were obtained using the energy scattering model.

4.3. Plasma Density Model

For some of the transport coefficient calculations, e.g. the kinematic bootstrap current, the

particle density is needed. We have chosen a relatively simple model of the density:

n = no 1 - (4.3.1)

where no is the density at the magnetic axis and 0. is the value of the toroidal flux at some large
minor radius. The parameters used were no = 1.0 x 1020 m-1, 0, = 5.0 Wb (the flux surface
from which the particles were launched was i = 2.0 Wb) and p = 1.0.

4.4. Calculation of the Toroidal Flux Coordinate

In this section, the methods used to obtain 0 at a given location are discussed. In subsection
4.4.1, the integral representation of the toroidal flux will be given for the magnetic field model.
The integration path will be the toroidal projection of a field line. The next subsection deals with
field line following. calculation of 0 by following a field line is relatively inexpensive in cpu time;
about 1.5 CRAY cpu seconds is required to compute - for a- typical. point. However, some of the..
transport calculations will require a flux value at. every time step of the particle following code.
This would be prohibitively expensive in computer time. Instead, a cubic B-spline interpolation
method is used. The interpolation procedure will be outlined in the final subsection.

4.4.1. Evaluating the Toroidal Flux

In evaluating the transport coefficients, one of the important parameters is the magnetic flux.
The flux serves as a measure of the particle's position relative to the magnetic axis. The particle
motion will be mostly along the the field line, so it is the slow drift across the flux surfaces which
we are measuring. To calculate the value of 0 at any point, we will make use of the magnetic field
model given in Section 4.1.

If we are given a closed path in a toroidal plane (0 = 0) which represents a "contour of
constant flux", the value of 0 can be determined by doing the surface integral:
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f = -(4.4.1)

where dA is the differential area element and h is a unit vector describing the orientation of the

surface element. Using the toroidal symmetry of our model, equation 4.4.1 simplifies to:

= JBdrds (4.4.2)

Using Stokes theorem, equation 4.4.1 can be written in terms of the vector potential and a line

integral.

- d3 (4.4.3)

where d3 is the differential element along the path of integration. Again, using the description of

our model, the only component of the vector potential which contributes to the integral is A,, for

which we have derived a simple algebraic formula in subsection 4.1.1. The path of integration is

just the toroidal projection (0 = 0) of a field line, as it completes one poloidal orbit.

4.4.2. Field Line Following

The "motion" of a field line is described by the set of equations:

dr =rdo6 9 di
F= BF = 3 (4.4.4)

where di is the differential length element along the field line. To determine the trajectory of a
field line, the equations 4.4.4 must be integrated. A fourth order predictor-corrector algorithm was
used to do the integration. This method was chosen because it gives, fourth order accuracy with.

only two function evaluations per step, while other fourth order schemes, like the Runge-Kutta
method, require four function evaluations. In this case (and in the case of particle following) the
function evaluations require calculation of the magnetic fields, and thus require many operations.

A disadvantage of the predictor-corrector method, is that it requires data at three previous
points before it can calculate the fourth point. This means that some other method must be used to
do the first several integrations; here the Runge-Kutta method is used. Also, the predictor-corrector

method is limited to a fixed step size.

The accuracy of the code was studied in two ways. First, the portion of the code which
calculates the magnetic field was benchmarked against an analytic calculation of the field. The

accuracy of the integrator was determined by following a field line for a long distance (several

kilometers or - 100 toroidal orbits) and then reversing the direction of "motion" and following the
line back to the original starting point. The distance between the origin and the final stopping point

is a measure of the accuracy of the integrator. It was found that halving the step size (doubling
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the amount of work) improves the accuracy by a factor of thirty-two, which is as expected from a

fourth order integration scheme.

4.4.3. Flux Calculation and Interpolation

The toroidal flux 4 is calculated using the expression:

'=fAsdr (4.4.5)

where the path of integration for the line integral is the toroidal projection (0 = 0) of the field

line. The integration is done as part of the line following procedure, using the trapezoidal rule.

There is a problem with the last point in the integration because in practice the field line never

completes a poloidal orbit exactly on the starting point; the last point will overlap on the first

step. Thus there are two bounds to 0 from the last step and the next-to-last step. A simple linear

interpolation, based on the distance on the toroidal projection plane (0 = 0), is used to get a best

estimate" of 9. As a test of this procedure, two magnetic field models were used, the difference

being in the length of the current filament which produces the toroidal field. B0 is independent

of the length of the filament, so ' should also be constant, even though A. will increase as the

length increases. This is because i is determined from a closed integration path. It was found that

the values of the two bounds of # changed, but the value of 0 remained constant, with an error

of ±1.0 x 1010

Calculation of the flux at a given point requires following a field line from that point for

one poloidal orbit. As mentioned above, this can be an extremely costly way to determine 0 at

each time step in the particle following code. Instead, the flux. will be calculated for a rectangular

grid, and the flux evaluations made as -part of the particle following code will be done by using

an interpolation scheme on this grid. The interpolation method used is two-dimensional, cubic

B-splines[2
1-

2 2 1. To reduce the required cpu time even farther, a reduced storage matrix inversion

routine, based on the LU decomposition algorithm, is used in place of a more general matrix

inverter (see Appendix B).

A fairly complete discussion of cubic B-spline interpolation is given in references 20, 21 and

22. The two topics which will be addressed here are the boundary conditions and the accuracy of

the interpolation. In order to completely specify the interpolation problem, boundary conditions

are needed. In practice, the boundary condition is a function value, or the derivative of the

function. Periodic boundary conditions can be specified by using the value on one side of the

grid as the boundary value for the other side of the grid. In the case examined here, there is

tnirror" symmetry of the flux values along the z = 0 line, so the boundary condition on this side

of the grid is that the first derivative of # with respect to z be zero. On the other three sides of
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the grid, second derivative boundary conditions arc used; the values of the second derivatives are

approximated using second order central finite differences of 0

In determining the accuracy of the spline coefficients, there are two factors to consider: the

grid spacing and the step size of the line follower. The accuracy of the spline coefficients was

checked by using a modified line following program, which computed the flux value from the

coefficients at every step. The value of , along a field line should be constant, so if we subtract the

initial value of 7 from the values computed at each step, we will be able to make an estimate of

the error in the interpolation. It was found that halving the step size (doubling the work) increases

the accuracy mostly near the center of the grid, and then only by about 50%. The improvement

comes from the higher accuracy of the line follower with a smaller step size in regions of higher

field curvature. Changing the grid spacing produces a more profound effect on the accuracy of

the spline interpolation. On a square grid, reducing the grid spacing by a factor of two (the work

increases by a factor of -3.6 not 4 because of the boundary condition at z = 0) improves the

accuracy by a factor of approximately twenty.

As-a result of these studies of the accuracy of the spline interpolation, the flux calculation

routine has been improved by scaling the step size with the minor radius. This gives the necessary

accuracy near the center of the grid, but keeps the work down to a minimum in the lower curvature

regions (note: although the flux values at the center of the grid will never be used by the particle

following code, they are needed to accurately determine the interpolation coefficients).

The plots in Figure 4.3 were generated from the improved flux calculation routine. The

horizontal axis is the length along a field line, the vertical axis is the difference between the initial

0 value and the k value calculated at that point. The plot on the left was done for a grid spacing

of 2.5 cm, the grid used in the plot on the right has a spacing of 5 cm. The error decreases by

about an order of magnitude for the smaller grid spacing.
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4.5. Particle Following

The particle following code is very similar to the field line following routine used in the flux

grid calculation. A fourth order predictor-corrector algorithm is used to integrate the equations of

motion. A given particle is followed for one poloidal orbit, and the difference between the final

and initial values of O and u, together with the poloidal period, Ar, are used to compute the fluxes
and the Fokker-Planck coefficients.

4.5.1. The Guiding Center Equations

The equations of motion are those given in Northrop[23 1 with one small modification. If we

do the guiding center expansion as in Northrop, we obtain:

du + A -_ 2 - V (4.5.2)
B q qm

where M is the rate of change of the position vector t, u is the parallel velocity, k is the unit vector
parallel to the magnetic field , B = , is the electric field, and q and m are the particle's

charge and mass respectively. This system of equations is slightly modified to improve energy
conservation. If we assume that E = 0 and that 14 is constant, the rate of change of the energy
can be calculated.

1
H = -mu 2 + 14B (4.5.3)2

dlH du dB
= mu- i+ s- (4.5.4)

where the second order term corresponding to the kinetic energy of the drift velocity has been
neglected. If we assume that B is constant, substituting for dt we have:

mu(- "b- VB + 2-V - + -VB (4.5.5)

simplifying:

-- vub .VB + muv -Vb -v+ pi. b p -VB Adt d(4.5.6)
=muv - V&- V,+ - VB



where uV is the drift velocity (Uv = v- ub). In general, these two terms do not cancel, and energy

is not conserved by these equations. The "ripple" in energy is not large, but it can be reduced

if the second term can be canceled out. If we assume that there is an additional piece to the t
equation which cancels the second term, energy conservation yields:

du
pAd - VB = -mu I add (4.5.7)

Substituting for yd, we have:

x (,VB + mu2 A -vA) -VB = -MU dU a (4.5.8)

Because of the cross product, the first term on the left hand side gives zero, and we can solve for

the correction to .

Idd = - X (uk - 7h) -V13 (4.5.9)

Including this term in the system of guiding center equations:

du 1 A
- VB+±. VA - + 1J - 1A- x (ukV VA). VB (4.5.10)

= b + X - + VB+ 2- (4.5.11)

This "extra" term has a simple physical explanation. The first term of equation 4.5..10 is the

change in caused by the particle moving into a region of different magnetic field strength. This

is from the parallel motion of the particle. The new term is- similar, except that the motion is the

result of the drift motion of the particle, specifically the curvature drift. The new term is one of

the higher order terms.left out in equation 4.5.10..

The importance of this additional term depends on how big the curvature drift velocity is.

The important parameter here is the major radius. For our case, RO = 10 m, and this effect is

small (less than 3% of the energy error), while in smaller systems this term can decrease the error

by up to 40%. Figure 4.4 is a plot of the error in the energy vs. time for a 2.0 keV particle. The

maximum error is about 1 x 104 eV. The frequency of the energy ripple is the poloidal orbital

frequency. Note that this data is taken for EO = 0; the change in energy caused by the electric

field accelerating (or decelerating) the particle will be many times larger than this small ripple in

the energy.
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4.5.2. Description of the Code

The computer code TRACK integrates the guiding center equations for one poloidal orbit of

the particle. The initial position and velocity must be specified. The initial position is specified

by 0 and 9, the poloidal angle. Conversion to cylindrical coordinates (the coordinates used in the

predictor-corrector integration scheme) is done using the secant method[241. If the scattering option

is specified, the scattering routine is executed after the corrector part of the integrator on each time

step. Calculation of 0 at every step is done by evaluating the spline coefficients. To follow a given

particle for one poloidal orbit takes on the order of 3 CRAY cpu seconds; approximately 30% of

the execution time is spent in evaluating the magnetic field, which must be done twice each time

step.

After one poloidal orbit has been completed, an interpolation routine (based on the Adams-

Moulter polynomial implicit in the corrector step) is used to obtain the closure point of the poloidal

orbit. From this final point, the changes in 0, u, energy and time are computed. From these

quantities Wb, W2, -f and the other quantities of interest can be calculated. Thoe bounce averaged

toroidal flux is also computed by the code. This is needed when computing the kinematic bootstrap

coefficient.
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Chapter 5

Results and Comparison to Theory

In this chapter the results of the numerical evaluation of the transport coefficients are

presented. Both the ideal banana regime and finite v. cases are examined and compared to the

predictions of the Lagrangian formulation. In Section 5.1, the ideal and collisional behavior of Y
and the explicit pinch coefficient is discussed along with the (4-) (explicit pitch angle scattering)

Fokker-Planck coefficient. Section 5.2 contains the results for the explicit current; in Section 5.3,

the (implicit) Fokker-Planck coefficient (A- 4) will be examined.

A note on the computer facilities used for these calculations: the basic computations, e.g.

creation of the flux grid, field line following, particle following, were all done on the CDC 7600

and the two CRAY-1 computers at the National Magnetic Fusion Energy Computer Center at the

Lawrence Livermore National Laboratory. The particle following daa were then pre-processed into

a condensed form, and transferred to the MIT Macsyma Consortium PDP-10 over the ARPAnet.

The condensed data were then analyzed and plotted in an interactive LISP environment.

5.1. The Explicit Pinch Coefficient

In this section the behavior of the explicit pinch transport coefficients will be discussed. Using

the procedures described in Chapter 4, the quantities O and Wb can be computed for each particle

in the initial particle distribution. These data can then be used to numerically construct the function

S13,,(X), which was used in theoretical calculation of the explicit pinch transport coefficients. The

quantities Ay and Wb can also be compared to the appropriately normalized theoretical expressions

developed in Chapter 3.

First, consider wb. In Figures 5.1 and 5.2, Wb is plotted as a function of the pitch parameter

X. The data points are denoted by squares, the solid curve is the results predicted by the ideal

banana theory. These solid curves were computed from equations 3.1.3 and 3.1.5:

wcirc = C(5.1.1)
K(m)
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C 2 K(1) (5.1.2)

where

2e2e (5.1.3)

and

1 2H
C = .o g 2H (5.1.4)4RO q0 V M

where Ro is the major radius and qo is the value of the safety factor, obtained from Figure 4.1.

Note that in the notation of Chapter 3, m = k2.

Comparing the data with the predictions of the ideal theory presents a problem. Because of

the toroidal geometry, c is not a constant. The e used in evaluating the preceding equations was

derived from X = 1 - e at the boundary layer (0 = 7r). A slightly different value of e would have

been obtained if we had used X = 1 + e for the most deeply trapped particles (9 = 0). We chose

the boundary layer value of e because it the ideal theory predicts that Wb should have an absolute

minimum, and " should be singular at the boundary, and in the data from the simulation, Wb

does have its minimum at the boundary, while " reaches its maximum value there.

In Figures 5.1 and 5.2, the theoretical and actual values of Wb are in good agreement, within

10% or so, except near the boundary layer. Near the boundary (see Figure 5.2), the agreement

becomes very poor. In the ideal banana theory, it is assumed that the parallel velocity will always

be greater than the drift velocity; the particles near the boundary should have little circulating

motion, and thus wb should be approximately zero. This is not observed in the computation: the

VB drift forces the particle in the +1 direction to a lower field strength region. Conservation of

1A requires the parallel energy to increase, and the particle does circulate with a non-zero wb.

The computed values of " as a function of X are given for the forward directed particles

(a = +1) in Figures 5.3 and 5.4. Figure 5.3 shows the entire range of X, Figure 5.4 shows just

the region of the boundary layer. The data in these plots has been normalized to the value of "

computed for the most deeply trapped particles. The solid lines are the predicted values from the

ideal banana theory, the squares denote data from the computer simulation. Normalizing equations

3.1.11 and 3.1.12 to correspond to the sign convention of the data yields:

-(5.1.5)
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Acr" 1+ -_ X E(m)= 1- K 1+1ErK~j (5.1.6)

From these figures, it is apparent that at least on a qualitative basis, the predicted behavior

of 4 is observed. There are several interesting features of the " spectrum which should be

commented on. First, the trapped particles do not have a constant value of 4. The reasons for

this can be best examined by comparison to Ware's original work[61. If instead of computing AO

and dividing by the poloidal period, the change in minor radius is computed and the numerical

analog to equation 3.1.13 can be written:

-- E - -(5.1.7)

where B.., is the magnitude of the poloidal magnetic field. In the discussion of this equation

in Section 3.1, it was pointed out tha: the magnitude of B,, is assumed to be constant. This

assumption is good, in the limit of small e, or small banana width. In our model e is approximately

6, which is certainly small, but it is not zero. Thus we should expect good agreement with

the expected behavior of f. Figure 5.5 gives the percent difference between J and - as

a function of X for the parallel directed trapped particles (the anti-parallel results are similar).

The range of X shown covers the entire trapped region; the left vertical axis corresponds to

the trapped-circulating boundary. The agreement between the calculation and the prediction is

extremely good for the deeply trapped particles, but the results diverge from the prediction as the

trapped-circulating boundary is approached. Near the boundary, the difference is approximately

8%. The reason that the error is largest here is that the banana width is largest for these particles,

so the assumption that B, is constant is not as good as it is for the deeply trapped particles.

Turning again to Figures 5.3 and 5.4, we see that the circulating particles are also in good

qualitative agreement with the values predicted by equations 5.1.5 and 5.1.6. The well circulating

particles. have values of A with the opposite sign of those near the boundary, as predicted in

Chapter 3. Closer to the boundary, the data is in good agreement with predictions of the ideal

theory except near the trapped-circulating boundary. The theory predicts a logarithmic singularity

on the boundary, but a finite value is observed. In fact, the values of " in the boundary layer

show an increasing divergence from the predicted values as we approach the boundary. One source

of this discrepancy is the value of E0. In the ideal theory, the limit of a zero electric field is taken.

Using a finite electric field will cause drifts in energy and X as discussed in Section 2.5. Thus

a particle which starts off in the boundary layer will drift towards circulating or trapped space,

depending on its value of a. The forward directed particles will drift towards circulating space,

thus A will be lower than expected, while the o = -1 particles drift toward the boundary, and

have a larger than expected ". Figure 5.6 is a plot of normalized " as a function of X in the

boundary layer, in all aspects identical to Figure 5.4 except that E4 = 1.0 x 10-3 V/m instead of



0.05 V/m. As before just the a = +1 particles are shown. comparing the two figures, we see that

decreasing EO (thereby decreasing the drift in X) increases the normalized value of *; for these

two cases the improvement is by a factor of five.

Another cause of the discrepancy is the assumption made in the ideal theory that the parallel

velocity is always larger than the drift velocity. Instead of the particle orbits in the boundary layer

being only marginally circulating, they have a well defined circulating nature.

The explicit pinch transport coefficient may be calculated from the values of and wb.

Leaving aside the question of normalization, we can write:

=ta 1 r)--- 1 Alp
I' x= r (5.1.8)

13, _W6 =Z7d (5.1.9)

where the factor of J in the trapped particle comes from the ideal theory representation of the

transport coefficient (see equations 3.1.14 and 3.1.15), X61 is the value of X at the boundary layer, and

X,.. is the maximum value of X allowed in phase space, it corresponds to the most deeply trapped

particles. In the magnetic geometry assumed in the ideal theory, Xbi = 1 - e and X,,. = 1 + e;

as mentioned above, the relationship X = 1 - E is chcsen as a means of defining the value of e.

The expressions derived in Chapter 3 can be modified to calculate the theoretical predictions of

the transport coefficients, allowing for the variation in e. Starting with equations 3.1.18 and 3.1.19,
we have:

= Si5 ,e(X)*'a dA (5.1.10)

3, = S S13,e(X)"' (5.1.11)

where the functions S13,,(X) are defined in equations 3.1.6 and 3.1.8. Substituting in for Sia,,(X)traP:

,trap =8V~ (1e

13,e k'K(k') dk'
37r ,/-I

- (1 - E(a) + (1 - a)K(a))
3vr

where

(k') 2 . 1 - (5.1.13)
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and.

a = 1 XmdZ (5.1.14)
2e

The inclusion of the extra term which depends on a decreases 1"P by approximately 1% over the

value computed in Chapter 3. The circulating particle equation is just a modified form of equation

3.1.31:

-irc 8 v'-2E() \ 2/r5 v' e -e f dk
ir 3 K()+6e I k4K(k)

where

k = (5.1.16)
+e-

and

(5.1.17)

i.e. P corresponds to k2 at the lower X limit of integration. Changing this lower limit will allow

calculation of the contribution of just the boundary layer particles to the circulating pinch transport

coefficient. Evaluating the two expressions for rl3, we find that the circulating pinch coefficient

cancels 95% of the trapped pinch coefficient. 87% of the cancellation is due to the boundary layer

particles, where the boundary layer has been rather arbitrarily defined to encompass all particles

within AX = 0.038 of XbI. This value of AX was chosen because both 4 and wb start to exhibit

the characteristics of boundary layer particles as opposed to well circulating particles at this point

in X-space.

When the transport coefficients are computed from the data, it is found that the circulating

particle contribution cancels only 62% of the trapped particle coefficient. The boundary layer

particles account for 53% of the cancellation. Comparison of these results to the predictions of the

ideal theory given above, indicates that the problem lies mostly the boundary layer contribution.

However, we have seen in the behavior of g and wb that there are factors influencing the particle

motion in the boundary layer, which are not included in the ideal banana theory. Such factors

include: the toroidal electric field, which can cause drifts in X and transitions of particles between

the trapped and circulating states; toroidal geometry, which together with the electric field causes

a dependence on a; and the realistic field model, which produces the small, but non-zero drift

motion (neglected in the ideal theory) that allows particles launched at XbI to have a non-zero ob.

A simple calculation can give some idea of the effect of the drift motion and finite electric

field on the numerical results. The assumption.that the drift motion is negligible is invalid within
AX ~ 1.0 x 10-3 of XbL. The electric field causes a drift in the X values of the boundary layer
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particles of approximately AX - 3.0 x 10-3. If we vary AX between 1.0 x 104 and 1.0 x 10-2,

we find that the ideal theory predicts that the contribution of these particles is between 0.45 and 0.77

respectively (the trapped particle pinch coefficient is -1.00). The numerical results for this region

give a pinch coefficient of between 0.02 and 0.33 respectively. The difference of approximately

0.45 between the prediction of the ideal theory and the numerical result for the particles in the

narrow region AX = 1.0 x 10-3, is to first order the difference between the computed circulatihg

pinch coefficient and the predicted result.

Thus far only the non-collisional behavior of A and the explicit pinch coefficients has been

examined. The numerical simulation and transport coefficient calculation was done for sevelal

different scattering frequencies. The dimensionless collision frequency v. is defined by:

= V (5.1.13)
WbO(2e)I

where v is the scattering frequency and WbO is the circulation frequency for the well circulating

(X = 0) particles. Substituting the actual values of e and wbo:

v. = 4 x i0 3v (5.1.19)

Computing the transport coefficients was done in the same manner as for the ideal case except

that (g) was used in place of g in equations 5.1.10 and 5.1.11. The results of the calculations

is summarized in Table 5.1. The results have been normalized to the absolute value of the ideal

trapped particle coefficient. The column labeled "b.." is the transport coefficient from a small

region near the boundary layer, the lower limit of which was defined above. The boundary layer

contribution is included in the total circulating particle transport coefficient. For each non-zero

value of v. an error estimate is included. This is based on the estimated statistical error discussed

in Section 2.6.

As v. increases, the boundary layer contribution to the kinematic pinch coefficient decreases.

The trapped particles are unaffected by these scattering levels, so the result is that as t/. increases,

the net inward flow of particles also increases. Comparison of the boundary layer and total

circulating particle data shows that, within statistical error, all of decrease in the circulating particle

transport coefficient is due to modification of the boundary layer particle dynamics by scattering.

This can be seen in Figure 5.7, where the values of (A) for several values of v. are plotted against

X (i vs. X is included for comparison). Increasing v. drastically reduces (A) for those particles

near the boundary.
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Table 5.1

normalized pinch transport coefficients

L. b.l. circ trap

0.0 0.528 0.622 -1.000
2.0 X 10-1 0.520:0.001 0.624+0.002 -1.001±0.001
4.0 X 10-T 0.518t0.001 0.61210.002 -1.000±0.002

2.0 X 10~' 0.507t0.003 0.600±0.004 -1.002±0.004

4.0 X 10-6 0.500j0.004 0.594*0.006 -1.000±0.005

2.0 x 10-1 0.479±0.008 0.575+0.013 -0.997±0.012
4.0 X 10-1 0.460*0.010 0.551i0.018 -0.998±0.016
2.0 x 10-4 0.40010.021 0.493±0.038 -1.013±0.035

4.0 X 10-4 0.352*0.028 0.45210.053 -1.0230.050

8.0 X 10-4 0.339±0.031 0.422±0.060 -1.001±0.066

The predicted values of T'i, as a function of v. are computed from the expressions given

in Section 3.1. Normalizing the prediction to the value of T , we have:

Tog (=-A- (5.1.20)

The circulating particle data from Table 5.1 are plotted as a function of v. in Figure 5.8. The

solid line is the prediction of equation. 5.1.20. The data from the numerical calculation show the

predicted behavior as a function of v., but the data are not in good quantitative agreement with

e'quation 5.1.20. Qualitatively, the disagreement between the finite v. theory and the numerical

computation can be explained in terms of the particle orbits in the boundary layer. In, both the

ideal banana theory and the finite v. theory the assumption that the parallel velocity is always

greater than the drift velocity is made. The drift velocity is not completely neglected - it accounts

for the finite width of the particle orbits - but it is not included in the time weighting of the

orbits. This assumption breaks down for the boundary layer particles; instead of being marginally

circulating, they have a well defined circulating nature as we have seen when comparing the v. = 0
data to the ideal theory.

This circulating behavior of the boundary layer particles is also important for the finite V.

cases. The effect of the drift motion on the particle orbits means that the boundary layer particles

are more "robust" than the finite collisionality theory predicts, i.e. the orbits are less susceptible to

the effects of scattering than predicted. Because the boundary layer particles make the dominant

contribution to the circulating particle pinch coefficient, this implies that the circulating pinch

coefficient should be larger than predicted. This is clearly shown in Figure 5.8. Scattering. does

not disrupt the boundary layer by the amount predicted by the finite collisionality theory.
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Another way of looking at the problem is that scattering is less effective than predicted in

the finite Y. theory. Given a value of v from the Monte Carlo calculations, we can simulate the

"robustness" of the boundary layer particles by reducing the numerical factor which relates i/ and

v. in equation 5.1.19.

V'. = 2.0 X 10-' Y (5.1.21)

In Table 5.2, the values of the explicit circulating particle pinch coefficient are given. The results

from the numerical simulation are given in the column marked "data". The predicted value of the

pinch coefficient is given in the column labeled "T13,," and the value obtained using V is in the

column marked "T13,,"

Table 5.2

circulating pinch coefficients

data V. T13, T143
0.0 0.622 0.0 1.000 0.0 1.000

5.0 X 10- 0.624±0.002 2,0 x 10-1 0.529 1.0 X 10 ~~9 0.624
1.0 X 10-4 0.612±0.002 4.0 X 10-1 0.513 2.0 x 10-1 0.614

5.0 X 10-4 0.600*0.004 2.0 X 106 0.471 1.0 X 10-1 0.588

1.0 X 10-- 0.594±0.006 4.0 X 10-6 0.451 2.0 x 10-1 0.576

5.0 X 10-3 0.575±0.013 2.0 x 10-1 0.397 1.0 X 10-7 0.544

S0.01 -- 0,55-1+0.018 4.0 X 10-5 0.370 2.0 x 10-7 0.529

0.05 0.493±0.038 2.0 X 10- 0.298 1.0 X 10-6 0.490

0.1 0.452±0.053 4.0 X 10-4 0.262 2.0 x 10- 0.471

0.2 0.422±0.060 8.0 X 10- 0.221 4.0 X 10-6 0.451

From the table, we see that if the reduced value, v'., gives a good fit to the data. The dashed

line in Figure 5.8 represents equation 5.1.20 with '. used instead of V..

As a check on the scattering model, the Fokker-Planck coefficient (.E) was computed for
three values of v.. The normalized results (the normalization is a division by Y.) are given in
Figures 5.9 and 5.10. The solid line represents the prediction of the Lagrangian formulationIT,
which can be expressed as:

=c2J (5.1.22)

where c is some normalization constant determined from the data and J is the parallel invariant,
which is given for the circulating particles by the expression[I:

J ~ V1. + - X E(m) (5.1.23)
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where m has been previously defined. The data are in good agreement with the prediction over

most of the circulating region of X-space. At the boundary layer, there is a disagreement, due to

the prediction of the ideal theory that W2 = 0 at X = X61. If we consider Figure 5.10, there is

a more serious anomaly present. In the finite v. theory, it is expected that W2 for the boundary

layer particles should increase as v. increases, due to the scattering of the marginally circulating

particles towards well circulating values of X. This would give rise to an increase in ('") in

the boundary layer. In Figure 5.10, we see that the increase of /. does not produce a change in

, within the statistical error of the computation.

The values of W2 at X = XbL are plotted as a function of v. in Figure 5.11. From the data,

it is apparent that there is no strong dependence of W2 on v.. contrary to the prediction of the

finite collisionality theory. There is a simple physical model for the observed values of w2. If we

consider the behavior of the boundary layer particles for the smaller values of v., we see that w2 is

dominated by those particles which scatter into trapped space. This is apparent because w2 < wb.

It is difficult for a boundary layer particle to become trapped because of the low value of v., but

once the particle crosses the boundary, it will remain in trapped space until it scatters out, which

is also difficult. Thus a small fraction of particles becomes trapped, but these remain in trapped

space for a relatively long period of time. For higher values of v., scattering across the boundary

becomes easier. More particles will enter trapped space, but it V'ill be easier for them to return to

circulating space. So the fraction of particles which make the trinsition increases, but the average

length of time spent in trapped space decreases. Because the two factors (fraction of particles which

cross the boundary and length of time spent in trapped space) tend to offset each other as v. is

changed, W2 is not strongly dependent on Y..
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5.2. The Explicit Currents

In this section the results of the numerical calculation of the explicit currents will be presented.

The explicit currents were calculated by integrating the expression:

= q f,.(X)@)= q-10) dt (5.2.1)

where q is the particle charge, n(ip) is the plasma density (see Section 4.3) and the integration path

is the toroidal projection of the particle's trajectory. In Chapter 3, it was shown that the functions

S13 ,,(X) and S3 ,,(X) are the product of the bounce period (w; 1 ) and " for example. Because we

must integrate with respect to time in equation 5.2.1 (hence the bounce period is already included

in the result), computation of the explicit current analog to . is impossible. S31,,(X) is a natural

result of the computation. We have not mentioned the units that the quantity S3i,,(X) is expressed

in because we will be comparing the data from the numerical simulation to scaled versions of the

predicted functional forms S31,,(X)cir and S31,,(X)t'aP given in Section 3.2.

The explicit current data are plotted in Figures 5.12 and 5.13. The data are denoted by

squares, the solid line represents equations 3.2.3 and 3.2.4. These equations were normalized to the

value obtained at the point in trapped space nearest the boundary layer. The figures show that the

agreement between the data and the expression for S3i,,(X)trap is very good, the data are within

10% of the theoretical predictions. It should be noted that although S3,,,(X) depends on a, this

splitting is not attributable to EO (E4 = 0 for this calculation), it is due to the toroidal geometry

and the choice of launching particle from surfaces of constant ip, rather than ;.

When. the circulating particle data are compared to the ideal banana theory, there is good

agreement for the well circulating particles, but in the boundary layer, the data are consistently

lower than the prediction. This can be readily explained in terms of what we have seen in the

previous section concerning particle kinematics in the boundary layer. By analogy with the explicit

pinch coefficient, S3,,,(>) can be viewed as the product of w;- and some function, X, which

corresponds to . While it is not possible to directly examine the behavior of r. due to the

method by which S3 ,,,(X) is calculated, let us assume for the moment that it is in exact agreement

with what is predicted by the ideal banana theory. As noted in the previous section, wb is in fair

agreement with the theoretical prediction except near the boundary. At the boundary, wb does not

go to zero, but takes on a finite value. Thus the product of wbI and x should be smaller than

predicted. At the boundary, & must tend toward zero, given that Wb is predicted to be zero, and

S3,,,() is'finite. From the data, we see that Wb is not zero, yet S3i,,(X) has a finite value on the

boundary. This implies, that x, if it could be computed, would also not be zero at the boundary.

In short, the situation is very similar to that given in the previous section, where neither wb nor

' behaved as predicted near the boundary.
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As in the previous section, S3i,,(X) can be integrated to find the explicit transport coefficient

T31. Using the same trapezoidal rule integration scheme, the circulating particle contribution to

the explicit current is about 12% that of the trapped particles, with over 95% of the circulating

contribution coming from the boundary layer particles. This is consistent with the theoretical
calculation done in section 3.2. As we have shown that the agreement of the trapped particle

banana current is within 10% of the predicted values from the ideal theory, and in Chapter 3, that

the explicit current coefficient is smaller than either the circulating or trapped pinch coefficient by
a factor of e, but is the same size as the net pinch coefficient, we have verified the predictions

of the behavior of the conjugate explicit processes made in Chapter 3. The major difference

between the predictions and the data is in the response of the boundary layer; the contribution of

the boundary layer particles to both T,1 and T13 is much less than predicted. This result is not

especially important for the explicit current coefficient, as the circulating particle contribution is

small compared to the trapped particles, but it docs make a major difference for the explicit pinch

coefficient, as the cancellation of the trapped particle coefficient by the boundary layer contribution

is not as large as predicted.

The transport coefficient can be evaluated in the presence of collisions. This was done for

the v. = 8.0 x 104 case discussed in the previous section. The problem is complicated by the

fact that that S3,,,(X) is computed numerically and already has been weighted by wi 1 , the inverse

of the actual poloidal period. To compare with the finite v. theory, it should have the wo-

weighting. So the computed value of S31,,(X) is multiplied by w2 , to obtain the poloidal average of

c, then the statistical average of the quantity is done, before dividing by wb and integrating. It is

found that the trapped particle banana current is unaffected by the low level scattering within the

estimated statistical error. Also, the circulating particle explicit current has increased to almost 19%

of the trapped particle current, with the boundary layer particles accounting for 94% of the total

circulating current. Figure 5.14 shows the v. = 0 and the il. = 8.0 x 10-4 cases; as before the

solid line denotes the prediction of the ideal banana theory (v. = 0). Note that in some some cases

the collisional value of S31,,(X) is twice the ideal value, although it is still less than the predicted

value.

The explanation of the enhancement of the boundary layer explicit current lies in the effect

of the model collision operator on the boundary layer particle orbits. Examination of equation

5.2.1 reveals that there are three factors which contribute to S31 ,,(X): the density, the toroidal

velocity, and (3 ; ). The boundary layer particles will tend to become well circulating particles

under the influence of the scattering operator. i.e. Ap < 0. This means that Ivol will increase.
The actual change in the average density that the particle sees will be small, so the effect of the

density gradient can be neglected. Given that the particle starts out with, say a = +1, the particle

may complete its poloidal orbit with either value of a. Suppose that the particle scatters towards
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well circulating space, keeping o = +1. Thus vo will be larger than in the non-collisional case.

However, (5 - 1) will also change. The particle starts out with 7k > T, and as the particle moves

to the outside of the torus k becomes less than T. As it moves to the outside, Ivol will be come

larger, so the outside of the torus is where most of the contribution to S31 ,,(X) is made. With the

scattering, the point at which 0 becomes less than 3 moves towards the outside. This effect tends

to offset the increase in Iv,,j, so the actual single particle value of S:i,e(X) can increase or decrease.

Suppose that the particle now becomes backward directed as it scatters. Again the magnitude of

the toroidal velocity increases, but it has become negative. ( - 1) is initially negative as before.

However, the backward directed particle will move away (i.e. outward) from the i surface. Thus

(5 - 1k) will remain negative, and given the negative vo, this leads to an unambiguous increase

in S31,,(X). Similarly, for the a = -1 particles. if they remain backward directed, the value

of S31,,(X) can increase or decrease. If they become forward directed, v" becomes positive, and

k) which is initially positive, remains positive as the particle moves inward, away from the i

surface.
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5.3. The Implicit Processes

In this section, we will examine the behavior of the Fokker-Planck coefficient (ai') as a

function of the collisionality, v.. (Al"*) is easily computed given the method of computing A

presented in Chapter 4. The final value of u is obtained from the numerical integration of the

particle orbit. The initial value is known, so A4 is easily computed and multiplied by 4 to give

AJ*±. This process is repeated for many particles at each location on the phase space grid, then

the results are averaged using the method described in Section 2.6 to give =)

The finite collisionality theory predicts that when the value of (AIt*) is divided by v., the

resultant normalized ( *) should decrease as v. increases. This result is illustrated in Figure

5.15, where the normalized (*'$) is plotted as a function of the pitch parameter X. The solid

line represents the normalized prediction of the ideal theory from Section 3.3. As v. is increased,

the peaking of the normalized (AJ.*) in the boundary layer should become less prominent, as

scattering disrupts the cross processes. The small (normalized) trapped particle contribution is

unaffected by increasing v.. This can be seen in Figure 5.16, in which the V. = 2.0 x i0o- and

V. = 8.0 X 10-4 cases are plotted as functions o' X in boundary region. Table 5.3 contains a list

of the normalized values of (A2$0') as a function of v. for the boundary layer particles.

Table 5.3
normalized (A IA) at boundary

2.0 X 10-7 -175.0*9.94

4.0 X 10-7 -140.0*8.59

2.0 x 10-1 -113.0*6.31
4.0 X 10-6 -106.0t5.72

2.0 X 10- -72.7-4.16
4.0 X 10-s -73.1*3.62

2.0 X 10-4 -51.8*2.35

4.0 X 10-4 -37.9*1.93

8.0 X 10-4 -25.8j1.34

Note that the value of ) given in the table does not necessarily coincide with the maximum

value from the figures. Also note that only the data from the forward directed particles is plotted;

the a = -1 data has the opposite sign, as will be explained below.

Many of the features of the {^1±) data can be explained by examining the particle orbits.

Consider the forward directed particles. Let us examine the behavior of ( '$*) for different values

of X. In the boundary layer, the initial value of I will be nearly equal to its maximum allowed

value of IBBH. Thus the scattering can only produce As < 0, but the particle can either remain
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forward directed, or become backward directed. Recall that the circulating particles are launched

from the inside of the torus, where the a = +1 particles will have see the minimum value of 0

along the drift surface (the o = -1 particles see the maximum value of f). Of all the circulating

particles, those near the boundary will drift farthest away from the initial flux surface by the time

they get to the outside of the torus, i.e. T is largest / smallest for the forward / backward directed

boundary layer particles. Suppose the o = +1 particle scatters, keeping a = +1. As A will be

smaller, X will decrease and the particle move towards well circulating space.. This will happen at

some value of 0 greater than the initial flux position. Because the well circulating particles tend

to stay closer to their initial flux surfaces, the particle tends to remain near the value of i where

the scattering event took place. When the poloidal orbit is completed, the result of the scattering
event is an increase in the value of 0 at the initial point, 0 = 7r. Looking at it another way, if
we were to find the initial value of 7 such that the particle were to arrive at the location where
the scattering event takes place with the new value of /z, this flux value would be greater than the
actual i from which the particles are launched. If the scattering event results in a = -1, the

result is pretty much the same. Because the backward directed orbits have a minimum in 0 at
0 = 0, the equivalent initial 0 of the new orbit will have to be greater than the initial flux value.

The net result is that (AJA1) < 0

Consider the well circulating particles;Ay can be either positive or negative, and because
these particles stay closer to their initial flux surfaces, A0 will be smaller in magnitude. Thus the
well circulating particles make little contribution to (41"t*). Using the arguments presented above,

it is expected that (Ali*) < 0 independent of the sign of A/A.

The trapped particles must also be considered. As with the well circulating particles AM can
be either positive or negative. If Ap > 0, then the particle has become more deeply trapped. If we

look at the initial value of 0 such that a the particle orbit with the new value of A passes through

the site of the scattering event, we see that AO < 0. If AM < 0, the banana orbit becomes wider.
As before, if we look for the equivalent starting 0 value, we see that it is greater than the actual

0 used. The result for both cases is the same, (41.*) < 0.

Now consider the backward directed particles. In the boundary layer, as explained above,
A < 0. When a scattering event takes place. the particle X will decrease. Because 0 is maximal

at 8 = r for the backward directed particles, the equivalent starting 0 for the new orbit is smaller

than the actual flux value. As in the a = +1 case, this result is independent of the new value of

a. The net result is (A,-) > 0. This is the origin of the correlation of the particle a and the

jump in 0 alluded to in Chapter 3.

As above, (N --) is small for the well circulating particles, but it is positive. The same

argument used above can be applied to the a = 1 trapped particles: except that the particles are
launched from the "inside" of the banana, and this will result in (-j*) > 0.
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The prediction made for the behavior of the Fokker-Planck coefficient Dia(X)ci'" in Section

3.3 is singular at the boundary, while D 13 (X)rap is zero everywhere. It was found that D13 (X)'GP

is not zero, although small. This can be explained by the use of V instead of i in ) As

explained above, it should be expected that the trapped particles make some small contribution

to (A'4,) because of the nonzero A0. Examination of the trapped particle orbits shows that

AV - 0. D13 (X) is computed from AV, so this explains the discrepancy between theory and

numerical simulation.

There are two causes for the divergence of the circulating particle (A- -) from the predicted

behavior of DA(x)crc. First, as noted in Section 5.1, the boundary layer particles do not behave

as predicted by the theory due to many factors, e.g. non-circular flux surfaces, small but non-zero

drift motions. Secondly, D 3(X) is calculated in the limit of ,. -+ 0. Numerically, we require a

finite value of v. to compute (- ). As we see in Figure 5.16 and Table 5.3, as v. is increased,

the normalized D13(X) decreases rapidly. D13(X) is proportional to V., so the normalized D1 3 (X)

should be constant. The normalized ( -') values decrease with increasing &,, which implies that

the cross processes are being disrupted, as predicted by the finite collisionality theory. Because

(*19*) can not be computed in the limit v. -+ 0, any comparison between a computed (*.$*)

and the predicted DON(X) should not be expected to produce quantitative agreement.
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Chapter 6

Summary and Conclusions

In this thesis, we have studied the conjugate processes of the pinch effect and the bootstrap

current. The predictions made by the Lagrangian formullation of neoclassical transport theory have

been compared to the results obtained by numerical integration of particle orbits for both the
explicit and implicit processes. Here we present a summary of our results.

In the investigation of the explicit pinch, we have focused on the areas of particle dynamics,
the non-collisional transport coefficient and the effects of collisionality on the transport coefficient.

On the whole, it was found that the numerical results are in good agreement with the predictions of

the ideal theory for such quantities as 4 and wb. However, in the narrow region of X space near

the trapped-circulating boundary, the numerical results diverge from the predictions. This. result

is a consequence of the assumptions made in the Lagraagian formulation concerning the dynamics

of the boundary layer particles. We have also shown that the toroidal electric field produces a
"splitting" of the values of ' obtained for the a = ±1 particles in the boundary layer. This

splitting is caused by the drift in X which is the result of the acceleration or deceleration of the

particle under the action of E,.

When the " and wb calculated from the numerical simulation are combined, we can integrate

over the pitch parameter X to obtain the explicit pinch transport coefficient. If the numerical result

is normalized to the trapped particle pinch coefficient predicted by the theory (our results for zf
agree with Ware's expression to within 8%), it was found that the circulating particles cancel 62%

of the trapped particle contribution. The ideal theory predicts a cancellation of 94%. Further

examination of the numerical results and theoretical predictions yields the result that the difference

between calculation and theory is due almost entirely to the boundary layer particles.

In both the ideal theory and the finite v. theory, the assumption is made in the time weighting

of the particle orbits that the drift motion can be neglected in comparison to the parallel motion of

the particle. This assumption breaks down in the boundary layer, where the small but finite drift

motions give the particles a well defined circulating motion. In addition, the limit that E0 -+ 0 is
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taken in both the ideal and finite v. theories. In the numerical simulation, finite value of E0 must

be used, which give rise to a drift in X. This has the effect of reducing " in the boundary region.

It was found that the electric field used in the numerical computations gives rise to a drift in X

of about 3.0 x 10-3. The assumption that the drift motion is negligible compared to the parallel

velocity breaks down within AX - 1.0 x 10-3 of the boundary layer. The difference between the

predicted contribution of the particles within AX = 1.0 x 10-3 of the boundary and the numerical

results for the particles in this region is 45%, which accounts, to first order, for the entire difference

between the predictions of the ideal banana theory and the numerical results.

The calculation of the pinch coefficient was repeated for several values of collision frequency.

The trapped particle pinch coefficient was unchanged by the effect of these low levels of

collisionality, as predicted by the finite v. theory. However, the boundary layer contribution

to the circulating particle pinch coefficient was markedly reduced. This result was compared

to the behavior of the circulating pinch coefficient, as a function of V., predicted by the finite

collisionality theory. The numerical results show the predicted qualitative behavior, but the

quantitative agreement is poor. This is another consequence of the assumption that the parallel

velocity dominates the circulating particle dynamics. Because of the drift motions, the boundary

layer particles are more "robust", i.e. they are not as- susceptible to the effects of scattering as

predicted by the finite i. theory. This leads to a higher value of the circulating pinch transport

coefficient than predicted by the finite v. theory.

In the area of the explicit currents, there was good agreement between the ideal banana

theory and the results of the numerical simulation. In the non-collisional case, the trapped particle

explicit current is in extremely good agreement with the theoretical prediction. The circulating

particle current is also in good agreement, except in the boundary layer, where the numerical

results are much smaller than predicted. This is another consequence of the "realistic" effects

alluded to above. The addition of collisions again has no effect on the trapped particle current.

Collisional effects actually increase the current from the boundary layer particles, but the net result

is still less than the current predicted by the ideal banana theory for the non-collisional case.

We are not able to directly compare the explicit pinch and explicit bootstrap transport

coefficients. This is because we have chosen to compute both transport coefficients for particles

launched at a single energy value - this was done to reduce the amount of computer time required.

As shown in Chapter 3, the energy dependence of the explicit pinch transport integral is different

from the explicit bootstrap integral, which precludes direct comparison of the single energy results.

Instead, we have normalized our results to the trapped particle contribution of the explicit pinch

or explicit bootstrap for purposes of comparison to the Lagrangian formulation. This allows for an

indirect comparison of the pinch and bootstrap explicit transport coefficients.

Our study of the implicit pinch and bootstrap processes has been restricted to examination
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of the Fokker-Planck coefficient (A1$*). The implicit transport coefficients were not computed,

which significantly reduced the amount of computer time needed. We can qualitatively discuss the
implicit transport coefficients because (Ali) normalized by i/. is analogous to 2 in the explicit
pinch calculation.

We have shown that the (A1.*) derived from the numerical simulation, at a very low value

of v., is in good agreement with the expression given by the ideal banana theory, except near

the trapped-circulating boundary. Here two effects prevent closer agreement between our results
and the ideal theory. First, there are the "realistic" effects which enter into the problem through
the dependence of the theoretical expressions on wb. The second problem is that we have had
to use a finite collision frequency to obtain the normalized (A19*). We find that the large peak
near the boundary becomes less pronounced as v. is increased. Even a very small value of Y.
will have some effect on the boundary layer particles which will preclude good agreement with the

predictions of the ideal banana theory.

The decrease in the boundary layer contribution of the normalized (At ±) has important
ramifications. In the ideal theory, the circulating particle explicit pinch nearly cancels the trapped
particle explicit pinch, leaving a net explicit pinch coefficient of 0(0S). This is Onsager symmetric to
the explicit current, which is of O(J). Thus in a "collisionless" plasma, the transport is dominated
by the implicit processes. The implicit processes arise from the correlation of the scattering
"cross-processes", such as (AI*), with the direction of the particle velocity. We have shown how
this correlation comes about, based on the effect cf scattering on the particle orbits. The implicit
processes are dominated by the contribution of the boundary layer particles. As v. increases,
this boundary layer contribution becomes much smaller, and transport becomes dominated by the
explicit processes. However, the increasing scattering level will also disrupt the boundary layer
contribution to the explicit pinch coefficient, leaving the trapped particle contribution intact. The
net result is a breaking of the Onsager symmetry; the implicit processes have been destroyed by
the low level scattering, the explicit current remains of O(S), but the explicit pinch becomes
dominated by the trapped particle contribution of O(ef).

We have been able to show that the implicit processes are dominated by the boundary layer
particles. We have seen that various effects not included in the ideal banana theory , e.g. finite E6
and the drift motions of the boundary layer particles, lead to symmetry breaking for the explicit
coefficients for the v. = 0 case. Increasing v. does indeed disrupt the implicit processes and the
circulating particle contribution to the explicit pinch as predicted by the finite collisionality theory.
This is the mechanism by which the Lagrangian formulation explains the presence of the pinch
effect and the absence of the bootstrap current. Qualitatively, we have been able to verify the
predictions of the Lagrangian formulation for thc Lorentz model.
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and the drift motions of the boundary layer particles, lead to symmetry breaking for the explicit

coefficients for the v. = 0 case. Increasing u. does indeed disrupt the implicit processes and the
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This is the mechanism by which the Lagrangian formulation explains the presence of the pinch

effect and the absence of the bootstrap current. Qualitatively, we have been able to verify the

predictions of the Lagrangian formulation for the Lorentz model.
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Appendix A

Dipole Field Calculations

In this Appendix. the analytic expressions used to evaluate the vector potential, magnetic
field, and the gradients of the magnetic field for a simple dipole will )c derived. The advantage
of using a dipole for the poloidal field is twofold: first, A, B and V1 can be written as simple
algebraic expressions; second, the resultant magnetic field is curl free.

Beginning with the Biot-Savart Lawl 3l, we see that the only non-zero component of the
current is J4, so only AO need be calculated. The calculations will be done in cylindrical coordinates
to take advantage of the axisymmetry. The equation becomes:

AO= cos 0'-r'drdz'dO' (A.1)

the cos 01 term in the numerator is required to get the projection of the current at 0 onto the S
direction. For JO a delta function will be used.

JO = I6(r' - a)6(z') (A.2)

where I is the toroidal current and a is the major radius. The distance z between the current loop

and any point is:

= Va 2 + r 2 + z2 - 2arcos4Y (A.3)

where axisymmetry has been used to remove the dependence on 0. When equation A.2 is inserted

into equation A.1 the r' and z' integrals can be done by virtue of the delta functions.

AO = L MO, + a cos 'do' -(A.4)
2r 0 a2 +r 2 + Z2 - 2arcos Y

where the range of the qV integration has been halved because of the even behavior of the cosine.

The 01 integration in equation A.4 can be done using elliptic integrals. First the half angle

substitution is made:

-84-

6-



= - 2a (A.5)

d= -2da (A.6)

cos' = 2in2 a - 1 (A.7)

Now equation A.4 can be re-written as:

,O= AOI f 1 (2 sin 2 a - 1)da (A.8)
7' V(a+r)2+Z2 -4arsin 2 a

Let

4ar (A.9)(a + r)2 + Z2  (9

A4 can be expressed as:

A oI a (2sin'a- 1)da (A.10)
r2 2 o (1 _ m sin 2 a)*

The a integral can be easi y expressed in terms of the complete elliptic integrals K(m) and E(m).

~ ~ ~~ K f~ --- -a(A.11)

V1- msi a

E(m) f 1 - ain2 a da (A.12)

If we note that:

1 min2 a mSin2 a (A.13)
l-maina 1- m sina

Equation A.10 can finally be written as:

A4 - 2K(m) 2 E(m)- K(m) (A.14)
7r ((a + r)2 + z2)j Mn - 2

To get the magnetic field, the curl of AO is taken.

8A4
B, = o -(A.15)

az
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B= r (A.16)

The following are a few identities which will be of use in these calculations.

dE 1
m (E(m) - K(m)) (A.17)

dK -1 Em
(mEm T) - K(m)) (A.18)

(A.19)
T 2ar

8m 1(l m(a+ ) (A.20)
57 7 2a

First, consider B,

B, = -O K - E K)
v(a + -r)2 + z 2 ((a + r)2+ 2 M M (.1v~i 3  (A.21)

2m2 dK 2K 2 dE 2E dK\

Substituting for the derivatives, and simplifying the result, we have:

lB,= a z m( 2(K-E)-K
r (a+r)2+2 4arm 

(A.22)

+ m( ( E 2K (E-K) 2(12E E2ar Mi-rn I m m m 2(1 -rn) 2)

Simplifying again, B, can be put in the following form:

B,( -K+ 2+ mE) (A.23)
2vr a + )2 2(1- )

The B. calculation is a bit more difficult because of the extra factor of r. However, we can re-write

equation (A.16) as follows:

B, =- + (A.24)F ar

First, compute the derivative.
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a 4, _ AOI a ( -(a+ r) 2 (K E) K)
r- 7V(a+r)2 + Z2 (a+r 2 +Z 2 m (A.25)

+ m 2dK 2K 2dE 2E dK)
m2  mdm M 2 dm

.Ao Mal a -(a+r) (2 (K-E)K)
V' i a+ r)2 + Z2 (a+r)2 +Z2((A.26)

v~v~rZ(A.26)

+ 1( (E -K)-2K E-K E E -K))

For simplicity, first we will sum up all of the terms contairing E from the OA as well as the

term: then we will consider the K terms. The common fictor which multiplies each expression

will be temporarily neglected.

Etrs 2 2 a+r ffam (1 1 2 1E terms - + m2(1- M) 2m(1 ))
m~a+7)+z2  ~2((1 )2 2(a +r) 1 1 m(a +r) (1 - 1~ 1

+ G 2ar ,m(A m) m 2(1-).27)
1 2-r 1 1 m(a+r)

mr 2rm(1 -in) 2r(1-m) 2a(1- m) 4ar(1 - m)

1 + m(a+r)
2a(1 - m) 4ar(1 - m)

K terms 2 1 a+r a+r am 1 2
mr r (a+r)2 + z 2  2ar Or (2m m 2

2 1 + m(a+r) _ a+r (1 ( m(a+r))( 1 2
mr r 4ar r r 2ar 2 m (A.28)
2 1 m(a+r) a+r 2 1 a+r _m(a+r)

mr r 4ar 2ar mr 2r ar 4ar

1
2a

Combining the K and the E terms, we can write B. as follows:

B 2= r I K- E -m(a+r) (A.29)
2 (a+ )2 + 2 1 -m 2 r

Now the gradients of B will be calculated. This will involve taking the R and z derivatives

of B, and B.. However, using the vector potential, the amount of work can be reduced; 2A. can

be expressed in terms of other quantities. Using the definition of B,, we can write:
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at arAo (A.30)

Similarly for B, we can write:

___ _ 'ia 1A4 82A,
a8B 7 (rA)j = + 2 (A.31)

The expression for B. can be simplified to:

aB2  B,. aB,(-2
- (A.32)

This guarantees that the magnetic field is divergence free. The remaining three derivatives must

be computed. As above, computational effort will be kept to a minimum by expressing the results

in terms of previously calculated quantities.

First, consider %B, There will be three terms, each from the various places where z occurs

in the expression for B,.

,B, B, Bz UoI z am( dK 2-maE E
-~ - 5- - -+ Ti-- )Oz z (a + r)2 + z 2  2zrr dm 2(1- m) dm 2(1 - m)2

(A.33)

6B, B,. B,.z z am E -E
8z z (a+r)2 +z 2  2rr (a r)2+2 az 2m 1-m (

(A.34)

+ m (E -K)+ E
4m(1 - m) 2(1 - M)2

Re-arranging terms, and writing out the B,/z term, we have the result:

aB, _ B,z pol -K + 2-m Eaz (a+r)2+ 2 27r ( +,.2+ 2 2(1 m) (

2wr (A.35)+ to-' z - 1 8!! -K + 1 + m
rV(, + r)2 + i2 4(1- m) az (_ I-m M)

The expression for the r derivative of B, will be very similar to the z derivative. In particular,

the only change to the last term will be the substitution of rn for 4f.. The other terms will change

slightly to reflect the r differentiation. The result is:

aB, B, ) + jI 1 am(-K 1+ mr r (a + r)2 +2) 2rr V( r)2 +2 4 (1 - m) -r 1 -M )
(A.36)
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The remaining derivative is a bit more complicated. Before beginning the actual calculation

note that:

m(a + r) am r - a am'in'
r 1 -m 2r(l - m) ar 2r(1 -m)2 2 r-2(1 - m)

cB: B. (a+ r) 1 ca K cm dE 1-
-r -a r2 + Z2 + A0 (1-1( )at a~)2 z 2  27r v(a + -r +z2 ( ar dm ar dm1-m~2~mj

E 9 (a +r)
8r 1-m 2r(1-m))

A.18)

This can be expressed as:

aB _ B.(a+r) + 1 am dK
ar (a+r)2 +z 2  21 2 2 ir dm

dE j 1  rn m a r E(r -a) amE
7m- 1- (2 r ) 2r( 1- m)2) 2r2(1-m)

(A.39)

If we substitute in for the derivatives of the elliptic integrals, and simplify the expression, the result

is:

aB (a +r)2 + 2  2 (a+r)2+z24(1m) [5 \ K(r - a)
ar - a + r)2+ Z2 2r /(a+ -1)2 zy r~i - m) ar (r -a)) - ~ am (A.40)

+E(a+r- 1 - n)) E

In practice, the quantity 4, is not needed. Because the curl of B is identically zero

everywhere except at r = a, z = 0 (these expressions do not apply there anyway), it follows that

aB2 - ax~ (A.41)

For brief discussions of the calculation of A,, see references 25 and 26. The evaluation of the

vector potential, magnetic field and the derivatives of B require the calculation of the complete

elliptic integrals of the first and second kind. In reference 12, approximations to these functions are

given in terms of polynomial and logarithmic terms in the complementary modulus. The following

LISP functions illustrate the use of these approximations to compute the complete elliptic integrals.

Horner's rule is used to put these expressions in an efficient form for evaluation. These two

functions were used to evaluate the predictions of the ideal banana theory as expressed in Chapter



3. Equivalent FORTRAN expressions were used to compute the vector potential, magnetic field

and its gradients, from the expressions given in this Appendix.

(defun k-ellipt (m)

(let ((mI (-$ 1.0 M))
(ak 1.38629436112) (aki 0.09666344259)

(ak3 0.03742563713) (ak4 0.01451196212)

(bkI 0.12498593597) (bk2 0.06880248576)

(bk4 0.00441787012))

(-S (+$ ak (S(+ akI (OS (+$ ak2 (OS (+5

(*$ (+$ bk0 (S (+S bkl (*S (+S bk2 (*S

(log mI)))))

(ak2 0.03590092383)

(bk0 0.5)

(bk3 0.03328355346)

ak3 (*S ak4 ml)) ml)) ml)) ml))

(+$ bk3 (OS bk4 ml)) ml)) ml)) mi))

(defun e-ellipt (m)

(let ((ml (-$ 1.0 M))
(ael 0.44325141463) (ae2 0.06260601220) (ae3 0.04757383546)
(ae4 0.01736506451) (bel 0.24998368310) (be2 0.09200180037)
(be3 0.04069697526) (be4 0.00526449639))

(-S (+$ 1.0 (*$ (+$ ael (*$ (+$ a92 (*S (+S ae3 (OS ae4 ml)) ml)) ml)) ml))
(*S (log ml) (+$ bel (OS (+S be2 (OS (+S be3 (OS be4 ml)) ml)) ml)) ml))))
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Appendix B

Sparse Matrix Inversion Techniques

In the appendix, matrix inversion techniques for two types of sparse matrices will be discussed.

The basic starting point for each type of matrix is the LU decomposition algorithm. The matrix

is expressed as a product of a lower triangular matrix and an upper triangular matrix. The LU

decomposition will be worked out in detail for one matrix, and the results will be given for the

other one. Two applications will be presented; solving a simple matrix equation in 0(n) operations

(n is the size of the square matrix) and computing the inverse of the matrix with a substantial

reduction in the number of operations compared to a standard inversion routine, such as Gaussian

elimination.

For the applications discussed in Chapter 4, each element of the n X n matrix is a scalar. This

need not always be the case; each matrix element could itself be a square m x m matrix. Such

systems often occur when solving coupled differential equations with finite difference methods.

To preserve generality, and because the set of m x m matrices is a non-commutative ring, the

algorithms will contain multiplication by the inverses of the elements, instead of division by the

elements.

B.1. The Decomposition Algorithms

The two matrices that we will be considering are:

*I Cl a
a2 b2 C2

Cn-1

bn

n-1 n-1

P a,, J
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bi C1 a

a2 b2  C2

B- -

an bn

Note that all elements not shown or implied by the dots are zero. These matrices are just

tridiagonal matrices with two additional elements. If the two elements were zero, Thomas's

Algorithm[27] could be used. The "extra" elements arise from the boundary conditions a spline or

finite difference problem imposes. The corner elements in. the second matrix come from periodic

boundary conditions, while the extra elements in the first matrix come from fixing a function value

(or derivative) at the boundary. While only these two tridiagonal matrices will be examined, this

inversion method can be readily extended to pentadiagonal systems.128 ]

The elements of the triangular matrices L and U are completely specified by the condition

LU = A. In fact, this condition over-specifies the problem; we have the freedom to choose the

values for the main diagonal of either L or U. The product LU is of the form:

M1 U, a

12 M2  I U2

In~ mn 1

where the main diagonal elements of U have been arbitrarily chosen to be 1 (note: following

standard notation, "1" is the multiplicative identity of the ring on which these operations are

performed; this is not necessarily the integer 1). If we consider the elements of A row by row, we

generate the following formulae from the product LU:

row 1

Ci = miul (B.1.1)

r=

row 2
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12 =_a2

62 = m2 +1 2u1  (B.1.2)
C2 = m2 U2 + 12a

rowj: 2 < j < n

aj = Li
bj = M? + ' Uj-1 (B.1.3)

C, = M Uj

row n

a = L + un- 2  (B.1.4)
6 = m + U

if we solve these four equations for the unknown quantities which are the elements of the two

triangular matrices, we have:

row 1

M = (B.1.5)

row 2

12 = a2

2= - 12 U1  (B.1.6)
U2 = MI(C2 - 2 a)

row j: 2 < j < n

Ij = a
Mi = bi - Lju,- 1  (B.1.7)
Uj = Mj-iCj

row n

In = an + #Un-2 (B.1.8)
Tn = mn - InUn-

These relations allow the computation of each element of L and U in terms of the elements of A

and previously computed elements of L and U. The total number of operations needed to obtain

the complete LU decomposition is proportional to n, the size of the matrix.

For matrix B, the tridiagonal matrix with corner elements, the matrices L and U are of the
forn:
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a2  MI 1 2 t2

Un-2 rn-2

an-I Mn--I rnI

11 12 - - - In... Mn

where the aj which appear in L are the same as those given in B. Solving for the unknown
elements of L and U we have:

row 1

U1 -1
11 - (B.1.9)

M-
I

mw 2

2 b2 - a2U1
U2 = jc2

12 = I

r= -n 2 a2r,

row j: 2 < j < n -1

in, =b, - .U-

(B.1.11)1, = T C

-M.~ ar. -

rows n - 1 and n

MnI= bn.... - a-~-

in-1 a= (n In-2n-2

rn- = = m;Z 1 (n_ 1 - an-irn-2) (B.1.12)
n-I

M_= -n I~

Iia

B.2. Solution of a Matrix Equation

One of the most common applications of matrix inversion techniques is the solution of a
system of the equations which can be expressed in the form

Mx'= d (B.2.1)
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where M is an n X n matrix, z is the solution vector, and d is a vector of known values. If M is of
the form of matrix A or matrix B, this equation can be simply solved using the LU decomposition

scheme discussed in the previous section. Substituting the product LU for M, we have:

LUz = d (B.2.2)

If we let y represent the product Uz, we have two very simple matrix equations to solve:

Ly = d 
(B.2.3)

Ux=y

Given the matrices L and U, all that remains is to work out the relations for the vectors z and y.
These are easy to establish, because in each case we are working with a triangular matrix. First,

the expressions for matrix A will be derived.

for vector y:

Y= mi-1 d,
yS = m, (d, - ly -1) (B.2.4)
y= m 1(dn - nyn - /yn-2)

for vector z:

z.=y

X= yJ - ujzx+i (B.2.5)
1 Y1 - UIX2 - 5X3

Now, the expressions for the matrix B.

for vector y:

Y1= M 1 d,
yj = m;- (d, - asy,-,)

=n- 1 (B.2.6)

yn = m; '(dn - I y)

for vector x:

= y

zn-i =n- - rn-izn (B.2.7)

=, Y, - Ujj1- 7jz,"

When implementing these equations, it is important to note that the vector y can be computed

at the same time as the elements of L and U. Solving for z, which is a special case of the back-

substitution algorithm common in Gaussian elimination routines, must be done in a separate loop

after y has been calculated. The earlier decision to let the main diagonal of the U matrix be filled

with unity is justified because it simplifies solving for z, also note that mj and M, do not have

to be saved after yj is calculated.
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This solution algorithm can be done in 0(nm) operations (m is the size of the elements,

m = 1 for scalars) compared to 0(n3 m3 ) operations if we were to blindly use a standard full

matrix inversion routine.

B.3. Inverting a Matrix

In this section, the problem of inverting a matrix M and returning the inverse will be

addressed. The method outlined here is the method used in solving th ! two dimensional spline

interpolation problem in Chapter 4. For the one dimensional spline problem, it is possible to solve

for the interpolation coefficients using the method described in the previous section.

As in the previous section, the starting point of this algorithm ii the LU decomposition.

algorithm. Using basic linear algebra, we have:

M-' = (LU)- 1 = U- 1L- (B.3.1)

The problem now is reduced to finding the inverses of L and U. There are well known[29

inversion routines for both upper and lower triangular matrices, which require 0(n3 ) operations;

however these may be modified for use on the sparse matrices L and U with substantial savings in

operations.

In general. if we have some lower triangular matrix L', the inverse, L~1 , will also be lower

triangular (similarly, upper triangular matrices have upper triangular inverses). The recursion

formula for computing the elements of the inverse are-easily found by considering the equation:

L'Y = I (B.3.2)

where I is the identity matrix, and Y is L' 1 . To compute the elements of Y, the following

algorithm is used:

for column j: first compute the diagonal element y,,

y = -L - (B.3.3)

if j < n: compute the other elements in the column:

i-I

yij= -' I 1'kY (B.3.4)
k-j

where i = j+1, j+ 2,..., n.

For upper triangular matrices, a similar recursion relation can be derived.

U'Z = I (B.3.5)
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where I is the identity matrix, and Z is U'-1.

for column j: first compute the diagonal element zjj

= -' (3.3.6)

if j > 1: compute the other elements in the column

=i -- -t- ~ k (B.3.7)

where i = j- j-

For our purposes, neither L nor U is a full triangular matrix, so we can improve on the 0(n3 )

operations needed to invert L' and U'. First we will consider the matrices resulting from the LU

decomposition of A. To invert L:

for column j (j = 1 to j = n) compute the diagonal element y,,:

Yjj = Mi(38)

if j < n, compute the off-diagonal elements ye,, i = .+1 to i =n:

if i < n:

yij = -mi-iyi., (B.3.9)

if i= n:

y= -mn-1(yn-2,j + nYin-1.,) (3.3.10)

where the appropriate quantities from the. LU decomposition have been substituted in.

A count of the operations reveals that this algorithm scales as 0(n2) instead of the O(n3 ) for

the full triangular matrix. The procedure for inverting U is similar, except that we know that the

diagonal elements zjj will be unity.

for column j, j = n to j = 1:

= 1 (B.3.11)

for row i, if i =j - 1 to i = 2:

a" = -U zi+j,, (B.3.12)

if i = 1 and j > 2:

Z, = -UlZ 2j - aZS3 (B.3.13)

if i = 1 and j= 2:
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Z1, 2 = -UI12,2

If we now consider the matrices L and U which result from the decomposition of B, the

tridiagonal matrix with corner elements, we can write down the recursion relations which describe

the inverses.

for column j (j= 1 to j = n) compute the diagonal element yjj as before.

y1yj = Mj-~ (B.3.15)

if j < n, compute the off-diagonal elements yij, i = + 1 to i = n.

if i < n:

yi,= -m 1 ajyj-i,j (B.3.16)

if i = n:

n-1

y= -- mnj y (B.3.17)

for column j, i = n to i = 1:

=1 (B.3.18)

for row i, i =j I to i = 1:

if j < n:

Zij:= -U zi+1,i (B.3.19)

if i = n - 1 and j = n:

Zn-1,n = -rn-zn,n (B.3.20)

if i < n - 1 and j= n:

in= -Utzt+l,n - rtZn,, (B.3.21)

Again we see that the number of operations needed to do the inversions scales as 0(n 2).
The only remaining thing to do is to multiply the inverses together. A full matrix multiplication

would take n3 operations; because the two matrices being multiplied are upper and lower triangular

respectively, the number of operations is jn3. The other operations in this algorithm, computing the

LU decomposition and inverting the two triangular matrices scale as 0(n) and O(n 2) respectively,

so for large n, the total number of operations is approximately n3. '[he number of operations

need for a full matrix inversion is given in reference 29. If the LU decomposition is given, the full

inversion routine will take n3 operations; performing the decomposition itself will require O(n 3 )

operations. Thus using this sparse matrix inversion algorithm results in a minimum savings in

operations of jn 3 compared to a full matrix inversion routine.
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